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The Importance of Correcting for Signal Drift
in Diffusion MRI
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Purpose: To investigate previously unreported effects of signal

drift as a result of temporal scanner instability on diffusion MRI

data analysis and to propose a method to correct this signal drift.

Methods: We investigated the signal magnitude of non-

diffusion-weighted EPI volumes in a series of diffusion-weighted

imaging experiments to determine whether signal magnitude

changes over time. Different scan protocols and scanners from

multiple vendors were used to verify this on phantom data, and

the effects on diffusion kurtosis tensor estimation in phantom

and in vivo data were quantified. Scalar metrics (eigenvalues,

fractional anisotropy, mean diffusivity, mean kurtosis) and direc-

tional information (first eigenvectors and tractography) were

investigated.
Results: Signal drift, a global signal decrease with subsequently

acquired images in the scan, was observed in phantom data on

all three scanners, with varying magnitudes up to 5% in a 15-min

scan. The signal drift has a noticeable effect on the estimation of

diffusion parameters. All investigated quantitative parameters as

well as tractography were affected by this artifactual signal

decrease during the scan.
Conclusion: By interspersing the non-diffusion-weighted

images throughout the session, the signal decrease can be esti-

mated and compensated for before data analysis; minimizing

the detrimental effects on subsequent MRI analyses. Magn

Reson Med 77:285–299, 2017. VC 2016 The Authors Magnetic
Resonance in Medicine published by Wiley Periodicals, Inc.

on behalf of International Society for Magnetic Resonance
in Medicine.
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INTRODUCTION

Diffusion MRI is a powerful imaging technique that can
reveal information about the neural fiber architecture in
vivo (1,2). By sensitizing the magnetic resonance imaging
(MRI) signal to self-diffusion of water molecules in the tis-
sue, the measured signals can be interpreted as giving quan-
titative microstructural as well as orientational information.
This has resulted in an explosive use in clinical research
studies into diseases including Alzheimer’s disease (3) and
epilepsy (4), and a translation into clinical practice, for
example, for improving neurosurgical outcome (5).

Results and conclusions in all these studies need high-
quality data to support the claims. In diffusion MRI, data
quality is particularly relevant because of the large number
of issues and artefacts arising from the data acquisition.
Whereas subject motion is an artefact caused merely by the
movement of the subject over the scan duraction, other arte-
facts are caused by the inherent need for acquisition speed
in diffusion MRI. The single-shot echo-planar imaging (EPI)
readout results in geometric distortions due to susceptibility
differences as well as chemical shift artefacts, and the strong
diffusion gradients cause eddy current induced artefacts.
The combination of diffusion gradients and echo-planar
imaging (EPI) readout put a high load on the system, caus-
ing heating effects that decrease the scanner’s temporal sta-
bility (6,7). This instability has already been shown to
decrease fat suppression efficiency (7).

In this work, we describe a previously unexplored detri-
mental effect of temporal instability of the scanner system
on diffusion MRI data: a decrease in global signal intensity.
We show evidence of signal drift in phantom data and in
vivo data, and that this effect is present on scanners from
multiple vendors (GE, Philips, and Siemens). We demon-
strate the effects on commonly used DTI and DKI parame-
ters as well as fiber tractography, and present an easy to use
postprocessing method to correct for this artifactual signal
decrease. The proposed signal drift correction method is
implemented in MATLAB (MathWorks, Natick, MA, USA)
and is made freely available on the author’s website (http://
cmictig.cs.ucl.ac.uk/people/research-staff/50-sjoerd-vos) and
in the MATLAB File Exchange website (http://www.
mathworks.com/matlabcentral/fileexchange/54861) and
will be incorporated into the new release of ExploreDTI
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(www.exploredti.com) to facilitate rapid and widespread
correction of signal drift in diffusion MRI data.

METHODS

Data

In this work, we use four distinct experiments to charac-

terize signal drift, to demonstrate its presence on all
three investigated scanners from different vendors, and

to quantify its effect on in vivo diffusion MRI analyses.

Signal Drift Characterization

First, the signal drift characteristics were investigated
using acquisitions of a gel phantom and simulations of

diffusion-weighted signals to determine signal drift pat-

terns over time, reproducibility, possible causes, and the

influence of acquisition protocols.

Phantom Acquisition

To determine the extent of signal drift and its character-

istics in diffusion MRI acquisitions, a gel phantom with

isotropic diffusion properties was scanned with a very

high load on the gradient system. This acquisition con-
sisted of 11 b¼0-images and 25 gradient orientations on

the half-sphere with b-values of 1000, 2000, 3000, and

9000 s/mm2 for an acquisition time of 15 min. The

experiments were performed on a routine clinical 3 T
Philips Achieva system, without fat suppression. The

ordering of the DWIs was done in two ways: (1) ordered

by b-value from low to high; and (2) in randomized

order. In both cases, the b¼0-images were interspersed
at regular intervals throughout the acquisition. Scans

were acquired with and without updating the center fre-

quency (f0) after each acquired volume (“Dynamic

Stabilization”), where the default is to only define this
once at the beginning of the scan (so without updating).

All scans were performed twice to check for consistency,

and f0 frequency was logged after each acquired volume.

Simulations

To further explore signal drift characteristics and the effect
of drift on DTI and DKI metrics, simulations were per-

formed to be similar to the acquired phantom data. The

same b-values and gradient orientations were simulated

with both ordered and randomized acquisition setups.
The diffusion properties were based on those estimated

from the phantom data, defining isotropic diffusion with

an MD equal to that estimated in the phantom taking in

account the effects of noise on the MD estimation. There-
fore, the MD used as input for the simulations (MD¼ 0.055

� 10�3 mm2/s) is lower than the actual MD measured in

the phantoms (0.059 � 10�3 mm2/s). The diffusion tensor

model, without kurtosis, was used to simulate the data
with signal-to-noise ratio (SNR) equal to the estimated

SNR of the phantom data, which was 44 6 13, by adding

Rician noise to generate a dataset without drift (called the

“unaffected” dataset). To compare this with a simulated
dataset with drift, signal drift was applied based on the

estimates of drift magnitude from the phantom data (called

the “drift” dataset). The drift was defined using the quad-

ratic function 100�0.0183 � n� 2.25 � 10�4 � n2, which

results in �5% signal drift over the range of n¼ 1–110 vol-

umes. Adding signal drift was done before adding the

Rician noise to the data, such that the actual SNR

decreases for increased signal drift, as is the case for the

acquired data. Similar simulations were performed for ani-

sotropic systems using cylindrically symmetric diffusion

tensors, without kurtosis, with simulated FA values of

0.41 and 0.81 and MD equaling 0.81 � 10�3 mm2/s. Values

for SNR and drift magnitude in these simulations were

equal to those used in the isotropic phantom simulations.

All simulations consisted of 32,000 voxels (20 � 40 � 40)

which was identical in size to the ROIs used to select data

form the phantom measurements.

Multi-Vendor Comparison

To determine the magnitude of signal drift in realistic neu-

roscientific acquisition protocols across multiple scanners

[e.g., (8,9)], a 15-min multi-shell acquisition protocol with

b-values of 600, 1600, and 2500 s/mm2 was created. Data

were acquired of phantoms with isotropic diffusion prop-

erties on the same 3 T Philips Achieva, a 3 T GE MR750

scanner, and a 3 T Siemens Trio scanner to investigate sig-

nal drift behavior across scanners from different vendors.

Across scanners there is a slight difference in TE and TR—

as a result of different maximum gradient amplitude and

amplifier power—leading to a different number of images

in the 15-min scan ranging from 140 to 150 DWIs, with

b¼ 0-images interspersed every 10 DWIs. Acquisitions

were done with and without the respective dynamic f0
updating options (“Dynamic Stabilization” on Philips,

“Real Time Field Adjustment” on GE, and “Frequency

Stabilization” on Siemens—part of a 2011 Works-in-

Progress package for diffusion EPI).

In Vivo Acquisitions

Three individual datasets from the MASSIVE dataset

[www.massive-data.org and (10)] were taken and exam-

ined for the impact of signal drift on diffusion MRI analy-

ses. These datasets were selected based on having the

lowest (dataset 1), median (dataset 2), and maximum (data-

set 3) signal drift from the multi-shell datasets in MAS-

SIVE, to illustrate the range of effects signal drift can have

on diffusion MRI analyses. A detailed description of the

data is given in (10), but these datasets consist of: 120

images acquired with b-values of 0, 500, 1000, 2000, and

3000 s/mm2, and a varying number of gradient directions

for each b-value. Specifically, the three datasets included

in this work consisted of: 11/16/31/31/31, 10/16/27/34/33,

and 11/13/26/41/29 images (at b¼ 0, 500, 1000, 2000,

3000 s/mm2, respectively). Importantly, the order in which

these images were acquired was randomized. Acquisition

details included: 3 T Philips Achieva, matrix 96 � 96,

FOV 240 � 240 mm2, 2.5 mm slices for an isotropic voxel

size of 2.5 mm3 (11), SENSE acceleration¼ 2.5, TE/TR:

100/7500 ms. Spectral Presaturation with Inversion Recov-

ery fat suppression was used. Scan time per session was

15 min. All datasets were acquired on different days.
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Signal Drift Correction

Mean magnitude intensity was obtained for each b¼ 0-

image within a region of interest (either the entire phan-

tom or the brain). Global signal decrease was then esti-

mated with a linear and quadratic fit through all these

mean signal intensities:

Sðn j b ¼ 0Þ ¼ ðn � dÞ þ s0 ; [1]

and

Sðn jb ¼ 0Þ ¼ ðn2 � d1Þ þ ðn � d2Þ þ s0 ; [2]

respectively, where n is the image index of the scanned

images, Sðn j b ¼ 0Þ is the mean signal in image n given

that it is a b¼ 0-image; d, d1, and d2 are signal drift coef-

ficients; and s0 is the signal offset at n¼0. From the

obtained fit of s0 and d or s0, d1, and d2, a rescaling fac-

tor can then be calculated and applied for each image in

the series to obtain a drift-corrected image:

SlðnÞ ¼ SðnÞ 100

ðn � dÞ þ s0
; [3]

and

SqðnÞ ¼ SðnÞ 100

ðn2 � d1Þ þ ðn � d2Þ þ s0
; [4]

for the linear and quadratic correction, respectively,

where S(n) is the uncorrected, or raw, image intensity of

image n, and Sl(n) and Sq(n) are the corrected signal

intensities in that image normalized to 100 for linear and

quadratic corrections, respectively. This normalization

facilitates comparison between different datasets and

would allow for merging these datasets.

Data Analysis

Motion and distortion correction was performed on each

acquired dataset with ExploreDTI (12) using a 12-

parameter affine registration in elastix (13). Each dataset

was processed further with and without signal drift cor-

rection. Diffusion kurtosis tensors were estimated as in

(14), wherein the diffusion tensor is also estimated.

Signal Drift Investigation

The quality of the linear and quadratic fits through Sðn j
b ¼ 0Þ is compared to determine whether a quadratic

term is needed to describe signal drift over time. The

effects on signal stability over time with and without f0
updating and with and without signal drift correction

are investigated per b-value for the phantom datasets.

Frequency Drift Investigation

The phantom experiments in which f0 was logged are

used to determine the stability of the scanner in terms of

center frequency drift, a known factor in EPI-based

acquisitions [e.g., (6)].

Effect on Tensor Estimation

The performance of the kurtosis tensor fits were exam-

ined in the “Signal drift characterization” phantom data

by looking at the residuals per acquired imaging volume
after the voxel-wise fit, with the residuals defined as the

absolute difference between the acquired signal and the
signal reconstructed from the model fit. The median and

interquartile ranges are shown for each dataset and DWI,

which are the values and ranges over the entire phantom
scan.

Effect on Quantitative Diffusion Measures

To investigate the effect of signal drift on the analysis of
diffusion MRI data, comparisons between the dataset before

and after signal drift correction were performed both quan-

titatively and qualitatively. The following quantitative
measures were investigated for the phantom datasets and

simulated data: all three eigenvalues (k1, k2, and k3), frac-
tional anisotropy (FA), mean diffusivity (MD), mean kurto-

sis (MK). For the in vivo datasets the FA, MD, and MK

were also analyzed, as were the first eigenvectors (FEs).

Effect on Fiber Tractography

Qualitatively, the results of fiber tractography of the cor-

ticospinal tracts (CST) were examined for the in vivo
data. Tractography was performed using the FE of the

diffusion tensor as estimated during kurtosis tensor esti-

mation (15). Tracts were seeded regionally from a single
voxel within the bundle on an axial slice at the level of

the decussation of superior cerebellar peduncles (16).

RESULTS

Signal Drift Characterization

The effects of signal drift as a function of scan progres-
sion are shown in Figure 1. All four datasets without fre-

quency stabilization had pronounced signal loss of
around 5–6% over the 15-min scan sessions. Signal loss

occurred as a quadratic effect, as demonstrated by the

higher accuracy of the quadratic fit over the linear fit,
with increasing signal loss with scan duration (Fig. 1).

Consequently, the signal drift correction based on the
quadratic fit resulted in normalized signal intensities of

the b¼ 0-images that were more stable over time than

those after linear correction. The signal drift in datasets
with dynamic updating of f0 showed more varying pat-

terns, with moderate signal loss in two cases (0.5 and
1.5%) and slight signal increase in two other cases (0.2

and 0.5%), and was not correlated with acquisition

order. For these datasets, the signal differences were
smaller, and the quality of the linear and quadratic cor-

rections appeared to be roughly equal.
When plotting the signal intensities against the b-value

of each acquired volume, ordered first by b-value and

then by volume number, the effect of signal drift

becomes extremely clear (Fig. 2). The 6% signal decrease
as a result of drift causes some of the volumes with

lower b-values to have lower signal intensity than vol-
umes with more diffusion-weighting. The signal drift

corrections used in this experiment were based on
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quadratic fits, and restored the signal intensities per b-
value to very stable levels. It is also clear that the
randomized acquisition order shows larger variation in
how strongly volumes within each b-value are affected
compared to the ordered acquisition (Fig. 2a vs. 2b,

respectively). In the ordered acquisition (b), the images
at b¼1000 s/mm2 are only marginally affected by signal
drift whereas the images scanned last, at b¼9000 s/
mm2, have a considerably lower signal intensity before
correction for all images. This analysis was also

FIG. 1. Normalized mean sig-
nal intensities in the b¼0-

images for the phantom data-
sets as a function of scan
progression (i.e., how long

after the scan started they
were acquired). The left col-

umn shows the results from
the randomized acquisition,
the right column the ordered

acquisition. The top two rows
are the two repeats without
frequency stabilization, the

bottom two rows are the two
repeats with stabilization. The

black dots indicate the origi-
nal signal intensities, the red
line indicates the linear fit

through these points, and the
blue line indicates the quad-

ratic fit through these points.
The red and blue dots indi-
cate the corrected mean

intensities in the b¼0-images
from the linear and quadratic

fits, respectively. The black
dashed line shows the level of
the normalized signal (100).

The values in each panel indi-
cate the mean 6 standard

deviation over the b¼0-inten-
sities after linear (S0_l) and
quadratic correction (S0_q).
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performed on the simulated data, and the comparison of

signal drift and drift correction between the acquired

phantom data and the simulated datasets is shown in

the Supporting Information Figure S1.
Even though SNR in the images decreases with b-

value, applying the correction based on signal drift esti-

mates from the high-SNR b¼ 0-images is a valid correc-

tion step for almost all SNR levels and b-values—as

detailed in the Supporting Information Figures S2–S5.

Frequency Drift

The results of the phantom experiments where the center

frequency was logged show approximately linear f0 drift

of around 50 Hz over the 15-min session (Fig. 3). There

is no clear difference between f0 drift in the experiments

where f0 was and was not dynamically updated (bottom

vs. top panels in Fig. 3, respectively), nor between the

randomized and ordered acquisitions (left vs. right col-

umns in Fig. 3, respectively).

Effect on Tensor Estimation

Signal drift, being a modification of signal intensity as a

function of image index, will also appear as a covariate

in the residuals of the model fit. Figure 4 shows this

effect on the absolute residuals of the diffusion kurtosis

model fitting for each volume from the phantom data.

After signal drift correction the residuals in each shell

are more homogeneous, indicating that the fit is more

equally influenced by all DWIs.

Effect on Quantitative Diffusion Metrics

Estimated DTI metrics from the phantom data are shown

in Figure 5, which shows that in the ordered acquisition

the signal drift caused erroneous estimation of most of

these DTI metrics whereas a randomized acquisition

resulted in smaller errors in the estimated DTI metrics.

The MK measure, being the metric based on the higher-

order terms of the signal equation, gives the most

FIG. 2. Representation of the effects of signal drift for images at each of the five acquired b-values (0, 1000, 2000, 3000, and 9000 s/
mm2). The red dots indicate the drift-affected raw image intensities, the black dots indicate intensities after the quadratic correction.

The order in which the images were scanned was randomized (a,c) and ordered (b,d), but reordered by the acquisition order per b-value
to facilitate interpretation. a and b: indicate results without, and (c) and (d) indicate result with dynamic f0 updating. Clear signal drift

can be observed throughout the scan when f0 was not updated after each volume, with signal drift still occurring to a smaller extent
with dynamic f0 updating. After correction (black dots), the intensities per b-value are more stable if the order was randomized than if
the DWIs were scanned by order of b-value.
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specific indication of the risk of signal drift in ordered

acquisitions. In an ordered acquisition signal drift affects

the higher b-value data more severely, which leads to

artifactually high signal loss at high b-values and an

underestimation of the MK (as shown in Fig. 5). In DKI

analyses, where positive kurtosis values typically indi-

cate restricted diffusion, this would lead to an underesti-

mation of restriction.
The simulated data show similar results (Fig. 5, right

panel). Here, in contrast with the phantom data, the true
DTI metrics are known. Although a fully isotropic system
was simulated (FA¼ 0), due to noise and eigenvalue sorting
the FA is estimated to be around 0.15 in the simulation
where no signal drift was present. Signal drift affected the
FA, causing an underestimation in ordered and an overesti-
mation in randomized acquisition. After signal drift correc-
tion both sets returned to the value estimated in the drift-
free reference data. The MD was affected more strongly by

drift, being overestimated by roughly 12% in the ordered
acquisition and 5% in the randomized acquisition. It is
important to note that the FA and MD errors were caused by
overestimations of all eigenvalues in the ordered data and
overestimations of the first and second eigenvalues in
randomized data. The kurtosis for the ordered acquisition
shows a similar underestimation as in the phantom data.
Here, however, signal drift correction leads to a near perfect
correction of MK. The MK from the randomized acquisition
is not affected by signal drift, as could be expected since
drift affected all shells equally (a multiplication in signal
magnitude is simply an addition in the log of the signal).
For the anisotropic simulations, the results are very similar:
scalar diffusion metrics are prone to misestimation in the
presence of signal drift (Supporting Information Fig. S6).
The misestimation is most pronounced for ordered acquisi-
tions, resulting in more than 5% errors in MD and FA, and
considerable erroneous estimates of MK. For randomized

FIG. 3. Plot of center frequency (f0) drift versus time since scan start for the phantom datasets from the “Signal drift characterization”
experiment. This is the change in f0 at the beginning of each volume with respect to f0 at the beginning of the scan. The left column

shows the results from the randomized acquisition, the right column the ordered acquisition. The top row shows the experiments with-
out f0 updating with identical intensity ranges for all four graphs; the bottom row with f0 updating. Each graph shows the two repeats of
this experiment (one indicated by red dots and the other by black stars). For the acquisitions with f0 updating the measured frequency

drift was corrected before acquiring the next imaging volume.
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acquisitions the effects are most subtle, mostly affecting the
DTI metrics.

Comparing the phantom and simulated data, the FA
values in the phantom data are slightly higher, 0.18 ver-
sus 0.15. In both cases, the values are higher than the
true FA of 0, but it is also clear that signal drift-

correction gives similar values as the data that was not
affected by drift (in case of simulated data). In general,
the phantom data exhibited a small effect of drift correc-
tion on diffusion tensor metrics compared to the simula-
tions, whereas the kurtosis metric was affected more in
the phantom data than the simulated data.

FIG. 4. Absolute residuals (median and interquartile range) for uncorrected (left column) and corrected (right columns) phantom datasets
for the randomized acquisition without (a) and with (b) f0 updating and the ordered acquisition without (c) and with (d) f0 updating. One

can clearly appreciate that the residuals are more homogeneous for each b-value after signal drift correction. This is most pronounced
for the dataset without f0 updating (a and c) but homogeneity in residuals is also improved for the dataset with f0 updating (b and d).
The residuals are smaller after signal drift correction in the randomized than the ordered datasets.
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Multi-Vendor Comparison

In the 15-min neuroscientific acquisition protocol signal
drift was observed on all three investigated scanners,
with signal drift magnitude varying up to 2% across
scanners (Fig. 6). On the Philips scanner (Fig. 6, top
row), signal drift of around 1% was ameliorated by fre-
quency stabilization which reduced signal drift to
around 0.5%. On the GE scanner, signal drift was around
0.5–1% (Fig. 6, middle row). A second repeat of these
figures resulted in drift of around 0.6% irrespective of
field updating, indicating that dynamic stabilization on

this scanner does not influence signal drift magnitude.
On the Siemens scanner signal drift magnitude seems
the largest, around 1.5–2%, when the scanner had not
been heavily used before the diffusion MRI acquisition
(Fig. 6, bottom row). After a period with a heavy gradient
load, signal drift was around 0.5–1%. These patterns
were irrespective of whether frequency stabilization was
turned on or off. On the Philips and GE scanners, no dif-
ferences were observed between scans with or without
prior heavy gradient use. These experiments were all
performed twice for reproducibility, and showed
strongly reproducible results. The multi-vendor compari-
son reiterates that a quadratic drift correction provides
better results than linear correction.

Signal drift magnitude was not the only property of
drift that varied between scanners. As can be observed
from Figure 6, drift on the GE scanner seems to vary lin-
early with elapsed time during a scan, whereas a quad-

ratic term is present in drift in the data from the Philips

and Siemens scanners. Specifically, signal drift in the

data from the Philips scanner is concave downwards—

drift increasing more rapidly with scan progression—

whereas on the Siemens scanner it is concave upwards—

drift reducing, or stabilizing, as the scan progresses.

In Vivo Data Analysis

Significant global signal decreases were also observed in

all investigated in vivo datasets. Similar to the phantom

datasets, the quadratic fit through the b¼ 0-intensities

provided the best results. Based on these quadratic fits

the signal decrease from first to last image in each of the

15-min sessions was 5.0, 8.3, and 16.7%, corresponding

to a signal loss of 0.04, 0.07, and 0.14% per image

(Fig. 7, Table 1).

Effect on Quantitative Diffusion Metrics

Differences in diffusion tensor and kurtosis tensor met-

rics between corrected and uncorrected dataset are

shown in Figure 8 for all three datasets. Pronounced dif-

ferences are present for all three datasets and throughout

the white matter. The pattern of over- or underestimation

in the uncorrected datasets is very variable between the

datasets. For all datasets, the histograms of the FA differ-

ence are skewed towards positive difference, that is,

where the uncorrected datasets underestimate the

“correct” value. Such patterns are not visible for the MD

FIG. 5. Calculated DTI/DKI metrics for the acquired real phantom data (left) and simulated data (right). Different metrics are shown in

each panel: the three eigenvalues of the diffusion tensor (k1, k2, k3); the mean diffusivity (MD); fractional anisotropy (FA); and mean kur-
tosis (MK). Each panel shows data from the ordered and randomized acquisition. For the phantom data, the frequency-stabilized, drift-
affected, and drift-corrected data are shown in blue, red, and green, respectively. For the simulated data, the unaffected, drift-affected,

and drift-corrected data are shown in blue, red, and green, respectively. The colored boxplots indicate the 25th–75th percentiles, the
white line within the box the median, and the error bars the 5th–95th percentile range. For the simulated data, the solid gray line plotted

behind the boxplots indicates the value for the unaffected data and the dashed line indicates the value set in the simulations.
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and MK, which are more centered around zero mean
deviation but with considerable variance.

The orientation of the diffusion tensor’s FE is also
affected by signal drift, giving a considerable angular
deviation between the FEs from the corrected and uncor-
rected datasets (DFE, in Fig. 8 and Table 1). For voxels
with an FA larger than 0.4, the modes of the angular
deviation histograms are 1.0, 1.3, and 3.0�. Large portions
of the angular deviations are above these modes—66, 67,
and 59% of the histogram areas, respectively—and the

angular deviation can greatly exceed a few degrees. Table

1 also states these percentages for all voxels with FA

larger than 0.2 and 0.7.

Effect on Fiber Tractography

The effects of erroneous FEs is shown most pronounced

by the effects on tractography. An example of the CST is

shown in Figure 9. The tracts end up in different gyri

when signal drift correction is not performed, caused by

FIG. 6. Signal drift over time for a Philips (top row), GE (middle row), and Siemens (bottom row) scanner for equal acquisition protocols.

The black dots indicate the original signal intensities, the red line indicates the linear fit through these points, and the blue line indicates
the quadratic fit through these points. The red and blue dots indicate the corrected mean intensities in the b¼0-images from the linear

and quadratic fits, respectively. The black dashed line shows the level of the normalized signal (100). The values in each panel indicate
the mean 6 standard deviation over the b¼0-intensities after linear (S0_l) and quadratic correction (S0_q). Phantom data from the Phi-
lips and GE scanners are scanned without (left) and with (right) dynamic field updating. Dynamic frequency updating had no effect on

the Siemens scanner (data not shown), but there was a strong effect of signal drift reduction with a “cold” scanner (left) or a scanner
that had been through 15 min of scanning (right).
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error propagation of the eigenvectors along the tract [sim-

ilar to the effects in (17)].

DISCUSSION

The aim in this work was to demonstrate the presence of

signal drift in diffusion MRI data, and to present a sim-

ple correction that could be applied as part of the image

processing pipeline after acquisition. Diffusion-weighting

causes signal attenuation, and any uncorrected signal

drift over the scan duration will thus be interpreted as

overestimated diffusion. Even for the 15-min acquisitions

included in this study, pronounced signal drift was

observed. Although our results show effects on diffusion

tensor and kurtosis tensor metrics, these effects are gen-

eralizable to any diffusion MRI method.
In functional MRI, which is typically also acquired

using EPI, signal drift is a well-known effect (18,19). In

the time-course analysis of functional MRI data, this sig-

nal drift is commonly included as a confounding factor.

Although an identical approach would not work for dif-

fusion MRI data, we have proposed a similar, quadratic,

correction to compensate for signal drift. Figures 1 and 6

show that signal drift is an issue common throughout

scanners from all three investigated vendors, and that

the proposed quadratic correction restores temporal sta-

bility in the acquired signals. In vivo, the quadratic fit

also provides better results than the linear fit, restoring

the normalized signal intensities of all b¼0-images more

closely to equal intensities.

Effect on Quantitative Diffusion Metrics

Signal drift correction, overall, resulted in more homoge-

neous residuals (Fig. 4), indicating that all information

was integrated into the fit more equally. Additionally, Fig-

ure 5b and Supporting Information Figure S6 show that

signal drift correction causes the range of all investigated

DTI and DKI metrics to correspond better to the reference

data in both isotropic and anisotropic simulations. Here,

the drift-corrected data had the same median values and

range as the data that was simulated without drift, where
the data corrupted by signal drift deviated significantly.

The estimated FA in the phantom data was higher than
the estimated FA from the simulations, 0.18 versus 0.15,
which could be caused by imperfections resulting from
acquisition and processing. The signal decay remained
Gaussian, as was expected in a medium without restric-
tions, as evidenced by the median MK being zero.

Although results of the simulations are very similar to
the results obtained from phantoms they are not a perfect
match. In the simulations, we assume that the drift is
perfectly quadratic and that the only effect of drift is sig-
nal loss. In reality, the drift only approximates a quad-
ratic function.

In vivo, the specific effects of signal drift on DTI and
DKI metrics are strongly dependent on when in the ses-
sion each diffusion-weighting gradient orientation is
acquired. If, either by design or by chance, all gradient
directions at the end of a scan are primarily left-right dif-
fusion-weighted, signal drift will cause a systematic bias
along that left-right axis. With the randomly ordered gra-
dients in our design, we did not see such a bias, but

FIG. 7. Normalized mean signal intensities in the b¼0-images for the three in vivo datasets. The black dots indicate the original signal

intensities, the red line indicates the linear fit through these points, and the blue line indicates the quadratic fit through these points. The
red and blue dots indicate the corrected mean intensities in the b¼0-images from the linear and quadratic fits, respectively. The black

dashed line shows the level of the normalized signal (100). The values in each panel indicate the mean 6 standard deviation over the
b¼0-intensities after linear (S0_l) and quadratic correction (S0_q).

Table 1
Overview of Effects of Signal Drift in in Vivo Datasets

Characteristic Dataset 1 Dataset 2 Dataset 3

Signal loss during
session (linear)

6.1% 8.2% 16.1%

Signal loss during

session (quadratic)

5.0% 8.3% 16.7%

DFE mode (FA � 0.2)a 0.94� 1.8� 3.3�

DFE mode (FA � 0.4) 1.0� 1.3� 3.0�

DFE mode (FA � 0.7) 0.56� 0.87� 1.9�

% of DFE above mode

(FA � 0.2)

77% 68% 74%

% of DFE above mode

(FA � 0.4)

66% 67% 59%

% of DFE above mode
(FA � 0.7)

69% 68% 53%

aFA, fractional anisotropy; DFE, difference in first eigenvector
between corrected and uncorrected datasets.
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FIG. 8. Overview of quantitative differences in DTI and DKI measures and the first eigenvector (FE) for the datasets with 5.0% (a), 8.3%

(b), and 16.7% (c) signal loss. On the left of each panel, an axial slice is shown to indicate the anatomy of the slices shown that visual-
ize the difference in FA, MD (10�3 mm2/s), MK, and FE (DFE) (from left to right) between the signal drift corrected and uncorrected data-
set. The differences are only shown in voxels with FA � 0.4. The histograms of the whole-brain differences are also shown for each

dataset (again only for voxels with FA � 0.4). Positive differences are where the corrected dataset has higher values (i.e., where the
uncorrected dataset underestimates the “correct” value), negative is when the uncorrected dataset has higher values (i.e., where the

uncorrected dataset overestimates the “correct” value).
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rather observed nontrivial alterations in the estimated dif-

fusion tensor and kurtosis tensor and the resulting FA,

MD, MK, and FE (Fig. 8). Any erroneous estimation of

these quantitative measures will affect results obtained

from these datasets. The most likely effect is an increase

in variance within or between groups, leading to a reduc-

tion in statistical power to detect genuine effects.

Effect of Fiber Tractography

The effect of angular errors of the FE can lead to signifi-

cant differences in fiber tractography results. Even for

relatively low angular errors per voxel, on the order of

1�, the effects on tractography can be pronounced due to

error accumulation along the tract (17). This is most

clearly shown in Figure 9, with tracts ending up in dif-

ferent gyri with and without signal drift correction. For

group studies of connectivity, any signal drift would

lead to a reduction in statistical power, similar to the

effects of quantitative diffusion metrics. For single-

subject cases, as for instance in neurosurgical planning

[e.g., (5,20–22)], any angular errors caused by signal drift

could significantly alter any planning approaches or

clinical decisions based on tractography.

Causes of Signal Drift

Although the main purpose of this work was to character-

ize signal drift and to provide a simple correction strat-

egy, we could speculate about the origin of the drift.

Scanner instability as a result of gradient heating can

cause signal drift in various ways. First, heating can cause

B0 field drift and thus f0 drift as previously described in

(7) and also shown in Figure 3. It should be noted that

although the acquisition protocols in the multi-vendor

comparison were near-identical, the load on the gradient

systems between scanners is not necessarily equal. Differ-

ences in maximum gradient amplitude and amplifier

power could cause a different amount of heating, with

heating also depending on the internal construction of the

scanner and cooling systems. Depending on the chosen

excitation and fat suppression techniques, f0 drift could

lead to reduced efficiency of the excitation pulse and/or a

shift of the fat suppression pulse toward the water peak,

FIG. 9. a: CST from the corrected (yellow) and uncorrected (red) dataset 3, where the arrowhead indicates the single-voxel seed loca-
tion. b: Shows the superior extent of the bundles, clearly indicating different gyri of termination (white arrows). c and d: show side views

(orientation indicated by the anterior–posterior, A–P, and inferior–superior, I–S, labels).
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both causing a decrease in excited magnetization. Another

possible cause is the effect of magnetic field drift on

Nyquist ghost correction. Typically this is calibrated once

at the beginning of the scan and f0 drift may cause the

correction to be less effective, increasing the amount of

signal attributed to the ghost. Finally, transmit coils heat

up as a result of the high duty-cycle and this heating

potentially results in an altered transmission energy and

thus a flip angle other than the prescribed 90�.
Signal drift was observed on all three included scan-

ners, but magnitude and temporal pattern of the drift

varied considerably. Dynamic frequency updating

reduced signal drift magnitude on the Philips scanner,

and resulted in more stable b¼0-intensities over time

than without dynamic updating (Figs. 1 and 6). On the

GE and Siemens scanners, dynamic field or frequency

stabilization had no effect. Signal drift patterns varied as

well, with Philips data having strong quadratic down-

wards drift (i.e., more signal loss with each acquired

image); GE exhibiting a linear drift; and Siemens a quad-

ratic upwards drift (i.e., less signal loss with each

acquired image). These patterns give a strong indication

that signal drift is caused by multiple different phenom-

ena on different scanners. On the Philips scanner the

quadratic drift term was absent when frequency stabiliza-

tion was on, indicating frequency drift might be one of

the causes of signal drift. This can be supported theoreti-

cally: when f0 is initially set correctly to yield maximum

signal, the constant term and quadratic term with a nega-

tive coefficient are the leading term in a power series

expansion of the signal as a function of frequency offset.

With the observed linear f0 drift (Fig. 3), the signal is

expected to decrease quadratically with time since scan

start. In the GE data, however, stabilization did not

reduce signal drift, indicating no frequency drift was

present. Coupled with the absence of a quadratic terms,

this further strengthens the rationale that frequency drift

causes a quadratic signal drift. The Siemens data from a

“cold” scanner shows a quadratic upward signal drift

pattern, with signal drift reducing with each acquired

volume, could indicate stabilization or a warming-up

pattern that matches with the results from showing that

data from a warmed-up scanner had less signal drift.

This, however, is not linked by frequency drift given

that frequency stabilization did not alter results.

Ordered versus Randomized Acquisition

For both the acquired phantom data and the simulations,

the ordered acquisition gave the largest error in DTI and

DKI metrics (Fig. 5). In the simulations, signal drift cor-

rection performed a near-perfect correction, with drift-

corrected data yielding nearly identical DTI/DKI values

as the data that was not corrupted by signal drift for

both ordered and randomized acquisitions. In the phan-

tom acquisitions, the uncorrected randomized data

yielded results closer to signal drift-corrected data than

the uncorrected ordered data did. This was most pro-

nounced for the MK and FA. Further, the residuals of

the DKI fit (Fig. 4) are lower after signal drift correction

in the randomized than the ordered datasets.

Improvements to Signal Drift Correction

To keep the proposed method applicable to as many
studies as possible, we investigated only linear and
quadratic correction, which could be reliably obtained
from the low number of b¼ 0-images in this study
(around 10) or even less. The various causes of signal
drift complicate an accurate a priori estimate of signal
decrease patterns. Further, given the fact that the x-, y-,
and z-gradients are irregularly switched on and off to
provide diffusion sensitization, heating effects will likely
be nontrivial. Despite those multiple unknowns, Figures
1, 6, and 7 show a consistently higher accuracy of cor-
rections based on quadratic rather than linear fits. For
longer scans or other manifestations of signal drift, the
proposed quadratic correction may be suboptimal. A
simple and data-driven way to improve on this would be
to do a piece-wise linear correction, or a smoothed ver-
sion thereof. A regular spacing of the b¼ 0-images would
likely be beneficial here (e.g., every tenth image), to
ensure all parts of the signal drift are sampled equally.

Other Implications

Dynamic updating can help reduce signal drift, and it is,
therefore, suggested to use this option, although this
option might not be available on all clinical scanners or
might increase scan time. Even with dynamic updating
there is residual signal drift (Figs. 1–6). Our result show
that (i) the simulations show signal drift-correction
restores DTI/DKI measures to their “correct” values (Fig.
5 and Supporting Information Fig. S6), and (ii) the signal
drift-correction yields more stable global b¼ 0-intensities
than frequency-stabilization alone. Therefore, we believe
that the proposed signal drift correction method is com-
plementary to frequency stabilization and thus should be
used even if frequency stabilization is on, and that the
method is a legitimate alternative if frequency stabiliza-
tion is not available or feasible.

In our data, we have roughly 110 DWIs over multiple
shells to model 21 parameters (DTIþDKI). Given perfectly
randomly ordered gradient directions, both on the shells
and within the scan duration, such an overdetermined sys-
tem is estimated to be affected by the average signal drift
over the session: the first, least-affected, DWIs could par-
tially compensate for the last, most-affected, DWIs. For cases
with more parameters and/or fewer measurements, such a
compensation will not occur and the effects of signal drift
will be more drastic.

Correction is especially relevant for multi-shell acquisi-
tions on standard clinical systems. By default, these acquire
data with b-values ordered from low to high. Not correcting
for signal drift would mean that for higher b-values the sig-
nal attenuation caused by diffusion would be overestimated,
which would correspond to an artefactual reduction in
restricted diffusion. The expected effects on multi-shell dif-
fusion methods such as CHARMED or NODDI (8,23) would
in such instances mean that the restricted volumes would
be underestimated. Moreover, because these models gener-
ally require more data to acquire resulting in longer scan
times, higher b-values and thus a higher duty-cycle, and
have a high number of parameters, the effects of signal drift
will affect the fit more strongly.
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The four phantom datasets without f0 updating in Fig-
ure 1 (top two rows) show some variation in the magni-
tude of signal drift, even for the same acquisition
schemes acquired on the same day (top vs. second row).
The variation in signal drift is also present in vivo, rang-
ing from 5.0 to 16.7% (Table 1), which was the maxi-
mum range of the multi-shell datasets in MASSIVE (10).
This larger variation over dozens of sessions in the mul-
tisession project could possibly be due to a different
load on the gradient system as a result of prescribed gra-
dient orientations and b-value, a higher complexity of
the imaged object (head vs. homogeneous phantom), or
because of a larger inherent variation over different days.

The multi-shell acquisition protocols used in this
study are representative of current research protocols,
and as such provide a good indication of the magnitude
of effects. For protocols that are less demanding of the
scanner, for instance by having a lower b-value, effects
will not necessarily be lower given the variety of causes
for signal drift.

Given the multiple causes of signal drift, the variation
between vendors, scanners, and scanner environment,
and factoring in the large range of diffusion MRI scan
protocols used across studies and sites, it is important to
investigate the extent of signal drift and the impact on
analyses for each site or scanner.

To demonstrate the widespread presence of signal drift in
diffusion MRI data, and thus the importance of signal drift
correction, we have examined datasets from the Human
Connectome Project (HCP) [www.humanconnectome.org
(24,25)]. This is regarded as one of the highest-quality neu-
roimaging databases to date, with data acquisition and proc-
essing being optimized by a collaboration between multiple
institutions. Even in such high-quality data signal drift is
present, as demonstrated in Supporting Information Figure
S7. This indicates that optimal use of HCP diffusion MRI
data would also benefit from signal drift correction.

CONCLUSION

In this work, we have shown the detrimental effects of
signal drift on diffusion MRI analyses that were present
on all three investigated scanner vendors. The presence
of signal drift can be easily examined when multiple
b¼ 0-images are acquired throughout the scan. From the
same data, one can determine simple correction factors
to mitigate the effects of signal loss on the subsequent
analyses. Furthermore, the effect can be minimized by
randomization of b-values throughout the acquisition.
Whereas this is not a replacement for preventing the
effects of signal drift to occur, it is essential to correct for
the effects if they occur.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Figure S1. Mean signal of each volume of the acquired (left) and simulated
(right) datasets.
Figure S2 True simulated noise free signal (red) and the drift-affected noisy
data (black). The left panel shows the data ordered as one would scan a
randomized diffusion MRI acquisition; the right panel reordered by the sig-
nal (where the noise level was kept equal).
Figure S3. Quadric fit of signal of known drift for different SNR levels.
Figure S4. The left graph shows the difference in signal between the drift-
corrected data and the simulated noisy data for each SNR level. The right
graph shows the difference in signal between the drift-corrected data and
the simulated noise-free data. The colors are indicated on the far right, with
the colored area in each boxplot in the graphs indicating the 25th-75th per-
centile range, the white bar within the boxplot the median, and the error
bars the 5th-95th percentile range.

Figure S5. Phantom data acquired with randomized b-values (b 5 0, 1000,
2000, 3000, 9000 s/mm2). The columns represent two repeats of the data
with (left two columns) and without (right two columns) dynamic stabiliza-
tion. The data was corrected for drift using quadratic fits based on data
from each of the different b-values. Signal drift corrections estimated from
the b 5 0, b 5 1000, b 5 2000, and b 5 3000 s/mm2 data was identical, and
only for the correction based on the b 5 9000 s/mm2 there is a small (1-
2%) overcorrection of the signal drift.
Figure S6. Calculated DTI metrics for the simulation with FA 5 0.41 (left)
and FA 5 0.81 (right). Different metrics are shown in each panel: the three
eigenvalues of the diffusion tensor (k1, k2, k3); the mean diffusivity (MD);
fractional anisotropy (FA); and mean kurtosis (MK). Each panel shows data
from the ordered and randomized acquisition, showing the data from the
unaffected, drift-affected, and drift-corrected data in blue, red, and green,
respectively. The colored boxplots indicate the 25th-75th percentiles, the
white line within the box the median, and the error bars the 5th-95th percen-
tile range. The solid grey line plotted behind the boxplots indicates the
value for the data without signal drift; the dashed line indicates the value
set in the simulations.
Figure S7. Signal drift in ten example subjects from the HCP database.
The rows indicate ten separate subjects. The first column is the combined
diffusion MRI dataset for this subject, as is regularly available for download
as the “processed” dataset. This is the combination of the individual ses-
sions of the second through last column, where the second and third col-
umn are the two sets of identical gradient directions but with opposite
phase encoding direction. The fourth and fifth, and the sixth and seventh
columns represent the second and third sets of gradient directions, respec-
tively, each with opposite phase encoding direction. In each figure, the hor-
izontal axis represents the number of the diffusion-weighted volume; the y-
axis the normalized signal intensity). The red dots indicate the drift-affected
signal, the black line the quadratic fit, and the blue dots the drift-corrected
signal intensities. The dashed line at signal intensity 100 is shown as a vis-
ual reference for interpretation of signal drift.
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