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Abstract	

	 	
Colorectal	cancer	(CRC)	is	the	second	most	common	cause	of	cancer	related	deaths	

in	the	UK.	Whilst	identification	of	molecular	events	that	contribute	to	the	initiation	

and	progression	of	CRC	have	facilitated	the	development	of	predictive	biomarker-

driven	therapeutics,	their	success	in	the	clinic	has	been	restricted	by	the	lack	of	

anticipated	responses.	Furthermore,	not	all	genetic	signatures	of	a	tumour	have	

been	linked	to	related	drug	targets,	highlighting	the	need	for	novel	development	of	

compounds	and	better	therapeutic	rationales	for	the	treatment	of	patient	subsets.	

The	limited	success	of	targeted	therapies,	both	within	the	clinic	and	drug	discovery	

pipeline,	has	been	attributed	to	a	lack	of	effective	preclinical	models	that	are	

capable	of	capturing	the	complexity	of	deregulated	signalling	networks.	The	

development	of	functional	readouts	that	better	represent	tumour	complexity,	is	

therefore	imperative	to	confirm	the	effects	of	hypothesis-driven	therapeutics.			

	

This	thesis	therefore	aimed	to	investigate	whether	3D	CRC	organoids	,	which	

show	a	degree	of	greater	complexity	compared	to	preceding	in	vitro	models,	could	

be	applied	as	suitable	readouts	for	stratified	medicine	programmes	and	novel	

compounds	within	the	drug	discovery	setting.	To	achieve	this,	a	panel	of	3D	patient-

derived	CRC	organoids	cultures	were	generated.	Suitable	methodologies	were	

established	to	facilitate	organoids	towards	quantifiable,	robust	assay	formats.	This	

platform	enabled	the	study	of	organoids	within	an	in	vitro	clinical	trial	setting,	based	

upon	treatments	administered	within	the	ongoing	FOCUS	4	stratified	medicine	trial,	

exploring	organoids’	capacity	to	predict	responses	to	targeted	therapeutics.	

Organoids	were	differentially	sensitive	to	therapies,	irrespective	of	their	genotypic	

background.	It	will	be	interesting	to	see	whether	prediction-response	correlations	

observed	in	this	study	are	typical	of	those	seen	in	patients	and	whether	functional	

readouts	will	be	required	to	support	stratified	medicine	approaches.	Quantitative	

image-based	analysis	was	also	found	to	identify	signatures	of	organoid	responses	

against	novel	Wnt	signalling	inhibitors,	suggesting	that	organoids	may	constitute	a	
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platform	that	can	be	used	to	study	the	effects	of	targeting	a	prospective	cancer	stem	

cell	(CSC)	population.	Taken	together,	the	findings	in	this	thesis	highlight	the	utility	

of	patient	derived	organoid	models	as	a	functional	model	to	evaluate	novel	

therapeutic	strategies,	potentially	generating	clinically	relevant	hypotheses.		
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1. 	Introduction	
1.1 Anatomy	and	function	of	the	intestine	

	

The	mammalian	lower	gastrointestinal	tract	is	comprised	of	both	the	small	and	large	

intestine.	The	small	intestine	emerges	from	the	pyloric	sphincter	of	the	stomach	and	

is	divided	into	the	duodenum,	jejunum	and	ileum.	This	tube-like	structure	is	

composed	of	a	range	of	cell	types,	which	facilitate	some	key	roles	including	

enzymatic	digestion	and	absorption	of	nutrients.	The	large	intestine	extends	from	

the	caecum,	through	the	ascending	colon,	transverse	colon,	descending	colon,	

sigmoid	colon,	to	the	rectum,	which	then	opens	to	the	anus.	The	large	intestine	

mainly	functions	in	maintaining	fluid	and	electrolyte	balance	by	absorption	of	water	

from	food	material.	It	also	is	the	primary	site	for	degradation	of	complex	

carbohydrates	and	nutrients	by	the	gut	microbiota.		The	intestine	is	highly	plastic,	

undergoing	continuous	self-renewal	to	facilitate	its	functions	within	such	a	harsh	

environment.	The	luminal	surface	of	the	large	intestine	is	composed	of	a	single	

epithelial	cell	layer	that	invaginates	into	the	underlying	submucosa,	forming	crypt	

structures.	Beneath	the	epithelial	sheet	are	stromal	fibroblasts	and	a	surrounding	

vasculature.	The	smooth	muscle	layer	resides	further	below	and	is	responsible	for	

generating	the	peristaltic	movement	required	to	move	food	through	the	intestine.	

	

1.2 Intestinal	epithelium	homeostasis	

1.2.1 Cell	compartments	within	the	large	intestine	

	

At	a	cellular	level,	the	large	intestine	is	composed	of	a	main	epithelial	cell	layer,	

which	form	the	basis	of	individual	crypt	structures.	At	the	base	of	the	colonic	crypt	

reside	a	progeny	of	multipotent	stem	cells	capable	of	differentiating	into	multiple	

epithelial	lineages	including	enterocytes,	endocrine	cells	and	goblet	cells	(Pinto	and	

Clevers	2005;	Ashley	2013a;	Barker	2014a).	As	cells	from	the	base	of	the	crypt	
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migrate	towards	the	lumen	of	the	intestine,	they	undergo	differentiation	into	

distinct	cell	progenies,	which	perform	critical	functions	involved	in	intestinal	

homeostasis.	Cells	continue	to	migrate	until	they	are	eventually	shed	into	the	lumen	

at	the	apex	of	the	crypt,	resulting	in	a	process	that	rapidly	regenerates	the	colonic	

epithelium,	depicted	in	Figure	1.1(Barker	2014).	The	population	of	intestinal	stem	

cells	(ISCs)	at	the	base	of	the	crypts	facilitate	a	continual	turnover	of	cells,	generating	

daughter	cells	capable	of	differentiating	into	any	of	the	epithelial	lineages	within	the	

intestine.	Differentiated	cells	have	several	functions	within	the	intestine.	The	

absorptive	enterocytes	align	each	individual	crypt	and	are	critical	for	nutrient	uptake	

as	food	moves	through	the	intestinal	tube.		Goblet	cells,	identified	through	their	

expression	of	Mucin	2,	provide	lubrication	to	lesser	the	impact	of	mechanical	stress	

from	peristalsis	of	food	through	the	gut.	Furthermore,	endocrine	cells	play	a	role	

secreting	various	hormones	that	maintain	gut	homeostasis	(Pinto	and	Clevers	2005).	

The	entire	intestinal	epithelium	is	renewed	between	every	3-5	days	and	is	tightly	

regulated	to	maintain	tissue	homeostasis.	
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Figure	1.1	Schematic	of	a	single	crypt	within	the	large	intestine	

Schematic	diagram	a	single	colonic	crypt	showing	the	range	of	cell	types.	The	base	of	the	crypt	is	

composed	of	a	stem	cell	niche,	whereby	stem	cells	are	able	to	self	renew	and	differentiate	into	

various	lineages	whilst	migrating	to	the	tip	of	the	crypt.	Crypt	proliferation	is	generally	maintained	by	

high	levels	of	Wnt	Signalling,	and	cell	differentiation	occurs	primarily	due	to	increased	levels	of	Notch	

signalling	when	closest	to	the	lumen.		
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1.2.2 Colorectal	stem	cell	maintenance	

	

The	adult	stem	cells	are	defined	as	a	population	of	pluripotent	cells	capable	of	self-

renewal	and	differentiation	that	carry	out	functions	of	vital	importance	for	tissue	

homeostasis	and	maintenance	(Ashley	2013a).		Within	the	intestine,	the	rapid	

renewal	of	the	tissue	occurs	as	a	result	of	continual	migration	of	intestinal	stem	cells	

towards	the	intestinal	lumen	along	the	crypt-villus	axis	(Fre	et	al.	2005).	

As	such,	a	number	of	protective	mechanisms	are	in	place	to	prevent	neoplastic	

growth	within	a	rapidly	renewing	environment.	Such	mechanisms	include	the	

induction	of	quiescence	to	repair	damaged	DNA	of	rapidly	proliferating	cells,	and	the	

ability	to	undergo	programmed	cell	death	by	apoptosis	to	maintain	stem	cell	

integrity	(Blanpain	et	al	2011;	Barker	2014a).			

	

The	foundation	of	the	current	understanding	of	intestinal	stem	cells	is	based	upon	

studies	in	the	murine	small	intestine,	which	can	also	be	applied	to	the	colonic	

epithelium	in	humans.	Early	studies	demonstrated	that	the	self-renewing	

component	of	the	intestine	is	located	at	the	base	of	the	crypt,	in	the	‘+4	region’	

suggesting	that	the	migration	of	epithelial	cells	towards	the	intestinal	lumen	

originated	from	the	crypt	(Pinto	and	Clevers	2005).	This	evidence	was	furthered	

using	DNA	labelling	of	stem	cells	using	3[H]-thymidine,	whilst	labelling	newly	

synthesised	DNA	strands	with	a	different	marker	(bromodeoxyuridine),	enabling	a	

segregation	of	the	two	markers	to	further	study	stem	cell	dynamics.	Recent	evidence	

suggests	that	stem	cell	identity	within	the	intestine	is	more	plastic	than	previously	

thought,	with	the	possibility	that	crypt	based	columnar	cells	(CBC)	can	function	as	

stem	cells		(Barker	2014a).	It	has	therefore	been	postulated	that	the	crypt	base	

contains	both	active	cells	(The	CBC	cells)	as	well	as	more	quiescent	stem	cells	(+4	

cells)	that	function	as	a	reserve	in	response	to	injury	(Barker	2014a).	Subsequently,	a	

number	of	markers	have	been	postulated	as	possible	indicators	of	intestinal	stem	

cells.	Lineage	tracing	experiments	have	demonstrated	that	leucine	rich	repeat	

containing	G	protein	coupled	receptor	5(Lgr5)+	cells	in	the	crypt	had	the	capacity	to	
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form	all	different	epithelial	lineages	over	a	2	month	period	in	the	mouse	(Barker	et	

al.	2007a),	as	well	as	within	in	vitro	experiments	(Sato	et	al.	2009)	(discussed	further	

in	section	1.8).	Furthermore,	engraftments	of	single	Lgr5+	cells	have	been	shown	to	

successfully	repair	the	colonic	epithelium	(Yui	et	al.	2012).	Analysis	of	gene	

expression	profiles	of	intestinal	epithelial	cells	expressing	high	and	low	levels	of	Lgr5	

has	further	identified	markers	such	as	Ascl2,	a	Wnt	signalling	target	(van	der	Flier	et	

al.	2009).	Subsequent	studies	have	concluded	that	Ascl2	,	alongside	ß-catenin/Tcf,	is	

able	to	activate	genes	related	to	cell	stemness,	and	thus	initiate	transcription	that	is	

responsive	to	Wnt	signalling		(Schuijers	et	al.	2015).	

1.2.3 Signalling	pathways	implicated	within	intestinal	homeostasis	

	

A	range	of	intricate	networks,	which	interplay	to	control	cellular	proliferation,	

migration,	and	apoptosis,	closely	regulate	the	overall	structure	and	function	of	the	

dynamic	intestinal	tissue.	This	is	mediated	by	a	gradient	of	signalling	pathways	that	

control	gene	expression	to	control	the	fate	of	a	well-defined	epithelial	hierarchy	and	

maintain	stem	cell	homeostasis,	some	of	which	are	discussed	here.	

1.2.3.1 Wnt	signalling	pathway	

	

The	canonical	(ß-catenin	dependent)	Wnt	signalling	pathway	plays	a	major	role	

during	mammalian	development,	mediating	effects	on	an	array	of	target	genes	

involved	in	proliferation,	cell	adhesion	and	migration.		

	

In	the	absence	of	a	Wnt	ligand,	the	canonical	Wnt	signalling	pathway	remains	in	an	

‘off-state’	whereby	cytoplasmic	β-	catenin	is	marked	by	a	destruction	complex	

composed	of	multiple	proteins,	including	axis	inhibitor	(Axin)	scaffolding	protein,	the	

tumour	suppressor	Adenomatous	polyposis	coli	(APC),	and	the	serine/threonine	

kinases	CK1	and	Glycogen	Synthase	Kinase-3	(GSK3).	The	destruction	complex	acts	to	

phosphorylate	ß-catenin	on	serine	and	threonine	residues	leading	to	ubiquitination	

and	protesomal	degradation.	Activation	of	canonical	Wnt	signalling,	as	a	result	of	

Wnt	ligand	binding	to	Frizzled	and	lipoprotein	receptor-related	protein	5/6	(LRP5/6)	

co-receptors,	mediates	the	interaction	between	Dishevelled	(Dsh)	and	Axin	at	the	
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cell	surface,	preventing	the	formation	of	the	ß-catenin	destruction	complex.	

Consequently,	free	pools	of	cytoplasmic	β-catenin	accumulate	and	translocate	to	the	

nucleus	(Kim	et	al.	2008)	subsequently	displacing	Groucho,	a	transcriptional	

repressor,		and	binds	to	T-cell	specific	transcription	factor	of	Lymphoid	enhancer-

binding	factor	1	(TCF/LEF)	family	of	transcription	factors,	facilitating	the	transcription	

of	Wnt	target	genes	(Barker	2014a).	Wnt	signalling	is	further	potentiated	by	the	

R(oof	plate	specific)-spondin	protein	family,	which,	upon	binding	with	their	receptor	

leucine-rich	G	protein	coupled	receptor	4/5/6	(LGR4/5/6)	or	Lgr5	receptor,	active	in	

adult	stem	cells	in	the	base	of	crypts,	enhance	the	Wnt	ligand	signal.	This	effect	is	

mediated	by	the	inhibition	of	zinc	and	ring	finger	3	(Znrf3)	and	ring	finger	43	(Rnf43)	

transmembrane	ubiquitin	ligases,	which	target	Fzd/Lrp	receptors	for	degradation	

(Barker	et	al.	2013;	Koo	et	al.	2012;	de	Lau	et	al.	2011a).	The	R-spondins	therefore	

elicit	their	effect	by	inhibiting	the	removal	of	Fzd	and	Lrp	receptors	from	the	cell	

surface,	thus	mediating	β-catenin	stabilization	(de	Lau	et	al.	2014)	As	a	result,	this	

amplifies	the	Wnt	responses		(Barker	et	al.	2013),	enhancing	gene	transcription.	A	

number	of	Wnt	target	genes	are	associated	with	cell	proliferation,	migration	and	

adhesion	and	include,	but	are	not	restricted	to,	c-myc,	Cyclin	D1,	CD44	and	Axin	2	

(Krausova	and	Korinek	2014).				

	

Wnt	signalling	(Figure	1.2)	has	a	diverse	role	throughout	development	and	

homeostasis	and	is	therefore	tightly	regulated	at	variety	of	stages	to	maintain	

physiology.	At	a	cellular	level,	downregulation	of	Wnt	signalling	can	occur	through	

multiple	feedback	loops	which,	upon	ß-catenin	transcription,	mediate	the	

upregulation	of	Axin2	to	re-establish	the	formation	of	the	ß-catenin	destruction	

complex.	Furthermore,	the	destruction	complex	is	also	directly	regulated	as	

required;	Axin	,	for	example,	is	one	of	the	concentration-limiting	components	of	the	

destruction	complex	and	is	in	turn	tightly	regulated	by	tankyrases	1/2,	members	of	

the	poly	ADP	ribosylation	enzymes	family	that	attenuate	Wnt	signalling	by	mediating	

Axin	stabilisation	(Wu	et	al.	2016;	de	Sousa	and	Vermeulen	2016;	de	Sousa	et	al.	

2011).		

	



	 7	

In	the	intestine,	Wnt	signalling	has	long	been	recognised	as	a	master	regulator	of	the	

turnover	of	stem	cell	generation	(Schuijers	and	Clevers	2012;	Pinto	and	Clevers	

2005)	and	has	been	shown	to	be	a	key	mediator	of	proliferation	and	intestinal	

homeostasis.	Within	the	intestinal	crypt,	a	gradient	of	expression	of	Wnt	agonists	

and	antagonists	mediate	tight	regulation	of	this	pathway,	with	highest	relative	Wnt	

levels	prominent	in	the	base	of	crypts	(Schuijers	and	Clevers	2012).	A	number	of	

studies	have	demonstrated	the	implications	of	Wnt	signalling	in	crypt	development	

and	function.	Firstly,	conditional	homozygous	deletion	of	ß-catenin	in	the	intestine	

has	been	shown	to	result	in	an	increase	in	apoptotic	events	and	crypt	ablation	in	a	

transgenic	mouse	line	(Ireland	et	al.	2004).	In	concordance	with	this,	Fevr	et	al	

demonstrated	that	ß-catenin	loss	results	in	a	rapid	absence	of	proliferating	cells,	a	

loss	of	crypt	formation,	and	strikingly,	an	induction	of	terminal	differentiation	in	ISCs	

(Fevr	et	al.	2007).	Furthermore,	overexpression	of	DIckkopf1	(Dkk1),	a	Wnt	

antagonist,	causes	progressive	degeneration	of	crypt	architectures	(Kuhnert	et	al.	

2004),	and	alters	crypt-villus	structure	within	small	intestine	of	mice	(Pinto	et	al.	

2003).		Conversely,	injection	of	human	R-spondin	1	(hRSpo1)	has	been	shown	to	

result	in	an	aberrant	activation	of	the	Wnt	pathway,	and	an	overall	increase	in	the	

number	of	Lgr5+	stem	cells	in	mice	(Kim	et	al.	2005).	Taken	together,	such	studies	

emphasise	the	importance	of	the	Wnt	signalling	network	in	the	ISC	compartment,	

and	in	maintenance	of	homeostasis.		
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Figure	1.2	The	Canonical	Wnt	signalling	pathway	

The	Wnt	signalling	pathway	is	typically	represented	in	a	‘off’	and	‘on’	state.	In	the	absence	of	Wnt	ligand,	a	destruction	complex	formed	of	multiple	proteins	including	Axin	

and	APC,	glycogen	synthase	kinase	3	and	casein	kinase	1,	all	of	which	mediate	the	degradation	of	ß-catenin	by	ubiquitination,	preventing	translocation	into	the	nucleus.	In	

the	presence	of	Wnt	ligand,	the	destruction	complex	is	recruited	to	the	receptor-ligand	complex,	enabling	the	accumulation	of	ß-catenin	within	the	cytoplasm.	This	in	turn	

mediates	downstream	activation	of	target	gene	expression.		
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1.2.3.2 The	Notch	signalling	pathway	

	

Notch	signalling	is	activated	in	response	to	cell-cell	contact;	an	extracellular	domain	

binds	to	a	Jagged	or	Delta	ligands	that	reside	on	a	opposing	cell	surfaces,	as	depicted	

in	Figure	1.3.	The	interaction	of	Notch	ligands	with	the	Notch	receptor	induces	

proteolytic	cleavage	at	the	extracellular	domain,	mediated	by	the	tumour	necrosis	

factor-α-converting	enzyme	(TACE).	Following	this	interaction,	the	transmembrane	

receptor	domain	of	Notch	(NICD)	is	cleaved	by	a	presenilin-γ	secretase	complex,	

which	mediates	the	translocation	of	the	intracellular	receptor	domain	to	the	nucleus	

(Qiao	and	Wong	2009).	Notch	signalling	effectors	regulate	the	transcription	factor	

CSL	that	control	gene	expression	of	Notch	target	genes.	Target	genes	of	Notch	

signalling	have	various	functions	such	as	cell	proliferation	and	differentiation	(Badalà	

et	al.	2011)		

	

Notch	signalling	plays	a	pivotal	role	in	the	coordination	of	differentiation	events	

within	intestinal	epithelial	cells,	and	is	therefore	critical	in	maintaining	intestinal	

development	and	homeostasis,	and	equally	a	role	in	the	transformation	of	epithelial	

cells	towards	a	more	malignant	phenotype	(Ashley	2013a).	Both	Notch1	and	Jagged-

1	are	expressed	at	high	levels	in	transit	amplifying	cells	of	the	colon	(Badalà	et	al.	

2011).	The	loss	of	notch	signalling	in	mouse	intestinal	stem	cells	promotes	the	

differentiation	of	stem	cells	towards	a	goblet	or	enteroendocrine	cell	lineages	(van	

Es	et	al.	2010)	as	opposed	to	absorptive	cells.	Conversely,	induced	Notch	signalling	

activation	has	been	shown	to	reduce	differentiation	and	increase	proliferation	of	

progenitor	cells	(Fre	et	al.	2005).	Using	inducible	tissue-specific	Notch-mutant	mice,	

studies	have	further	demonstrated	the	role	of	Notch	signalling	in	crypt	

differentiation	and	proliferation,	whereby	loss	of	Notch	receptors	result	in	loss	of	

cell	cycle	progression	of	crypt	progenitor	cells	(Riccio	et	al.	2008)	.	Culture	of	

intestinal	stem	cells	has	also	demonstrated	that	extracellular	application	of	Notch	

ligands	to	culture	conditions	directs	stem	cells	towards	a	more	differentiated	

phenotype	(Yin	et	al.	2013).	Some	studies	have	also	highlighted	the	interplay	
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between	Notch	and	Wnt	signalling	within	the	intestine,	particularly	in	the	ISC	

population.	Recently,	it	has	been	shown,	by	utility	of	Notch	blocking	antibodies,	that	

Notch	signalling	has	the	ability	to	diminish	outputs	of	Wnt	signalling,	thus	also	

contributing	to	stem	cell	activity	(Tian	et	al.	2015).		

1.2.3.3 TGFβ	/	BMP	signalling	pathway	

	

The	Transforming	Growth	Factor	Beta	(TGFβ)	family	of	proteins	are	involved	in	an	

array	of	cell	signalling	events.	Upon	ligand	binding	to	membrane-bound	receptors	

(Type	I	and	Type	II)	the	type	II	receptor	dimerises	with	type	I,	and	then	

phosphorylates	the	cytoplasmic	domain	of	type	I.	This	phosphorylated	domain	in	

turn	recruits	Smad2/Smad3	cytosolic	proteins	and	mediates	their	phosphorylation.	

The	Bone	Morphogenic	Protein	(BMP)	signalling	pathway	forms	a	large	subgroup	of	

the	TGFβ		family,	and	typically	results	in	the	recruitment	and	phosphorylation	of	

Smad1,	Smad	5	and	Smad	8	(Yeung	et	al.	2011).	The	dissociation	and	activation	of	

recruited	Smads	enable	a	complex	formation	with	Smad	4.	This	in	turn	mediates	the	

translocation	of	the	complex	to	the	nucleus,	enabling	the	interaction	with	co-

activators	and	co-repressors	of	transcription,	enabling	the	expression	of	TGFβ	

related	genes	upon	binding,	as	represented	in	Figure	1.3.	Target	genes	are	involved	

in	the	inhibition	of	growth	and	proliferation,	highlighting	a	definitive	role	in	the	

intestine	(Ashley	2013b).		

	

BMP	signalling	is	predominantly	active	at	the	surface	of	the	colon	lumen	as	opposed	

to	the	stem	cell	rich	compartments	at	the	base	of	crypts.	The	BMP	pathway	has	a	

definitive	role	in	the	establishment	of	the	crypt	axis	in	the	intestine	as	well	as	

maintaining	the	proliferative	environment	to	restrict	intestinal	hyperproliferation.	

Mechanistically,	the	direct	inhibition	of	Wnt-driven	ß-catenin	dependent	signalling	

by	functional	BMP	signalling	ensures	the	terminal	differentiation	of	intestinal	cell	

lineages,	particularly	the	maturation	of	secretory	lineages	(Auclair	et	al.	2007).		

Inhibition	of	BMP	signalling,	using	agents	such	has	Noggin	has	previously	been	

shown	to	result	in	the	formation	of	ectopic	crypts	(Batts	et	al.	2006).	BMP	inhibition	

has	also	been	linked	to	an	expanding	stem	and	progenitor	cell	population	in	the	



	 11	

intestine,	eventually	resulting	in	intestinal	polyposis	(He	et	al.	2004).	An	interplay	

between	BMP	and	Wnt	signalling	has	also	been	postulated,	with	some	studies	having	

shown	that	Wnt	signalling	is	suppressed	by	BMP	to	further	control	self	renewal	of	

ISCs	(Yeung	et	al.	2011;	He	et	al.	2004).		Recent	in	vitro	studies	with	Lgr5+	ISCs	

cultured	with	BMP	showed	an	overall	suppression	in	a	stem	cell	marker	signature,	

suggesting	that	functional	BMP	signalling	limit	self-renewal	of	a	pool	of	stem	cells	in	

the	crypt,	and	in	turn	prevents	hyperproliferation	(Qi	et	al.	2017).		
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Figure	1.3	Schematic	of	Notch	and	TGFß/BMP	Signaling	

Homeostasis	of	the	large	intestine	relies	on	Notch	and	TGFß/BMP	signalling,	which	play	a	role	in	the	expression	of	genes	associated	with	specific	functions	such	as	

proliferation	and	differentiation.		
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1.2.3.4 Mitogen-Activated	Protein	Kinase	Pathways	(MAPK/ERK)	signalling	

pathway	

	

The	canonical	MAPK/ERK	pathway,	as	depicted	in	Figure	1.4,	is	activated	by	receptor	

tyrosine	kinases,	such	as	EGFR,	that	mediate	a	downstream	signalling	cascade	

(Burotto	et	al.	2015).	Upon	stimulation,	downstream	RAS	proteins,	including	HRAS,	

NRAS	and	KRAS,	are	localised	to	the	membrane,	which	in	turn	triggers	the	growth-

factor	receptor	binding	protein	2	(GRB2),	activating	Sevenless	homolog	(SOS),	both	

of	which	mediate	the	activation	of	RAS.	RAS	proteins	belong	to	a	family	of	

guanosine-5’-triphosphate	binding	proteins	(GTPases)	and	are	thus	activated	by	

dissociation	of	guanosine	diphosphate	to	guanosine	triphosphate-bound	RAS	

(Santarpia	et	al.	2012).	This	mediates	a	number	of	downstream	effects,	including	

recruitment	of	RAF	protein	isoforms	(ARAF,BRAF	and	CRAF)	to	the	cell	membrane,	

and	activation	of	function	(Dhillon	et	al.	2007).	RAF	in	turn	activates	Mitogen	

activated	kinase	1/2	(Mek	1/2)	which	then	activate	extracellular	signal-related	kinase	

1/2	(ERK	1/2).	Upon	activation,	ERK1/ERK2	phosphorylate	a	number	of	cellular	and	

nuclear	substrates	whereby	cell	cycle	regulators	are	targeted;	including	cyclin	D,	as	

well	as	target	genes	involved	in	apoptosis	including	Bim	(Mebratu	and	Tesfaigzi	

2009)	which	mediate	a	broad	range	of	cellular	responses	such	stimulation	of	

proliferation,	differentiation	survival	and	apoptosis	(Santarpia	et	al.	2012;	Burotto	et	

al.	2015).		
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Figure	1.4	Schematic	of	EGFR/RAF/MEK/ERK	signalling	

Activation	of	receptor	Tyrosine	Kinases	(RTKs)	such	as	EGFR	lead	to	recruitment	of	GRB2,	and	SOS,	the	

guanine	nucleotide	exchange	factor.	This	in	turn	activates	Ras,	mediating	the	phosphorylation	and	

activation	of	Raf.	This	initiates	the	phosphorylation	of	MEK1/2,	with	subsequently	phosphorylates	ERK	

1/2.	Activated	ERK1/2	is	translocated	to	the	nucleus,	which	leads	to	the	activation	of	transcription	

factors	involved	in	cell	cycle	regulation,	proliferation	and	cell	survival.		
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1.2.3.5 Phosphoinositide	3-kinases	(PI3Ks)	Signalling	

	

Phosphoinositide	3-kinases	(PI3Ks)	are	a	family	of	lipid	kinases	composed	of	

regulatory	subunits	and	a	catalytic	subunit,	which	exist	in	several	isoforms	and	are	

tightly	regulated	in	the	normal	cell	(Engelman	2009).	PI3K	activation	occurs	as	a	

result	of	receptor	tyrosine	kinases,	G-protein	coupled	receptors	and	interaction	with	

Ras	(Zhao	and	Vogt	2008).		

	

Once	activated,	PI3Ks	initiate	the	phosphorylation	of	the	3’	hydroxyl	group	of	

phosphatidylinositol	4,5	bisphosphate	(PIP2)	to	phosphatidylinositol	3,4,5-

triphosphate	(PIP3)	on	the	plasma	membrane.		Signalling	can	be	terminated	at	this	

point	by	the	phosphatase	PTEN	(phosphatase	and	TENsin	homolog	deleted	on	

chromosome	10),	which	facilitates	the	hydrolysis	of	PIP3	to	PiP2	(Zhao	and	Vogt	

2008).	Upon	accumulation	of	PIP3,	AKT	is	recruited	to	the	membrane,	whereby	

phosphoinositide-dependent	protein	kinase	1	(PDK1)	phosphorylates	within	the	

activation	loop	of	AKT	(threonine	308),	and	mechanistic	target	of	rapamycin	complex	

2	(mTORC2)	phosphorylates	a	hydrophobic	motif	of	AKT	(serine	473)	facilitating	AKT	

activation.	Following	activation,	AKT	mediates	the	phosphorylation	of	several	

proteins,	which,	in	turn	regulate	several	cell	processes	including	proliferation,	cell	

survival	and	protein	synthesis	(Engelman	2009).	

	

1.3 Colorectal	cancer	

	

Colorectal	cancer	is	the	third	most	common	cancer,	and	the	second	most	common	

cause	of	cancer	related	deaths	in	the	UK	(CRUK,	2014).	The	incidence	of	CRC	is	

particularly	high	due	to	the	challenging	environment	of	the	tissue.	The	high	rate	of	

cell	division	required	to	facilitate	the	rapid	turnover	of	cells	within	the	crypts	provide	

a	potential	source	of	DNA	replication	errors,	making	oncogenic	transformations	

more	likely	(Ashley	et	al.	2013).	Furthermore,	colorectal	tissue	is	directly	exposed	to	

carcinogens	from	ingested	food,	and	thus	provides	multiple	factors	for	carcinogenic	

occurrences	to	take	place.		
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CRC	is	classically	divided	into	sporadic	and	hereditary	conditions.	Sporadic	CRC	

development	has	been	proposed	as	a	process	whereby	modulation	in	the	

aforementioned	signalling	pathways,	as	well	as	accumulative	genetic	abnormalities	

in	oncogenes	or	tumour	suppressor	genes,	can	drive	the	transition	from	normal	

epithelial	tissue	to	a	benign	adenoma,	to	a	carcinoma	which	has	the	potential	to	

metastasise	into	other	tissues	within	the	body	(Gervaz	et	al.	2004;	Smith	et	al.	2002),	

with	proposed	mechanisms	discussed	in	section	1.3.2.	The	incidence	of	sporadic	

bowel	cancer	is	largely	attributed	to	external	factors,	such	as	diet,	smoking	and	

increased	alcohol	consumption,	with	recent	studies	also	investigating	the	role	of	the	

gut	microbiota	in	the	initiation	and	possible	influence	on	carcinogenic	processes	

(Drewes	et	al.	2016).		

	

Hereditary	conditions	have	also	been	found	to	contribute	to	the	incidence	of	CRC,	

namely	through	familial	adenomatous	polyposis	(FAP),	a	hereditary	condition	which	

leads	to	the	development	of	polyps	with	potential	to	form	benign	lesions	and	

adenocarcinomas	(Bodmer	et	al.	1987).	

	

1.3.1 TNM	and	Dukes	staging	of	colorectal	cancer	

	

Histopathological	assessment	of	patient	tumour	samples	enables	disease	staging,	

ideally	from	surgical	resection	specimens	according	to	the	Tumour	Node	Metastasis	

(TNM)	system.	This	is	a	revised	modification	of	the	previously	established	Dukes’	

staging	and	is	of	prognostic	significance,	as	highlighted	in	Figure	1.5	and	Table	1.1	

(Greene	2004).	This	enables	an	assessment	of	degree	of	the	degree	of	invasion	of	a	

primary	tumour,	as	designated	by	Tumour	T	stage	T1-T4,	a	pathological	assessment	

of	tumour	cell	presence	in	regional	lymph	nodes	(N	stage	N0-2),	and	finally,	a	

classification	for	metastases	distant	from	the	primary	malignancy	‘M’	‘M’	(x,0,1)	to	

indicate	local	or	further	metastasis.		
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Figure	1.5	Gross	anatomy	of	the	large	intestine	showing	representative	grading	for	tumour	

invasion.	

(A)	Gross	anatomy	of	the	large	intestine,	from	the	caecum	to	the	rectum.	Surgically	resected	

specimens	from	the	Wales	Cancer	Bank	come	from	throughout	this	region.	(B)	Diagram	representing	

‘TNM’	staging	of	colorectal	cancer;	early	stages	show	tumour	invasion	into	the	inner	lining	of	the	

colon,	whilst	later	stages	show	invasion	which	can	spread	to	adjacent	lymph	nodes	and	potentially	

metastasise	into	other	regions	of	the	body.		

	

(A) 

(B) 
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Table	1.1	TNM/	Dukes’	classification	of	colorectal	cancer.	

Table	describing	tumour	stages	for	classification	of	disease	progression.	

TNM Classification Dukes’ 
Classification 

Stage 0 Carcinoma in situ 

Stage I Tumour invasion of the submucosa of the 
bowel only (T1, N0, M0) 

A 

Tumour invasion of the muscle layer of the 
bowel wall, muscularis propria (T2, N0,M0) 
 

B1 

Stage II Tumour invasion, into the outer lining of the 
bowel wall (T3, N0, M0) 

B2 

Tumour invaded through the outer lining of the 
bowel wall (T4, N0, M0) 
 

B2 

Stage III 1-3 lymph nodes contain cancer cells (T1-2, 
N1, M0) 
 

C1 

4 or more lymph nodes containing cancer cells  
(T1-2, N2, M0) 
 

C1 

1-3 lymph nodes contain cancer cells  (T3-4, 
N1, M0) 
 

C2 

4 or more lymph nodes containing cancer cells 
(T3-4, N2, M0) 
 

C2 

Stage IV Known metastasis in the patient (T1-4, N1-2, 
M1) 
 

D 
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1.3.2 The	genetic	progression	of	colorectal	cancer	development	

	

Given	the	intricate	plethora	of	aforementioned	signalling	pathways	involved	in	

maintaining	intestinal	homeostasis,	it	is	unsurprising	that	modulation	of	such	

pathways	as	a	result	of	mutations	in	key	tumour	suppressors	and	oncogenes	have	

the	potential	to	initiate	and	drive	CRC	progression.	The	understanding	of	molecular	

events	that	are	key	to	tumour	initiation	and	progression	not	only	underpin	the	

understanding	of	tumourigenesis,	but	are	also	of	vital	relevance	to	the	development	

of	novel	targeted	therapies.	

	

Sporadic	CRC	development	has	been	proposed	as	a	process	whereby	modulation	in	

homeostatic	signalling	pathways,	as	well	as	accumulative	genetic	abnormalities	in	

oncogenes	or	tumour	suppressor	genes,	drive	the	transition	from	normal	epithelial	

tissue	to	a	benign	adenoma,	to	a	carcinoma	which	has	the	potential	to	metastasise	

into	other	tissues,	as	depicted	in	Figure	1.6	(Gervaz	et	al.	2004;	Smith	et	al.	2002).	

The	development	of	CRC	has	long	been	established	as	a	multi-step	process,	whereby	

mutations	are	acquired	and	accumulated,	driving	tumour	progression	from	a	

dysplastic	epithelium,	to	benign	adenoma	and	adenocarcinoma,	which	then	has	the	

potential	to	metastasise	into	other	tissues.	This	‘classic’	genetic	model	of	CRC	

progression	was	proposed	over	20	years	ago	in	a	landmark	study	by	Fearon	and	

Vogelstein,	where	they	carried	out	a	comprehensive	analysis	of	histopathological	

and	genetic	data	in	late	stage	tumours	compared	to	early	stage	tumours	to	

understand	mutations	that	initiate	and	play	a	role	in	CRC	development	(Fearon	and	

Vogelstein	1990).	It	was	observed	that	many	genetic	alterations	occurred	at	a	higher	

frequency	in	late	stage	tumours.	The	authors	hypothesised	that	the	adenomatous	

polyposis	coli	(APC)	gene	was	the	initiating	mutation	in	the	formation	of	benign	

lesions,	leading	the	acquisition	of	activating	mutations	in	kirsten	rat	sarcoma	viral	

oncogene	homolog	(KRAS),	allelic	loss	of	18q	locus	and	p53	loss,	all	of	which	were	

critical	drivers	of	tumour	progression	due	to	genetically	unstable	cells	(Fearon	and	

Vogelstein	1990;	Pinto	and	Clevers	2005;	Gervaz	et	al.	2004).	Despite	such	



	 20	

alterations	having	been	observed	in	the	advanced	tumours,	this	work	came	with	the	

caveat	that	such	specific	genetic	alterations	were	not	observed	in	all	tumours	and	

that	it	was	more	likely	that	the	accumulative	mutations,	rather	than	their	order	of	

acquisition	lead	to	advanced	tumour	formation	(Fearon	and	Vogelstein	1990).	

Further	to	these	remarks,	Smith	et	al	(Smith	et	al.	2002)	noted	that	mutations	in	all	

genes		APC,	KRAS	and	P53	occurred	in	only	6.6%	of	tumours	of	a	cohort	of	over	100	

CRC	patients,		suggesting	that	alternative	genetic	pathways	occur	in	CRC	progression.		

	

The	loss	of	the	tumour	suppressor	APC	is	well	established	as	a	key	driver	for	CRC	

progression.	An	activating	mutation	in	APC	was	firstly	associated	with	patients	

suffering	from	familial	adenomatous	polyposis	(FAP),	a	hereditary	condition	which	

leads	to	multiple	polyp	development	(Bodmer	et	al.	1987).	Both	germline	and	

somatic	APC	mutations	result	in	aberrant	signalling	which	allow	the	formation	of	

benign	lesions,	which	can	potentially	initiate	tumour	progression.	APC	regulates	the	

degradation	of	β-catenin	and	is	hence	a	critical	component	of	the	Wnt-signalling	

cascade.	Mutations	therefore	result	in	a	constitutive	activation	of	canonical	Wnt	

signalling	which	causes	an	activation	of	transcription	of	downstream	signals,	

primarily	involved	in	enhanced	cell	proliferation.	Inactivation	of	APC	in	the	murine	

intestinal	epithelium	has	previously	been	implicated	in	a	rapid	relocalisation	of	ß-

catenin	to	the	nucleus	in	histological	samples,	suggestive	of	Wnt	signalling	induction,	

resulting	in	cellular	changes	such	as	an	expansion	of	a	progenitor	cell	population	in	

the	crypt	and	a	failure	of	cells	to	migrate	and	differentiate	(Sansom	et	al.	2004).		

	

Activating	mutations	in	RAS	often	follows	in	colorectal	cancer	progression.	Early	

studies	that	grouped	adenomas	according	to	volume	noted	that	mutations	in	KRAS	

or	NRAS	were	prevalent	in	larger	adenomas	(Vogelstein	et	al.	1988)	suggesting	that	

RAS	mutations	facilitate	tumour	progression	towards	malignancy.	DNA	sequencing	

studies	have	further	confirmed	the	role	of	mutated	RAS	in	colorectal	cancer,	

particularly	KRAS	activating	mutations,	which	constitute	approximately	40%	of	

colorectal	cancers,	the	majority	in	codon	12	(Cancer	Genome	Atlas	Network	2012).	

As	discussed	further	in	section	1.5,	KRAS	is	a	downstream	mediator	of	the	MAP/ERK	

pathway,	constituting	a	role	in	a	major	signalling	cascade	that	is	integrated	with	
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multiple	pathways,	and	thus	constitutes	a	large	role	in	control	of	cell	proliferation	

and	cell	survival.			

	

The	transition	from	adenoma	to	carcinoma	is	further	driven	by	loss	of	the	long	arm	

of	chromosome	18,	then	the	tumour	suppressor	p53,	which,	in	the	normal	cell	

mediates	cell	cycle	suppression	or	induces	apoptosis	in	response	to	stress	or	damage	

(Colussi	et	al.	2013)	.	The	later	stages	of	colorectal	tumourigenesis	are	frequently	

classified	by	p53	loss	of	function,	and	approximately	75%	of	CRC	contain	p53	

mutations	(Cancer	Genome	Atlas	Network	2012).	Such	mutations	result	in	the	

stimulation	of	high	proliferative	activity	due	to	failed	function	in	cell	cycle	control.	

Frequently,	a	molecular	event	which	co-occurs	is	the	LOH	of	chromosome	18q,	

where	the	genes	Smad2,	Smad4	and	DCC	are	located	(Colussi	et	al.	2013).	

	
A	comparison	of	normal	and	tumour	tissue	by	deep	sequencing	has	further	

emphasised	the	complexity	of	events	that	drive	the	formation	of	colorectal	

tumourigenesis,	by	demonstrating	the	plethora	of	genes	involved	in	tumour	

progression	(Wood	et	al.	2007;	Cancer	Genome	Atlas	Network	2012).	It	has	been	

noted	in	such	studies	that	other	changes	are	likely	to	occur	during	this	classic	

progression	model,	and	further	studies	have	demonstrated	the	implication	of	an	

array	of	signalling	cascades	that	also	influence	CRC	progression,	including	the	PI3K	

pathway,	further	discussed	in	section	1.2.3.5.	The	recent	‘Big	Bang’	theory,	

postulates	that	tumour	growth	results	from	the	expansion	of	an	initial	population	of	

cells	containing	mutations	such	as	APC	and	KRAS,	with	heterogeneous	subclones	

continuously	accumulating	within	the	tumour,	resulting	in	intratumoral	

heterogeneity	(Sottoriva	et	al.	2015).	Such	studies	highlight	the	complex	genomic	

landscape	of	CRC,	which	ultimately	plays	a	role	in	explaining	the	difficulty	in	

identifying	therapeutics	for	CRC.		
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Figure	1.6	Schematic	of	tumour	initiation	and	progression	in	the	intestine.	

Classical	model	of	tumour	progression	proposed	by	Fearon	and	Volgstein,	depicting	accumulating	mutations	that	lead	to	the	transition	of	the	normal	epithelium	to	

carcinoma	formation.	
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1.4 Current	therapeutic	strategies	for	CRC	

	

Therapeutic	strategies	for	CRC	primarily	involve	surgical	resection	of	both	tumour	

and	metastasis,	in	conjunction	with	radiotherapy	and/or	chemotherapy	in	the	

neoadjuvant	(prior	surgery)	setting	to	shrink	the	tumour,	or	in	the	adjuvant	setting	

(following	surgery).		For	rectal	cancer	patients	specifically,	the	administration	of	

chemotherapy	alongside	radiotherapy	is	frequently	used	as	a	therapeutic	strategy.		

	

5-Fluoruracil	(5-FU)	was	introduced	as	a	chemotherapeutic	agent	over	40	years	ago	

and	has	remained	the	most	widely	used	treatment	regimen	for	CRC.	5-FU,	when	

metabolised	to	5-fluoro-2’-deoxyuridylate,	acts	as	an	irreversible	thymidylate	

synthase	inhibitor,	disrupting	DNA	and	RNA	synthesis	leading	to	the	initiation	of	

apoptosis	and	cell	death	(Gill	et	al.	2003).	As	a	monotherapy,	5-FU	or	in	recent	

advances	Capecitabine,	a	pro-drug	equivalent,	is	associated	with	an	improved	

disease	free	median	survival	(Longley	et	al.	2003)	rate	in	approximately	10-15%	of	

patients.	5-FU	is	frequently	used	in	combination	to	overcome	these	limited	response	

rates.	Leucovorin,	a	folinic	acid	that	mechanistically	stabilises	bonds	formed	by	

thymidylate	synthase	and	a	metabolite	of	fluorouracil,	has	been	shown	to	improve	

survival	compared	to	5-FU	alone	(12	months	versus	7	months)	(Poon	et	al.	1991)and	

in	prospective	studies	the	addition	to	Leucovorin	to	a	chemotherapeutic	regime	

conferred	response	rates	of	23%	(Gill	et	al.	2003).	

	

Further	advances	have	been	made	to	improve	the	therapeutic	repertoire	of	CRC	

treatment,	including	the	generation	of	oxaliplatin,	which	induces	cross-linking	of	

DNA,	impairing	DNA	synthesis	and	cell	replication	(Longley	et	al.	2003).	Although	

somewhat	active	as	a	single	agent,	oxaliplatin	in	combination	with	5-FU	and	

levouricin,	has	been	shown	to	yield	response	rates	of	20%	in	refractory	disease	

(Andre	et	al.	1998).	Similarly,	irinotecan,	a	topoisomerase	1	inhibitor,	has	been	

reported	to	improve	median	survival	in	patients	receiving	5-

FU/Leucovorin/Irinotecan	compared	to	5-FU/	Leucovorin	alone,	as	well	as	higher	

response	rates	in	387	patients	within	the	randomised	trial	(Douillard	et	al.	2000;	
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Goldberg	et	al.	2005).	Varying	combinations	of	fluorouracil,	irinotecan	and	

oxaliplatin	are	now	well	established	in	the	clinic,	dependent	on	CRC	tumour	stages,	

and	have	been	found	to	increase	median	survival	(Goldberg	et	al.	2005).	

	

However,	despite	the	substantial	improvement	made	to	CRC	treatment	over	the	past	

decade,	chemotherapeutics	are	toxic	and	combination	chemotherapeutics	show	

increased	toxicities,	such	that	treatment	regimes	are	generally	limited	by	the	

damage	inflicted	on	healthy	tissues.	Clinical	trials,	such	as	the	Medical	Research	

Council	(MRC)	COIN	trial,	have	reported	some	reduction	in	toxic	effects	when	

chemotherapeutics	are	administered	intermittently	as	opposed	to	continuous	pre-

defined	intervals	which	are	regular	in	the	clinic.	However,	such	regimens	have	failed	

to	significantly	improve	overall	survival	in	advanced	CRC	(Adams	et	al.	2011)	.	

Another	consideration	for	the	continued	use	of	chemotherapeutic	agents	is	their	

strong	association	with	tumour	resistance,	which	ultimately	leads	to	patient	relapse	

and	tumour	progression.	Studies	investigating	treatments	in	the	adjuvant	setting	

have	thus	far	reported	limited	benefits	of	combinations	at	more	advances	stages	of	

CRC;	the	MOSAIC	trial	for	Stage	III	CRC	patients,	for	example,	showed	that	

Leucovorin,	oxaliplatin	and	5-FU	combination	increased	disease	free	survival	at	3	

years	by	only	7%,	compared	to	5-FU	and	leucovorin	alone	(Binefa	et	al.	2014).	The	

advances	in	chemotherapeutic	therapies	in	the	curative	setting	therefore	need	to	be	

improved.		

	

The	advances	in	the	understanding	of	CRC	and	biomarkers	of	tumour	types	have	

moved	treatment	towards	more	targeted	therapy	to	improve	survival.		The	

epidermal	growth	factor	(EGFR)	for	example,	is	a	receptor	tyrosine	kinase	that	is	an	

emerging	prognostic	biomarker	for	CRC	following	identification	of	EGFR	

amplification	across	CRC	patient	samples	(Resnick	et	al.	2004;	Spano	et	al.	2005).	

Cetuximab	and	Panitumumab	are	two	anti-EGFR	monoclonal	antibody	therapies	that	

inhibit	the	EGFR	transmembrane	glycoprotein,	inhibiting	downstream	signalling.	

Both	agents	have	been	approved	in	the	clinical	setting,	with	the	exception	of	KRAS	

mutant	patients,	which	fail	to	respond	to	EGFR	inhibitor	therapy		(Roock	et	al.	2010).	

As	shown	in	Figure	1.4,	the	EGFR	ligand	lies	upstream	of	RAS;	a	mutation	in	KRAS	
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could	thus	override	any	inhibition	of	upstream	targets	and	maintain	downstream	

signaling.		Despite	vast	advances	in	the	understanding	of	CRC	biology,	treatment	

remains	largely	palliative	and	is	limited	in	overall	impact	upon	long-term	survival.	

Studies	are	still	underway	to	improve	survival	long-term	by	investigating	targeted	

therapies,	as	well	as	scheduling	chemotherapeutic	regimens	appropriately.		

	

1.5 Deregulated	pathways	in	CRC	development	and	associated	targeted	

therapies	for	a	biomarker-driven	clinical	trial.		

1.5.1 FOCUS	4	clinical	trial	as	a	molecularly	stratified	clinical	trial	

	

The	MRC/NIHR,	alongside	Cancer	Research	UK	(CRUK)	have	funded	a	NCRI	CRC	

Clinical	Studies	Group	development,	FOCUS	4	(registered	ISRCT90061546)	as	a	drive	

to	investigate	biomarker-selected	therapies	in	CRC.	This	UK-wide	clinical	trial	is	a	

molecularly	stratified,	multi-arm	programme	(Figure	1.7)	that	aims	to	address	the	

relation	between	tumour	biomarker	profiles	and	selective	therapeutic	intervention	

to	improve	progression	free	survival	in	CRC.		

	

As	depicted	in	Figure	1.7,	this	trial	aims	to	classify	patients	with	progressed	or	

inoperable	metastatic	CRC	according	to	the	molecular	background	of	their	tumour,	

and	treat	accordingly.	Following	16	weeks	of	palliative	chemotherapy,	and	fulfilment	

of	eligibility	criteria,	patients	will	be	categorised	into	sub-groups	(treatment	‘arms’)	

according	to	the	molecular	make-up	of	their	tumour.	Patients	will	be	randomized	to	

receive	treatment	or	placebo	and	their	progression	free	response	to	treatment	will	

be	tested.	The	panel	of	molecular	markers	under	investigation	are	based	on	

biomarkers	that	have	been	previously	identified	or	hypothesised	to	elicit	predictable	

responses	to	targeted	therapies,	particularly	from	previous	data	collected	from	the	

MRC	COntinuous	or	INtermittent	(COIN)	trial,	and	will	be	discussed	in	turn.	The	

adaptive	design	of	the	trial	enables	progressive	changes	to	be	incorporated	during	

the	course	of	the	trial	as	a	result	of	novel	biomarker	identification,	novel	treatments,	

or	the	identification	of	trial	arms	better	fitted	with	alternative	treatments.	Given	the	

complex	mutation	spectrum	in	CRC,	it	would	be	a	fair	assumption	that	patients	could	
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harbour	a	number	of	the	main	molecular	mutations	and	thus	be	categorised	into	

several	arms.	Treatments	are	therefore	tiered	based	on	a	hierarchy	(arms	left	to	

right)	according	to	the	strength	of	prognostic	effect	and	targets	of	agents	used	

(Professor	Tim	Maughan,	personal	communication).	The	trial	version	as	depicted	

below	will	be	discussed	in	the	context	of	this	thesis	(as	discussed	with	members	of	

FOCUS	4	team	and	recent	publications	(Richman	et	al.	2015).	
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Figure	1.7	Outline	of	the	MRC	FOCUS	4	clinical	trial.	

Patients	with	metastatic	CRC,	fit	for	first	line	chemotherapy	will	undergo	biomarker	analysis,	and	will	be	stratified	on	the	basis	of	the	molecular	profile	of	their	tumour	and	

treated	accordingly,	adapted	from	FOCUS	4	master	protocol.	The	MSI/MMR	deficient	arm	(dotted)	is	beyond	the	scope	of	this	thesis	and	is	for	reference	only.	
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1.5.2 Targeting	the	Mitogen-Activated	Protein	Kinase	Pathways	(MAPK/ERK)	
pathway	

	

Mutations	in	numerous	components	within	the	MAPK/ERK	signaling	cascade	

(previously	discussed	in	intestinal	homeostasis	in	section	1.2.3.4)	result	in	altered	

gene	expression	and	constitutive	activation	in	MAPK/ERK	signaling	activity,	and	have	

been	shown	to	be	involved	in	CRC	tumour	progression.	KRAS	mutations	are	found	in	

approximately	40%	of	CRCs	(Cancer	Genome	Atlas	Network	2012),	with	the	majority	

of	such	activating	mutations	occurring	at	codon	12.	MAPK	signaling	is	also	aberrantly	

activated	in	CRCs	following	oncogenic	mutations	in	BRAF,	and	lead	to	a	constitutive	

activation	of	BRAF	kinase	activation,	resulting	in	the	phosphorylation	and	activation	

of	MEK	1/2	(Santarpia	et	al.	2012)	and	therefore	sustained	MAPK	activity.	BRAF	

mutations	are	found	in	approximately	8-12%	of	CRCs,	and	occur	mostly	at	the	V600	

domain	whereby	a	single	amino	acid	is	substituted	to	glutamic	acid	(V600E),	

resulting	in	a	constitutive	kinase	activity	(Corcoran	2015).	Importantly,	KRAS	and	

BRAF	activating	mutations	are	mutually	exclusive,	and	thus	act	as	key	negative	

predictors	for	response	against	monoclonal	antibodies	against	EGFR,	such	as	

cetuximab.	Therapies	that	target	the	MAPK	pathway	have	therefore	been	generated	

in	a	strategy	to	target	RAS	and	RAF	protein,	and	more	recently,	MEK	as	a	

downstream	target	of	both.		

	

At	the	receptor	tyrosine	kinase	level,	the	MAPK	ERK	pathway	can	be	activated	by	

EGFR	activity,	and	aberrantly	activated	by	EGFR	gene	overexpression,	amplification	

as	a	result	of	activating	mutations	as	observed	in	CRCs	(Santarpia	et	al.	2012;	Burotto	

et	al.	2015).	Monoclonal	antibodies	(mAbs)	which	have	been	directed	against	the	

extracellular	domain	of	EGFR	have	been	developed,	and	have	shown	effectiveness	in	

CRC	with	amplification	of	EGFR-mediated	signalling.	Panitumumab	is	a	mAb	

developed	for	use	in	metastatic	CRC	and	has	an	overall		overall	8%	response	rate,	

with	improved	toxicities	compared	to	mAbs	such	as	cetuximab	(Roberts	and	Der	

2007;	Gibson	et	al.	2006).	In	addition	to	EGFR	inhibition,	selective	BRAF	inhibitors	

have	been	developed,	such	as	vemurafenib	and	Dabrafenib	and	have	proved	to	yield	
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high	response	rates	in	BRAF-mutant	melanoma	patients	(Ahronian	et	al.	2015).	

However,	pre-clinical	studies	have	reported	that	CRC	patients	harbouring	the	same	

mutation	do	not	necessarily	respond	to	direct	inhibition	of	BRAF,	indicating	that	this	

strategy	fails	to	sufficiently	inhibit	MAPK	signaling.	Studies	have	suggested	that	

negative	feedback	loops,	driven	by	EGFR-mediated	reactivation,	compensate	for	RAF	

inhibition	in	BRAF-	mutant	CRC	cells,	resulting	in	feedback	reactivation	of	MAPK	

signaling	(Corcoran	et	al.	2012;	Prahallad	et	al.	2012).	Some	evidence	has	also	

suggested	that	BRAF	mutant	CRCs	express	high	levels	of	total	EGFR	compared	to	

melanomas	bearing	the	same	mutation,	suggesting	that	EGFR-dependent	resistance	

would	be	more	prominent	within	BRAF-mutant	CRCs	(Corcoran	2015;	Corcoran	et	al.	

2012).	Furthermore,	inhibition	of	downstream	targets	such	as	MEK1/2	have	been	

shown	suppress	activation	of	ERK	and	thus	improve	overall	targeted	inhibition	of	the	

MAPK	pathway,	inducing	an	improved	outcome	in	numerous	xenograft	models	of	

pancreas,	breast	and	colon,	(Roberts	and	Der	2007;	Davies	et	al.	2007).	However,	

targeting	downstream	KRAS	or	BRAF	activity	using	MEK1/2	inhibitors	in	colorectal	

cancer	cells	has	highlighted	some	instances	of	acquired	resistance	to	therapy,	in	

which	KRAS	or	BRAF	activity	are	amplified	as	a	result	of	treatment	(Little	et	al.	2014).		

	

In	order	to	suppress	feedback	reactivation	of	MAPK	signaling	cascade	and	overcome	

acquired	resistance,	it	has	been	hypothesized	that	sustained	inhibition	of	a	

combination	of	components	within	the	pathway	could	be	an	alternative	approach	to	

therapy.	Combinations	of	RAF/MEK	or	EGFR/RAF	inhibition	have	thus	been	

introduced	in	clinical	trials	and	have	recently	showing	some	response	rates	

(Corcoran	et	al.	2015),	with	newer	trials	introducing	triple	combination	therapy	

against	EGFR,	RAF	and	MEK	.	Within	the	FOCUS	4	clinical	trial	a	treatment	regimen	of	

an	anti	EGFR	antibody	(Panitumumab),	alongside	BRAF	inhibitor	(Dabrafenib)	will	be	

tested	for	efficacy	and	progression	free	survival	with	and	without	a	MEK	1/2	

inhibitor	(Trametinib)	in	patients	harboring	BRAF	V600E	mutations	(BRAF	mutation	

arm).		
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1.5.3 Phosphoinositide	3-kinase	(PI3K	pathway)	

	

Deregulation	of	the	numerous	components	within	the	PI3K	cascade	is	associated	

with	many	malignancies,	and	further	findings	in	the	literature	support	the	

involvement	of	aberrant	PI3K	signalling	in	tumour	progression	(Samuels	and	

Velculescu	2004;	Engelman	2009a).	The	PIK3CA	gene	encodes	the	p110α	catalytic	

subunit	of	PI3K,	and	mutations	occur	at	a	frequency	of	approximately	15%	of	CRCs	

(Cancer	Genome	Atlas	Network	2012).	Further	studies	have	identified	that	80%	of	

mutations	within	PIK3CA	are	frequently	found	within	conserved	hotspots	in	the	

helical	(exon	9)	and	kinase	(exon	20)	domain	of	the	protein,	resulting	in	a	

constitutive	activation	of	the	PI3K-AKT	pathway	that	regulates	proliferation,	

apoptosis	and	metabolism	(Samuels	et	al.	2004;	Samuels	and	Velculescu	2004).	

Further	studies	have	found	that	disruption	of	helical	or	kinase	domain	of	two	

colorectal	cancer	cell	lines	resulted	in	activation	of	the	AKT	pathway,	and	highlighted	

the	role	of	PIK3CA	in	attenuating	apoptotic	events	(Samuels	et	al.	2005).		

	

Currently,	compounds	that	directly	target	elements	of	PI3K	signalling	are	being	

introduced	in	clinical	trial.	BEZ235	(Novartis),	for	example,	is	a	dual	PI3K/	mTOR	

inhibitor	that	has	demonstrated	promising	results	in	tumour	xenografts	and	GEMMs	

(Maira	et	al.	2008;	Raja	et	al.	2015)	.	Given	the	complex	network	involved	for	PI3K	

signalling,	it	is	worth	noting	that	the	complex	landscape	of	mutations	in	CRC	could	

provide	a	mechanism	of	resistance	against	PI3K	targeted	therapies,	whereby	

mutations	or	amplifications	in	downstream	or	linked	pathway	components	could	

induce	compensatory	effects	of	inhibition	(Liu	et	al.	2009).	Emerging	data	from	

retrospective	studies	have	thus	far	shown	beneficial	effects	of	aspirin	administration	

in	patients	harbouring	mutations	in	exon	9	and	20	of	PIK3CA,	improving	overall	

mortality	compared	to	placebo	(Liao	et	al.	2012).	In	vitro	studies	have	somewhat	

confirmed	that	PIK3CA	mutations	play	a	role	in	aspirin	sensitivity;	a	recent	study	

demonstrated	that	aspirin	activity	was	exacerbated	in	CRC	cell	lines	with	PIK3CA	

mutations	(Zumwalt	et	al.	2017)	The	precise	mechanisms	involved	are	thus	far	

unknown,	and	are	therefore	under	exploration	in	the	FOCUS	4	clinical	trial,	whereby	
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PIK3CA	mutant	patients	will	receive	aspirin	following	standard	of	care	treatment	

(Figure	1.7).			

1.5.4 Agents	targeting	the	DNA	damage	response	pathway	

	

The	DNA	damage	response	(DDR)	consists	of	a	plethora	of	complex	signalling	events	

which	facilitate	transient	cell	cycle	arrest,	DNA	repair	or	apoptosis,	in	order	to	

maintain	the	genomic	integrity	of	cells		(Khalil	et	al.	2012).	

	

Ataxia-telangiectasia	mutated	(ATM)	and	ataxia–telangiectasia	and	Rad3	related	

(ATR)	are	central	kinases	that	are	activated	as	a	result	of	replicative	stress	induced	

by	double	strand	breaks	in	DNA	or	stalled	replications	forks.	Upon	activation	of	DNA	

damage,	ATM	directly	stabilises	the	tumour	suppressor	p53,	or	indirectly	via	the	

downstream	mediator	checkpoint	kinase	2	(Chk2).	As	a	result	of	p53	activation,	the	

gene	expression	of	cell	cycle	checkpoint	activators,	such	as	p21,	or	genes	involved	in	

apoptosis	are	induced.	This	ultimately	initiates	G1/S	phases	of	the	cell	cycle	

checkpoint	to	initiate	cell	cycle	arrest,	DNA	repair	and	henceforth	cell	survival	

(Weber	and	Ryan	2015a).	ATR	monitors	replication	fork	progression	and	is	a	principal	

component	of	the	G2/M	cell	cycle.	ATR	mediates	downstream	effects	via	checkpoint	

kinase	1	(Chk1),	which	subsequently	facilitates	the	degradation	of	Cdc25c,	and	

activation	of	Wee1	kinase	activity.	As	a	result,	the	phosphorylation	and	inactivation	

of	the	Cdk2-cyclin	B	complex	results	in	cell-cycle	arrest,	preventing	entry	into	

mitosis.	This	mechanism	enables	the	suppression	of	DNA	replication	progression,	

allowing	time	to	identify	the	source	and	resolve	replicative	stress	(Matheson	et	al.	

2016).		

	

The	deregulation	of	the	G1	checkpoint	is	a	characteristic	of	many	cancer	types,	and	

ultimately	impairs	DNA	damage	repair	prior	to	replication,	resulting	in	the	

accumulation	of	mutations	during	DNA	synthesis.	However,	the	G2/M	checkpoint	is	

retained	in	cancer	cells.	Damage	present	at	G2/M	leads	to	cell	cycle	arrest	such	that	

cancer	cells	are	able	to	repair	DNA	defects	that	would	otherwise	lead	to	catastrophic	

changes	that	drive	apoptosis	(Khalil	et	al.	2012).	Theoretically,	the	selective	ablation	
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of	tumour	cells	can	be	achieved	by	G2/M	checkpoint	inhibition,	since	normal	cells	

with	functional	checkpoints	would	be	unaffected.		The	abrogation	of	the	G2/M	

checkpoint	has	therefore	been	exploited	as	a	potential	therapeutic	option	to	target	

tumour	cells	carrying	specific	defects	in	DNA	repair	or	damage,	driving	cells	to	

undergo	mitosis,	and	essentially	cell	death	by	mitotic	catastrophe	(Matheson	et	al.	

2016).	

	

Pre-clinical	studies	have	shown	promise	in	targeting	components	of	the	DDR	

pathway	that	would	induce	cell	death	selectively	in	tumour	cells.	Wee1	is	expressed	

in	many	tumour	types,	including	colorectal	cancer,	with	a	recent	study	identifying	

Wee1	expression	in	the	nuclei	of	89%	patient	histological	samples	(Egeland	et	al.	

2016),	and	current	studies	underway	to	establish	clinical	significance.	In	vitro	studies	

have	demonstrated	the	efficacy	of	a	potent	and	selective	Wee1	inhibitor,	MK-1775	

in	inducing	DNA	damage	in	G2/M	and	S-phase	cells	(Guertin	et	al.	2013),	as	well	as	

enhancing	cytotoxic	effects	in	colon	cancer	cell	lines	treated	with	a	standard	of	care	

treatment,	5-FU.		A	similar	therapeutic	strategy	is	targeting	ATR;	cancers	with	pre-

existing	ATM	loss	would	theoretically	respond	to	ATR	inhibition	as	both	cell	cycle	

checkpoints	would	be	abrogated,	impacting	downstream	signalling	pathways	such	as	

checkpoint	kinases,	and	lead	to	cell	death.		

	

Many	studies	have	revealed	that	inhibition	of	ATR	increases	the	sensitivity	of	cancer	

cells	to	replication	stress,	thus	inducing	cell	death	and	inhibiting	tumour	growth.	A	

compound	developed	by	Aztrazeneca,	AZD6738,	an	analogue	of	AZ20,	with	

improved	solubility,	has	been	demonstrated	to	induce	substantial	effects	in	vivo	

(Weber	and	Ryan	2015b)	whereby	established	human	LoVo	colorectal	

adenocarcinoma	xenografts	dosed	with	ATR	inhibitor	showed	a	substantial	reduction	

in	tumour	volume	(Foote	et	al.	2013).		Within	the	FOCUS	4	clinical	trial,	targeting	the	

DDR	pathway	will	be	an	approach	within	two	treatment	arms.	Firstly,	patients	

harbouring	ATM	loss,	as	established	from	immunohistochemistry	(IHC)	will	be	

treated	with	AZD6738	(ATR	inhibitor).	Wee1	inhibitors	will	be	administered	to	

patients	harbouring	KRAS/p53	mutations	to	further	establish	links	between	Wee1	

inhibitions	as	a	therapeutic	strategy	for	RAS	mutant	patients	(Figure	1.8).	Within	the	



	 33	

FOCUS	4	trial,	it	is	hypothesised	that	treatment	with	Wee1	inhibitor	will	induce	

synthetic	lethality	in	RAS/p53	mutant	tumours	due	to	the	defective	G1	checkpoint	in	

cells,	and	increased	replication	stress	(FOCUS4-C	Protocol,	2017).	p53	is	a	key	

regulator	of	the	G1	checkpoint	and	thus	p53	deficient	cells	are	more	likely	to	be	

susceptible	to	treatment	targeting	the	G2	checkpoint.	The	rationale	for	targeting	

mutant	RAS	is	also	based	on	studies	which	have	demonstrated	the	role	of	Ras	in	

mitotic	progression,	that	could	be	exploited	for	synthetic	lethality	as	a	therapeutic	

treatment	(Luo	et	al.	2009;	FOCUS4-C	2017)	.	
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Figure	1.8	Schematic	of	DNA	damage	response	pathway		

	Representation	of	DNA	damage	response	in	normal,	tumour	cells,	and	as	a	therapeutic	strategy	to	induce	synthetic	lethality.	
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1.5.5 Tumour	heterogeneity	and	patient	stratification	for	treatment	

	

Despite	extensive	therapeutic	strategies	implemented	to	target	tumour	

development,	a	major	reason	for	a	lack	of	response	in	drug	trials	is	as	a	result	of	

inter-	and	intra-	patient	heterogeneity	de	novo	and	acquired	by	tumours.	CRC	overall	

is	a	very	heterogeneous	disease,	occurring	between	tumour	types	as	well	as	within	a	

tumour	mass.	Studies	by	the	Cancer	Genome	Atlas	Network,	for	example,	

successfully	performed	a	genome-scale	analysis	of	over	200	different	CRC	samples	

(Cancer	Genome	Atlas	Network	2012),	with	integrative	analysis	highlighting	markers	

for	more	aggressive	carcinomas.	Evidence	of	correlation	between	gene	expression	

signatures	and	treatments	effective	against	tumour	growth	are	slowly	mounting.	For	

example,	KRAS-mutant	CRCs	have	been	shown	to	have	limited	responses	to	EGFR-

targeting	antibodies,	due	to	downstream	signalling	with	limits	the	effects	of	EGFR	

inhibition	(Linardou	et	al.	2008).	This	has	been	further	highlighted	in	a	consortium	of	

patient-derived	CRC	xenografts	(Julien	et	al.	2012a).	Studies	of	various	molecular	

subtypes	in	vitro	have	been	associated	with	differential	responses	to	

chemotherapeutics	(Sadanandam	et	al.	2013).		

	

The	recognition	of	intra-tumour	heterogeneity	as	a	hallmark	of	CRC	has	resulted	in	a	

paradigm	shift	in	clinical	implications,	with	growing	emphasis	upon	stratifying	

patients	according	to	the	molecular	signature	of	a	tumour,	that	ultimately	defines	

and	appropriate	therapeutic	strategy	and	suitability	to	a	particular	anti-cancer	agent	

(Gervaz	et	al.	2004).	It	is	becoming	increasingly	evident	that	biomarkers	that	predict	

patient	response	to	treatment	will	be	required	for	drugs	to	go	into	late	stage	clinical	

trials	(Puig	et	al.	2013).	However,	genomic-focused	precision	oncology	has	also	been	

recognised	as	a	limited	platform	to	predict	the	outcomes	of	complex	biological	

signaling.	The	presence	or	absence	of	genetic	drivers	often	underestimates	the	

activity	of	corresponding	biological	pathways	(Daniela	et	al.,2017)	and	are	

potentially	unable	to	represent	signalling	feedback	controls,	cross-talk	with	other	

pathways,	as	well	as	tissue-dependent	differences.	Given	that	biomarkers	are	

present	within	a	dynamic	signalling	network,	a	more	comprehensive	approach	to	
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elucidate	mechanisms	are	required	(Alizadeh	et	al.,	2015).	Many	studies	

characterizing	the	genomic,	epigenomic,	proteomic	and	transcriptomic	profiles	of	

tumours	are	becoming	more	prevalent	in	the	literature.	Linking	different	model	

platforms	is	therefore	critical	to	ascertain	a	more	comprehensive	approach	to	

overcome	challenges	of	tumour	heterogeneity	(Daniela	et	al.,2017).	

	

1.6 Novel	targeted	therapies	for	colorectal	cancer	

1.6.1 Cancer	stem	cells	

	

Similarly	to	the	normal	colonic	epithelium,	colorectal	tumours	are	composed	of	a	

heterogeneous	population	of	cells	which	exhibit	various	levels	of	differentiation	and	

self-renewal	capacities,	shown	at	both	histological	and	molecular	levels	(Vermeulen	

et	al.	2008).	The	cancer	stem	cell	(CSC)	hypothesis	maintains	that,	similar	to	tissue-

specific	stem	cells	that	regulate	normal	tissue	homeostasis,	a	sub-population	of	

clonogenic	cancer	cells	with	stem	cell-like	characteristics	are	capable	of	self-renewal	

and	multi-lineage	differentiation,	enabling	tumour	propagation	and	expansion.	An	

increasing	body	of	evidence	supports	the	CSC	hypothesis,	following	observations	

that	only	a	sub-population	of	genetically	identical	cancer	cells	(termed	tumour-

initiating	cells)	have	the	capacity	to	form	tumours	when	transplanted	into	immune	

deficient	mice	(O’Brien	et	al.	2007),	implying	that	not	all	cell	types	are	able	to	

regenerate	another	tumour	bulk.	Considerable	efforts	to	experimentally	identify	CSC	

populations	have	gained	momentum	in	the	literature.		

	

One	of	the	most	prominent	candidates	as	a	colorectal	cancer	stem	cell	marker	is	

CD133.	CD133+	cells	were	firstly	shown	to	enrich	for	tumour-initiating	cells	in	

comparison	to	CD133-	cells	when	incorporated	into	a	mouse	transplantation	assay		

(O’Brien	et	al.	2007;	Lugli	et	al.	2010).	Vermeulen	et	al	suggested	that	CSCs	are	

characterised	by	multiple	markers	that	are	co-expressed	on	cells	with	the	tumour-

initiating	capacity.	Using	single	cell	cloning	experiments,	they	demonstrated	that	

1/16	CD133+	cells	had	the	capacity	to	produce	a	colony,	compared	to	1/250	CD133-	

negative	cells.	An	improved	colony	formation	capacity	was	found	when	cells	



	 37	

expressed	both	CD133	and	CD24,	suggesting	a	single	marker	does	not	necessarily	

represent	a	cancer	stem	cell	(Vermeulen	et	al.	2008).	Further	to	this,	dissociation	of	

CRC	tumour	samples	from	both	patient	and	established	xenograft	to	single	cell	

suspension	and	analysis	by	flow	cytometry	enabled	cell	sorting	determined	by	

specific	surface	markers.	It	was	shown	that	successful	engraftment	was	dependent	

on	a	population	of	cells	expressing	high	levels	of	CD44	and	epithelial	cell	adhesion	

molecule	(EpCAM).	Lgr5	and	CD24	have	since	been	identified	as	markers	expressed	

within	ISC,	which	were	overexpressed	in	colorectal	cancers		(Barker	et	al.	2007b;	

Vermeulen	et	al.	2008).	It	is	worth	noting	however	that	a	number	of	caveats	are	still	

raised	in	the	literature	when	using	such	experimentation	models.	Firstly,	dissociation	

and	culture	of	tumour	cells	in	itself	may	alter	cell	surface	marker	expression,	and	

must	therefore	be	interpreted	with	caution	as	a	representation	of	the	in	vivo	

situation	(Clevers	2011)	.	Furthermore,	xenotransplantation	assays,	despite	being	a	

current	gold	standard	for	cancer	stem	cell	identification,	is	not	necessarily	

pathophysiologically	relevant	to	tumour	growth.	Such	assays,	despite	being	carried	

out	in	vivo,	are	unlikely	to	wholly	represent	cells	due	to	an	alteration	in	their	

environment	and	potential	lack	in	appropriate	growth	factors.	Results	may	therefore	

be	an	artefact	of	enhanced	selection	of	a	subpopulation	of	cells	and	not	necessarily	a	

true	representation	of	a	CSC	population	(Visvader	and	Lindeman	2008).		

	

Taking	such	caveats	into	account,	and	given	the	lack	of	the	unequivocal	identity	of	

the	cell-of-origin	of	cancer	within	the	literature,	there	has	been	a	drive	in	recent	

years	to	further	apply	novel	techniques	to	expand	current	understanding	following	

identification	of	markers	(de	Sousa	et	al.	2011).	Conditional	transgenic	techniques	in	

mice	have	enabled	specific	deletion	in	stem	cells,	such	as	APC	deletion	within	Lgr5+	

of	CD133+	stem	cells	in	the	intestine,	which	enabled	Wnt	pathway	activation.	This	in	

turn	enhanced	intestinal	transformation	and	tumour	propagation,	which	was	not	

mirrored	by	the	same	deletion	in	progenitor	or	differentiated	cells	(Barker	et	al.	

2009).	Moreover,	using	fluorescent	‘confetti’	reporter	alleles	for	lineage	tracing	in	

mouse	models	of	tumourigenesis,	it	has	been	demonstrated	that	Lgr5+	cells	marked	

a	subpopulation	of	intestinal	adenoma	cells	capable	of	propagating	adenomas	
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composed	of	cells	organised	in	a	hierarchy,	containing	Lgr5+	positive	cells	as	well	as	

different	cell	types	(Snippert	et	al.	2014).		

	

Under	the	assumption	that	a	population	of	slowly	dividing	CSCs	maintains	tumour	

growth,	from	a	clinical	perspective,	successful	ablation	of	a	tumour	would	require	

the	removal	of	this	cell	population,	as	depicted	in	Figure	1.9.	Chemotherapeutic	

agents	that	target	rapidly	dividing	cells,	in	theory,	are	therefore	more	likely	to	induce	

cytotoxic	effects	upon	bulk	tumour	cells,	enabling	slowly	dividing	CSCs	to	repopulate	

the	tumour	and	confer	relapse	potential.	Studies	have	identified	a	correlation	

between	recurrent	colorectal	tumours	and	a	high	level	of	stem	cell	marker	

expression	(Merlos-Suárez	et	al.	2011).	CSC-mediated	resistance	has	also	been	

increasingly	evident	in	the	literature,	with	many	studies	identifying	CSC	specific	

resistance	mechanisms	such	as	DNA	damage	repair	and	acquisition	of	drug	

transporters	to	efflux	a	cytotoxic	agent	from	the	cell	(Visvader	and	Lindeman	2008).		

	

Targeting	CSCs	is	therefore	becoming	an	attractive	target	for	treatment,	however,	it	

presents	difficulties:	markers	that	exclusively	identify	CSCs	remain	to	be	ascertained,	

and	their	overlap	with	ISC	markers	could	present	as	damage	to	normal	tissue			

(Zeilstra	et	al.	2008).	However,	the	very	fact	that	ISC	and	CSCs	from	the	same	tissue	

of	origin	are	highly	interlinked	in	terms	of	molecular	signals	provides	prospective	

targets	for	therapy.	Pathways	that	maintain	ISC	populations,	such	as	the	Wnt	

signalling	cascade,	are	frequently	activated	in	CSCs	originating	from	the	same	tissue,	

and	Wnt	activity	has	been	shown	to	define	colonic	CSCs	in	vitro	(Vermeulen	et	al.	

2010).	Hence,	alteration	of	Wnt	signalling	dynamics	is	an	attractive	therapeutic	

target	to	eliminate	a	prospective	CSC	population	in	CRC.	
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Figure	1.9	The	Cancer	stem	cell	hypothesis	

Targeting	Cancer	stem	cells	(CSCs)	is	becoming	an	attractive	therapeutic	strategy.	Cancer	stem	cells	

could	potentially	repopulate	a	tumour,	therefore	targeting	cancer	stem	cells	could	ablate	tumour	

cells.		
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1.6.2 Targeting	the	Wnt	signalling	pathway	as	a	therapeutic	strategy	for	CRC	

	

Aberrant	Wnt	signalling	is	strongly	associated	with	both	sporadic	and	hereditary	

forms	of	CRC	initiation	and	development.	Wnt	signalling	is	best	regarded	as	a	whole	

network	as	opposed	to	a	strict	linear	cascade,	and	due	to	such	complexity,	

alterations	within	multiple	components	of	the	pathway	can	modulate	Wnt	signalling.	

In	a	recent	study	whereby	a	sample	of	patient	tumours	were	sequenced,	it	was	

found	that	93%	contained	Wnt	signalling	pathway	alterations,	with	a	high	frequency	

harbouring	mutations	in	the	genes	APC	and	CTNNB1	(ß-catenin	encoding).	Despite	

the	subsequent	accumulation	of	multiple	mutations	that	further	drive	CRC	

progression,	Wnt	activation	maintenance	appears	to	be	a	continued	requirement	for	

cell	survival.	Inducible	short	hairpin	RNA	(shRNA)-	mediated	silencing	and	

reactivation	of	APC	within	transgenic	mice	was	recently	shown	to	reverse	intestinal	

hyperproliferation,	even	in	the	presence	of	KRAS	and	p53	mutations,	suggesting	that	

APC	loss	has	a	role	in	tumour	maintenance	(Dow	et	al.	2015;	de	Sousa	and	

Vermeulen	2016).		

	

Furthermore,	the	role	of	Wnt	signalling	and	maintenance	of	CSCs	in	the	intestine	is	

becoming	more	apparent	in	the	literature,	with	a	growing	number	of	studies	

supporting	the	notion	that	CRC	cells	with	stem-like	features	are	characterised	by	

high	Wnt	activity	(de	Sousa	and	Vermeulen	2016).	Using	a	Wnt	reporter	construct	in	

human	CRC	cell	lines,	Vermeulen	et	al.	demonstrated	that	Wnt	signalling	activity	not	

only	marks	a	hierarchical	subset	of	colon	cancer	cells	with	stem-like	characteristics,	

but	is	a	target	pathway	for	further	modulation	by	secreted	factors	within	the	

microenvironment,	suggesting	that	CSCs	retain	some	levels	of	plasticity	(Vermeulen	

et	al.	2010;	de	Sousa	and	Vermeulen	2016).		

	

Inhibition	of	the	Wnt	signalling	pathway	has	therefore	been	postulated	as	a	

prospective	therapeutic	strategy.		The	diversity	of	the	Wnt	pathway	mutation	
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spectrum	means	that	aberrant	Wnt	activation	is	not	necessarily	confined	to	a	single	

mutation,	making	it	difficult	to	bypass	multiple	components	of	the	pathway	that	can	

compensate	for	inhibitory	effects.	Although	mutations	may	be	distinct,	they	

ultimately	lead	to	ß-catenin	led	transcription	of	key	Wnt	related	genes	(de	Sousa	and	

Vermeulen	2016)	and	thus	intervention	can	occur	at	multiple	levels.		

	

Efforts	have	therefore	been	made	in	recent	years	to	target	Wnt	signalling	at	the	

various	levels	within	the	pathway;	from	the	Wnt	ligand,	to	downstream	proteins	that	

influence	Wnt-related	gene	expression	(Novellasdemunt	et	al.	2015).	One	such	class	

of	components	that	have	shown	promise	as	a	valid	inhibitor	of	the	Wnt	signalling	

cascade	are	inhibitors	of	tankyrases	1	(TNKS1)	and/or	TNKS2	activity,	which	have	

been	shown	modulate	the	concentration-limiting	component	of	the	ß-catenin	

destruction	complex,	Axin.	The	TNKS	inhibitor	XAV939,	originally	reported	by	Huang	

et	al,	was	shown	to	inhibit	ß-catenin	mediated	transcription	(Huang	et	al.	2009)	and	

has	been	further	shown	to	promote	Axin	stability,	inhibiting	Wnt	signalling	in	a	ß-

catenin	dependent	manner	in	APC-mutant	CRC	cell	lines	(Wu	et	al.	2016).	Reduced	

growth	is	accompanied	by	reduced	stemness	and	induced	differentiation,	further	

highlighting	the	importance	of	Wnt	signalling	in	CSCs.		Multiple	analogues	of	

tankyrase	inhibitors	have	since	been	reported	in	the	literature;	JW55,	HW67,	JW64,	

G007-LK	and	G244-LM	and	have	reported	to	reduce	the	growth	of	APC	mutant	CRC	

tissue	in	xenograft	models	(Waaler	et	al.,	2012;	Lau	et	al.	2013).		

	

Given	that	the	Wnt	signalling	cascade	has	a	critical	role	in	homeostasis	of	multiple	

organ	systems,	not	limited	to	the	intestine,	side	effects	may	be	anticipated.	

Tankyrase	inhibitors	administered	to	mice	have	also	been	reported	to	induce	

epithelial	degeneration	and	inflammation;	however,	such	side	effects	were	

reversible,	highlighting	the	key	balance	of	Wnt	signalling	activity	(Zhong	et	al.	2015).	

Targeting	such	a	crucial	signalling	cascade	therefore	requires	the	identification	of	

context-specific	therapeutic	windows	that	ensure	minimal	side	effects	while	

maximising	on-target	activity.	Furthermore,	the	transition	of	such	compounds	to	the	

clinic,	relies	on	extensive	pre-clinical	studies	within	relevant	models	to	investigate	

the	effects.		
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1.7 Pre-clinical	models	of	CRC	for	translational	research	

1.7.1 In	vivo	models:	Mouse-	and	Patient	Derived	Xenografts	

	

Pre-clinical	studies	using	xenograft	models	have	successfully	overcome	some	

limitations	presented	by	cell	lines,	providing	an	approach	to	study	tumour	

development	and	interactions	with	surrounding	environment	in	vivo.	Immuno-

deficient	mice	that	are	injected	subcutaneously	with	culture-adapted	tumour	cell	

lines	successfully	generate	tumours	and	have	been	of	therapeutic	value.	However,	

studies	have	also	demonstrated	that	xenografts	rarely	exhibit	clinically	relevant	drug	

profiles	with	patients	with	pathologically	equivalent	tumour	and	hence	do	not	

correlate	with	Phase	II	clinical	trial	outcomes	(Voskoglou-nomikos	et	al.	2003).		

	

Patient	derived	tumour	xenografts	(PDTXs)	are	generated	by	the	implantation	of	

resected	human	tumour	material	into	immuno-compromised	mice,	and	have	proved	

to	show	clinical	relevance	to	primary	tumours.	A	recent	study	demonstrated	the	

potential	of	PDTXs	as	a	valid	preclinical	model	of	CRC,	as	patients	were	treated	

according	to	successful	drug	responses	of	their	xenograft	counterparts.	A	close	

correlation	was	found	between	drug	screens	on	mice	and	clinical	patient	outcome,	in	

terms	of	drug	resistance	and	sensitivity	(Hidalgo	et	al.	2011).	Furthermore,	PDTXs	

have	also	shown	promise	to	retain	tumour	heterogeneity	of	human	colorectal	cancer	

within	molecular	studies,	as	well	as	general	histopathological	features	(Julien	et	al.	

2012b).	The	translational	relevance	of	PDTX	models	have	recently	been	studied	in	

the	context	of	targeted	therapies,	whereby	a	comparison	between	molecular	data	

gathered	from	PDTX	models	and	those	previously	published	for	patient	tumours	in	

the	Cancer	Genome	Atlas	Study	showed	a	similar	trend	in	genomic	alteration	

frequencies	as	well	as	generating	responses	to	cetuximab	(EGFR	inhibitor)	

representative	of	clinical	data	from	patients	which	responses	observed	in	KRAS	wild	

type	models	only	(Nunes	et	al.	2015;	Bertotti	et	al.	2016).		
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Despite	emerging	evidence	that	PDTXs	have	the	potential	to	serve	as	relevant	modes	

that	more	closely	resemble	the	original	tumour	in	comparison	to	established	cell	

lines,	multiple	caveats	need	to	be	considered	(Siolas	and	Hannon	2013).		

	

Firstly,	on	a	practical	level,	establishment	of	PDTX	models	can	vary	from	one	tumour	

to	the	next,	with	variable	rates	of	engraftment,	ranging	from	a	latency	period	of	2	to	

12	months	until	a	tumour	is	established	(Siolas	and	Hannon	2013),	if	at	all,	which	

could	pose	a	problem	in	the	development	of	avatar	models	that	are	designed	to	

mimic	patient	responses.	Furthermore,	the	need	for	rigorous	preclinical	testing	

involves	a	high	number	of	mice	usage	and	associated	costs,	which	in	turn	limits	large	

scale	studies	such	as	multiple	drug	combinations.	Recent	attempts	have	been	made	

towards	moving	PDTX	models	towards	a	high-throughput	screening	platform.	Gao	et	

al	(2015)	reported	the	generation	of	1000	extensively	characterised	PDTX	models	

from	a	range	of	different	cancer	types	and	subsequently	showed	a	relevant	clinical	

translation,	performing	a	‘one	animal	per	model	treatment’	approach	(Gao	et	al.	

2015).	However,	given	that	the	genomic	landscape	is	more	representative	at	a	

population	level	as	opposed	to	a	personalized	medicine	setting,	this	approach	has	

limitations	in	sufficiently	representing	individual	tumour	heterogeneity	(Gao	et	al.	

2015).		

	

As	well	as	logistical	problems,	the	host	mice	need	to	be	immunocompromised	to	

circumvent	xenograft	rejection,	resulting	in	a	loss	of	interaction	between	tumour	

and	immunological	component.	Not	only	does	this	hamper	examining	the	stromal	

effects	upon	a	given	tumour	interactions	(Sachs	and	Clevers	2014),	but	also	excludes	

assessment	of	immunotherapeutic	agents	on	a	given	PDTX	model.	In	terms	of	high	

throughput	screening,	despite	the	relevance	of	PDTX	to	patient	tumours,	such	

models	are	not	yet	able	to	replace	pre	clinical	data	from	in	vitro	studies	(Sachs	and	

Clevers	2014).	Alternative	strategies	would	therefore	need	to	be	explored	to	relieve	

experimental	burden,	such	as	the	use	of	in	vitro	models	to	carry	out	large	scale	

pharmacogenomics	screens	(Byrne	et	al.	2017).		

	



	 44	

1.7.2 2D	Culture	of	primary	tumour	material	

	

The	culture	of	primary	material	from	the	large	intestine	has	proved	challenging	due	

to	the	finite	lifespan	of	colonic	epithelial	cells;	cell	viability	is	often	compromised	as	

isolated	primary	cells	frequently	undergo	apoptosis	as	a	result	of	separation	from	

respective	connective	tissue	and	transfer	to	plastic	(Hofmann	et	al.	2007).	Studies	

have	shown	that	growth	of	primary	cells	from	intact	crypts	and	grown	on	

extracellular-matrix	coated	dishes	is	limited	to	24	hours	in	culture	(Wilhelm	et	al.	

2012).	An	approach	which	has	been	favoured	is	the	short	term	culture	of	tumour	

sections,	such	as	those	described	by	Centenera	et	al.	2012,	showing	the	ex	vivo	

culture	of	human	primary	prostate	tissue	which	can	be	implemented	into	short	term	

assessments	of	drug	sensitivities	(Centenera	et	al.	2012).		However,	primary	2D	

cultures	ultimately	fail	to	accurately	resemble	tissue-specific	features	such	as	cell	

differentiation,	gene	expression	and	cell-to-cell	contact	that	result	in	a	limited	life	

span.		

	

Some	recent	approaches	have	investigated	the	isolation	of	stem-like	cells	from	

primary	tissues,	whereby	cultures	were	propagated	from	primary	tumour	material	in	

suspension,	and	then	transferred	to	an	extracellular	matrix	substitute	(Matrigel).	

Only	in	the	presence	of	matrigel	were	the	cells	able	to	differentiate	(Ashley	et	al.	

2014).	However,	despite	positively	expressing	markers	relevant	to	CRCs,	a	large	

proportion	of	isolated	cells	were	necrotic,	containing	a	number	of	cystic	structures	

that	were	unviable	after	extensive	expansion.		Continuous	cultures	within	these	

systems	are	therefore	yet	to	show	suitability	towards	long-term	studies.	(Ashley	et	

al.	2014).		

1.7.3 Generation	and	culture	of	cell	lines	in	2D	and	3D		

	

The	applications	of	cell-based	assays	using	2D	immortalised	clonal	cell	lines	have	

been	a	mainstay	of	biological	investigation	of	many	cancers,	including	CRC.	

Immortalised	2D	cell	lines	are	traditionally	grown	in	a	monolayer	of	homogeneous	

cells,	whereby	mainly	proliferating	cells	stretch	to	adhere	to	a	flat	surface.	Overall,	
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such	cultures	are	relatively	easy	to	propagate	and	maintain	in	culture.	Furthermore,	

the	array	of	cancer	cell	lines	available	not	only	constitutes	a	resource	that	is	useful	to	

both	delineate	molecular	mechanisms	involved	in	tumourigenesis	and	drug	

screening,	but	have	also	shown	partial	representation	of	genetic	backgrounds	of	

primary	tissue	enabling	screening	on	multiple	cell	types	(Mouradov	et	al.	2014).	Next	

generation	sequencing	methods	have	enabled	extensive	genomic,	epigenetic	and	

transcriptomic	characterisation	of	a	library	of	cancer	cell	lines,	thus	providing	a	

useful	resource	for	biological	and	therapeutic	readouts	(Garnett	and	Mcdermott	

2014).		

	

Nonetheless,	it	has	long	been	recognised	that	2D	cell	lines	are	unable	to	faithfully	

recapitulate	specific	aspects	of	cancer	biology	and	therefore	not	necessarily	a	fully	

relevant	model	system	for	CRC.	Of	the	10%	of	compounds	that	enter	clinical	

development	based	on	pre-clinical	studies	in	2D	cell	lines	and	subsequent	testing	in	

animals,	a	huge	contribution	of	drugs	fail	at	later	phases	and	this	is	largely	attributed	

to	pre-clinical	testing,	whereby	2D	cell	lines	do	not	reflect	clinical	efficacy	(Breslin	

and	O’Driscoll	2013;	Edmondson	et	al.	2014).	Findings	from	2D	culture	conditions	of	

cell	lines	therefore	have	a	limited	translation	to	expected	outcomes	in	vivo,	and	

could	not	only	generate	false	positive	results	that	generate	little	therapeutic	benefit	

for	patients	(Crockford	et	al.	2013)	but	also	miss	potential	promising	candidates	in	

drug	screenings.	

	

The	disparity	between	cell	lines	in	2D	and	counterpart	tumours	a	due	to	a	number	of	

factors.	Firstly,	the	monolayer	culture	of	clonal	cells	fails	to	represent	the	tumour	

environment,	such	that	oxygen	and	nutrients	perfuse	equally,	which	fails	to	capture	

cellular	reprogramming	typically	observed	within	subpopulations	of	tumour	cells	to	

enhance	an	either	hypoxic	or	aerobic	metabolic	profile	(Hanahan	and	Weinberg	

2011).	Morphologically,	cells	grown	in	this	way	are	also	unable	to	establish	cell-to-

cell	contacts,	and	thus	critical	cell	signalling	elements	of	a	tumour.	A	representation	

of	the	heterogeneous	nature	of	CRC	is	also	compromised	in	such	cultures.	The	

generation	of	cell	lines	from	solid	tumours	rarely	generates	a	high	yield	of	viable	cells	

as	they	often	fail	to	adapt	to	the	in	vitro	environment,	and	as	a	result	become	mostly	
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clonal,	and	potentially	lose	the	ability	to	differentiate	into	different	cell	types	(Sachs	

and	Clevers	2014;	Hongisto	et	al.	2013).		As	2D	cell	lines	only	represent	a	subtype	of	

cells,	this	would	result	in	some	bias	and	not	necessarily	a	full	representation	of	how	

the	tumour	bulk	would	respond	to	treatment.	A	large	number	of	cell	lines	would	

therefore	be	required	to	capture	the	genetic	diversity	of	a	single	tumour.		

	

In	order	to	translate	in	vitro	CRC	studies	towards	a	more	relevant	in	vivo	tumour	

situation,	attempts	to	transition	2D	cell	lines	to	a	3D	system	have	been	reported	in	

the	literature.	These	include	suspended	cell	aggregates	or	3D	spheroids	embedded	

within	a	matrix	such	as	laminin-rich	matrigel,	to	promote	relevant	cell	signalling	and	

tissue	architecture.		Such	structures	have	demonstrated	that	distinct	spheroid	

morphologies	are	cell	line	dependent.	A	study	by	Luca	et	al	demonstrated	that	

culturing	an	array	of	2D	CRC	cell	lines	influenced	morphology	of	spheroids,	that	did	

not	necessarily	correlate	with	migratory	or	proliferative	capacity	(Luca	et	al.	2013).	

Some	CRC	lines	have	been	shown	to	form	grape-like	clusters	in	culture,	whereas	

others	have	the	capacity	to	form	polarised	cells	surrounding	a	central	lumen	

representative	of	the	intestinal	in	vivo	architecture.	Such	structures	have	the	

capacity	to	differentiate	into	enterocyte,	enteroendocrine	and	goblet	cell	lineages	

expressing	limited	intestinal	differentiation	markers	such	as	Villin	and	stem	cell	

markers	such	as	CD44	(Yeung	et	al.	2010).	However,	given	that	only	a	subset	of	cell	

lines	can	form	such	structures,	there	are	limitations	as	to	how	many	different	

tumour	types	this	could	indeed	resemble.		

	

Interestingly,	an	overall	differential	response	between	drug	sensitivities	and	gene	

expression	of	the	same	lines	grown	in	2D	and	3D	have	been	reported	in	the	

literature	(Karlsson	et	al.	2012;	Luca	et	al.	2013).	For	both	drug	discovery,	and	

biomarker	driven	therapeutic	pre-clinical	studies,	2D	cell	lines	have	classically	been	

utilised	to	facilitate	high	throughput	drug	assays	due	to	their	ease	of	expansion	

maintenance	in	culture.	The	definitive	in	vitro	model	would	ideally	combine	features	

from	such	systems	to	fully	recapitulate	patient	tumours;	to	maintain	tissue	specific	

structure	whilst	maintaining	relevant	cell	signalling,	have	the	capacity	to	retain	
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several	cell	lineages	as	well	retaining	relevance	in	large	scale	studies	for	preclinical	

data	acquisition.		

1.8 Organoid	culture	as	a	pre-clinical	model	system	

1.8.1 	 Development	of	the	organoid	model	

	

Attempts	to	further	translate	in	vivo	biology	to	3D	in	vitro	culture	from	primary	

material	have	widely	been	reported	in	the	literature	over	a	number	of	decades,	

following	observations	that	2D	cell	lines	are	a	less	than	ideal	surrogate	to	study	

tissue-specific	systems.	The	use	of	floating	collagen	gels	and	hanging	drop	cell	

culture	methods	to	facilitate	3D	structure	formation,	to	name	a	few	examples,	have	

aimed	to	develop	models	more	representative	of	the	in	vivo	situation,	in	the	form	of	

general	‘organoid’	systems,	with	the	most	recent	advances	and	new	definitions	

within	the	field	discussed	here.		

	

An	organoid,	at	simplest,	is	defined	as	a	structure	resembling	the	organ	from	which	it	

is	derived.	More	specifically,	an	organoid	is	considered	as	a	structure	grown	in	3D,	

originating	from	stem	cells,	which	consist	of	organ-specific	cell	types	that	self-

organize	and	are	capable	of	continuous	expansion	in	vitro	(Simian	and	Bissell	2016;	

Clevers	2016).	The	earliest	attempts	at	culturing	intestinal	organoids	from	primary	

material	were	presented	by	Evans	et	al	(1992)	where	they	described	the	generation	

and	growth	of	3D	organoids	from	rat	intestinal	tissue	(Evans	et	al.	1992).	Despite	

providing	a	system	that	was	more	functionally	capable	of	resembling	the	intestine	

compared	to	immortalised	cell	lines,	the	transient	nature	of	the	Intestinal	stem	cells	

resulted	in	cultures	failing	to	survive	beyond	1	month.	The	stem-cell	containing	

organoid	culture	system	was	defined	in	a	landmark	study	by	Toshiro	Sato	and	Hans	

Clevers	(2009),	whereby	a	robust	methodology	was	revealed	to	develop	organoids	

that	not	only	recapitulated	murine	intestinal	crypt	physiology,	but	promoted	the	

successful	expansion	of	a	stem	cell	compartment,	including	Lgr5+	stem	cells,	

propagating	their	renewal	and	long	term	culture	(Sato	et	al.	2009).	Stem-cell	

containing	organoids	differ	hugely	from	their	equivalent	predecessors	cultured	from	

primary	material.	Firstly,	on	a	cellular	level,	they	are	composed	of	both	stem	cells,	
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derived	from	the	tissue	of	origin	that	facilitate	long	term	culture,	as	well	as	the	

capacity	to	differentiate	into	several	epithelial	lineages,	capable	of	recapitulating	

relevant	cell	signalling	(Yin	et	al.	2013).	Structurally,	stem-cell	containing	organoids	

contain	cells	in	an	organ-specific	architecture,	encompassing	physiological	

characteristics,	such	as	intestinal	organoids	that	contain	crypt-like	structures	

surrounding	a	central	‘lumen’with	appropriate	cell	polarity.	Such	spatial	organisation	

of	cell	surface	receptors	engaged	in	interactions	with	surrounding	cells	in	turn	

influence		signal	transduction	from	neighbouring	cells,	influencing	overall	cell	

behaviour	(Edmondson	et	al.	2014).		

	

The	sustainable	growth	of	such	structures	without	a	stroma	were	established	in	the	

form	of	a	3D	matrigel-based	laminin-rich	model	to	support	growth	of	intestinal	

crypts	or	FAC-sorted	Lgr5+	intestinal	epithelium	stem	cells,	and	intricate	growth	

conditions	to	mimic	the	environment	of	the	intestinal	epithelium	(Sato	et	al.	2009).	

The	manipulation	of	highly	conserved	signalling	pathways,	implicated	in	regulating	

the	hierarchy	of	intestinal	cell	renewal	in	the	intestine,	by	addition	of	relevant	

growth	factor	supplements	within	culture	media	was	found	to	be	critical	to	support	

organoid	propagation	and	proliferation.	The	control	of	the	Wnt	signalling,	a	key	

component	in	the	maintenance	of	crypt	proliferation	and	maintenance	of	the	

intestinal	stem	cell	niche	(Pinto	et	al.	2003;	Kuhnert	et	al.	2004)	was	found	to	be	

pivotal	in	maintaining	intestinal	organoid	self-renewal	(Sato	et	al.	2009;	Ootani	et	al.	

2009).	The	addition	of	R-spondin	within	growth	media	further	potentiated	the	

activation	of	the	Wnt	signalling	pathway	within	cells,	recapitulating	conditions	found	

within	the	intestinal	stem	cell	niche.	Wnt	signalling	activation	was	further	found	to	

be	critical	for	organoid	generation	and	proliferation	in	a	concentration-dependent	

manner	(de	Lau	et	al.	2011;	Sato	et	al.	2009).	The	inhibition	of	transforming	growth	

factor-	β	(TGF-β)	and	BMP	signalling,	previously	implicated	in	expansion	of	crypt	

numbers	(Haramis	et	al.	2004),	by	exogenous	addition	of	Noggin	in	media,	as	well	as	

the	inclusion	of	epidermal	growth	factor	(EGF)	for	proliferation	enhancement	were	

also	found	to	be	minimum	additional	components	required	to	sustain	long-term	

culture	of	crypts	(Sato	et	al.	2009).Further	studies	have	demonstrated	that	addition	

of	components	that	manipulate	Notch	signalling		can	specifically	induce	the	
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differentiation	of	intestinal	stem	cells	into	several	different	epithelial	cell	lineages,	

including	enterocytes	and	goblet	cells.	Subsequent	studies	have	identified	small	

molecules	to	manipulate	the	differentiation	capacity	and	lineages	of	intestinal	cells	

within	organoids,	further	emphasising	the	importance	of	the	organoid	environment	

for	sustained	growth	(Yin	et	al.	2013).	

	

These	conditions	were	further	adapted	to	culture	material	from	the	human	colon,	as	

well	as	colorectal	adenoma	and	adenocarcinoma	tissue	from	patient	biopsies	(Sato	

et	al.	2011a).	These	CRC	organoids	were	shown	to	grow	as	complex	irregular	

structures,	and	consisted	of	endocrine,	goblet	cells	and	highly	proliferative	cell	types	

(Sato	et	al.	2011a).	More	recent	studies	have	demonstrated	an	improved	genotypic	

resemblance	and	stability	within	organoids	which	are	thought	to	further	contribute	

to	represent	patient	populations	(Fujii	et	al.	2016a).	

	

Organoids	are	a	promising	model	to	further	study	aspects	of	both	normal	and	

tumour	biology	compared	to	previous	in	vitro	systems,	and	have	thus	far	

demonstrated	a	number	of	applications	from	different	tissues	such	as	liver,	

pancreas,	prostate	under	defined	culture	conditions	for	each	tissue.	An	advantage	of	

organoids	is	the	ability	to	produce	organoids	derived	from	patient	material,	either	

from	resected	surgical	tumours,	or	from	induced	pluripotent	stem	cells	(iPSCs)	

(Watson	et	al.	2014).	Overall,	the	utilities	of	such	a	culture	system	are	extensive;	

from	assessing	individual	cell	populations	and	interactions	implicated	within	tumour	

development,	to	their	capacity	to	be	utilised	for	large-scale	drug	screens.	

	

1.8.2 	 Translational	relevance	of	organoids	for	CRC	therapy;	analysis	of	2D	
lines	versus	3D	models	

	

Despite	the	advances	of	large	scale	in	vitro	assays	as	a	tool	to	assess	efficacies	of	

new	compounds	in	drug	discovery,	as	well	as	establishing	therapeutic	effects	of	

biomarker-driven	therapies	in	patients,	biologically	relevant	results	require	a	

platform	that	will	reflect	cell	responses	in	vivo	(Edmondson	et	al.	2014).	The	

advantages	of	3D	organoid	culture	in	terms	of	representative	tumour	heterogeneity,	
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spatial	cell	organisation,	and	retention	of	a	complement	of	stem	and	differentiated	

cell	types	to	facilitate	long	term	culture,	hold	promise	to	bridge	the	gap	between	

current	in	vitro	studies	and	in	vivo	data	for	oncological	drug	screens,	as	shown	in	

Figure	1.10.	However,	given	the	numerous	aspects	of	cell	biology	that	advanced	3D	

organoid	cultures	can	retain	in	comparison	to	preceding	2D	systems,	there	is	a	

requirement	for	suitable	techniques	that	are	capable	of	analysis	and	quantification	

of	relevant	features	within	complex	structures.		A	number	of	novel	methodologies,	

some	of	which	have	been	adapted	from	utility	in	2D	cell	lines,	have	become	more	

apparent	in	the	literature	to	facilitate	the	transition	of	organoids	to	a	more	high	

throughput	platform	(Li	et	al.	2015;	Di,	Klop,	Rogkoti,	Devedec,	Water	van	de,	et	al.	

2014;	Edmondson	et	al.	2014).		

	

	The	use	of	metabolic	assays	as	a	quantifiable	readout	of	drug-induced	effects	in	the	

form	of	fluorescent	or	luminescent	based	measurements	have	been	well	established	

for	2D	systems,	and	have	been	somewhat	adapted	further	for	utility	in	3D	cultures.		

Quantifiable	assays	such	as	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium	

bromide	(MTT)	staining,	whereby	MTT	is	converted	to	a	measurable	form	in	the	

presence	of	viable	cells	and	subsequently	quantified	by	absorbance	measurements,	

have	been	utilised	in	mouse	organoids	to	assess	drug-induced	toxicity	(Grabinger	et	

al.	2014).		However,	as	measurements	of	MTT	absorbance	relies	on	lysis	of	cells	in	

DMSO	to	solubilize	formazan	crystals,	an	additional	step	to	solubilise	matrigel	was	

required	to	facilitate	measurements.	Whilst	this	demonstrated	a	successful	

application	of	MTT	in	this	format,	such	adjustments	are	not	necessarily	compatible	

for	high	throughput	measurements	(Young	and	Reed	2016).	

	

Commercially	available	end	point	assays	have	also	been	utilised	to	test	drug	

responses	within	3D	systems,	such	as	the	luciferase	based	Cell-Titer	Glo	assay	

(Promega),	an	end-point	assay	that	quantifies	relative	ATP	levels	within	samples.	In	a	

recent	study,	this	assay	was	utilised	to	assess	the	effects	of	a	titration	of	a	panel	of	

83	compounds	upon	a	biobank	of	patient-derived	organoids	(Wetering	et	al.,	2015).	

Whilst	responses	were	relatively	reproducible,	assay	noise	was	observed	in	some	

individual	experiments,	most	likely	as	a	result	of	variability	in	organoid	numbers	and	



	 51	

sizes	between	and	across	assays.	Quantifiable	detection	of	compounds	with	subtler	

effects,	other	than	cytotoxicity,	was	also	found	to	be	more	challenging	in	terms	of	

generating	reproducible	readouts.	Such	studies	also	highlight	the	need	for	

standardised	protocols	for	the	effective	scale-up	of	organoids),	enabling	them	to	be	

generated	from	little	resected	patient	material	to	facilitate	a	rapid	transition	to	

reproducible,	robust	and	more	high	throughput	assay	formats.	Furthermore,	there	is	

a	need	to	determine	the	relevance	of	organoids	to	reflect	patient	responses.	

	

The	structural	organisation	and	cellular	composition	of	organoids,	whilst	improving	

biological	relevance	compared	to	2D	cell	lines,	introduces	many	challenges	for	their	

use	in	image	analysis	methods	to	facilitate	robust	and	sensitive	detection	

measurements(Edmondson	et	al.	2014).	Assessing	changes	in	cellular	morphology	

using	light	microscopy,	facilitates	basic	morphometric	measurements	such	as	overall	

number	of	structures	and	diameters,	at	multiple	points	in	culture,	is	frequently	

limited	to	one	plane	of	view,	restricting	quantifiable	parameters	(Grabinger	et	al.	

2014).	In	recent	years,	a	paradigm	shift	in	3D	tumour	models	has	pushed	

technologies	towards	more	sophisticated	phenotypic	screening	methods	compatible	

with	high	throughput	technology	(Li	et	al.	2016;	Sandercock	et	al.	2015),	

incorporating	appropriate	immunofluorescent	staining	protocols	for	confocal	

imaging,	as	well	as	analysis	software	capable	of	measuring	numerous	morphometric	

parameters	of	3D	structures,	to	further	capture	subtle	effects	of	drug-induced	

phenotypes	(Sandercock	et	al.	2015;	Di	et	al.	2014).			

	

The	structural	and	biological	complexity	of	3D	organoids	compared	to	preceding	in	

vitro	models	therefore	introduces	many	challenges	for	their	use	in	large-scale	

screens,	where	reproducible,	robust	and	sensitive	detection	methods	are	critical.	

Before	organoids	can	therefore	be	established	as	a	sufficient	model	system,	there	is	

a	need	to	explore	their	relevance	to	current	clinical	applications	as	well	as	novel	drug	

discovery.	
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Figure	1.10	2D	versus	3D	culture	from	normal,	adenoma	and	adenocarcinoma	cells.	

For	2D	cell	line	culture,	cells	often	undergo	many	changes	to	adapt	to	proliferating	on	plastic.	Growing	cells	in	the	3D	environment	that	is	more	physiologically	relevant	

enables	long	term	culture	of	normal,	adenoma	and	adenocarcinoma	cells	from	the	intestine.	Image	adapted	from	Sachs	and	Clevers	(2014).
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1.9 Project	aims	and	objectives	

	

The	understanding	of	complex	mutational	landscapes	that	confer	drug	sensitivity	is	

fundamental	to	identify	suitable	therapeutic	agents	for	CRC	patients.	However,	the	

identification	of	biomarker-driven	therapeutics	based	upon	genomic	analyses	of	a	

tumour	does	not	necessarily	correlate	with	an	inhibitory	effect	upon	tumour	growth,	

and	thus	lacks	predictive	power	in	the	clinic.	An	understanding	of	the	functionality	of	

genomic	alterations	and	their	influence	upon	treatment	responses	remains	limited	

due	to	a	lack	of	preclinical	models	that	can	fully	recapitulate	tumour	responses	to	

therapy.	The	need	for	such	a	model	system	is	therefore	imperative	to	understand	

mechanistic	effects	of	biomarker-driven	treatments	in	patients,	as	well	as	to	indicate	

potential	novel	targets	for	the	treatment	of	CRC.	Consequently,	the	overarching	aim	

of	this	thesis	is	to	assess	whether	patient	derived	CRC	organoids	are	suitable	models,	

capable	of	generating	functional	readouts	for	precision	oncology	as	well	as	the	drug	

discovery	pipeline.	To	address	this,	the	results	chapters	presented	herein	are	

comprised	of	three	distinct	aims.			

	

The	first	aim	of	this	thesis,	discussed	in	Chapter	3,	was	to	develop	and	optimise	

suitable	methodologies	to	facilitate	the	expansion	of	novel	CRC	patient-derived	

organoids,	representative	of	clinically	relevant	tumour	subtypes,	towards	a	

functional,	robust	and	reproducible	assay	system	that	could	be	exploited	for	

subsequent	studies.		

	

This	thesis	also	aimed	to	evaluate	the	efficacy	of	organoids	as	a	functional	readout	

for	biomarker-driven	therapies	in	the	context	of	a	clinical	trial	for	CRC,	to	explore		

their	potential	as	matched	models	of	patient	responses	to	therapy.	To	address	this,	

organoids	were	used	within	a	purely	“in	vitro	clinical	trial”	setting,	whereby	drug	

sensitivity	profiles	of	a	cohort	of	organoids	were	generated	to	mirror	compounds	

administered	to	patients	within	the	stratified	arms	of	the	FOCUS	4	clinical	trial.		
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The	final	key	objective	of	this	thesis	was	to	ascertain	the	role	of	organoids	as	a	

suitable	pre-clinical	model	system	within	the	drug	discovery	pipeline.	To	facilitate	

this,	novel	Wnt	signalling	inhibitors	(Merck	Serono)	were	utilised	to	evaluate	

treatment-specific	responses	of	organoids	and	potential	effects	on	prospective	CSC	

populations,	enhancing	the	premise	of	organoids	as	tools	to	study	effects	of	

therapeutic	agents	that	target	complex	signalling	networks.	
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2 Materials	and	Methods	

2.1 Processing	of	Primary	material	

2.1.1 Human	Tissue	

	

All	samples	from	our	full	patient	cohort	were	provided	by	the	Wales	Cancer	Bank	

(WCB,	University	Hospital	of	Wales)	with	informed	consent.	All	patient	derived	

material	was	treated	in	concordance	with	the	Human	Tissue	Act	(HTA),	and	any	

patient	derived	samples	provided	remain	anonymous.		All	samples	provided	from	

patient	material	were	assigned	a	number	(‘isolation	x’)	for	our	internal	records,	and	

could	be	traced	to	an	I.D	number	from	the	WCB.		Any	waste	material	generated	as	

part	of	the	isolation	process	was	disposed	of	in	compliance	with	the	HTA.		

2.1.2 Processing	of	human	material	

Following	surgical	resection,	a	sample	each	of	tumour	and	surrounding	healthy	

tissue	of	approximately	30mm
	
-150mm

	
in	diameter	of	the	colonic	epithelium	were	

obtained	and	stored	at	4°C	in	Hibernate	A	(Invitrogen)	prior	to	processing.	Samples	

were	stored	for	minimal	time,	typically	between	1	and	12	hours,	and	only	isolated	if	

stored	within	optimal	conditions	(i.e	stored	in	Hibernate	A	medium).	Isolation	of	

both	normal	crypts,	and	tumour	cell	fragments	were	performed	in	parallel.	In	some	

cases	within	our	subset,	a	‘methylene	blue’	stain	was	applied	to	our	samples	prior	to	

histopathological	inspection.		

2.1.2.1 Dissection	of	intestinal	epithelium	

Human	tissue	was	processed	as	described	by	Sato	et	al	(2011).	Briefly,	carcinoma	

samples	were	placed	within	storage	media	within	a	petri	dish	and	dissected	to	

remove	connective	tissue,	then	further	dissected	into	pieces	approximately	2mm	in	

diameter.	
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2.1.2.2 Enzymatic	digestion	and	chelation	

Following	dissection,	tumour	tissue	was	placed	in	respective	50ml	falcon	tubes	and	

subjected	to	multiple	washes	in	Phosphate	Buffered	Saline	(PBS,	Invitrogen)	at	room	

temperature	until	their	surrounding	suspension	solution	was	clear.	Following	

washes,	pieces	of	carcinoma	epithelium	were	incubated	in	enzyme	digestion	buffer	

(DMEM	containing	2.5%	Foetal	Bovine	Serum	(FBS),	1%	Penicillin/Streptomycin	

,125μg/ml	Dispase	(all	Invitrogen),1mg/ml		Collagenase	from	Clostridium	

histolyticum	(Sigma))at	37°C	for	30	minutes.	After	incubation,	enzyme	digestion	

buffer	was	removed,	and	tissue	was	triturated	in	PBS	at	room	temperature	to	

remove	fragments	of	cells.	Supernatants	generated	in	processing	both	normal	and	

carcinoma	tissue	were	collected	into	50ml	Falcon	tubes	coated	with	FBS.	The	process	

was	repeated	approximately	three	times	to	isolate	all	cell	fragments	from	tissue.	

	

2.1.2.3 Isolation	of	tumour	cells	

Following	trituration	and	isolation	of	cells,	supernatants	collected	intestinal	were	

centrifuged	at	4°C	for	5	minutes	at	800	RPM.		After	removal	of	supernatants,	the	

pellets	were	resuspended	in	basal	‘3+’	media	(Advanced	DMEM	F12	(Invitrogen)	with	

1%	GlutaMAX	(Invitrogen),	1%	HEPES	buffer	solution	(Invitrogen)	and	1%	Penicillin/	

Streptomycin)	and	then	filtered	(70	μm)	to	separate	cell	clusters.	Isolated	carcinoma	

fragments	from	colonic	epithelium	were	then	counted	and	resuspended	in	desired	

volume	of	growth	factor	reduced	Matrigel	(BD	Biosciences)	to	contain	approximately	

1000	fragments	per	50μl	of	Matrigel.	50μl	droplets	of	Matrigel	was	then	seeded	onto	

pre-incubated	24	well	plates	(Nunc)	and	then	incubated	at	37°C	to	allow	full	

polymerisation	

	

2.2 Tumour	organoid	culture	

2.2.1 Generation	of	3D	organoids	

Culture	conditions	previously	reported	by	Sato	et	al.,	(2011)were	applied	to	cell	

fragments	in	polymerized	matrigel.	A	previous	study	by	Sato	et	al.	(2009)	reportedly	

screened	multiple	growth	factors	and	hormones	to	determine	the	essential	

requirements	of	efficient	plating	of	murine-derived	organoids,	then	furthermore	for	
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human	colonic	organoids.	Organoids	required	various	growth	factors	to	enhance	

proliferation.	In	addition	to	3+	basal	media,		B27	(1X	,Invitrogen)	,	N2	(1X,	

Invitrogen),		N-acetylcysteine	(1mM,	Sigma)	were	added.	Advanced	Wnt3a	condition	

media	(40%)	secreted	from	LWnt3a	cells	was	found	to	be	a	necessary	requirement	to	

maintain	proliferation,	in	addition	to	conditioned	R-spondin	(10%).	A	panel	of	

growth	factors	including	Epidermal	Growth	Factor	(50ng/ml,Peprotech),	Noggin	

(100ng/ml,	Peprotech)	were	found	to	be	essential	for	maintenance	of	culture.	

Nicotinamide	(10mM,	Sigma)	was	also	used	to	maintain	expansion	in	culture.	2	small	

molecule	modulators	of	mitogen-activated	protein	kinases	,	A83-01	(0.5μM,	Tocris)	

and	SB202190	(10μM,	Sigma)	improved	expansion	of	crypts.	This	‘Full’	media	was	

added	to	organoids	derived	from	healthy	colonic	epithelium.	

For	the	propagation	of	carcinoma	organoids,	it	was	found	that	organoids	had	an	

enhanced	survival	rate	when	culture	in	two	different	media	types	(	Table	2.1);	

(i) 7+	Media:	3+	media	with	B27	(1X	,Invitrogen)	,	N2	(1X,	Invitrogen),		N-

acetylcysteine	(1mM,	Sigma)	and	Fungizone	were	added		

(ii) ‘Full’	Media,	as	described	as	above	

The	Rho-associated	protein	kinase	(ROCK)	inhibitor	Y-27632	(10	μM,	R&D)	was	

included	in	both	Full	and	7+	plus	media	conditions	for	the	first	5	days	in	culture,	and	

for	the	first	3	days	after	organoid	passage.		
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Table	2.1	Table	denoting	components	required	for	7+	and	Full	media	conditions.	

	Asterisk	(*)	denotes	components	that	are	withdrawn	from	media;	fungizone	was	applied	on	

organoids	between	0-6	weeks	following	culture	to	limit	infections.	Y-27632	ROCK	inhibitor	was	

applied	for	first	5	days	following	isolation.	Underlined	components	are	requirements	for	3+	basal	

media.	Further	details	are	included	in	the	Appendix.		

	

Component	 Target/	purpose	 3+	

Media	

7+	

Media	

Full	

Media	

ADV-DMEM/F12	 	 1X	 1X	 1X	

Penicillin/Streptocymcin		 	 100	

U/ml	

100	

U/ml	

100	U/ml	

HEPES	(1M)	 	 10mM	 10mM	 10mM	

GlutaMAX	(100X)	 	 2mM	 2mM	 2mM	

N2	(100X)	 	 	 1X	 1X	

B27	(50X)	 	 	 1X	 1X	

N-acetylcysteine	 Anti-oxidant	 	 1mM	 1mM	

Epidermal	Growth	Factor	

(EGF)	

Epidermal	Growth	

Factor	Receptor	

	 	 50ng/ml	

Mouse	recombinant	

Noggin	

TGF-ß	modulator	 	 	 100ng/ml	

A-83-01	 Alk4/5/7	inhibitor	 	 	 500µM	

SB202190	 P38/MAP	kinase	

inhibitor	

	 	 10µM	

Wnt3A	conditioned	

medium	

Wnt	signalling	

activator	

	 	 40%	(v/v)	

R-spondin	conditioned	

medium	

Wnt	signalling	

enhancing	

	 	 10%	(v/v)	

Fungizone*	 Anti-fungal	agent	 	 2µl/ml	 2µl/ml	

Y-27632*	 ROCK	inhibitor	 	 10µM	 10µM	
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2.2.2 Routine	organoid	culture	maintenance		

2.2.2.1 	Organoid	passage	

Organoids	were	passaged	as	whole	colonies,	at	a	split	ratio	between	1:2-1:8	

approximately	every	two	weeks,	or	as	required.	Culture	medium	was	removed	from	

wells	and	replaced	with	fresh	basal	medium.	Organoids	embedded	within	matrigel	

were	lifted	from	wells	in	media	and	centrifuged	at	40g	for	approximately	5	minutes.	

Organoids	were	triturated	(physically	sheared)	using	a	P200	pipette	tip,	and	washed	

in	fresh	media	to	remove	residual	matrigel.	Fragments	of	triturated	organoids	were	

then	resuspended	in	fresh	matrigel	as	previously	described.	

2.2.2.2 Freeze-down	of	organoids	

Frozen	stocks	of	organoids	were	generated	within	early	passages	(p4-p10),	

depending	on	abundance	of	material.	Organoids	were	passaged	as	previously	

described	(2.2.2.1)	and	cultured	for	3-4	days.	Media	was	then	lifted	from	each	well	in	

media	and	transferred	to	1ml	eppendorfs	and	centrifuged	at	40g	for	5	minutes.	

Organoids	within	matrigel	were	then	resuspended	in	Cell	Recovery	Solution	(life	

technologies)	and	transferred	to	cryovials	(Nunc)	at	a	final	volume	of	500	μl.	2-4	

wells	of	a	24	well	plate	typically	provided	sufficient	organoid	numbers	for	a	single	

cryovial.	Cryovials	were	then	placed	in	a	freezing	container	at	room	temperature	

prior	to	storage	within	a	-80°C	freezer.	For	recovery,	cryovials	were	quickly	warmed	

in	a	water	bath	at	37°C	and	once	thawed	were	resuspended	in	basal	media,	washed	

twice,	and	finally	resuspended	in	matrigel	and	plated	as	described	previously	(2.2.2).	

Organoids	used	in	this	study	showed	successful	recovery	from	frozen	after	18	

months	of	storage.	Banks	of	frozen	organoids	facilitated	experiments	that	could	be	

carried	out	within	approximately	10	passages	of	another.		

	

2.3 General	Organoid	analysis	techniques	

2.3.1 Immunohistochemistry	(IHC)	techniques	

	

Organoids	embedded	within	matrigel	were	fixed	in	10%	formalin	(Sigma)	overnight	

at	4°C.		Organoids	were	fixed	after	5-14	days	post	isolation/passage.		After	overnight	
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fixation,	organoids	were	washed	with	Phosphate	Buffered	Saline	(PBS,	Invitrogen)	

and	stored	in	PBS	until	processing.	For	processing,	pre-chilled	PBS	was	added	to	

wells	to	dissociate	matrigel	from	wells.	All	material	was	then	transferred	into	

eppendorf	tubes	and	gently	washed	in	PBS	to	remove	matrigel	fragments	from	

organoids.	Organoids	were	then	centrifuged	at	1000X	RPM	for	1	minute.	The	

remaining	suspension	was	removed	and	replaced	with	4%	(w/v)	low	melting	point	

agarose	(Sigma).	Fixed	organoids	were	resuspended	in	low	melting	point	agarose	

and	set	at	room	temperature.	Agarose	disks	embedded	with	organoids	were	stored	

in	70%	EtOH	prior	to	sectioning.	Organoid	sections	were	then	mounted	onto	slides	

prior	to	Hematoxylin	&	Eosin	(H&E)	staining.		

2.3.2 Whole-mount	Immunocytochemistry	

This	protocol	was	adapted	from	Lee	at	al	(2007).	Briefly,	organoids	were	seeded	

within	Matrigel	in	black,	optical-	bottomed,	96	well	Nunc™MicroWell™	plates.	9µl	of	

organoids	embedded	within	matrigel	was	dispensed	per	well	and	incubated	with	

Basal	7+	media	containing	10µM	ROCK	inhibitor.	Plates	were	then	incubated	for	

defined	durations	prior	to	fixation	by	4%	formalin	at	room	temperature	for	30	

minutes.		Wells	were	then	washed	with	PBS	containing	100mM	glycine	three	times	

for	10	minutes	at	room	temperature.	Following	washes,	an	overnight	blocking	step	

was	performed	by	adding	10%	horse	serum	in	Immunofluorescence	(IF)	buffer	(PBS	

containing	0.1%	Bovine	Serum	albumin,	0.2%	Triton	X-100,	0.05%	Tween	20)	to	

chosen	wells.	Primary	antibodies	(	Table	2.2)diluted	in	IF	buffer	were	then	applied	

overnight	at	4°C	prior	to	another	overnight	incubation	in	IF	buffer.		Secondary	

antibodies	diluted	in	IF	buffer	(Table	2.3)	were	then	exposed	to	wells	overnight,	prior	

to	washes	and	an	overnight	incubation	in	IF	buffer.	Secondary	antibodies	used	were	

Rabbit	IgG	AlexaFluor®	568	(Life	Technologies)	and	Mouse	AlexaFluor®	488	(Life	

Technologies),	both	at	a	dilution	of	1:500.	Hoechst	was	implemented	as	a	

counterstain	and	washed	with	PBS	prior	to	imaging.		
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Table	2.2	Outline	of	primary	antibodies	used	for	Immunofluorescence	(IF)	

Primary	

Antibody	

Marker	type	 Source	 Catalogue	

Number	

Dilution	 IgG	

Ki67	 Proliferation	 Millipore		 AB9260	 1/100	 Rabbit	

Caspase	3	 Apoptosis	 R&D	 AF385	 1/100	 Rabbit	

Beta-catenin	 Wnt	signaling	 BD		 610154	 1/250	 Mouse	

Cyclin	B1	 Proliferation	 Santa	Cruz	 SC-752	 1/50	 Rabbit	

Lgr5	 Intestinal	

stem	cell	

BD	 562733	 1/250	 Rat	

Cytokeratin	

20	

Differentiation	 Abcam	 AB76126	 1/100	 Rabbit	

	

	

Table	2.3	Outline	of	secondary	antibodies	used	for	Immunofluorescence	(IF)	

Secondary	antibody	 Source	 Catalogue	

Number	

Dilution	

Alexa	Fluor	488	

Phalloidin	

Thermo	Fisher		 A12379	 1:100	

AlexaFluor®	488	Goat	

anti	mouse	

Life	Technologies	 A11029	 1:500	

AlexaFluor®	568	Goat	

anti	rabbit	

Life	Technologies	 A11011	 1:500	

	

2.3.3 Confocal	Imaging	and	quantitative	analysis	

Images	were	acquired	within	96	optical	(clear	bottomed)	black	plates	using	a	

Confocal	Microscope,	Leica	TCS	SP2	AOBS.	A	20X	objective	was	used	to	capture	

images,	and	were	then	subsequently	processed	using	FIJI	software,	and	IMARIS8	cell	

counting	software,	where	appropriate.	To	quantitate	proliferation	levels	in	normal	

and	treated	conditions,	the	number	of	Ki67-positive	stained	cells	per	organoid	was	

divided	by	the	total	number	of	cells	within	the	corresponding	organoid,	to	obtain	a	

percentage	value	of	cells	undergoing	active	proliferation.		
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2.3.4 Lightsheet	Microscopy	

Organoids	were	seeded	in	usual	culture	conditions,	either	from	triturated	pieces	or	

as	single	cells	as	specified	previously.	Following	recovery	and	growth	for	a	period	of	

five	days,	organoids	were	fixed	within	matrigel	by	addition	of	a	‘5X	Fix	&	Stain’	

solution	(courtesy	of	OcellO)	which	facilitates	a	one-step	stain	of	Phalloidin	and	

Hoechst	simultaneously.	Fixation	and	staining	took	place	overnight	at	room	

temperature,	whilst	organoids	within	the	well	were	placed	on	a	rocker.	Following	

overnight	incubation,	structures	within	matrigel	were	lifted	from	wells	and	washed	

twice	with	PBS.	For	mounting,	10	µL	of	organoid	suspension	was	added	to	

approximately	10µL	of	low	melting	point	agarose	and	placed	in	a	glass	capillary	

provided	by	Zeiss.	Fluorescent	images	were	taken	on	a	Lightsheet	Z.1	(Zeiss)	

microscope	and	images	rendered	within	the	Zeiss	software	package	to	generate	

maximum	projection	images.		

2.3.5 	Organoid	genotyping	

2.3.5.1 DNA	extraction	

Organoids	in	culture	between	5	and	7	days	were	extracted	for	DNA,	taken	between	

passages	5	–	12.	DNA	was	extracted	from	organoids	using	the	Qiagen	DNeasy	blood	

and	tissue	kit	as	per	the	manufacturer’s	guidelines.		

2.3.5.2 Next	Generation	Sequencing	

Analysis	of	organoid	genotypes	was	performed	using	the	Next	Generation	

Sequencing	(NGS)	SureSeq	Solid	Tumour	60-gene	panel	by	Oxford	Gene	

Technologies	(OGT).	Sequencing	was	performed	on	the	Illumina	MiSeq	platform	

using	TruSeq	b3	chemistry	in	order	to	generate	2	X	150	base	reads.	Analysis	was	

further	carried	out	by	Dr	Kenneth	Ewan	(Dale	Lab)	to	identify	significant	mutations	

per	sample.		
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2.3.6 Measurements	of	organoid	growth	parameters	

2.3.6.1 Assessing	organoid	growth	

In	order	to	assess	organoid	growth,	organoid	cultures	plated	in	24	well	plates	were	

imaged	at	different	time	points	using	GelCount™	scanner	(Oxford	Optronix).	Images	

were	then	subject	to	data	analysis	using	defined	CHARM	settings	which	recognised	

organoid	structures	within	a	well	and	provided	various	measurements	(including	

organoid	number,	diameter	average	per	well,	organoid	area).	CHARM	settings	(Table	

2.4)	were	established	for	an	individual	organoid	line,	dependent	on	their	

morphological	features	in	culture	(Figure	2.1).	Data	was	acquired	on	a	well-by-well	

basis	and	further	analysed	using	Microsoft	Excel	and/or	GraphPad	Prism.	In	general,	

a	minimum	of	three	wells	was	used	for	analysis	per	biological	repeat,	unless	

otherwise	stated.	Where	possible,	data	was	collected	from	more	than	one	biological	

repeat.		
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Table	2.4	Charm	Settings	for	GelCount	software	

Figure	2.1Representative	masks	for	individual	organoids	using	GelCount	Charm	settings	

A.	Representative	well	of	a	24	well	plate	containing	organoids	B.	Mask	settings	applied	to	identify	

structures	and	generate	basic	morphometric	readout.		

	

	

Charm	se)ngs	
Established	
cultures	 Cultures	from	single	cell	suspensions	

All	isola(ons	 Iso	50,	Iso	72	
Iso	48,	Iso	

49	 Iso	34	 Iso	75,	Iso	78,	Iso	73	
All	isola(ons/	
general	se8ng	

Edge	detec(on	sensi(vity	 75.4	 32.9	 32.9	 32.9	 59.7	 48.5	
Center	detec(on	sensi(vity	 64.2	 43.5	 50.8	 50.8	 97.2	 71.5	
SoD	colony	lower	diameter	(µm)	 40	 60	 35	 55	 25	 30	
SoD	colony	upper	diameter	(µm)	 1000	 600	 600	 600	 70	 600	
Minimum	center	to	center	
sepera(on	 40	 60	 35	 55	 25	 30	
Smoothing	 3	 3	 3	 3	 3	 3	
Circularity	factor	 62	 80	 62	 62	 52	 82	
Edge	distance	threshold	 0.88	 0.74	 0.74	 0.74	 0.74	 0.81	
Number	of	spokes	 32	 32	 32	 32	 32	 32	
Filter	size	 3	 3	 4	 4	 3	 3	

Shape	processing	
best	fit	
circle	

best	fit	
circle	

best	fit	
circle	

best	fit	
circle	

best	fit	
circle	 best	fit	circle	

Colony	diameter	minimum	(µm)	 40um	 70	 55	 55	 10	 30	
Colony	diameter	maximum	(µm)	 1000um	 375	 375	 375	 70	 375	
Colony	minimum	intensity	
(	op(cal	density)	 0.1	 0.05	 0.05	 0.05	 0.01	 0.01	
Colony	maximum	intensity	
(op(cal	density)	 0.32	 10	 10	 10	 10	 10	
Good	edge	factor	 0.57	 0.06	 0.06	 0.06	 0.06	 0.06	
Borders	from	centeroids	 yes	 yes	 yes	 yes	 yes	 yes	
Merge	overlapping	objects	 yes	 yes	 yes	 yes	 yes	 yes	
Overlap	threshold	 0.67	 0.75	 0.75	 0.75	 0.75	 0.75	
overlap	calcula(on	 area	 area	 area	 area	 area	 area	
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2.3.6.2 Mitochondrial	activity	‘PrestoBlue’	assay	

Organoids	were	culture	in	clear,	round	bottomed	96	well	plates	at	varying	seeding	

densities.	10µl	of	Presto	Blue	reagent	(Invitrogen)	was	added	per	100µl	of	organoid	

growth	media.		100µl	of	media	and	10µl	Presto	Blue	Reagent	was	also	added	to	

three	wells	of	a	96	well	plate	to	serve	as	a	negative	control.		Following	a	three	hour	

incubation	at	37°C,	50µl	was	transferred	from	each	well	into	a	black,	clear	bottomed	

96	well	plate	(Matrix).	Fluorescent	signal	was	read	in	a	BMG	Fluostar	platereader	

with	an	excitation/emission	spectra	of	560nm/610nm.	Relative	fluorescence	of	

samples	was	calculated	by	subtracting	‘blank’	value	i.e	negative	controls	from	

samples	to	compensate	for	background	signal.		

	

2.4 Quantitative	Reverse	Transcription	Polymerase	Chain	Reaction	(q-RTPCR)	

qRT-PCR	was	used	to	quantify	relative	expression	levels	of	genes	within	tumour	

organoids.	For	qRT-PCR	experiments,	organoids	were	plated	to	single	cells	as	

previously	described	(2.5.1)	using	a	minimum	of	8	wells	of	a	24	well	plate	per	

condition.	

2.4.1 RNA	extraction	

	RNA	extraction	was	performed	using	a	trizol	(Life	Technologies)	based	method,	

whereby	organoids	within	matrigel	were	resuspended	in	trizol	containing	125µg/ml	

glycogen	(Life	Technologies).		The	suspension	was	then	transferred	into	1ml	

microtubes	prior	to	the	addition	of	160µl	chloroform	per	800µl	trizol/glycogen	mix.	

Samples	were	then	vortexed	and	centrifuged	for	15	minutes	at	12000	g,	at	4°C.	The	

aqueous	layer	formed	was	collected	from	each	sample	and	pipetted	into	fresh	

microtubes	prior	to	the	addition	of	an	equal	volume	of	isopropanol.	Samples	were	

centrifuged	again	for	10	minutes,	and	the	supernatant	discarded.	The	remaining	

pellets	were	washed	three	times	with	70%	EtOH,	centrifuging	at	500g	for	5	minutes	

between	each	wash.	The	remaining	pellets	were	left	to	air	dry	for	5	minutes	and	

then	resuspended	in	components	of	a	TURBO	DNA-free	kit	to	remove	any	residual	

DNA.	Samples	were	then	incubated	at	37°C	for	30	minutes.	Extracted	RNA	from	each	

sample	was	quantified	using	the	NanoDrop	machine.		
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2.4.2 Reverse	Transcription	reaction	

cDNA	was	synthesised	from	the	RNA	template	of	each	sample	using	the	Improm	II	

Kit	(Promega).	The	components	required	for	the	reverse	transcription	reaction	

mastermix	are	listed	in	Table	2.5.	A	mastermix	containing	no	reverse	transcriptase	

enzyme	was	also	generated	as	an	additional	control	for	each	sample.	The	mixtures	

were	then	incubated	in	a	thermocycler	at	70°C	for	a	total	of	5	minutes.	Samples	

were	then	diluted	in	nuclease	free	water	and	stored	at		-20°C,	or	remained	on	ice	

prior	to	gene	expression	analysis.	

2.4.3 Gene	expression	analysis	

q-RTPCR	was	performed	using	the	SensiFAST	SYBR	green	Hi-ROX	kit	(Bioline)	and	was	

carried	out	in	MicroAmp	Fast	optical	96	well	reaction	plates	(Life	Technologies).	

Primers	were	designed	(Sigma)	and	listed	below	(Table	2.6).	For	qrt-pcr	reactions,	

10µl	of	2X	SensiFAST™SYBR®	No-ROX	,	3µl	cDNA	and	0.1µl	of	individual	forward	and	

reverse	primers	(10mM	)	and	6.8µl	of	Nuclease	free	water	were	added	to	each	well.	

All	samples	were	measured	in	triplicate,	with	gene	expression	normalized	to	a	

housekeeping	gene,	GAPDH.	Plates	were	then	sealed	and	reactions	were	measured	

on	a	Step	One	Plus	real-time	PCR	instrument	(Applied	Biosystems).	A	fluorescent	

readout	from	the	incorporation	of	SYBR	product	into	the	PCR	product	was	used	to	

determine	the	relative	abundance	of	mRNA	within	each	sample.	The	cycle	times	

used	were	as	follows:	

1. 95°C	for	2	minutes		

2. 95°C	for	5	seconds	

3. 60°C	for	10	seconds		

4. 72°C	for	20	seconds	

Cycles	2-4	were	repeated	approximately	40	times.		

	

	

	

	

	

	



	 67	

Table	2.5	Mastermix	for	reverse	transcription	

		

RT	reaction	
(µl)	

No	RT	
control	
(µl)	

Reverse	Transcription	Mix	 1x	 1x	

Nuclease-Free	Water	(to	a	final	volume	of	15µl)	 6.1	 7.1	
ImProm-II™	5X	Reaction	Buffer		 4	 4	

MgCl2	(6	uM	final	from	25	uM	stock)	 2.4	 2.4	
dNTP	Mix	(final	concentration	0.5mM	each	dNTP)	 1	 1	

Recombinant	RNasin®Ribonuclease	Inhibitor	(optional)		 0.5	 0.5	

ImProm-II™	Reverse	Transcriptase		 1	 0	
	

	Table	2.6	Primers	used	for	qRT-PCR	by	SYBR	green.		

Gene	 Forward	sequence	 Reverse	sequence	

AXIN1	 CTGGATACCTGCCGACCTTA	 CCGGCATTGACATAATAGGG	

AXIN2	 GCGATCCTGTTAATCCTTATCAC	 AATTCCATCTACACTGCTGTC	

TNKS1	 CCGCGTGTCTGTTGTAGAGT	 ACAGAAGCCCCATGCCTTAC	

TNKS2	 TGGTGTGGGAGCCAAGTCTA	 GTGGCAATTCACTCCTCTTCA	

LGR5	 GAGTTACGTCTTGCGGGAAAC	 TGGGTACGTGTCTTAGCTGATTA	

ASCL2	 TGACCTGGGGCGTAATAAAG	 ACACAGGCTTCTCCCTAGCA	

KRT20	 ACGCCAGAACAACGAATACC	 ACGACCTTGCCATCCACTAC	

DKK1		 CCCAGGCTCTGCAGTCAGCG	 CGCACGGGTACGGCTGGTAG	

GAPDH	 TGAAGGTCGGAGTCAACGGA	 CCATTGATGACAAGCTTCCCG	

	

1.1.1 ΔΔCT	method	

Quantification	of	relative	gene	expression	was	calculated	using	the	ΔΔCT	method.		

Within	each	assay,	the	cycle	threshold	value	(CT	value)	was	determined	by	the	

number	of	thermocycles	carried	out	by	each	well	to	reach	a	pre-assigned	fluorescent	

threshold.	CT	values	for	each	triplicate	sample	were	then	normalized	to	the	

housekeeping	gene	(GAPDH)	to	generate	a	ΔCT	value.		The	ΔCT	of	the	control	cohort	

was	then	subtracted	from	the	ΔCT	of	the	test	cohort	to	determine	relative	fold	

changes	in	gene	expression.	Triplicate	wells	from	each	reaction	were	then	averaged	
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to	generate	a	ΔΔCT	value.	To	eliminate	the	possibility	of	primer	contamination,	melt	

curves	were	performed	on	samples	following	their	end	cycle	times.	

	

2.5 Endpoint	Viability	measurements	for	drug	assays	

2.5.1 Passaging	to	single	cell	

For	single-cell	passage,	growth	medium	was	removed	from	organoids	in	culture.	

Organoids	were	washed	with	PBS	and	incubated	for	approximately	5	minutes	with	

TrypLE	Express,	a	form	of	trypsin	(Invitrogen).	Following	incubation,	matrigel	was	

suspended	in	TrypLE	Express	and	placed	in	an	eppendorf	tube.	If	large	fragments	

remained	within	tubes,	Basal	media	was	added	with	10%	FBS	to	inhibit	Trypsin	

activity.	The	suspension	was	then	filtered	through	a	40	µm	filter	and	washed	several	

times	with	3+	media.	The	number	of	cells	within	the	suspension	were	counted	by	

staining	cells	using	an	Acridine	Orange/Propidium	Iodide	Stain	,	and	subsequently	

counting	on	an	automated	LUNA-FL™	fluorescence	cell	counter.	Cells	were	then	

resuspended	in	Matrigel	at	a	desired	concentration	/µl	of	matrigel.	9µl	of	Matrigel	

was	then	seeded	in	white,	clear-bottomed	96	well	plates	(Matrix)	and	incubated	at	

37°C.		Following	incubation,	50µl	of	growth	medium	was	then	added	to	each	well.	

2.5.2 Addition	of	Drug	Treatments	

All	compounds	were	prepared	according	to	manufacturers’	instructions	(Table	2.7),	

typically	dissolved	in	100%	DMSO	(Sigma).	A	range	of	stock	solutions	at	different	

concentrations	were	prepared,	serially	diluted	in	DMSO	to	make	100X	stock	

solutions	(1%	DMSO).	The	intermediate	stocks	were	then	diluted	ten-fold	so	that	

final	concentrations	of	DMSO	were	0.1%	in	50µl	growth	media	for	any	given	sample.		

All	experiments	were	performed	in	triplicate	for	each	concentration.	

	

	

	



	 69	

Table	2.7	Table	of	compounds	and	concentrations	used	in	organoid	drug	assays	

	
Focus	4	
ARM	

Compound	
iden2fier	

Name	 Mechanism	 Diluted	in	 Source	 Dilu2on	range	(nM)	 Fold	change	
in	dilu2on	minimum	 maximum	

BRAF	
muta*on	

		
		

GSK12118473	 Dabrafenib	 BRAF	inhibitor	 DMSO	 Stratech	Ltd	 0.12	 500	 2	
		 Panitumumab	 EGFR	inhibitor	 PBS	 clinic	 0.02	 62.5	 2	

GSK1120212	 Trame*nib	 MEK	inhibitor	 DMSO	 Stratech	Ltd	 0.06	 250	 2	
PIK3CA	
muta*on	 		 Salicylic	acid	 unclear	 DMSO	 Sigma	 19	 5000	 2	
KRAS/p53	
muta*on	 AZD1775	 MK1775	 Wee1	inhibitor	 DMSO	 Stratech	Ltd	 19	

5000	
	 2	

WT	with	
PTEN	

func*on	 AZD8931	 Sapi*nib	
HER	1,2,3	
inhibitor	 DMSO	 Stratech	Ltd	 8	 1250	 2	

ATM	
deficient	 AZD6738	 	AZ20	 ATR	inhibitor	 DMSO	 R&D	 19	 5000	 2	

Non	
stra*fied	 		 5FU	

thymidylate	
synthase	
inhibitor	 DMSO	 Tocris	 19	 10000	 2	

MSC2501490A	 TNKS	inhibitor	 DMSO	 Merck	
Serono	 4	 1250	 2	

	MSC2572070A	 TNKS	inhibitor	 DMSO	 Merck	
Serono	 0.80	 250	 2	

MSC2524070A	 TNKS	inhibitor	 DMSO	 Merck	
Serono	 0.39	 100	 2	
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Table	2.8	Concentrations	of	compounds	used	in	single	inhibitor,	double	inhibitor,	and	triple	inhibitor	combination	assays	

Single	agent	(nM)	 Double	agents	(nM)	 Triple	agents	
(nM)	

Dabrafenib		 Trame7nib	 Panitumumab	 Dabrafenib	+	
Trame7nib	(2:1)	

Trame7nib	+	
Panitumumab	

(4:1)	

Panitumumab	
+	Dabrafenib	

(1:8)	

Dabrafenib,		
Trame7nib	+	
Panitumumab	

(8:4:1)	
500.00	 250.00	 62.50	 750.00	 312.50	 562.50	 812.50	
250.00	 125.00	 31.25	 375.00	 156.25	 281.25	 406.25	
125.00	 62.50	 15.63	 187.50	 78.13	 140.63	 203.13	
62.50	 31.25	 7.81	 93.75	 39.06	 70.31	 101.56	
31.25	 15.63	 3.91	 46.88	 19.53	 35.16	 50.78	
15.63	 7.81	 1.95	 23.44	 9.77	 17.58	 25.39	
7.81	 3.91	 0.98	 11.72	 4.88	 8.79	 12.70	
3.91	 1.95	 0.49	 5.86	 2.44	 4.39	 6.35	
1.95	 0.98	 0.24	 2.93	 1.22	 2.20	 3.17	
0.98	 0.49	 0.12	 1.46	 0.61	 1.10	 1.59	
0.49	 0.24	 0.06	 0.73	 0.31	 0.55	 0.79	
0.24	 0.12	 0.03	 0.37	 0.15	 0.27	 0.40	
0.12	 0.06	 0.02	 0.18	 0.08	 0.14	 0.20	
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2.5.3 Endpoint	Cell	Titer	Glo	3D	ATP	Measurements	

For	assay	endpoint	readout,	50µl	of	Cell	Titre	Glo	3D	reagent	was	added	per	50µl	of	

growth	media	to	each	well	of	a	96	well	plate.	50µl	of	media	and	reagent	were	also	

added	to	three	wells	of	a	96	well	plate	to	serve	as	a	control	(Blank	values).		Following	

an	agitation	step	on	a	Rickman	shaker	for	five	minutes	to	initiate	cell	lysis	for	ATP	

extraction,	the	plate	was	incubated	on	the	shaker	for	up	to	one	hour	at	room	

temperature.		Relative	Luminescence	values	were	obtained	on	a	BMG	Fluostar	

platereader.	‘Blank’	control	values	were	subtracted	from	samples	of	interest	to	

accomodate	background	signal.	

2.5.4 Drug	combination	assays	

2.5.4.1 Experimental	design	

	

For	assessing	the	collective	growth	inhibition	of	EGFR,	BRAF	and	MEK1/2	on	BRAF-

mutant	organoids,	methods	developed	by	Chou	and	colleagues(Chou	and	Talalay	

1984;	Chou	2007)	were	implemented	to	determine	whether	compounds	were	

additive,	synergistic,	or	antagonistic	using	the	Combination	Index	(CI)	equation.		

Organoids	were	firstly	treated	with	single	agents	to	determine	a	suitable	titration	

range,	and	potency	of	individual	compounds.		To	investigate	the	effects	of	paired	

and	triple	drug	combinations,	ratios	were	selected	according	to	the	potency	(IC50	

values)	of	each	agent	alone,	as	determined	by	an	ATP	assay	readout,	and	maintained	

within	a	fixed	ratio	from	the	other	(8:4:1	for	Dabrafenib:Trametinib:Panitumumab).	

Seven	white,	clear-bottomed	96	well	plates	were	seeded	as	described	in	section	

2.5.1.	Individual	plates	used	for	each	single	agent,	double	agent	combinations	and	

triple	agent	combination.	Cultures	were	overlaid	with	media,	and	following	three	

days	of	recovery,	were	treated	with	each	single	agent,	double	agent	in	a	fixed	IC50	

ratio,	or	triple	agent	in	their	established	IC50	ratio.	A	14	point	titration	of	compounds	

was	administered	in	single	agent	conditions,	as	well	as	in	paired	and	three-drug	

mixtures,	whereby	titrations	were	in	a	constant	ratio	of	IC50.,	as	detailed	in	Table	2.8.		

The	constant	ratio	of	IC50	values	of	each	of	the	compounds	allows	the	measurement	
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of	outcome	CI	values	across	the	whole	dilution	range	in	a	series	of	experiments.	In	

cases	whereby	a	single	drug	demonstrated	insufficient	growth	inhibition	of	BRAF-

mutant	organoids,	relative	potency	levels	were	determined	from	cellular	IC50	values	

within	the	literature	(King	et	al.	2013;	Yamaguchi	et	al.	2011;	Freeman	et	al.	2009).	A	

minimum	of	4	replicate	wells	were	established	per	treatment	condition.		Following	4	

days	of	treatment,	all	plates	were	assayed	simultaneously,	using	a	Cell	Titer	Glo	3D	

kit.		

2.5.4.2 Chou-Talalay	data	analysis	for	drug	combinations	

	

Interactions	of	two-	or	three-	drug	combinations	were	quantitatively	analysed	using	

Calcusyn™	software.	Drug	dose	response	curves	generated	from	input	raw	data	

obtained	from	Cell	Titer	Glo	3D	luminescent	readouts,	to	calculate	the	average	

fraction	affected	(fa)	and	fraction	unaffected	(fu)	per	treatment	condition.	The	dose	

response	curves	were	then	transformed	by	linear	regression	using	the	median-effect	

principle	(Equation	2.1)	to	assess	both	potency	(Dm)	and	shape	(m)	of	the	dose-

effect	curve	for	each	dose	of	compound.	Linear	regression	was	performed	by	

plotting	the	log[(1/fu)-1]	against	the	log(Dose),	generating	a	line	used	to	then	

calculate	the	log	(IC50)		at	the	x	intercept	of	the	line.	The	median	effect	equation	

(Equation	2.1)	then	enabled	a	calculation	of	the	inhibitor	IC50	of	each	Dose	(D)	at	the	

median	effect	(Dm).	

	

Equation	2.1	

!"
!! =  !

!" 	

whereby	

D:	Dose	

Dm:	Median-effect	dose	

fa:	fraction	affected	

fu:	fraction	unbound	

	

Following	linearization	of	each	respective	drug	dose	response	curve,	drug	

combinations	were	analysed	by	the	Combination	Index	(CI)	equation	(Equation	2.2).	
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By	assigning	multiple	data	points	for	constant-ratio	combinations	i.e.	the	IC50	value	

for	each	compound,	the	potency	and	shape	of	the	curve	can	be	determined	across	

the	entire	spectrum	which	can	then	be	used	to	equate	the	CI	values	for	all	doses.	For	

the	combination	index	equation,		(D)1	and	(D)2	were	the	concentrations	of	each	drug	

in	combination	to	inhibit	x,	whilst	(Dx)1	and	(Dx)2	were	the	dose	of	each	drug	as	a	

single	agent	to	generate	the	same	x	inhibition.	CIs	of	<1,	1,	and	>1	are	indicative	of	

synergism,	additive	effect	and	antagonism,	respectively.		Upon	treatments	of	

organoids	with	two	or	three	agents	at	a	fixed	ratio,	the	dose	of	the	combination	

required	to	produce	fractional	survival	could	be	separated	into	D1,	D2,	D3	of	agents	

1,2,3	respectively	(equation	shows	two	components	only).	For	each	level	of	

cytotoxicity,	or	whereby	the	fraction	affected,	the	combination	index	was	thereby	

calculated.		

	

The	Dose	Reduction	Index	(DRI)	was	then	calculated	to	determine	the	degree	to	

which	a	particular	drug	combination	can	achieve	a	given	effect.		The	DRI	measures	a	

fold	reduction	in	dose	of	each	drug	used	in	combination	to	reach	an	equivalent	

effect	level	(normally	IC50)	comparative	to	the	degree	of	effect	observed	as	a	single	

agent	(Chou	2007)).		

	

Equation	2.2	

CI =  (!)!(!")!
+  (!)!(!")!

 = 1
(!"#)! +

1
(!"#)! 	

	

	

2.6 3D	phenotypic	profiling	(OcellO	analysis)	

High-throughput	image	acquisition	and	data	analysis	were	performed	in	

collaboration	with	OcellO	(Leiden)	as	described	previously	(Di,	Klop,	Rogkoti,	

Devedec,	van	de,	et	al.	2014;	Sandercock	et	al.	2015;	Herpers	et	al.	2014).			

2.6.1 384	well	plate	set-up	

Organoid	lines	in	culture	were	detached	to	single	cells	as	previously	described	in	

section	2.5.1.	Cells	were	resuspended	in	growth	factor-reduced	Matrigel	at	400	cells/	

µl	MT	within	black,	clear-bottomed	384	well	plates	(Greiner).	Following	an	
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incubation	of	15	minutes	at	37°C	to	enable	Matrigel	polymerisation,	25µl	of	7+	

media	containing	ROCK	inhibitor	was	added	to	each	well.		Compounds	or	control	

DMSO	(0.1%)	conditions	were	added	upon	seeding,	or	following	3	days	in	culture,	

dependent	on	experimental	procedures.	At	day	7,	plates	were	fixed	using	a	‘fix	and	

stain’	solution,	as	described	by	Di	et	al.,2014,	comprising	of	3.7%	formaldehyde	in	

phosphate-buffered	saline	(PBS)	containing	0.2%	Triton	X-100,	0.25	μM	

Tetramethylrhodamine	(TRITC)	phalloidin	(Sigma)	and	1	μg/mL	Hoechst	blue	dye.	

Following	overnight	fixation	at	4°C,	wells	were	subsequently	topped	up	with	PBS	and	

sealed	with	foil	lids	prior	to	shipping	for	imaging.	Upon	arrival,	plates	were	washed	

twice	with	PBS	and	stored	at	4°C.		

2.6.2 High-throughput	imaging	

Imaging	was	performed	on	a	high	throughput	XLS	MetaXpress	confocal	imaging	

platform,	courtesy	of	OcellO	(Leiden).	Image	z-stacks	were	collected	per	well	of	a	

384	well	plate,	with	25	image	stacks	taken	at	10	micron	steps	per	well.	Images	were	

taken	at	4X	magnification	with	image	stacks	captured	from	TRITC	channel	(f-actin	

stain,	EX=548,	EM=	645)	and	DAPI	staining	channel	(nuclear	stain,	EX=380m	EM	

=435).		

2.6.3 Multi-parametric	phenotypic	analysis	

2.6.3.1 OMiner™	phenotypic	feature	extraction	software	

	

Phenotypic	analysis	was	performed	within	OMiner™	software	(OcellO,	Leiden),	as	

described	previously	(Di,	Klop,	Rogkoti,	Devedec,	van	de,	et	al.	2014;	Sandercock	et	

al.	2015).	Briefly,	upon	acquisition	of	multiple	images	within	the	z-plane	of	each	well,	

image	segmentation	was	performed	to	define	individual	objects	generated	from	

each	channel,	resulting	in	the	identification	of	distinct	morphometries.	A	Gaussian	

filter	radius	was	applied	to	enhance	noise	suppression.	Overall,	information	

gathered	per	individual	channel,	as	well	as	combined	channels,	could	be	enhanced	

or	deducted	as	appropriate.	For	segmentation	of	individual	organoids	within	a	well,	

information	from	both	the	nuclear	and	TRITC	channels	were	used	to	enhance	

separation	of	individual	organoids.	To	identify	individual	lumen	within	wells,	
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information	gathered	from	the	F-actin	channel	was	used;	this	was	of	particular	

importance	to	distinguish	multiple	luminal	structures	within	an	organoid.	Object	

filtering	was	then	performed	on	all	three	of	the	segmentation	parameters	to	remove	

irrelevant	objects,	such	as	fractions	of	loose	cells	and	debris.		

	

Masks	were	then	generated	from	intensities	of	each	channel;	the	outermost	f-actin	

staining	of	an	individual	organoid	was	used	to	generate	a	‘whole	organoid’	mask,	the	

internal	f-actin	staining	used	to	generate	a	‘lumen’	mask,	and	a	nuclear	staining	used	

to	generate	‘nucleus’	information	per	section	within	an	organoid.	Intensity	

information	gathered	from	both	channels	simultaneously	were	also	utilised	to	

produce	feature	analysis	per	object.	Objects	within	a	single	image	that	were	out	of	

focus	were	filtered	and	discarded	from	feature	analysis.	

	

Following	the	generation	of	relevant	organoid	masks,	Ominer™	software	was	used	to	

extract	morphological	features	from	projections	of	the	F-actin	and	nuclei-derived	

image	stacks	to	generate	masks	of	individual	organoids,	internal	lumen	structures	

and	nuclei.	Individual	measurements	acquired	per	object	were	subsequently	

accumulated	to	represent	collective	objects	within	all	sections	imaged	per	well,	

generating	a	mean	value	for	each	feature.	Approximately	600	quantified	features	

were	then	extracted	per	well	by	assessing	shape	and	fluorescence	intensity	of	

organoid,	lumen,	and	nuclear	masks,	some	of	which	are	represented	in	Table	2.9.	

Data	was	pooled	on	a	well	by	well	basis,	to	define	the	average	parameter	with	

standard	deviation.	Any	outliers	were	removed	from	analysis	such	as	wells	where	

the	matrigel	had	been	disrupted	(as	a	result	of	plating	or	shipping	conditions).		
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Table	2.9	Description	of	a	subset	of	features	extracted	from	intensity	information	of	images	

gathered	and	corresponding	outcomes	of	measurement	

Feature	 Measurement	

Organoid	count	 Total	organoid	counts	from	a	whole	image	stack	

Organoid	sum	size	 The	total	volume	of	organoids	within	a	well	

Organoid	average	size	 The	average	organoid	size	per-section	

Organoid	roundness	 Values	assigned	(0-1)	to	organoid	roundness,	with	1	

depicting	a	spherical	object	

Nucleus	count	 Measurement	of	cell	density	per	organoid	

Organoid	nucleus	to	

organoid	centre	

distance		

Measurement	of	the	average	distance	between	the	

centre	of	an	organoid,	and	centre	of	corresponding	

nuclei	to	represent	nuclear	spread	within	and	organoid	

Organoid	nucleus	to	

organoid	boundary	

distance	

Measurement	of	the	average	distance	between	the	

organoid	edge,	and	centre	of	corresponding	nuclei	to	

represent	nuclear	spread	within	and	organoid	(to	be	

used	in	conjunction	with	organoid	nucleus	to	organoid	

centre	distance)		

Organoid	branching	 Identification	of	branching	structures	in	the	main	

architecture	of	an	organoid	

Lumen	size	 Average	measurement	of	overall	area	of	lumen/lumens	

within	an	organoid	structure	

Number	of	lumen	 Total	number	of	lumen	within	an	organoid	to	identify	

complexity	of	structure	

Lumen	branching	 Number	of	protrusions	from	lumen	

	

2.6.3.2 Basic	feature	extraction	

Over	600	variables	were	collected	and	analysed	using	OMiner	software	to	generate	a	

well	by	well	profile	of	different	organoid	features.		Basic	analysis	of	dose	dependent	

responses	according	to	variable	(e.g.	organoid	average	size)	was	carried	out	on	

Microsoft	Excel/	Graphpad	Prism.		
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2.6.3.3 Principal	Component	Analysis	(PCA)	and	Distance	metric	measurements	

	

PCA	was	used	to	transform	data	from	multiple	quantified	variables	from	phenotypic	

analysis,	to	a	new	coordinate	system	in	order	to	identify	components	that	attributed	

to	the	most	variation	in	the	data	between	control	and	negative	control	samples.	The	

greatest	variance	in	data	(across	variables	within	different	conditions)	therefore	lies	

within	the	first	coordinate,	until	all	data	points	are	assigned	coordinates	in	

descending	order	of	variance	in	data.	For	each	organoid	line	and	treatment,	a	

Mahalanobis	distance	metric	was	applied	across	the	top	5	principle	components,	

between	negative	controls	and	each	sample	observation	(dose),	in	order	to	classify	

the	degree	of	change	in	variables	between	control	and	treated	samples.	A	distance	

metric	would	have	the	highest	value	in	conditions	whereby	observations	were	

distinctly	different	from	negative	controls,	as	reflected	in	the	quantified	data.	

Alternatively,	no	observed	change	between	treatment	and	negative	control	would	

result	in	a	small	distance	metric	in	multidimensional	space.	Further	details	of	analysis	

methods	implements	can	be	found	in	Di	et	al	2014	and	Caie	et	al	2010.	PCA	analysis	

was	carried	out	using	R	studio	software(http://cran.r-project.org).	Multi-dimensional	

analysis	described	in	Chapter	5	was	carried	out	by	OcellO.	The	principles	of	this	

analysis	were	identical,	with	the	exception	that	an	Euclidean	Distance	metric	was	

used	to	represent	variance	in	parameter	space.				

	

2.7 	Experimental	animals	

NOD-SCID	gamma	irradiated	mice	were	used	to	perform	in	vivo	organoid	

engraftment	experiments.	All	animals	were	obtained	commercially	from	Charles	

River	and	housed	under	UK	Home	Office	regulations.		

2.7.1 Experimental	procedures	

Licensed	individuals	with	appropriate	training	performed	experimental	procedures.	

All	mouse	experiments	described	in	this	thesis	were	carried	out	by	Dr	Kenneth	Ewan	

(Dale	lab).	
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2.7.2 Organoid	transplantation	

For	organoid	transplantation,	organoids	were	taken	to	single	cells	and	treated	with	

DMSO	or	treatment	for	24	hours	prior	to	transplantation	subcutaneously	into	one	

flank	per	mouse.	Animals	were	checked	every	two	days	for	tumour	growth	by	

palpation,	according	to	protocol	by	Home	office	regulations.		

	

2.8 Data	and	Statistical	analysis	

Raw	data	obtained	was	analysed	using	Microsoft	Excel	for	Mac	or	GraphPad	Prism	

software	for	Mac.	Graphical	representation	of	data	included	standard	deviation	or	

standard	error	of	means.	Statistical	analysis	was	performed	using	GraphPad	Prism	

sofrware	for	Mac.	Statistical	test	used	are	dented	in	figure	legends.	Comparisons	of	

means	were	performed	using	a	T-test.	Comparisons	between	experimental	repeats	

were	perfomed	using	analysis	of	variance	analysis	(ANOVA),	with	Dunnett’s	post-hoc	

analysis	for	comparison	against	one	control.		Statistically	significant	differences	were	

determined	when	p	values	were	less	than	or	equal	to	(≤)	0.05.		

	

2.8.1 Generation	of	Drug	dose	response	curves	

	

Raw	data	obtained	from	relative	luminescence	of	samples	(2.5.3)	was	corrected	for	

background	absorption	as	determined	from	‘blank’	wells	containing	the	

reagent/media	mix.	Drug	dose	response	curves	were	generated	using	an	‘XLFit’	

Microsoft	Excel	Plug-in.		Within	each	experiment,	curves	were	fitted	for	three	

technical	replicates	which	then	allowed	the	output	of	an	IC50	value.	For	the	analysis	

of	experimental	repeats,	the	mean	of	obtained	IC50	were	used	as	a	representation,	

with	experiments	largely	n=3	unless	otherwise	stated.	For	drug	combination	studies,	

data	was	plotted	as	a	survival	curve	using	GraphPad	Prism	software.	For	exploration	

of	drug	synergy,	data	was	analysed	using	Calcusyn™	software	(Biosoft)	to	generate	

Combination	Index	values	as	well	as	Dose	reduction	Indexes.	
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2.8.2 Kaplan	Meier	Survival	analysis	

A	survival	curve	was	generated	using	GraphPad	Prism.	Statistical	analysis	was	

conducted	using	the	Log-rank	(Mantel-Cox)	test.	Statistically	significant	differences	

were	determined	when	p	values	were	less	than	or	equal	to	(≤)	0.05.		Statistical	

analysis	of	survival	was	carried	out	by	Dr	Kenneth	Ewan	(Dale	lab).		
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3 Development	and	optimisation	of	high-throughput	

patient-derived	colorectal	cancer	organoid	assays	

	

3.1 Introduction	

	

The	 generation	 of	 3D	 organoids	 from	 patient	 material	 could	 not	 only	 provide	 a	

valuable	tool	to	gain	 insights	 into	tumour	and	stem	cell	biology	alike,	but	also	hold	

potential	as	a	relevant	pre-clinical	platform	to	validate	oncological	therapeutics.		An	

experimental	platform	that	more	closely	represents	all	characteristics	of	a	tumour	in	

vivo	as	well	 as	 response	 to	 therapeutic	agents,	whilst	 simultaneously	 retaining	 the	

usability	of	high	throughput	2D	cultures	to	facilitate	the	testing	of	a	high	number	of	

compounds,	 is	 instrumental	 for	 drug	 discovery	 purposes.	 In	 order	 to	 establish	

organoids	as	a	 successful	 in	 vitro	modelling	 system,	 their	 setup	and	use	had	 to	be	

optimised	 to	 ensure	 both	 relevance	 to	 patient	 tumours,	 as	well	 as	 reproducibility	

within	 robust	assay	 formats,	 compatible	 for	 the	analysis	of	 complex	3D	structures.		

Here,	we	show	the	expansion	of	a	cohort	of	patient-derived	organoids	cultures	from	

primary	CRC	 tumour	material	 based	on	 culture	 systems	 that	 have	previously	 been	

described	 (Sato	et	al.,	 2011).	As	organoids	are	complex	3D	structures,	which	 show	

variability	both	within	and	across	populations,	we	developed	assay	formats	with	the	

aim	of	generating	quantitative	data	to	assess	the	impact	of	small	molecule	inhibitors	

and	drugs.	

	

In	summary,	the	key	aims	here	were:	

	
(i) To	generate	and	characterise	colorectal	tumour-derived	organoids	

(ii) To	 optimise	 suitable	 growth	 conditions	 to	 facilitate	 maximal	 organoid	

expansion	in	culture	which	retain	key	characteristics	of	parental	tumours	

(iii) To	determine	optimal	 assay	 formats	 and	plating	 conditions,	 in	 terms	of	

speed	and	output,	which	show	high	sensitivity	as	a	readout	for	organoid	

responses	to	growth	inhibition.	 	
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3.2 Results	

3.2.1 Establishing	epithelial	organoids	from	patient	derived	colorectal	cancer	
material	

3.2.1.1 ‘Tumour,	Node,	Metastasis’	(TNM)	and	Dukes’	staging	of	colon	tumour	

samples	obtained	from	patient	material	

	

To	generate	a	cohort	of	patient-derived	organoids,	a	sample	stream	was	established	

in	collaboration	with	the	Wales	Cancer	Bank,	whereby	surgically	resected	colorectal	

carcinoma	tissue	were	retrieved	with	full	patient	consent.	Collected	material	was	

examined	and	appropriately	sectioned	by	histopathologists	(University	Hospital	

Wales);	for	each	tumour	sample,	a	section	of	live	tissue	was	collected	for	our	

organoid	establishment	purposes,	as	described	in	Methods	(2.1).	Clinical	samples	

were	further	characterised	by	histopathologists	(University	Hospital	Wales)	following	

sectioning	of	tumour	material	and	fixation	for	histological	assessments.	This	ensured	

that	basic	patient	metrics	were	established	from	the	same	tumour	region	from	

which	corresponding	organoids	were	generated.		

	

For	routine	diagnostic	purposes,	histopathologists	obtained	samples	of	each	

specimen	as	well	as	approximately	8	surrounding	lymph	nodes	to	determine	the	

tumour	grade,	and	to	assess	whether	tumour	cells	had	infiltrated	into	surrounding	

tissue.	These	samples	were	then	cryosectioned	prior	to	hematoxylin	and	eosin	(H&E)	

staining	for	diagnostic	analysis.	Following	both	gross	and	microscopic	analysis,	

tumour	stage	were	set	according	to	Dukes	tumour	grading,	and	the	Tumour,	Node,	

Metastasis	criteria	as	noted	in	Table	3.1,	respectively.	All	samples	used	within	this	

study	were	isolated	from	different	regions	of	the	colon	from	both	male	and	female	

patient	within	an	age	range	of	43-83.	6	out	of	11	samples	were	from	patients	with	

tumours	that	had	spread	into	adjacent	lymph	nodes	(N),	with	N1-2	indicative	of	

increasing	proportions	of	lymph	nodes	containing	cancer	cells.		1	of	11	samples	

((Iso)48)	was	derived	from	a	patient	with	a	known	history	of	metastasis	of	the	

primary	tumour,	as	indicated	by	a	‘metastasis’	(M)	score	of	1.	The	10	remaining	
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samples	analysed	were	given	a	‘Mx’	score	to	indicate	unknown	evidence	of	

metastasis	from	patient	data	(Wales	Cancer	Bank).		 	
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Table	3.1	Patient	tumour	Staging.		

Fragments	of	carcinoma	isolated	from	surgically	resected	tissue	have	successfully	generated	

organoids	as	indicated	by	‘Isolation	number’.	Patient	ages	range	between	43-83	in	this	subset,	and	

include	mostly	tissue	derived	from	male	patients	(M	denotes	males,	F	denotes	females).	Dukes’	

tumour	stages	are	denoted	A-C2.	Tumour,	Node,	Metastasis	(TNM)	staging	is	graded	T1-4,N0-2,Mx-1.	

Data	collated	by	the	Wales	Cancer	Bank.		

	

Isolation	

number	

Age	 Sex	 Tumour	

Site	

Tumour	

Differentiation	

Dukes’	

Stage	

TNM	

Stage	

29	 73	 M	 Upper	

Rectum	

Well/	

Moderate	

C1	 T1N1Mx	

34	 69	 M	 Transverse	

Colon	

Well/Moderate	 A	 T2N0Mx	

36	 77	 F	 Rectum	 Well/Moderate	 B	 T3N0Mx	

38	 64	 M	 Sigmoid	

Colon	

Well/Moderate	 C1	 T3N1Mx	

48	 43	 M	 Rectum	 Poor	 C2	 T4N2M1	

49	 75	 M	 Lower	

Sigmoid	

Well/Moderate	 C1	 T3N1Mx	

50	 75	 M	 Rectum	 Poor	 C2	 T3N1Mx	

72	 83	 F	 Caecum	 Well/Moderate	 B	 T3N0Mx	

73	 60	 M	 Sigmoid	

Colon	

Well/Moderate	 B	 T3N0Mx	

75	 76	 F	 Caecum	 Poor	 C1	 T3N1Mx	

78	 66	 F	 Caecum	 Well/Moderate	 C1	 T3N1Mx	
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3.2.1.2 Generation	and	establishment	of	growth	conditions	for	epithelial	

organoids	derived	from	primary	tumour	material	

	

Previous	and	on-going	work	within	the	Dale	lab	(Dr	Kenneth	Ewan	&	Dr.	Andrew	

Hollins)	has	demonstrated	success	in	the	processing	of	isolating	epithelial	cell	

fragments	from	colorectal	tissue	to	generate	organoids	(denoted	by	Isolation	

number,	‘Iso’),	based	on	methods	in	the	literature	(Sato	et	al	2011)	whereby	patient	

material	has	successfully	established	in	3D	culture.	For	the	purposes	of	a	wider	study	

to	generate	a	CRC	organoid	platform,	the	tissue	isolation	process	and	optimisation	of	

organoid	growth	conditions	was	divided	equally	between	Dale	lab	members	(	Iso	29-

78	between	Dr	Andrew	Hollins	and	Luned	Badder,	with	previous	samples	having	

been	generated	between	Dr	Kenneth	Ewan	and	Dr	Andrew	Hollins).	Of	the	78	

samples	processed	to	date,	there	has	been	an	approximate	70%	success	rate	in	

initial	organoid	establishment	from	tumour	tissue,	with	improvements	made	over	

time	following	experience	with	culture	requirements.	For	the	purposes	of	this	study,	

a	subset	of	these	were	generated	from	fresh	tumour	tissue	(with	the	exception	of	Iso	

38,	generated	and	characterised	for	optimal	media	conditions	by	Dr.	Andrew	

Hollins),	characterised,	and	further	utilised	for	assay	development.	Fresh	tissue	was	

routinely	collected	and	processed	within	3-15	hours	following	surgical	resection.	

	

As	depicted	in	Figure	3.1,	following	digestion	and	trituration	of	washed	tissue	pieces,	

cellular	fragments	derived	from	tumour	tissue	were	filtered	through	a	70µm	filter	to	

ensure	minimal	aggregation,	and	resuspended	in	10ml	‘3+’	media,	components	of	

which	are	previously	listed	(Table	2.1).	For	counting	purposes,	10μl	samples	were	

dispensed	onto	tissue	culture	plates,	and	clusters	of	cells	were	counted	to	seed	1000	

per	50μl	of	growth	factor-reduced	Matrigel.	Such	protocols	were	established	

previously	(Sato	et	al.	2011a)	in	the	literature;	by	counting	fragments	as	opposed	to	

unsorted	single	cells,	it	prevented	any	other	cell	types	that	could	be	present	(such	as	

fibroblasts)	from	skewing	the	data.	Preliminary	work	based	on	guidance	within	the	

literature	(Sato	et	al.	2009;	Sato	et	al.	2011b)	was	carried	out	on	a	subset	of	
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organoids	samples	to	establish	optimal	seeding	densities.	Following	processing	of	

tissue	to	epithelial	cell	fragments,	organoids	were	plated	at	1000	cell	fragments	or	

2000	cell	fragments	per	50	µl	Matrigel,	in	‘Full’	or	‘7+’	media	conditions.	The	number	

of	organoids	generated	were	then	counted	on	a	well	by	well	basis	in	each	condition.	

As	shown	in	Figure	3.2,	it	would	suggest	that	1000	cells	per	50	µl	Matrigel	was	

sufficient	to	generate	the	highest	yield	of	organoids.	However,	the	number	of	

organoids	generated	from	primary	material	varied	between	patient	samples	due	to	

nature	of	material,	ranging	from	seeding	a	minimal	8	wells	to	a	higher	yield	of	20	

wells	of	a	standard	tissue	culture	24-well	plate.	A	limiting	factor	on	the	number	of	

different	growth	and	seeding	conditions	that	could	be	implemented	was	thus	due	to	

the	number	of	cell	fragments	isolated	from	tumour	tissue,	meaning	that	optimal	

seeding	densities	from	fresh	fragments	could	not	always	be	calculated	for	each	

sample.	All	samples	following	Iso	29	were	therefore	seeded	at	a	density	of	1000	cell	

fragments	/	50	µl	matrigel.	This	difference	is	most	likely	due	to	a	variety	in	necrotic	

regions	within	a	primary	tumour	that	reduce	the	number	of	viable	cells	that	could	

potentially	expand	within	culture.		Once	suspended	and	embedded	within	matrigel,	

fragments	of	cells	formed	multiple	closed	structures	within	12	hours	of	seeding.	

	

	

Figure	3.1	Depiction	of	organoid	isolation	process	from	human	surgically	resected	colorectal	tissue.	

Surgically	resected	colorectal	material	undergoes	a	process	of	dissection,	digestion	and	trituration	to	

release	cellular	fragments.	Cells	are	then	transferred	to	growth	factor-reduced	Matrigel	and	overlaid	

with	growth	media.			
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Figure	3.2	Establishment	of	optimal	organoid	seeding	densities	from	isolation.	

Following	dissection,	digestion	and	trituration	of	primary	patient	CRC	material	(Iso	29)	from	freshly	

resected	specimens,	cellular	fragments	were	counted	at	a	density	of	1000	or	2000	cells	per	50	µl	of	

Matrigel,	prior	to	plating	.	Cellular	fragments	embedded	within	matrigel	were	then	overlaid	in	‘Full’	or	

‘7+’	Media.	The	number	of	organoids	per	well	were	counted	using	GelCount	charm	settings.	A	

minimum	of	n=3	wells	were	used	per	condition.	Data	shows	mean	±	standard	deviation,	paired	

student’s	t-test.	For	routine	samples	generated	for	this	study,	a	density	of	1000	cell	fragments	per	50	

µl	matrigel	was	deemed	as	a	sufficient	number	to	enable	organoid	formation.		
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3.2.1.3 Optimisation	of	culture	conditions	for	CRC	organoids	

	

In	order	to	maximise	yield	from	patient	material,	basic	growth	requirements	of	

structures	derived	from	patient	material	were	ascertained	by	treating	fragments	of	

tumour	cells	immediately	following	seeding	(passage(P)0)	with	two	different	culture	

media	compositions:	‘7+’	basic	media,	and	‘full’	growth-factor	rich	media	(Table	2.1).	

Both	conditions	were	based	on	previous	findings	in	the	literature	and	were	sought	to	

enhance	the	growth	of	tumours	with	differential	requirements	of	surrounding	

environmental	factors.	Many	colon	cancer	cells	require	little	addition	of	growth	

factors	for	culture	as	they	typically	harbour	mutations	which	facilitate	their	own	

niche	requirements	(Sato	et	al.	2009).	The	niche	dependency	of	other	CRC	organoids	

means	that	they	require	exogenous	stimulation,	such	as	those	provided	by	‘full’	

media	conditions,	with	additional	Wnt	and	R-spondin	conditioned	media,	as	well	as	

epidermal	growth	factor	(EGF),	Noggin,	TGF-β	inhibitor	(A83-01)	and	a	p38	inhibitor	

(SB202190).	Recent	studies	have	further	highlighted	the	manipulation	of	niche	

dependencies	of	CRC	required	to	support	the	growth	of	different	tumour	subtypes	in	

culture	(Fujii	et	al.	2016b)	and	will	be	considered	further	in	the	discussion	section	of	

this	thesis.		

	

In	order	to	quantitatively	analyse	the	most	favourable	growth	parameters	for	each	

organoid	line,	organoid	counts	were	generated	using	an	automated	colony	counter,	

GelCount™	technology.	To	facilitate	organoid	detection	and	counts	from	structures	

present	within	each	well,	CHARM	settings	were	established	with	threshold	values	for	

parameters	such	as	optical	density,	size,	circularity	and	quality	of	structure	edges,	as	

well	as	background	detection	to	ensure	minimal	aggregates	were	detected	as	

organoids.	The	software	enabled	automated	morphometric	readouts	from	organoid	

images	taken	from	wells	by	generating	a	script,	entitled	CHARM	settings.	For	CHARM	

settings	generation,	threshold	values	were	firstly	established	to	remove	outliers	of	

data.	Parameters	such	as	optical	density,	size,	and	definitive	object	outlines	were	

used	to	determine	objects	that	could	be	counted	as	organoids.	Following	one	

organoid	line	(Iso	75),	it	was	shown	that	the	number	of	organoids	formed,	as	
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counted	using	established	CHARM	settings	of	GelCount™	technology,	were	reliant	on	

media	conditions	used.	As	shown	in	Figure	3.3,	an	average	of	332(±94)	organoids	

were	generated	in	‘7+’	basal	conditions,	as	opposed	to	601±110	on	average	per	well	

in	‘full’,	growth	factor-rich	conditions.		It	is	however	worth	noting	that	both	counts	

and	visual	inspection	were	required	to	determine	the	best	media	conditions	as	

masks	generated	using	GelCount™	technology	calculate	the	(unlikely)	assumption	

that	all	structures	are	viable.	As	noted	in	previous	assessments	of	organoid	viability	

in	mouse	model	systems	(Grabinger	et	al.	2014)	,	non-viable	organoids	are	

characterised	by	a	loss	of	cellular	organisation	on	the	outermost	edge	of	structures,	

surrounding	cellular	debris,	and	a	lower	optical	density	as	structures	overall	contain	

a	dark	core	.	Collectively,	such	assessments	enabled	a	determination	of	sufficient	

growth	conditions	for	maximal	expansion	of	each	of	organoid	line,	as	listed	in	Table	

3.2	.	9	out	of	11	organoid	lines	established	for	this	study	demonstrated	sufficient	

growth	in	basic	‘7’+	media	conditions,	whilst	2	lines	were	dependent	on	propagation	

in	‘full’	media	conditions.	Given	that	organoids	were	derived	from	a	variety	of	

tumour	origins	and	stages,	it	was	unsurprising	that	to	reliance	on	particular	niche	

factors	for	growth	were	variable.			

	

Once	media	conditions	for	optimal	growth	had	been	established,	the	specified	media	

was	then	utilised	to	grow	continuing	organoids	throughout	subsequent	studies	

(Table	3.2).	By	means	of	this	selection	process,	it	was	possible	to	facilitate	maximal	

survival	for	tumours	with	varying	niche	requirements	for	growth,	despite	being	

unable	to	fully	interrogate	individual	niche	factors	required	for	each	line.			
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Figure	3.3	Analysis	of	media	requirements	for	organoid	growth	

Following	isolation	of	material	from	surgically	resected	colorectal	tissue,	Iso	75	organoids	were	

seeded	as	fragments	of	cells	at	a	density	of	1000	cells	per	50µl	of	growth	factor-reduced	Matrigel.	

Cultures	were	overlaid	with	two	media	conditions	to	determine	optimal	growth	requirements;	basal	

‘7+	Media’	or	Full	Media	containing	growth	factors,	10%	R-spondin	conditioned	media	and	40%	Wnt	

conditioned	media.	(A)	Bar	chart	depicts	the	average	number	of	organoids	formed	from	seeding	a	

1000	fragments	per	well	of	a	24	well	plate,	using	GelCount™		technology.	Data	are	presented	as	

mean±	standard	deviation,	whereby	n=3	wells.	(B)	Representative	images	from	each	well	per	

condition	were	obtained	using	GelCount™	software,	using	standard	settings	as	detailed	in	methods	

(2.3.6.1)	
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Table	3.2	Established	media	requirements	for	organoid	subset.	

Following	isolation	of	material	from	surgically	resected	colorectal	tissue,	two	media	conditions	were	

used	to	determine	optimal	growth	requirements.	Optimal	media	requirements	were	assessed	using	

basic	growth	parameters	such	as	changes	in	gross	morphometry	as	well	as	visual	inspection	of	

organoids	to	qualitatively	assess	the	amount	of	potential	dead	cells	present	in	culture.	An	

accumulation	of	cellular	debris	as	a	result	of	cell	death	would	often	be	visualised	in	sub-optimal	

conditions.	Media	conditions	for	Iso	38	were	determined	by	Dr.Andrew	Hollins	(Dale	lab).		

	

	

Isola&on	number	 Media	condi&ons	

Seeding	density	
(number	of	wells	
of	a	24	well	plate)	

29	 7+	 16	
34	 7+	 12	
36	 7+	 8	
38	 7+	 16	
48	 7+	 10	
49	 7+	 14	
50	 7+	 8	
72	 7+	 14	
73	 7+	 10	
75	 Full	 20	
78	 Full	 16	
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3.2.1.4 Patient-derived	tumour	organoids	exhibit	various	morphologies	and	

growth	rates	in	tailored	culture	conditions	

	

Based	on	early	observations	in	organoid	establishment,	as	well	as	findings	from	the	

literature,	it	was	clear	that	a	variety	of	tumour	organoid	morphologies	were	

obtained,	possibly	reflective	of	mutational	backgrounds	or	as	a	result	of	their	

surrounding	environment	(Sato	et	al.	2011a;	Yin	et	al.	2013;Riemer	et	al	2017).	Given	

that	organoids	could	be	generated	from	a	range	of	CRC	subtypes,	it	was	therefore	

necessary	to	establish	suitable	methods	to	quantify	changes	in	morphometry	and	

organoid	growth	over	time	to	ensure	stability	in	culture.	Using	an	automated	colony	

counter,	CHARM	settings	were	optimised	per	organoid	line	to	monitor	growth	in	

morphologically	variable	organoids	to	account	for	a	variety	of	structure	types.		

Organoids	that	formed	generally	more	cystic	structures	for	example	required	

different	density	thresholds	to	be	set	compared	with	denser	organoid	structures.	

CHARM	settings	were	then	used	to	generate	masks	around	individual	objects	within	

a	well	to	detect	basic	morphometric	features	of	the	2D	image	such	as	overall	

organoid	size,	(calculated)	volume,	density	and	number	within	a	well.	

	

Following	initial	selection	of	appropriate	growth	conditions,	complex	structures	of	

colonic	epithelial	organoids	grew	typically	for	between	seven-	fourteen	days	prior	to	

passage,	with	a	split	ratio	between	1:2	–	1:8	(wells)	implemented	every	7-10	days,	or	

as	necessary.	Epithelial	organoids	derived	from	different	patients	exhibited	a	variety	

of	growth	rates	within	the	first	few	passages	of	culture,	as	depicted	in	Figure	3.4.	As	

depicted,	growth	in	basal	7+	media	conditions	was	sufficient	to	yield	an	increase	in	

overall	organoid	diameter	over	several	days	within	these	three	organoid	types.	

Defined	culture	conditions	demonstrated	that	organoids	were	able	to	expand	to	

sizes	between	100μm-	500μm	on	average	over	two	weeks,	as	calculated	by	

GelCount™software	from	images	over	repeated	measurements.	Settings	were	
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established	for	each	organoid	line	and	altered	according	to	overall	morphologies	and	

cell	densities	per	structure.	

	

Distinct	morphological	variation	was	also	seen	across	different	patient-derived	

organoids,	as	shown	in	Figure	3.4	.	Iso	29	was	shown	to	yield	a	population	of	mainly	

cystic	organoids,	with	occasional	smaller,	denser	structures	observed.	Iso	36	

demonstrated	more	complex	morphologies,	with	budding	structures	protruding	

from	the	central	‘lumen’-like	structure.	Differential	morphology	was	further	

corroborated	by	images	of	various	organoids	fixed	and	stained	(day	5)	

simultaneously	with	a	Hoechst	and	Phalloidin	(F-actin)	stain,	and	captured	using	light	

sheet	microscopy,	as	seen	in	Figure	3.5.	These	images	showed	a	clear	distinction	

between	internal	morphologies	of	organoids;	Iso	75,	for	examples	showed	multiple	

lumen	structures	throughout	the	internal	cellular	composition	whereas	Iso	50	and	72	

had	a	more	basic	internal	morphology	with	occasional	branching	structures.	Overall,	

organoid	morphology	and	ratio	of	splitting	remained	stable	over	several	passages,	an	

important	requirement	of	future	drug	screening	studies,	retaining	morphologies	

observed	in	early	culture,	and	was	therefore	suitable	for	expansion	for	subsequent	

assays.		

	

As	well	as	establishing	optimal	growth	conditions,	this	work	also	aimed	to	maximise	

organoid	yields	to	facilitate	subsequent	experimental	repeats.	A	suitable	organoid	

freeze-	thaw	protocol	was	therefore	optimised	to	improve	organoid	recovery	from	

freezing	conditions.	Organoids	cultured	for	4	days	were	lifted	from	matrigel	and	

resuspended	in	cell	recovery	freezing	medium	(Invitrogen™).	The	suspension	was	

then	placed	in	cryovials	and	stored	in	-80°C	conditions.	For	organoid	recovery,	

cryovials	were	placed	in	the	water	bath	at	37°C	and	thawed	rapidly.	Structures	in	

suspension	were	then	washed	in	3+	media	prior	to	embedding	in	growth	factor-

reduced	matrigel,	and	then	overlaid	with	media.	To	examine	whether	addition	of	

ROCK	inhibitor	Y-27632,	previously	implicated	in	improving	cell	survival	(Ashley	et	al.	

2014),	could	enhance	organoid	formation	efficiency,	a	subset	of	Iso	49	organoids	

were	dissociated	to	single	cells	immediately	after	thawing,	plated	in	matrigel	and	



	 93	

overlaid	with	media	±	ROCK	inhibitor.	As	shown	in	Figure	3.6	,single	cell	recovery	and	

subsequent	organoid	formation	for	Iso	49	was	enhanced	when	media	contained		

10	µM	ROCK	inhibitor	Y-27632	for	the	first	three	days	in	culture.	Recovery	prior	to	

passage	was	established	between	5-10	days,	dependent	on	organoid	line.		
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Figure	3.4	Intestinal	organoids	show	a	variety	of	morphologies	and	morphometries	in	defined	culture	conditions	between	different	patient	subsets.	

Microscope	images	taken	at	day	7	in	culture	conditions	(Scale	bar=	100μm)	and	corresponding	growth	profiles	from	3	different	patient	carcinoma	samples	(A)	Iso29	(B)	

Iso36	(C)	Iso34.	Growth	is	indicated	as	diameter	per	organoid	average	per	well	(μm)	±Standard	deviation	measured	by	GelCount	charm	settings.		

(Ai) 

(Aii) 

(Bi) 

(Bii) 

(Ci) 

(Cii) 
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Figure	3.5	F-actin	staining	reveals	internal	complexity	of	organoid	structures.	

Organoids	were	passaged	by	trituration	(p4-p10)	prior	to	seeding	within	growth	factor	reduced	

matrigel	in	defined	media	conditions.	Following	5-7	days	of	growth,	cultures	were	fixed	and	stained	

simultaneously	using	a	Fix&	stain	solution	comprising	of	PFA	(4%),	Hoechst	and	TRITC-Phalloidin	to	

stain	F-actin.	Organoids	were	then	washed	before	transferred	to	agarose	for	imaging	purposes.	Scale	

bars	depicted	on	each	image	are	as	follows;	Iso	48,	Iso	50=	100µm,	Iso	72=200	µm,	Iso	75=	50	µm.
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Figure	3.6	Organoid	freeze-thaw	recovery.	

	Iso	49	organoids	were	frozen	in	Cell	Recovery	freezing	medium	and	stored	at	-80°C.	For	recovery,	
cryovials	were	thawed	rapidly	at	37°C,	prior	to	organoid	washes	and	embedding	within	matrigel.	

Organoids	were	plated	as	whole	structures,	or	further	trypsinised	to	calculate	the	number	of	cells	

present	in	culture	after	thawing,	then	overlaid	with	defined	media	conditions.	(A)	Representative	

images	of	organoids	derived	from	whole	frozen	organoids(‘pieces’),	or	single	cells,	±	ROCK	inhibitor.	

Scale	bar	=	100µm.	(Bi)	Bar	chart	to	represent	average	number	of	organoids	and	(Bii)	organoid	

formation	efficiency	(%)	calculated	by	GelCount	software.	Data	shows	mean	±	standard	deviation	

(n=3	wells),	unpaired	t-test;	**	p<0.01.
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3.2.2 Organoids	retain	overall	histological	architecture	of	matching	primary	
tumours	

	

In	order	to	assess	the	capacity	of	organoids	to	recapitulate	in	vivo	tumour	biology,	

histological	parameters	were	compared	between	clinical	samples	and	counterpart	

organoids.	Previous	studies	using	such	morphological	parameters	have	enabled	the	

identification	and	characterisation	of	clinical	features	in	both	patient	colorectal	

tumours	and	the	organoids	from	which	they	are	derived	(Fujii	et	al.,	2016).		

	

Hematoxylin	and	eosin	(H&E)-stained	primary	tumour	sections	were	processed	

(Wales	Cancer	Bank)	and	analysed	by	the	Histopathology	team	at	University	Hospital	

Wales	(Dr.	Delyth	Badder).	For	comparative	histology,	organoids	were	freshly	

passaged	into	Matrigel	and	cultured	for	4-7	days,	prior	to	fixation	(PFA,	4%	)	for	15	

minutes	at	room	temperature.	Organoids	were	then	washed	following	an	incubation	

on	ice	to	remove	matrigel	fragments,	then	resuspended	in	4%	low	melting	point	

agarose	prior	to	cryo-sectioning,	mounting	and	H&E	staining.		

	

Samples	derived	from	the	poorly	differentiated	samples	(Iso)	48	(metastatic)	and	

(Iso)	75	were	defined	as	particularly	aggressive	tumours,	as	indicated	by	vascular	

invasion	as	well	as	a	high	level	of	lymphocyte	infiltration	as	a	result	of	an	immune	

response,	shown	in	Figure	3.7.	Due	to	the	epithelial	nature	of	organoids	such	

observations	could	not	be	captured	in	matching	material.	Iso	48	and	Iso	75	samples	

were	also	found	to	contain	high	numbers	of	mitotic	bodies	reflective	of	multiple	cell	

divisions.	Overall,	it	was	found	that	many	epithelial	characteristics	found	in	parental	

tumours	were	also	observed	in	counterpart	organoids,	with	individual	structures	

retaining	similar	features.	Primary	tumours	containing	high	numbers	of	glandular	

structures,	for	example,	were	reflected	by	multiple	lumen	structures	within	organoid	

sections	such	as	those	observed	in	Figure	3.7	in	which	Iso	75	organoids	are	reflective	

of	matching	tumour	tissue.	An	overall	poorly	differentiated	tumour	containing	few	

small	glands	of	differentiation	(Iso	50)	was	shown	to	be	capable	of	deriving	a	mixed	

morphology	of	organoids;	some	mono-cellular	structures	with	a	cystic	phenotype	
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(Figure	3.7,	black	arrows)	,	as	well	as	structures	with	a	thick	epithelial	cell	layer	

containing	glandular	structures	within	the	organoid	(Figure	3.7,	purple	arrows).			

	

It	was	observed	that	Iso	72	was	derived	from	a	highly	mucinous	adenocarcinoma,	as	

indicated	by	a	significant	component	of	extracellular	mucin	pools	within	the	tumour	

section,	as	highlighted	in	Figure	3.7	Interestingly,	features	were	retained	in	culture	

as	identified	by	mucinous	vacuoles	within	corresponding	organoid	sections.	Previous	

studies	have	identified	that	such	adenocarcinomas	are	characterised	by	a	high	

proportion	of	Mucin	2-positive	goblet	cells	within	tumours,	and	have	successfully	

linked	patient	histology	with	specific	gene	expression	signatures,	such	as	goblet-,	

stem	cell-,	transit-amplifying-	and	enterocyte-like	tumours	(Sadanandam	et	al.	

2013).	

	

For	three	CRC	samples	(Iso	50,	Iso	72,	Iso	75),	organoids	were	additionally	

immunostained	for	Mucin	2	to	evaluate	the	presence	of	goblet	cells	within	samples	

and	to	further	determine	if	primary	cultures	were	able	to	retain	differentiation	

characteristics	observed	in	primary	tumours.	As	shown	in	Figure	3.8,	it	was	observed	

that	Iso	72	organoids	were	heavily	stained	for	Mucin	2,	suggestive	of	a	high	goblet	

cell	population,	in	concordance	with	observations	from	primary	material.	Iso	75	

organoids	demonstrated	some	mild	staining,	and	no	Mucin	2	positive	staining	was	

identified	in	Iso	50	cultures.		

	

Due	to	limitations	in	retrieving	organoid	sections	from	paraffin	blocks,	a	subset	of	

only	six	patient	and	corresponding	cultures	were	analysed	from	a	variety	of	graded	

clinical	samples.	Observations	collected	from	primary	tumour	samples	were	largely	

represented	by	counterpart	organoids,	with	the	exceptions	of	non-epithelial	

characteristics	such	as	vascular	invasion	(Figure	3.7,	yellow	arrows),	and	filtration	of	

neutrophils	and	lymphocytes	(Figure	3.7,	blue	arrows)	into	tumour	tissue.	However,	

this	data	strongly	indicates	that	histological	grading	and	the	cellular	differentiation	

status	is	largely	retained	between	patient	and	corresponding	organoid	culture	within	

the	samples	analysed,	in	line	with	current	knowledge	of	in	vivo	tumour	histology.		
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Figure	3.7	Representative	images	of	immunohistochemical	stains	from	surgically	resected	patient	

tumours.		

Organoids	were	cultured	in	defined	conditions,	embedded	in	paraffin,	sectioned,	and	stained	to	

define	cellular	architecture.	H&E	stained	patient	tumours	were	kindly	provided	by	the	WCB,	and	

analysed	and	imaged	with	the	histopathology	team	(UHW)	Scale	bar=100µm.	Arrows	denote	the	

following;	(ç)cystic	structures;	( )	dense	epithelial	structures	( )mucin	pools;	( )neutrophil	and	

lymphocyte	invasion;	( )	vascular	invasion;	( )	gland-like	structures/	organoid	lumen.		
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Figure	3.8	Organoids	derived	from	primary	material	resemble	differentiation	profiles	of	primary	

tumours.	

Organoids	were	cultured	in	defined	growth	conditions	prior	to	fixation	by	PFA	(4%)	prior	to	

immunostaining	with	anti-muc2	antibody	to	detected	mucin	positive	cells	as	an	indication	of	the	

presence	of	goblet	cells.	Scale	bar	=	50	µm.
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3.2.3 Genotypic	analysis	of	an	organoid	cohort	reveals	mutations	in	colorectal	
cancer-associated	genes	

	

In	order	to	classify	organoids	according	to	their	mutation	status	and	investigate	

whether	our	cohort	would	encompass	CRC	relevant	mutations,	DNA	was	isolated	

from	tumour	organoids,	using	a	Qiagen	DNA	extraction	kit	as	per	the	manufacturer’s	

protocol,	and	subject	to	analysis	using	the	Next	Generation	Sequencing	(NGS)	

SureSeq	Solid	Tumour	panel	carried	out	by	Oxford	Gene	Technologies	(OGT).		This	

panel	encompassed	genomic	regions	of	interest	to	characterise	the	status	of	60	

genes	previously	identified	in	cancer	development	and	progression.		A	variant	

analysis	report	was	carried	out	by	OGT	to	generate	the	mutation	status	of	each	gene	

of	interest	from	8	organoid	lines.	Mutations	were	detected	in	both	activating	

oncogenes	and	inactivating	tumour	suppressors	frequently	affected	in	colorectal	

tumours,	including	APC,	KRAS,	BRAF,	PIK3CA,	and	TP53.	The	severity	of	detected	

mutations	and	subsequent	impacts	upon	cellular	functions	were	determined	by	

integrating	outputs	of	individual	variants	with	the	Sanger	COSMIC	database	

(Catalogue	of	somatic	mutations	in	cancer),	as	shown	in	Table	3.3,	which	highlight	

relevant	mutations	within	a	particular	tissue.	Mutations	that	were	identified	in	the	

sequencing	data,	but	not	previously	noted	in	the	COSMIC	database	were	labelled	as	

‘no	COSMIC	record’.		It	remains	uncertain	whether	these	mutated	genes	would	

significantly	impact	cellular	function,	as	they	have	not	been	previously	identified	

within	colorectal	tissue	as	frequent	mutations.	Given	that	sequencing	was	only	

carried	out	for	tumour	organoids	and	not	matched	normal	DNA,	it	is	difficult	to	fully	

distinguish	between	mutations	as	opposed	to	polymorphisms,	and	whether	events	

were	from	germline	or	somatic	variants.	Analysis	was	therefore	carried	out	in	

comparison	to	sources	within	the	literature.		

	

CRC	is	heavily	associated	with	activating	mutations	within	components	of	the	Wnt	

signalling	pathway,	including	APC	and	β-catenin	encoded	by	APC	and	CTBNN1.	

Mutations	in	APC	were	observed	in	8	organoid	lines,	with	5	out	of	8	lines	harbouring	

mutations	that	resulted	in	a	truncated	protein.	Some	lines	possessed	mutations	

previously	unidentified	within	the	COSMIC	database	therefore	their	relevance	to	APC	
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function	is	unknown.		Previously	identified	CTNNB1	mutations	were	present	in	3	of	

the	organoid	lines,	Iso	48,	75	and	78.	Interestingly	Iso75,	and	Iso	78	were	reliant	on	

full	media	conditions	that	contained	exogenous	Wnt	and	R-spondin	conditioned	

media,	demonstrating	a	complex	niche	requirement	to	be	maintained	within	culture.	

In	principle,	ß-catenin	mutations	result	in	an	overall	activation	of	the	Wnt	signalling	

pathway,	suggesting	that	such	organoids	would	be	capable	of	growth	in	absent	Wnt	

or	R-spondin.	However	without	a	complete	dissection	of	required	growth	factors	

within	the	media,	it	is	possible	that	growth	within	Iso	75	and	Iso	78	are	reliant	on	

other	exogenous	components	within	Full	media.		

	

Mutations	in	genes	involved	in	DNA	Damage	Response	(DNA)	were	prevalent	in	most	

organoids	sequenced.	For	the	purposes	of	categorising	organoids	into	clinically	

relevant	biomarkers,	the	mutation	status	of	ATM	and	TP53	were	assessed.			

Mutations	within	ATM,	which	has	been	previously	associated	with	DNA	replication	

stress,	was	identified	in	3	out	of	8	organoid	lines.	Whilst	these	had	not	been	

previously	identified	within	the	COSMIC	database,	these	changes	resulted	in	

deleterious	events	and	truncating	mutations.	The	comparative	analysis	of	germline	

DNA	would	therefore	be	useful	for	further	studies	of	these	organoid	lines.	It	was	also	

observed	that	TP53	was	frequently	mutated	among	organoids,	impacting	5	out	of	8	

lines	sequenced.		

	

Genetic	alterations	in	the	PI3K	and	RAS-MAPK	pathway	have	previously	been	

identified	within	CRC.	The	PIK3CA	gene	encodes	the	p110a	catalytic	subunit	of	

phosphatidylinositol	3-kinase	(PI3K),	with	mutations	resulting	in	aberrant	activation	

of	the	PI3K/	AKT	pathway	that	promotes	cell	division.	Within	our	organoid	cohort,	

Iso	48	was	found	to	harbour	a	missense	mutation	at	codon	1625	(A>T),	previously	

implicated	in	the	large	intestine	according	to	the	COSMIC	database.	Other	mutations	

identified	within	Iso	49,	75	and	78	were	not	previously	identified	as	having	a	high	

implication	in	other	colorectal	cancer	tissue	samples,	however	resulted	in	

deleterious	events.	A	comprehensive	molecular	characterisation	of	CRC	has	

previously	revealed	that	genomic	amplifications	or	mutations	of	the	gene	ERBB2,	is	

altered	in	approximately	6%	of	colorectal	tumours	(Cancer	Genome	Atlas	Network	
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2012).	In	the	organoids	assessed,	it	was	found	that	Iso	34,	48	and	78	contained	

alterations	previously	identified	within	the	COSMIC	database	as	pathogenic.	It	was	

found	that	most	organoids	also	contained	alterations	within	EGFR,	that	could	lead	to	

amplification	of	the	EGFR	receptor,	however	none	of	these	could	be	identified	as	a	

mutation	that	could	be	classed	as	targetable	within	the	clinic.	

	

BRAF	mutations	occur	in	approximately	8-15%	of	patients	with	CRC,	and	are	often	

associated	with	a	poorer	prognosis	in	patients.	Based	on	previous	findings	within	the	

literature,	BRAF	mutations	within	CRC	are	an	activating	missense	mutation	at	amino	

acid	position	600;	whereby	a	glutamic	acid	amino	acid	is	substituted	for	valine	

(V600E).	Iso	75	was	shown	to	harbour	a	mutation	at	this	position,	as	well	as	a	

truncation	at	residue	40	(previously	not	identified	within	COSMIC).	Iso	34	was	also	

shown	to	carry	a	BRAF	mutation	at	amino	acid	position	601,	which	has	been	lesser	

implemented	in	previous	colorectal	cancer	tissues	analysed.	KRAS	mutations,	

particularly	G12V	mutations	resulting	in	a	substitution	at	amino	acid	position	12	in	

KRAS	are	observed	in	approximately	40%	of	colorectal	cancers,	with	21%	of	these	at	

the	G12V	position	(Forbes	et	al.	2015).	Iso	50,	Iso	72,	and	Iso	73	were	shown	to	have	

harboured	these	KRAS	mutations	from	eight	organoid	lines	sequenced.		Another	

frequent	mutation	associated	with	CRC	is	a	p.G12D	mutation	which	results	in	the	

expression	of	constitutively	active	KRAS,	and	was	identified	within	2	of	our	organoid	

lines.
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Table	3.3	Organoids	harbour	CRC-relevant	mutations	

Table	depicting	key	gene	mutations	(by	amino	acid)	in	a	cohort	of	organoids.	

DNA	extraction	was	carried	out	by	Dr.	Andrew	Hollins	(Dale	lab).	OGT	(Oxford	Gene	Technologies)	

performed	NGS	and	subsequent	analysis	of	8	organoid	lines.	COSMIC	database	comparison	analysis	

was	carried	out	by	Dr.	Kenneth	Ewan	(Dale	lab).	

	

Iso	 APC	 CTNNB1	 BRAF	 ATM	 EGFR	 ERBB2	 KRAS	 TP53	 PIK3CA	 PTEN	

34	 p.E1451	

No	
COSMIC	
record	

	

p.K601E	

No	
COSMIC	
record	

	

p.T862A,p.
P1170A	

No	
COSMIC	
record	

	

48	 p.R259W	 p.S33F	

No	
COSMIC	
record	

	

p.P1170A	 p.E542V	

49	 p.Q1447	
p.R1450	

p.G12D	
	 p.R248Q	

No	
COSMIC	
record	

	

50	 p.E1286	
p.R232	

	
p.G12V	

	
p.R248Q	

72	 p.Q1291	 p.G12V	
	

73	 p.Q1228	 p.G12V	 p.R248R	
	

75	
No	

COSMIC	
record	

p.L46P	 p.V600E	
p.D693N	

No	
COSMIC	
record	

	

No	
COSMIC	
record	

No	
COSMIC	
record	

	

No		
COSMIC	
record	

78	 p.R876	
p.E1451	 p.WC38C	 p.P1170A	 p.G12D	 p.H193D	

	

No	
COSMIC	
record	
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3.2.4 Tumour	organoids	demonstrate	highest	metabolic	activity	within	the	first	
seven	days	of	culture	after	seeding	

	

To	ascertain	optimal	conditions	for	maximal	organoid	viability	to	facilitate	

subsequent	drug	titration	experiments,	metabolic	readouts	were	established	from	

organoids	in	culture,	as	opposed	to	relying	on	basic	parameters,	such	as	organoid	

size,	as	an	indication	of	growth.		

	

Organoids	(Iso	34)	previously	established	in	culture	were	split	by	trituration	and	

embedded	within	growth	factor-reduced	matrigel.	Media	changes	occurred	every	3	

days,	or	as	necessary.	To	determine	a	live	readout	of	metabolic	activity,	as	a	

proportional	measure	to	the	number	of	viable	cells	Presto	Blue	(Sigma),	a	resazurin-

based	reagent	that	is	reduced	in	the	presence	of	metabolic	activity	in	surrounding	

media	of	cells,	was	added	to	cells	in	culture	at	specific	time	points	over	a	period	of	

14	days.	As	depicted	in	Figure	3.9,	repeated	fluorescent	readouts	of	metabolic	

activity	was	shown	to	reach	a	peak	within	the	first	seven	days	of	culture	following	

routine	organoid	trituration.	There	was	no	significant	increase	in	mitochondrial	

activity	observed	thereafter,	indicating	that	exponential	growth	took	place	within	

the	first	seven	days	of	culture.		

	

Haematoxylin	&	Eosin	(H&E)	stained	sections	of	Iso	34	cultured	in	parallel	for	14	days	

demonstrated	that	organoids	were	composed	of	seemingly	necrotic	cores	when	

cultured	for	a	period	of	14	days.	This	would	suggest	that	a	number	of	cells	had	been	

shed	into	the	central	lumen	of	the	organoid	and	/	or	that	the	structures	became	too	

large	for	sufficient	nutrient	access	to	cells	in	the	centre.	Collectively,	this	data	

indicates	a	period	of	7	days	in	culture	is	sufficient	for	optimal	organoid	growth,	a	

prerequisite	required	for	generating	optimal	output	from	patient	material	in	terms	

of	expansion	in	culture.			
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Figure	3.9	Metabolic	activity	of	organoids	increases	within	the	first	seven	days	of	seeding.	

Iso	34	organoids	were	split	by	trituration,	embedded	within	growth	factor-reduced	matrigel	and	

seeded	within	round,	clear-bottomed	96	well	plates	in	defined	media	conditions.	(A)	Presto	Blue	

reagent	was	administered	to	organoids	at	day	3,7,10,14	following	seeding,	prior	to	collecting	

fluorescence	measurements	from	supernatant	on	a	Fluostar	OPTIMA	platereader	(BMG	Labtech)	with	

an	excitation	of	570nm,	emission	610nm	as	an	indication	of	metabolic	activity.	Data	is	shown	as	fold	

change	in	fluorescence	signal	from	first	measurement	(day	3)	in	culture	±	standard	deviation	(n=4	

wells).	**p	≤	0.01	using	a	paired	student’s	t-test	(B)	Following	14	days	in	culture,	Iso	34	organoids	

were	fixed	(4%	PFA),	embedded	within	paraffin,	and	sectioned	prior	to	hematoxylin	and	eosin	

staining.	Scale	bar	50	µm.			
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3.2.5 Organoid	formation	from	single	cells	

	

Given	previous	indications	that	organoid	size	is	not	necessarily	correlated	to	the	

number	of	metabolically	active	cells	within	a	structure,	it	was	investigated	whether	

further	regulation	of	organoid	size	could	be	beneficial	for	generating	organoids	

containing	viable,	proliferating	cells.	Here,	the	organoid	line	Iso	34,	an	organoid	line	

generated	within	the	first	stages	of	this	study,	was	used	to	explore	whether	

organoids,	enzymatically	digested	to	near-single	cell	could	recover	appropriately	to	

form	elaborate,	viable	structures	for	subsequent	assays.		

	

Established	cultures	were	dissociated	using	TrypLE	(Life	Technologies)	and	seeded	at	

an	approximate	density	of	2000	cells	in	20µl	of	Matrigel	in	96	well	clear,	round	

bottomed	plates	(Nunc),	and	incubated	in	Basal		‘7+’	Media,	containing	10μM	ROCK	

inhibitor	Y-27632	for	three	days.	ROCK	inhibitor	Y-27632	has	previously	been	

implemented	in	promoting	survival	of	intestinal	epithelial	cells	which	are	likely	to	

undergo	anoikis	following	disruptive	procedures	such	as	trypsinisation	(Ashley	et	al.	

2014;	Dr.Mairian	Thomas	-	personal	communication	and	PhD	thesis).	Iso	34	

organoids	were	formed	within	less	than	24	hours	of	culture,	and	further	developed	

to	form	more	lobular	structures	representative	of	previous	structures	identified	from	

organoids	cultured	by	trituration.	It	is	worth	noting	that	trypsinisation	alone	is	

unlikely	to	obtain	definitive	single	cells,	and	that	many	doublets	and	cell	aggregates	

would	remain	which	could	also	influence	growth	rates.		Over	a	period	of	15	days	in	

culture,	organoids	developed	to	form	morphologically	similar	structures	to	those	

previously	obtained	by	whole	trituration.		

 

To	assess	proliferation	rates	of	single	cell-derived	organoids,	quantitative	analysis	of	

mitochondrial	activity	was	taken	using	Presto	Blue.		Multiple	readouts	were	taken	

from	the	same	wells	(n=4	technical	replicates)	at	different	intervals	over	14	days,	

with	changes	in	media	taking	place	at	each	time	point.	Fluorescent	readouts	were	

measured	using	a	Fluostar	OPTIMA		(BMG	Labtech™)	platereader	at	excitation	of	

570nm	and	emission	of	610nm.	As	depicted	in	Figure	3.10(B),	the	greatest	increase	
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in	mitochondrial	activity	was	observed	between	days	2	and	7	in	culture,	with	no	

significant	increase	in	proliferation	thereafter	(p=<0.05,	student’s	t-test).	

Morphologically,	single	cells	formed	whole	structures	capable	of	proliferation,	as	

indicated	by	positive	Ki67	immunostain	in	Iso	34	organoids	at	day	7	in	culture.		
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Figure	3.10	Iso	34	proliferation	from	near-single	cells.	

Iso	34	organoids	were	trypsinised	to	near-single	cells	and	seeded	at	2000	cells	per	25	μl	of	matrigel	in	

round,	clear-bottomed	96	well	plates.	7+	media	conditions	were	applied,	with	ROCK	inhibitor	(Y-

27632)	included	for	6	days	to	aid	cell	recovery	from	the	trypsinisation	process.	(A)	Representative	

images	of	organoids	at	24	hours	(day	1)	and	15	days	following	seeding	respectively.	Scale	=	100µm.	

(B)	Proliferation	was	assessed	at	different	time	points	in	culture	using	a	presto	blue	cell	viability	kit.	

Presto	blue	was	added	to	media	in	wells	and	incubated	for	3	hours,	prior	to	fluorescent	readings.	

Graph	displays	the	fold	change	in	fluorescent	signal	from	spent	media	collected	at	each	time	point,	

normalized	to	first	measurement.	*	p	≤	0.05	(n=1,	4	technical	repeats)	from	student’s	t-test	(C)	

Confocal	images	of	immunofluorescent	staining	of	Iso	34	organoids	derived	from	single	cells,	staining	

for	Ki67.	Nuclei	were	counterstained	with	Hoechst.
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3.2.6 Optimal	seeding	densities	are	a	necessity	for	maximal	organoid	viability	

	

A	plethora	of	factors	have	the	potential	to	influence	the	rate	of	organoid	growth	and	

number	of	viable	cells	in	culture.	Previous	studies	in	the	literature	have	

demonstrated	the	potential	of	influencing	cell	fates	of	intestinal	stem	cells	by	

controlling	self-renewal	and	differentiation	(Yin	et	al.	2013).	Furthermore,	the	niche	

environment	that	tumour	organoids	themselves	generate	has	shown	to	be	a	

deciding	factor	in	dependency	on	exogenous	growth	factors	within	culture	(Fujii	et	

al.	2016a).	It	would	therefore	be	a	fair	assumption	that	subsequent	organoid	

formation	and	growth	can	be	influenced	by	the	number	of	cells	seeded	initially.	To	

enhance	organoid	compatibility	with	a	high	throughput	assay	format,	optimisation	of	

appropriate	seeding	densities	was	performed	using	an	organoid	line,	Iso	50.	

	

Trypsinised	cells	of	previously	established	organoids	(Iso	50)	were	seeded	at	a	range	

of	densities	within	white	clear-bottomed	96	well	plates	(n=6	wells).	A	range	of	

seeding	densities	(100	-	1000	cells/	µl	of	Matrigel)	within	a	total	volume	of	9	µl	of	

matrigel	were	plated	within	each	well.	Cell	seeding	was	based	on	calculations	of	

viable	cell	counts,	by	counting	trypan	blue-negative	stained	cells	only.	Following	a	7	

day	incubation	in	‘7+’media,	a	Cell	Titer	Glo	3D	endpoint	assay	(Figure	3.11)	was	

implemented,	in	which	the	quantitation	of	ATP	in	relative	luminescence,	and	thus	

quantity	of	metabolically	active	cells	per	well.	If	there	were	indeed	an	optimal	

seeding	density	for	tumour	organoids,	it	would	be	expected	that	under-	and	over-

seeding	could	be	detrimental	to	the	balance	of	important	secretory	niche	factors	

upon	which	organoids	rely	which	could	harbour	growth.		

	

Results	demonstrated	an	overall	increase	in	the	relative	luminescence	signal	

obtained	with	increasing	number	of	cells	seeded	.	ATP	readouts	were	however	

shown	to	plateau	beyond	an	initial	seeding	density	of	of	500	cells/µl	of	Matrigel.	A	

standard	curve	of	Cell	Titer	Glo	3D	measurements	obtained	from	known	ATP	

concentrations	generated	simultaneously	indicated	that	the	relative	luminescence	
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values	obtained	from	cultures	were	still	within	the	range	of	the	assay	window,	as	

shown	in	Figure	3.11	(A).	This	would	therefore	indicate	that	organoids,	beyond	a	

threshold	seeding	density	of	500cells/µl	of	Matrigel,	were	perhaps	restricted	by	

limiting	factors	for	growth	such	as	physical	space	and	nutrient	access.			

	

Organoid	formation	efficiency,	as	calculated	by	the	percentage	of	organoids	formed	

from	viable	single	cells,	was	somewhat	inversely	correlated	with	seeding	density	as	

depicted	by	Figure	3.11	(E).	Since	trypsinisation	of	organoids	are	unlikely	to	form	

absolute	single	cells,	the	proportion	of	doublets	or	triplet	cells	could	influence	the	

rate	of	growth	of	organoids.	However,	it	is	more	likely	that	a	lack	of	physical	space	

within	a	well	would	prevent	such	efficient	organoid	formation	as	they	compete	for	

nutrient	access.	Taken	together,	the	optimal	seeding	density	for	plating	was	

established	at	400	cells/µl	of	matrigel.	With	the	advantages	of	single-cell	seeding	

formats	clear,	this	density	was	incorporated	as	a	standard	across	all	organoid	lines	to	

incorporate	sufficient	number	of	organoids	per	well,	maintaining	maximal	yields	and	

viability.		

	

Using	established	seeding	densities,	organoids	formation	efficiencies	from	three	

different	isolations	(Iso	34,	Iso	49	and	Iso	50,	Figure	3.12)	were	calculated	over	three	

consecutive	passages	to	ensure	that	growth	characteristics	remained	stable	for	the	

purposes	of	experimental	repeats.	Despite	some	variation	observed	in	formation	

efficiencies	of	Iso	50	organoids,	overall	it	was	deduced	that	organoid	behaviour	

remained	largely	stable	over	passages	with	fluctuations	more	as	a	result	of	minor	

variations	in	seeding	accuracy	from	manual	counts.		

	

Overall,	these	data	demonstrate	the	establishment	of	optimal	seeding	densities	

required	to	facilitate	future	drug	titration	experiments.	Although	data	were	only	

collected	on	the	basis	of	one	organoid	line,	it	is	worth	noting	that	the	consistency	

from	one	assay	to	the	next	across	organoid	lines	was	also	a	factor	to	consider	to	

facilitate	further	drug	titration	experiments.
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Figure	3.11	Assigning	optimal	cell	seeding	density	for	optimal	organoid	growth	from	single	cell.	

Iso	50	organoids	were	dissociated,	seeded	at	a	range	of	densities	(100-1000	cells	per	µl	of	matrigel)	and	cultured	in	‘7+’	media	before	ATP	measurements	(A)	Standard	

curve	measured	from	known	ATP	concentrations	within	media	measured	using	the	Cell	Titer	Glo	3D	reagent	(n=3	technical	replicates).	(B)	Representative	images	of	

organoids	seeded	from	a	range	of	densities	(day	7),	Scale	bar	=	100	µm.	(C)	Cell	Titer	Glo	3D	readouts	from	organoids	at	day	7,	(n=6	well).	(D)	Average	number	of	organoids	

counted	(n=6	wells)	using	GelCount	software	after	7	days	in	culture.	(E)	Average	organoid	formation	efficiency	generated	per	known	viable	cells	seeded,	per	well.	Data	are	

presented	as	mean	±standard	deviation,	whereby	(n=6	)	replicate	wells.	*p<0.05;**p<0.01;***p<0.001,	ANOVA	with	Tukey’s	post	hoc	comparison.	
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Figure	3.12	Organoid	formation	efficiency	stability	over	three	consecutive	passages	

The	organoid	lines	(	Iso	34,	Iso	49,	Iso	50)	were	digested	with	TrypLE,	prior	to	plating	at	a	density	of	

400	cells/	µl	of	growth	factor-reduced	matrigel	within	white,	96	well	plates	,	and	overlaid	with	

defined	media.	Organoid	formation	efficiencies	were	calculated	by	the	percentage	of	organoids	

formed	from	the	known	number	of	cells	seeded	per	well.	Data	shown	from	n=3	technical	replicates	±	

standard	deviation.	*p<0.05;**p<0.01;***p<0.001,	Two	way	ANOVA	with	Tukey’s	multiple	

comparison	test.	
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3.2.7 Organoids	seeded	from	single	cells	enhance	assay	quality	in	a	96	well	plate	
format		

	

To	determine	whether	robust,	reproducible	treatment-dependent	responses	could	

be	measured	in	tumour	organoids	in	a	high	throughput	setting,	a	proof-of-principle	

assay	format	was	established,	in	which	organoid	viability	was	quantified	following	

treatment	with	5-Fluorouracil,	a	current	standard	of	care	(SOC)	chemotherapeutic	

for	CRC.	

	

Iso	34	cultures	were	established	from	freshly	dissociated	cells	and	were	incubated	in	

basal	‘7+’	media	containing	10µM	of	ROCK	inhibitor	for	the	first	three	days	in	culture	

to	enhance	organoid	recovery	from	single	cells.	Given	that	a	log	phase	of	growth	was	

previously	observed	during	the	first	seven	days	following	seeding,	treatment	was	

administered	during	this	period	to	ensure	the	inhibitor	would	exert	maximal	impact	

on	overall	organoid	viability.	Following	three	days	of	culture	from	dissociated	cells,	

DMSO	control	conditions	(0.1%	in	media)	and	a	titration	dose	of	5FU,	ranging	from	

9.76	nM	to	2500	nM,	were	applied	within	media.	Treatments	were	administered	for	

a	total	of	4	days	prior	to	an	endpoint	Cell	Titer	Glo	3D	viability	readout,	whereby	

luminescence	values	were	used	to	quantify	ATP	levels	as	an	indication	of	the	number	

of	metabolically	active	cells	present.	Representative	images	of	organoids	acquired	at	

day	5	and	day	7	in	culture	(2	days,	and	4	days	following	treatment,	respectively)	

demonstrated	that	5-FU	exerted	effects	in	a	dose	dependent	manner	within	2	days	

of	treatment	at	highest	concentrations;	multiple	structures	demonstrated	a	lack	of	

integrity,	with	smaller	cells	and	an	overall	darker	appearance,	indicative	of	increased	

cell	death.	

		

The	obtained	results	indicate	that	the	number	of	viable	cells	were	treatment-

dependent,	as	demonstrated	in	Figure	3.13	(A).	IC50	values,	the	concentration	of	

compound	required	to	induce	a	50%	inhibition	of	luminescence	readouts	compared	

to	control	conditions,	were	obtained	from	the	dose	response	curve	shown	in	Figure	
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3.13.	Based	on	Cell	Titer	Glo	3D	readouts,	the	IC50	values	identified	for	Iso	34	

organoids	treated	with	5FU	for	4	days	were	120	nM.		

	

Taken	together,	these	results	demonstrated	that	a	uniform	population	of	organoid	

sizes	during	initial	plating	generated	relatively	robust	assay	readouts	in	terms	of	

well-to-well	variation,	which	could	be	quantified	in	response	to	treatments,	further	

validating	such	assay	formats	for	subsequent	studies.	Attempts	to	recapitulate	this	

assay	format	in	triturated	organoids	as	opposed	to	those	seeded	from	single	cells	

(data	not	shown)	further	emphasised	the	importance	of	organoid	size	regulation	in	

delivering	more	reproducible	results.	
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Figure	3.13	Effects	of	5-FU	treatment	on	Iso	34	organoids	derived	from	dissociated	cells.	

Organoids	were	plated	in	96	well	plates	at	an	optimal	density	of	400	cells/	µl	of	Matrigel,	and	treated	with	a	two	fold	titration	range	(9	nM	–	2500	nM)	of	5-Fluorouracil,	or	

0.1%	DMSO	control	within	media,	following	three	days	in	culture.	(A)	Representative	organoid	images	at	day	5	and	7	in	culture.	(B)	Representative	diagram	of	optimised	

assay	format.	(C)	Drug-dose	response	curve	generated	from	an	endpoint	Cell	Titer	Glo	3D	viability	assay	(	mean	±±	standard	deviation,	n=3	wells)	IC50	values	generated	

were	of	120nM.	(n=3	wells)	
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3.3 Summary	

Here,	the	establishment	and	continuous	culture	of	a	cohort	of	patient-derived	CRC	

organoids	was	explored	to	facilitate	drug	studies	further	discussed	in	chapters	4	and	

5.	Appropriate	isolation	protocols	and	media	conditions	propagated	the	generation	

of	organoids	that	retained	key	histological	characteristics	from	parental	tumour	

sections	generated	from	an	array	of	TNM	stages.	A	genotyped	cohort	were	also	

shown	to	harbour	CRC-relevant	mutations,	further	highlighting	their	utility	as	a	

relevant	model	system	for	CRC	therapeutics.		

	

Work	described	here,	using	a	subset	of	organoids	to	optimise	suitable	assay	formats,	

demonstrated	that	organoids	established	from	dissociated	cells	generate	relevant,	

viable	structures	that	could	expand	sufficiently	from	little	material	to	yield	maximal	

organoid	outputs;	facilitating	the	transition	towards	a	high-throughput	system.		

Reproducibility	both	within	and	across	assays	was	also	explored;	plating	conditions	

enabled	sufficient	assay	sensitivity	to	highlight	treatment-dependent	responses,	

whilst	the	generation	of	sufficient	organoid	freezing	protocols	enables	repeats	to	be	

performed	within	a	few	passages.		

	

Furthermore,	this	preliminary	work	provides	a	strong	foundation	for	subsequent	

analysis	formats	that	can	be	further	adapted	to	explore	organoid-inhibitor	

relationships,	demonstrated	in	Chapters	4	and	5,	validating	this	amenable	system	for	

future	compound	testing.	
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4 Towards	modelling	a	clinical	trial	in	vitro:	optimisation	and	

utilisation	of	patient-derived	colorectal	organoid	models	

	

4.1 Introduction	

	

The	stratification	and	targeted	treatment	of	patients	according	to	the	molecular	

profile	of	their	tumour	has	shown	some	promise	for	the	future	of	CRC	therapeutics.	

Nevertheless,	genomic	profiling	as	a	basis	for	therapy	underestimates	the	complexity	

of	signalling	pathways	in	tumour	cells,	and	therefore	have	limitations	to	accurately	

predict	patient	outcomes	in	the	clinic	(Pauli	et	al.	2017).	Current	methods	to	assess	

functional	effects	of	therapies	rely	heavily	on	2D	clonal	culture	models	as	pre-clinical	

proxies	for	patient	tumour	drug	sensitivity	and	responses.	However,	cell	line	models	

fail	to	represent	some	tumour	subtypes	and	lack	both	phenotypic	cellular	and	

genotypic	heterogeneity,	limiting	their	relevance	to	tumours	assessed	within	clinical	

trials.			

	

The	generation	of	a	3D	colorectal	organoid	platform	could	thus	serve	as	an	

alternative	in	vitro	model	system	to	provide	a	better	representation	of	tumour	

biology	in	a	more	‘in	vivo’	like	context.	Given	the	volume	and	complexity	of	pre-

clinical	data	required	to	support	clinical	trials,	further	information	is	needed	to	

support	the	utility	of	organoids	in	the	context	of	live-cell	biomarker	readouts.	

The	data	presented	here	therefore	aims	to	ensure	whether	sufficient	data,	through	

the	use	of	organoids,	can	be	generated	to	guide	subsequent	trial	designs,	

complementary	to	genomic	analyses.	Within	this	study,	the	FOCUS	4	clinical	trial	was	

used	as	a	basis	to	examine	whether	organoids	could	be	utilised	as	suitable	tools	to	

capture	beneficial	in	vitro	data.		

	

Employing	methods	described	in	chapter	3,	the	work	presented	in	this	chapter	

details	advances	made	towards	an	organoid	screen	against	a	panel	of	biomarker-

driven	therapies	relevant	to	the	FOCUS	4	trial.	To	achieve	this,	a	cohort	of	organoids	
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were	treated	with	agents	used	in	a	number	of	arms	of	FOCUS	4,	and	assessed	using	

viability	and	imaging	analysis	readouts.		The	outcome	of	this	purely	in	vitro	study	

should	allow	us	to	make	a	preliminary	assessment	of	the	value	of	specific	tumour	

biomarkers	as	indicators	of	drug	response	in	CRC	organoids.	Furthermore,	this	work	

should	enable	us	to	eventually	cross-compare	organoid	responses	with	a	population	

of	independent	patients	who	have	been	stratified	with	the	same	biomarkers	within	

the	FOCUS	4	trial.	This	will	allow	us	to	assess	whether	organoid	responses,	have	the	

potential	for	independent	power,	from	that	of	biomarkers,	in	the	assessment	of	

patient	responses.		
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4.2 	Results	

As	previously	discussed	(section	1.5.1),	the	MRC	FOCUS	4	trial	is	a	randomised	

multicentre	clinical	trial	that	aims	to	stratify	patients	according	to	the	molecular	

profile	of	their	tumour	and	treat	them	accordingly	with	hypothesis-driven	therapies.	

As	such,	there	are	several	potential	drug	candidates	targeting	several	pathways	

within	tumour	development.	Following	genotyping	of	organoids,	described	in	

chapter	3,	work	described	here	aimed	to	characterise	organoid	responses	to	each	

relevant	arm	of	the	FOCUS4	trial,	essentially	enabling	a	small	scale	in	vitro	study.	The	

main	aim	of	this	work	is	to	establish	whether	organoid	responses	might	be	

incorporated	into	future	clinical	trial	designs.	
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4.2.1 Cell	cycle	inhibitors	induce	cell	cycle	arrest	in	CRC	organoids.	

	

As	previously	discussed	in	section	1.5.4,	deficiencies	in	DDRs	are	contributing	factors	

in	tumour	initiation	and	progression,	and	are	therefore	an	attractive	target	for	

therapy.		Several	targets	of	the	DDR	pathway	have	been	identified	and	subject	to	

manipulation	by	many	drug	candidates,	in	order	to	induce	synthetic	lethality	within	

tumour	cells.	Targets	within	the	pathway,	Wee1	and	ATR,	are	currently	under	

investigation	within	the	FOCUS	4	clinical	trial	to	assess	whether	selective	compounds	

(Mk1775	and	AZD6738)	will	result	in	improving	progression	free	survival	in	patients	

harbouring	KRAS/TP53	and	ATM	mutations,	respectively.	

	

In	order	to	validate	whether	organoids	can	be	used	within	an	in	vitro	trial	setting,	a	

selection	of	organoids	that	were	well	established	in	culture	(as	listed	in	Table	3.3)	

were	administered	with	a	Wee1	inhibitor	(MK1775)	and	ATR	inhibitor	(AZ20,	an	

analogue	of	AZD6738	suitable	for	in	vitro	use)	to	recapitulate	two	treatment	arms	of	

FOCUS	4,	and	assessed	for	readouts	of	viability	as	a	representation	of	tumour	growth	

inhibition.	Preclinical	in	vitro	and	in	vivo	data	have	previously	demonstrated	the	

efficacy	of	AZD6738,	particularly	(but	not	exclusively)	within	ATM-deficient	tumours,	

generating	IC50	values	of	less	than	1	µM	in	cell-based	assays	(Kim	et	al.	2017).	

MK1775	has	also	demonstrated	promising	pre-clinical	results	as	a	DNA-damaging	

agent	(Kreahling	et	al.	2013).			

	

A	set	of	organoids	previously	seeded	from	single	cells,	at	day	3	in	culture,	were	

administered	with	a	titration	of	MK1775	(0	nM	–	5000	nM),	AZ20	(0nM-	5000	nM)	as	

well	as	a	DMSO	control	(0.1%),	within	the	tailored	media	conditions	as	required	for	

each	organoid	line	(Table	3.2).	Following	4	days	of	exposure	to	compounds,	an	ATP	

endpoint	viability	readout	was	generated	from	each	condition	and	plotted	to	

generate	dose	response	curves	per	organoid	line	(data	not	shown	for	all	lines).	From	

each	curve,	EC50	(half	maximal	effective	concentration)	values	were	obtained	from	

n=3	independent	experiments,	as	listed	in	Table	4.1.	All	8	organoids	tested	
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demonstrated	a	range	of	sensitivities	to	both	compounds	with	EC50	values	in	the	

range	of	0.3	µM	–	21	µM	for	AZ20,	and	0.1	µM	–	1	µM	for	MK1775,	as	indicated	in	

Table	4.1.	It	was	clear	that	Iso	48,	Iso	50	and	Iso	78	were	the	most	sensitive	organoid	

lines,	mirroring	EC50	values	obtained	in	previous	studies	using	LoVo	colorectal	

adenocarcinoma	cells	(Foote	et	al.	2013).	Iso	49	was	shown	to	be	the	most	resistant	

organoid	line,	generating	EC50	values	of	approximately	21	µM,	suggesting	that	any	

changes	in	organoid	viability	were	only	obtained	at	the	highest	doses.	Whilst	the	

degree	of	sensitivities	varied,	overall,	all	organoids	were	responsive	to	Wee1	

inhibition,	obtaining	cellular	EC50	values	in	a	range	identified	previously	in	the	

literature,	of	approximately	0.08	–	0.3	µM	(Hirai	et	al.	2009).	Overall,	given	that	

many	organoids	harboured	TP53,	KRAS	or	ATM	mutations,	further	studies	using	a	

larger	sample	cohort	and	appropriate	controls	such	as	wild	type	organoids	would	be	

beneficial	to	investigate	whether	ATR	and	Wee1	inhibition	sensitivity	is	correlated	

with	high	levels	of	DNA	damage.		

	

Representative	images	from	a	sensitive	organoid	line,	Iso	72,	as	illustrated	in	Figure	

4.1,	demonstrated	the	presence	of	extensive	cellular	debris	following	4	days	of	

treatment,	indicative	of	cell	death,	following	treatment	with	both	AZ20	and	MK1775.	

This	in	turn	was	concordant	with	data	from	ATP	endpoint	viability	readouts	at	day	7	

in	culture.		To	further	explore	the	impact	of	MK1775	and	AZ20	treatment	upon	

organoid	growth,	Iso	72	organoids	were	further	scored	according	to	number	of	Ki67	

positive	cells	per	organoid.	Following	4	days	of	treatment,	organoids	were	stained	

with	a	nuclear	(Hoechst)	and	proliferation	(Ki67)	marker,	prior	to	acquisition	of	z-

stacks	on	a	confocal	microscope.	Quantification	was	facilitated	using	IMARIS	

software	(BITPLANE),	as	an	automated	counting	tool	to	identify	nuclei,	as	well	as	

positively	stained	cells.	The	number	of	Ki67-positive	cells	were	recorded	as	a	

percentage	per	organoid,	with	a	minimum	of	5	organoids	counted	per	condition.	

Within	control	(DMSO,	0.1%)	conditions,	it	was	shown	that	80%±13%	of	cells	within	

organoids	were	positively	immunostained	for	Ki67.	Treatment	with	150	nM	MK1775	

resulted	in	a	significant	reduction	in	proliferation,	whereby	an	average	of	57%±17%	

of	cells	per	organoid	were	Ki67	positive	(p	≤	0.01,	Welch	two	sample	t-test).	

Following	4	days	of	treatment	with	AZ20,	a	similar	trend	was	observed,	as	shown	in	
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images	acquired	(Figure	4.2).	However,	given	the	overall	diminished	organoid	size	

induced	by	drug	addition,	compared	to	control	conditions,	smaller	organoid	

structures	were	more	readily	lost	in	wash	steps	required	as	a	result	of	technical	

artefacts	of	methodology,	limiting	the	number	of	organoids	that	could	be	counted.		
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Figure	4.1	Iso	72	organoids	respond	to	a	Wee1	and	ATR	inhibitor	

Freshly	dissociated	Iso	72	organoids	were	seeded	in	growth	factor-reduced	Matrigel	at	a	density	of	

400	cells/	µl	Matrigel	and	overlaid	with	media.	Following	three	days	of	recovery,	a	titration	of	(A)	

MK1775	(19	nM	–	5000	nM)	or	(B)AZ20	(39	nM	–	10	µM)	or	DMSO	(0.1%)	negative	control	were	

supplemented	within	media.	Following	4	days	of	treatment,	a	Cell	Titer	Glo	3D	assay	was	performed	

to	quantify	relative	ATP	levels	per	well	(Relative	Luminescence	Units,	n=3).	(C)	Representative	

microscope	images	at	day	7	following	treatment	with	DMSO,	MK1775	or	AZ20.	Data	shows	

representative	dose	response	from	triplicate	wells.		
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Figure	4.2	Scoring	proliferation	in	CRC	organoids	following	treatment	with	Wee1	inhibitor,	ATR	inhibitor.	

Iso	72	Organoids	were	seeded	as	single	cells	prior	to	treatment	with	MK1775	(150	nM),	AZ20	(625	nM)	and	DMSO	(0.1%)	within	media	for	four	days,	then	fixed	with	4%	

PFA,	prior	to	immunostaining	with	Hoechst	and	Ki67.	Image	z-stacks	of	organoids	were	captured	on	a	confocal	microscope	and	then	quantified	using	IMARIS	software	(A)	

Flow	chart	depicting	counting	of	whole	3D	organoids	using	IMARIS	software	(B)	Representative	images	of	organoids	treated	and	stained	with	Ki67	and	Hoechst.	Scale	bar	=	

50	µm.	(C)	Quantification	of	the	average	number	of	Ki67	positive	cells	per	organoid,	n=	5-15	organoids.	Significance	of	number	of	proliferating	cells	were	calculated	using	

Welch	two	sample	t-test	and	Mann	Whitney	two-tailed	test	*p≤0.01,	**	p≤0.05.Images	and	IMARIS	counts	were	collected	and	analysed	by	Kate	Densley	under	my	

supervision.
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4.2.2 High-throughput	phenotypic	screening	for	robust	quantification	of	
responses	to	DDR	inhibitors.	

	

Despite	the	results	obtained	from	proliferation	counts	of	organoids	exposed	to	AZ20,	

the	extent	to	which	measurements	of	cellular	proliferation	could	be	interpreted	

biologically	was	limited	for	several	reasons.	Firstly,	the	technical	process	involved	

limits	the	number	of	organoids	counted	as	many	smaller	organoids,	as	a	result	of	

growth	inhibition,	are	washed	away	during	processing.	This	was	particularly	the	case	

for	Iso	75	organoids,	as	the	structures	were	generally	smaller	in	culture	than	

organoid	from	other	lines	(data	therefore	not	shown).	This	was	also	a	relatively	low-

throughput	readout	to	characterise	drug	effects.	In	order	to	further	characterise	the	

effects	of	cell	cycle	inhibitors	upon	organoids	at	greater	detail	to	overcome	

limitations	previously	introduced,	introducing	stains	that	would	be	more	compatible	

to	fewer	washes,	a	high	throughput	3D	image	based	screening	process,	in	

collaboration	with	OcellO	(Leiden,	Netherlands),	was	implemented.	Such	technology	

enabled	the	examination	of	morphological	parameters	from	individual	nuclei	to	

whole	organoid	population	levels	that	can	be	quantified.		

	

All	organoids	were	therefore	prepared	as	single	cells	and	cultured	in	384	well	plates	

in	optimal	media	conditions	(as	previously	outlined	in	Table	2.1)	for	3	days,	then	

treated	with	a	titration	of	AZ20	and	a	DMSO	(0.1%)	control.	Following	4	days	of	

treatment,	organoids	were	fixed	and	stained	simultaneously	with	4%	PFA,	Nuclear	

stain	(Hoechst)	and	cytoskeletal	stain	(TRITC-Phalloidin),	as	described	in	(Di,	Klop,	

Rogkoti,	Devedec,	Water	van	de,	et	al.	2014).	Wells	were	then	washed	twice	with	

PBS	following	fixation.		

	

Individual	z-stack	images	of	whole	384	well	plates	were	collated	on	a	MetaXpress®	

high-content	microscope	at	OcellO,	then	inputted	into	the	novel	OMiner	analysis	

software	developed	by	OcellO,	as	detailed	previously	in	Chapter	2.	Briefly,	

projections	of	F-actin	and	hoechst	from	individual	z-stacks	were	used	to	extrapolate	

masks	of	individual	organoids,	internal	lumen	structures	and	nuclei	from	each	well.	
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Image	segmentation	and	filters	were	applied	to	distinguish	individual	objects	per	

well,	and	enhance	noise	suppression	to	balance	sensitivity	of	analysis.	Relevant	

masks	were	then	used	to	acquire	approximately	650	quantifiable	morphological	

features,	as	well	as	fluorescence	intensities	per	channel	(Di,	Klop,	Rogkoti,	Devedec,	

Water	van	de,	et	al.	2014).	Data	from	individual	organoids	were	pooled	on	a	well-by-

well	basis,	with	data	from	individual	wells	(minimum	of	8	per	condition)	then	

gathered	to	yield	average	parameter	readings	per	condition.		

	

Following	ATR	treatment,	several	parameters	were	measured	as	an	indication	of	

organoid	response.	It	was	shown	that	ATR	inhibition	resulted	in	a	slight	decrease	in	

overall	organoid	area,	limiting	complex	internal	features	as	shown	in	control	

conditions.	Figure	4.3	depicts	the	effects	on	phenotypic	profile	of	Iso	75	as	an	

example.	Assessing	organoid	mean	area	as	a	response	to	treatment,	as	previous	data	

indicate,	is	somewhat	limiting,	as	structures	can	appear	larger	as	a	result	of	

accumulated	cellular	debris.	Given	that	alterations	in	nuclear	morphology	have	

previously	been	associated	within	activation	of	cell	death	(Eidet	et	al.	2014;	

Edmondson	et	al.	2014),	and	the	role	of	ATR	inhibition	within	this	response,	the	

effects	of	AZ20	on	nuclear	morphology	was	studied.	Several	morphological	hallmarks	

of	apoptotic	events	upon	the	nucleus	have	previously	been	reported	in	the	

literature,	such	as	chromatin	condensation,	visualized	by	Hoechst,	overall	nuclear	

shrinking	as	well	as	an	increase	in	nuclear	circularity	(Ziegler	and	Groscurth	2004).	

Here,	it	was	found	that	similar	features	were	influenced	in	a	dose-dependent	

manner	by	ATR	treatment.	Nuclei	profiles	of	Iso	75	organoids	revealed	that	an	

increasing	concentration	of	AZ20	were	correlated	with	an	increase	in	average	

nuclear	circularity,	a	decrease	in	the	average	number	of	nuclei	per	organoid	

structure,	as	quantified	from	individual	masks	nuclei	per	organoid.	Taken	together,	it	

was	found	that	there	was	a	convincing	correlation	between	hallmarks	of	apoptosis	

and	reduction	in	overall	organoid	area.				
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Figure	4.3	Phenotypic	analysis	reveals	nuclear-dependent	effects	of	ATR	inhibitor	treatment	within	

CRC	organoids.	

Iso	75	Organoids	were	seeded	as	single	cells	within	384	well	plates	prior	to	treatment	with	a	dose	

titration	of	AZ20	(0nM	–	2500	nM)	and	DMSO	control	(0.1%)	within	media	for	four	days,	then	fixation	

and	staining	with	Hoechst	and	Phalloidin.	Image	z-stacks	of	organoids	were	captured,	and	parameters	

were	quantified	by	OcellO.	(A)	Representative	images	of	a	well	of	organoids	treated	with	AZ20	(2.5	

µM)	and	DMSO	control,	and	masked	according	to	Hoechst	and	Phalloidin	channels.	Hoechst	channel	

information	was	used	to	generate	nuclear	profile	of	organoids.	(Bi-iv)	Scatterplots	of	measurements	

acquired	of	(i)	average	organoid	area(ii)	average	nucleus	area	and	(iii)	average	nucleus	circularity	

(iv)fraction	of	apoptotic	cells	per	organoid,		per	dose	titration	within	Iso	75	organoids.	Images	

captured	at	OcellO.	Scale	bar	=	1mm.		
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4.2.3 Organoids	demonstrate	differential	sensitivities	to	an	aspirin	metabolite	
irrespective	of	PIK3CA	mutation	status	

	

As	discussed	within	Chapter	1	(1.5.3),	retrospective	studies	within	the	literature	have	

associated	the	reduction	of	tumour	burden	in	CRC	patients	harbouring	PIK3CA	

mutations	when	treated	with	aspirin	compared	to	non-PIK3CA	mutant	tumours.	The	

FOCUS	4	trial	aims	to	identify	whether	PIK3CA	can	be	used	as	a	biomarker	for	aspirin	

responsiveness,	and	whether	aspirin	treatment	will	ultimately	benefit	patients	

harbouring	PIK3CA	mutations.	In	vitro	studies	have	demonstrated	a	concurrent	

effect	of	many	non-steroidal	anti-inflammatory	drugs	(NSAIDs),	including	aspirin,	

upon	colorectal	cancer	cells,	suggesting	that	such	compounds	predispose	tumour	

cells	to	apoptotic	events.	Here,	organoids	were	administered	with	the	active	

metabolite	of	aspirin,	salicylic	acid,	and	assessed	for	responses.				

	

A	set	of	organoids	were	digested	to	(near)	single	cells,	counterstained	with	a	dual	

Acridine	Orange/Propidium	Iodide	live/dead	cell	stain	and	counted	using	an	

automated	LUNA-FL™	fluorescence	cell	counter.	400	cells/	µl	matrigel	were	then	

plated	in	96	well	plates,	overlaid	with	optimum	growth	media	per	line,	and	

incubated	for	3	days.	Orally-administered	low	dose	aspirin	can	reach	a	peak	plasma	

concentration	of	approximately	7µM	(Alfonso	et	al.	2014).	Organoids	were	therefore	

subject	to	treatment	of	a	dose	titration	range	of	salicylic	acid	between	0.19	nM	–	5	

µM,	as	well	as	a	volume	matched	DMSO	control	(0.1%)	within	triplicate	wells	for	a	

further	4	days.	An	endpoint	Cell	Titer	Glo	3D	viability	assay	was	implemented,	in	

which	the	quantification	of	ATP	and	thus	metabolically	active	cells	per	well	

demonstrated	that	treatment	salicylic	acid	induced	a	clear	dose-dependent	response	

in	some	organoid	lines.	Each	experiment	was	composed	of	a	minimal	of	three	

technical	replicates	per	condition.	Growth	curves	generated	from	Cell	Titer	Glo	3D	

readouts	of	Relative	Luminescence	Units	indicated	that	multiple	organoid	lines	were	

responsive	to	treatment,	generating	average	IC50	values	0.4	µM	–	5	µM,	as	indicated	

in	Table	4.1.	Interestingly,	organoids	were	more	sensitive	to	effects	of	salicylic	acid	in	

comparison	to	CRC	cell	lines	such	as	SW480,	HT29	and	HCT116,	which	have	

previously	shown	sensitivity	at	IC50	values	ranging	from	2.5	-	5mM	(Pathi	et	al.	2012).	



	 130	

As	shown	in	Figure	4.4,	it	was	observed	that	Iso	73,	was	the	most	resistant	organoid	

to	salicylic	acid	effects	(no	EC50	value	obtainable	from	a	drug	dose	response	curve).	

Conversely,	Iso	72	organoids,	as	represented	by	Figure	4.4,	demonstrated	a	degree	

of	sensitivity	to	aspirin	treatment,	with	EC50	values	of	approximately	2	µM	(n=3	

independent	experiments)	obtained.	Having	shown	responses	within	ATP	assays,	Iso	

72	was	further	counterstained	with	the	proliferation	antibody	Ki67	following	4	days	

of	treatment.	Counts	obtained	demonstrated	that	1.2	µM	salicylic	acid	induced	a	

reduction	in	the	number	of	Ki67	positive	cells	(from	80%	proliferation	per	average	

organoid	to	overall	40%	proliferating	cells	per	organoid)	on	an	organoid-by-organoid	

basis	compared	to	matched	DMSO	control.		

	

As	indicated	in	Chapter	3,	Iso	48,	Iso	49,	Iso	75	and	Iso	78	were	shown	to	harbour	

PIK3CA	mutations,	and	therefore	were	expected	to	respond	to	aspirin	treatment	

under	the	assumption	that	PIK3CA	mutations	were	a	suitable	biomarker	for	aspirin	

sensitivity.	Corresponding	EC50	values	from	viability	assays	demonstrated	little	

correlation	between	aspirin	sensitivity	and	PIK3CA	mutation	status,	with	the	most	

sensitive	organoid	lines	having	demonstrated	no	evidence	of	harbouring	PIK3CA	

mutations.	However,	given	the	multiple	mechanisms	of	action	and	targets	that	are	

likely	to	be	involved	in	aspirin-induced	effects,	it	is	somewhat	challenging	to	

delineate	the	exact	correlation	between	aspirin	and	PIK3CA	as	a	biomarker	in	this	

instance.	This	will	further	be	considered	in	the	discussion	section	of	this	thesis	

(Chapter	6).		
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Figure	4.4	Analysis	of	aspirin	metabolite	on	organoid	growth.	

Freshly	digested	organoids	were	seeded	at	densities	of	400	cells/	µl	Matrigel	and	overlaid	with	growth	

media.	Following	3	days	of	culture,	a	titration	range	of	salicylic	acid	(19nM-	5000	nM),	or	a	volume	

matched	DMSO	control	(0.1%)was	administered.	Representative	images	of	(Ai)	Iso	72	and	(Aii)	Iso	73	

at	day	7	in	culture.	Following	4	days	of	treatment,	representative	EC50	curves	were	generated	from	

ATP	quantification	of	(Bi)	Iso	72	and	(Bii)	Iso	73	organoids	expressed	as	Relative	Luminescence	Units	

versus	concentration	of	salicylic	acid	administered,	n=3	.	(Ci)	Representative	images	of	Iso	72	

Organoids	fixed	and	stained	for	ki67(proliferation)	and	caspase	3	(apoptosis)	markers	following	

treatment	with	1.2	µM	salicylic	acid	(Cii)	Ki67-positive	cells	were	counted	using	IMARIS	software.	

Scale	bar	indicates	50	µm,	n=5-12	organoids	per	group.	Levels	of	significance	were	determined	using	

n	unpaired	t-test	with	Welch’s	correction	,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001.	Representative	

images	and	subsequent	data	from	(Ci)	and	(Cii)	were	collected	by	Kate	Densley	under	my	supervision.		
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Given	the	indications	in	the	literature	that	metabolised	aspirin	induces	apoptosis	in	a	

number	of	different	tumour	cell	types	in	vitro,	including	breast,	gastric	and	

colorectal,	we	looked	for	markers	of	apoptosis	in	the	organoid	models.	Following	

treatment	with	salicylic	acid	(1.2	µM)	for	4	days,	Iso	72	organoids	were	further	

counterstained	with	Caspase	3	as	a	marker	for	apoptosis,	demonstrating	some	

degree	of	staining.	To	further	quantify	this,	and	to	ascertain	whether	apoptotic	

events	were	dose	dependent,	phenotypic	profiling	was	implemented,	as	previously	

described.	Briefly,	organoids	were	plated	in	black,	clear-bottomed	384	well	plates	as	

single	cells	and	following	3	days	of	recovery,	were	treated	with	a	9—point	dilution	of	

salicylic	acid,	as	well	as	a	DMSO	control.	Following	4	days	of	treatment,	wells	were	

simultaneously	stained	with	Hoechst	(nuclei)	and	TRITC-phalloidin	(F-actin),	washed,	

and	imaged	on	a	high-content	confocal	microscope	(images	captured	by	OcellO).	Z-

stack	images	were	then	inputted	through	the	OMiner	platform	to	readily	detect	and	

quantify	relevant	features.	For	Iso	72	organoids,	inspection	of	overall	number	and	

size	of	organoids	demonstrated	no	dose-dependent	effect	of	salicylic	acid	treatment.	

However,	quantified	measurements	(Figure	4.5)	were	suggestive	that	aspirin	

treatment	induced	impacts	upon	individual	nuclei.	Whilst	there	was	no	direct	

evidence	of	involvement	of	apoptosis	from	phenotypic	nuclei	profiles,	the	overall	

presence	of	Caspase	3	within	organoids	could	be	indicative	of	apoptotic	effects.	It	is	

most	likely	that	inhibition	of	proliferation	results	in	smaller	organoids	following	

treatment	with	salicylic	acid.	It	is	possible	that	further	quantification	of	Caspase	3	in	

control	and	treatment	conditions	would	enhance	observations,	as	well	as	other	

assay	improvements,	further	discussed	in	Chapter	6.	
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Figure	4.5	Analysis	of	aspirin	metabolite	on	organoid	phenotypes	

Freshly	digested	organoids	were	seeded	at	optimal	densities	of	400	cells/	µl	Matrigel	and	overlaid	

with	growth	media,	prior	to	treatment	of	a	titration	range	of	salicylic	acid	(19nM-	5000	nM),	or	a	

volume	matched	DMSO	control	(0.1%)from	day	4	to	7	in	culture.	Phenotypic	profiling	of	Iso	72	

organoids	using	OcellO	readouts	to	identify	changes	in	nuclei	profiles	in	response	to	treatment	with	a	

dose	range	of	salicylic	acid.	Significant	changes	in	average	number	of	apoptotic	nuclei	(A)	and	average	

area	of	nuclei	per	well	(B)were	calculated	from	a	minimum	of	n=8	wells	per	treatment.	Significant	

changes	in	nuclei	profiles	were	calculated	using	a	one	way	ANOVA	with	Dunnett’s	multiple	

comparison	test,	p<*=0.05.
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4.2.4 Evaluating	the	impact	of	her1-3	inhibition	upon	organoids	

	

AZD8931,	clinically	known	as	Sapitinib,	is	a	potent	ERBB2	and	EGFR	inhibitor,	having	

previously	shown	capability	of	preventing	EGF-driven	cellular	proliferation	in	

multiple	tumour	cell	lines.	Within	the	FOCUS	4	clinical	trial,	Sapitinib	is	a	proposed	

compound	to	treat	patient	carrying	Erbb2	amplification	and	wild	type	for	BRAF,	KRAS	

and	PIK3CA.	As	described	in	studies	elsewhere,	mammary	tumour	cell	lines	

exhibiting	Erbb2	amplification	were	inherently	sensitive	to	Sapitinib	treatment.	A	

study	by	Mu	et	al.,	(2014)	demonstrated	that	inhibition	of	EGFR	dependent	signalling	

resulted	in	a	suppression	of	cell	growth	and	induction	of	apoptotic	events,	findings	

which	were	then	translated	in	vivo,	when	Sapitinib	was	administered	in	combination	

with	a	chemotherapeutic	in	a	xenograft	model	(Mu	et	al.	2014).		

	

To	explore	the	impact	of	Sapitinib	upon	organoid	viability,	established	organoids	

were	digested	to	single	cells	and	plated	in	96	well	plates,	subjected	to	treatment	

with	a	titration	of	Sapitinib	and	administered	with	a	Cell	titer	Glo	3D	reagent	to	

quantify	relative	ATP	levels	(Figure	4.5).	Measurements	indicated	no	clear	dose	

dependent	responses	in	a	number	of	organoid	lines	(Table	4.1),	with	the	exception	

of	some	responses	from	Iso	72	at	the	highest	concentrations	of	Sapitinib	

administered	(1µM	–	5	µM).	Recent	studies	have	further	demonstrated	organoid	

sensitivity,	reporting	IC50	values	of	approximately	0.04	µM	–	1	µM	(Wetering,	et	al.	

2015).		

	

To	further	investigate	the	impact	of	Sapitinib	upon	proliferation	within	Iso	72,	

organoids	were	firstly	treated	with	Sapitinib	(40	nM)	for	four	days	and	analysed	for	

changes	in	Ki67	as	an	indicator	of	proliferation.	It	was	found	that	Sapitinib	treatment	

reduced	the	average	number	of	proliferating	cells	per	organoids	from	proliferation,	

from	81%±13%	to	47%±16%,	without	fully	inhibiting	overall	viability	as	indicated	by	

ATP	readouts.	To	further	investigate	the	effects	of	Sapitinib	upon	organoids,	

phenotypic	profiles	of	control	(DMSO,	0.1%)	versus	a	dose	range	of	Sapitinib	were	

analysed	using	OcellOs	novel	OMiner	platform	(conducted	in	collaboration	with	

OcellO)	,	as	previously	described.	Quantification	of	Iso	72	nuclei	profiles	revealed	a	
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significant	increase	in	the	fraction	of	apoptotic	nuclei	per	organoid	with	increasing	

doses	of	treatment	(Figure	4.5	(C)).	Taken	together,	this	would	support	previous	

indications	in	the	literature	that	Sapitinib	exerts	effects	by	suppressing	proliferation	

and	inducing	apoptosis.	However,	given	that	EC50	values	were	within	a	high	range	

compared	to	expected	values	in	sensitive	organoids,	further	work	would	need	to	

further	confirm	downstream	effects	of	Sapitinib	treatment	upon	EGFR-mediated	

signalling.	

	

As	detailed	in	Chapter	3	(Table	3.3),	many	organoids	exposed	to	Her1-3	inhibitor	

contained	mutations	within	BRAF,	PIK3CA	and	KRAS.	It	is	therefore	possible	that	such	

mutation	profiles	could	interfere	downstream	from	Sapitinib-mediated	signalling	

inhibition,	resulting	in	a	lack	of	strong	responses	from	most	organoid	lines.	
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Figure	4.5	Assessing	the	effects	of	Sapitinib	on	organoid	growth	

Freshly	digested	organoids	were	seeded	at	400	cells/	µl	Matrigel	and	overlaid	with	growth	media	for	3	

days,	prior	to	treatment	of	a	titration	range	of	sapitinib	(19nM-	5000	nM	for	viability	assays,	5nM	–	

1250	nM	for	phenotypic	screening),	or	a	volume	matched	DMSO	control	(0.1%)	for	4	days	in	culture.	

(A)	Iso	72	Organoids	fixed	and	stained	for	ki67(proliferation)	marker	following	treatment	with	39	nM	

Sapitinib,	and	counted	using	IMARIS	software,	n=5-12	organoids	per	group.	Levels	of	significant	were	

determined	using	n	unpaired	t-test	with	Welch’s	correction	,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001		(B)	

Representative	EC50	best	curves	were	generated	following	4	days	of	Iso	72	organoid	treatment	and	

expressed	as	Relative	Luminescence	Units	versus	concentration	of	sapitinib	administered,	generating	

EC50	values	of	868	nM	(±1193	nM,	n=3).	(C)Phenotypic	profiling	of	Iso	72	organoids	using	OcellO	

readouts	to	identify	changes	in	nuclei	profiles	in	response	to	treatment	with	a	dose	range	of	Sapitinib.	

Data	from	(B)	were	collected	by	Kate	Densley	under	my	supervision.	
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	Table	4.1	Collective	EC
50 	values	of	inhibitors	tested,	generated	from

	ATP	assays.	

Data	acquired	from
	ATP	assay	analysis	of	organoid	lines	tested	w

ith	com
pounds	w

ithin	the	FO
CU

S	4	trial.	Data	show
n	as	m

ean	±	standard	deviation,	n=3	independent	

biological	replicates,	unless	otherw
ise	indicated	by	sym

bols	w
hereby	*	n=2.	EC

50 	curves	w
ere	generated	using	XLFit	plug-in	for	Excel;	w

here	no	curve	fit	w
as	possible	this	is	

indicated	as	such.	

			
	

	

EC
50 	(nM

)	
Iso	34	

Iso	48	
Iso	49		

Iso	50	
Iso	72	

Iso	73	
Iso	75	

Iso	78	
AZ20	

6566(±1046)	416*	
21638(±3537)	453(±136)	

2136(±2646)	4272(±6269)	7011(±5263)	354(±254)	

M
K1775	

1025(±187)	
180(±9)	

130*	
338(±78)	

205(±119)	
327(±150)	

126(±28)	
526(±673)	

Salicylic	acid	486(±108)	
5309(±437)	

732(±519)	
740(±946)	

2912(±3124)	N
o	curve	

1787(±1106)	1761(±24938)	

SapiGnib	
N
o	curve	

N
o	curve	

N
o	curve	

N
o	curve	

2912	(±3124)	N
o	curve	

N
o	curve	

N
o	curve	

5FU
	

80*	
233±116	

1770*	
N
o	curve	

	
4198*	
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4.2.5 Assessing	drug	combination	of	BRAF,	EGFR	and	MEK	inhibitors	within	BRAF-
mutant	organoids	

	

As	discussed	in	chapter	1,	BRAF	mutations	occur	in	approximately	8-12%	of	CRC	

patients	and	are	associated	with	a	poor	prognosis	(Corcoran	et	al.	2015;	Corcoran	

2015).	Despite	the	development	of	BRAF-targeting	agents,	their	use	in	the	clinic	for	

treating	BRAF-mutant	CRCs	has	thus	far	provided	limited	success.	This	is	thought	to	

be	as	a	result	of	an	upregulation	of	EGFR-mediated	activation	as	a	response	to	

inhibition	of	MAPK	pathway	feedback	inhibition,	circumventing	the	effects	of	

treatment	(Corcoran	et	al.	2012).	Based	on	this	rationale,	within	the	FOCUS	4	clinical	

trial,	it	has	been	postulated	that	combination	therapy	targeting	BRAF	and	EGFR	

with/without	MEK	using	Dabrafenib,	Panitumumab	±	Trametinib,	respectively,	will	

improve	progression	free	survival	in	patients	with	BRAF	mutant	CRC,	when	used	as	a	

maintenance	therapy	following	first	line	chemotherapy,	compared	to	standard	of	

care	treatment.	Here,	having	established	the	utility	of	viability	readouts	as	a	system	

to	identify	drug	sensitivity,	it	was	investigated	whether	combination	therapy	regimes	

could	be	administered	to	organoids.	For	the	purposes	of	simplicity,	the	two	BRAF-

mutant	organoids	Iso	34	and	Iso	75	(as	opposed	to	the	whole	organoid	cohort)	only	

were	used	to	investigate	the	effect	of	each	compound	as	single	agents,	with	Iso	34	

utilised	to	measure	the	effects	of	compounds	in	double-	and	triple-	combinations.			

	

4.2.5.1 Trametinib	is	an	effective	growth	inhibitor	in	organoids	as	a	single	agent	

	

In	order	to	assess	whether	combination	treatments	could	impact	the	growth	of	

organoids	matched	to	FOCUS	4	patient	biomarkers,	the	effects	of	each	compounds	

as	single	agents	were	firstly	established	in	a	BRAF-mutant	model.	Iso	75	organoids	

were	treated	with	Dabrafenib	(250	nM),	Panitumumab	(200	nM),	Trametinib	(80	

nM),	respectively,	as	well	as	a	DMSO	control	condition,	for	a	total	of	4	days.	

Following	treatment,	organoids	were	fixed	and	immunostained	with	phalloidin	(F-

actin)	and	Ki67	to	obtain	counts	using	IMARIS	parameters	as	previously	described.		It	

was	observed	that	80	nM	Trametinib	significantly	reduced	the	number	of	
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proliferating	cells	on	average	per	organoid,	compared	to	Panitumumab	and	

Dabrafenib,	both	of	which	showed	no	significant	impact	upon	overall	organoid	

proliferation,	as	shown	in	Figure	4.7.	In	order	to	further	classify	responses	to	

Trametinib	as	a	single	agent,	two	BRAF	mutant	organoids	,	Iso	75	and	Iso	34,	were	

subject	to	phenotypic	screening	process,	as	described	previously.	Briefly,	organoids	

were	digested	to	single	cell,	and	following	three	days	of	recovery,	were	treated	with	

a	dose	titration	range	of	Trametinib	over	4	days.	Organoids	were	then	fixed	and	

stained	simultaneously	with	Hoechst	and	TRITC	phalloidin	to	mark	nuclear	and	f-

actin	structures.	A	total	of	8	replicate	wells	were	used	per	condition.	Z-stack	images	

of	each	well	were	captured,	and	images	were	further	processed	using	OMiner™	

software,	in	collaboration	with	OcellO.	As	shown	in	Figure	4.8,	it	was	found	that	

Trametinib	had	a	dose	dependent	effect	on	overall	organoid	size	indicative	of	

inhibitory	effects	upon	growth.	Interestingly,	Trametinib	also	induced	impacts	upon	

overall	lumen	size	of	both	Iso	34	and	Iso	75	as	demonstrated	in	Figure	4.8.	For	Iso	75	

in	particular,	this	effect	was	observed	at	a	much	lower	concentration	than	effects	

observed	on	overall	organoid	size,	further	emphasising	the	need	to	investigate	

particular	organoid	phenotypes	as	opposed	to	relying	on	organoid	size	as	a	measure	

of	response,	further	discussed	in	Chapter	6.			
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Figure	4.7	Assessing	impact	of	single	agents	EGFR/BRAF	and	MEK	inhibitors	upon	organoid	growth	

Iso	75	organoids	were	dissociated	to	single	cells	and	cultured	for	three	days.	Organoids	were	then	

treated	with	0.1%	DMSO	conditions	and	Trametinib	(20	nM,	40	nM)	for	four	days,	prior	to	fixing	and	

immunostaining	for	Ki67	proliferation	marker	and		phalloidin	for	F-actin	,and	imaging	using	confocal	

microscopy.	Nuclei	were	counterstained	with	Hoechst	(Ai)	Representative	images	of	organoids	

captured	following	treatment	with	each	compound	as	single	agents.(Aii)	The	number	ki67%	positive	

cells	per	organoid	were	counted	using	IMARIS	software.	The	number	of	Ki67-postivie	cells	were	

counted	as	a	percentage	per	organoid	(n=5-15	organoid).	Significance	of	number	of	proliferating	cells	

were	calculated	using	Welch	two	sample	t-test	and	Mann	Whitney	two-tailed	test	*p≤0.01,	**	p≤0.05.	

Images	and	IMARIS	counts	were	collected	by	Kate	Densley	under	my	supervision	
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Figure	4.8	Phenotypic	analysis	reveals	structural	changes	in	response	to	Trametinib	within	

organoids	

Organoids	were	seeded	as	single	cells	within	384	well	plates	prior	to	treatment	with	a	dose	titration	

of	Trametinib	(320	nM)	and	DMSO	control	(0.1%)	within	media	for	four	days,	then	fixed	and	stained	

with	Hoechst	and	Phalloidin.	Image	z-stacks	of	organoids	were	captured,	and	parameters	were	

quantified	by	OcellO.	(A)	Representative	images	of	a	well	of	Iso	34	organoids	treated	with	trametinib	

and	DMSO	control,	and	masked	according	to	Hoechst	and	Phalloidin	channels.	Images	captured	at	

OcellO	(B)	Scatterplots	of	measurements	acquired	of	(i)	average	organoid	area	(ii)average	lumen	area	

in	Iso	34	organoids.	(C)	Scatterplots	of	measurements	acquired	of	(i)	average	organoid	area	(ii)average	

lumen	area	in	Iso	75	organoids.	Scale	bar	0.5mm.
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4.2.5.2 Dabrafenib	and	Panitumumab	administration	on	BRAF	mutant	organoids	

potentiate	growth	inhibition	

	

To	assess	the	whether	therapeutics	exerted	synergistic	effects	upon	organoids,	

experiments	were	designed	as	previously	described	by	Chou-Talalay	(Chou	and	

Talalay	1984;	Chou	2010);	detailed	in	Chapter	2).		This	methodology	has	been	

common	practice	in	a	number	of	studies	in	the	literature	to	determine	synergistic	

activity	of	compounds	by	quantitatively	measuring	dose-effect	relationships	of	

drugs,	with	some	analyses	having	been	performed	on	a	combination	of	three	or	

more	compounds.	A	key	principle	of	Chou-Talalay	combination	studies	is	based	on	

maintaining	the	dose	of	each	compound	in	a	constant	ratio	to	each	other,	most	

commonly	their	IC50,	over	a	titration	range.	In	theory,	this	can	be	applied	to	any	given	

number	of	combinations;	if	multiple	data	points	for	constant-	ratio	combinations	are	

collected,	the	entire	spectrum	of	synergistic	or	antagonistic	effects	can	be	obtained	

at	each	concentration.		

	

The	BRAF-mutant	Iso	34	organoid	line	was	used	to	investigate	synergistic	effects	of	

compounds	upon	organoid	growth.	Iso	34	organoids	were	treated	with	a	14-point	

dose	titration	of	each	respective	compound	to	identify	IC50	values	in	single	inhibitor	

assay	formats,	as	described.	Following	a	Cell	Titer	Glo	3D	ATP	readout,	it	was	

observed	that	Trametinib	had	a	clear	inhibitory	impact	upon	Iso	34	organoids,	

generating	IC50	values	of	3	nM	(Figure	4.9,	Bii)	after	4	days	of	treatment.	Both	

Dabrafenib	and	Panitumumab	failed	to	generate	such	clear	dose	dependent	

responses,	with	Dabrafenib	in	particular	appearing	to	impact	Iso	34	only	at	the	very	

highest	concentrations	administered	(Figure	4.9,	Bi	and	Biii).	Given	the	fundamental	

requirement	of	Chou-Talalay	analysis	methods	to	maintain	compounds	at	fixed	

ratios	of	their	respective	IC50	values	spanning	a	suitable	dose	titration	range	to	then	

assess	combinatory	effects,	it	was	necessary	to	obtain	IC50	values	from	in	vitro	

systems	within	the	literature	under	the	assumption	that	this	would	be	in	the	range	

of	a	cellular	IC50	value.			
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In	order	to	identify	whether	Dabrafenib	and	Panitumumab	would	potentiate	the	

inhibitory	effects,	IC50	values	of	both	compounds	were	set	at	7.8	nM,	0.98	nM,	

respectively,	thus	generating	a	ratio	of	8:1	between	both	compounds.	In	

concordance	with	Chou-Talalay	methodology,	single	inhibitor	assays	of	Dabrafenib	

and	Panitumumab	were	carried	out	in	parallel	with	combination	assays	to	ensure	

subsequent	analysis	was	carried	out	in	comparative	systems.	Following	4	days	of	

treatment	with	Dabrafenib,	Panitumumab	or	a	combination	of	both	inhibitors	

absolute	ATP	values	were	obtained	using	the	Cell	Titer	Glo	3D	reagent.		It	was	

observed	that	a	combination	of	Dabrafenib	and	Panitumumab	induced	a	stronger	

inhibitory	effect	upon	overall	organoid	viability,	as	opposed	to	administration	as	

single	agents	(Figure	4.9).		

	

It	would	be	expected	a	lack	of	interaction	between	compounds,	otherwise	referred	

to	as	an	additive	effect,	would	be	in	the	range	of	110nM	from	single	agent	dose	

response	curves	generated	as	shown	in	Figure	4.9.	However,	when	administered	as	

two	compounds	the	IC50s	of	Dabrafenib	and	Panitumumab	combined	were	instead	

approximately	7nM,	below	expected	values	for	an	additive	effect.	Further	

calculations	(using	Equation	2.1)	enabled	a	determination	of	the	synergistic	action	of	

compounds.	Combination	index	values	calculated	per	dose	of	Dabrafenib	and	

Panitumumab	of	0.02±0.02	(n=3	independent	experiments)	confirmed	that	the	

compounds	potentiated	the	effect	of	one	another.	Specifically,	the	dose	reduction	

index,	representative	of	the	fold	reduction	in	compound	concentration	that	could	be	

administered	to	reduce	organoid	growth	by	50%	demonstrated	that	in	combination,	

Dabrafenib	could	be	theoretically	administered	at	a	133	fold	reduction	in	dose,	

whereas	Panitumumab	could	be	administered	at	>1000	fold	lower	dose.
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4.2.5.3 MEK	inhibition	potentiates	inhibitory	action	of	BRAF/EGFR	inhibitors	upon	

BRAF-mutant	organoids	

	

To	establish	whether	Dabrafenib	and	Panitumumab	activity	could	be	further	

enhanced	by	administration	of	Trametinib,	as	tested	in	the	FOCUS	4	clinical	trial,	Iso	

34	was	administered	with	the	three	compounds	in	combination.	To	determine	the	

effects	of	three-agent	combination,	organoids	were	challenged	with	a	dose	titration	

range	of	compounds	administered	in	a	IC50-constant-ratio	dose	(8:4:1	for	

Dabrafenib:	Trametinib:	Panitumumab)	for	72	hours	prior	to	quantification	of	cell	

viability.	The	ratio	of	IC50s	were	previously	determined	by	those	generated	from	

single-assay	responses,	where	possible,	or	from	IC50	values	gathered	from	in	vitro	

data	within	the	literature.			

	

Following	exposure	to	compounds	in	double	combination	(Dabrafenib	and	

Trametinib,	Trametinib	and	Panitumumab	and	Panitumumab	and	Dabrafenib,	

respectively)	or	as	triple	agents,	the	effects	upon	overall	viability	of	organoids	were	

characterised	by	assessment	of	ATP	levels	using	the	Cell	Titer	Glo	3D	assay,	following	

4	days	of	treatment.	Given	that	Trametinib	as	a	single	agent	induced	a	clear	growth	

inhibitory	response	upon	organoids	it	would	be	expected	that	it	would	perhaps	

potentiate	the	effects	of	both	Dabrafenib	and	Panitumumab.	Following	

establishment	of	dose	response	curves	from	each	treatment	as	well	as	further	linear	

regression	analysis	it	was	found	that	Trametinib	treatment	(MEK	inhibition)	

potentiated	the	effects	of	BRAF	inhibition	by	Dabrafenib	upon	Iso	34.	This	confirms	

observations	from	previous	in	vitro	studies	in	the	literature,	whereby	Dabrafenib	and	

Trametinib	together	work	favourably	to	reduce	the	growth	of	BRAF	mutant	lines	

(Corcoran	et	al.	2015).	More	specifically,	as	noted	in	Table	4.2,	further	calculations	to	

determine	dose	reduction	index	revealed	that	by	addition	of	Trametinib,	Dabrafenib	

could	be	administered	at	>1000	fold	lower	dose	to	achieve	a	50%	inhibition	in	

organoid	growth.	Similarly,	it	was	demonstrated	that	addition	of	Trametinib	to	
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Panitumumab-treated	organoids	worked	favourable	to	enhance	inhibitory	effects	on	

overall	organoid	viability	in	a	dose	dependent	manner.		

	

An	overall	reduction	in	growth	was	observed	in	Iso	34	organoids	treated	with	

Dabrafenib,	Trametinib	and	Panitumumab	in	combination	(n=3)	compared	to	DMSO	

(0.1%)	control	conditions.	Synergistic	activity	of	the	three	compounds	in	

combination	was	further	confirmed	by	combination	index	value	of	0.03±0.05,	then	

by	application	of	the	dose	reduction	calculation,	which	demonstrated	that	when	all	

three	compounds	were	administered,	both	Dabrafenib	and	Panitumumab	doses	

could	be	reduced	by	1000	fold,	whilst	Trametinib	doses	could	be	reduced	by	3	times,	

to	achieve	an	inhibitory	effect	in	50%	of	Iso	34	organoids,	as	indicated	in	Table	4.2	

	

Whilst	this	data	is	useful	to	demonstrate	the	application	of	organoids	towards	

combination	studies,	it	is	based	on	multiple	assumptions.	Given	the	compounds	

examined	exhibited	complex	modes	of	action,	distinct	IC50	values	were	hard	to	

obtain	for	each	compound	using	viability	readouts	and	therefore	subsequent	

analyses	needed	to	consider	this	caveat.	Overall,	data	indicated	that	agents	were	

able	to	potentiate	the	effects	of	another	to	inhibit	organoid	growth.
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Table	4.2	Combination	index	values	(CI)	and	Dose	reduction	index	(DRI)	per	treatment.	

All	data	was	inputted	into	Calcusyn	software	to	generate	combination	index	values	(n=3	biological	

repeats)	and	Dose	Reduction	Index	(DRI)	at	IC50	values	of	each	combinations..	

	

	

	

DRI at IC50 (fold change in dose at 
combination) 

CI Values 
(IC50) 

Dabrafenib Trametinib Panitumumab 

Dabrafenib+ 
Trametinib 

>1000 59 0.92±1.28 

Trametinib+ 
Panitumumab 

>1000 
 

>1000 
 

0.02±0.03 
 

Panitumumab
+ Dabrafenib 

>1000 
 

133 0.02±0.02 

Dabrafenib, 
Panitumumab 
+ Trametinib 

>1000 3.21 >1000 0.03±0.05 
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4.2.6 Phenotypic	screening	variably	aids	discrimination	between	subtle	dose	
dependent	responses	in	cellular	morphologies	

	

Phenotypic	profiling	of	pharmacologic	responses	is	becoming	an	apparent	approach	

to	assess	therapeutic	effects	upon	distinct	cellular	morphologies	and	are	beyond	the	

scope	of	limited	basic	readouts.	Using	Principal	Component	Analysis	(PCA),	such	

platforms	have	condensed	multiple	phenotypic	measurements	to	assess	subtle	

changes	in	changes	to	nuclear,	cellular	and	structural	changes	in	cells	in	exposure	to	

compounds	(Caie	et	al.	2010;	Reisen	et	al.	2013;	Sandercock	et	al.	2015;	Di,	Klop,	

Rogkoti,	Devedec,	van	de,	et	al.	2014).	This	has	facilitated	an	enrichment	of	

phenotypic	data	beyond	basic	metrics.	Within	this	thesis,	such	analyses	were	found	

to	be	critical	to	identify	organoid-specific	signatures	of	response	to	Wnt	inhibitors,	as	

discussed	within	Chapter	5.	

	

Relevant	treatments	from	the	FOCUS	4	clinical	trial	elicited	a	number	of	effects	upon	

viability	and	basic	phenotypic	readouts	in	an	organoid	cohort.	Further	discrimination	

of	drug-induced	effects	could	therefore	be	beneficial	to	improve	readouts	of	

response	to	compounds.		Here,	it	was	investigated	whether	PCA	of	multiparametric	

data	could	capture	drug-induced	variance	more	successfully	than	a	single	parametric	

measurement	(	e.g.	ATP	viability	readout).	It	was	hypothesised	that	multiple	

phenotypic	readouts	would	facilitate	a	more	robust	readout,	facilitating	the	

dissection	of	drug-dependent	mechanisms.	Ultimately,	this	would	enable	the	

identification	of	active	compounds	based	upon	subtle	changes	in	organoid	

morphologies.			

	

To	investigate	phenotypic	profiles,	a	set	of	6	organoids	(Iso	34,49,50,72,75,78)	were	

seeded	as	single	cells	and	following	a	recovery	for	3	days,	were	treated	with	a	

titration	range	of	compounds	administered	within	FOCUS	4	for	a	total	of	4	days.	

Samples	were	then	fixed	and	stained	simultaneously	for	24	hours	at	room	

temperature,	as	described	in	(Di,	Klop,	Rogkoti,	Devedec,	van	de,	et	al.	2014)	to	

visualise	Hoechst	(nuclear)	and	Phalloidin	(F-actin).	Following	washes	in	PBS,	3D	
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structures	were	then	imaged	on	a	MetaXpress®	high-content	confocal	microscope	

(carried	out	by	OcellO,	Leiden),	which	facilitated	the	acquisition	of	z-stacks	from	384	

well	plates.	

	

Individual	images	from	each	z-stack	were	then	inputted	within	the	bespoke	

OMiner™	analysis	platform	developed	by	OcellO,	as	depicted	within	Figure	4.10.	

Briefly,	projections	of	the	F-actin	and	nuclei-derived	image	stacks	were	used	to	

extrapolate	masks	of	individual	organoids,	internal	lumen	structures	and	nuclei.	

Image	segmentation	and	filters	were	then	applied	to	identify	individual	objects	per	

well	from	each	channel,	and	enhance	noise	suppression	to	balance	sensitivity	of	

analysis.	Relevant	masks	were	then	used	to	acquire	approximately	700	quantifiable	

morphological	features	per	structure,	including	data	relating	to	fluorescence	

intensities	per	channel.	Measurements	of	individual	features	per	organoid	were	

pooled	to	generate	measurements	on	a	well-by-well	basis.	Data	were	then	

normalised	to	negative	controls,	per	phenotypic	measurement,	to	account	for	

potential	variability	in	plating	conditions	and	staining	procedures	per	experiment.	

	

In	order	to	condense	phenotypic	measurements	to	key	principal	components,	PCA	

was	performed	upon	the	700	morphological	variables.	PCA	was	carried	out	on	each	

feature	acquired	from	experimental	drug	conditions	per	organoid	line,	across	a	dose	

response.	PCA	enabled	a	reduction	in	the	dimensionality	of	each	dataset	by	

facilitating	the	conversion	of	data	from	multiple	variables	(individual	phenotypic	

features	in	this	case)	into	a	new	coordinate.	This	conversion,	whereby	each	

coordinate	is	recognised	as	a	principal	component	,enables	the	greatest	variances	

across	data	(between	control	and	treatment	conditions)	to	lie	on	one	co-ordinate.	

The	greatest	variance	in	the	principal	components	therefore	lies	on	the	first	principal	

component,	with	the	next	greatest	variance	on	the	second	principal	component,	and	

so	forth.			Figure	4.11	demonstrates	a	typical	scree	plot	of	percentage	(%)	variation	

obtained	in	each	component,	as	represented	from	Iso	72	treatment	with	aspirin.		

The	variation	within	the	first	principal	component	in	this	instance	was	28%.		
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To	identify	drug-induced	effects	from	condensed	data,a	multidimensional	

Mahalanobis	Distance	metric	was	used	to	calculate	the	similarity	of	a	data	point	to	

the	negative	control,	based	upon	the	correlation	between	variables	contained	within	

the	first	5	principal	components.	The	Mahalanobis	distance	metric	facilitates	the	

measurement	of	distances	in	3D	space.	Here,	this	calculation	was	used	to	measure	

distances	between	each	dose	and	control	DMSO-treated	samples	per	organoid	line,	

per	treatment.		Theoretically,	the	Mahalanobis	distance	would	enable	a	calculation	

of	the	similarity	of	a	data	vector	to	negative	control	conditions.	Therefore,	a	larger	

Mahalanobis	distance	between	DMSO	control	and	treatment	would	equate	to	a	

greater	difference	in	phenotype	between	both	conditions.	Alternatively,	if	the	

treatment	induced	a	phenotype	that	was	similar	to	DMSO	control	conditions,	the	

distance	would	be	small.	This	enabled	extraction	of	the	greatest	variance	between	

DMSO	control	and	dose	of	compound	from	multiple	features.		Any	outliers	within	

the	data	analysis	were	confirmed	by	visual	inspection	of	the	image	of	the	whole	well	

(Appendix	i-1)	and	were	usually	a	result	of	either	empty	wells	as	a	result	of	shipping	

conditions,	or	poor	segmentation	due	to	over-seeding	in	the	well.	Following	

identification	and	removal	of	this	from	data,	a	minimum	of	6	wells	were	used	per	

condition.	Distances	measured	(Appendix	I-2)	from	each	treatment	dose	were	then	

used	to	generate	drug	dose	response	curves,	as	represented	in	Figure	4.11,	to	

determine	EC50	values	(dose	response	curves	obtained	from	Mahalanobis	distance	

measurements	were	plotted	for	each	organoid	line,	as	shown	in	Appendix	I-2).		
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Figure	4.11	Multi-parametric	analysis	output	from	Iso	72	organoids	

Freshly	digested	organoids	were	seeded	within	matrigel	in	384	well	plates	and	overlaid	with	optimal	

media	for	growth.	Following	3	days	of	recovery,	a	dose	titration	of	compounds	within	the	FOCUS	4	

trial	were	administered	versus	a	DMSO	negative	control.	Following	4	days	of	treatment,	organoids	

were	fixed	and	stained	simultaneously	for	Hoechst	and	F-actin.	Subsequent	z-stack	images	were	

collected	and	inputted	within	OMiner™	software	to	generate	multiple	phenotypic	measurements	

acquired	from	Hoechst	and	TRITC	channel	information.	Data	was	inputted	into	R	to	generate	

Prinicipal	Component	Analysis	(PCA)	of	features.	(A)	Screen	plot	from	Principal	component	analysis	

demonstrates	variables	contributing	to	most	variance	within	the	data	(B)	Features	within	the	first	5	

components	were	used	to	measure	Mahalanobis	distance	from	treatment	and	control	conditions.	

This	measurement	enabled	a	discrimination	between	each	treatment	dose	compared	to	control,	

based	on	multiple	measured	features.	
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Overall,	it	was	observed	in	some	instances	that	clustering	of	multiple	correlated	

phenotypic	parameters	identified	drug-induced	effects	at	lower	concentrations	of	

drug	compared	to	preceding	readouts	of	responses.		

	

Multiparametric	readouts	identified	Iso	34	and	Iso	78	as	aspirin-sensitive	organoid	

lines,	generating	EC50	values	of	5	µM	and	1	µM	(Figure	4.12).	Whilst	this	data	

corresponded	to	previous	observations	from	ATP	readouts,	the	overall	sensitivity	of	

the	multiparametric	assay	did	not	necessarily	further	discriminate	aspirin-dependent	

responses	within	the	organoid	cohort.	It	is	possible	that	a	number	of	factors	could	

contribute	to	this.	Firstly,	the	magnitude	of	difference	between	the	experimental	

groups	was	not	large	enough	for	distances	to	be	varied	within	increasing	doses.	It	is	

also	possible	that	only	a	few	features,	such	as	nuclear	morphologies,	were	altered	in	

response	to	aspirin.	In	this	case,	it	is	possible	that	a	large	number	of	readouts	that	

are	not	perturbed	as	a	result	of	treatment	represent	assay	noise	and	could	therefore	

interfere	with	the	accuracy	obtained	by	a	smaller	collection	of	parameters	(Hutz	et	

al.	2012).An	optimized	set	of	key	morphological	signatures	could	more	accurately	

identify	the	separation	between	treatment	and	control	conditions,	enabling	fewer	

variables	to	capture	more	biological	variation.			

	

Multi-parametric	analysis	of	compounds	that	targeted	DDRs	were	also	shown	to	

corroborate	previous	findings	from	ATP	assays.	EC50	values	of	Iso	50	exposed	to	AZ20	

treatment	were	found	to	be	closer	to	an	expected	IC50	value	when	multiple	variables	

were	measured	(1	nM).	Analysis	of	phenotypes	also	demonstrated	that	MK1775	

induced	a	number	of	alterations	on	phenotypes	in	all	organoids	assessed,	further	

corroborating	ATP	readouts	of	dose	range	response.	Collectively,	organoid	responses	

to	5-FU	were	varied	in	sensitivity	following	assessment	of	collective	phenotypic	

responses.	Iso	78	was	shown	to	be	the	most	resistant	organoid	line	to	5-FU	

treatment.		

	

Administration	of	the	Her1-3	inhibitor,	Sapitinib,	also	demonstrated	that	organoids	

overall	showed	limited	sensitivity	to	compound	inhibition.	Iso	72,	similarly	to	CTG	

measurements,	generated	a	high	EC50	value,	further	confirming	that	observations	
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were	likely	due	to	off	target	effects.	Interestingly,	Iso	75,	having	shown	no	response	

to	Sapitinib	in	ATP	readouts,	showed	sensitivity	to	Sapitinib	treatment	based	on	

multi-parametric	data,	yielding	EC50	values	of	approximately	30	nM.	It	is	possible	that	

morphological	readouts	were	able	to	detect	subtle	changes	in	Iso	75	in	response	to	

Sapitinib	that	could	not	be	measured	by	ATP	viability	readouts.		
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Figure	4.12	Organoids	reveal	differential	sensitivities	to	inhibitors		

A	cohort	of	8	Organoids	were	seeded	as	single	cells	and	following	3	days	of	recovery,	were	subject	to	

a	dose	titration	range	of	compounds	within	the	FOCUS	4	trial.	Following	phenotypic	screening,	PCA	

was	performed	in	order	to	project	the	features	obtained	within	each	treatment	to	independent	

principle	component	space.	The	5	principle	components	that	retained	the	largest	proportion	of	data	

variation	were	then	subject	to	Mahalanobis	distance	analysis,	to	calculate	the	similarities	of	data	

point	to	the	negative	control	based	on	correlation	between	the	variables.	These	were	then	plotted	as	

dose	response	curves	(Appendix	I-2)	to	generate	Log	EC50	values	per	compound.	(A)	Plot	of	Log	EC50	of	

each	compound	administered	within	FOCUS	4	against	organoids.	Each	dot	represents	an	organoid	

line.	
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4.3 Summary	

	

The	work	described	here	has	shown	a	possible	utility	of	patient	colorectal	tumour	

organoids	towards	mirroring	a	clinical	trial	in	vitro.	Using	assay	formats	previously	

described	in	Chapter	2,	in	combination	with	specific	optimised	culture	conditions	per	

line,	enables	the	investigation	of	multiple	pathways	relevant	to	clinical	trials.	This	

format	has	facilitated	the	measurement	and	assessments	of	effects	of	many	

different	groups	of	inhibitors.			

	

Using	such	systems,	this	work	has	particularly	highlighted	the	utility	of	organoids	to	

investigate	the	combination	therapies	of	3	compounds,	which	have	yet	to	be	studied	

in	vivo.	As	combination	therapies	become	increasingly	popular	within	the	clinic,	this	

shows	a	direct	future	application	of	organoids	to	study	complex	interactions	

between	multiple	targeted	therapies.		

	

This	work	further	demonstrates	the	need	for	relevant	pre-clinical	models	to	

accompany	biomarker	driven	strategies	for	CRC.	Through	this	system,	the	differential	

responses	of	organoids	to	hypothesis-driven	therapies	regardless	of	mutational	

status	was	apparent.		Overall,	whilst	the	use	of	phenotypic	screening	to	identify	

more	subtle	responses	could	also	be	used	to	guide	effects	that	would	otherwise	be	

ignored	for	lack	of	cytotoxic	effects,	it	was	found	that	monitoring	viability	of	

organoids	was	a	useful	readout	for	treatment	versus	phenotype.	This	affirms	that	

such	assay	set-ups	could	be	suitably	incorporated	within	the	design	of	parallel	

patient-organoid	clinical	trials.		
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5 Characterisation	of	the	effects	of	novel	Wnt	inhibitors	on	

human	CRC	organoids	using	3D	image-based	multi-

parametric	phenotypic	profiling	

	

5.1 Introduction	

	

Aberrant	Wnt	signalling,	as	a	result	of	activating	mutations	within	the	pathway,	has	a	

prominent	role	in	tumour	cell	proliferation	and	survival	in	CRCs.	As	such,	an	array	of	

components	within	the	Wnt	signalling	pathway	have	been	postulated	as	viable	

molecular	targets	to	limit	the	enrichment	of	CSCs	and	thus	improve	clinical	

outcomes.	Attenuation	of	Wnt	signalling	through	the	use	of	Tankyrase	inhibitors	

(TNKSi)	have	been	characterised	within	the	literature,	and	have	previously	been	

linked	to	prevent	the	growth	of	Apc-deficient	tumours	within	mice	(Waaler,	Machon,	

Tumova,	Dinh,	Korinek,	Wilson,	Paulsen,	Pedersen,	Tor	J	Eide,	et	al.	2012;	Lau	et	al.	

2013;	Wu	et	al.	2016).	However,	overall,	pre-clinical	drug	discovery	for	Wnt	pathway	

modulators	have	thus	far	proven	difficult,	with	few	small	molecule	inhibitors	having	

entered	clinical	trial	and	thus	remaining	within	the	drug	discovery	pipeline	

(Novellasdemunt	et	al.	2015;	Waaler,	Machon,	Tumova,	Dinh,	Korinek,	Wilson,	

Paulsen,	Pedersen,	Tor	J	Eide,	et	al.	2012)	despite	encouraging	evaluations	in	vitro	

and	in	vivo.	This	may	be	a	result	of	a	number	of	factors;	firstly	in	vivo	studies	often	

administer	treatments	at	maximum	tolerated	doses	of	compounds	to	test	for	

efficacy	based	on	in	vitro	studies	within	2D	cell	lines,	resulting	in	potentially	

unnecessary	toxicity.	Secondly,	given	the	variation	of	Wnt	dependency	from	one	

tumour	to	the	next,	and	the	complexity	of	targeting	cancer	stem	cell	dynamics,	it	is	

unsurprising	that	2D	cell	lines	fail	to	reflect	results	in	vivo,	and	raises	questions	as	to	

their	capacity	as	sufficient	surrogate	tumour	models.	The	need	for	translatable	

model	systems	within	drug	discovery	pipeline,	capable	of	demonstrating	on-target	

effects	of	a	compound,	whilst	retaining	patho-physiological	tumour	dynamics	could	

prove	invaluable	to	show	the	effects	of	such	novel	therapeutics.		

	



	 158	

	

Given	the	capacity	of	3D	primary	organoids	to	retain	stem/differentiated	cells	it	is	

possible	that	they	could	become	useful	model	systems	to	study	stem	cell	dynamics.	

However,	complex	3D	models	provide	a	challenging	platform	to	quantify	

reproducible	drug	sensitivity,	particularly	to	compounds	possessing	equally	complex	

effects	upon	cell	dynamics.	Analysis	platforms	therefore	need	to	be	compatible	with	

counterpart	models	to	yield	quantitative	data.	

	

Whilst	 previous	 chapters	 have	 described	 the	 utility	 of	 organoids	 as	 a	 medium-

throughput	system	to	assess	clinically	 relevant	compounds,	 this	 thesis	also	aims	to	

establish	organoids	as	a	useful	 tool	 in	a	drug	discovery	setting.	 In	order	 to	explore	

this,	 multi-parametric	 phenotypic	 screening	 (OcellO)	 of	 organoids	 were	 used	 to	

assess	 the	 impact	 of	 novel	 cancer	 stem	 cell-targeting	 tankyrase	 inhibitors	 (Merck	

Serono).	

	

	

	

	

	

	

	

	

	

	

	

	

	

Some	data	analysis	presented	in	this	chapter	was	performed	by	Bram	Herpers,	

Kuan	Yan,	and	Leo	Price	(OcellO),	as	specified	within	figure	legends.	In	vivo	data	

was	carried	out	by	Kenneth	Ewan	(Dale	lab).	Data	presented	within	this	chapter	is	

currently	being	formatted	for	submission	as	a	literature	article.		
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5.2 Results	

	

To	 fully	 investigate	 the	 capacity	 of	 organoids	 to	 demonstrate	 on-target	 effects	 of	

novel	 compounds,	 three	 compounds	 in	 development	 with	Merck	 Serono	 with	 log	

fold	 changes	 in	 EC50	 values	 (i.e	 effective	 concentration	 to	 limit	 growth	 of	 50%	 of	

cells)	were	tested	within	the	established	organoid	cohort	previously	described.		EC50	

values	 of	 each	 compound	 (MSC2501490A,	 MSC2572070A,	 MSC2524070)	 were	

provided	by	Merck	Serono,	as	detected	by	a	luminex	assay	against	AXIN2,	indicating	

EC50	values	of	300	nM,	36nM	and	3nM,	respectively.	This	2D	cell-based	assay	utilises	

AXIN2	 stabilisation	 as	 a	 readout,	 as	 AXIN2	 is	 a	 target	 of	 TNKS1/2.	 Upon	

administration	 of	 the	 compound,	 the	 TNKS-dependent	 degradation	 of	 AXIN2	 is	

inhibited,	promoting	the	stabilisation	of	the	protein,	as	detected	by	an	immunobead	

assay.		

	

5.2.1 Tankyrase	inhibitors	induce	a	dose	dependent	response	within	sensitive	
organoids	in	a	functional	ATP	readout	

	

Given	that	TNKSi	have	previously	been	implicated	in	the	literature	as	potential	

compounds	to	target	stem	cell	niches	within	tumour	populations	(Zhong	et	al.	2015;	

Arqués	et	al.	2016)	,	it	was	investigated	here	whether	organoid	formation	and	

subsequent	growth	in	culture	would	be	affected	by	treatment.	3	organoid	lines	were	

therefore	administered	with	a	dose	titration	range	(0.19	nM	–	50nM)	of	a	tool	TNKSi	

developed	by	Merck	Serono	(MSC2524070),	which	will	be	made	available	to	the	

wider	research	community	for	testing.	

	

Organoids	previously	established	in	culture	were	suspended	to	single	cells	within	

matrigel	and	treated	with	a	nine-point,	two-fold	dilution	of	compound	or	DMSO	

control	(0.1%)	in	triplicate	wells	per	condition,	for	a	total	of	six	days.	

Morphologically,	both	Iso	72	and	Iso	75	organoids	displayed	sensitivity	to	TNKS	

inhibition,	as	indicated	in	Figure	5.1.	Iso	72	structures	treated	with	TNKSi	were	

shown	to	be	overall	reduced	in	size	compared	to	control	conditions,	whereas	Iso	75	

organoids	were	also	arranged	more	sparsely	indicating	a	lower	density	of	organoids	
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formed.	It	appeared	however,	that	TNKSi	did	not	appear	to	induce	typical	cytotoxic	

effects,	frequently	characterised	by	an	increased	level	of	cellular	debris	and	dense	

structures.			

	

Following	6	days	of	treatment,	Cell	Titer	Glo	3D	reagent	was	administered	to	wells	

and	luminescent	readouts,	as	a	representation	of	ATP	levels	were	acquired.	A	dose-

dependent	response	was	generated	in	both	Iso	72	and	Iso	75,	as	shown	in	Figure	5.1,	

eliciting	mean	EC50	values	of	2±0.7nM	and	14±8	nM,	respectively	from	three	

independent	experiments.	Iso	50	appeared	to	have	a	less	prominent	response	to	

increasing	concentrations	of	TNKSi	according	to	ATP	readouts,	with	EC50	values	of	

1043.9±621.2nM	obtained.	An	overall	reduction	in	ATP	levels	(Relative	

Luminescence	Units)	were	observed	at	the	highest	concentrations	of	TNKSi	

administered	(50	nM),	indicative	of	off-target	effects	in	comparison	with	sensitive	

lines.	

	

To	further	corroborate	qualitative	findings	as	well	as	ATP	quantification,	images	of	

wells	of	organoids	were	acquired	and	quantified	for	basic	morphometric	

measurements	using	GelCount™	CHARM	settings,	at	day	3	and	day	6	in	culture,	

whilst	exposed	to	a	dilution	of	treatment	conditions.	Measurements	of	total	

organoid	volume,	as	shown	in	Figure	5.2	were	shown	to	be	consistent	between	

control	and	treatment	conditions	within	all	organoid	lines	at	day	3.	Following	6	days	

of	treatment,	a	reduction	in	overall	volume	was	observed	in	Iso	72	organoids	in	

particular	between	control	and	MSC2524070	treatment	(1.56	nM	–	50	nM),	

indicating	that	overall	growth	was	minimized	following	treatment.		Iso	75,	despite	

showing	some	reduction	in	an	endpoint	ATP	assay	readout	at	day	6,	showed	little	

variation	between	average	organoid	volumes	in	control	and	treatment	conditions.	

This	could	be	the	result	of	partial	TNKS	inhibition,	stimulating	organoid	growth	to	

reach	similar	volumes	as	observed	by	control	organoids,	highlighting	the	complexity	

of	signaling	events	when	using	such	compounds.	However,	it	is	more	likely	that	this	

is	a	result	of	a	lack	of	sensitivity	from	basic	morphometric	readouts	obtained	using	

GelCount	charm	settings;	data	acquired	from	inherently	small	structures,	
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such	as	Iso	75	in	routine	culture,	could	harbor	sensitivity	of	detection	in	differences	

in	overall	sizes.		

	

A	count	of	average	number	of	organoids	formed	per	well	(n=3	wells)	by	day	6	in	

culture	were	generated	from	established	CHARM	settings	and	used	to	calculate	

organoid	formation	efficiency	from	a	known	number	of	single	cells	seeded	(Figure	

5.3).	Organoid	formation	efficiency	(%)	was	significantly	reduced	in	50	nM	of	TNKSi	

treatment	conditions	compared	to	control	DMSO	(0.1%)	conditions	in	Iso	75	

organoids	(n=3,	one	way	ANOVA	with	Dunnett’s	post	hoc	test).	Interestingly,	Iso	72,	

showed	no	treatment	dependent	effect	on	organoid	formation	efficiencies	(%)	

despite	overall	changes	in	growth.	This	could	be	as	a	result	of	TNKS	inhibition	

eliciting	affects	upon	this	line	at	a	later	point	in	treatment	compared	with	Iso	75.	Iso	

50,	a	non	responder	line,	as	expected,	showed	no	overall	alteration	in	organoid	

formation	efficiency	(%)	in	treatment	conditions.	

	

Taken	together,	this	data	indicates	that	TNKSi	induces	marked	effects	on	overall	

organoids	formation	or	subsequent	growth	in	culture.	It	was	notable	that	even	at	

highest	concentrations	of	treatment,	TNKSi	did	not	appear	to	induce	obvious	signs	of	

cell	death,	such	as	an	increased	number	of	debris	in	wells.		
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Figure	5.1:	Analysis	of	the	effects	of	the	Tankyrase	inhibitor	MSC2524070	on	the	viability	of	three	

tumour	organoids.	

Iso	50,	Iso	72	and	Iso	75	organoids	were	seeded	at	400	cells/µl	Matrigel	and	overlaid	with	previously	

specified	growth	media,	supplemented	with	MSC2524070	at	a	two-fold	dilution	(0.195	nM	–	50	nM),	

and	a	matched	DMSO	control	(0.1%	in	media).	(A)	Representative	images	at	day	6	in	culture.	(B)ATP	

endpoint	assay	readouts	across	a	dilution	of	drug	doses	in	Iso	50	(i),	Iso	72	(ii),	Iso	75	(iii)	were	

performed	following	6	days	of	exposure	to	TNKS	inhibitor.	EC50	best	fit	curve	were	plotted	using	XLFit	

plug-in	for	Microsoft	Excel,	and	are	shown	from	one	representative	experiment.	Each	plot	represents	

data	obtained	from	a	single	well	within	an	assay.	(C)	Organoid	volumes	calculated	on	day	6	of	culture	

with	each	treatment	of	compound,	measured	using	GelCountTM	analysis	software	for	Iso	50	(i),		Iso	

72	(ii)	and	Iso	75	(iii).	Data	generated	by	Jennifer	Shone	under	my	supervision.	Dose	response	curves	

generated	by	Jennifer	Shone,	referenced	in	report	‘Maniuplating	the	Wnt	signaling	pathway’,	PTY	

report	(2015-2016)	
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Figure	5.2	Analysis	of	the	effects	of	the	Tankyrase	inhibitor	MSC2524070	on	overall	organoid	

volume	

Iso	50,	Iso	72	and	Iso	75	organoids	were	seeded	at	400	cells/µl	Matrigel	and	overlaid	with	previously	

specified	growth	media,	supplemented	with		MSC2524070	at	a	two	fold	dilution	(0.195	nM	–	50	nM),	

and	a	matched	DMSO	control	(0.1%	in	media).	(A)Organoid	volumes	of	(i)	Iso	50,	(ii)	Iso	72,	(iii)	Iso	75	

calculated	on	day	6	of	culture	with	each	treatment	of	compound,	measured	using	GelCountTM	

analysis	software.	Data	generated	by	Jennifer	Shone	under	my	supervision.	

	

(Ai) 

(Aii) 

(Aiii) 
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Figure	5.3	Analysis	of	the	effects	of	the	Tankyrase	inhibitor	MSC2524070	on	organoid	formation	

efficiency.	

Freshly	trypsinised	organoids	were	seeded	at	400	cells/µl	Matrigel	and	overlaid	with	previously	

specified	growth	media	supplemented	with	concentrations	of	each	of	the	MSC2524070	at	a	two	fold	

dilution	(0.195	nM	–	50	nM),	and	a	matched	DMSO	control	(0.1%	in	media)	for	6	days	in	culture.	(A)	

Bar	charts	depicting	organoid	formations	efficiencies	calculated	following	3	days	in	culture	for	(i)	Iso	

50;	(ii)	Iso	72;(iii)	Iso	75.	Data	are	shown	as	mean±s.e.m,	whereby	n=3.	Statistical	significance	as	

compared	to	control	as	indicated	by	*	(p≤0.05)	**	(p≤0.01),	calculated	by	a	one	way	ANOVA,	followed	

by	Dunnett’s	multiple	comparison	post-hoc	testing.	Data	generated	by	Jennifer	Shone	under	my	

supervision.	

(Ai) 

(Aii) 

(Aiii) 
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5.2.2 Tankyrase	inhibition	significantly	reduces	proliferation		
	

Prompted	by	indications	that	TNKSi	induced	differential	levels	of	growth	responses	

in	a	subset	of	organoids,	it	was	further	explored	whether	treatment	with	

MSC2524070	impacted	cell	proliferation.		

	

Following	6	days	of	treatment	with	25nM	MSC2524070A	or	0.1%	DMSO	untreated	

control,	Iso	50	and	Iso	72	structures	(a	non-responder	and	responder	organoid	line,	

respectively)	were	fixed	by	addition	of	4%	PFA	to	each	well	at	room	temperature	for	

15	minutes.	Organoids	were	washed	and	stained	within	black,	clear-bottomed	96	

well	plates	and	stained	with	a	nuclear	stain	(Hoechst)	and	proliferation	marker	

(Ki67),	prior	to	acquisition	of	z-stack	images	on	a	confocal	microscope.	To	detect	and	

quantify	positively	stained	cells	within	organoids,	an	automated	counting	tool	was	

established	using	IMARIS	software	(BITPLANE).	A	number	of	thresholds	were	

generated	to	assess	staining	intensity	and	morphology	to	ensure	that	counted	

objects	were	not	duplicated.	For	counting	purposes,	a	mask	was	generated	to	

quantify	the	number	of	Hoechst-stained	nuclei	present,	and	Ki67	positive	cells	on	an	

organoid-by-organoid	basis.	The	number	of	ki67-positive	cells	were	then	calculated	

as	a	percentage	per	whole	organoid	(%).		

	

Using	the	established	settings	for	automated	cell	counts,	it	was	possible	to	score	the	

number	of	cells	per	organoid	structure	from	Hoechst	stained	nuclei	as	a	further	

measurement	of	organoid	growth.	As	shown	in	Figure	5.4,	Iso	72	organoids	

contained	an	average	of	108±12	cells	per	organoid	in	untreated	control	conditions,	
as	opposed	to	47±11	in	the	presence	of	TNKSi	MSC2524070.	On	the	contrary,	Iso	50	

showed	no	significant	alteration	in	the	number	of	nuclei	per	organoid	following	a	six-

day	exposure	to	compound,	with	no	significant	difference	in	number	of	nuclei	in	

control	and	treated	conditions.		

	

Quantification	of	ki67	positive	cells	revealed	a	significant	reduction	in	the	

percentage	of	proliferating	cells	per	organoid	following	6	days	of	TNKSi	treatment	

compared	to	control	conditions	in	Iso	72	organoids	(0.33%	±	0.2562%	versus	34.38%	
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±	8.510%,	p=0.005,	unpaired	t-test	with	Welch’s	correction).	In	contrast,	a	non-

TNKSi-sensitive	organoid	line,	Iso	50,	showed	no	significant	difference	in	the	overall	

ratio	of	ki67	positive	cells	per	organoid	in	both	conditions,	indicating	that	

proliferation	was	unaffected	despite	treatment.		

	

Despite	organoids	assessed	showing	a	TNKSi-dependent	decrease	upon	proliferation	

in	sensitive	organoids	(Iso	72),	it	is	worth	noting	that	such	counts	have	technical	

limitations	upon	what	can	be	interpreted	biologically;	such	a	low-throughput	system	

restricts	the	number	of	organoids	which	can	be	quantified,	and	in	this	case	were	

limited	to	a	maximum	of	12	organoids	per	condition.	
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																Figure	5.4	Assessing	the	effects	of	the	Tankyrase	inhibitor	M
SC2524070	on	organoid	proliferation	
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5.2.3 Phenotypic	screening	of	TNKSi-treated	organoids		

	
Given	the	limitations	of	quantifiable	readouts	used	thus	far,	it	was	necessary	to	

further	interrogate	the	functional	effects	of	TNKSi	upon	organoids	beyond	such	basic	

measures,	to	facilitate	a	clearer	discrimination	between	dose-dependent	effects	of	

treatment.	As	such,	a	high-throughput	multi-parametric	phenotypic	analysis	screen	

was	performed,	in	collaboration	with	OcellO	(Leiden	University).	Phenotypic	
screening	has	been	implicated	as	a	successful	way	to	identify	drug	responses	relying	

on	functional	effects	of	cell	behaviour	as	opposed	to	focusing	purely	on	molecular	

targets	(Moffat	et	al.	2014;	Sandercock	et	al.	2015).	Within	the	literature,	OcellO	

have	established	a	refined	system	whereby	images	z-stacks	can	be	interrogated	to	

identify	certain	treatment-dependent	feature	responses	which	can	take	place	

(Sandercock	et	al.	2015;	Di,	Klop,	Rogkoti,	Devedec,	Water	van	de,	et	al.	2014).	Here,	

the	high-throughput	format	of	such	an	assay	system	was	used	to	investigate	the	

impact	of	three	novel	TNKSi	with	log-fold	changes	in	known	EC50	values	(previously	

established	by	Merck	Serono)	upon	8	organoid	lines.	

5.2.3.1 Multi-parametric	quantification	of	morphological	and	fluorescence	

intensity	reveals	TNKSi-dependent	effects	within	an	organoid	cohort	

	

8	organoid	lines	(Iso	34,	38,	48,	49,	50	,	72,	75,	78)	were	seeded	as	single	cells	at	a	

density	of	400	cells/µl	matrigel	per	well	of	a	384	plate,	to	a	total	volume	of	12µl	

within	a	matrigel	meniscus.	Upon	matrigel	polymerisation,	tailored	media,	as	

previously	established	per	line	(Chapter	3)	was	added	to	each	well	with	a	titration	of	

compounds	(MSC2524070A	0.39	nM	-100nM;	MSC2572070A	0.8	nM	–	250	nM;	

MSC2521490A	4nM	–	1250	nM)	at	a	ten-point,	two-fold	dilution,	with	DMSO	(0.1%)	

as	a	negative	control.	A	total	of	8	replicate	wells	were	used	per	condition.	Organoids	

were	subject	to	treatment	for	a	total	of	6	days	prior	to	simultaneous	fixation	and	

staining	with	F-actin	(TRITC	phalloidin)	and	nuclear	stains	(Hoechst	3568)	(as	

described	by	Di	et	al	2014).		
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Individual	z-stack	images	of	whole	384	well	plates	were	collected	on	a	MetaXpress®	

high-content	microscope	at	OcellO.	Images	were	then	inputted	into	the	OMiner	

analysis	software	developed	by	OcellO,	as	detailed	previously	in	Chapter	2	(section	

2.6.3).	Briefly,	projections	of	the	F-actin	and	nuclei-derived	image	stacks	were	used	

to	extrapolate	masks	of	individual	organoids,	internal	lumen	structures	and	nuclei.	

Image	segmentation	and	filters	were	applied	to	distinguish	individual	objects	per	

well,	and	enhance	noise	suppression	to	balance	sensitivity	of	analysis.	Relevant	

masks	were	then	used	to	acquire	approximately	700	quantifiable	morphological	

features,	including	data	relating	to	fluorescence	intensities	acquired	per	channel.		

	

Data	from	individual	organoids	were	then	pooled	on	a	well-by-well	basis,	with	data	

from	individual	wells	then	gathered	to	yield	average	parameter	readings	per	

treatment	condition.	Variation	in	specific	measured	parameters	across	a	plate	were	

assessed	by	heat	mapping,	as	shown	in	Figure	5.5,	to	ensure	that	technical	replicates	

were	valid	for	analysis;	any	outliers	were	removed	from	analysis,	resulting	in	a	

minimum	of	6	replicate	wells	used	for	subsequent	data	accumulation.	Any	outliers	

from	analysis	were	usually	a	result	of	matrigel	disruption	within	the	well	(as	a	

consequence	of	plating	or	shipping	conditions).	

	

Images	and	corresponding	masks	obtained	from	nuclei	and	F-actin	channels	

demonstrated	that	within	control	conditions,	organoids	formed	distinct	structures	

with	intense	f-actin	staining	within	organoid	lumens.	F-actin	integrity	has	previously	

been	implicated	as	a	critical	factor	for	overall	cell	viability	and	structural	support,	as	

well	as	nuclear	division	(Caie	et	al.	2010).	Measurement	of	individual	parameters,	

such	as	overall	organoid	size,	showed	clear	TNKSi-induced	effects	in	Iso	72,	as	

indicated	by	heat	mapping	across	the	plate	,	as	depicted	in	Figure	5.5,	further	

corroborating	previous	data.	Consistent	with	previous	findings	using	GelCount	

measurements,	morphometric	analysis	highlighted	a	dose-dependent	difference	in	

overall	organoid	sizes	of	Iso	72	treated	MSC2524070	compared	to	negative	control	

conditions	(DMSO,	0.1%).	In	concordance	with	this,	using	measurements	generated	

from	masks	of	Hoechst	channel	information,	it	was	also	observed	that	there	was	an	
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overall	decrease	in	the	number	of	nuclei	per	organoid	compared	to	control	

conditions.		

	

Morphometric	analysis	also	revealed	that	iso	72	demonstrated	a	change	in	overall	

lumen	size	as	a	result	of	tankyrase	inhibition.		Interestingly,	in	the	lowest	

concentrations	of	compound	administered,	it	was	found	that	an	overall	increase	in	

lumen	size	occurred,	which	did	not	seem	to	equate	to	overall	increase	in	organoid	

size.	In	a	recent	study	by	Lau	et	al	(2013),	it	was	also	found	that	TNKSI	G007-LK	and	

G244-LM,	mediated	a	similar	effects	in	organoids	cultured	from	Apcmin	small	

intestine	adenomas.	A	similar	effect	could	be	taking	place	in	organoids	cultured	

here,	whereby	an	increase	in	size	with	tankyrase	inhibitor	could	be	coupled	with	the	

induction	of	differentiation	whereby	cells	are	shed	into	the	central	lumen.	This	might	

also	occur	if	epithelial	cell	to	cell	junction	integrity	were	disrupted,	whereby	

polarised	lumens	are	no	longer	formed	in	response	to	TNKS	inhibition.
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Figure	5.5	TNKSi	mediate	morphological	changes	in	Iso	72	organoids.	
Iso	72	organoids	were	seeded	in	384	well	format	within	growth	factor-reduced	matrigel	and	

administered	with	a	titration	of	MSC2524070A	compound	at	a	range	of	concentrations	(19nM	–	

50nM).	Organoids	were	subject	to	treatment	for	6	days	prior	to	simultaneous	fix	and	stain,	then	

analysed	by	OcellO	Ominer	software.	(A)	Heat	map	based	on	total	organoid	area	within	a	384	well	

plate	between	DMSO	(0.1	%)	and	MSC2522070A	conditions	(Heat	map	generated	by	OcellO	readout,	

raw	data	obtained	by	Ominer	software,	OcellO).	(B)	Fold	change	in	average	lumen	size	in	response	to	

tankyrase	inhibition	(C)	Counts	of	changes	in	average	number	of	nuclei	per	organoid	in	response	to	

treatment;	p<0.05*;p<0.01**;	p<0/001***,	ANOVA	with	Dunnett’s	multiple	comparison	test.
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5.2.3.2 Feature-space	training	of	phenotypic	screening	reveals	targeted	

effects	of	TNKSi	treatments	within	organoids	

	

To	assess	whether	on-target	effects	of	compounds	could	be	measured	by	phenotypic	

screening,	multi-parametric	feature	space	training	analysis	was	implemented	to	

facilitate	further	discrimination	of	phenotypes	observed	between	administered	

doses	and	negative	control	conditions.		Previous	studies	within	the	literature	have	

utilised	such	methods	of	analysis	to	enable	a	selection	of	optimum	features	to	

classify	responses	to	a	particular	compound	(Sandercock	et	al.	2015;	Di,	Klop,	

Rogkoti,	Devedec,	Water	van	de,	et	al.	2014;	Caie	et	al.	2010).		

	

Firstly,	following	morphometric	and	fluorescent	measurements	of	individual	

organoid	components,	all	data	were	normalised	per	feature	by	robust	z-score	

(Described	in	(Di,	Klop,	Rogkoti,	Devedec,	Water	van	de,	et	al.	2014),	supplementary	

information),	to	account	for	variability	between	plates	(such	as	potential	differences	

in	staining	intensities).	The	highest	doses	of	each	compound	were	then	used	to	

select	features	that	maximally	separated	high	dose	treatment	from	negative	

controls,	based	on	robust	z-scores.		Principal	component	analysis	(PCA)	was	then	

performed	on	each	data	set	for	compound	and	control	DMSO-treated	samples,	per	

organoid	line,	to	reduce	phenotypic	measurements	to	key	principal	components	(PC)	

only,	as	opposed	to	assessing	individual	parameters.	By	reducing	data	into	key	

components	of	variation,	it	was	possible	to	visualise	responses	across	a	titration	

range	of	doses,	to	clearly	discriminate	between	the	highest	doses	and	negative	

control	(DMSO,	0.1%)	conditions.	The	distances	between	the	primary	principal	

components	(PC0)	in	phenotypic	space	were	then	measured	using	an	Euclidean	

distance	metric	(	equivalent	to	Mahalanobis	distance	metric	utilised	in	chapter	4)	

between	control	and	treatment	conditions	of	organoids.	It	would	be	expected	that	a	

maximal	separation	of	Euclidean	distances	would	be	observed	in	wells	whereby	

phenotypes	are	most	dissimilar.	Based	on	this	assumption,	TNKSi	sensitivity	would	

therefore	result	in	larger	segregation	of	Euclidean	distances	in	measured	principal	
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components	between	DMSO	conditions	and	increasing	concentrations	of	an	

inhibitor.		

	

Euclidean	distance	analyses	of	three	compounds	measured	against	DMSO	control	

conditions	in	a	cohort	of	8	organoids	were	plotted	with	a	log	EC50	(µM).	As	shown	in		

Figure	5.6	(B)	the	organoid	lines	Iso	72,	Iso	75	and	Iso	78	were	shown	to	have	a	clear	

dose-dependent	response	upon	phenotypic	parameters	induced	by	compounds.	

Figure	5.6	(A)	further	highlights	the	morphometric	output	of	sensitive	organoid	line	

Iso	75	treated	with	the	highest	concentration	of	each	compound,	compared	to	Iso	

50,	showing	visually	little	alteration	in	the	presence	of	compounds	administered.	

Interestingly,	both	Iso	75	and	Iso	78	were	dependent	on	Full	media	containing	Wnt	

and	R-spondin	to	facilitate	normal	growth	in	culture,	indicative	of	high	levels	of	Wnt	

dependency.	However,	Iso	72	was	shown	to	sustain	growth	independent	of	Wnt	in	

the	media,	suggesting	that	response	if	not	necessarily	correlated	of	external	growth	

factor	dependence.	Iso	38	and	34	appeared	to	have	a	strong	response	to	two	of	the	

inhibitors;	MSC2501490A	and	MSC2572070A,	but	we	were	unable	to	detect	such	a	

clear	EC50	for	the	most	potent	tested	TNKSi,	MSC2524070A.	It	was	observed	that	

TNKSi	appeared	to	have	a	minimal	effect	across	the	range	of	phenotypes	measured	

in	the	remaining	lines,	with	little	changes	in	Euclidean	distance	measurements	

between	DMSO	control	conditions	and	an	increasing	dose	range	of	TNKSi	.	Iso	50	

responses	corroborated	previous	data	collected	on	a	lack	of	impact	upon	overall	

organoid	size	as	an	indication	of	growth,	as	well	as	no	impact	upon	overall	

proliferation.		

	

Plotting	principal	components	of	a	number	of	phenotypes	in	a	multidimensional	plot	

enabled	a	higher	level	of	discrimination	between	highest	and	lowest	dose	of	

treatment,	enabling	the	measurement	of	a	clear	dose-response	curves	whose	

aggregate	quality	far	exceeded	that	of	individual	parameters.	Importantly,	such	

responses	correlated	with	expected	EC50s	over	3	log	fold	changes,	indicating	that	

collective	data	obtained	from	multiple	phenotypic	profiles	were	able	to	represent	

targeted	effects	of	compounds.		
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Figure	5.6	3D	image	analysis	demonstrates	on-target	effects	of	TNKSi	within	organoid	cultures	

Tumor	organoids	were	seeded	within	384	well	plates	and	overlaid	with	optimal	growth	media	

supplemented	with	MSC2501490A,MSC2524070A,	MSC2572070A	in	a	nine-point,	two-fold	drug	

titration,	or	a	DMSO	(0.1%)	negative	control.	Cultures	were	treated	for	six	days,	prior	to	fixing	and	

staining	simultaneously	with	DAPI	(nuclei;	blue)	and	phalloidin	(F-actin;	red).	(A)	Representative	

images	of	individual	wells	of	a	384	well	plate,	demonstrating	slight	morphological	effects	of	highest	

tankyrase	inhibitor	doses	in	a	sensitive	and	non-sensitive	organoid	line	(Iso	72,	Iso	50)		(B)	Principal	

component	analysis	was	used	to	select	the	top	10	most	discriminating	features	to	separate	

compound-induced	phenotypes	between	high	and	low	doses	of	tankyrase	inhibitors.	Selected	

parameters	were	used	for	feature	space	training,	whereby	Euclidean	distance	metrics	were	calculated	

between	high	and	low	doses	of	each	compound	for	each	organoid	line.	Highest	doses	of	each	

compound	were	used	to	select	the	most	discriminating	features	that	best	separated	treatments	from	

negative	controls.	Euclidean	distance	between	the	treated	and	non-treated	conditions	was	plotted	for	

each	treated	organoid.	Data	are	presented	as	mean	Euclidean	distance	from	8	replicate	wells	±	

standard	deviation.	Images	captured	and	analysed	by	OcellO.	
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	Table	5.1	EC
50 	values	obtained	from

	m
ulti-param

etric	analysis.	

	

(B)	

EC
50 	(nM

)	

Iso	34	
Iso	38	

Iso	48	
Iso	49	

Iso	50	
Iso	72	

Iso	75	
Iso	78	

M
SC2501490A	300	

2000	
no	curve	

no	curve	
no	curve	

300	
1200	

400	

M
SC2524070A	3	

9	
no	curve	

6	
no	curve	

2.6	
3	

2	

M
SC2572070A	70	

40	
no	curve	

no	curve	
260	

30	
400	

30	
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5.2.4 Assessing	changes	in	organoid	gene	expression	as	a	result	of	TNKSi	

treatment	

5.2.4.1 TNKSi	treatment	simultaneously	attenuates	stem-cell	marker	

expression	and	increases	expression	of	differentiated	intestinal	cell	

markers	in	TNKSi-sensitive	organoid	lines	

	

As	previously	discussed,	activation	of	Wnt	signalling	specifically	induces	the	

expansion	of	stem	cell	populations	in	the	intestine,	as	well	as	an	active	role	in	the	

maintenance	of	cancer	stem	cells.	To	determine	whether	inhibition	of	Wnt	

dependent	growth	by	TNKSi	induced	an	overall	change	in	the	stem	cell	signature	of	

tumour	organoids,	quantitative	RT-PCR	analysis	was	used	to	examine	the	relative	

expression	levels	of	a	range	of	epithelial	markers	of	stem	and	differentiated	cell	

activity	relevant	to	the	large	intestine.	It	was	hypothesised	that	TNKSi	would	induce	

a	downregulation	of	stem	cell	markers	in	sensitive	organoid	lines,	impacting	

differentiation	and	subsequent	organoid	growth.	Previous	studies	have	highlighted	

the	impact	of	gene	expression	as	a	response	to	TNKS	inhibitors	in	culture	(Lau	et	al.	

2013).To	determine	whether	TNKSi	treatment	impact	the	overall	stem	cell	signature	

of	organoids,	quantitative	RT-PCR	analysis	examining	the	expression	of	published	ISC	

markers	Lgr5,	Ascl2	as	well	as	the	differentiation	markers	KRT20	and	DKK1.	

	

Organoids	previously	established	in	culture	were	dissociated	to	single	cells	by	

administration	of	TrypLE,	washed,	then	embedded	at	a	density	of	400	cells/	µl	within	

growth	factor-reduced	matrigel.	Iso	72	and	Iso	50	were	overlaid	with	7+	media	

conditions,	whilst	that	Iso	75	required	exogenously	supplied	Wnt,	R-spondin	and	

other	growth	factors	within	‘Full’	media,	as	indicated	by	previous	experiments.		

Treatment	was	administered	within	media	upon	seeding	(0.1%	DMSO	control,	15nM	

MSC22524070A).	Following	6	days	of	treatment,	organoids	were	dissociated	to	

extract	RNA	to	be	utilised	for	subsequent	gene	expression	analysis.	Overall,	as	

shown	in	Figure	5.7,	a	significant	reduction	was	found	in	the	expression	of	both	Lgr5	
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and	Ascl2	following	6	days	of	treatment,	with	the	most	enhanced	effects	on	Lgr5	and	

Ascl2	gene	expression	observed	in	sensitive	lines	Iso	72	and	Iso	75.	Interestingly,	

Ascl2	expression	was	also	diminished	in	a	resistant	organoid	line,	Iso	50	whereas	

Lgr5	expression	was	unaffected.	This	could	potentially	suggest	that	Iso	50	is	

inherently	reliant	on	different	stem	cell	populations	that	were	not	assessed	here,	

such	as	Olfm4,	or	that	TNKSi	treatment	induces	an	effect	to	up-regulate	different	

stem	cell	populations	to	compensate	and	facilitate	organoid	growth.		

	

To	further	corroborate	this	data,	TNKSi-treated	organoids	were	immunostained	with	

an	Lgr5	antibody.	Following	treatment	with	MSC2524070A	or	DMSO	(control	

conditions,	0.1	%)	for	6	days,	organoid	lines	were	stained	phalloidin	to	mark	F-actin	

to	highlight	overall	cellular	architecture.	Lgr5	staining	was	found	prominently	on	the	

basal	edges	of	all	organoids	in	control	conditions,	with	some	variability	in	degree	of	

Lgr5	positive	cells.	Lgr5	expression	of	TNKSi-sensitive	lines	was	abrogated	in	both	Iso	

72	and	Iso	75,	as	shown	in	Figure	5.8	with	no	staining	visible	in	organoids	per	well	

(n=3	technical	replicates)	as	depicted	by	representative	images.	Morphologically,	the	

number	of	nuclei	per	organoid	was	generally	diminished	per	structure,	within	

sensitive	organoid	lines.	Iso	72	structures	in	particular	were	composed	of	few	cells,	

as	indicated	by	Hoechst	staining	and	a	generally	poor	cellular	organisation.	

Interestingly,	F-actin	staining	intensity	was	also	somewhat	diminished.	Overall,	these	

observations	support	qRT-PCR	data;	however,	given	that	counts	could	not	be	

obtained	from	Lgr5	positive	cells	due	to	the	nature	of	the	immunostain,	the	

corroborating	conclusions	are	purely	qualitative.		

	

An	enhanced	expression	of	an	intestinal	differentiation	marker	cytokeratin	20,	

KRT20,	was	also	observed	in	two	TNKSi-sensitive	organoid	lines	(Iso	72,	Iso	75)	

following	treatment	with	MSC2524070	(8.9±1.8	and	13.3±4.58	fold	change	

compared	to	DMSO	control,	respectively).	Iso	50,	a	previously	identified	non-

responder	line	was	however	was	shown	to	have	a	non-significant	increase	in	KRT20	

expression	(1.7±0.67	fold	increase	in	KRT20	gene	expression	normalised	to	control	

conditions)	indicative	that	differentiation	was	not	substantially	enhanced.	However,	
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it	is	worth	noting	that	KRT20	is	not	the	only	possible	marker	that	could	have	been	

used	as	an	indication	of	differentiation	within	intestinal	stem	cells.	

	

Consistent	with	these	findings,	immunostaining	three	organoid	lines	for	KRT20	

expression	also	revealed	an	increased	expression	of	cytokeratin	20	upon	treatment,	

compared	to	control	conditions	(Appendix	II-1,	Figure	7.3),	in	TNKSi	sensitive	lines,	

particularly	in	the	lumen	compartments	of	each	organoid.	However,	given	that	

TNKSi-sensitive	organoids	lines	(Iso	72,	Iso	75)	were	generally	smaller	structures	as	a	

result	of	treatment,	this	could	be	a	staining	artefact	whereby	antibody	penetration	is	

vastly	improved.	As	this	method	is	not	quantifiable	it	is	not	possible	to	comment	on	

levels	of	significance	these	results	at	present.	This	is	particularly	important	to	note	

for	Iso	72	treated	with	MSC2504070A	as	the	organoids	were	more	readily	washed	

away	in	the	preparation	for	staining	as	they	were	so	small,	which	lowers	confidence	

in	numbers.		
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Figure	5.7	Organoid	gene	expression	in	response	to	tankyrase	inhibitor.	

Organoids	were	dissociated	to	near	single	cells	using	TrypLE,	and	seeded	at	a	density	of	400	cells/	µl	

of	Matrigel.	Cells	were	administered	with	appropriate	media	conditions	supplemented	with	control	

(DMSO,	0.1%)	or	treatment	conditions	(MSC2524070)	for	a	total	of	six	days	in	culture.	Following	

treatment	or	control	conditions,	gene	expression	was	evaluated	by	quantitative	RT-PCR.	Data	are	

expressed	as	fold	change	(vs.	untreated	DMSO	control,	means	±	standard	error	of	the	mean,	n=3	

independent	experiments).	Statistical	analysis	was	performed	using	paired	Student	T	Test	whereby	

*indicates	p≤0.05,	**	indicates		p≤0.01,	***	indicates	p	≤0.001.		

0.001 

0.01 

0.1 

1 

10 

100 

Iso 50 Iso 72 Iso 75 

Fo
ld

 c
ha

ng
e 

in
 e

xp
re

ss
io

n 
 

re
la

tiv
e 

to
 c

on
tr

ol
  

AXIN1 
AXIN2 
TNKS1 
TNKS2 
LGR5 
ASCL2 
DKK1 
KRT20 

** 
** ** *** 

*** *** 

* 

** 

*** 

* 



	
180	

Figure	5.8	Analysis	of	the	effects	of	the	Tankyrase	inhibitor	M
SC2524070A	on	Lgr5	expression.	

Freshly	trypsinised	organoids	(Iso	50,	Iso	72,	Iso	75)	w
ere	seeded	at	400	cells/µl	M
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5.2.4.2 TNKSi	impact	on	Wnt/	ß-catenin	targets	

	

In	order	to	further	investigate	the	downstream	impacts	of	tankyrase	inhibitors,	gene	

expression	profiles	of	Wnt	target	genes,	including	AXIN	2,	TNKS	1/2,	were	obtained	

in	3	organoid	lines	(Iso	50,	Iso	72,	and	Iso	75).	Iso	72,	a	TNKSi	sensitive	line,	exhibited	

stabilisation	of	AXIN	2	as	a	result	of	treatment.	AXIN1	was	unaffected	in	all	lines	

measured,	as	shown	in	Figure	5.7.		

	

DKK1,	a	direct	Wnt/ß-catenin	signalling	antagonist		(Lau	et	al.	2013)	demonstrated	a	

marked	reduction	in	expression	of	Iso50	organoids	treated	with	MSC2424070	

normalised	to	control,	but	a	significant	increase	in	a	sensitive	organoid	line	Iso	72.	

This	difference	could	be	essential	in	their	converse	responses	to	TNKS	inhibition	as	

DKK1	may	increase	Wnt	negative	regulation,	leading	to	an	overall	reduction	in	

Wnt/ß-catenin	signalling	and	a	reduction	in	proliferation.	Increase	gene	expression	

of	DKK1,	observed	in	the	TNKSi	sensitive	line	Iso	72,	may	further	increase	Wnt	

negative	regulation,	resulting	in	an	overall	reduction	of	Wnt/	ß-catenin	signalling.	It	

is	clear	that	responses	and	feedback	outcomes	are	therefore	highly	dynamic,	further	

highlighting	the	complexity	of	Wnt	signalling.	

	

In	order	to	further	investigate	the	downstream	impacts	of	tankyrase	inhibitors,	the	

cellular	distribution	of	ß-catenin	was	also	assessed	by	immunofluorescence	in	

organoids	treated	with	MSC2524070	(15nM,	6	days)	as	depicted	in	Figure	5.9.		In	a	

population	of	DMSO	(0.1%)	–	treated	organoids,	all	three	lines	expressed	ß-catenin	

in	both	cytoplasmic	and	nuclear	compartments.	However,	MSC2524070	treatment	

induced	a	general	reduction	in	total	ß-catenin	levels	in	both	sensitive	and	non-

sensitive	lines.	Iso	72,	in	particular	demonstrated	no	levels	of	ß-catenin	stain	within	

structures.		

	

Overall,	this	data	would	suggest	that	TNKS	inhibition	elicits	a	downstream	effect	

upon	Wnt	signalling	gene	targets	in	both	sensitive	and	non-sensitive	organoid	lines,	

which	may	or	may	not	subsequently	impact	growth	and	proliferation	in	the	different	
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cellular	contexts	in	each	line.	Given	that	the	stem	cell	markers	were	somewhat	

downregulated,	and	differentiated	markers	upregulated	compared	to	control	and	

treatment	conditions,	this	would	suggest	that	the	stem	cell	signature	becomes	

reduced	in	organoids.	However,	given	that	the	stem	and	differentiated	markers	

explored	here	were	by	no	means	exhaustive,	further	work	would	need	to	be	in	place	

to	identify	whether	some	organoids	lines	were	better	adapted	to	compensate	for	

loss	of	stem	cell	activity,	potential	that	compensatory	mechanisms	could	be	induced	

in	some	lines	to	overcome	effects	of	TNKS	inhibition.
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															Figure	5.9	Analysis	of	β-catenin	expression	follow
ing	tankyrase	inhibitor	M

SC2524070	treatm
ent.	
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5.2.5 TNKS	inhibition	significantly	delays	tumour	growth	in	an	organoid-derived	

xenograft	model	

 

To	assess	whether	functional	and	phenotypic	effects	of	TNKSi-sensitive	organoids	

would	translate	to	tumour	growth	inhibition	in	vivo,	a	novel	organoid-derived	

xenograft	model	was	generated	within	the	Dale	Lab.		

	

To	investigate	the	therapeutic	potential	of	TNKSi	to	target	stem	cell	capacity	of	CRC,	

organoids	pre-treated	with	TNKSi	were	transplanted	into	mice	to	assess	whether	this	

would	alter	the	capacity	of	tumours	to	form,	as	well	as	an	indication	of	proliferative	

status	of	cells.		Given	that	Iso	75	had	shown	reliance	upon	Wnt	and	R-spondin	within	

media,	as	well	as	other	growth	factors,	and	was	shown	to	be	sensitive	to	TNKSi	

within	in	vitro	assays,	experiments	were	performed	with	this	line	since	it	was	

expected	to	show	maximal	effects.	Freshly	trypsinised	Iso	75	organoids	were	

embedded	in	Matrigel	and	overlaid	with	Full	media	containing	MSC2524070A	at	a	

concentration	of	30	nM	(EC50,	10	X	concentration)	or	DMSO	(0.1%)	as	a	negative	

control.	Following	growth	for	24	hours,	which	was	estimated	to	be	long	enough	to	

induce	biochemical	changes	without	being	long	enough	to	alter	the	total	number	of	

cells	in	the	organoids,	samples	from	each	condition	were	injected	into	the	flanks	of	

of	16	γ-irradiated	Non-	Obese	Diabetic	(NOD/SCID)	mice,	using	one	injection	site	per	

mouse,	per	condition.		

	

It	was	observed	that	tumour	formation	occurred	in	100%	of	sites	injected,	showing	

promise	for	this	method	to	generate	organoid-derived	xenograft	models.	

Furthermore,	it	was	noted	that	organoids	pre-treated	with	MSC2524070A	resulted	in	

a	significant	delay	in	tumour	formation	compared	to	control	organoids,	resulting	in	

an	increase	in	overall	median	survival	of	mice	(Figure	5.10).	This	would	suggest	that	

MSC2524070A	was	sufficient	to	limit	proliferative	capacity	of	injected	organoids.	

Given	the	complexity	of	stem	cell	dynamics	within	tumours,	further	experiments,	

including	analysis	of	tumours	formed,	would	need	to	take	place	to	determine	the	

mechanisms	in	place.	It	is	possible	that	whilst	tankyrase	inhibition	depleted	Lgr5+	
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stem	cells,	that	Lgr5-	cells	could	have	maintained	proliferation	formed	enabling	

tumours	to	eventually	form.	This	is	in	line	with	previous	studies	that	have	

demonstrated	pharmacological	inhibition	of	Lgr5+	cells	result	in	tumour	regrowth	

after	cessation	of	treatment	(Junttila	et	al.	2015).	Furthermore,	a	recent	study	has	

demonstrated	that	in	the	absence	of	Lgr5+	CSCs,	Lgr5-	cells	are	capable	of	

maintaining	proliferation,	to	a	lesser	degree	of	function	(Shimokawa	et	al.	2017).	In	

this	context,	it	would	appear	that	pre-treatment	of	organoids	with	TNKSi	limited	

initial	CSCs	population	within	the	tumour,	that	was	able	to	recover	following	lack	of	

treatment.		

	

Despite	this,	the	data	give	initial	promise	for	potential	therapies,	which	could	

possibly	be	used	in	combination	with	agents	to	treat	bulk	tumour	cells	following	

ablation	of	a	pool	of	certain	cancer	stem	cells.	Furthermore,	our	observations	

confirm	that	in	vitro	work	described	here	is	translatable	to	in	vivo	studies,	

highlighting	the	possibilities	of	further	work	for	the	organoid	model	system.		
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Figure	5.10	Kaplan-Meier	survival	analysis	of	NOD/SCID/	γ-irradiated	mice	injected	with	control	or	

TNKSi	treated	organoids.	

Mice	were	randomised	to	be	injected	with	organoid	treated	for	24	hours.	Organoids	were	exposed	to	

either	DMSO	(0.1%)	or	4070	(15nM).	TNKSi	treatment	was	found	to	delay	the	formation	of	tumours	

compared	to	control	conditions	(p	value=0.032*,	n=16	mice	per	cohort,	Log-rank	Mantel-cox	test).		

Experimental	procedures	and	Kaplan-Meier	survival	analysis	carried	out	by	Dr.	Kenneth	Ewan	(Dale	

lab)		
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5.3 Summary	

	

The	work	described	in	this	chapter	has	shown	a	potential	utility	of	colorectal	

organoids	within	drug	discovery.	Here,	a	cohort	of	primary	CRC	organoids	were	used	

to	investigate	novel	inhibitors	of	the	Wnt	signalling	pathway.	

	

Through	the	use	of	phenotypic	screening	in	collaboration	with	OcellO,	it	was	shown	

that	clear	organoid	responses	could	be	obtained	from	readouts	of	overall	organoid	

morphology	in	response	to	compounds.	Given	the	complexity	of	Wnt	signalling	

inhibitors	and	their	potential	subtle	effects	upon	cells,	demonstrating	clear	efficacy	

over	3	log	EC50	values	has	emphasised	organoids	as	a	valuable	asset	for	future	drug	

discovery	programmes.		The	results	also	indicated	that	TNKSi	successfully	limited	the	

number	of	Lgr5+	cells	within	organoids,	as	well	as	limiting	ß-catenin	levels,	

suggesting	an	overall	inhibitory	effect	upon	Wnt	signalling.	Functionally,	this	was	

shown	to	have	differential	effects	dependent	on	the	organoid	line,	further	

highlighting	the	complexity	of	Wnt	responses	and	the	need	for	a	range	of	phenotypic	

readouts.	

	

Encouragingly,	this	work	also	demonstrated	a	concordance	between	effects	of	Wnt	

signalling	inhibitors	observed	in	vitro	and	in	a	comparative	in	vivo	model.	Whilst	this	

was	performed	on	a	select	cohort	with	limited	follow-up	analysis	on	in	vivo	effects,		

this	was	a	particularly	encouraging	result	to	form	the	basis	of	future	studies	to	assess	

whether	organoids	be	used	as	an	initial	readout	for	compounds	in	drug	discovery,	

thus	limiting	the	overall	number	of	mouse	models	required.		
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6 Discussion	

	

The	prospective	modelling	of	CRC	mutations	in	a	patient-derived	organoid	system	to	

generate	functional	predictive	readouts	for	stratified	medicine	and	the	drug	

discovery	pipeline	is	a	promising	avenue	for	cancer	precision	medicine.	Despite	the	

increasing	evidence	in	the	literature	to	support	the	notion	that	organoids	provide	a	

more	sufficient	model	system	than	preceding	2D	in	vitro	cell	lines,	their	overall	

validation	in	terms	of	providing	a	robust	screening	tool	in	the	context	of	biomarker-

driven	therapeutics	in	the	clinic	requires	further	proof-of-concept	studies.	In	order	to	

ultimately	measure	concordance	between	organoids	and	respective	patient	

counterparts,	a	number	of	challenges	associated	with	complex	3D	culture	need	to	be	

addressed,	enabling	the	employment	of	organoids	as	a	pre-clinical	model	system.	

	

The	overarching	aim	of	this	thesis	was	thus	to	validate	the	utility	of	organoids	

derived	from	CRC	patient	material	as	a	relevant	pre-clinical	platform,	in	order	to	

ascertain	their	application	within	stratified	medicine	and	drug	discovery.	To	address	

this,	this	thesis	aimed	to:	

	

1. Develop	suitable	methodologies	to	transfer	patient-derived	organoids	

towards	functional	readouts.	

2. Establish	the	capacity	of	organoids	to	provide	functional	readouts	for	

biomarker-driven	therapies	by	mirroring	the	FOCUS	4	clinical	trial,	towards	

assessing	their	predictive	power.	

3. Validate	the	potential	utility	of	organoids	in	the	drug	discovery	pipeline	using	

novel	Wnt-signalling	inhibitors.	

	

As	a	result,	many	interesting	findings	were	raised	and	will	be	discussed	in	turn	in	this	

chapter,	to	explore	the	extent	to	which	the	aims	have	been	addressed,	and	the	

overall	contribution	of	this	thesis.		
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6.1 Niche	requirements	facilitate	organoid	culture	from	patient	derived	samples	

	

The	isolation	of	human	crypts	and	consecutive	culture	conditions	to	propagate	

organoid	development,	previously	published	by	Sato	et	al	(2011)	and	further	

adapted	for	our	primary	human	samples,	were	shown	to	support	robust	long-term	

culture	of	patient	derived	organoids	that	can	be	adapted	towards	more	high-

throughput	screenings.		

	

Here,	it	was	shown	that	parallel	processing	of	samples	within	two	media	conditions	

was	sufficient	to	generate	tumour	organoids	in	the	first	instance	from	approximately	

80%	of	all	samples	processed.	The	generation	of	an	organoid	biobank	from	CRC	

material	has	previously	been	established	(Wetering,	Francies,	Garnett,	Wetering,	et	

al.	2015)	to	generate	22	primary	organoid	lines,	however	failed	to	encompass	rectal	

cancers.	Within	our	collection	stream	at	the	Dale	lab,	a	total	of	78	samples	have	

been	isolated	thus	far,	with	8	of	these	extensively	characterised	for	the	purpose	of	

this	study,	inclusive	of	rectal	cancer.	From	our	processed	samples,	a	clear	divide	was	

found	in	terms	of	reliance	of	some	of	our	subset	on	‘Full’	growth-factor	and	Wnt/R-

spondin-	containing	media,	as	opposed	to	Basal	‘7+’	media	conditions.	Both	Iso	75	

and	Iso	78	were	dependent	on	Full	media	to	sustain	growth;	Iso	75	harboured	no	

truncating	APC	mutations,	therefore	it	is	possible	that	the	exogenous	Wnt	and	R-

spondin	were	essential	to	maintain	cells	in	culture.	CRISPR-mediated	engineering	of	

intestinal	organoids	have	previously	shown	that	APC	wild	type	cells	require	the	

presence	of	Wnt	and	R-spondin	within	the	media	to	continue	in	culture	(Matano	et	

al.	2015).	However,	without	fully	characterising	the	effects	of	titrating	various	

components	within	the	media,	these	observations	are	purely	speculative.	It	is	

possible	that	the	tumour	grades	may	have	a	role	in	determining	reliance	upon	

multiple	growth	factors;	previous	studies	have	demonstrated	the	importance	of	the	

organoid	niche	as	maintained	by	Wnt,	Notch	and	Bone-morphogenetic	protein	

(BMP),	to	determine	differentiation	of	epithelial	cell	lineages	(Sato	et	al.	2009;	Yin	et	

al.	2013).		It	is	plausible	that	advanced	tumours	are	so	far	adapted	to	this	

environment	they	have	a	requirement	for	multiple	growth	factors	(Sachs	et	al	2013),	

or	even	hypoxic	conditions	(Fujii	et	al.	2016b).	
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The	importance	of	the	niche	environment	for	optimal	tumour	organoid	growth	as	

noted	here	has	been	further	explored	by	Fujii	et	al.,	(2016),	where	they	describe	the	

formation	of	a	tumour	organoid	biobank,	established	from	eight	various	growth	

conditions	containing	different	combinations	of	EGF,	Noggin	Wnt	and	R-spondin	

within	the	base	medium.	Within	this	study,	the	authors	established	niche	factor	

dependencies	by	withdrawing	each	factor	from	the	media	and	investigating	the	

impact	upon	colony	formation,	until	the	minimal	essential	niche	factor	combinations	

for	growth	were	deduced.	However,	a	limiting	factor	of	adopting	this	approach	to	

establish	conditions	to	favour	organoid	growth	for	a	range	of	clinical	subtypes	is	the	

quality	of	the	surgically	resected	tissue	in	the	first	instance;	if	samples	were	necrotic,	

few	viable	cells	were	capable	of	survival.	This	would	limit	the	number	of	growth	

conditions	that	could	be	tested	in	the	crucial	first	hours-days	of	culture.		

	

A	key	consideration	for	evaluating	the	potential	of	organoids	as	an	effective	pre-

clinical	model	is	reliant	upon	their	capacity	to	represent	molecular	and	biological	

components	of	parental	tumours.	Collaborative	efforts	with	the	WCB	have	enabled	

us	to	mostly	integrate	our	data	with	patient	data	to	generate	a	full	cohort	of	degree	

stages	corresponding	to	development	of	organoids.	Organoids	grown	under	optimal	

conditions	were	shown	to	recapitulate	histologically	relevant	architectures	to	

corresponding	parent	tumours	(Figure	3.7),	as	well	as	functional	differentiation,	

matching	those	from	mirrored	patient	histology	(Figure	3.8).	Further	exploration	of	

specific	markers	to	characterise	tumours	suggested	that	not	only	were	organoids	

representative	of	particular	tumours	subtypes	but,	to	a	degree,	were	able	to	

recapitulate	expression	of	differentiated	cell	markers	such	as	Mucin,	as	marked	by	

Muc2,	indicating	that	tumour	characteristics	were	retained	in	culture.			

	

A	subset	of	organoids	that	were	characterised	by	next	generation	sequencing	were	

further	shown	to	harbour	a	diverse	pattern	of	genetic	mutations,	consistent	with	

those	reported	within	the	Cancer	Genome	Atlas	study	(Cancer	Genome	Atlas	

Network	2012)	whereby	a	collection	of	clinical	CRC	samples	demonstrated	the	most	

commonly	mutated	genes	in	CRC.		Similarly,	the	most	frequent	mutations	within	our	
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organoid	cohort	were	genes	such	as	APC,	PIK3CA	and	TP53.	As	well	as	showing	

clinical	relevance,	our	cohort	were	shown	to	have	successfully	established	in	culture,	

irrespective	of	mutational	background.	The	organoid	cohort	here	further	

demonstrates	a	similar	distribution	of	specific	genotypes	as	described	in	a	recent	

generation	of	a	CRC	tumour	organoid	biobank	(Wetering,	Francies,	Garnett,	

Wetering,	et	al.	2015).	The	comparative	genomic	profiles	between	CRC	organoids	

and	parental	tumours	are	yet	to	be	determined	due	to	limited	access	to	patient	

genotype	data	during	the	timeline	of	this	study.	Previous	studies	have	demonstrated	

that	overall,	organoids	capture	the	overall	genetic	landscape	of	their	parental	

tumour,	which	translates	through	to	organoid-xenograft	models,	and	further	

maintaining	stability	over	subsequent	passage	(Schütte	et	al.	2017)	with	some	

discrepancies	arising	as	a	result	of	intratumour	heterogeneity.		It	is	plausible	that	

different	tumour	regions	may	have	variable	responses	to	targeted	therapies.	Tumour	

heterogeneity	can	occur	on	a	regional	basis	within	a	tumour	(Weeber	et	al.	2015)	

and	thus	organoid	culture	from	multiple	tumour	sites	could	potentially	give	a	more	

rounded	overview	of	heterogeneity	and	therefore	overall	drug	responses.	However,	

broadly	speaking,	biomarkers	such	those	relevant	to	the	FOCUS	4	clinical	trial,	were	

shown	to	be	retained	across	tumour	sites	(Weeber	et	al.	2015),	which	was	sufficient	

for	our	particular	studies.	

	

6.2 Functional	testing	in	a	relevant	model	system	is	necessary	to	support	genetic	

data;	biomarkers	do	not	always	predict	drug	responses.		

	

Despite	the	understanding	of	critical	components	that	form	the	basis	of	tumour	

progression	and	malignancy,	the	ability	to	effectively	treat	tumours	based	on	their	

biomarker	profile	has	proved	challenging.	Stratification	of	patients	based	on	the	

genomic	imprint	of	their	tumour	ideally	requires	functional	readouts	to	assess	

therapeutic	effects	of	compounds.		Chapter	4	described	the	application	of	organoids	

as	a	predictive	model	for	biomarker-driven	therapies,	by	mimicking	compounds	

utilised	within	the	FOCUS	4	clinical	trial.	The	findings	gathered	from	this	thesis	

therefore	hold	some	clinical	implications,	in	particular	to	the	molecularly	stratified	

phase	II	MRC	FOCUS	4	clinical	trial	for	metastatic	CRC	patients.		The	design	of	an	in	
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vitro	clinical	trial	discussed	here	was	sought	to	establish	the	potential	efficacy	of	

biomarker	driven	therapeutics	in	a	relevant	pre-clinical	system,	which	could	

ultimately	be	compared	with	patient	responses	harbouring	similar	mutations.	Unlike	

the	FOCUS	4	clinical	trial,	it	was	possible	to	test	all	treatments	upon	organoids	to	

establish	optimal	treatments.	Interestingly,	it	was	noted	that	the	overall	genotypic	

profile	of	organoids	did	not	necessarily	equate	to	growth	inhibition	by	the	treatment	

assigned	to	each	arm,	further	highlighting	the	requirement	of	functionally	relevant	

models.	The	most	relevant	findings	will	be	discussed	in	turn	here.	

	

6.2.1 Aspirin	metabolite	induces	growth	inhibition	within	a	subgroup	of	
organoids,	irrespective	of	PIK3CA	mutation	status.		

	

An	apparent	observation	within	this	work	was	the	varied	level	of	responses	of	

organoids	to	aspirin	metabolite	treatment	in	order	to	mirror	treatments	that	will	be	

administered	to	patients	within	PIK3CA	mutant	arm	of	FOCUS	4.	Within	responsive	

organoids	it	was	found	that	aspirin	induced	partial	growth	inhibition,	and	ultimately	

increased	the	number	of	apoptotic	cells	per	organoid,	in	agreement	with	studies	in	

aspirin-sensitive	CRC	cell	lines	(Goel	et	al.	2003).	In	a	retrospective	study	by	(Liao	et	

al.	2012),	it	was	shown	that	regular	aspirin	use	following	a	diagnosis	of	colon	cancer	

has	been	associated	with	an	improved	clinical	outcome	in	patients	with	mutated	

PIK3CA	as	opposed	to	wild	type,	further	corroborated	in	studies	by	(Domingo	et	al.	

2013).	However,	no	such	correlation	was	observed	in	this	organoid	cohort	treated	

with	aspirin;	organoids	responsive	to	aspirin	metabolite	were	not	necessarily	PIK3CA	

mutant,	and	not	all	PIK3CA	mutant	organoids	were	responsive	to	aspirin.			

	

The	lack	of	response	in	PIK3CA	mutant	organoids	could	be	as	a	result	of	the	assay	

format	itself;	previous	studies	have	indicated	that	Aspirin	has	also	been	shown	to	be	

more	effective	in	rapidly	dividing	cells	only;	as	cell	doubling	rates	in	were	not	

deduced	for	all	organoid	lines	in	this	assay	format,	it	is	possible	that	the	assay	

window	to	detect	responses	could	vary	(Zumwalt	et	al.	2017).	The	discordance	in	our	

findings	is	arguably,	most	likely,	a	result	of	the	plethora	of	different	mechanisms	that	

could	be	induced	by	aspirin	treatment,	regardless	of	PIK3CA	mutation	status	in	cells,	
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and	the	few	sample	numbers	of	organoids	tested.	PIK3CA	mutations	leads	to	an	

upregulation	of	PI3K-AKT	activation,	which	have	an	array	of	interactions	upon	the	

cell	and	can	also	be	activated	by	receptor	tyrosine	kinases	or	activated	RAS	

(Engelman	2009b).	Despite	the	overall	survival	benefit	for	regular	aspirin	

administration	in	PIK3CA-mutated	CRC,	the	mechanistic	understanding	of	this	

association	is	yet	to	be	established.	The	molecular	mechanisms	of	aspirin	are	

strongly	debated	as	to	their	effect	upon	tumour	formation	and/or	growth;	aside	

from	their	effects	upon	the	immune	system,	studies	have	investigated	the	role	of	

aspirin	metabolites	upon	glycolytic	metabolism	in	tumour	cells,	disruption	of	

multiple	signalling	pathways,	and	inhibition	on	the	basis	of	DNA	MMR	proficiency.	

Studies	have	also	proposed	that	the	use	of	NSAIDs	such	as	aspirin	mediates	a	

reduction	in	Lgr5	expression	within	carcinoma	cell	lines	(DLD1	cells)	in	a	PGE2-

dependent	manner	(Al-kharusi	et	al.	2013).	Theoretically,	a	reduced	Lgr5+	cell	

population	would	thus	result	in	a	reduced	clonogenic	growth	of	CSCs,	thus	

preventing	tumour	formation.	Given	that	organoids	are	capable	of	retaining	a	stem	

cell	population,	this	mechanism	could	be	further	investigated	in	future	studies.		

Aspirin	has	multiple	targets	and	thus	PI3KCA	is	not	necessarily	the	best	as	a	

predisposed	biomarker	and	may	have	numerous	influences	that	determine	overall	

tumour	responses.	The	variable	responses	to	aspirin	from	organoid	could	indicate	a	

major	mechanism	is	on	the	immune	cells	and/or	stroma,	which	are	absent	in	

organoids.		

	

The	major	caveat	of	this	work	described	in	chapter	4	is	that	the	organoids	described	

were	not	necessarily	obtained	from	patients	recruited	to	the	FOCUS	4	clinical	trial.	

However,	the	organoids	described	were	representative	of	relevant	biomarkers	and	

thus	hold	some	basis	to	mirror	biomarker-targeted	drug	responses	administered	

within	the	trial.	Given	that	a	subset	of	8	organoids	were	used	for	this	study	also,	

further	analysis	would	be	required	to	assess	the	true	predictive	power	of	organoids.	

Taken	together,	the	data	presented	herein	would	suggest	that	PIK3CA	mutations	

were	not	the	only	apparent	biomarker	to	indicate	aspirin	response,	which	could	have	

important	clinical	implications	within	the	FOCUS	4	clinical	trial.	
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6.2.2 Compounds	targeting	DNA	damage	responses	impose	anti-
proliferative	and	pro-apoptotic	effects	within	organoids	harbouring	
TP53	mutations.	

	

The	therapeutic	potential	of	compounds	targeting	Wee1	and	ATR,	both	crucial	

components	within	the	DNA	damage	responses	was	assessed	in	our	organoid	cohort	

to	ultimately	assess	whether	similar	treatment	outputs	would	be	observed	in	

patients.	Ultimately,	this	data	may	hold	some	clinical	value	on	the	overall	efficacy	of	

reducing	tumour	growth.	It	would	be	hypothesised	that	synthetic	lethality	by	

administration	of	Wee1	and	ATR	inhibitor,	would	prevent	cell	cycle	progression,	and	

thus	inhibit	growth	in	the	organoid	model.		

	

Administration	of	MK1775	(Wee1	inhibitor)	and	AZ20	(ATR	inhibitor)	resulted	in	an	

inhibition	of	overall	organoid	growth,	as	indicated	by	measurements	of	viability	and	

basic	morphometric	measurements	following	4	days	of	exposure	with	the	

compound.	As	described	previously,	Wee1	has	a	major	role	in	mediating	the	G2/M	

checkpoint	in	the	cell	cycle,	enabling	time	to	repair	any	remaining	double	strand	

breaks	before	cell	division	(Weisberg	et	al.	2015).	Administration	of	Wee1	inhibitor	

upon	organoids	was	also	shown	to	potentiate	apoptotic	effects,	as	evident	by	

phenotypic	readouts.	This	is	in	accordance	with	previous	studies	that	have	

elucidated	the	cytotoxic	effects	of	this	compound	in	an	array	of	cell	lines,	and	further	

shown	to	be	effective	in	mouse	models	(Guertin	et	al.	2013).	Mechanistically,	studies	

have	shown	that	p53	loss	in	cells	result	in	mitotic	catastrophe	in	cell	lines	and	thus	

the	main	cause	of	synthetic	lethality	(Aarts	et	al.	2012).		However,	recent	studies	

have	identified	further	epigenetic	biomarkers	such	as	trimethylation	of	histone	

H3K36me3	(Pfister	et	al.	2015)	and	shown	that	Wee1	can	also	induce	synthetic	

lethality	in	p53	wild-type	cells.	This	further	highlights	the	need	for	functional	systems	

which	can	encompass	potentially	multiple	biomarkers	for	identification	of	

therapeutic	responses.	Studies	have	also	demonstrated	that	gastric	cell	lines	lacking	

ATM,	or	contain	TP53	defects,	are	vulnerable	to	inhibition	of	ATR	by	AZD6738	
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(analogue	of	AZ20),	inducing	replication	initiation	and	fork	stalling,	ultimately	

resulting	in	DNA	damage	and	an	overall	cytotoxic	effects	upon	cells	(Min	et	al.	2017).		

The	data	presented	here	suggests	that	targets	of	the	DNA	damage	response	may	

provide	a	suitable	target	for	CRC	therapy	in	ATM	or	Tp53	mutant	patients.	However,	

the	overall	relevance	of	the	model	system	must	be	considered.		Whilst	readouts	of	

toxicity	upon	organoids	derived	from	patients	provides	encouraging	support	for	the	

relevance	of	such	compounds,	the	lack	of	readout	on	toxicity	upon	normal	cells	

restricts	the	utility	of	organoids	to	confidently	predict	patient	responses	to	therapy.	

Whilst	the	culture	of	healthy	colorectal	material	was	attempted	during	this	study,	

growth	was	restricted	to	a	month	in	culture,	preventing	the	possibility	of	generating	

sufficient	material	as	a	control	for	subsequent	drug	readouts.	A	biobank	of	CRC	

organoids	have	recently	presented	the	comparison	of	CRC-relevant	compounds	

upon	both	normal	and	tumour	tissue	to	achieve	a	basic	readout	of	toxicity	

(Wetering,	Francies,	Garnett,	Wetering,	et	al.	2015).	Such	systems	could	be	

employed	for	future	studies	whereby	organoids	are	generated	and	treated	in	parallel	

with	such	clinical	trials.	An	important	consideration	for	this	work	is	also	the	lack	of	

suitable	organoid	based	controls	that	were	available	for	this	study;	given	that	all	

organoids	generated	were	both	ATM	and	tP53	mutant	a	clear	distinction	of	the	

effects	between	ATM	wild	type	and	tp53	wild	type	were	not	able	to	take	place.	This	

would	be	hugely	important	to	collect	population-based	data	that	is	required	for	

stratification	studies.		

	

6.2.3 Combination	therapy	targeting	RAF-ERK	signalling	potentiates	
organoid	growth	inhibition	

	

Despite	the	initial	promise	of	BRAF	and	EGFR	targeting	therapies,	clinical	studies	

have	demonstrated	an	overall	limited	success	for	treatment	of	CRC	due	to	a	lack	of	

therapeutic	effect.	Both	in	vitro	and	in	vivo	studies	support	the	notion	that	this	lack	

of	effect	is	mediated	by	the	up-regulation	of	mechanisms	to	compensate	for	

pathway	inhibition	(Corcoran	et	al.	2015;	Corcoran	2015),	as	well	as	pre-existing	

mutations	that	predict	non-response.	Whole-exome	sequencing	of	paired	

pretreatment	and	post-progression	biopsies	from	BRAF	mutant	CRC	samples	from	
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patients	have	identified	significant	alteration	in	MAPK	pathway	such	as	BRAF	and	

MEK	amplifications.	(Ahronian	et	al.	2015).	As	such,	drug	development	strategies	

and	pre-clinical	investigations	have	justifiably	focused	efforts	to	target	components	

of	BRAF-mediated	signalling.	Within	the	MRC	FOCUS	4	clinical	trial	it	is	hypothesised	

that	targeting	three	components	of	BRAF-mediated	signaling	will	improve	tumour	

free	progression	within	CRC	patients	(Figure	6.1).	Here,	to	address	whether	such	

hypotheses	could	be	tested	in	a	relevant	preclinical	model,	organoids	propagated	

from	BRAF	mutant	patients	were	assessed	for	their	sensitivity	to	BRAF,	EGFR	and	

MEK	inhibition,	mirroring	treatments	administered	to	patients	within	the	FOCUS	4	

trial.	
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Figure	6.1	Inhibition	of	RAS-ERK	signaling	;	targeting	adaptive	feedback	mechanisms	

EGFR	activates	RAS-ERK	signalling	pathway	to	induce	gene	expression	of	components	involved	in	cell	proliferation	and	growth.	Combination	therapies,	targeting	multiple	

components	within	the	pathway	is	theorized	to	overcome	adaptive	feedback	reactivation	induced	by	single	agent	therapies.	
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The	therapeutic	effects	of	each	compound	in	turn	were	assessed	to	determine	

whether	as	hypothesised,	BRAF	mutations	would	incur	sensitivity.	Trametinib	(MEK	

inhibitor)	administration	upon	organoids	resulted	in	a	pro-apoptotic	effect	within	

cells,	as	opposed	to	Dabrafenib	(BRAF	inhibitor)	and	Panitumumab	(EGFR	inhibitor),	

compounds	that	showed	little	effect	as	single	agents.	Trametinib	was	further	shown	

to	potentiate	the	growth	inhibition	potential	of	both	Dabrafenib	and	Panitumumab	

within	combination	drug	screens.	Previously,	assessment	of	Trametinib	and	

Dabrafenib	in	combination	has	shown	favourable	effects	in	BRAF	mutant	PDX	

models,	as	well	as	within	CRC	patients	setting,	improving	overall	prognosis	(Corcoran	

et	al.	2015).	Some	data	has	also	shown	the	improvement	of	dual	BRAF	and	MEK	

inhibition	to	treat	metastatic	colorectal	adenocarcinomas	(Williams	et	al.	2015).		

Importantly,	sub-optimal	inhibition	of	MAPK	pathway	has	been	shown	to	play	a	role	

in	limited	efficacy	in	patients,	further	highlighting	the	need	for	relevant	model	

systems	to	test	target	affinity.		Our	studies	also	demonstrated	a	dose	reduction	

index	could	be	applied	to	both	compounds,	further	corroborating	findings	that	co-

administration	of	BRAF	and	MEK	inhibitor	Dabrafenib	and	Trametinib	improve	

overall	safety	profiles	of	compounds	(King	et	al.	2013).	In	a	recent	study	

administration	of	Trametinib	and	an	ERK	inhibitor	within	organoids	were	able	to	

induce	cell	cycle	arrest,	further	affirming	the	application	of	Trametinib	as	an	

effective	compound	(Verissimo	and	et	al.	2016).	However,	as	well	as	demonstrating	

the	effects	of	given	compounds,	the	dose	reduction	effects	were	not	established	in	

this	study,	and	are	of	equal	importance	to	consider	to	ensure	full	tumour	regression.		

	

A	BRAF-mutant	organoid	was	further	exposed	to	3	compounds	in	combination	and	

were	found	to	impact	growth,	and	limit	the	dosage	of	drug	required	of	each	

compound	to	induce	an	IC50	effect.	These	findings	suggest	that	targeting	multiple	

components	of	EGFR-RAS-RAF	signalling	may	succeed	in	preventing	compensatory	

mechanisms	to	induce	proliferation.	Given	the	increasing	number	of	combination	

strategies	that	require	multiple	targets	for	tumour	growth	inhibition,	the	capacity	of	

organoids	to	be	used	within	such	a	pre-clinical	setting	could	be	invaluable	to	

generate	data	on	the	most	appropriate	combinations.	A	recent	study	demonstrated	
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the	use	of	basic	readouts	of	toxicity	upon	normal	organoids	to	establish	the	effects	

of	combination	therapies	upon	the	stem	cell	capacity	in	the	colon	(Verissimo	and	et	

al.	2016).	It	was	found	that	EGFR	inhibition	induced	similar	effects	in	normal	colonic	

organoids	as	to	RAS	Wild	type	organoids.	Here,	by	utilising	Chou-Talalay	methods	of	

analysis	it	was	further	possible	to	determine	a	fold	change	in	compound	treatment	

that	could	be	effective	in	organoids	at	a	much	lower	dose	comparative	to	single	

agent	administration.		

	

In	order	to	increase	confidence	in	this	analysis	and	drug	regime,	further	studies	upon	

multiple	organoid	lines	would	be	required	to	fully	establish	the	effects	of	BRAF	

inhibition.	Ideally,	findings	would	require	some	corroboration	to	determine	the	

effects	in	vivo.		A	recent	study	within	our	group	aiming	to	establish	the	in	vivo	

activity	of	MEK	and	PI3K	inhibitors	within	GEMMs	as	a	pre-clinical	evaluation	for		

FOCUS4	(a	preceding	FOCUS	4	outline)	found	that	not	only	were	favourable	

compound	combinations	essential	for	anti-tumour	effects,	but	also	the	dosage	

regime	and	order	of	treatment	(Raja	et	al.,	2015).	As	such	studies	can	be	time	

consuming,	the	promise	of	carrying	out	preliminary	dose	scheduling	combination	in	

organoids,	prior	to	translating	within	in	vivo	systems	could	be	invaluable	for	

acquisition	of	preclinical	data.	Organoid-derived	xenografts	based	on	the	lines	used	

here	may	be	useful	in	this	respect.	
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Taken	together,	this	work	would	suggest	that	biomarkers	do	not	necessarily	

predispose	effective	responses	in	an	organoid-based	system,	supporting	

observations	in	the	literature	that	biomarker-led	analyses	alone	are	not	sufficient	to	

predict	patient	responses	to	therapies	(Voest	and	Bernards	2016).	Despite	the	

promise	of	genetic	biomarkers	alone	to	guide	precision	medicine,	it	is	becoming	

increasingly	apparent	that	multiple	factors	influence	and	somewhat	obscure	

genotype-phenotype	drug	response	outcomes.	A	number	of	reasons	would	account	

for	this,	some,	some	of	which	are	noted	herein.	

	

Firstly,	preclinical	biomarker-driven	therapeutic	studies	have	classically	relied	upon	

in	vitro	studies	within	a	uniform	cellular	context.	The	representation	of	tumour	

heterogeneity	to	explore	genotype-phenotype	interactions	has	therefore	been	

limited	due	to	clonal	nature	of	2D	cell	lines,	resulting	in	some	failures	between	the	

translations	of	targeted	therapy	to	patients	(Weeber	et	al.	2017;	Barretina	et	al.	

2012).	Whilst	pharmacogenomics	interactions	between	genotypes	and	cellular	

phenotypes	with	the	intention	of	targeting	select	tumour	cell	subpopulations	have	

therefore	improved	clinical	outcomes	for	a	number	of	patients	(Iorio	et	al.	2016),	it	is	

widely	accepted	that	such	studies	do	not	necessarily	capture	the	biology	of	the	

whole	tumour	(Pauli	et	al.	2017)	.Furthermore,	biomarkers	alone	do	not	sufficiently	

account	for	gene	expression	profiles	in	CRC;		recent	transcriptomic	analyses	of	CRC	

have	further	emphasized	the	complexity	of	predicting	drug	responses	based	solely	

on	genetic	biomarkers	(Guinney	et	al.	2015;	Sadanandam	et	al.	2013)	and	the	need	

for	further	subclassification	of	CRC	types.	A	lack	of	biomarker-dependent	responses	

in	the	clinic	could	also	by	accounted	for	by	the	use	of	pharmacological	agents	with	

uncharacterized	mechanisms	of	action	that	do	not	necessarily	correspond	to	a	single	

pathway	biomarker	thus	making	it	more	complex	to	elucidate	outcomes.		

	

Most	notably,	the	lack	of	translation	between	targeted	genotypes	and	phenotypic	

outcomes	are	likely	to	be	obscured	by	the	cross-talk	between	a	complex	network	of	

signalling	pathways,	which	can	ultimately	overcome	therapeutic	efficacy	(Voest	and	

Bernards	2016).	Pathway	activation	or	inactivation	within	the	tumour	is	therefore	
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entirely	context	dependent,	relying	on	multiple	feedback	loops,	therefore	cannot	

necessarily	be	defined	on	the	basis	of	static	genomic	and	transcriptomic	profiling.		

	

Organoids,	having	shown	the	capacity	to	reflect	overall	tumour	phenotypic	

heterogeneity,	could	provide	further	information	as	a	context	dependent	model	to	

assess	therapeutic	efficacies	of	targeted	therapies,	as	well	as	explore	further	

mechanisms	of	action	to	elicit	responses	to	readily	available	compounds.	
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6.3 Sophisticated	phenotypic	assays	measure	drug-induced	effects	of	complex	

3D	models		

	

In	order	to	establish	organoids	as	a	model	suitable	to	the	drug	discovery	pipeline,	

assay	validation	is	of	fundamental	importance;	robustness,	sensitivity	and	

reproducibility	are	critical	to	determine	the	suitable	application	of	organoids.		

Furthermore,	the	successful	incorporation	of	3D	ex	vivo	organoids	into	drug	

discovery	requires	the	confirmation	that	increased	physiological	relevance	and	

complexity	is	not	compromised	by	a	lack	of	ability	to	extract	accurate	measurements	

of	drug	sensitivity.	Part	of	this	thesis	has	aimed	to	overcome	such	challenges	by	

addressing	the	need	to	expand	organoids	from	relatively	low	yield	of	starting	

material	and	adaption	to	suitable	assay	formats,	as	well	as	investigating	whether	

sophisticated	phenotypic	readouts	are	sufficient	to	encompass	complexity	of	3D	

structures.		

	

Experiments	conducted	demonstrated	the	application	of	organoids	towards	higher-

throughput	assay	formats,	in	96-	or	384-well	plates,	having	expanded	successfully	

from	relatively	small	amounts	of	viable	patient	material,	as	described	in	Chapter	3.	

Organoids	were	able	to	proliferate	functionally	following	digestion	to	single	cells,	

consistent	with	previous	findings	showing	that	single	cells	derived	from	CRC	

material,	when	suspended	into	a	matrix	and	appropriate	growth	conditions,	self-

organise	into	individual	organoid	structures	(Sato	et	al.	2009;	Boehnke	et	al.	2016).	It	

was	shown	that	regulation	of	organoid	size	using	enzymatic	digestion	was	critical	to	

obtain	relatively	consistent	numbers	of	structures	within	replicate	wells	and	across	

replicate	plates	for	drug	screening	studies.	The	adaptation	of	organoids	to	such	

formats	was	shown	to	improve	overall	assay	noise.	Supporting	data	in	the	literature	

has	further	emphasised	the	importance	of	organoid	uniformity	in	terms	of	sizes	per	

structure	to	obtain	statistically	data	(Boehnke	et	al.	2016),	a	crucial	requirement	of	

the	drug	discovery	pipeline	in	order	to	obtain	robust	and	reproducible	data	.	
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Further	to	the	above	observations,	this	work	also	highlighted	the	importance	of	

suitable	assay	readouts	to	generate	quantifiable	data	from	3D	structures	for	drug	

screening	purposes.	Overall,	optimisation	of	ATP	readouts	within	96	well	assay	

formats	were	sufficient	to	determine	IC50	values	of	compounds	that	induced	clear	

cytotoxic	effects	within	organoids,	such	as	those	shown	in	Figure	3.13.	However,	in	

instances	whereby	effects	of	compounds	were	limited	on	the	overall	organoid	

population,	sensitivity	of	detection	of	responses	was	also	limited	.	In	the	studies	of	

Wnt	inhibition	using	TNKSi,	whilst	a	reduction	in	overall	ATP	in	a	dose	response	

titration	of	doses	was	considered	as	a	positive	outcome	on	reduction	of	overall	

growth,	such	assay	formats	suffered	from	small	assay	windows	that	prevented	the	

production	of	definite	cellular	EC50	values	that	are	required	to	drive	compound	

development	pipelines	during	drug	development.	By	providing	readouts	that	are	

relevant	to	the	effect	of	compounds	on	prospective	populations	of	CSCs,	the	

organoid	assays,	when	combined	with	appropriate	morphometric	readouts	

constitute	a	suitable	system	for	next-generation	drug	discovery	efforts.	

	

	A	recent	proof-of-concept	study	incorporated	ATP	assay	readouts	to	assess	the	

effects	of	a	multiple	compounds	relevant	for	CRC	therapies	upon	a	biobank	of	20	

patient-derived	CRC	organoids	(Wetering,	Francies,	Garnett,	Francis,	et	al.	2015).	In	

some	instances,	a	clear	correlation	was	observed	between	mutations	in	organoids	

and	sensitivity	to	compounds.	However,	it	was	also	noted	that	IC50		values	obtained	

from	treated	organoids	were	variable	between	experiments,	potentially	as	a	result	

of	the	organoid	suitability	within	assays,	or,	most	likely,	a	relatively	limited	dose	

response	range	of	compounds	administered,	resulting	in	a	poorer	assay	sensitivity,	

potentially	resulting	in	observation	of	off-target	effects	of	compounds.	Given	the	

complexity	of	pathways	targeted	for	therapeutic	intervention,	targeted	pathways	in	

these	culture	systems,	capturing	exact	mechanism	of	compounds	is	important	if	

organoids	are	going	to	become	clinically-relevant	models.	

	

As	described	in	both	Chapters	4	and	5,	it	was	found	that	phenotypic	assays	were	

able	to	successfully	quantify	organoid	responses	to	compounds	on	the	basis	of	

multiple	morphometric	parameters.	Importantly,	such	sophisticated	assay	formats	
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had	the	capacity	to	detect	effects	of	compounds	otherwise	missed	by	basic	

metabolic	readouts,	classifying	organoid	responses	to	both	clinically	relevant,	and	

novel	cancer-stem-cell	targeting	compounds.	The	data	acquired	using	novel	software	

by	OcellO	(Leiden,	Netherlands)	selected	over	500	features	for	organoid	

characterisation	in	responses	to	treatment,	including	intensity	information	gathered	

from	nuclear	and	F-actin	staining,	as	well	as	morphological	measurements	of	whole	

organoid	structures	and	nuclei.	Whilst	the	number	of	features	investigated	may	

seem	redundant	for	each	system,	it	enabled	the	analysis	of	multiple	features	that	

contributed	most	to	separation	between	negative	control	and	treatment	data	to	

assess	multiple	biological	effects	of	organoids.	Testing	a	novel	TNKSi	within	

organoids	over	a	three-log	fold	changes	in	IC50,	increased	confidence	that	this	is	a	

result	of	on	target	effects.		Such	analysis	methods	has	previously	been	used	in	the	

literature	to	facilitate	an	unbiased	method	to	relate	the	effects	of	particular	groups	

of	compounds	upon	biological	function	of	immortal	cell	lines	cultured	in	3D	(Di,	Klop,	

Rogkoti,	Devedec,	van	de,	et	al.	2014;	Sandercock	et	al.	2015).		

	

	Given	the	biological	complexity	of	3D	organoids,	it	is	likely	that	a	number	of	

organoid-specific	characteristics	contribute	to	treatment-induced	changes	in	

phenotypic	responses.	An	alteration	that	could	be	detected	by	phenotypic	screening	

is	overall	organoid	structure;	one	of	the	main	advantages	of	organoid	culture	

compared	to	preceding	in	vitro	culture	systems	is	their	overall	capacity	to	retain	a	

hierarchy	of	cell	lineages	within	a	self-directed	spatial	organisation.	Both	histological	

and	basic	morphometric	analysis	of	patient	derived	organoids	demonstrated	a	

variety	of	overall	structures	dependent	upon	tumour	subtypes,	as	demonstrated	in	

Figure	3.5.	This	is	in	line	with	preceding	studies	of	organoid	heterogeneity	across	

CRC	tumour	samples	(Fujii	et	al.	2016b).	Iso	75,	in	particular	was	shown	to	retain	

glandular	structures	found	in	matching	patient	material	(Figure	3.7)	as	multiple	

lumen	structures	within	an	organoid.	

	

Analysis	of	F-actin,	a	critical	factor	for	overall	cell	viability	and	structural	support,	as	

well	as	nuclear	division	(Caie	et	al.	2010),	facilitated	a	detailed	analytical	approach	to	

organoid	response	to	treatment.	Interestingly,	TNKS	inhibition	resulted	in	an	overall	
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diminished	F-actin	staining	intensity	within	structures,	suggesting	a	compromised	

integrity	of	cell-to-cell	connections.	Furthermore,	F-actin	staining	also	facilitated	the	

detection	of	lumen	structures,	which	were	altered	by	low	concentrations	of	TNKS	

inhibitors,	with	cystic	structures	morphologies	induced	as	a	result	in	Iso	72	

organoids.	This	was	further	observed	by	a	study	published	by	Lau,	using	the	TNKSi	

GL007-LK,	they	found	induced	cystic	morphologies	at	low	concentrations	of	

compound	(Lau	et	al.	2013).		Such	a	change	induced	by	overall	cell	organisation	

would	be	lacking	in	2D	structures,	further	supporting	the	notion	that	organoid	

models	have	the	potential	to	reveal	more	complex	characteristics	of	tumours	of	

origin,	making	them	a	more	suitable	model	for	drug	discovery	purposes.			

	

A	unique	characteristic	of	organoids	is	their	ability	to	retain	different	cell	types	

within	individual	structures,	likely	to	be	composed	of	cells	at	various	stages	of	the	

cell	cycle	such	as	proliferating,	quiescent,	apoptotic	and	necrotic.	As	a	result,	

changes	in	cell	signalling	as	a	result	of	environmental	or	mutational	background	

could	alter	organoid	responses	to	treatment	that	would	translate	through	to	multi-

parametric	screening.	Organoids	described	in	this	study	were	shown	to	harbour	APC	

and	ß-catenin	mutations,	which	have	been	previously	associated	with	increased	Wnt	

signalling	activation	in	the	intestine,	resulting	in	a	loss	of	polarity	and	cellular	

organisation	(Barker	2014b;	Sansom	et	al.	2004).	Iso	75,	a	multi-lumen	structure	

could	be	resultant	of	such	a	loss	of	cellular	polarity.	The	importance	of	phenotype	as	

a	representation	of	potential	cell	signalling	has	been	somewhat	identified	in	other	

organoid	model	systems.	Organoids	generated	from	a	mouse	model	of	APC	

inactivation	demonstrated	that	a	loss	of	APC	resulted	in	a	loss	of	epithelial	cell	

organisation,	as	confirmed	further	in	vivo	(Fatehullah	et	al.	2013)	A	recent	study	by	

Riemer	et	al	(2017)	further	demonstrated	the	relationship	between	cancer	

phenotypes	and	signalling	in	organoids,	whereby	the	authors	generated	transgenic	

mice	to	create	stabilized	ß-catenin	and	PIK3CA-mutant	organoids.	ß-catenin	

upregulation	was	found	to	induce	cystic	organoids	in	culture,	enriched	for	Lgr5	and	

myc	dependent	stem-cell	activity	(Riemer	et	al.	2017).	It	was	found	that	changes	in	

cell	signalling	initiated	by	compound	activity	resulted	in	changes	in	overall	
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phenotypes,	further	highlighting	the	possibility	of	phenotypic	screening	as	a	drug	

discovery	approach	for	organoids.		

	

6.4 Organoids	provide	a	platform	to	assess	stem	and	differentiation	of	cell	

populations	

	

The	role	of	Wnt	signalling	at	tumour	initiation	and	progression	in	the	intestine	has	

been	well	documented	in	the	literature,	with	many	studies	indicating	that	a	

continued	dependency	on	ß-catenin	mediated	Wnt	signalling	is	required	for	tumour	

growth,	which	varies	from	one	tumour	to	the	next.	Studies	have	emphasised	the	

reliance	of	tumour	progression	on	a	‘just-right’	level	of	Wnt	signalling;	according	to	

this	hypothesis,	there	is	a	gradient	of	Wnt	signalling	which	is	sufficient	for	tumour	

formation,	whereby	impairment	of	APC	function	is	within	a	finite	window	to	enable	

sufficient	accumulation	of	nuclear	ß-catenin.	Conversely,	over	accumulation	of	

nuclear	ß-catenin	also	results	in	cell	death	leading	to	inhibition	of	tumour	

development	(Albuquerque	et	al.	2002)	,	further	highlighting	the	need	for	precise	

levels	of	Wnt	signalling	in	the	intestine.	Reliable	in	vitro	models,	capable	of	

encompassing	the	complexity	of	the	Wnt	signalling	pathway,	relatable	to	tumours,	

have	proved	challenging	so	far,	most	likely	due	to	a	lack	of	all	tumour	cell	types	

within	2D	cell	lines	which	fail	to	encompass	all	relevant	cell	types	and	signalling	

networks.  

	

The	investigation	of	Wnt	signalling	inhibition	was	therefore	of	interest	here	in	a	

relevant	model;	predominantly,	the	effect	of	Wnt	inhibition	upon	stem-cell	

containing	organoid	phenotypes,	as	described	in	the	previous	section,	as	well	as	

further	assessment	of	effects	upon	CSC	compartments.	It	would	be	hypothesised	

that	Wnt	inhibition	would	prevent	the	CSC	activity	and	thus	reduce	the	likelihood	of	

tumour	growth,	or	in	this	case	organoid	growth.	Assay	formats	were	designed	to	

simulate	similar	conditions,	by	assessing	the	effects	of	TNKSi	inhibition	upon	overall	

organoid	formation	and	downstream	signalling,	in	an	attempt	to	manipulate	the	CSC	

population.		
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Phenotypic	screening	of	three	novel	TNKS	inhibitors	against	a	panel	of	8	organoids	

highlighted	TNKSi-sensitive	organoids,	representing	known,	on	-target	EC50	values.	

Iso	75	and	Iso	78	(APC	and	CTNNB1	mutant)	were	two	lines	of	the	cohort	that	relied	

on	a	growth-factor	rich	media,	including	exogenous	Wnt	and	R-spondin	and	both	

showed	responses	to	TNKS	inhibition.	However,	Iso	72	(APC	mutant),	having	showed	

sufficient	growth	in	7+	media	was	also	responsive,	suggesting	that	this	is	not	only	a	

readout	for	the	growth	factor	conditions	in	which	organoids	are	maintained.	

Previous	work	in	the	literature	has	shown	that	the	inhibition	of	Wnt/ß-catenin	

signalling	by	TNKSi	is	complete	within	cell	lines	harbouring	wild-type	APC,	simulated	

with	exogenous	Wnt.	Similarly,	complete	inhibition	of	ß-catenin-driven	Wnt	

signalling	has	previously	been	implicated	in	cell	lines	containing	wild-type	APC	and	

are	stimulated	with	exogenous	Wnt	(Huang	et	al.	2009;	Waaler,	Machon,	Tumova,	

Dinh,	Korinek,	Wilson,	Paulsen,	Pedersen,	Tor	J	Eide,	et	al.	2012).		

	

	Further	gene	expression	analysis	of	two	responders,	Iso	72	and	Iso	75,	showed	a	

downregulation	in	stem	cell	markers	Ascl2	and	Lgr5	following	TNKSi	treatment,	

coupled	with	an	upregulation	in	the	differentiation	markers	Krt20	and	Dkk1	and	

corresponding	diminished	ß-catenin	levels.	Both	Ascl2	and	Lgr5	have	been	previously	

implicated	as	identifiers	of	ISCs	with	functional	roles	in	the	intestine.	Several	studies	

have	reported	that	LGR5	functions	as	a	receptor	of	R-spondins	within	SCs,	and	thus	is	

an	activator	of	Wnt	signalling	(de	Lau	et	al.	2011b).	Ascl2	has	also	been	implicated	as	

a	marker	of	stem	cells,	is	a	Wnt	target	gene,	and	has	been	reported	to	govern	the	

identity	of	Lgr5+	stem	cells	in	the	normal	intestine	(van	der	Flier	et	al.	2009)	and	can	

be	upregulated	as	a	result	of	a	feedback	loop	dependent	on	Wnt	signalling	(Schuijers	

et	al.	2015).	Taken	together,	this	would	indicate	that	TNKS	inhibition	mediates	

diminished	Wnt	signalling	within	organoids,	and	as	a	result	reduces	the	overall	stem	

cell	population,	inducing	differentiation	and	mediating	phenotypic	changes	in	

organoids.	

	

Interestingly,	Iso	50,	having	shown	little	change	in	overall	proliferation	in	response	to	

TNKSi	treatment,	was	shown	to	retain	a	baseline	level	of	Lgr5+	expression,	and	a	

decreased	expression	of	another	stem	cell	marker	Ascl2.	Furthermore,	
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immunohistochemical	staining	demonstrated	a	complete	loss	of	ß-catenin	markers,	

indicating	diminished	Wnt	signalling	activity.	On	one	hand,	results	may	suggest	that	

Iso	50	organoids	harbour	a	TNKSi-resistant	population,	or	partial	inhibition	by	Wnt	

signalling,	so	that	CSCs	continue	to	divide,	producing	more	CSCs.	Given	that	an	

exhaustive	list	of	stem	cell	markers	were	not	assessed	here	it	is	possible	that	Iso50	is	

either	inherently	reliant	on	different	stem	cell	populations,	or	becomes	reliant	as	a	

result	of	TNKS	inhibition.	Furthermore,	it	is	possible	that	co-operating	mutations	

may	result	in	an	alternative	driver	of	growth,	leading	to	independence	from	Wnt	

signalling	for	overall	proliferation.		An	alternative	assay	system	would	be	required	to	

pinpoint	specific	mechanisms	highlighted	from	this	organoid	cohort	in	response	to	

TNKS	inhibition.	

	

Importantly,	this	work	demonstrated	a	concordance	between	in	vitro	and	a	

respective	organoid-derived	xenograft	model.	The	gold	standard	method	for	the	

identification	of	cancer	stem	cells	is	often	obtained	by	transplantation	of	tumour	

cells	within	immune	deficient	animal	models	and	assessing	subsequent	formation	of	

structures.	There	is	some	controversy	as	to	the	accuracy	of	this	statement,	as	

xenotransplantation	does	not	necessarily	model	an	environment	of	relevance	to	

tumour	growth	and	could	thus	be	measuring	an	overall	selective	pressure	for	cell	

survival	as	opposed	to	CSC	activity.	However,	for	the	purposes	of	this	study	it	was	

deemed	a	sufficient	assay	format	to	assess	the	capacity	of	organoids	to	form	

tumours,	and	to	secondly	assess	the	effects	of	Wnt	signalling	inhibition	upon	tumour	

formation.	It	was	hypothesised	that	the	pre-treatment	of	organoid	cells	with	TNKSi	

would	result	in	a	transcriptional	effect	following	diminished	Wnt	signalling,	thus	

affecting	the	capacity	of	stem	cell	-directed	formation	of	a	tumour.		

	

A	100%	take	rate	was	observed	from	mice	implanted	with	control	and	TNKSi	pre-

treated	Iso	75	organoids.	However,	organoids	pre-treated	with	TNKSi	were	found	to	

significantly	delay	tumour	formation	in	mice	compared	to	control	conditions.	Taken	

together	with	gene	expression	data	it	would	seem	that	a	reduced	Wnt	signalling	

signature	following	TNKSi	administration	resulted	in	a	decreased	number	of	stem	
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cells,	resulting	in	a	reduction	in	the	capacity	to	form	tumours	compared	to	control	

conditions,	as	illustrated	by	Figure	6.2.	

	

Given	that	treatment	did	not	entirely	prevent	tumour	outgrowth	in	the	mouse,	

further	detailed	assessments	would	be	required	to	identify	mechanisms	involved.	It	

is	possible	that	whilst	transcriptional	events	were	able	to	occur	within	24	hours	of	

treatment,	that	some	stem	cells	remained	active	and	were	not	completely	ablated	

by	exposure	to	TNKSi.	Alternatively,	a	lack	of	continual	TNKSi	treatment	within	the	

mouse	resulted	in	eventual	recovery	of	cells;	studies	within	organoids	had	

demonstrated	that	the	effects	of	TNKSi	were	not	completely	cytotoxic,	resulting	in	a	

lower	tumour	formation	capacity.	It	is	also	possible	that	alternative	stem	cell	pools,	

not	necessarily	marked	by	Lgr5	or	Ascl2,	were	also	able	to	compensate	for	effects	of	

Wnt	signalling	inhibition.	Studies	have	identified	that	Wnt	inhibitors	have	the	

capacity	to	convers	stem	cells	to	a	transit	amplifying	fate	in	a	mouse	model	

expressing	oncogenic	ß-catenin	(Clarke	et	al.	2016)	.An	alternative	explanation	could	

be	inferred	by	recent	studies	that	have	investigated	plasticity	of	CSCs	in	the	mouse	

intestine.	Increasing	data	in	the	literature	supports	the	notion	that	Lgr5+	cell	

populations	are	not	strict	lineages	and	are	in	fact	heterogeneous,	capable	of	

expressing	a	distinct	subset	of	Wnt	target	genes	(Shiokawa	et	al.	2017).	In	the	

instance	of	Lgr5+	cell	ablation,	Lgr5-	cells	are	able	to	compensate	these	effects	by	

replenishing	the	Lgr5+	cell	population	(Shimokawa	et	al.	2017;	Cortina	et	al.	2017).	

Further	lineage	tracing	experiments	have	also	shown	that	differentiated	cells	marked	

by	Krt20	can	reverse	into	Lgr5	cells	following	Lgr5+	cell	ablation,	thus	driving	tumour	

re-growth.	It	is	possible	herein	that	stem	cell	plasticity	enabled	the	upregulation	of	

Lgr5+	cells	from	a	differentiated	cell	population	stem	cell	pools	as	described	in	

previous	studies	following	ablation	of	some,	or	all	CSCs	(Shimokawa	et	al.	2017)	to	

eventually	re-populate	the	tumour.	Further	studies	would	be	required	to	elucidate	

this	in	context	to	work	carried	out	here.		

	

The	validation	of	an	organoid-derived	xenograft	model	that	demonstrates	

concordance	between	comparative	organoid	line	studies	is	encouraging	for	the	drug	

discovery	pipeline.	To	further	explore	this,	histological	analysis	of	mouse	tumours	
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would	be	beneficial,	as	well	as	studies	in	a	larger	organoid-xenograft	cohort.	From	a	

clinical	perspective,	further	detailed	investigation	of	a	Wnt	signalling	inhibitor	as	a	

potential	therapeutic	would	be	required.	Given	that	treatment	did	not	entirely	

ablate	tumour	organoids,	or	subsequent	tumours	developed	in	vivo	it	is	difficult	to	

estimate	the	clinical	benefit	TNKSi	would	hold,	particularly	with	increasing	evidence	

that	CSC	trans	-differentiation	can	facilitate	tumour	growth.	Furthermore,	the	assay	

formats	used	here	were	in	relation	to	looking	at	the	cancer	stem	cell	signature	as	

opposed	to	a	therapeutic	effect,	and	would	thus	require	care	in	their	interpretation	

given	that	established	tumours	would	potentially	hold	completely	different	cell	

dynamics.	Nevertheless,	cancer	stem	cell-targeting	therapies	are	not	currently	in	

clinical	trial	and	would	therefore	benefit	study	in	a	relevant	model	system	that	can	

represent	true	on-target	doses.		 	
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Figure	6.1	Schematic	representation	of	a	potential	mechanism	for	the	effects	of	TNKS	inhibition	upon	tumour	forming	capacity	of	organoids	

This	hypothesis	would	propose	that	TNKS	inhibition	reduces	levels	of	Wnt-signalling	within	organoids	,	thus	reducing	the	number	of	active	cycling	cancer	stem	cells,	as	cells	

are	promoted	to	undergo	differentiation,	as	suggested	by	increased	levels	of	Krt20.	The	remaining	cells	have	the	capacity	to	form	tumours,	with	a	significant	delay	

compared	to	DMSO-treated	organoids.		
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6.5 Further	work	in	the	organoid	model	

	

Whilst	data	generated	here	supports	the	expansion	of	patient-derived	CRC	organoids	

from	relatively	little	material,	with	relevant	histological	representation	of	patient	

subtypes,	the	concordance	of	organoids	between	patient	counterparts	would	need	

to	be	ascertained	to	successfully	recapitulate	human	tumours,	and	thus	responses	to	

therapy.		

6.5.1 Towards	a	clinical	trial	in	vitro		

	

The	work	presented	in	this	thesis	forms	the	basis	towards	suitable	assay	formats	to	

enable	organoids	to	be	transitioned	to	be	run	in	parallel	alongside	clinical	trials	to	

provide	“live	cell	biomarkers”	as	a	functional	readout	of	patient	responses.	

Collection	of	patient-derived	material	and	their	expansion	in	culture	could	provide	a	

mirrored	response	between	organoid	treatment	and	patient	responses	to	therapies.		

Early	work	in	the	Dale	lab	has	established	the	successful	culture	of	CRC	tumour	

organoids	from	punctured	tumour	resections	to	recapitulate	a	thin	needle	biopsy	

collection.	This	would	therefore	be	amenable	to	collection	from	patients	recruited	

for	the	FOCUS	4	clinical	trial,	as	well	as	other	future	clinical	trials.	By	comparing	

organoid	responses	directly	to	those	of	patients	this	would	enable	us	to	answer	

whether	organoids	recapitulate	tumour	biology.		Given	the	take	rate	and	successful	

protocols	for	relatively	rapid	expansion	in	culture,	organoids	could	even	be	used	to	

test	multiple	compounds	in	combination	to	direct	improved	therapeutic	options.	

Ideally,	with	patient	consent,	biopsies	collected	prior	and	after	treatment	would	help	

delineate	any	mechanisms	of	resistance	to	therapy.		

	

Collection	of	normal	colorectal	tissue	could	also	improve	drug	response	readouts	by	

generating	an	additional	control	for	responses	to	therapy.	This	would	be	of	

particular	importance	for	compounds	such	as	MK1775	and	AZ20,	both	of	which	

demonstrated	substantial	effects	to	inhibit	overall	organoid	growth	from	the	cohort	
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tested.	By	generating	organoids	from	normal	corresponding	tissue	as	previously	

published	(Wetering,	Francies,	Garnett,	Wetering,	et	al.	2015;	Sato	et	al.	2011a),	this	

would	provide	an	opportunity	to	test	standard	of	care	chemotherapeutics	against	

biomarker-driven	therapies.	If	an	improved	level	of	toxicity	was	obtained	from	

normal	organoids,	it	would	provide	some	premise	that	compounds	were	more	

selective	for	tumour	cells	than	current	chemotherapeutics	used	for	the	treatment	of	

CRC.		

	

An	important	future	direction	for	work	described	in	this	thesis	is	the	optimisation	of	

assay	methods	that	would	enable	the	co-culture	of	an	immune	component	alongside	

organoids	to	facilitate	the	study	of	immune-based	therapies.	Immune	based	

therapies	have	shown	promising	pre-clinical	data	for	CRC	treatment	and	would	thus	

require	a	representative	model	system	for	testing.		The	understanding	between	

tumour	and	immune	system	has	important	implications	for	the	design	and	

development	of	novel	cancer	immunotherapies	(Weeber	et	al.	2017).	The	role	of	the	

tumour	environment	should	not	be	ignored	in	establishing	such	methods.		

	

Whilst	work	described	here	provides	some	evidence	as	to	the	utility	of	organoids	as	

a	model	system,	the	ultimate	comparison	between	concordance	between	organoids	

and	patients	will	come	from	large-scale	clinical	trials	whereby	organoids	can	be	used	

as	a	functional	test	alongside	acquisition	of	patient	data.	The	aggregation	of	both	

genomic,	patient-derived	organoid	responses	and	clinical	responses	could	then	be	

used	to	provide	justification	of	the	suitability	of	organoids	as	a	predictive	clinical	

model	(Picco	and	Garnett	2017).		

	

6.6 Future	directions	for	organoid	technology	

	

Whilst	data	generated	here	has	shown	the	amenability	of	organoids	towards	higher	

throughput	assay	formats	for	supporting	clinical	data,	as	well	as	the	discovery	

pipeline,	there	are	some	limitations	to	consider,	as	with	any	other	model	system.	

Broadly	speaking,	organoid	culture	is	still	in	infancy	as	a	successful	tumour	model;	a	

relatively	reductionist	approach	has	thus	far	been	employed	to	select	for	epithelial	
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cells,	deprived	of	a	surrounding	stroma,	vasculature	and	immune	component.	This	

has	some	restrictive	effects	upon	studies	that	wish	to	explore	the	interaction	

between	organoids	and	their	surrounding	niche.	It	is	certain	that	the	field	is	moving	

towards	including	some	of	these	components	in	co-culture	systems	to	further	utilise	

this	model,	with	some	systems	having	included	fibroblasts	in	co-culture	with	murine	

organoids	(Pastula	et	al.	2016).	Furthermore,	whilst	PDO	models	have	the	capacity	to	

move	towards	high	throughput	screening,	the	use	of	Matrigel	can	provide	issues	in	

terms	of	batch-to-batch	inconsistency,	which	can	result	in	discrepancies	between	

experiments	(Gjorevski	et	al.	2016).	The	influence	of	the	micro-environment	of	

organoids	should	not	be	underestimated	in	terms	of	their	effects	upon	organoid	

growth.		

	

A	promising	avenue	that	is	becoming	increasingly	prominent	in	the	organoid-based	

literature	is	the	implementation	of	genetic	modifications	in	vitro	using	CRISPR/Cas9	

systems	to	assess	the	effects	of	particular	disease-causing	genes	and	their	

downstream	effects	(Fujii	et	al.	2016b;	Matano	et	al.	2015).	This	technology	could	

facilitate	the	assessment	of	tumourigenesis	at	early	stages,	for	indications	as	to	

consequences	of	mutations	prior	to	tumour	development.	Further	to	this,	genetic	

manipulation	could	generate	organoids	that	carry	tailored	mutations	as	a	model	to	

test	relevant	biomarker-driven	therapies.		

	

The	generation	of	3D	stem	cell-containing	organoid	culture	systems	has	enabled	the	

long-term	expansion	of	an	array	of	adult	tissue	types,	and	has	resulted	in	a	paradigm	

shift	in	their	application	towards	accurately	modelling	tumours	for	precision	

oncology	and	drug	discovery.	The	findings	in	this	thesis,	collectively,	have	shown	the	

potential	of	organoids	within	both	stratified	medicine	and	drug	discovery	alike,	

whilst	raising	potential	enquiries	for	furthering	the	understanding	of	tumour	

dynamics	in	a	relevant	model	system.			
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7.1 Appendix	I	:	Image	analysis	output	images	and	FOCUS	4	compound	titration	

studies		

	

Appendix	I-1	Representative	image	masks	of	compound-treated	organoid	lines	for	phenotypic	

screening.	

Organoid	lines	Iso	49,	Iso	75,	and	Iso	72	were	cultured	in	384	well	plates	and	treated	with	a	dose	

response	range	of	5FU,	Salicylic	acid	and	ATR	inhibitor,	following	3	days	of	recovery.	After	4	days	of	

treatment,	organoids	were	fixed	with	Hoechst	and	TRITC-phalloidin.	Images	were	captured	on	a	high	

content	confocal	microscope	and	subject	to	analysis.	Masks	of	organoids	were	generated	for	

subsequent	downstream	image	analysis	applications	(OcellO).		
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Appendix	I-2	Schematic	of	Mahalanobis	Distance	Calculation	

Data	output	from	OMiner	software	was	inputted	to	generate	Principal	Component	Analysis	(PCA)	of	

extracted	features.	After	performing	normalisation,	multidimensional	data	subsets	were	created	for	

each	organoid,	per	treatment,	containing	technical	replicates	for	each	treatment	and	control	(DMSO,	

0.1	%).	PCA	was	performed	,		and	components	are	scaled	by	the	proportion	of	variance	that	they	

explain.	Features	within	the	first	5	components	were	then	used	to	measure	Mahalanobis	distance	

between	each	dose	and	control	condition.	This	measurement	facilitates	a	quantifiable	separation	

between	the	principal	components.	A	larger	degree	of	separation	correlates	with	an	increasing	

phenotypic	effect	between	treatment	and	control	conditions.	Image	adapted	from	Hutz	et	al.,	(2012).	
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Appendix	I-3	Mahalanobis	distance	analysis	from	phenotypic	screening	of	each	organoid	line	with	

compounds	relevant	to	the	FOCUS	4	clinical	trial.	

Freshly	digested	organoids	were	seeded	within	matrigel	in	384	well	plates	and	overlaid	with	optimal	

media	for	growth.	Following	3	days	of	recovery,	a	dose	titration	of	compounds	within	the	FOCUS	4	

trial	were	administered	versus	a	DMSO	negative	control.	Following	4	days	of	treatment,	organoids	

were	fixed	and	stained	simultaneously	for	Hoechst	and	F-actin.	Subsequent	z-stack	images	were	

collected	and	inputted	within	OMiner™	software	to	generate	multiple	phenotypic	measurements	

acquired	from	Hoechst	and	TRITC	channel	information.	Data	was	inputted	into	R	to	generate	

Prinicipal	Component	Analysis	(PCA)	of	features.	Features	within	the	first	5	components	were	used	to	

measure	Mahalanobis	distance	from	treatment	and	control	conditions.	This	measurement	enabled	a	

discrimination	between	each	treatment	dose	compared	to	control,	based	on	multiple	measured	

features.	
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7.2 Appendix	II:	Analysis	of	Tankyrase	inhibition	effects	upon	Lgr5	and	

Cytokeratin	20	expression.	

	

	

	

Appendix	II-1	Analysis	of	the	effects	of	the	Tankyrase	inhibitor	MSC2524070	on	Lgr5	and	

cytokeratin	20	expression.	

Freshly	trypsinised	organoids	(Iso	50,	Iso	72,	Iso	75)	were	seeded	at	400	cells/µl	Matrigel	and	overlaid	

with	previously	specified	growth	media	supplemented	with	MSC2524070	(15nM,	6	days),	and	a	

matched	DMSO	control	(0.1%	in	media).	Organoids	were	then	fixed	and	immunostained	for	Lgr5	and	

cytokeratin	20	within	treatment	and	control	conditions.	Scale	bar	=	50µm.		
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7.3 Appendix	III:	Media	Components	

	

Appendix	III-1	Table	of	media	components	and	sources.	

	

	

Component	 Target/	
purpose	

Source	 Catalogue	
Number	

7+	
Media	

Full	Media	

ADV-DMEM/F12	 	 Invitrogen	 12634-028	 1X	 1X	

Penicillin/	

Streptocymcin		

	 Invitrogen	 15140-122	 100	U/ml	 100	U/ml	

HEPES	(1M)	 	 Invitrogen	 15630-056	 10mM	 10mM	

GlutaMAX	(100X)	 	 Invitrogen	 35050-079	 2mM	 2mM	

N2	(100X)	 	 Invitrogen	 17502-048	 1X	 1X	

B27	(50X)	 	 Invitrogen	 17504-044	 1X	 1X	

N-acetylcysteine	 Anti-
oxidant	

Sigma-
Aldrich	

A9165-5G	 1mM	 1mM	

Epidermal	

Growth	Factor	
(EGF)	

	 Sigma-

Aldrich	

E4127	 	 50ng/ml	

Mouse	

recombinant	
Noggin	

	 Peprotech	 250-38	 	 100ng/ml	

A-83-01	 Alk4/5/7	

inhibitor	

Tocris	 2939	 	 500µM	

SB202190	 P38		MAP	

kinase	

inhibitor	

Sigma-

Aldrich	

57067	 	 10µM	

Wnt3A	

conditioned	

medium	

	 	 	 	 40%	(v/v)	

R-spondin	

conditioned	

medium	

	 	 	 	 10%	(v/v)	

Fungizone*	 	 Invitrogen	 	 2µl/ml	 2µl/ml	

Y-27632*	 ROCK	
inhibitor	

R&D	 129830-38-2	 10µM	 10µM	

	


