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Abstract— There is a biological evidence to prove information
is coded through precise timing of spikes in the brain. However,
training a population of spiking neurons in a multilayer network
to fire at multiple precise times remains a challenging task. Delay
learning and the effect of a delay on weight learning in a spiking
neural network (SNN) have not been investigated thoroughly.
This paper proposes a novel biologically plausible supervised
learning algorithm for learning precisely timed multiple spikes
in a multilayer SNNs. Based on the spike-timing-dependent
plasticity learning rule, the proposed learning method trains an
SNN through the synergy between weight and delay learning.
The weights of the hidden and output neurons are adjusted
in parallel. The proposed learning method captures the contri-
bution of synaptic delays to the learning of synaptic weights.
Interaction between different layers of the network is realized
through biofeedback signals sent by the output neurons. The
trained SNN is used for the classification of spatiotemporal input
patterns. The proposed learning method also trains the spiking
network not to fire spikes at undesired times which contribute
to misclassification. Experimental evaluation on benchmark data
sets from the UCI machine learning repository shows that the
proposed method has comparable results with classical rate-based
methods such as deep belief network and the autoencoder models.
Moreover, the proposed method can achieve higher classification
accuracies than single layer and a similar multilayer SNN.

Index Terms— Multilayer neural network, spiking neural
network (SNN), supervised learning, synaptic delay.

I. INTRODUCTION

SPIKE-timing-dependent plasticity (STDP) plays a
prominent role in learning biological neurons, and it

represents one form of synaptic plasticity which underpins
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synaptic weight changes based on the precise times of pre and
postsynaptic spikes [1]. STDP highlights the important role of
precise spike times in information processing in the brain [2].
In addition, the rapid sensory processing observed in the
visual, auditory, and olfactory systems supports the assumption
that information is encoded in the precise timing of the
spikes [3]–[5]. Moreover, using precise timing of spikes results
in a higher information encoding capacity compared with
rate-based coding [6], and it can also convey the information
related to rate of spikes in a multispike coding scheme [2].
Furthermore, as neural activity is metabolically expensive,
the high number of spikes involved in rate coding scheme
demands a significant amount of energy and resources [7], [8].
Despite the existing evidence supporting information encoding
using the precise timing of spikes, the exact neuronal
mechanisms that underlie learning to fire at precise times are
still not clear and remain as one of the challenging problems
in the field of spiking neural networks (SNNs) [2], [9]–[11].

In this paper, a novel supervised learning algorithm inspired
by STDP is proposed to train an SNN to fire multiple spikes
at precise desired times. Local synaptic biochemical events,
produced by incoming spikes, are used to adjust weights and
delays appropriately. In addition, neurons in the output and
hidden layers interact with each other through a biofeedback
signal sent by the output neurons to train the network. The
main novelty of the proposed method consists in: 1) capturing
the effect of synaptic delays on the learning of neuronal
connection weights in an SNN, which has not been consid-
ered in previous works and 2) learning the spiking network
synaptic delays. In addition, the proposed approach introduces
an additional training mechanism to prevent the occurrence
of undesired spikes which contribute to the misclassification
of spatiotemporal input patterns. The proposed approach is
validated using benchmark classification data sets and is
compared against both spiking and rate-based neural models
including state-of-the-art deep learning and autoencoder mod-
els. The experimental results show an improvement in learning
accuracy over existing competitive SNN architectures and
comparable performance to state-of-the-art rate-based neural
models.

The remainder of this paper is structured as follows. A brief
review of background and related work on SNNs is presented
in Section II. Section III introduces the proposed method
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in detail. The simulation results are then provided in
Section IV. Finally, Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

Different artificial neural networks (ANNs) have been
devised based on the working principle of their biological
counterparts. McCulloch and Pitts in 1943 developed the first
ANN where the neuron model is a logic unit which can be in
an active or inactive (binary) mode depending on the weighted
sum of their binary inputs [12]. Later, a continuous transfer
function (e.g., sigmoid function) is applied to the weighted
sum of continuous inputs to generate continuous output [12].
The continuous values represent the biological neuron spiking
rates. ANNs are inspired by the biological nervous system
and are successfully used in various applications. However,
their high abstraction compared to their biological counter-
parts [13] and their inability to capture the complex temporal
dynamics of biological neurons have resulted in a new area
of ANNs where the focus is placed on more biologically
plausible neuronal models known as SNNs. Thanks to their
ability to capture the rich dynamics of biological neurons and
to represent and integrate different information dimensions
such as time, frequency, and phase, SNNs offer a promising
computing paradigm and are potentially capable of modeling
complex information processing in the brain [14]–[20].

In 1952, Hodgkin and Huxley [16] built a 4-D detailed
conductance-based neuron model which can reproduce elec-
trophysiological measurements to a high degree of accuracy.
However, because of its intrinsic computational complexity,
this model has a high computational cost. For this reason,
simple phenomenological spiking neuron (SN) models are
employed for simulating large-scale SNNs [15]. The leaky
integrate-and-fire (LIF) model is a popular 1-D spiking neural
model with low computational cost, but it offers relatively
poor biological plausibility compared with the Hodgkin and
Huxley model. Simple phenomenological SN models with low
computational cost are highly popular for studies of neural
coding, memory, and network dynamics [12].

The first supervised learning algorithms for multilayer
SNNs using the precise timing of spikes could train
only a single spike for each neuron. Bohte et al. [21]
proposed the multilayer SNN called SpikeProp (inspired by
the classical back-propagation algorithm) as one of the first
supervised learning methods for feedforward multilayer SNNs.
Backpropagation with momentum [22], QuickProp [22],
resilient propagation [22], [23], and the SpikeProp based on
adaptive learning rate [24] were proposed to improve the
performance of SpikeProp. In all these methods, neurons in the
input, output, and hidden layers can only fire a single spike.

Despite the capability of a single-spike learning method,
single-spike coding schemes limit the diversity and capacity
of information transmission in a network of SNs. In contrast,
multiple spikes significantly increase the richness of the neural
information representation [25], [26]. In addition, training a
neuron to fire multiple spikes is more biologically plausible
compared to single-spike learning methods [27], [28].
Temporal encoding through multiple spikes transfers important

information which cannot be expressed by a single-spike
coding scheme or a rate coding scheme. Although the exact
mechanism of information coding in the brain is not clear,
biological evidence shows that multiple spikes have a pivotal
role in the brain. For instance, mapping between spatiotempo-
ral spiking sensory inputs composed of spike trains to precise
timing of spikes is an essential characteristic of neuronal
circuits of the zebra finch brain to execute well-timed
motor sequences [29]. In the mixed approaches proposed in
[30] and [31], it is suggested that using both spike timing
and spike rate increases processing speed. These methods use
a combination of both correlated and uncorrelated spiking
signals. So, there is useful information in the spike rate that
cannot be captured by the precise timing of single spikes.
Encoding information in the precise timing of multiple
spikes which are used in this paper can capture not only the
information in the spike rate but also the information in inter
spike intervals.

Pfister et al. [32] designed a supervised learning algorithm
for a single SN which updates synaptic weights to increase the
likelihood of postsynaptic firing at several desired times. The
algorithm is designed to train only a single neuron; however,
it can train the neuron to fire multiple desired spikes. Remote
supervised method (ReSuMe) [25], spike pattern association
neuron [33], perceptron-based SN learning rule [34], bio-
logically plausible supervised learning method (BPSL) [35],
and efficient membrane potential-driven supervised learning
method [36] are other examples of learning methods that can
train a single neuron to fire multiple desired spikes. Multispike
learning methods focus on a single neuron or a single layer
of neurons. It is difficult to design a multilayer SNN to
fire multiple desired spikes because the complexity of the
learning task is increased [27], [37]. In this situation, the
learning algorithm should control several neurons to generate
different desired spikes. However, a real biological nervous
system is composed of a large number of interconnected
neurons [27], [28], [37].

A multilayer neural network has a higher information
processing ability than a single layer of neurons. Sporea and
Grüning [28] have shown that a multilayer SNN can perform
a nonlinearly separable logical operation; however, the task
cannot be accomplished without the hidden layer neurons.

Ghosh-Dastidar and Adeli [37] and Booij and
tat Nguyen [38] extended the multilayer SpikeProp [21]
to allow each neuron in the input and hidden layers to fire
multiple spikes. However, each output neuron can fire only
a single spike. Xu et al. [27] proposed the first supervised
learning method based on the classical error back-propagation
method that can train all the neurons in a multilayer SNN
to fire multiple spikes. Gradient learning methods suffer
from various known problems which can lead to learning
failure such as sudden jumps (called surge) or discontinuities
in the error function [24]. The problem becomes more
severe when the output neurons are trained to fire more
than a single spike. In addition, the construction of an error
function becomes difficult when multiple desired spikes
should be learned as the number of actual output spikes may
differ from the number of desired spikes in each learning
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epoch [27]. After investigation of the gradient-based methods
in [23], [39], and [40], it is concluded that the application
of STDP is worth further investigation to implement a
more biologically plausible learning algorithm for multilayer
SNNs [37].

Sporea and Grüning [28] have used STDP and anti-STDP
to devise the first biologically plausible supervised learn-
ing algorithm for the classification of real-world data by a
multilayer SNN in which each neuron in the input, hidden,
and output layers can fire multiple spikes. The authors did not
consider the spikes fired by hidden neurons when training the
hidden neurons parameters. However, in a biological neuron,
STDP usually works on the pre- and postsynaptic spikes of the
neuron. In addition, the output spikes of the hidden neurons
have significant effects on a training task in a multilayer SNN.
Another drawback of this method [28] is that it has used the
same learning adjustment method for inhibitory and excitatory
neurons in hidden layers. However, inhibitory and excitatory
neurons have different effects in a network by generating
positive and negative postsynaptic potentials (PSPs). In this
paper, a method is proposed to use spikes fired by hidden
neurons during learning, and excitatory and inhibitory neurons
are trained appropriately.

Delays of spike propagation are an important characteristic
of real biological neural systems, and they have a significant
effect on the information processing ability of the nervous
system [18], [41], [42]. In extended delay learning (EDL)
based ReSuMe [43], for SNs, and in DL-ReSuMe [41], a delay
learning-based remote supervised method for SNs, investigated
the viability of adjusting the neuron synaptic weights and
delays for training a single SN to map a given spatiotemporal
input pattern into a desired output spike train. STDP and anti-
STDP were used to adjust the synaptic weights, and a delay
shift approach was used to adjust their delays. It is worth not-
ing that constant synaptic delays have been employed in [28],
hence neglecting the effect of a synaptic delay between a
hidden neuron and an output neuron on the weight adjustment
of the hidden neuron. It trains the hidden neuron to fire at
the time of an output desired spike. However, the generated
spike is shifted by the network synaptic delay and causes an
error in the firing time of the output neuron. SpikeProp and
its related gradient-based methods [21], [23], [37] have taken
into account the effect of a delay between a hidden neuron
and an output neuron on the input weight adjustment of the
hidden neurons. However, the use of multiple connections
with different delays after a hidden neuron causes each of
the different delays to affect the adjustment of the hidden
neuron weights in different and opposite directions. Because,
different errors are propagated from an output neuron to a
hidden neuron corresponding to the different subconnections
between the two neurons. The different errors force the hidden
neuron to fire at different times depending on the different
delays related to the multiple connections, and it disturbs the
learning procedure. This might be one reason for the huge
sudden rise in learning error of SpikeProp, as reported in [24].

In this paper, a learning algorithm is proposed to train
both weights and delays of a multilayer SNN to fire multiple
desired spikes. In the proposed method, each neuron at input,

hidden, and output layers can fire multiple spikes. Supervised
training of SNs which fire multiple spikes in a multilayer
SNN remains a challenge. Furthermore, the proposed approach
trains the synaptic delays in the multilayer SNN and also takes
into the effect of delays on weight adjustments which is not
considered in [21]–[24] and [28]. In the proposed method,
the effect of the delays between a hidden neuron and an
output neuron is considered during weight adjustments of the
hidden neuron. In addition, the proposed method trains the
weights of the hidden neurons by using the spikes fired by
hidden neurons during STDP and anti-STDP, which results in
a more biologically plausible and a highly accurate learning.
Moreover, different weight adjustment strategies are used to
train excitatory and inhibitory hidden neurons based on the
effect of the excitatory (positive) and inhibitory (negative)
PSPs (EPSP and IPSP) produced by the trained hidden neu-
rons. In Section II, the principle of the proposed method is
described.

III. MATERIALS AND METHODS

The aim of the proposed supervised learning algorithm is to
train a multilayer SNN to map spatiotemporal input patterns
to their corresponding desired spike trains which implements a
classification of the spatiotemporal input patterns. The network
is composed of an input, a hidden, and an output layer.
An output neuron, called a readout neuron, is fully connected
to the hidden neurons. A spatiotemporal input pattern is
emitted by the neurons in the input layer. Each input neuron is
randomly connected to a fraction number of hidden neurons as
used in [18]. The LIF neuron model described in [41] is used.
The proposed method trains the spiking network by adjusting
the learning parameters of the hidden and output neurons in
parallel.

A. Overview of the Proposed Learning Method

The proposed learning method aims to train the multilayer
SNN to enable each readout (output) neuron to fire actual
output spikes at desired times and to cancel out undesired
output spikes. A remote supervising signal is considered for
an output neuron similar to ReSuMe [25]. At the time of a
desired spike where there are not any actual output spikes
at the readout neuron, the network learning parameters are
adjusted to increase the total PSP of the readout neuron to hit
the threshold level and generate an actual output spike at the
desired time by using biologically plausible local events. The
output neuron does the following three activities in parallel at
the desired spike time.

First, at the time of the desired spike, the output neuron
sends back an instruction signal (biofeedback) that shows the
time of desired spike to the hidden neurons. After receiving
the instruction signal, an excitatory hidden neuron poten-
tiates its weights based on STDP to fire an output spike
(hidden spike) at a specific time interval before the desired
time. The specific time interval is equal to the delay related
to the connection between the excitatory hidden neuron and
the output neuron. The effect of the generated hidden spike
(i.e., the PSP generated by the hidden spike) is shifted to
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the desired spike time after the related delay between the
hidden neuron and the output neuron. The potentiation of
the excitatory hidden neuron weights is stopped when the
hidden neuron firing rate reaches a certain value, because
a biological neuron cannot fire with a limitless rate, and a
refractory period will ensure an upper bound on the neuron
firing rate. The excitatory hidden neuron weight potentiation
at the time of a desired spike is also stopped when an actual
spike is generated at the time of the desired spike by the
output neuron. In addition, the feedback triggers an inhibitory
hidden neuron to try to remove its output spikes fired a
specific time interval before the desired time by using the
long-term depression (LTD) of anti-STDP. The time interval
is equal to the delay between the inhibitory hidden neuron and
the readout neuron. The hidden neuron output spikes before
the time interval affects the PSP of the readout neuron at the
desired time, i.e., the hidden spikes generate delayed PSPs at
the desired time. The reduction of the inhibitory hidden spikes
helps the readout neuron to increase its total PSP at the desired
time to hit the threshold level.

Second, similar to ReSuMe [25] the output neuron poten-
tiates its weights that have a spike shortly before the desired
time based on STDP to increase its PSP at the desired time
to fire.

The third activity at the time of a desired spike where there
are not any actual output spikes of the readout neuron is the
adjustment of delays of the readout neuron to increase the PSP
of the readout neuron at the desired time, based on EDL [43].
All the abovementioned activities are repeated at the time of
other desired spikes in a multispike coding scheme.

At the time of an undesired output spike of the readout
neuron (i.e., where there is an actual output spike and there are
not any desired spikes), the learning algorithm should reduce
the total PSP of the readout neuron at the time of the undesired
output spike to remove it by applying the following three
processes in parallel. First, the readout neuron sends a feed-
back to excitatory hidden neurons to instruct them to remove
their output spikes. Each excitatory hidden neuron removes
its spike fired at a precise time interval before the time of the
undesired spike by using LTD based on anti-STDP and reduces
its weights. The time interval for the hidden neuron is equal to
the delay between the hidden neuron and the readout neuron.
Consequently, the reduction of the excitatory hidden neuron
weights can help the readout neuron to reduce its total PSP
and to remove the undesired output spike. It is clear that the
weight reduction should be applied to the excitatory neurons
that have a number of output spikes. Therefore, the LTD is
applied to the excitatory neurons when their firing rates are
higher than a threshold rate. The threshold rate is set by trial
and error. In addition, the feedback triggers each inhibitory
hidden neuron to potentiate its weights based on the long-
term potentiation of STDP. The weight potentiation increases
inhibitory hidden spikes before a precise time interval (the time
interval is equal to the delay between the hidden neuron and
the readout neuron) before the undesired spike time to help
the readout neuron to reduce its total PSP at the undesired
output spike time. The second process is applied at the time
of the undesired output spike and consists of a reduction of the

readout neuron weights that have spikes at the undesired output
spike time or shortly before it by using anti-STDP similar to
ReSuMe [25]. The third process reduces the readout neuron
total PSP at the time of the undesired spike by adjusting the
delays of the readout neuron based on EDL [43].

The hidden layer spikes play an important role in the
generation of the network output spikes (both at desired and
undesired times). Generated spikes by different hidden neurons
cooperatively increase the PSP of the output neuron at a
desired time and help it to fire at the desired time. In addition,
when the complexity of a learning task is increased by increas-
ing the number of desired spikes and also by increasing the
number of different training patterns for each class, it becomes
difficult or impossible to train a single neuron to fire at all the
desired times for all the training patterns. Different groups of
hidden neurons can contribute in generating different desired
spikes and cooperatively drive a readout neuron to fire at all
the desired times for all the training patterns.

In Sections III-B and III-C, first the training rule of the
output neurons is explained and then the training of the hidden
neurons weights is described in detail.

B. Training the Output Neurons

The weights and delays of each output neuron are trained
by EDL, as described in [43]. The delay adjustments in
cooperation with the weight adjustments train an output neuron
to increase its total PSP at a desired time to generate an actual
output spike, and also the adjustments help the output neuron
to reduce its PSP at undesired spike times and to remove
undesired actual output spikes. The weights are trained by
the following equation:
dwoh(t)

dt
= [

sd
o (t) − sa

o (t)
]
[

a +
∫ +∞

0
�(s)sh(t− doh− s)ds

]

(1)

where woh and doh are the weight and delay related to the
connection between the hth hidden neuron and the oth output
neuron, respectively. sd

o (t) and sa
o (t) are desired and actual

output spike trains of the oth output neuron, respectively.
sh(t) is the spike train fired by hth hidden neuron. a is
a non-Hebbian parameter that can speed up the learning.
�(s) is a learning window similar to that of STDP and has
an exponential function as described by

�(s) =
{

Ae−s/τ , s ≥ 0

0, s < 0
(2)

where τ and A are the exponential decay time constant and
the amplitude of the learning window, respectively.

xoh(t), a local variable called spike trace, is used to train
the delay related to the synapse that connect hth excitatory
hidden neuron to oth output neuron. xoh(t) is governed by

xoh(t) =
{

Ae−(t−t f
h −εoh)/τ , t f

h < t < t f +1
h

A, t = t f
h

(3)

where t f
h is the firing time of the f th spike of the hth

excitatory hidden neuron, τ is the time constant of the expo-
nential function, εoh is the delay between the hth excitatory
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Fig. 1. Trace xom related to input spike at tm jumps to a maximum value
after the delay εom. Then it decays exponentially through time.

hidden neuron and the oth output neuron, and A is a constant
value which are equal to their counterparts in (2). xoh(t) is
used to obtain appropriate value for delay adjustment. The
adjustment �εoh is calculated by (4) similar to EDL [43]

�εoh(t) =

⎧
⎪⎨

⎪⎩

+�tom(t)(xoh(t)/xom(t))4, t = t̂ f
o

−�tom(t)(xoh(t)/xom(t))4, t = t f
o

0, Otherwise

(4)

where t̂ f
o is the time of the f th desired spike, t f

o is the
time of the f th actual output spike of the oth output neuron,
and xom(t) is the maximum trace between the traces of the
excitatory hidden neurons connected to the oth output neuron
at the current time t . xom(t) is corresponding to the connection
between the mth excitatory hidden neuron (that has the closest
spike before the current time t) and the oth output neuron.
�tom is a delay shift which is necessary to be added to the
delay between the mth excitatory hidden neuron and the oth
output neuron to bring the effect of the closest spike fired
by mth excitatory hidden neuron to the current time t . It is
derived from (3) and calculated by

�tom = t − tm − εom = −τx ln (xom(t)/A) (5)

where tm is the firing time of the mth excitatory hidden neuron
before current time t . The mth excitatory hidden neuron has
the closest spike before the current time t . It has the maximum
trace at time txom(t) out of all excitatory input synapses of the
oth output neuron. xom(t) should be less than A, because the
spike should occur before the current time. εom is the delay
between the mth excitatory hidden neuron and the oth output
neuron. Fig. 1 illustrates the relationship between the different
parameters used in (5).

The delay adjustment in (4) tries to increase the total PSP of
the oth output neuron at t = t̂ f

o and to reduce the total PSP
at t = t f

o . The delay increment in (4) shifts the positive PSPs
generated by excitatory inputs to the desired times to generate
an output spike. The delay reduction shifts the positive PSPs
away from the actual output spikes times to remove undesired
spikes. When an actual output spike is generated at the time
of a desired spike, the positive delay adjustment cancels out
the negative delay adjustment and the delays are stabilized.
In (4), we have [xoh(t)/xom(t)] ≤ 1. The use of the fourth
power in (4) reduces the amount of delay adjustment related
to a far input spike. A far input spike corresponds to a low
value of [xoh(t)/xom(t)] and consequently a lower value of
the fourth power of [xoh(t)/xom(t)] ≤ 1, and only the delays

related to the close input spikes which have a high effect on
the PSP is adjusted by a high value to prevent unnecessary
change of the delays in the network.

The adjustment of delay between the hth inhibitory hidden
neuron and the oth output neuron �μoh is governed by

�μoh(t) =

⎧
⎪⎨

⎪⎩

−�t̄om(t)(x̄oh(t)/(x̄om(t))4, t = t̂ f
o

+�t̄om(t)(x̄oh(t)/x̄om(t))4, t = t f
o

0, Otherwise

(6)

where x̄oh(t) is the spike trace related to the connection
between hth inhibitory hidden neuron and the oth output
neuron. x̄om(t) is the maximum trace between the inhibitory
hidden neurons that are connected to the oth output neuron.
It should be less than A. �t̄om(t) is calculated by putting
x̄om(t) in (5). The decrement of delays in the first expression
of (6) at the desired times shifts away the negative PSPs
generated by inhibitory inputs (from the desired times) and
increases the total PSP of the output neuron accordingly. This
might increase the total PSP to hit the threshold level and
generate an actual output at the desired times. The delay
increment in the second expression relates to the inhibitory
input spikes before the actual outputs shifts the negative PSP
of the inhibitory inputs toward the actual output spikes to
remove undesired output spikes. When an actual output spike
is generated at the time of a desired spike, the delay decrement
and increment in (6) are equal and the net adjustment becomes
zero.

C. Training the Hidden Neurons

This section introduces the learning algorithms for both
excitatory and inhibitory hidden neurons.

1) Weight Learning of Excitatory Hidden Neurons: The
synaptic weight between the i th input neuron and the hth
excitatory hidden neuron is denoted by whi and all the delays
in the network are neglected in this stage. The synaptic weight
adjustment is governed by

�whi(t)

=

⎧
⎪⎨

⎪⎩

+ ∑
o [�(t− ti )(1− �(t − th)/A)](woh/A), t = t̂ f

o

− ∑
o [�(t− ti )(�(t− th)/A)](woh/A), t = t f

o

0, Otherwise

(7)

where ti is the last firing time of the i th input spike at or before
the current time t . Equation (7) shows that the algorithm
adjusts the weight at the time of the f th desired spike of the
oth output neuron, t = t̂ f

o , and at the time of the f th actual
output spike of the oth output neuron, t = t f

o . The sigma (
∑

)
collects the weight adjustment on all the output neurons.
At the time of the desired spike, the weight is potentiated in
proportion to the STDP time window (�(t − ti )) to generate
hidden neuron spike at the desired time or shortly before it to
increase the total PSP of the oth output neuron and help the
output neuron to generate an actual output spike at the desired
time (Fig. 2). Different hidden neurons correspond to different
desired spikes, and they cooperatively force the output neuron
to fire at all desired times.
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Fig. 2. Synaptic weight between i th input neuron and the hth excitatory
hidden neuron whi is potentiated in proportion to the value of STDP time
window [�(t − ti )] at t = t̂ f

o to generate hidden spike at the desired time
t = t̂ f

o . The generated excitatory input will be fed to the oth output neuron,
and it increases the total PSP of the neuron at the desired time.

Fig. 3. whi, the synaptic weight between i th input neuron and the hth
excitatory hidden neuron, is reduced in proportion to �(t − ti ), at t = t f

o (the
time of the f th actual output spike of the oth output neuron). The reduction
might lead to the cancelation of the hidden spike at th and consequently the
reduction of the total PSP of the oth output neuron generated at t = t f

o and
remove the actual output at t = t f

o .

At the time of an actual output, t = t f
o , �whi(t) is reduced

in proportion to the STDP time window �(t − ti ). It depends
on the time difference of its input spike ti , and the current time
t = t f

o , (t f
o − ti ). The reduction might lead to the cancellation

of the hidden spike at th shortly before t = t f
o or at t f

o , and
consequently reduces the total PSP of the oth output neuron
generated at t = t f

o and remove the actual output at t = t f
o

(Fig. 3). When the actual output spikes at t = t f
o , it becomes

close to the desired spike at t = t̂ f
o , the positive weight

adjustment related to the desired spike cancels out the negative

weight adjustment at the actual output. Consequently, the net
weight adjustment becomes small.

The excitatory hidden neuron weight is adjusted based on
the three spikes shown in Fig. 3 by (7). In a triplet-STDP,
which is a more accurate model of synaptic plasticity in
a biological neuron than a standard pair-based STDP [1],
three spikes also affect a weight adjustment. A triplet-STDP
described in [1] uses a single presynaptic and two postsynaptic
spikes. There are different models for triplet-STDP [1].

The term [(1 − �(t − th)/A)] in (7) prevents the weight
change of an excitatory hidden neuron that already has an
actual output at the desired time, t = t̂ f

o as in this situation
�(t̂ f

o − th) = A, consequently, [(1 − �(t̂ f
o − th)/A) = 0].

Therefore, the weight increment related to the hidden whi
is 0, because the hidden neuron already has a spike at this
desired time and it does not need more weight adjustment.
Different hidden neurons contribute to firing of the output
neuron at different desired times and cooperatively help the
output neuron to fire at all the desired spikes in a multispike
coding scheme. The term also causes a smaller increment of
the weight whi that has output spike closely before the desired
spike [�(t̂ f

o −th) ∼= A, consequently, (1−�(t̂ f
o −th)/A) ∼= 0].

An unnecessary high adjustment might shift the hidden spike
close to t̂ f

o beyond the desired time and reduce the total PSP of
the oth output neuron at the desired time. In addition, the term
(1 − �(t − th)/A) causes a comparatively high increment of
whi when a hidden neuron does not have spike before t = t̂ f

o

[because (1 − �(t̂ f
o − th)/A) = 1], or the actual output of

the hth hidden neuron is far from the desired time at t = t̂ f
o

[(1 − �(t̂ f
o − th)/A) ∼= 1]. The high increment might force

the hth hidden neuron to fire at the desired time t = t̂ f
o , and

consequently increase the total PSP of the oth output neuron
at the desired times t = t̂ f

o .
The term [�(t − th)/A] in (7) when t = t f

o prevents the
reduction of whi if the hth excitatory hidden neuron does not
have any actual output spikes before the actual output of the
oth output neuron at t = t f

o [(�(t f
o − th)/A) = 0]. Because,

whi does not have any roles in the generation of the output
spike at t = t f

o . If an excitatory hidden neuron has output
spike before and close to an actual output spike at t = t f

o ,
the term has comparatively a high value [(�(t f

o −th)/A) ∼= 1],
and consequently, whi is adjusted with a higher value, because
the excitatory hidden neuron has a strong contribution in the
generation of the actual output spike at t = t f

o and the weight
reduction might lead to the removal of the output from the
excitatory hidden neuron and consequently reduce the total
PSP of the output neuron.

In a network with nonzero delays, the proposed method
trains the excitatory hidden neuron to fire at a time interval
(equal to the corresponding delay connecting the hidden
neuron to the output neuron) before a desired time. The early
firing of the excitatory hidden neuron increases the total PSP
of its successor output neuron at the desired time by the
delayed effect of the excitatory hidden spike. However, in the
previous situation, where the connections do not have any
delays, an excitatory hidden neuron is trained to fire at the
same time as the desired time. Correspondingly, (8) is used to
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adjust whi, the synaptic weights between the i th input neuron
and the hth excitatory hidden neuron, at time t

�whi(t)

=

⎧
⎪⎨

⎪⎩

+ ∑
o [xhi(t − εoh)(1 − xoh(t)/A)](woh/A), t = t̂ f

o

− ∑
o[xhi(t − εoh)(xoh(t)/A)](woh/A), t = t f

o

0, Otherwise

(8)

where xhi(t) is the spike trace corresponding to the connection
between the i th input neuron and the hth excitatory hidden
neuron. Each spike in the i th input spike train causes a
delayed (εhi) jump in the trace then it decays exponentially
by a time constant similar to (3). xoh(t) is the trace corre-
sponding to the connection between the hth excitatory hidden
neuron and the oth output neuron. Each output spike of the
hth excitatory hidden neuron results in a delayed (εoh) jump
in the trace which decays exponentially by a time constant τ
similar to (3). εhi is the delay between the i th input neuron
and the hth excitatory hidden neuron, and εoh is the delay
between the hth excitatory hidden neuron and the oth output
neuron. The traces have same amplitude A and time constant τ
as the STDP time window in (2).

The update of whi at t = t̂ f
o in (8) based on the delayed

xhi(t) increases whi by a high value if it has spike shortly
before (t̂ f

o − εoh), because in this case xhi(t̂
f

o − εoh) has a
high value. The high increase can lead to the generation of an
output spike of the hth excitatory hidden neuron at (t̂ f

o −εoh).
The effect of the generated hidden spike is shifted to the time
of the desired spike in the oth output neuron after the delay
of the connection between the hth excitatory hidden neuron
and the oth output neuron εoh. This helps the output neuron
to generate output spike at the desired time.

The decrement in the second expression of (8) is high if
the i th input neuron has spike shortly before (t f

o − εoh).
Consequently, this decrement tries to remove the actual output
of the hth excitatory hidden neuron at (t f

o − εoh) and helps
the oth output neuron to reduce its PSP at the time t f

o (by
considering the delay εoh).

2) Weight Learning of the Inhibitory Hidden Neurons: The
connection weight between the hth inhibitory hidden neuron
and the i th input neuron w̄hi is updated similar to (8) by
multiplying it with a negative sign as shown in

�w̄hi(t)

=

⎧
⎪⎨

⎪⎩

− ∑
o [x̄hi(t− μoh)(x̄oh(t)/A)]|woh/A|, t = t̂ f

o

+ ∑
o [x̄hi(t− μoh)(1 − x̄oh(t)/A)]|woh/A|, t = t f

o

0, Otherwise

(9)

where μoh is the delay between the hth inhibitory hidden
neuron and the oth output neuron, and x̄hi(t) is the spike
trace corresponding to the connection between the i th input
neuron and the hth inhibitory hidden neuron. x̄oh(t) is the
spike trace related to the connection between the hth inhibitory
hidden neuron and the oth output neuron. The delay related the
connection between the i th input neuron and the hth inhibitory
hidden neuron is μhi. According to (9), the weight is reduced

if the i th input neuron has a delayed (μhi) spike shortly before
(t̂ f

o − μoh) to increase the total PSP of the oth output neuron
at the desired time t̂ f

o by removing hidden inhibitory spike
at or before (t̂ f

o − μoh). In addition, (9) increases the weight
w̄hi to generate hidden inhibitory spike at (t f

o −μoh) to reduce
the total PSP of the oth output neuron at t = t f

o . The reduction
of the total PSP removes the actual output spike of the oth
output neuron at t f

o .
It is proposed that hidden neurons receive biofeedback from

the readout neurons. Through this biofeedback, the times
of desired spikes and actual outputs related to the neurons
in the next layer are made available at the hidden layer
neurons which use them to adjust their weights appropriately.
In this paper, we did not describe the basis of the biofeed-
back or model it in detail. The training of the network is
stopped when it reaches its goal, i.e., the readout neuron
generates actual output spikes at the desired times and all the
undesired output spikes of the readout are removed.

D. Classification Ability of the Proposed Method

The weight and delay learning characteristics of the pro-
posed method enable it to train a neuron to fire at desired spike
times related to an applied input pattern. In a classification
task, an input pattern is assigned to the class whose desired
spike train is most similar to the actual output of the network.
Therefore, the classification ability of the proposed method can
be improved if an output neuron is also trained not to fire close
to the desired spikes of other classes in addition to firing at the
desired times representing to the current class of the input pat-
tern. As a result, the proposed method introduces an additional
learning mechanism when a misclassification occurs.

The learning algorithm considers two desired spike trains
after a misclassification. The first one is related to the class
of the applied input spatiotemporal pattern, i.e., the desired
spikes of the correct class, and the second one is related to
the class that causes the misclassification (incorrect class).
Thus, the learning adjusts the readout neurons and hidden
neurons learning parameters at the time of each desired spike
related to the class that causes the misclassification. It reduces
the weights of the readout neuron that have a spike before
the desired time. To force the oth output neuron to not fire
at the f th desired spike of class j (t = t̂ f ( j )

o ) the weights of
the othoutput neuron are adjusted by the following equation

at t = t̂ f ( j )
o :

�woh(t) = −�(t − th − doh). (10)

The proposed classification learning method adjusts an
excitatory hidden neuron weight at the desired spike times

(t = t̂ f ( j )
o ) related to the class that causes the misclassification

by the following equation similar to (8):
�whi(t) = −

∑

o

[xhi(t − εoh)(xoh(t)/A)](woh/A). (11)

An inhibitory hidden neuron weight at t = t̂ f ( j )
o is adjusted

similar to (9) by the following equation:
�w̄hi(t) = +

∑

o

[x̄hi(t − μoh)(1 − x̄oh(t)/A)]|woh/A|. (12)
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The delay related to an excitatory input of a readout neuron
is adjusted by (13) at t = t̂ f ( j )

o . The following equation is
similar to (4):

�εoh(t) = −�tom(t)(xoh(t)/xom(t))4 (13)

The delay related to an inhibitory input of the readout at
t = t̂ f ( j )

o is adjusted through the following equation which is
similar to (6):

�μoh(t) = +�t̄om(t)(x̄oh(t)/x̄om(t))4. (14)

The proposed method uses a criterion to control the learning
level of every pattern and manage the misclassifications during
training and adjust the network learning parameters to increase
the inter class separability of the network.

Consider a pattern from class i is applied to the network and
an actual output of the network is generated. The correlation
between the actual output and the corresponding desired spike
train of the class i is called ci which is calculated by the
method used in [41] as in

ci = vd · vo

|vd ||vo| (15)

where “vd ·vo” denotes the inner product of the two vectors vd

and vo. vd and vo are two vectors with real value components
which are generated from spike trains. A desired spike train is
convolved with a symmetric Gaussian function to generate vd .
Similarly, vo is generated by convolving an actual output spike
train with the symmetric Gaussian function. |v| is the length
of a vector v.

A maximum value p and a threshold level �c for ci are
considered to control the learning. If the correlation metric ci

is less than �c, the network learning parameters are updated
based on the applied training pattern and their desired spike
train without considering any extra criteria. In this situation,
the network adjusts its learning parameters to increase its
knowledge about the applied training pattern inside the class i .
The low value of the correlation related to the applied training
pattern ci < �c means that the similarity of the training
pattern with the previous trained patterns from the same class i
is low and the learning parameters of the network should be
adjusted to increase the ability of the network to recognize the
patterns inside the class i .

If ci reaches the value of p, the learning related to the
pattern is not applied to the network in the current learning
epoch, because the high value of the correlation shows that
the knowledge of the presented training pattern is already in
the network and it is not necessary to adjust the learning
parameters for the current value of ci . It means that the
network has learned the overall distribution of the data from
the class i and it is not necessary to memorize all the details
of the presented training pattern. It also prevents over training
of the network.

If ci has a value between �c and p, i.e., (�c < ci < p),
and ci is appropriately higher than the correlation metric
related to the other classes to prevent misclassification, then
the learning related to the applied pattern is stopped in the
current epoch. Therefore, if �c < ci < p and ci > c j + �c
(where j = argmax{k∈{1,2,...,N}&k �=i}ck , ck is the correlation

TABLE I

PROPOSED CLASSIFICATION LEARNING METHOD

metric of the actual output with the kth desired spike
train, and N is the number of all the classes), the learning
adjustment related to the applied pattern from class i is not
applied to the network in the current epoch. The ci > c j +�c
denotes that the network can distinguish the class of the
applied pattern correctly with an appropriate margin (�c),
therefore it is not necessary to have more training for the
current value of ci in the learning epoch.

If ci has a value between �c and p, and ci < c j + �c,
it suggests that a misclassification has occurred. In this situa-
tion, the network learning parameters are updated to enhance
the interclass separability of the network by training it to not
fire close to the desired spike train of the class that causes this
misclassification and to reduce c j . The learning parameters are
also updated to increase the ability of the network to generate
the desired spike related to the applied pattern from the class i
to increase ci . The reduction of c j and the increment of ci

may change the situation ci < c j + �c to ci > c j + �c and
prevent the misclassification. The training is continued until
the maximum number of learning epochs is reached or if the
stopping criteria noted in Table I apply.

A ci greater than p shows that the network is trained to fire
appropriately close to the corresponding desired spike train.
Therefore, similar to the situation where (�c < ci ≤ p and
ci > c j + �c) the related learning adjustment is not applied
to the network. The p value is chosen high enough depending
on the desired spike trains related to the different classes to
guarantee that when ci > p, ci is appropriately higher than c j

(ci > c j +�c). Desired spike trains related to different classes
(related to ci and c j ) should be chosen in a such a way that the
correlation between the desired spike trains are low enough to
support the point that if an actual spike train is very similar to
the desired spike related to ci , (ci > p) then it is appropriately
dissimilar to the other classes (c j < ci − �c). The values of
p and �c are determined by trial and error. In this paper,
the method used in [44] is employed to choose the desired
spikes. A sequence of numbers starting from 10 to 100 ms
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with 10-ms time interval is generated. Then a number of firing
times are extracted randomly from the sequence to assign each
desired spike train corresponding to a class. In this situation,
every two spikes have at least 10-ms interval. The parameter p
is set based on the level of precision that the desired spikes
should be learned. In this paper, when an actual output spike
train reaches 90% of accuracy compared to its corresponding
desired spike train the learning is stopped, so the learning
parameter p is set 0.9. The parameter �c should be higher
than the maximum correlation between the desired spike trains
related to different classes. �c is set 0.45 to implement the
proposed method.

After training, each testing pattern is applied to the network
and the readout actual output spike train is calculated. The
correlations between the actual output spike train and the
desired spike trains corresponding to all classes are obtained.
The input pattern is assigned to the class whose corresponding
desired spike train has the maximum correlation value with the
actual output spike train.

IV. RESULTS

A. Effect of Network Setups on the Learning Performance

First, the effects of the different maximum allowable delays
and the number of desired output spikes in each class on
the performance of the learning method are explored. Then,
the running time for the proposed method is reported. In the
following simulation, the performance of the network is first
evaluated on the Fisher IRIS data set. The IRIS data fea-
tures are converted to spike times using population coding,
as described in [23], where each feature value is encoded by
M identically shaped overlapping Gaussian functions where
M is set to 40. The IRIS data have four features for each
pattern so there are 4 × M = 160 input spikes obtained which
are then applied to 160 input synapses. The high number
of input synapses increases the number of input spikes, and
consequently reduces the length of silent windows inside a
spatiotemporal input pattern and helps the neuron to fire at
multiple desired times. In addition, there are nine extra input
synapses with input spikes at fixed times for all patterns. The
fixed times are the same as the times of desired spikes cor-
responding to all classes. These inputs act as bias inputs [21]
and act as the reference start times in a multispike coding
scheme. There are 360 hidden neurons in the hidden layer.
The total time duration of the input spatiotemporal pattern is
set to 100 ms, T = 100 ms.

1) Effect of Maximum Allowable Delays: Similar to [24],
50% of the IRIS data were selected randomly and used as
training data and the remaining used for testing. The accuracy
of the proposed method on the testing data reaches its highest
value, 95.1%, when the maximum allowable delay D is 3 ms
and there is a single readout neuron.

In Table II, the accuracies of the proposed method for
different delays when there are three readout neurons (each
corresponding to a class) in the network are shown. The accu-
racy of the method on the testing data reaches its maximum
value when D = 3 ms (Table II). The accuracy of the proposed
method on the testing data is increased from 95.1% to 95.7%

TABLE II

EFFECT OF THE DIFFERENT MAXIMUM ALLOWABLE DELAYS ON
IRIS DATA RECOGNITION. 50% OF THE DATA ARE

USED AS TRAINING DATA

Fig. 4. Comparison of the learning method accuracy on the IRIS data training
set when one and three readout neurons are used.

when the number of readout neurons is increased from one
to three when D = 3 ms. In Fig. 4, the accuracy of the
learning algorithm on the training data is shown when a single
readout neuron and three readout neurons are used. All these
procedures are repeated independently for 40 different runs,
and the mean value of the 40 results are reported. Different
random initial weights and different random selections of the
training and testing data are used for the different runs. When
the number of readout neurons is increased, the number of
learning parameters is also increased. Therefore, the readout
neurons learn a lower number of training patterns compared
to the situation where a single readout neuron is used, where
the readout neuron should learn patterns related to all classes.
Subsequently, they can learn the input patterns better compared
to the situation that a single readout neuron is used. For higher
values of maximum allowable delays, the cooperation between
weight adjustment and delay adjustment is reduced and it leads
to a lower accuracy. A higher delay adjustment causes a higher
shift in the delayed effect of input spikes, and this higher shift
might destroy previous weight training that was based on the
previous value of the delay.

Synaptic delays at chemical synapses usually take values
from 1 to 5 ms. The minimum value of a synaptic delay
is 0.3 ms. Synaptic delay also can take a value higher than
5 ms [45]. Different researchers use different maximum values
for range [1, 16] ms. The results in this section show that for
this configuration, 3 ms is an optimal value for the maximum
synaptic delay. In the following simulations, Max Delays are
set to 3 ms.

2) Effect of the Number of Desired Spikes: In the following
experiment, the accuracy of the proposed method is obtained
for different numbers of desired spikes corresponding to each
class (Table III).

The network reaches its maximum testing accuracy, 95.7%,
when three desired spikes are used in each desired spike train.
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TABLE III

EFFECT OF THE NUMBER OF DESIRED SPIKES ON LEARNING ACCURACY
USING THE IRIS DATA SET WITH THREE READOUT NEURONS

Fig. 5. Recognition accuracy for different numbers of desired spikes.

A very high number of desired spikes in each desired spike
train (i.e., for a desired spike train with 100-ms duration and
10-ms minimum interspike interval, the highest number of
desired spikes is 10) reduce the performance of the learning
method as this increases the complexity of the learning task
and the network should be trained to fire at a higher number of
desired instances with a limited number of learning parame-
ters. For instance, the testing accuracy of the proposed method
is reduced from 95.7% to 81% when the number of desired
spikes is increased from 3 to 7 (Fig. 5).

The time distances between desired spikes of different
classes are reduced when there is a high increase in the
numbers of desired spikes. Therefore, a small deviation in
the times of output spikes can cause a switching from one
class to the other one and reduces the accuracy. On the other
hand, a lower number of desired spikes reduce the complexity
of the learning task, therefore the training accuracy will be
increased. However, a very low number of desired spikes lead
to a low testing accuracy. For example, when the number
of desired spikes is reduced from three to one, the testing
accuracy is reduced from 95.7% to 95.1%. It shows that a
single spike cannot capture enough information from training
data, and consequently, it reduces the testing accuracy despite
of a comparably high training accuracy of 99.9%. Moreover,
the distributions of spikes in the spatiotemporal input patterns
compared to desired spikes also affect the accuracy and
the relation between the number of desired spikes, and the
accuracy is not a simple linear function (Fig. 5).

3) Evaluation of the Running Time: MATLAB simulations
were carried out on a quad core PC with 3 GHz and 16 GB
of RAM. The running times required for each learning epoch
of the proposed method are reported in Table IV. The running
time related to a learning epoch is measured 10 times, and
the mean value is reported for each number of input synapses.
The running time is increased by increasing the maximum
allowable delays D. For instance, the method needs 5.2 s
to execute a learning epoch when D = 1 ms. However,

TABLE IV

EFFECT OF THE MAXIMUM ALLOWABLE DELAY (d) ON THE RUNNING
TIME OF THE PROPOSED METHOD USING THE IRIS DATA SET

Fig. 6. Runing time of a learning epoch is increased linearly as a function
of (a) number of training patterns and (b) number of input synapses.

the running time is increased to 15.9 s when D is increased
to 7 ms. Because, at each time step, the learning algorithm
should check the events at the previous time steps depending
on the delays. A higher number of previous time steps should
be considered for a higher value of delays. Therefore, the
computational complexity of the method and consequently the
running time is increased when the delay is increased.

The running times of a learning epoch of the proposed
method are measured for different numbers of training pat-
terns. The number of training patterns is increased from
15 to 135. IRIS data set is used to train the algorithm. Fig. 6(a)
shows the relationship between the running times and the
number of training patterns. The fit line shown in Fig. 6(a)
is obtained by fitting the data points to a 1-D polynomial. The
line is described by the equation T (n) = 0.1128n + 1.593.
The time complexity of the process related to the equation is
linear, i.e., it is O(n) using the big O notation. It shows that
the running time increases linearly with the number of training
samples.

Random spatiotemporal input patterns with different
numbers of inputs are used to analyze the complexity of
the learning algorithm as a function of the number of input
synapses. There are three classes similar to IRIS data in the
randomly generated data. A spike train composed of three
spikes is considered as desired spike train for each class
like the desired spike used for IRIS data. The spike times in
each input spatiotemporal pattern are generated by a uniform
distribution. The values of spike times are extracted randomly
from (0, 100) interval. The number of input synapses is
changed from 100 to 1000, and an input spike is considered
for each input synapse. Then, the running time for each
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TABLE V

COMPARISON WITH THE MULTILAYER SNN PROPOSED
IN [28] ON THE IRIS DATA SET

learning epoch is calculated to analyze the complexity of
the learning method. In this experiment, there are a fixed
number of 75 training patterns. Fig. 6(b) shows the evolution
of the running time in terms of the number of input synapses.
In addition, a line fit with the obtained data points is plotted.
The dependence between running time and the number of
inputs indicates a linear time complexity, i.e., O(n).

B. Comparison With State-of-the-Art Methods

In the following simulation, first the proposed
method is compared with the method proposed by
Sporea and Grüning [28]. In this case, 75% of the total
IRIS data for each class are considered as a training set and
the remaining 25% are used for testing, as in [28]. The results
are shown in Table V. The accuracy of the proposed method
on the training is 99% which is higher than the method
proposed in [28], 96%. The proposed method also achieved a
higher testing accuracy of 96% (compared to 94% achieved
by [28]).

Similar to the biologically plausible structure used in [18],
each of the 169 input neurons is connected randomly to a
limited number of neurons (40 neurons) in the hidden layer
which consists of a population of 360 neurons. There are
no subconnections, and every two neurons in two subsequent
layers are connected by a single connection similar to the bio-
logically plausible neural network in Izhikevich’s work [18].
The proposed learning algorithm is designed to manage the
training of a large number of SNs by local events such as
spike trace which takes place at the location of each synapsis.
There are three output neurons in the output layer and all
the hidden neurons are connected to the three output neurons.
The network proposed in [28] uses the timing of a single
spike of an input neuron for each feature. The four input
neurons are fully connected to ten neurons in the hidden layer.
Every two neurons in two subsequent layers are connected by
12 subconnections with different delays from 1 to 12 ms. All
the neurons in the hidden layer are fully connected to an output
neuron. The performance of the method in [28] on the IRIS
data is shown in Table V.

In order to compare the accuracy of the proposed method
with that achieved by other existing methods, 50% of the
data samples from the IRIS data set are selected randomly
to construct training data and the remaining 50% are used for
testing. The testing results are summarized in Table VI. The
accuracies of the proposed method on the training and testing
data are 99.7% and 95.7%, respectively. The testing accuracy
of the proposed method, 95.7%, is comparable with the best

TABLE VI

COMPARISON WITH OTHER METHODS ON THE IRIS DATA SET

TABLE VII

COMPARISON WITH OTHER METHODS ON THE WBCD DATA SET

result achieved for the state-of-the-art methods on IRIS data
set. The proposed method has a high training accuracy, 99.7%.

The proposed method converges for all trials because it does
not have the silent neuron problem. It has remote supervised
spikes. In addition, it solves the problem of silent windows
in a spatiotemporal input pattern by delay learning. A silent
window can prevent generation of desired spikes and con-
sequently it can cause learning convergence problem. These
characteristics of the proposed method make it appropriate
for learning multiple spikes. The accuracies of the proposed
method are calculated for all trials, and there are not any
rejected results. In contrast, the convergence rate of SpikeProp
is investigated in [24] and as it has a problem with silent
neurons it cannot converge for all trials, and as a result,
those trials with low accuracies are removed from the reported
results [24].

The Breast Cancer Wisconsin (Diagnostic) data set (WBCD)
from the UCI machine learning repository is used as the sec-
ond data set to evaluate the proposed method and to compare it
with the other state-of-the-art methods, as shown in Table VII.
WBCD contains 699 samples. The samples belong to two
different classes (malignant and benign categories) where
458 samples are from the first category and 241 samples are
from the second category. A total of 120 samples are selected
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TABLE VIII

PERFORMANCE COMPARISON WITH SRESN AND GPSNN
ON THE BUPA LIVER DISORDERS DATA SET

Fig. 7. Evolution of the accuracy of the proposed method over different
learning epochs on BUPA liver disorders data. It needs 24 learning epochs
to pass the accuracy level of 60%. SRESN [46] needs 715 epochs to reach
about to the same level of accuracy.

randomly from each category to construct the training set, and
the remaining data is used for testing. The proposed method
has an accuracy comparable with the best accuracy achieved
by the other state-of-the-art methods (Table VII).

One advantage of SNNs is that they use spikes to commu-
nicate between neurons. However, in the classical neural net-
works, real values are used to transfer data between neurons.
Each spike can be encoded by a binary bit; however, a real
value needs a high number of bits to be transferred between
neurons depending on the precision that is required for the
values. As shown in Tables VI and VII, the proposed method
using spikes for communication between neurons and can
achieve better or comparable accuracies with the state-of-the-
art rate-based models including deep belief network (DBN)
and autoencoders.

One more data set which is used to evaluate the proposed
method is the BUPA liver disorders data from the UCI machine
learning repository. There are 345 samples in this data set in
which 145 samples are from the first class and 200 samples are
from the second class. A total of 70 data samples are selected
randomly from each class to construct the training set, and
the remaining data is used for testing. Each sample has six
attributes. The performance of the proposed method is shown
in Table VIII. The testing accuracy of the proposed method is
higher than self-regulating evolving spiking neural classifier
(SRESN) [46] and growing-pruning spiking neural network
(GPSNN) [47]. SRESN [46] uses a 30-2 architecture, and the
proposed method uses a 246-360-2 architecture where there
are 246 input neurons, 360 hidden neurons, and two output
neurons. The evolution of the training accuracy of the proposed
method over different learning epochs is shown in Fig. 7. The
proposed method needs 24 learning epochs to pass the training
accuracy of 60.4%; however, SRESN [46] needs 715 learning
epochs to reach the same accuracy level. The proposed method
can reach the accuracy level of 66.9% in less than 100 epochs.

The performance of the proposed method on different data
sets is compared with SRESN [46] in Table IX. The number

TABLE IX

COMPARISON WITH SRESN ON DIFFERENT DATA SETS

of learning parameters in SRESN [46] is lower than that of the
parameters in the proposed method (see Table IX). A lower
number of learning parameters can reduce the simulation
time required for each learning epoch. However, the proposed
method achieved high accuracies in a lower number of learn-
ing epochs compared to the method with a single layer of
learning neurons on Pima diabetes, BUPA liver disorder, and
ionosphere data sets. The proposed learning method achieves
this improvement through appropriate interaction between
different layers of SNs in a multilayer structure.

V. CONCLUSION

This paper proposed a BPSL for multilayer SNNs. It uses
the precise timing of multiple spikes, which is a biologically
plausible information coding scheme. The learning parameters
of neurons in the hidden layer and output layer are learned in
parallel using STDP, anti-STDP, and delay learning.

The simulation results show that the proposed method
has improved the performance of the first fully supervised
algorithm that learns multiple spikes in all layers proposed
in [28].The improvement of the proposed method can be
attributed to a number of properties of the proposed method.
First, it has used the firing times of spikes fired by the hidden
neurons to train the weights of the hidden neurons unlike the
method in [28] where the firing time of hidden neurons is not
considered and the weights of a hidden neuron are adjusted by
the same values irrespective of the neuron firing at the desired
times or not firing at all. In the proposed method, weight
learning, based on the firing times of the hidden neurons, helps
adjust the weights appropriately and prevents unnecessary
weight adjustments. Another property of the proposed method
is the appropriate use of the EPSP and the IPSP produced
by the hidden excitatory and inhibitory neurons to effectively
adjust their weights, unlike the approach in [28] where equal
weight updates are applied to both excitatory and inhibitory
neurons, which can reduce the learning performance. Another
property of the proposed method that improves its performance
compared to the learning method in [28] is the appropriate
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consideration of the effect of delays on the weight learning.
It was shown that the delay after a hidden neuron has an
essential effect on the output of the spiking network, hence
it should be considered during the training of the weights of
the hidden neuron. For example, an excitatory hidden neuron
should fire earlier than a desired output spike depending on
the delay after the hidden neuron, as described in Section III.
The produced PSP by the fired hidden spike is shifted to the
desired time by the delay. The effect of the delay on the weight
adjustments of hidden neurons is not considered in [28], and
it was shown that this resulted in a lower accuracy compared
to the proposed method on the IRIS data set.

The performance of the proposed method was also
compared with other algorithms on different data sets. The
results showed that the proposed method can achieve a
higher accuracy compared to a single-layer SNN. In addition,
the method has comparable accuracy with the best result
achieved by state-of-the-art rate-based neural models including
autoencoders and DBNs.

The results also showed that a very high number of desired
spikes can reduce the accuracy of the method by increasing
the complexity of the learning task, and a very low number
of desired spikes cannot capture all the temporal informa-
tion of input data. Although the delay learning increases
the complexity of the learning method and consequently the
running time, it was shown that delays can increase the
learning performance of the proposed method. In addition,
delays are a biologically plausible property of SNNs. Another
property of the proposed method is its multilayer structure
that increases the computational cost of each learning epoch.
However, the results showed that it can also reduce the number
of learning epochs and can improve its accuracy compared to
the similar multilayer spiking network proposed by Sporea and
Grüning [28]. The ablity of the proposed method to effectively
learn multiple desired spikes suggests that this approach may
be suitable for neuroprosthetic applications.

In a biologically plausible neuron model, the output of a
neuron depends not only on synaptic inputs, but also on the
internal dynamics of the neuron [48]. Therefore, a potential
direction for future work is to incorporate the neuron internal
dynamics in the proposed method, additionally to the effect
of the synaptic weight and delays, which may lead to a new
learning algorithm with potentially higher performance. For
instance, Zhang et al. [49] have proposed a dynamic firing
threshold to make the spiking network learning robust to
noise. A similar method can be applied to the multilayer
spiking network proposed in this paper to further improve its
performance.

It is possible to extend the learning algorithm to more layers
(deep SNNs). However, more layers may reduce the effect of
training of earlier layers on the network output. Designing
effective learning methods for deep spiking networks will be
investigated in the future work.
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