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Abstract  

Copy number variants (CNVs) conferring risk of schizophrenia present incomplete penetrance, suggesting the 
existence of second genetic hits. Identification of second hits may help to find genes with rare variants of 
susceptibility to schizophrenia. The aim of this work was to search for second hits of moderate/high risk in 
schizophrenia carriers of risk CNVs and resequencing of the relevant genes in additional samples. To this end, 
ten patients with risk CNVs at cytobands 15q11.2, 15q11.2-13.1, 16p11.2, or 16p13.11, were subjected to 
whole-exome sequencing. Rare single nucleotide variants, defined as those absent from main public databases, 
were classified according to bioinformatic prediction of pathogenicity by CADDscores. The average number of 
rare predicted pathogenicvariants per sample was 13.6 (SD 2.01). Two genes, BFAR and SYNJ1, presented rare 
predicted pathogenic variants in more than one sample. Follow-up resequencing of these genes in 432 additional 
cases and 432 controls identified a significant excess of rare predicted pathogenic variants in case samples at 
SYNJ1. Taking into account its function in clathrin-mediated synaptic vesicle endocytosis at presynaptic 
terminals, our results suggest an impairment of this process in schizophrenia. 
 
Introduction 
Recently, several rare recurrent copy number variants(CNVs) involved in the risk of having neurodevelopmental 
disorders have been identified. They show incomplete penetrance,i.e., there are asymptomatic carriers, and 
variable clinical expressivity, i.e., they confer risk of developing different disorders, such as intellectual 
disability, autism spectrum disorders, schizophrenia, or epilepsy [1]. These CNVs appear recurrently due to high 
mutation rates, but are eliminated in a few generations due to the action of purifying selection. Thus, their 
frequencies in general populations are very low, showing an inverse correlation with their risk effects. For 
instance, the 16p11.2. duplication presents a frequency of 0.03% in control populations and an odds ratio (OR) 
for schizophrenia of 11.5. By contrast, the 15q11.2 deletion that presents a considerably lower effect 
(OR = 2.15) reaches a higher frequency (0.28%) in control populations [2]. 
 
The incomplete penetrance of risk CNVs suggests the existence of second genetic hits [3–7]. Empirical data 
support this suggestion. For instance, 10 of 42 (24%) patients with the 16p12.1 microdeletion (involving ~520 
kb) diagnosed with intellectual disability/developmental delay, presented an additional CNV larger than 500 kb. 
By comparison, only 4.4% of 471 controls having at least one CNV larger than 500 kb presented a second CNV 
larger than 500 kb (P = 5.7 × 10−5) [5]. 
 
The second hit hypothesis has been tested in a large sample of subjects with developmental delay, congenital 
malformations, and/or autism spectrum disorders; confirming that approximately 10% of carriers of risk CNVs 
present an additional rare CNV larger than 500 kb or an additional pathogenic CNV [8]. The “second hit” 
hypothesis explains as many cases of schizophrenia as cases of developmental delay, congenital malformations, 
and/or autism spectrum disorders [9]. 
 
In addition to CNVs, other types of genetic variants, such as rare single nucleotide variants (SNVs), may act as 
second hits. Currently, it is possible to study SNVs across the genome making use of the next-generation 
sequencing technologies. Following the pioneering work of Need et al. [10], Purcell et al. [11] was the first 
study to publish whole exome sequencing studies involving thousands of schizophrenia patients and controls. 
Although they did not find any gene with an experiment wise significant excess of rare variants in schizophrenia 
at the level of candidate gene sets. Recently, Genovese et al. [12] found an increase burden of 
ultra-rare disruptive and damaging SNVs in schizophrenia cases versus controls, mainly in genes expressed in 
the brain. Studies of de novo mutations in trios also detected a role for rare variants in schizophrenia [13, 14]. In 
fact, Fromer et al. [15] confirmed the importance of two of the gene-sets identified by Purcell et al. [11], 
comprising the actin-mediated cytoskeleton protein (ARC) complex and the n-methyl d-aspartate receptor 
(NMDAR) complex. More specific applications of whole-exome sequencing in schizophrenia has been tested, 



such as co-segregation studies in pedigrees [16, 17]; comparison of patients with clozapine- induced 
agranulocitosis versus other schizophrenia patients under clozapine treatment [18]; and comparison of 
22q.11.2 deletion carriers differing in the presence of psychosis [19]. 
 
The main difficulty of whole-exome sequencing studies is the differentiation of pathogenic and benign SNVs 
among the tens of thousands of SNVs present in a single exome. Recently, the combined annotation-dependent 
depletion (CADD) method has been proposed to estimate the relative pathogenicity of SNVs, making use of 
manydifferent sources of information. This estimate, called the C score, may be used to prioritize SNVs from 
whole-exome/genome sequencing data according to their relative deleteriousness[20]. 
 
Here, we present a strategy for the identification of new schizophrenia loci consisting of three steps. First, we 
performed whole-exome sequencing in ten schizophrenic carriers of risk CNVs, under the hypothesis that risk 
CNVs with incomplete penetrance are silenced in general genetic backgrounds but are fully expressed in those 
subjects that present high impact SNVs acting as second genetic hits. Then, those genes with more than one 
sample presenting putative second genetic hits were genotyped in our collection of cases and controls to confirm 
the presence of the SNV, its low frequency, and to identify additional carriers. Finally, a random subset of the 
whole collection was sequenced in a case–control design to search for an excess of rare putative functional 
variants in schizophrenia patients. A schematic diagram of the overall experimental approach is shown in 
Supplementary Figure 1. 
 
Methods 

 
Samples 

The study is based on our collection of 558 schizophrenia patients from the Santiago de Compostela healthcare 
area (Galicia, NW Spain), meeting the DSM-IV criteria for schizophrenia, described in Carrera et al. [21]. A 
total of ten schizophrenia samples detected in our previous work as carriers of schizophrenia-associated CNVs 
were examined in the present study, including two carriers of the 15q11.2 deletion, one of the 15q11.2-13.1 
duplication, four of the 16p11.2 duplication, one of the 16p11.2 distal deletion, and two of the 16p13.11 
duplication [22]. Nine samples were identified by quantitative interspecies competitive (qic) PCR and the 
remaining one by MLPA during the confirmation step of the qicPCR screening with the MLPA design 
SALSA MLPA KIT P343-C1 AUTISM-1 from MRC-Holland (Amsterdam, The Netherlands). All sample 
donors gave their written informed consent for this study. The study was performed in accordance with the latest 
version of the Declaration of Helsinki and was approved by the Galician Ethical Committee for Clinical 
Research. Main clinical and genetic characteristics of the ten schizophrenia patients carrying risk CNVs are 
shown in Supplementary Table 1. In addition, 583 samples from the same geographical region, collected at the 
Galician Transfusion Center at Santiago de Compostela, were used as controls. Previous analysis using 
multidimensional scaling showed that population stratification is not a problem in this case–control sample [21]. 
 
Whole‑exome sequencing 

Whole-exome capture of the ten carriers of schizophrenia- associated CNVs was performed using Agilent Sure- 
SelectXT Human All Exon v4 or v5 (Agilent Technologies, Inc, Santa Clara, USA). Captured fragments were 
sequenced on a SOLiD 5500XL platform (Applied BiosystemsTM) following manufacturer instructions. 
Exome sequencing raw data were mapped relative to the human reference genome GRCh37 following the 
Genomic Analysis Software pipeline (Applied Biosystems, Waltham, Massachusetts, USA) with default 
parameters. Variant calling was also performed by Life- Scope. The mapping generated by LifeScope was used 
as input for the Genome Analysis Toolkit (GATK) software [23]. SNV detection was carried out following the 
GATK Best Practices recommendations, including detection of duplicated reads by Picard Tools v 1.106 
(http://picard. sourceforge.net), local realignment around indels, base quality score recalibration (BQSR), and 
variant quality score recalibration (VQSR), to obtain the final sequence alignment data [24, 25]. Only those 
SNVs detected by both LifeScope and GATK were considered for further analyses. Systematic sequencing or 
mapping errors were discarded by comparison with an in-house database of wholeexome sequences using the 
same technology from the Galician Public Foundation of Genomic Medicine (sample size = 117) or by visual 
inspection of interesting SNVs with the Integrative Genomics Viewer (IGV) software [26]. 
 
SNV annotation 

Relevant annotations of SNVs were obtained from the CADD score web server 
(http://cadd.gs.washington.edu/). Annotations included normalized C score, frequency in 
the NHLBI GO Exome Sequencing Project (data release ESP6500SI-V2) [27] and The 1000 Genomes Project 
Phase I v3 (T1000G) [28], and consequence to transcript based on the Ensembl Variant Effect Predictor. 
CNV detection by exome depth coverage 

http://cadd.gs.washington.edu/


ExomeDepth [29] was used to detect CNVs based on a comparison of the depth of coverage using the ten exome 
sequences from our patients as well as a reference set of other in-house sequences. Default values of transition 
probability and the over-dispersion parameter of the binomial model were used in the analysis. To avoid false 
positives, only those CNVs affecting more than two exons were considered. The criteria described by Kearney 
et al. [30] were followed to identify pathogenic CNVs or uncertain clinical significance-likely pathogenic 
CNVs. 
 
Identification of putative second hit SNVs 

Putative relevant SNVs were considered based on three filters: (1) location at coding regions or at the intronic 
canonical splice sites; (2) absence from ESP6500 and T1000G projects; and (3) normalized C score ≥23. This is 
the mean score for pathogenic variants compiled by the ClinVar database [20]. The SNVs fulfilling these three 
criteria are referred to herein as “putative second hit SNVs”. 
 
For comparison purposes, we also identified coding SNVs or SNVs in intronic canonical splice sites with 
normalized C score ≥23 present just once (singletons) in the 379 European samples from T1000G and absent 
from other T1000G populations and from the ESP6500 database. 
 
SNV Genotyping 

Relevant putative second hit SNVs were input into the Sequenom MassArray Assay Design software 
(Sequenom, San Diego, CA, USA) for genotyping confirmation and their detection in additional samples. All 
samples were genotyped by mass spectrometry, using the Sequenom MassArray technology according to 
manufacturer’s instructions. Sequenom MassArray technology was also used to confirm relevant variants 
identified after targeted exon resequencing. 
 
Targeted exon resequencing of candidate genes 
Those genes with putative second hit SNVs at more than one sample were subjected to target exon 
resequencing. Ion AmpliSeq Designer (Thermo Fisher Scientific) was used to create 83 PCR assays for 
amplicons ranging in size from 124 to 274 bp, combined in two multiplex panels. A total of 432 schizophrenia 
patients and 432 controls randomly chosen from the whole sample were selected for resequencing. Prior to PCR, 
samples were combined in 144 pools, each pool containing equimolar quantities of DNA from six individuals. 
Estimation of DNA concentration was made by three independent measurements using the Qubit ® dsDNA BR 
assay (Invitrogen, Carlsbad, CA, USA). Sequencing libraries were prepared according to manufacturer’s 
instructions. After determination of molarity, the 144 libraries were split into three subsets of 48 barcoded 
libraries, with equal number of patients and controls per subset. For each subset, all 48 final libraries were 
pooled together and standardized to 50 pM in low TE buffer (Life Technologies, Carlsbad, California, USA) for 
sequencing on the same Ion PI Chip using Ion Proton™ next-generation sequencing (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA). Data from the Ion Proton runs were processed by the Torrent Suite Software 
v3.0 and variant calling made with the Torrent Variant Caller Plugin applying low stringency default values for 
somatic variant detection. These parameters were adapted to minimize false-negative calls and to fit our DNA 
pooling approach. 
 
ANNOVAR [31] was used to annotate the detected SNVs. Missense SNVs predicted to be pathogenic by at 
least one of five prediction algorithms (Polyphen Hum- Div, Polyphen HunVar, SIFT, MutationTaster, and 
LRT) were considered pathogenic. In addition, loss-of-function variants, i.e., nonsense variants, frameshift 
variants, or variants at canonical splicing sites, were also considered pathogenic. To increase sensitivity and 
specificity in SNV calling, all putative relevant SNVs were visually inspected using the Integrative Genomics 
Viewer (IGV) software [26] and those SNVs with reference and alternative alleles appearing at least once on 
each strand were selected for validation by genotyping. 
 
Statistical analysis 

Comparison of the burden of putative pathogenic SNVs at frequencies <0.1% in T1000G and ESP6500 
databases in cases versus controls was analyzed using the one-tailed Fisher’s exact test. Comparison of the 
distribution of rare variants at SYNJ1 between cases and controls used the Cochran–Armitage test for trend 
under the alternative hypothesis of a greater number of rare SNV in cases using the DescTools package in R. 
 
Table 1 Putative second hit SNVs at genes with more than one hit discovered by wholeexome sequencing of the ten carriers of 
pathogenic CNVs 
 



 
 

Results 

 
Exome sequencing of the ten carriers of risk CNVs 

The ten carriers of schizophrenia-associated CNVs were subjected to exome sequencing to search for additional 
variants that could represent a second hit. In any particular patient, 79.10% of captured bases were covered by at 
least 10× sequence reads (average 86%) and 59.43% by at least 30× sequence reads (average 69%). All CNVs 
were confirmed based on depth of coverage, as previously described [22]. 
 
Searching for second hit variants 

No samples presented additional CNVs that fulfilled the criteria for pathogenic or likely pathogenic CNVs. 
There were 136 SNVs absent from databases and with normalized C scores ≥23 (Supplementary Table 2). The 
distribution of SNVs by sample was very similar, ranging from 11 to 16 (mean 13.6, SD 2.01) (Supplementary 
Table 1). Among the genes with putative second hit SNVs, there were several interesting genes, such as 
CACNA2D2, ANKS1B, and CAMK2B, belonging to the list of 31 genes more likely to harbor large effect alleles 
according to a large exome sequencing study [11]. Four genes presented more than one putative second hit 
SNV (Table 1). For comparison, we performed 100,000 random permutations of 136 SNVs taken from the 3930 
putative damaging SNVs at T1000G European samples after applying similar filters. Only 4.3% of permutations 
presented at least four genes with more than two SNVs, suggesting that the presence of four genes twice in our 
samples is unlikely by chance. Among the four genes, ACTN3 is a sarcomeric protein expressed exclusively in 
skeletal muscle, and a common nonsense polymorphism is present at this gene [32]. The two SNPs of TRMT2A 

were carried by the same patient. In addition, there is a loss-of-function variant at a frequency higher than 1% in 
the 6500ESP data set at TRMT2A, suggesting low functional relevance. Therefore, both genes were excluded 
from further analysis. The two remaining genes, BFAR and SYNJ1, were selected for resequencing. There were 
no singleton SNVs at the two genes in T1000G European samples with normalized C scores ≥23. Prior to 
sequencing, the presence of the putative second hit SNVs was confirmed by genotyping the whole sample. None 
of the controls presented the rare alleles at any of the SNVs. While no additional cases presented the SNVs at 
SYNJ1, three and one additional cases carried the SNVs Pro412Thr and Val432Met at BFAR respectively. 
 
Resequencing of BFAR and SYNJ1 

A total of 432 schizophrenia patients and 432 controls randomly chosen from the whole sample were subjected 
to targeted resequencing. More than 90% of pools presented more than 90% of positions at a depth of coverage 
>240×, both in cases and controls. The depth of coverage was similar between cases and controls (t test P = 

0.21) (Fig. 1). Table 2 shows the putative pathogenic SNVs at frequencies lower than 0.1% at these two genes, 
confirmed by genotyping. There was an excess of carriers of putative pathogenic SNVs at frequencies lower 
than 0.1% at these genes in cases (P = 0.037). At BFAR, three cases and one control presented putative 
pathogenic SNVs at frequencies lower than 0.1% (P = 0.31). At SYNJ1, there were nine cases and three controls 
presenting putative pathogenic SNVs at frequencies lower than 0.1%, including one nonsense variant in a 
schizophrenia patient. One of the cases presented two mutations, 61 bp apart (Table 2). Visual inspection of 
sequencing reads revealed that the sample is a compound heterozygote, leading to a significant association in the 
comparison of the number of alleles carried by cases versus controls (trend test, P = 0.034). The excess was 
more significant when the analysis was focused on the proline-rich domain (P = 0.017) (Fig. 2). 
 
 



Discussion 
In this study, we described a strategy for the identification of new schizophrenia susceptibility genes harboring 
rare risk variants. The strategy is based on exome sequencing of schizophrenia patients with risk CNVs to detect 
putative second genetic hits, following by resequencing of the involved genes in additional samples. This 
approach led to the identification of an excess of rare putative functional variants at SYNJ1 in schizophrenia. 
One patient was a compound heterozygote.   
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Interestingly, Purcell et al. [11] found eight nonsynonymous SNVs at SYNJ1 with bioinformatic evidence of 
functionality at a frequency lower than 0.1% in 2536 schizophrenia patients versus just one in 2543 controls 



(P = 0.0283, as shown in the genebook web server, http:// research.mssm.edu/statgen/sweden/), using strict 
criteria for prediction of damaging mutation. SYNJ1 is a phosphoinositide phosphatase involved in clathrin-
mediated synaptic vesicle endocytosis at presynaptic terminals [33, 34]. This mechanism has been recently 
proposed as a core pathophysiological process in schizophrenia [35]. In addition, SYNJ1 is also located 
postsynaptically, regulating endocytosis of AMPA receptors in dendrites [36]. SYNJ1 presents three domains: a 
Sac1 phosphatase domain involved in the actin cytoskeleton dynamic, an inositol-5-phosphatase domain, and a 
proline-rich domain. The association between SYNJ1 and schizophrenia seems to involve mainly the proline-
rich domain both in our data as well as in the Purcell et al.’s data [11], which showed five SNVs in cases and 
none in controls at this domain. However, the two SNVs detected by exome sequencing of CNV carriers in the 
first step of the study lay within the other domains (Fig. 2).  
 
The proline-rich domain is a protein binding domain implicated in interactions with many partners, such as 
Grb2, amphiphysin, syndapin/pacsin, intersectin, and endophilin [37]. In general, this binding controls 
subcellular location of SYNJ1 and enhances its phosphatase activity. The enzymatic activity of SYNJ1 is mainly 
regulated through phosphorylation/dephosphorylation at specific sites within the proline-rich motif by Cdk5, 
EphB2, or calcineurin, and the protein is activated at synapses by calcium influx [37]. Interestingly, a recessive 
mutation at the Sac1 phosphatase domain has been implicated in early-onset Parkinson disease with atypical 
features in three different families, including occasional seizures and delayed child developmental milestones 
[38–40]. 
 

 
 
 

 



The other gene with putative second hit SNVs in more than one CNV carrier, BFAR, is mainly expressed in 
neurons, protecting them from different cell death stimuli [41, 42]. Four additional cases and no controls were 
carriers of one of the two putative second hit SNVs at BFAR. However, our resequencing approach did not find 
any significant excess of rare putative damaging nonsynonymous SNVs in schizophrenia. Similarly, Purcell et 
al. did not find any significant result at this gene [11]. 
 
Some limitations of our study should be considered, such as the small sample size, the inexact classification of 
pathogenicity inherent in current bioinformatics approaches, or the lack of clinical, and, mainly, genetic data 
from parents to determine if the second hits were inherited or de novo mutations. Among the strengths of the 
study, the use of Iberian samples provided a higher proportion of rare SNVs in comparison with other European 
samples from T1000G [28], which gave an increase in power at the same sample size. 
 
Conclusion 

To conclude, our approach to find additional risk variants in schizophrenia carriers of risk CNVs, consisting on 
whole-exome sequencing and follow-up analyses of genes with putative second hit SNVs in a resequencing 
step, led to the identification of SYNJ1 as a possible new schizophrenia risk gene. This result points to 
impairment in clathrin-mediated synaptic vesicle endocytosis in schizophrenia. 
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