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Summary

The analysis of sample surveys is one of the key areas in official statistics. An

integral part of analysing sample data is choosing appropriate weights for each

sample member. These weights can informally be thought of as the number of

population members each person in the sample represents.

Calibration is a method that adjusts the weights assigned to sample members

in order to satisfy (or approximately satisfy) some pre-determined constraints.

These are typically based on Census data or other large surveys. The key idea

is that estimates formed from the weighted sample should replicate the known

values from other sources.

This thesis begins with the mathematical formulation of the calibration problem

as an optimization problem. Whilst the calibration problem has been defined in

existing calibration literature, it has not been clearly formulated as a problem

in optimization. New calibration functions are also presented, and an outline of

their benefits compared to existing calibration functions given.

Much of the calibration literature focuses on so-called hard calibration. This re-

quires an exact matching between the weighted sample data and the pre-determined

constraints. However, relaxing this condition can often lead to more “well-behaved”

solutions. This is the idea behind soft calibration, which has received less atten-

tion in existing literature. In this thesis, soft calibration is formulated using an

optimization framework, and also presented as a diagnostic tool for identifying

problematic constraints.

For many practitioners, the variance (and mean square error) of the estimates

obtained is of particular interest. This is the motivation for a new approach to

calibration that seeks to directly minimize the mean square error of the calibration

estimator. This method is compared with existing calibration techniques, and

future research directions for this approach are considered.
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1 Introduction

Calibration is a methodology for improving the estimates from survey samples,

and is used by many statistical offices throughout the world. It is one of the

key issues in official statistics and analysis of panel data (in particular, in market

research). The Office for National Statistics [42], Statistics Belgium [62], Statistics

Canada [22] and Statistics Netherlands [40] are just some of the major national

statistical offices that use the method of calibration.

The work in this thesis considers the calibration problem and its use in producing

estimates from survey samples. The calibration problem is formulated in terms

of an optimization problem, and several new calibration functions are introduced.

The motivation for and benefit of these functions shall be considered. So-called

soft calibration is then explored and its use both as a calibration and diagnos-

tic tool investigated. Finally, a new approach to calibration is proposed that

minimizes the mean square error of the calibration estimator.

In this chapter, the motivation for the calibration problem is outlined and a brief

overview of existing methodologies given. The main contributions of this work

are presented, and an outline of the remaining chapters given.

1.1 The Calibration Problem

In the analysis of survey samples, members of the sample are assigned a number,

most commonly referred to as a ‘sampling weight’. Informally, this weight can be

thought of as how many people in the population the sample member represents.

Calibration is a technique that adjusts these sample weights with the aim of

improving estimates.

To adjust the sample weights, additional information is used. Based upon Census

data, or other large surveys, it is often possible to know the population total,

mean or proportion for other variables measured in the survey, as well as the

values recorded for the members of the sample. Typical examples include the

proportion of males and females, the mean number of bedrooms in a household,

1



or total income. The variables for which this additional information is known are

referred to as auxiliary variables.

The mathematical problem of calibration can be defined informally as follows.

Suppose there are some initial weights (often referred to as design weights) d1, ..., dn

assigned to n objects of a survey. Suppose further that there are m auxiliary vari-

ables and that for these auxiliary variables the sample values are known, either

exactly or approximately. The calibration problem seeks to improve the initial

weights by finding new weights w1, ..., wn that incorporate the auxiliary informa-

tion. In a typical practical problem, the sample size n is rather large (samples of

order 104 and larger are common). The number of auxiliary variables m can also

be large although it is usually much smaller than n.

Many of the developments in classical statistics are model-based, i.e. they rely

on a specific underlying probability model that describes the random process to

generate the data. There are many possible choices for this model. It could be

a relatively simple model, such as a Normal distribution, or a more complicated

model that involves several variables and incorporates the inter-dependence be-

tween data values. Since we consider the model as a process for generating the

data, it is possible to make conclusions that can be generalized to other data

generated using the same process. However, a model can only ever approximate

the true data. It is often difficult to truly know how deviations from the model

will affect the analysis.

However, the analysis of sample surveys is usually design-based. In this case, the

population is pre-specified. Data values for the population are considered to be

fixed, rather than random. In the design-based setting, the observed sample is

considered to be random, since the sample is generated by selecting individuals

at random from the fixed population. Since the random selection of individuals,

referred to as the sample design, can be controlled, the probabilities of selecting

individuals can often be known exactly. The analysis of the sample survey is to

estimate features of the fixed population. In the design-based framework, one

cannot generalize the results of the inference to other populations.

2



One of the important concepts for design-based methods is that of a probability

sample. There is an important distinction to be made between taking a “random

sample of 100 people” versus taking a “simple random sample of 100 people”.

In the latter, any subset of 100 people from the population is equally likely to

be selected. However, there are other methods for selecting random samples,

which include stratified sampling, cluster sampling, probability proportional to

size sampling, to name a few. The initial weights used in calibration are typically

derived using one of the standard survey sampling techniques. A brief description

of each of these sampling methods is given below.

Simple Random Sampling In this case, each member of the sample is considered

equally likely to be selected. This is one of the most elementary ways of considering

members of a sample, however further results based on this approach are generally

simple to derive. The design weights are simply taken to be N/n, where N is the

population size and n is the sample size.

Stratified Sampling In stratified sampling, the population is divided into strata.

These are typically based on regions or specific sections of the population. For

example, counties in the UK could be considered suitable strata for a survey.

Samples are then selected according to the relevant size of each strata. Suppose

there are h strata. Let nh denote the number of sample members of stratum h,

and Nh denote the number of population members in this stratum. Then the

design weight for sample members from stratum h will be Nh

nh
.

Cluster Sampling A drawback of stratified sampling is that it requires sample

members to be drawn from each stratum. This is practically time consuming and

can come with a high cost. For example, consider the example of UK counties.

Under stratified sampling, sample members from each UK county would need to

be sampled. A simpler approach is to select counties at random, and then either

survey everyone in that county (one-stage cluster sampling) or select a random

sample of people from each cluster (two-phase cluster sampling). For both one-

stage and two-stage cluster sampling, design weights can be derived for the sample

members. The mathematical formulation is not considered here to avoid the use

of cumbersome and irrelevant notation.
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For the remainder of this thesis, the design weights shall be assumed known and

already derived. Lohr in [34] provides a more detailed discussion of these sampling

methods and outlines many other types of sampling methods.

In practice, the initial weights are often designed to account for non-response,

selection bias and other typical sampling errors. Statistical offices invest time in

ensuring the initial weights are chosen appropriately to account for any biases and

errors in the survey. Therefore, the initial weights have an important practical

significance. It is thus desirable not to deviate too far away from these weights.

This is a standard requirement in calibration, i.e. the calibrated weights should

remain close to the initial weights, whilst at the same time accounting for new

information gained through the auxiliary variables.

1.2 Motivation

According to Särndal in [51], there are six main motivations and uses for calibra-

tion in practice. In this section, each of these motivations are outlined. Further

motivations and uses for calibration are also discussed.

Firstly, calibration can be used as a linear weighting method. National statistical

offices often use weighting methods, and this is the main motivation behind the

calibration methodology. Assigning an appropriate weight to each sample member

and then considering a weighted sum of the variable values to form estimates

is now a standard procedure, especially in the estimation of totals and means.

Furthermore, weighting is relatively simple to explain to users of the data and

stakeholders of the statistical offices.

Secondly, calibration can be thought of as a systematic way to use auxiliary in-

formation. Auxiliary information has been used to improve accuracy in survey

estimation for a long time, well before the term calibration was even coined. As

argued by Rueda, Martinez, Martinez and Arcos in [49], calibration is a simple

and practical way of including auxiliary information as part of the estimation

process.
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The third use of calibration is to achieve consistency. This has already been

considered in the previous section. Calibration is a method of obtaining consistent

estimates with known totals. Calibration imposes constraints on the weights to

ensure that weighted sample estimates replicate known population totals.

Credibility is often called into question when estimates of population quantities

do not agree. For example, consider a statistical office that publishes Census

data, from which the proportion of males aged 16-25 living in a particular region

of the UK is known. However, the statistical office then conducts a survey and

assigns design weights to members of the sample. It is possible that the estimated

proportion from the sample based on these design weights will not match the

known population proportion from the Census data. This leads to a contradiction

in the statistics published via two data sources, which draws into question the

validity of the statistics.

Fourthly, calibration offers convenience and transparency as a method. It is rela-

tively easy to interpret the resulting estimates, and the method is easy to motivate

since it is based on design weights and natural calibration constraints.

The final two points for consideration are that calibration can be used in combina-

tion with other terms and developed to give new directions of thought. Calibration

will be combined with the term mean square error as a new direction of thought

presented in Chapter 6. Examples of existing methods that combine calibration

with other terms include model calibration [63], g-calibration [62], and regression

calibration [18]. These shall be described further in Section 1.4.

The paper of Beaumont and Bocci, [8], provides further motivations for the cali-

bration problem. They motivate calibration as a method for reducing the sampling

variance of estimates. Informally, the inclusion of the additional auxiliary vari-

ables can lead to a reduction in the variance of the estimators [37]. In Chapter 6,

a calibration method is considered that guarantees an estimator with minimal

sampling mean square error.

Calibration can be used to reduce the sampling errors made during the survey

collection process [8]. Whilst these are often accounted for when producing the
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initial weights, calibration can further help to account for biases such as under-

representation of certain sections of the population or non-response bias.

Many authors account for non-response bias through imputation or weighting.

Calibration plays a role in the weighting approach to dealing with non-response.

For example, Kott in [32] and Lundström in [37] describe how to adjust for non-

response and sampling errors through an amendment to the calibration weighting

methodology. This is an interesting area for future research but shall not receive

further consideration in this thesis.

1.3 Practical Considerations

The literature on calibration is extensive, with a vast array of authors proposing

methods and approaches to solving the calibration problem. However, lots of

the literature on calibration is highly theoretical and difficult to implement in

practice. Statistical offices are interested in using methods that can be routinely

applied and that are relatively simple for all data users to understand. Therefore,

only a small selection of existing calibration methods are implemented. Several

of the existing calibration methods are described in Section 1.4.

Another practical consideration is whether the calibration problem can be solved.

Depending on the nature of the calibration constraints, it may not be possible to

find a solution to the calibration problem. This is not desirable in practice, as

statistical offices require a methodology that can be used for several datasets. For

example, the Labour Force Survey conducted by the Office for National Statistics

is a quarterly survey. Calibration is performed on each of the quarterly datasets,

each having their own calibration constraints. Therefore, a method that is adapt-

able and guaranteed to give a solution is highly desirable.

However, even methods that are guaranteed to give a solution to the calibration

problem may result in weights that are practically unappealing. Negative weights

may occur for certain calibration methods. Using the informal definition of a

weight as the number of population members represented, negative weights would
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suggest that the sample member does not account for anyone in the population,

even themselves.

Similarly, very large weights are undesirable in practice, since this leads to certain

members of the sample dominating the results. Whilst certain sample members

may be considered “more representative” than others, sample members should

all contribute to the population estimates. Large calibration weights are often

observed with small calibration weights for other sample members. Those with

large weights are typically over-represented, whilst those with small weights are

under-represented in the survey.

In this thesis, these practical considerations are explored and approaches for deal-

ing with the undesirable effects discussed. The use of calibration functions, range

restrictions and soft calibration are considered for dealing with negative and large

weights. The use of soft calibration as a diagnostic tool in the case of calibration

problems with no solutions is also presented.

1.4 Classical Literature

In this section, several existing calibration methodologies and approaches are con-

sidered. The two main types of calibration are introduced and their benefits and

drawbacks explored. The first of these, hard calibration, imposes a strict con-

dition on the auxiliary variables. The constraints used to obtain the calibrated

weights are required to be satisfied exactly. However, this can lead to undesirable

effects such as negative weights and extreme weights. In contrast, soft calibra-

tion relaxes this condition slightly with the aim of finding solutions that are more

“well-behaved”.

Calibration is a key method in official statistics, and there is a great field of

literature in this area. It forms an important part of the analysis of sample surveys,

with the aim of improving estimates by using existing information. Calibration

has already been introduced as a method of improving estimates through the use

of auxiliary variables. For these auxiliary variables, the population totals as well
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as the sample values are known. This may be through Census data or via other

large surveys.

There is an extensive literature on calibration, with many authors extending and

proposing alternative methods. It would be impossible for this thesis to acknowl-

edge all the areas of calibration outlined in existing literature. Instead, the discus-

sion in this chapter focuses on the methodologies that are implemented in practice

and have relevance to the work described throughout this thesis.

It can be argued that the term ‘calibration’ was first introduced by Deville and

Särndal in the classical paper [19]. These authors were the first to coin the term

‘calibration’, and presented the most standard approach to calibration used to

this day. The material introduced in this paper forms the basis for most of the

calibration performed in statistical offices throughout the world.

However, that is not to say that the idea of calibration did not exist before this.

Weighting methods similar to calibration have been used by statistical offices for

many years. Weighting observed sample values has been an important area of re-

search in official statistics for many years. For example, Alexander in [1] uses the

terminology “household weighting” and “constrained minimum distance”. The

methodology is essentially equivalent to the calibration problem that will be pre-

sented in Chapter 2. Similarly, Bethlehem in [7] describes the use of linear weight-

ing and regression estimation to derive a weighted estimate that is equivalent to

a calibration estimator.

This section is dedicated to the literature on hard calibration, as well as its use in

many statistical offices throughout the world. The existing research in the area of

soft calibration is then explored and a brief overview of the current methodologies

is given.

There are many algorithms and statistical software packages used for performing

calibration. These are not considered in this section. A more detailed explanation

of the algorithms and software used by statistical offices to perform calibration is

given in Chapter 3.
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1.4.1 Hard Calibration

Almost all the research in calibration references the classical paper ‘Calibration

Estimators in Survey Sampling’ of Deville and Särndal [19]. Whilst weighting

methods and the idea of calibration existed long before the work presented in this

paper, the term ‘calibration’ was first coined by these authors and their method

remains the most standard approach to calibration.

The material introduced by these Deville and Särndal forms the basis for most

of the calibration performed in statistical offices throughout the world. Calibra-

tion is presented as a methodology for finding alternative sample weights that are

as close as possible to some pre-determined initial weights, whilst satisfying the

so-called hard calibration equation. This hard calibration equation uses auxiliary

variables, for which sample values and population totals are known. This addi-

tional information typically comes from Census and other survey data. The key

calibration idea is finding new calibration weights that are as close as possible to

the initial weights, whilst satisfying the calibration equation.

Särndal in [51] reiterates the importance of calibration as a method for including

auxiliary information as part of the estimation process, and that the thought

process for calibration is different to that for regression and generalised regression

estimation presented by Särndal, Swensson and Wretman in [52].

Särndal continues in [51] to suggest that no pre-determined specification of a model

is required, instead the emphasis is on how the auxiliary information can be used

to improve estimates. In contrast, generalized regression estimation focuses on

the use of a so-called assisting regression model to improve estimates. A more

detailed overview of generalized regression estimation is given by Fuller in [24].

Based on the purpose of the calibration, Särndal in [51] suggests alternative names

for the calibration approach. Recall that one use of calibration is consistency

with known totals, often referred to as controls. In this case, the term “controlled

weighting” is often used, which also reflects the improved accuracy in the esti-

mation. The French term for calibration, “calage”, also refers to the notion of

stability and consistency.
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However, when the motivation for calibration is primarily a reduction in variance

and/or the non-response bias, the phrase “balanced weighting” is considered more

appropriate. This thesis introduces the term mean square error calibration in

Chapter 6, which arguably belongs to the class of “balanced weighting” methods.

A further extension of calibration has been to so-called “repeated weighting”

calibration. As the name suggests, in this approach the calibration weighting

method is repeated several times. The motivation for this approach is to obtain

consistency with variables from different surveys. Similarly, if the same variables

are considered in two or more surveys, then there is practical appeal in ensuring

that the weighted estimates from both surveys produce the same estimate of the

unknown population parameter. The work of Renssen in [48] considers aligning

estimates for common variables from two or more surveys, whilst Renssen in [47]

considers repeating the weighting several times to ensure consistency of the survey

estimates.

In Section 1.2, it was stated that calibration is often used in combination with

other terms as a new direction of thought. Since the classical paper by Deville

and Särndal [19], there has been extensive research and further developments

of the calibration problem. It would be impossible to consider all the areas of

research, but a summary of some of the key methods is given in this section. The

reader is referred to the paper of Särndal [51] for a more extensive review of the

developments in calibration methods.

Model calibration is presented by Wu and Sitter in [63]. In this approach, an

explicit model is used to relate the variable of interest and the auxiliary variables.

The term ‘model-assisted’ is also used by these authors, since it can be argued

that the model is used to assist the calibration process. Inevitably, this approach

relies on the suitability of the model. The use of models with calibration shall be

considered further in Chapter 6.

Another term used is g-calibration. Essentially, this approach solves calibration

through the use of g-weights, which are defined to be the ratio of the calibrated

and initial weights, i.e. gk =
wk

dk
, where gk denotes the g-weight for the k-th sample

member (k = 1, . . . , n), whilst wk and dk denote the calibrated and initial weights
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respectively. The paper of Deville, Särndal and Sautory in [20] presents much

of the work from Deville and Särndal’s paper of [19] using g-weights. The term

g-calibration is also used by Vanderhoeft in [62].

Regression calibration is also a term considered by Demnati and Rao in [18]. This

is arguably a more specific case of model calibration, where regression models are

used to describe the relationship between the variable of interest and auxiliary

variables. The authors consider various types of regression models, including

linear regression, multiple regression and logistic regression.

A further use of calibration has been as a method of adjusting imputed missing

values. Instead of adjusting sample weights to satisfy pre-determined constraints,

the imputed sample values are themselves adjusted to satisfy several constraints.

This method aims to account for the biases and errors that can occur through

imputation methods. The theory is very similar to that of adjusting weights in

the standard approach to calibration.

For the purposes of this thesis, calibration is considered to be a method of finding

new weights that are close to some pre-determined initial weights whilst satisfy-

ing some additional information. Recall that the initial weights have often been

designed to account for non-response and to ensure that there is an accurate re-

flection of the population. To assess the ‘closeness’ of the initial and calibrated

weights, some form of measure is required. Deville and Särndal in [19] begin by

presenting a measure that is reminiscent of the chi-square statistic. The function

itself is simply quadratic, and therefore the name quadratic rather than chi-square

shall be used for the remainder of this thesis.

However, Deville and Särndal [19] advocate that the choice of the quadratic (chi-

square) function was arbitrarily taken and suggest alternative measures. These are

referred to as ‘distance functions’ in much of the existing calibration literature.

However, not all of them satisfy the triangle inequality for distance functions.

Therefore, for the remainder of this thesis, these measures will simply be referred

to as calibration functions.

A drawback with the quadratic calibration function is that it can result in neg-

ative and extreme weights. The practical implications of negative and extreme
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weights was outlined in Section 1.3. The drawbacks of this measure are considered

throughout this thesis, particularly in Chapter 4. Alternative calibration functions

presented by Deville and Särndal in [19] include one of logarithmic form. By its

definition, this function cannot lead to negative weights. However it often results

in calibrated weights that are extremely large compared to the initial weights.

This function is often referred to as the ‘raking’ function, or ‘raking ratio’, due to

its similarities to the raking ratio method developed by Deming and Stephan in

[17].

The raking ratio method is arguably a pre-cursor to the existing calibration ap-

proaches. The raking ratio method adjusts sample frequencies in contingency

tables to account for known expected marginal totals. The approach is very sim-

ilar to the standard calibration methodology that will be considered throughout

this thesis.

Three other calibration functions are proposed by Deville and Särndal [19]. The

first is reminiscent of the Hellinger distance, described by Beran in [6]. The sec-

ond is a minimum entropy distance, and the final one has a square root form. A

solution to the calibration problem can always be found when using the quadratic

and raking functions, however solutions are not guaranteed in the case of these

other three functions. This is likely to explain why the quadratic and raking

functions have received much more attention in subsequent calibration literature.

Furthermore, only the quadratic and logarithmic functions are implemented in

most survey calibration software packages. Calibration functions shall be consid-

ered in more detail in Chapter 4.

A common approach to dealing with the negative and extreme calibration weights

is by imposing a restriction on the calibrated weights. In doing so, this can

prevent them becoming negative or extremely large. So-called range restrictions

are imposed on the calibrated weights. These are pre-determined bounds that the

calibration weights must lie within. Whilst strict bounds will lead to calibration

weights that are closer to the initial weights, imposing bounds that are too strict

can result in the calibration problem having no solution.
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Extreme and negative weights are noted by Beaumont and Bocci in [8] as motiva-

tion for weights to satisfy bounds. These bounds help control the effect of leverage

points on the sampling error of estimates, as the leverage points themselves may

otherwise lead to large weight adjustments. Here the term leverage points refers

to extremal or outlying values that, due to their extremity, may lead to an over

zealous change (or leverage) of the weights.

For the five calibration functions that have already been described, the standard

approach used in algorithms is to project any weights that fall outside the bounds

back to these bounds. The calibration is then performed again, with this re-scaling

performed at every iteration.

However, an alternative function proposed by Deville and Särndal in [19] auto-

matically accounts for the weight bounds. It is known as the logit function, as

it is based on the logit function that is used as part of logistic regression. The

benefits and drawback of this function shall be discussed throughout this thesis.

In Chapter 4, two new calibration functions are proposed that are also able to

give weights within desired bounds.

In this section, an overview of the existing literature in the area of hard calibration

has been given. Hard calibration requires constraints on the auxiliary variables to

be satisfied exactly. However, this can lead to undesirable effects such as negative

weights and extreme weights. Alternative calibration functions can be used to

prevent negative and extreme weights, and range restrictions can be imposed to

ensure the calibrated weights do not deviate too far from the initial weights.

In the next section, a review of the existing literature for soft calibration is given.

This is an alternative approach that relaxes the calibration constraints with the

aim of obtaining “better behaved” solutions to the calibration problem.

1.4.2 Soft Calibration

In the previous section, the literature for the hard calibration problem was de-

scribed. Several problems were outlined including negative weights, extreme

weights and the potential for no solutions to the problem.
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In this section, the literature for the soft calibration problem is presented. Unlike

hard calibration, soft calibration has received much less attention in existing lit-

erature. For statistical offices, the possibility for differences between population

totals and survey estimates, no matter how small, is uncomfortable from the point

of view of consistency and accuracy of official statistics.

The main approach suggested in the existing literature is to borrow ideas from

ridge regression in classical statistics. The term ‘soft’ calibration is rarely used

in literature. Instead the term ‘ridge calibration’ is often used, for example by

Beaumont and Bocci in [8]. Bardsley and Chambers in [4] consider the use of a

ridge regression instead of ordinary least squares regression for deriving weighted

sample estimates.

Recall that for ordinary least squares regression, one needs to invert a matrix that

is made up of the auxiliary (or predictor) variables. In cases when this matrix

cannot be inverted, or has a determinant that is very close to zero, the solution

to the least squares regression does not exist or is very unstable. To account

for this, ridge regression adds a multiple of the identity matrix to the original

matrix being inverted. This multiple is often referred to as the ridge parameter.

This then results in a matrix that can be inverted and gives a solution that is

approximately the ordinary least squares solution.

This idea of ridge regression has been applied for calibration. In cases where a

solution to the hard calibration problem cannot be found, or when the solution

leads to extreme or negative weights, a ridge parameter can be used to reduce

the severity of calibration constraints and lead to a more ‘well-behaved’ solution.

This idea has been developed by Chambers [11], Rao and Singh [45] and Théberge

[59]. The ridge calibration approach deals with the range restrictions by making

a suitable choice of the ridge parameter, whilst at the same time trying to satisfy

the calibration constraints as closely as possible. This problem shall be described

in more detail in Chapter 5.

The ridge parameter is one approach to soft calibration. Another suggested by

Beaumont and Bocci [8] is to relax the range restrictions until a solution is found.

However, the bounds may need to be relaxed substantially until a solution is found,
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contradicting the purpose of imposing the bounds. An alternative approach is to

relax the calibration constraints. Examples of this come from Bankier, Rath-

well and Majkowski [3], where it was proposed to drop some of the calibration

constraints in the Canadian Census. Many other authors prefer a less drastic

approach, only partially relaxing the calibration constraints to the point where a

solution exists. Both Rao and Singh [45] and Chen, Sitter and Wu [13] propose

estimators where the calibration constraints are relaxed as minimally as possible

to satisfy weight bounds. This will be explored further in Chapter 5.

To relax the calibration constraints, a measure similar to the quadratic calibration

function is proposed. This leads to two quadratic functions being used, the first

assesses the deviation between the initial and calibrated weights, whilst the other

assesses the variation of the weighted estimate from the known population totals.

Chen, Sitter and Wu in [13] propose an approach to calibration that uses em-

pirical likelihood methods to derive a calibration estimator that satisfies range

restrictions whilst approximately satisfying the calibration constraints. However,

Beaumont [5] shows it’s equivalence to the soft calibration problem using ridge

regression and therefore for the purposes of this thesis, the method of Chen, Sitter

and Wu in [13] shall not be given any further consideration.

There is a much smaller literature in the area of soft calibration, making it a more

appealing area for research and further investigation. Chapter 5 is dedicated to

this approach to calibration.

Whilst there are many other varieties of ‘calibration’ methods that have not been

considered, those presented in this chapter are of greatest practical relevance and

will form the basis of the content of this thesis. In the next chapter, the approaches

to calibration presented in this chapter are described mathematically using an op-

timization framework. Chapter 3 describes the existing algorithms and software

packages used to perform calibration. The choice of calibration functions shall be

given further discussion in Chapter 4, including the presentation of two new cali-

bration measures. Chapter 5 contrasts existing soft calibration methodologies to a

new approach using optimization. A new approach to calibration that minimizes

the mean square error of the calibration estimator will be outlined in Chapter 6.
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In this section, the existing literature in the areas of hard and soft calibration has

been considered. The history and developments of calibration have been outlined,

and drawbacks of existing methodologies discussed. In the next section, the key

contributions of this thesis will be described.

1.5 Main Contributions

This research considers the calibration problem in the analysis of sample surveys.

This thesis will examine existing approaches to solving the calibration problem,

which have lead to the development of several novel approaches proposed in this

thesis. For each of the new methodologies, comparisons are made with well-known

existing approaches. The following scientific contributions are made:

• Expressing calibration in terms of an optimization problem (Chapter 2).

• Mathematical formulation of the algorithms used by several existing cali-

bration software packages (Chapter 3).

• New calibration functions that improve the behaviour of the calibrated

weights and estimates (Chapter 4).

• Expressing soft calibration as an optimization problem, leading to a method

that is guaranteed to have a solution independent of the ‘softening’ param-

eter used (Chapter 5).

• The use of soft calibration as a diagnostic tool in identifying problematic

calibration constraints. This has the practical appeal of diagnosing problems

with the calibration constraints when solutions are undesirable or cannot be

found (Chapter 5).

• A new approach to calibration that directly minimizes the mean square error

(MSE) of the calibration estimator. This is of practical appeal, as estimators

with small variance are always desirable in practice. This approach guaran-

tees to find the calibration estimator with minimum MSE (Chapter 6).
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1.6 Thesis Overview

In this section, the structure of the thesis is presented and the main contributions

of each chapter described.

Chapter 2 presents the calibration problem and formulates it in terms of an

optimization problem.

Chapter 3 considers several of the algorithms and software packages that are

currently used for solving the hard calibration problem. A critical analysis of

these algorithms and software packages is given, with examples to illustrate their

behaviour.

Chapter 4 considers the functions that are used as part of the calibration opti-

mization problem. Problems with existing calibration functions are outlined, and

several new calibration functions are proposed.

Chapter 5 discusses the method of soft calibration. Soft calibration is presented

as an optimization problem, and its practical appeal for solving the calibration

problem is explored. The use of soft calibration as a diagnostic tool for investi-

gating problematic constraints is also discussed.

Chapter 6 presents a new calibration methodology that minimizes the mean

square error of the calibration estimator. In doing so, it finds a calibration solution

whose corresponding calibration estimator has minimal MSE. This has practical

appeal, since estimators with small MSE are desirable in practice.

Chapter 7 concludes the thesis and summarises the main contributions of this

research. It also provides the scope for further work and possible future areas for

research.

1.7 Summary

In this chapter, the motivation and practical considerations for the calibration

problem have been outlined. Existing literature in the areas of hard and soft
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calibration has been explored. The key contributions of this research have been

described, and a summary of each chapter in this thesis given.

In the next chapter, the calibration problem is introduced and defined as an

optimization problem. Whilst much of the literature considered in this chapter

has already described the calibration problem, none of the existing literature has

clearly formulated the problem using an optimization framework. Hard and soft

calibration shall both be presented as problems in optimization.
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2 Calibration as an Optimization Problem

In this chapter, the problem of calibration of weights is formulated as an opti-

mization problem. The motivation and practical need for the calibration problem

was formulated in the previous chapter. In this chapter, the calibration problem

is defined mathematically and the properties of the corresponding optimization

problems outlined. Recommendations on how to choose the objective function

shall be described in Chapter 4. The literature on calibration has ignored this im-

portant issue, which has lead to algorithms that were inefficient. This is discussed

further in Chapter 3.

2.1 Introduction

In Chapter 1, the extensive literature and various directions and extension of the

calibration problem were discussed. However, survey calibration can be described

simply as an optimization problem. Whilst the problem is already defined in

existing literature, it has not been formulated in the way presented in this chapter.

This chapter provides a unified formulation of much of the work presented and

described in [19] and [20].

2.2 Notation

Mathematically, calibration is a large-scale convex optimization problem with

linear constraints. To formulate the problem, the following notation shall be

used:
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D = (d1, . . . , dn)
′: vector of initial weights,

W = (w1, . . . , wn)
′: vector of calibrated weights,

G = (g1, . . . , gn)
′: vector of the g-weights gi = wi/di (i = 1, . . . , n),

L = (l1, . . . , ln)
′: vector of lower bounds for the g-weights,

U = (u1, . . . , un)
′: vector of upper bounds for the g-weights,

Y = (y1, . . . , yn)
′: vector of sample values for the variable of interest,

X = (xij)
n,m
i,j=1: given n×m matrix,

A = (aij)
n,m
i,j=1: given n×m matrix,

T = (t1, . . . , tm)
′: arbitrary m× 1 vector,

1 = (1, 1, . . . , 1)′ n× 1 vector of ones,

G feasible domain in the calibration problem,

0 = (0, . . . , 0)′ n-vector of zeros,

1 = (1, . . . , 1)′ n-vector of ones,

In n× n identity matrix.

Consider the n×1 vector Y = (y1, . . . , yn)
′ of sample observations from a variable

of interest. Suppose a vector of initial so-called ‘design’ weights D = (d1, . . . , dn)
′

is given. These initial weights are always assumed to be positive: di > 0 for all

i. The aim is to estimate the unknown population total, denoted by TY , of the

variable of interest. Given a set of sample observations and a set of initial design

weights, the estimator Y ′D provides an estimate of the unknown population total.

The initial weights in the case of simple random sampling and stratified sampling

were given in Chapter 1. The most common choice for the design weights is

di =
1
πi
, i = 1, . . . , n, where πi denotes the inclusion probability of the i-th sample

member. The inclusion probability is simply a measure of a sample member‘s

likelihood of being included in the sample. In this case, the estimator Y ′D is

called the Horvitz-Thompson estimator [28], one of the most famous estimators

in survey sampling. The Horvitz-Thompson estimator is an unbiased estimator

of TY .

Note, however, that whilst the estimator Y ′D is unbiased, the estimates it gives

will vary depending on the sample taken. Any unbiased, or approximately un-

biased, estimator with smaller variance than Y ′D would be considered a better

estimator in the sense that estimates are less variable.
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Calibration is a method that incorporates information from additional auxiliary

variables to derive a vector of calibrated weights, W = (w1, . . . , wn)
′, from which

the estimator Y ′W can be formed. The main objective is to obtain an estimator

with improved accuracy. Unlike the Horvitz-Thompson estimator, the calibration

estimator is biased. The bias of this new estimator shall be considered below.

Taking the existing literature, including [19] and [27], one can formulate the fol-

lowing theorem.

Theorem 2.1 (Bias of Estimator Y ′W ). Let D = (d1, ..., dn)
′ be the design weights

associated with the Horvitz-Thompson estimator (therefore di =
1
πi

for all i). Let

W be a vector of calibrated weights and Y = (y1, . . . , yn)
′ be an n × 1 vector of

sample values of a variable of interest. Then Y ′W is a biased estimator of the

unknown population total TY , with bias E[Y ′(W −D)].

Proof. Combining the estimator Y ′W with the unbiased Horvitz-Thompson esti-

mator, Y ′D, gives:

Y ′W = Y ′D + Y ′(W −D).

Hence, the bias of Y ′W is given by:

bias[Y ′W ] = E[Y ′D + Y ′(W −D)]− TY = E[Y ′(W −D)].

It is important that the new estimator Y ′W is approximately unbiased for the

population total. This means that E[Y ′(W − D)] ≈ 0. This suggests that cali-

bration should strive for small deviations between W and D. This is one of the

main motivations of the calibration problem, namely that the deviations between

W and D should be as small as possible.

To formulate the calibration problem, a method for assessing the deviations be-

tween the calibrated weights W and the initial weights D is required. In Chap-

ter 1, calibration functions (referred to as ‘distance measures’ in the literature)

were introduced as a measure for assessing the variability between the initial and

calibrated weights. In Chapter 4, appropriate choices of these penalty functions
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shall be discussed for quantifying the variability between the initial and calibrated

weights D and W , respectively.

2.3 The main constraint

Let X = (xij)
n,m
i,j=1 be a matrix of realizations of m auxiliary variables. Note that

the auxiliary variables should be chosen such that they are correlated with the

variable of interest introduced in Section 2.2. The (i, j)-th entry xij of X denotes

the value that the i-th member of the sample takes on the j-th auxiliary variable.

Formally, X is an arbitrary n × m matrix. Given the vector T = (t1, . . . , tm)
′,

exact (hard) constraints can be written as X ′W = T , whereas approximate (soft)

constraints are X ′W ≃ T . These constraints, whether exact or approximate,

define the additional information used in the calibration of the weights.

Often, a constraint is also given on the sum of the weights. Typically, that the

sum of the weights should equal the size of the population. Recall that a sample

member‘s weight can be considered as how many people in the population that

person represents. This motivates the requirement that the sum of all of these

weights should be the population size.

The sum of weights constraint can be written mathematically as
∑n

i=1wi = N .

Alternatively, [57] formulates the constraint
∑n

i=1wi =
∑n

i=1 di or, in vector no-

tation, 1′W = 1′D, where 1 = (1, 1, . . . , 1)′. This is equvialent to
∑n

i=1 in the

majority of cases, since the initial weights are also usually taken to sum to the

population total. Note that the condition 1′W = 1′D can be added to the set of

the main constraints X ′W = T . Hence, the work in this thesis does not formally

distinguish between the cases when the condition 1′W = 1′D is required or not.

The ratios of the weights wi and di are often considered rather than the weights wi

themselves. Vanderhoeft in [62] and Deville, Särndal and Sautory in [20] consider

these ratios, which they define to be so-called g-weights gi = wi/di. Several of

the standard calibration packages, which shall be discussed further in Section 3.6,

give g-weights as the output. Hence, in this chapter, the main focus will be on

calibration using g-weights. It should be noted that some authors refer to the
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values gi as calibration factors rather than calibrated weights. However, gi will

be referred to as calibrated weights throughout this thesis.

Denote the vector of g-weights by G = (g1, . . . , gn)
′ and consider this vector

as the vector of calibrated weights being sought. Since di > 0 for all i, the

hard constraints X ′W = T can be written in the form A′G = T , where the

matrix A = (aij)
n,m
i,j=1 has elements aij = dixij . Correspondingly, soft constraints

X ′W ≃ T have the form A′G ≃ T .

2.4 Additional constraints on the g-weights

There are more constraints on G, in addition to A′G = T , that must be imposed.

First of all, the calibrated weights must be non-negative; that is, gi ≥ 0 for all

i. Moreover, much of the calibration literature, for example Brewer in [9] and

Théberge in [59], recommends imposing stricter constraints on the g-weights of

the form L ≤ G ≤ U , where L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′ are some

given n×1 vectors such that 0 ≤ li < 1 < ui ≤ ∞ for all i. That is, the g-weights

should satisfy li ≤ gi ≤ ui for some sets of lower and upper bounds li and ui. If

li = 0 and ui = ∞ for all i, then the constraint li ≤ gi ≤ ui coincides with the

simple non-negativity constraint gi ≥ 0. In the majority of practical problems,

li = l and ui = u for all i with 0 ≤ l < 1 < u ≤ ∞, where strict inequalities l > 0

and u < ∞ are very common.

To summarize, the three choices of the vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′

are:

(a) no constraints: li = −∞ and ui = ∞ for all i;

(b) non-negativity constraint: li = 0 and ui = ∞ for all i;

(c) general constraints: 0 ≤ li < 1 < ui ≤ ∞.
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2.5 Problem Statement

In Section 2.2, the need for the calibrated weights W to stay as close as possible

to the initial weights D was motivated. Equivalently, the g-weights G have to

stay as close as possible to the vector 1. To measure the “closeness” of G and 1,

some function Φ(G) = Φ(g1, . . . , gn) is used. This function is required to satisfy

the following properties:

(I) Φ(G) ≥ 0 ∀G,

(II) Φ(1) = 0,

(III) Φ(G) is twice continuously differentiable, and

(IV) Φ(G) is strictly convex.

The first of these constraints requires that the function cannot be negative. We

are assessing the deviation between G and 1, therefore, if Φ(G) is positive, this

indicates a deviation from 1. Similarly, if G and 1 are the same, then the function

should give zero, hence the second requirement. The twice continuously differ-

entiable and strictly convex conditions guarantees that the calibration functions

have well-behaved derivatives and have a minimum of 0 at G = 1. A more de-

tailed discussion of these properties is given by Deville, Särndal and Sautory in

[20].

The function Φ often has the form

Φ(G) = Φ(g1, . . . , gn) =

n∑

i=1

qiφi(gi) , (1)

where q1, . . . , qn are given non-negative numbers; in the majority of applications

qi = di for all i. In this chapter, the form of Φ is considered. Choices of the

functions φi are introduced in Section 4.2.

Hard constraints A′G = T enter the definition of the feasible domain of G. Soft

constraints A′G ≃ T can either enter the definition of the feasible domain of G

in the form ‖A′G − T‖ ≤ ǫ for some vector norm ‖ · ‖ and some given ǫ > 0, or

can be put as a penalty Ψ(A′G, T ) into the objective function. The properties
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required for Ψ (as a function of G) are similar to those required for Φ. The most

common choice for Ψ is

Ψ(A′G, T ) = β−1(A′G− T )′C(A′G− T ) (2)

where C is some user-specified m×m positive definite (usually, diagonal) matrix

and β > 0 is some constant (see for example [8], equation (2.3)).

Summarizing, there are the following versions of the calibration problem formu-

lated in terms of the feasibility domain for the vector of g-weights G, where the

function (1) plays the role of the objective function in the corresponding opti-

mization problems.

Hard constraint case:

Φ(G) → min
G∈G

, where G = {G : L ≤ G ≤ U and A′G = T}. (3)

Soft constraint case I:

Φ(G) → min
G∈G

, where G = {G : L ≤ G ≤ U and Ψ(A′G, T ) ≤ 1}. (4)

Soft constraint case II:

Φ(G) + Ψ(A′G, T ) → min
G∈G

, where G = {G : L ≤ G ≤ U}. (5)

In problems (3)–(5), the matrix A and the vectors T, L and U are given, and in

the majority of applications the functions Φ and Ψ have the forms (1) and (26),

respectively. Optimization problems (3)-(5) will be fully defined if the function φ

in (1) is fully specified.

Optimization problems (3) and (4) may have no solutions, that is the feasible

domain G in these problems may be empty. The case when G is empty means

that the constraints on G are too strong. The feasible domain G in problem (5)

is always non-empty and the optimal solution always exists. In view of the strict
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convexity of Φ and Ψ as well as the compactness ofG, if the optimal solution exists

then it is necessarily unique. Optimization problem (4) is difficult to implement

in practice and is therefore not considered. Instead, due to the computational and

practical motivations for calibration, only problems (3) and (5) shall be considered

for the remainder of this thesis. These problems are generally easier to implement

and computationally easier to perform. Problem (4) remains an interesting area

for further research.

2.6 Summary

In this chapter, the calibration problem has been presented as a problem in opti-

mization. Whilst existing calibration literature has already described the problem,

it has not been clearly formulated as a problem in optimization.

This chapter began by formulating the notation required to describe the cali-

bration problem. The main calibration constraints were described, along with

additional constraints on the g-weights. The problem statement was then given,

with three cases of optimization problems, one for hard calibration and two for

soft calibration. The first formulation for soft calibration is computationally chal-

lenging, and therefore only the second shall be considered for the remainder of

this thesis.

The key contribution of this chapter is the clear formulation of calibration as an

optimization problem. This will form the basis of the work in many of the future

chapters.

In the next chapter, several of the algorithms used for solving the hard calibration

problem will be described. An outline of the key software packages that implement

calibration is also given. The benefits and drawbacks of each algorithm shall be

described, with practical use and run time two of the key factors.
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3 Algorithms for Solving the Hard Calibration

Problem

In this chapter, several algorithms for solving the hard calibration problem are

introduced. Soft calibration is not considered in this chapter, but will be discussed

in Chapter 5. The algorithms described in this chapter are used in many of the

calibration software packages that are outlined in Chapter 3.6. This chapter

expands on the work published in [16].

3.1 Introduction

Recall that the hard calibration problem is as follows:

Φ(G) → min
G∈G

, where G = {G : L ≤ G ≤ U and A′G = T}, (6)

where

Φ(G) = Φ(g1, . . . , gn) =

n∑

i=1

qiφi(gi) . (7)

Here φ is a specified calibration function and q1, . . . , qn are given non-negative

numbers. In the majority of applications qi = di for all i; it is assumed that

qi = di throughout this chapter. The vectors L and U are n-vectors of lower and

upper bounds for the g-weights G, respectively, A is a known matrix derived from

the sample observations, and T is an m-vector of known population totals. The

three common choices of the vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′:

(a) no constraints: li = −∞ and ui = ∞ for all i;

(b) non-negativity constraint: li = 0 and ui = ∞ for all i; and

(c) general constraints: 0 ≤ li < 1 < ui ≤ ∞.

In this chapter, the following three choices of the function φ are considered. These

are the standard choices for the function φ used in existing software. Other choices

of the function φ shall be discussed in Chapter 4.
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The first of these functions is a quadratic and commonly referred to as a chi-

square measure [19]. The second is referred to as the raking function, due to

its connection to the raking ratio that is used for adjusting values in contingency

tables. The final function is called the logit function, based on its similarity to the

logit (logistic) function. These functions are presented in terms of the g-weights.

Since gi = wi/di, the functions can be re-written in terms of the calibrated weights,

w. As g-weights are our main concern in this chapter, we only consider the g-

weight forms of the functions.

(1) Quadratic:

φ(Q)(g) =
1

2
(g − 1)2 ;

(2) Raking:

φ(R)(g) = g ln(g)− g + 1;

(3) Logit:

φ(L)(g; l, u) =
1

C

[
(g − l) ln

(
g − l

1− l

)
+ (u− g) ln

(
u− g

u− 1

)]
;

where C = u−l
(1−l)(u−1)

.

These are the most commonly used functions in practice of calibration in official

statistics, and appear most often in the standard calibration software packages.

3.2 A General Scheme for Deriving the Algorithms

This section presents a scheme for constructing a family of algorithms used in

many of the calibration packages. This family of algorithms is derived using a

similar approach to that outlined in [19], which uses a Newton-Raphson method

to solve the calibration problem (6) .
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3.2.1 The Function h

Let h(x) = (φ′)−1(x), i.e. h is the inverse of φ′. From the strong convexity of φ,

it can be deduced that φ′(g) is strictly increasing and so the inverse function h is

uniquely defined.

For the functions φ(Q), φ(R) and φ(L) defined in Section 3.1, the corresponding

h-functions are:

(i) Quadratic:

h(Q)(x) = 1 + x;

(ii) Raking:

h(R)(x) = exp(x);

(iii) Logit:

h(L)(x; l, u) =
l(u− 1) + u(1− l) exp(Cx)

(u− 1) + (1− l) exp(Cx)
;

where C is defined as in Section 3.1.

In Figure 1, each of the functions φ(Q), φ(R), and φ(L) and their corresponding

derivatives are plotted. Observe that for each of these functions their derivatives

are strictly increasing.

3.2.2 Lagrangian Method

Returning to the calibration problem (6), let Λ = (λ1. . . . , λm)
′ be the m-vector of

Lagrange multipliers. The Lagrangian for the problem (6) with function (7) can

be written as:

L(G,Λ) = Φ(G)− Λ′(A′G− T ) =

n∑

i=1

φ(gi)−
m∑

j=1

λj

(
n∑

i=1

aijgi − tj

)
.
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(a) Functions φ(Q) (line), φ(R) (dash),
and φ(L) (dot-dash)

(b) Derivatives of the functions φ(Q)

(line), φ(R) (dash), and φ(L) (dot-dash)

Figure 1: Calibration penalty functions and their derivatives

Set φ′(gi) =
∂φ(g)
∂g

∣∣∣
g=gi

. Differentiating L(G,Λ) with respect to gi (i = 1, . . . , n)

gives

∂L(G,Λ)

∂gi
= φ′(gi)−

m∑

j=1

λjaij .

Let ai denote the i-th row of A, i = 1, . . . , n so that ai = (ai1, . . . , aim). Setting
∂L(G,Λ)

∂gi
= 0 gives

φ′(gi) =

m∑

j=1

λjaij = aiΛ. (8)

Recall from Section 3.2.1 that h(x) = (φ′)−1(x). Then (8) implies that the g-

weights gi (i = 1, . . . , n) corresponding to the vector Λ of Lagrange multipliers

is

gi = h(aiΛ). (9)
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Applying the calibration constraint A′G = T , it follows from (9) it follows that

A′G = T ⇐⇒
n∑

i=1

a′

igi = T ⇐⇒
n∑

i=1

a′

ih(aiΛ) = T. (10)

Note that Deville and Särndal in [19] proceed by subtracting A′1 =
∑n

i=1 a
′
i from

both sides of (10) and defining

η(Λ) =
n∑

i=1

a′

i (h(aiΛ)− 1) ;

however, this is not required here.

The objective is to solve the equation

n∑

i=1

a′

ih(aiΛ) = T, (11)

with respect to Λ. Upon solving for Λ, the calibrated weights G = (g1, . . . , gn)
′

can be derived with gi = h(aiΛ) as given by (9).

Algorithms for solving (11) with respect to Λ are now considered. This section

considers the use of a Newton-Raphson method (described by Ypma in [64]) as

presented by Deville and Särndal in [19]. The main algorithms considered have

the form

Λ(s+1) = Λ(s) + (A′H(s)A)−1(T −A′G(s)), for s = 0, 1, 2, . . ., (12)

where Λ(0) = 0, G(s) denotes the updated vector of g-weights at iteration s, and

H(s) is an n× n diagonal matrix specified for each algorithm.

3.2.3 First Iteration

Setting s = 0, the first iteration in (12) can be written as

Λ(1) = Λ(0) + (A′H(0)A)−1(T − A′G(0)).
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For the algorithms outlined in the literature and implemented in the main statis-

tical packages, Λ(0) = 0, H(0) = In and G(0) = 1. Thus the first iteration can be

written as

Λ(1) = (A′A)−1(T − A′1). (13)

An important observation is that Λ(1) is independent of the choice of the function

φ. It is easy to see that (13) coincides with the vector Λ that solves (11) in the

case of function h(Q) with no constraints (that is, li = −∞ and ui = ∞ for all i).

Also, it is well documented that the calibrated weights

W = (d1h
(Q)(a1Λ

(1)), . . . , dnh
(Q)(anΛ

(1)))′

are equivalent to the weights obtained using generalized regression estimation

(GREG), see [52].

3.2.4 Jacobian

Let J(Λ) denote the Jacobian of
∑n

i=1 a
′
ih(aiΛ) considered as a function of Λ.

Then it follows that J(Λ(s)) = A′H(s)A, where

H(s) = diag(h′(a1Λ
(s)), . . . , h′(anΛ

(s)))

and

h′(aiΛ) =
∂h(x)

∂x

∣∣∣∣
x=aiΛ

.

Applying the Newton-Raphson method to solve (11) for Λ gives the iterative

procedure:

Λ(s+1) = Λ(s) + (J(Λ(s)))−1(T − A′G(s)). (14)

This is a particular case of (12) with H(s) defined as above. This Newton-Raphson

approach is proposed in [19]. In the next section, various choices of the matrix

H(s) are considered.
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3.2.5 The Matrix H(s)

The following three forms of H(s) appear in the literature and existing software.

Newton-Raphson: In this case, the matrix H(s) is given by

H(s) = diag(h′(a1Λ
(s)), . . . , h′(anΛ

(s))),

as described in Section 3.2.4. The method (14) requires computation of J(Λ(s)) =

A′H(s)A at each iteration. This Newton-Raphson approach is proposed in [19].

The method converges quickly in an ideal situation when computation is exact,

but in practice this choice of H(s) can lead to an unstable algorithm.

Identity Matrix: For this case, the matrix H(s) is taken to be:

H(s) = In

for all s, and so at each iteration the initial Jacobian J(Λ(0)) = A′A is used.

Matrix with g-weights on the diagonal: In this form, the matrix is given

by

H(s) = diag(h(a1Λ
(s)), . . . , h(anΛ

(s)));

the diagonal entries of H(s) are simply G(s), the values of the calibrated weights G

at the s-th iteration. Since these weights are computed at each iteration anyway,

the matrix H(s) does not require additional computations, unlike the first method.

In Section 3.4, the convergence properties of the iterative procedure (12) shall be

considered for these three forms of the matrix H(s).
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3.2.6 H(s) for Various Calibration Functions

The forms of the matrix H(s) for the three calibration functions outlined in Sec-

tion 3.1 shall be considered. The quadratic function φ(Q) shall be considered in

the case of no constraints and general constraints, the raking function φ(R) in the

case of non-negativity constraints and general constraints, and the logit function

φ(L) in the case of general constraints.

Function φ(Q) with No Constraints In this case, the iterative method (12)

converges in one iteration. The g-weights derived from this method correspond to

the weights using the generalized regression estimator (see [52]). Note that, in this

case, the Newton-Raphson and identity matrix are equivalent, since h′(Q)(x) = 1

for all x ∈ R. Since h(Q)(0) = 1, the matrix with g-weights on the diagonal is

equivalent to the identity matrix for the first iteration. Since only one iteration is

performed for φ(Q) with no constraints, this means that these two cases are also

equivalent. Hence, for φ(Q) with no constraints, all three cases of H(s) outlined in

Section 3.2.5 are equivalent.

Function φ(Q) with General Constraints In this case, the iterative method

(12) may not converge in one iteration. A projection algorithm is used to ensure

any g-weights gi (i = 1, . . . , n) that fall outside of the interval [li, ui] are projected

back to this interval. Informally, if gi < li, the weight is projected such that

gi = li; similarly, if gi > ui, it is projected such that gi = ui. The algorithm is

then updated to account for this projection and the calibration is continued. See

Section 3.3.4 for a full description of the algorithm. Note that in this case, the

Newton-Raphson and identity matrix are equivalent, since h′(Q)(x) = 1 for x ∈ R.

However, this method will now require more than one iteration, and so the matrix

with g-weights on the diagonal will be different to the other matrices from the

second iteration onwards.

Function φ(R) with Non-Negativity and General Constraints The com-

ments made in this section regarding H(s) for the function φ(R) apply in both

the cases of non-negativity constraints and general constraints. Observe that for
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Function g-weight Newton-Raphson (I), Identity (II)
constraints and Matrix with g-weights (III)

φ(Q) g ∈ (−∞,∞) (I) = (II) = (III)
φ(Q) g ∈ [li, ui] (I) = (II) 6= (III)
φ(R) g ∈ [0,∞) (I) = (III) 6= (II)
φ(R) g ∈ [li, ui] (I) = (III) 6= (II)
φ(L) g ∈ [li, ui] (I) 6= (II) 6= (III)

Table 1: Comparisons of the three forms of the matrix H(s) for various
calibration functions in different g-weight constraint cases

x ∈ [0,∞) the function h(R) and its derivative are identical, since h(R) is an

exponential function, we deduce that h′(R)(x) = h(R)(x) = exp(x). Hence, the

Newton-Raphson matrix and matrix with g-weights on the diagonal are equiva-

lent. However, since exp(x) 6= 1 for all x ∈ [0,∞), the identity matrix form of

H(s) will be different to the other matrices from the second iteration onwards (note

that, since exp(0) = 1, all the matrices will be equal to the identity matrix at the

first iteration). Due to the function definition, the non-negativity constraints are

automatically taken into account with function φ(R). However, for general con-

straints, a projection algorithm, similar to that for φ(Q) with general constraints,

is required (see Section 3.3.4).

Function φ(L) with General Constraints Observe that for the function φ(L),

the inverse function h(L)(x) is such that h′(L)(x) 6= h(L)(x) for all x ∈ [li, ui], hence

the Newton-Raphson matrix and matrix with g-weights on the diagonal are not

equivalent. Note also that h′(L)(x) and h(L)(x) are not equal to 1 for all x ∈ [li, ui],

hence the identity matrix form of H(s) will be different to the other two forms

from the second iteration onwards. Note that h′(L)(0) = h(L)(0) = 1, hence all

three matrices will be equivalent for the first iteration.

Table 1 summarises this section. The functions, the g-weight constraints, and the

relationships between the various forms of the matrix H(s) are given. Convergence

properties of (12) shall be considered for all forms of the matrixH(s) in Section 3.4.

However, before considering several examples, the algorithms for solving (11) using

the iterative procedure (12) shall be described.
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3.3 Algorithms

This section outlines several specific algorithms for solving the equation (11) using

the iterative procedure (12).

3.3.1 The Main Algorithms

In this section, two of the main algorithms for solving the calibration problem

(6) are described. Some alternative algorithms not presented in this chapter are

briefly described in Section 3.5.

Any specific algorithm of the form (12) will be characterized by the following:

• Choice of the function φ;

• Choice of the matrix H(s);

• Choice of the constraints on G additional to the main calibration constraint

A′G = T (that is, choice of L and U); and

• Choice of an appropriate stopping rule.

There are three main choices for the function φ as described in Section 3.1. There

are also three choices for the matrix H(s); see Section 3.2.5. The three choices of

the vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′ were outlined in Section 3.1.

The stopping rule used in all the algorithms described in this section is of the

following type: STOP if either A′G(s) = T to within a pre-specified accuracy or

the maximum number of iterations is met.

Two algorithms are considered that are used in many of the calibration software

packages (see Chapter 3.6 for further details of these packages):

• Algorithm 1 is applicable to the function φ(L) in the case of general con-

straints, and to function φ(R) in the case of non-negativity constraints.

• Algorithm 2 is applicable to the functions φ(Q) and φ(R) in the case of general

constraints.
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3.3.2 Algorithm 1: No Projections Needed

Input Matrix A, vector T , vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′, the

form of the matrix H(s), and the function φ (either φ(L) or φ(R)). For the function

φ(R), only the bounds li = 0 and ui = ∞ for all i = 1, . . . n can be used. For the

function φ(L), li ≥ 0 and ui < ∞ for all i = 1, . . . n.

Output The vector G(s+1) computed at the final iteration; this vector is the

(approximate) solution of the calibration problem (6) for the chosen function φ.

Algorithm 1

1. Set s = 0,Λ(0) = 0, G(0) = 1, and H(0) = In.

2. Compute Λ(s+1) = (λ
(s+1)
1 , . . . , λ

(s+1)
m )′ using (12).

3. Compute G(s+1) = (g
(s+1)
1 , . . . , g

(s+1)
n )′ by g

(s+1)
i = h(aiΛ

(s+1)).

4. Compute H(s+1) as outlined in Section 3.2.4 using one of the three forms of

H(s).

5. STOP if the stopping criterion is satisfied. Otherwise, set s → s + 1 and

return to 2.

Algorithm 1 is characterized by the following: an input matrix A, an input vector

T , the form of the matrix H(s), the function φ(L) or φ(R), the vectors L and U in

the case of function φ(L), and the constraints for gi used. This algorithm cannot be

used for φ(Q) (unless no constraints are imposed on gi, in which case the solution is

obtained in the first iteration, see Section 3.3.3). For the function φ(R), Algorithm

1 can only be used if the required constraint is the non-negativity constraint.

Remark Algorithm 1 cannot be used for φ(Q) unless there are no constraints

imposed on gi; in this case, the solution is obtained in the first iteration, see

Algorithm 1a below.

37



3.3.3 Algorithm 1a: Quadratic Function φ(Q) with No Constraints

This method is non-iterative and contains the following two steps only:

1. Compute Λ(1) from (12) using G(0) and H(0).

2. Compute G(1) = 1+ A′Λ(1).

For the functions φ(Q) and φ(R) with general constraints, Algorithm 2 described

below should be used.

3.3.4 Algorithm 2: Projections to the Additional Constraints Re-

quired

Input Matrix A, vector T , vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′ such

that 0 ≤ li < 1 < ui ≤ ∞ for all i = 1, . . . n, form of the matrix H(s), and function

φ (either φ(Q) or φ(R)).

Output The vector G(s+1) computed at the final iteration; this vector is the

(approximate) solution of the calibration problem (6) for the chosen function φ.

Algorithm 2

1. Set s = 0, n0 = n, Λ(0) = 0, G(0) = 1, H(0) = In, A
(0) = A, T (0) = T ,

L(0) = L, and U (0) = U .

2. Compute Λ(s+1) = (λ
(s+1)
1 , . . . , λ

(s+1)
m )′ by

Λ(s+1) = Λ(s) + ((A(s))′H(s)A(s))−1(T (s) − (A(s))′G(s)), (15)

which is the formula (12) with A = A(s) and T = T (s).

3. Use Algorithm 2’ below to compute n
s+1

, matrix A(s+1) of size n
s+1

× m,

vector T (s+1) of size m, and vectors L(s+1), U (s+1), and G(s+1) of size n
s+1

.
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4. Compute the matrix H(s+1) of size n
s+1

× n
s+1

as outlined in Section 3.2.4

with A=A(s+1) and n = n
s+1

. For s > 0, the matrix H(s) is computed as

outlined in Section 3.2.5 using one of the three forms of H(s). Here a
(s)
i

denote i-th rows of A(s) so that a
(s)
i = (ai1, . . . , aim), i = 1, . . . , n

s
.

5. STOP if the stopping criterion is satisfied. Otherwise, set s → s + 1 and

return to Step 2.

3.3.5 Algorithm 2’: Performing Step 3 in Algorithm 2

Input Matrix A(s) = (a
(s)
ik )i,k of size ns ×m, vector T (s) of size m, the vectors

L(s) = (l
(s)
1 , . . . , l

(s)
ns
)′ and U (s) = (u

(s)
1 , . . . , u

(s)
ns
)′ of size ns.

Output Integer n
s+1

≤ n
s
, matrix A(s+1) of size n

s+1
×m, vector T (s+1) of size

m, vectors G(s+1), L(s+1), and U (s+1) of size n
s+1

.

Algorithm 2’

1. Compute the vector G̃(s+1) = (g̃
(s+1)
1 , . . . , g̃

(s+1)
ns

)′ of size n
s
, where g̃

(s+1)
i =

h(a
(s)
i Λ(s+1)), i=1, . . . , n

s
.

2. If l
(s)
i ≤ g̃

(s+1)
i ≤ u

(s)
i for all i = 1, . . . , n

s
(i.e. all weights are within

the required bounds), then set n
s+1

= ns, A
(s+1) = A(s), G(s+1) = G̃(s+1),

T (s+1) = T (s), L(s+1) = L(s), and U (s+1) = U (s). Otherwise go to the next

step.

3. Define

γ
(s+1)
i =





g̃
(s+1)
i if l

(s)
i ≤ g̃

(s+1)
i ≤ u

(s)
i ;

l
(s)
i if g̃

(s+1)
i < l

(s)
i ;

u
(s)
i if g̃

(s+1)
i > u

(s)
i .

(16)

The map (16) produces a split of the set of indices Ω(s) = {1, 2, . . . , n
s
} into

three subsets: Ω
(s)
l , Ω

(s)
u , and Ω

(s)
m .

Define n
s+1

to be the number of times the equality γ
(s+1)
i = g̃

(s+1)
i is satis-

fied. Let Ω
(s)
m ={i1, i2, . . . , in

s+1
} be the ordered set of indices such that the
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equality γ
(s+1)
i = g̃

(s+1)
i holds for i = ij , j = 1, . . . , n

s+1
. The indices in Ω

(s)
m

are ordered so that ij < ij+1 for all j.

Similarly, Ω
(s)
l and Ω

(s)
u are defined as the ordered sets of indices such that

the inequalities g̃
(s+1)
i < l

(s)
i or g̃

(s+1)
i > u

(s)
i hold, respectively, for the indices

in Ω
(s)
l and Ω

(s)
u .

4. Define the matrix A(s+1) = (a
(s+1)
jk )j,k of size n

s+1
× m by a

(s+1)
jk = a

(s)
ijk

for

j=1, . . . , n
s+1

such that ij ∈ Ω
(s)
m . Similarly, compute the vectors G(s+1)=(g

(s+1)
j )j ,

L(s+1) = (l
(s+1)
j )j , and U (s+1) = (u

(s+1)
j )j of size n

s+1
as follows: g

(s+1)
j =

γ
(s+1)
ij

, l
(s+1)
j = l

(s)
ij
, and u

(s+1)
j =u

(s)
ij
, with the index j = 1, . . . , n

s+1
such that

ij ∈ Ω
(s)
m .

5. Let ñ
s
= n

s
−n

s+1
. Form Ω

(s)
l ∪Ω(s)

u = {i1, i2, . . . , iñs
}, the set of indices such

that either of the inequalities g̃
(s+1)
i < l

(s)
i or g̃

(s+1)
i > u

(s)
i hold for i = il,

l=1, . . . , ñ
s
.

6. Define matrix Ã(s+1) = (a
(s+1)
lk )l,k of size ñ

s
× m by a

(s+1)
lk = a

(s)
ilk

for l =

1, . . . , ñ
s
such that il ∈ Ω

(s)
l ∪ Ω

(s)
u . Similarly, compute vector G̃(s+1) =

(g
(s+1)
l )l of size ñs

as g
(s+1)
l = γ

(s+1)
il

for l = 1, . . . , ñ
s
such that il ∈ Ω

(s)
l ∪Ω(s)

u .

7. Compute T (s+1) = T (s) − (Ã(s+1))′G̃(s+1).

3.4 Examples

In this section, various examples are considered to explore the convergence proper-

ties of the algorithms described in Section 3.3. To begin, Algorithm 1 is considered

for function φ(L) with general constraints. It is show that, for this case, there are

three types of convergence. In the second example, properties of the calibrated

weights at subsequent iterations of Algorithms 1 and 2 are explored. The section

concludes by considering convergence properties of both Algorithms 1 and 2 for

all possible combination of functions with various choices of the matrix H(s).
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Example 1: Convergence Properties of Algorithm 1 for φ(L) with Gen-

eral Constraints

In this example, the behaviour of Algorithm 1 for the function φ(L) is explored.

There are three interesting cases to consider:

1. If the constraint A′G = T cannot be satisfied, then the algorithm does not

converge and gives bad or no results.

2. If the constraint A′G = T can be satisfied but some of the weights gi tend

to li or ui, then the algorithm gives slow or no convergence.

3. If A′G = T can be satisfied and all the weights gi remain well within the

bounds imposed by li and ui, then the algorithm converges quickly.

Each of these cases shall be illustrated using a small toy example. Take the vector

T = (6.4, 12.2)′ and l1 = l2 = l = 0.5. Algorithm 1 is used with the function φ(L)

and general constraints. Only the Newton-Raphson form of the matrix H(s) shall

be considered in this example. Set A = (a1, a2)
′ where a1 = (2, 6) and a2 = (3, 5).

The value of u1 = u2 = u shall be varied to illustrate each of the three cases

described above.

For comparison purposes, the convergence properties of Algorithm 2 for the func-

tion φ(Q) in the case of general constraints shall also be considered. However, for

Algorithm 2 using φ(Q) there are only two cases - convergence or no convergence.

Case 1 - Fast Convergence Begin by taking u = 2. After five iterations of

Algorithm 1, the vector A′G− T has both elements of order 10−8, thus after five

iterations the constraints have essentially been satisfied. The algorithm contin-

ues to improve in accuracy, and after 11 iterations of Algorithm 1, A′G − T has

infinitesimally small elements. The determinant of the final Jacobian matrix is

approximately 8.55. Since the g-weights do not approach l or u, there are no issues

with infinite values appearing in the Jacobian matrix (recall that the derivative of

φ(L) is infinite at l and u). For this case, the weights converge to G = (0.575, 1.75)′

very quickly. The weights for each iteration of Algorithm 1 are plotted in Fig-
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ure 2(a) (circle, line, black). Contrast this to the weights in Figure 2(b), where

Algorithm 2 for φ(Q) has converged after one iteration.
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(a) g-weights using Algorithm 1 for φ(L)
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(b) g-weights using Algorithm 2 for φ(Q)

Figure 2: Plot of g-weights for the first 5 iterations of Algorithm 1 for φ(L) and
Algorithm 2 for φ(Q) in different cases of convergence; convergence when u = 2

(black, circle, line), convergence when u = 1.75 (red, square, dash) and
convergence when u = 1.4 (blue, diamond, dot-dash)

Case 2 - Slow Convergence Now consider the value of u as 1.75, the value

to which the larger weight converged in Case 1. Re-running Algorithm 1 in this

case gives much slower convergence. After 5 iterations of Algorithm 1, the vector

A′G−T has elements -0.007 and -0.012. The determinant of the Jacobian matrix

is 0.319, which is much smaller than the corresponding value in Case 1. After

12 iterations of Algorithm 1, G = (0.575, 1.749)′. The elements of A′G − T are

of order 10−5, larger than the values of A′G − T after five iterations in Case 1.

The determinant of the Jacobian matrix after 12 iterations is 2.91 ×10−4. This

continues to decrease with subsequent iterations, reaching an infinitesimally small

value after 50 iterations. The algorithm continues to move slowly towards the

solution G = (0.575, 1.75)′; however, the algorithm fails to reach the upper bound

of 1.75, since reaching this upper bound would lead to an infinite value in the

Jacobian matrix (recall that the derivative of φ(L) is ∞ at u). The weights for

the first five iterations of Algorithm 1 are plotted in Figure 2(a) (square, dash,
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Case u No. of iter A′G− T
Fast convergence 2 5 10−8

Slow convergence 1.75 11 10−5

No convergence 1.4 3 (then stop) 1

Table 2: Convergence properties of Algorithm 1 for φ(L) in Example 1 for
various values of u with l = 0.575

red). Contrast this with the weights for Algorithm 2 with function φ(Q), plotted

in Figure 2(b), where once again the algorithm converges in one iteration.

Case 3 - No Convergence Finally, the value of u is taken to be 1.4. In this

case, the algorithm runs for three iterations. At the third iteration, the value of

the weights are G = (0.576, 1.400)′; however, the entries of A′G−T are -1.049 and

-1.746. Therefore, the calibration constraints are not satisfied. The determinant

of the Jacobian matrix after three iterations is 2.75 × 10−7. This small value

of the determinant, together with the upper weight virtually reaching the upper

bound of 1.4, causes the algorithm to fail when trying to invert the Jacobian

matrix. The matrix will have an infinitely large entry as well as an infinitesimally

small determinant, both of which cause the algorithm to fail. The trajectory

of the weights in this case is plotted in Figure 2(a) (diamond, dot-dash, blue).

Figure 2(b) shows the trajectory of the weights for Algorithm 2 with function

φ(Q), which also runs for three iterations but fails to converge. Observe that the

weights at the third iteration for Algorithm 2 with function φ(Q) are different to

those for the third iteration of Algorithm 1 with function φ(L). The algorithms are

behaving differently in an attempt to find a solution to the calibration problem

which, in this case, does not have a solution.

Table 2 summarizes the key points from this example. To conclude this example,

some brief remarks are given regarding Algorithms 1 and 2.

Multi-start Algorithms 1 and 2 were started for various Λ(0) in both Cases 1

and 2 above. For suitable choices of Λ(0) (in particular, such that h(aiΛ
(0)) gave

weights gi in the range li ≤ gi ≤ ui, i = 1, . . . , n), the algorithms converged to the
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same solution. The final g-weights gi (i = 1, . . . , n) and the Lagrange multipliers

Λ were the same in all cases (to within computer accuracy).

Derivatives The identities φ′(gi) = aiΛ and gi = h(aiΛ) were confirmed for the

final value of the Lagrange multipliers Λ and the calibrated weights gi given by

Algorithms 1 and 2. This suggests that the algorithms have converged to a (local)

minimum.

Example 2: Investigation of Calibrated Weights at Each Iteration of

Algorithms 1 and 2

In this example, the convergence properties of Algorithms 1 and 2 are further

explored by considering the calibrated weights at each iteration of the algorithms.

Data In this example, the Belgian municipalities dataset included in the ‘sam-

pling’ package in R is considered (see [61] for more details). The dataset provides

information about the Belgian population on July 1st 2004 compared with July

1st 2003, and includes financial information about the municipality incomes at the

end of 2001. Data is available for the 589 municipalities in Belgium. There are 17

variables in the dataset, including the municipality name and province number.

However, the 8 variables of interest in this example are the number of men on July

1st 2003, the number of women on July 1st 2003, the difference in the number of

men on July 1st 2003 and July 1st 2004, the difference in the number of women

on July 1st 2003 and July 1st 2004, total taxable income in Euros in 2001, total

taxation in Euros in 2001, average of the income-tax return in Euros in 2001 and

the median of the income-tax return in Euros in 2001.

A simple random sample of size 200 is taken and initial weights di=N/n assigned

where N is the size of the population and n is the sample size (in this example

N = 589 and n = 200). These would be the weights used in the Horvitz-Thompson

estimator [28]. The values of the 8 variables of interest for each of the 200 sample

members are used to form the 200 × 8 matrix X . The matrix A is formed using

the relationship aij = dixij . Using Algorithm 1, this sample is calibrated to the
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known totals for each of the 8 variables. These known totals are used to form the

8× 1 vector T . Take li = l = 0.73 and ui = u = 1.3 for i = 1, . . . , 200.

Calibrated Weights For this section, we use the following abbreviations:

• Method 1: Refers to the use of Algorithm 2 (and 2’) for the quadratic

function φ(Q) with general constraints.

• Method 2: Refers to the use of Algorithm 1 using the logit function φ(L)

with general constraints.

Figures 3 and 4 show histograms and the corresponding density plots of the

weights at iteration 1 (see Figures 3(a) and 4(a)), iteration 5 (see Figure 3(b)

and 4(b)), and the final iteration (see Figure 3(c) and 4(c)) using methods 1 and

2, respectively. The values of ||A′G− T ||F and φ(Q) at that iteration are included

below the plots.

After the first iteration, most of the g-weights stay close to their initial value

of 1. Figure 3(a) shows a uni-modal distribution of the g-weights after the first

iteration with the mode approximately 1. However, for the there are small peaks

at both ends of the histogram. This is due to some of the calibrated weights being

projected to the bounds by Algorithm 2’. By contrast, the are fewer weights at

the bounds in Figure 4(a), since this method automatically takes the bounds into

account.

For both methods, as the number of iterations increases, more weights are pro-

jected to the bounds of l = li = 0.73 or u = ui = 1.3 (for i = 1, . . . , n), leading

to a bi-modal distribution with modes at l and u. After the first iteration, there

are approximately 5% of the weights at each bound; however, there are over 30%

of the weights at each bound by the final iteration. As the number of iterations

increases, there are fewer weights between l and u. Observe that the value of

||A′G − T ||F decreases over subsequent iterations whilst the value of φ(Q)/φ(L)

increases.

In Figure 5(a), the weights using methods 1 and 2 are plotted and ordered by size.

The red curve in Figure 5(a) corresponds to the weights (ordered by size) obtained
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Figure 3: Histogram (red) and density plot (blue line) of g-weights for the
quadratic function φ(Q) at iterations 1, 5, and 8 with the values of ||A′G− T ||F

and φ(Q) at that iteration
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Figure 4: Histogram (red) and density plot (blue line) of g-weights for the logit
function φ(L) at iterations 1, 5, and 9 with the values of ||A′G− T ||F and φ(L) at

that iteration

using method 1, whilst the blue curve corresponds to the weights (ordered by size)

obtained using method 2. Observe the red horizontal lines at l = 0.73 and u = 1.3.

These show the weights that have been projected to the bounds. In contrast, the

blue curve in has these horizontal lines as asymptotes (recall that method 2 cannot

give weights at the bounds).

Figure 5(b) shows a scatter-plot of the calibrated weights for method 1 against

the calibrated weights for method 2. These correspond to the weights given in

Figures 3(c) and 4(c), respectively. Observe that there is a cluster of points that

are horizontal in the upper right and lower left of the plot. This shows the weights
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φ(L) (blue) against 1 (black)
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(b) Scatter-plot of g-weights for φ(Q)

against g-weights for φ(L)

Figure 5: Investigating g-weights for the quadratic and logit functions in the
case of general constraints

that were projected to the bounds for the quadratic function φ(Q), but were not

able to reach these bounds when the logit function φ(L) was used.

To further investigate how the algorithms perform, the behaviour of the calibrated

weights between subsequent iterations of the algorithms shall be investigated.

Note that the scatter-plots of g-weights from the first iteration against the initial

g-weights would give a vertical line of points at 1 on the horizontal axis. This is

due to the fact that G(0) = 1.

Figures 6 and 7 show scatter plots of the weights methods 1 and 2 at the ith

iteration against the weights obtained at the (i − 1)th iteration for i = 2, i = 6

and i = 8/i = 9 (method 1/2 respectively) (note that 0th iteration here refers to

the initial weights). Observe the horizontal lines in Figures 6(a) and 6(b). These

correspond to weights that were projected to the boundary values of l and u at

the i-th iteration, which were not at the bounds at the (i− 1)-th iteration. There

are many of these weights in Figure 6(a), with fewer in Figure 6(b), and none in

Figure 6(c). During the final iteration, there are few changes in the weights, as

the algorithm has almost converged to the true solution.

Unlike the scatter-plots in Figure 6, the scatter-plots in Figure 7 do not have

horizontal lines of weights. Instead, the arrangement of points resembles an
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tion against the 7th iteration

Figure 6: Scatter-plot of weights for the quadratic function φ(Q) at the ith
iteration compared with the (i− 1)-th iteration (i = 2, 6, 8)
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Figure 7: Scatter-plot of weights for the logit function φ(L) at the ith iteration
compared with the (i− 1)-th iteration (i = 2, 6, 9)

‘elongated-S’ (see Figures 7(a) and 7(b)). This curvature of the points shows

the weights that have moved nearer the bounds than in the previous iteration.

However, these weights have not reached the boundary due to the infinite deriva-

tives of the function φ(L) at l and u. There is little change in the calibrated weights

as the algorithm nears convergence as shown in Figure 6(c) where almost all of

the points lie on the main diagonal.

Figures 8(a) and 8(b) show the empirical cumulative distribution function for

the weights in Figures 3(c) and 4(c) respectively; these are the weights at the

final iteration using methods 1 and 2 respectively. Note that in Figure 3(c) the

distribution is discontinuous at the lower and upper bounds of l = 0.73 and
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u = 1.3, respectively. This is because many of the weights using Method 1 have

been projected to the bounds. In Figure 4(c), there is a continuous distribution

from l to u, with the distribution curve becoming steeper near the bounds of l and

u. This plot further shows that, in the case of the logit function, the weights are

tending to but cannot reach the bounds (due to the infinite value of the derivative

of the function at the bounds).
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Algorithm 2
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Figure 8: Empirical cumulative distribution function (ECDF) of the g-weights
for functions φ(Q) and φ(L)

Comparison of Calibrated Weights when Projected to the Lower and

Upper Bounds The calibrated weights obtained using the logit function φ(L)

often tend towards, but cannot reach, the lower and upper bounds. This is in con-

trast to the weights obtained using Algorithm 2 for φ(Q) with general constraints

where the algorithm may lead to g-weights that do not satisfy the constraints

L ≤ G ≤ U . In this case, Algorithm 2’ is used to project any weights back to the

nearest bound, before adjusting the remaining weights to satisfy the constraint

A′G = T .

Now consider a similar procedure for the logit function φ(L). In this case, the

effect of projecting some of the calibrated weights to the lower bound l and the

upper bound u shall be explored. The dataset is then re-calibrated using only

the weights that have not been projected. This is continued until the constraint
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A′G = T is satisfied (as in Algorithm 2’). In Table 3, the function value φ(L), the

Frobenius norm of the distance from constraints ||A′G− T ||F , and the coefficient

of variation (CoV) of calibrated weights in various cases of projection are given.

Note that the coefficient of variation (CoV) of the calibrated weights is related to

variance of the corresponding calibration estimators. This is described by Kish in

[31].

Projection φ(L)(G) ||A′G− T ||F CoV
No projection 91.74 3.04× 10−19 50.74
The 45 largest and 45 smallest
weights

92.43 1.04× 10−17 50.50

Weights within 0.05 of l and u 92.94 4.73× 10−19 50.38
The lower and upper 25% of
the weights

92.69 9.75× 10−17 50.67

Weights below l/0.975 and
above 0.975u

92.04 6.11× 10−12 50.62

Table 3: Values of objective function φ(L), Frobenius distance from constraints
||A′G− T ||F and coefficient of variation (CoV) for various cases of projections of

weights to the lower and upper bounds

From Table 3, observe that the value of the objective function φ(L) has increased

in all cases of projections. Since the function φ(L) has infinite derivative at l and u,

the function increases sharply near the bounds. Hence, any projection of weights

is likely to increase the value of the objective function. However, the coefficient

of variation of the weights is smaller when projections are used than in the case

of no projection. As the projection moves the projected weights to the bounds,

the remaining weights that are re-calibrated move nearer to 1 to account for this

adjustment. This leads to a reduced variance and hence reduced coefficient of

variation of the weights.

Estimating the Total Number of People Whilst the g-weights play an im-

portant role in the calibration problem, the main use of these weights is to estimate

some quantity of interest. The properties of this estimator are often more interest-

ing to practitioners than the properties of the weights themselves. The calibrated

weights shall be used to estimate the number of people living in Belgium in 2004.

This is done by taking 10,000 random samples from the Belgian municipalities

dataset. Three methods shall be considered:
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• Method 1: The Horvitz-Thompson estimator Y ′D;

• Method 2: The calibration estimator Y ′W for the calibrated weights W

using Algorithm 2 with the quadratic function φ(Q) in the case of general

constraints; and

• Method 3: The calibration estimator Y ′W for the calibrated weightsW using

Algorithm 1 with the logit function φ(L) in the case of general constraints.

For each estimator, properties of the estimates when taking simple random sam-

ples of size 75, 100, and 200 shall be considered.

Figures 9, 10 and 11 show the distribution of the estimates for the true value of

10417122 when using methods 1, 2 and 3 described above, respectively. Sample

sizes n = 75, n = 100 and n = 200 are considered for each method. As expected,

the distribution of the estimators has a smaller variance as the sample size is

increased.

The distribution of estimates using the Horvitz-Thompson estimator is skewed

to the left, with the mode of the distribution to the left of the true value. This

skewness reduces as the sample size increases. The range of the estimates for

the second and third methods is approximately 170 times smaller than the range

of the estimates using the Horvitz-Thompson estimator. The distribution of the

estimates in this case is less skewed than for the Horvitz-Thompson estimator,

with the mode of the estimates close to the true value in all cases. This illustrates

a key finding that, in general, calibration estimators give more reliable estimates

in both the sense of being less variable and less skewed.

From the estimates in Figures 9, 10 and 11, the mean, bias, median, variance,

and MSE of the estimates are computed. These values are given in Tables 4, 5

and 6 respectively. Surprisingly for the HT estimates, the bias is smallest when

using the smallest sample size. However, the variance and MSE of the estimates

in all cases decrease as the sample size increases, as expected. The variances,

biases and MSE are smaller for the calibration estimators compared with the HT

estimator. This illustrates the use of calibration as a method for reducing the

sample variance of estimates.
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Figure 9: Estimates of the Belgian population in 2004 from 10,000 random
samples of size 75, 100, and 200 using the Horvitz-Thompson estimator
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Figure 10: Estimates of the Belgian population in 2004 from 10,000 random
samples of size 75, 100, and 200 using the quadratic function φ(Q)
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Figure 11: Estimates of the Belgian population in 2004 from 10,000 random
samples of size 75, 100, and 200 using the logit function φ(L)
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Furthermore, the median of the weights moves closer to the true value as the

sample size increases in all cases. However, for methods 2 and 3 the values of the

median are closer to the true value than for the corresponding estimates obtained

using the HT estimator. This illustrates how calibration can lead to more reliable

estimates.

Note that the values for the mean, bias, median, variance, and MSE are very

similar to the values obtained using the estimates for the quadratic function φ(Q).

This agrees with the assertion in [19] that, under certain regularity conditions,

the calibration estimators are asymptotically equivalent independent of the chosen

penalty function.

Horvitz-Thompson n = 75 n = 100 n = 200
Mean 10425081 10439499 10437165
Bias 7959 22377 20043
Median 10146880 10236770 10355954
Variance 3.10475 ×1012 2.21299 ×1012 9.38258 ×1011

MSE 3.10481 ×1012 2.21349 ×1012 9.38660 ×1011

Table 4: Summary of estimates for the Belgian population in 2004 from 10,000
random samples of size 75, 100, and 200 using the Horvitz-Thompson estimator

φ(Q) n = 75 n = 100 n = 200
Mean 10414658 10414928 10415853
Bias -2464 -2194 -1269
Median 10414893 10415008 10415837
Variance 8.14258× 107 5.83535× 107 2.38957× 107

MSE 8.74984× 107 6.31651× 107 2.55059× 107

Table 5: Summary of estimates for the Belgian population in 2004 from 10,000
random samples of size 75, 100, and 200 using the quadratic function φ(Q)

φ(L) n = 75 n = 100 n = 200
Mean 10414669 10414918 10415888
Bias -2453 -2204 -1234
Median 10415042 10414850 10415894
Variance 8.27775 ×107 5.93664 ×107 2.40143 ×107

MSE 8.87961 ×107 6.42240 ×107 2.55367 ×107

Table 6: Summary of estimates for the Belgian population in 2004 using 10,000
random samples of size 75, 100, and 200 for the logit function φ(L)

These results have highlighted that the Horvitz-Thompson estimator gives esti-

mates with larger variance than the estimates obtained from calibration. This
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supports the motivation for calibration described in Section 1.2 that the use of

calibration can lead to a reduction in the sampling variance of the estimates. In

this example, the range of the Horvitz-Thompson estimates was approximately

170 times larger than the range of the calibrated estimates. The calibrated esti-

mates generally perform better for estimating the true value than the estimates

using the Horvitz-Thompson estimator (despite the Horvitz-Thompson estimator

being unbiased, see [28]). However, in this example, the choice of the penalty

function had little effect on the properties of the resulting estimates.

Example 3: Convergence Properties of Algorithms 1 and 2 for Various

Choices of H(s)

The Labour Force Survey (LFS) is arguably one of the most important social

surveys conducted by the Office for National Statistics (ONS). It is a household

survey, where participants are asked about labour force characteristics and related

topics. One labour force characteristic of interest is employment status, since

this key information is used to calculate estimates of the UK employment and

unemployment rate, statistics that are of interest to government, businesses, and

even the general public.

Since 1992, the LFS has been carried out quarterly. Each selected household re-

mains part of the sample for five consecutive quarters. This means one fifth of the

sample needs to be replaced every quarter. The original purpose of the survey was

to investigate characteristics for cross-sectional data. However, since households

are retained in the survey for five consecutive quarters, it was recognised that the

LFS could also be used to investigate characteristic changes of individuals across

quarters. Sample members who respond in all five consecutive quarters can be

linked and combined to give the so-called five-quarterly longitudinal LFS datasets.

The quarterly LFS began, in its current form, during the Spring of 1992. How-

ever, the rotating panel design of the sample (i.e., retaining households for five

consecutive quarters and updating a fifth of the sample each quarter) was not es-

tablished until Spring 1993, with the first five-quarterly LFS dataset considering

households over the five-quarter period from Spring 1993 to Spring 1994. Every
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quarter, a new five-quarterly LFS dataset is produced as another cross-sectional

dataset becomes available.

However, combining five consecutive quarters’ worth of cross-sectional datasets,

and including only those sample members who responded in all five quarters, can

lead to methodological issues and result in a sample that is unrepresentative of

the true population. These issues can be classified by two main problems: firstly,

this linking of the five datasets can result in bias due to non-response and attrition

of the sample; secondly, there is the issue of bias that can occur due to response

errors, since these can have a major effect on the estimates of changes in the

characteristics of interest. See [58] for details of existing methodologies to deal

with these issues.

The primary purpose of the longitudinal datasets is to produce estimates of flows,

i.e. changes in characteristics over the five-quarterly period. In particular, the

labour force flows are of particular interest, since these show patterns of people

moving between states of employment, unemployment, and inactive as well as

highlighting changes in the numbers of those who are of working age. For the five-

quarterly LFS datasets, the flow characteristics can be considered as measuring

the change in characteristics over a 12-month period.

As the dataset in consideration is used for forming estimates related to the working

age population, that is, all males and females who are aged 16-69, only sample

members who responded to all five waves of the LFS who were aged between 15

and 69 at wave 1 are included.

In this example, the five-quarterly longitudinal dataset for the five quarters from

April 2012 to June 2013 is considered (see [42]). The working age population is

estimated to be 44,443,746 from census data. There are 4538 sample members in

the dataset. For each of these sample members, calibration is performed on 61

constraints. These constraints include satisfying known population totals in 28

age-sex categories, 18 region groups, and ensuring that the estimate of numbers

of people in the three employment statuses (employed, unemployed, and inactive)

matches each of the totals for each of the five quarters used to form the dataset.
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Therefore, for this dataset, the values of n (sample size) and m (number of con-

straints) are n = 4538 and m = 61. The main purpose of the calibration here

is consistency between the estimates of the population totals for each of the 61

constraints and their known totals. However, calibration can also help to deal

with biases arising from non-response and sample design (see, for example, [37]).

Forming estimates of changes in employment status forms an important part of

government policy, since the statistics produced highlight how employment has

changed over the 12-month period. The estimates also show the numbers of those

moving into and out of working age, which forms a key basis for government policy

on pensions and retirement age.

To obtain estimates of the changes in employment status, calibration is used

to assign an appropriate weight to each sample member. Extreme weights are

undesirable here, since that could lead to certain flow rates being over-estimated

if certain sample members dominate. Much time is spent in designing the survey

and sampling scheme to ensure that the sample is as representative as possible

of the true population. Allowing weights to move close to 0 means that the

corresponding sample member’s contribution to the survey is removed. It would,

effectively, have not been worth the cost of interviewing them and observing their

characteristics, since they contribute very little to the subsequent estimates. This

argument can also be applied to negative weights.

Therefore, taking all of this into account, the aim is to estimate employment flows

such that

1. There is a close match between the sample estimates and known population

totals;

2. There are non-extreme weights, i.e. not too large so that sample mem-

bers dominate, and not too small or negative so that sample members are

effectively unimportant to the estimates; and

3. The estimate of the flows is reliable, in a sense that to be defined later.
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To begin, all possible combinations of algorithms and functions that have been

introduced throughout this chapter shall be considered. This gives the following

five cases:

1. Algorithm 1a for function φ(Q) with no constraints;

2. Algorithm 1 for function φ(R) with non-negativity constraints;

3. Algorithm 2 (and 2’) for function φ(Q) with general constraints;

4. Algorithm 2 (and 2’) for function φ(R) with general constraints; and

5. Algorithm 1 for function φ(L) for general constraints.

For this example, general constraints are taken to be li=0.5 and ui=2.4 for all

i = 1, . . . , n.

In Tables 7, 8 and 9 convergence of the algorithms is considered in all five cases

listed above when using the Newton-Raphson, g-weights and identity matrix forms

of H(s) respectively. The number of iterations (Iter), the minimum and maximum

values of the g-weights obtained, as well as the mean, standard deviation (SD), co-

efficient of variation (CoV), skewness (Skew.), and kurtosis (Kurt.) of the weights

are given. The 1st-percentile (1st %), the median (med), and the 99th-percentile

(99th %) of the weights are also given in each case.

φ Constr. Iter Min Max Mean SD CoV 1st-% Med. 99th-%

φ(Q) No 1 -0.087 3.173 0.989 0.491 49.629 0.213 0.910 2.428
φ(R) Nonneg 4 0.305 4.849 0.990 0.499 50.479 0.419 0.892 2.572
φ(Q) Gen. 5 0.500 2.400 0.990 0.498 50.329 0.500 0.887 2.400
φ(R) Gen. No convergence
φ(L) Gen. 6 0.502 2.399 0.990 0.505 50.981 0.509 0.837 2.367

Table 7: Table comparing convergence properties of the calibrated g-weights
using the Newton-Raphson version of H(s)

Observe that there are negative g-weights for the function φ(Q) with no constraints.

There were 6 negative weights in this case. This is undesirable since sample mem-

bers should not be under-represented in the estimates. Use of the raking function

with non-negativity constraints has resulted in g-weights as large as 4.85. This is

undesirable since individual sample members should not dominate the estimates.
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φ Constr. Iter Min Max Mean SD CoV 1st % Med. 99th-%

φ(Q) No 1 -0.087 3.173 0.989 0.491 49.629 0.213 0.910 2.428
φ(R) Nonneg 4 0.305 4.849 0.990 0.499 50.479 0.419 0.892 2.572
φ(Q) Gen. 15 0.500 2.400 0.989 0.4983 50.329 0.500 0.887 2.400
φ(R) Gen. No convergence
φ(L) Gen. 75 0.502 2.399 0.990 0.505 50.979 0.509 0.837 2.367

Table 8: Table comparing convergence properties of the calibrated g-weights
using the g-weights version of H(s)

φ Constr. Iter Min Max Mean SD CoV 1st % Med. 99th-%

φ(Q) No 1 -0.087 3.173 0.989 0.491 49.629 0.213 0.909 2.428
φ(R) Nonneg No convergence
φ(Q) Gen. 5 0.500 2.400 0.990 0.498 50.329 0.500 0.887 2.400
φ(R) Gen. No convergence
φ(L) Gen. 55 0.502 2.399 0.990 0.505 50.978 0.509 0.837 2.367

Table 9: Table comparing convergence properties of the calibrated g-weights
using the identity matrix version of H(s)

Observe that Algorithm 2 for φ(R) with general constraints failed to converge (af-

ter running the algorithm for 100,000 iterations). The general constraints li = 0.3

and ui = 4 were required so that Algorithm 2 converged in this case. In practice,

the general constraints for the raking function need to be less ‘severe’ than for

the quadratic or raking functions, in the sense of a smaller lower bound and/or a

larger upper bound. This is due to the nature of the derivative of φ(R) (as plotted

in Figure 1(b)). The resulting h-function is such that its domain is smaller than

for the quadratic and logit functions, despite having the same range.

There are several weights at the bounds in the case of the quadratic function, since

the minimum and 1st-percentiles, and maximum and 99th-percentile are equal to

the lower and upper bounds, respectively. In contrast, the minimum value of the

g-weights for the logit function is greater than the lower bound, and the maximum

g-weight is less than the upper bound.

Observe that the cases of the quadratic function with no constraints and the raking

function with non-negative constraints lead to the same results as in Table 7.

However, convergence for both the quadratic and logit functions with general

constraints took more iterations than in the case of the Newton-Raphson form
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of H(s). The algorithm has converged to the same place and the solutions are

virtually identical in both cases.

In this case, the quadratic function with no constraints gives the same results as in

Table 7 and Table 8. The quadratic function with general constraints converged

in the same number of iterations as for the Newton-Raphson method considered

in Table 7, since the matrices H(s) are equivalent in both cases. However, the

algorithm failed to converge for the raking function in both the non-negativity and

general constraint cases. The logit function with general constraints took longer

to converge than for the Newton-Raphson form of the matrix H(s) considered in

Table 7; however, using the identity matrix form of H(s) took fewer iterations to

converge than for the g-weights form of H(s) considered in Table 8.

For a general discussion on measuring numerical complexity of an optimization

problem see [38, 68, 69]. For a discussion on choosing test functions for optimiza-

tion problems see [67].

In Figure 12, a box-plot of the calibrated weights considered in Table 7 is pre-

sented. The calibrated weights for the quadratic and logit functions using the

general constraints li = 0.3 and ui = 3 are also included (the raking function with

general constraints failed to converge in this case).

In Figure 13, histograms of the weights obtained using Algorithm 2 for function

φ(Q) (Figure 13(a)) and Algorithm 1 for function φ(L) (Figure 13(b)) in the case

of the general constraints li = 0.5 and ui = 2.4 are plotted. These correspond to

cases 5 and 3, respectively, in Figure 12. From Figure 13(a), observe that many

of the weights have been projected to the boundaries. In contrast, Figure 13(b)

shows that many g-weights approach, but do not reach, the bounds. This supports

our comments from Example 2 in Section 3.4.

In Figure 14, histograms of the weights using Algorithm 2 for function φ(Q) (Fig-

ure 14(a)) and Algorithm 1 for function φ(L) (Figure 14(b)), both in the case of

the general constraints li = 0.3 and ui = 3 are plotted. These correspond to cases

6 and 4, respectively, in Figure 12. The histogram in Figure 14(b) shows that

there are fewer weights with values at the lower and upper bounds. Contrast this
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Figure 12: Box-plot of g-weights for: 1. φ(Q) with no constraints, 2. φ(R) with
non-negativity constraints, 3. φ(L) with general constraints (l = 0.5 and

u = 2.4), 4. φ(L) with general constraints (l = 0.3 and u = 3), 5. φ(Q) with
general constraints (l = 0.5 and u = 2.4), and 6. φ(Q) with general constraints

(l = 0.3 and u = 3)

to Figure 14(a), where the histogram shows that there are many weights with

values at the lower and upper bounds.

For the histograms in Figure 13, most of the weights are at or near the boundaries,

with few weights in between. However, as the difference between the bounds is

increased, fewer weights move towards these bounds. The resulting distribution

is uni-modal or bi-modal depending on the nature of the imposed bounds.

This example can be summarised as follows:

Algorithm 1a for function φ(Q) with no constraints All three forms of H(s)

are equivalent and the algorithm gives the same solution.

Algorithm 1 for function φ(R) with non-negativity constraints The Newton-

Raphson and g-weights form of the matrix H(s) are the same and the algorithms
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Figure 13: Histogram (orange) and density plot (blue line) of the calibrated
weights for the truncated quadratic function φ(Q) and the logit function φ(L) for

the general constraints li = 0.5 and ui = 2.4
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Figure 14: Histogram (orange) and density plot (blue line) of the calibrated
weights for the truncated quadratic function φ(Q) and the logit function φ(L) for

the general constraints li = 0.3 and ui = 3

converge to the same solution in the same number of iterations for both cases.

However, the algorithms failed to converge in the case of the identity matrix.
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Algorithm 2 (and 2’) for function φ(Q) with general constraints The

algorithm converged in the fewest iterations in the case of the Newton-Raphson

and identity forms of H(s). The algorithm converged to the same solution using

the g-weights form of H(s), but took more iterations to converge.

Algorithm 2 (and 2’) for function φ(R) with general constraints There

was no convergence for any case of H(s). This is likely to be due to the general

constraints being too restrictive for this choice of function.

Algorithm 1 for function φ(L) for general constraints Converged in the

fewest iterations for the Newton-Raphson version of H(s). The identity matrix

version of H(s) was the second fastest in terms of the number of iterations, with

the g-weights version of H(s) requiring the most iterations to converge.

A major criticism of Algorithm 2 is that, following the projections of the weights

using Algorithm 2’, the vector Λ is not updated to reflect this projection. There-

fore, the same vector Λ is used before and after the projections. It is not pos-

sible to determine a suitable vector Λ for the updated weights G. Recall that

gi = h(aiΛ), for i = 1, . . . , n. This creates n equations in m unknowns (namely

λ1, . . . , λm). Recall that a system of linear equations with more equations than

unknowns (usually) has no solution, since the system is overdetermined (see for

example [41]).

3.5 Other Algorithms

Whilst the algorithms that are arguably most commonly used in the calibration

software have been considered in this section, there are several algorithms that

have not been considered. A brief summary of some of these methods is presented

in this section.

Scale Modified Quadratic The scale modified quadratic algorithm uses pro-

jections to satisfy the calibration constraints A′G = T at each iteration, continuing
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until the range restrictions L ≤ G ≤ U are met to within a pre-specified accuracy.

The algorithm is applied only in the case of function φ(Q) with general constraints.

This algorithm is attributed to [29]. The method is outlined in [56] (see Method

3) with further information in Section 2.2 of [46]. This algorithm is used in the

calibration software BASCULA (see Section 3.6.2 for further information).

Shrinkage Minimization Method The shrinkage minimization method uses a

similar algorithm to the scaled modified quadratic algorithm, but is not considered

here as it is not used by any of the packages considered in this chapter. See

Method 4 of Singh and Mohl [56] and Section 2.4 of Rao and Singh [46] for more

information on the shrinkage minimization method.

Projection Method Algorithm This algorithm uses a method attributed to

Han [26] with details outlined by Estevao in [21]. The algorithm is only used for

the case of the quadratic function φ(Q) with general constraints.

Suppose l and u are given. Choose parameters α and β such that 0 ≤ α, β ≤ 1

and set l′ = αl + 1 − α, u′ = αu + 1 − α. Set H(s) = diag(q
(s)
k ), k = 1, . . . , n.

Define the following n-vectors:

1. ξ(s) with entries ξ
(s)
k =




(g

(s)
k − 1)/(l′ − 1) if g

(s)
k ≤ 1;

(g
(s)
k − 1)/(u′ − 1) otherwise.

2. Q(s) with entries q
(s)
k =






1 if ξ
(s)
k < 1/2;

1− β(ξ
(s)
k − 1/2)2 if 1/2 ≤ ξ

(s)
k < 1;

(1− β/4)/ξ
(s)
k if ξ

(s)
k ≥ 1.

Note that

Q(0) = 1.

3. Q[s+1] with entries q
[s+1]
k = q

[s]
k q

(s+1)
k .

For s = 0, 1, 2, . . ..

1. Compute G(s+1) = 1 +Q[s]A(A′H(s)A)(T − A′1);

2. Repeat until RRs are satisfied or maximum number of iterations met.
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This algorithm is used in Statistics Canada’s GES software (see Section 3.6.2 for

further details).

The algorithms presented in this section generally give the same results as the

other algorithms presented in the previous sections. Investigation with the pro-

jection method algorithm gave results that were always identical to those for

Algorithms 2 and 2’ when using the quadratic function with general constraints.

Authors such as Nieuwenbroek and Boonstra [40] have made comparisons be-

tween the methods presented in this section and the more standard calibration

algorithms outlined earlier. In general, their findings showed that the algorithms

lead to the same solutions. We shall therefore not give any further consideration

to the algorithms described in this section.

3.6 Calibration Software

Calibration is a task performed on a day-to-day basis in statistical offices through-

out the world. To perform the calibration, standard software packages are typi-

cally used. The purpose of this chapter is to provide a critical analysis of some of

the most famous packages. The software used is arguably outdated, and the opti-

mization algorithms used are often unreliable. In this chapter, only algorithms for

hard calibration are considered, which is the main case in practice, but the dis-

cussion can be easily extended to soft calibration. Algorithms for soft calibration

shall be described further in Chapter 5.

In the next section, a critical analysis of the various software packages that perform

calibration, along with the algorithms and calibration functions they implement,

is given.

3.6.1 Summary of the Calibration Packages

Table 10 gives a summary of some of the packages that implement the calibration

algorithms presented in this chapter. In the table below, the three functions φ

presented in Section 3.1 are referred to, namely the quadratic function φ(Q), the
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Package Program Functions Constraints Matrix H

CALIB R φ(Q) (a) and (c) Identity Matrix

(sampling) φ(R) (b) g-weights Matrix

φ(L) (c) g-weights Matrix

CALIBRATE R φ(Q) (a) and (c) Newton-Raphson

(survey) φ(R) (b) and (c) Newton-Raphson

φ(L) (c) Newton-Raphson

ReGenesees R φ(Q) (a) and (c) Newton-Raphson

φ(R) (b) Newton-Raphson

φ(L) (c) Newton-Raphson

CALMAR SAS φ(Q) (a) and (c) Newton-Raphson

CALMAR 2 φ(R) (b) Newton-Raphson

φ(L) (c) Newton-Raphson

g-CALIB-S SPSS φ(Q) (a) and (c) Newton-Raphson

φ(R) (b) Newton-Raphson

φ(L) (c) Newton-Raphson

GES SAS φ(Q) (a) and (c) Projection Method Algorithm

BASCULA Blaise φ(Q) (a) and (c) Scale Modified Quadratic

Table 10: Summary of the main calibration packages and the algorithms they
implement

raking function φ(R), and the logit function φ(L). For the various functions, the

packages implement the different cases of the g-weight constraints outlined in

Section 2.4. In Table 10, each of the constraint cases indicated by the letters

(a), (b), and (c) correspond to the labels used in the list given in Section 2.4.

The case (a) refers to no constraints, case (b) refers to non-negativity constraints,

and case (c) refers to general constraints. Three versions of the matrix H(s) as

introduced in Section 3.2.5 are also referred to. Recall that the three versions are

the Newton-Raphson matrix, identity matrix, and matrix with g-weights on the

diagonal (g-weights matrix).

3.6.2 Details of the Calibration Packages

This section expands on the information presented in Table 10 of Section 3.6.1. All

packages give the option to use Algorithm 1a (see Section 3.3.3) for the quadratic

function with no constraints. An overview of each of the programs and the algo-

rithms they implement is given.
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Calib This is a function that is part of the ‘sampling’ package [61] in R. It uses

Algorithm 1 for the functions φ(L) and φ(R), and Algorithm 2 (and 2’) for the

function φ(Q). The algorithm uses the g-weights form of H(s) for the logit and

raking functions and the identity matrix form of H(s) in the case of the quadratic

function.

Calibrate This is an R function contained within the ‘survey’ package [36].

The package has the options to use Algorithm 1 for the functions φ(L) and φ(R)

in the case of general constraints and non-negativity constraints, respectively,

and Algorithm 2 (and 2’) for the functions φ(Q) and φ(R) in the case of general

constraints. The Newton-Raphson form of H(s) is implemented in all cases. There

is the option for the user to input his/her own calibration functions; however, this

requires stating the function h, i.e. the inverse of the derivative of the function φ.

ReGenesees This is an R package [65] developed by the Italian Statistical Of-

fice, ISTAT, that implements the function ecalibrate. The user may choose from

the quadratic, raking, and logit functions. Algorithm 1 is performed for functions

φ(L) and φ(R) in the case of general constraints and non-negativity constraints,

respectively, whilst Algorithms 2 (and 2’) are used for the quadratic and raking

functions φ(Q) and φ(L) with general constraints. The Newton-Raphson form of

the matrix H(s) is implemented for all functions.

CALMAR The software CALMAR (CALibration of MARgins) is used by the

Office for National Statistics in the UK, the Central Statistical Office in Ireland

and many other statistical offices throughout the world. The package was devel-

oped by Sautory [53] at the French National Institute for Statistics and Economic

Studies (INSEE). The software uses a SAS Macro [54] to perform Algorithm 1

for functions φ(L) and φ(R) in the case of general constraints and non-negativity

constraints, respectively, as well as Algorithms 2 (and 2’) for function φ(Q) with

general constraints. The Newton-Raphson form of H(s) is used for all functions.
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CALMAR2 This is a modified version of the SAS macro CALMAR introduced

above. Sautory [33] enhanced several aspects of the original CALMAR code,

allowing the user to perform simultaneous calibration at different levels of a survey,

and use generalized calibration adjustment for total non-response (see [55] for

further information). CALMAR2 also includes a new function referred to as

the hyperbolic sine function. It is not widely used in practice, and so has not

been discussed in this chapter. CALMAR2 is used at INSEE, as well as several

other statistical offices worldwide. With the exception of the new hyperbolic sine

function (which is not discussed here), the functions and algorithms implemented

are as described for CALMAR.

g-CALIB-S This is an SPSS package developed at Statistics Belgium. The

package is very similar to CALMAR, in that Algorithm 1 may be used for func-

tions φ(L) and φ(R) in the case of general constraints and non-negativity con-

straints, respectively, as well as Algorithms 2 (and 2’) for function φ(Q) with

general constraints. The Newton-Raphson form of H(s) is used for all functions.

This package is well documented in [62].

GES The Generalized Estimation Software (GES) was developed by Statis-

tics Canada, and uses a projection method algorithm (see Section 3.5) for the

quadratic function φ(Q) with general constraints (see [22] for a more detailed dis-

cussion). The package is used by the Office for National Statistics (ONS) in the

analysis of quarterly Labour Force Survey (LFS) datasets. Note, however, that

for the longitudinal five-quarterly datasets as considered in Section 3.4, the ONS

currently uses CALMAR rather than GES.

The paper of [10] compares the GES algorithm with a so-called new algorithm.

This algorithm is equivalent to Algorithm 2 (and 2’). It is shown in [10] that the

“new” algorithm converges in fewer iterations than the GES algorithm. They also

show that, when the bounds are tightened, the time taken for the ‘new’ algorithm

to converge decreases. This is a consequence of the algorithm setting more weights

to the bounds at earlier iterations.
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It is argued in [10] that an ‘obvious’ advantage of the CALMAR algorithm is that

it gives a solution that lies entirely within or on the boundary values. Therefore,

the bounds will be satisfied exactly. However, for the projection method algorithm

used by GES, the bounds are not met exactly and are only satisfied to within the

convergence level specified by the user. Despite this, it is argued that when the

calibration problem with bounds is not solvable, the projection method algorithm

is better than the ‘new’ algorithm, in that the projection method algorithm will

give an approximate solution. However, caution should be taken here as the algo-

rithm may not have given a valid approximation to the solution of the calibration

problem in this case.

It could also be argued that soft calibration is a useful method of obtaining an

approximate solution when the hard calibration problem cannot be solved. See

Section 5 of [15] for further information regarding soft calibration.

BASCULA This program implements the scale modified quadratic algorithm

attributed to [29] for the function φ(Q) with general constraints. This algorithm

is equivalent to Method 3 considered in [56]. The package was developed by

Statistics Netherlands and is well documented in the Bascula 4.0 User Guide [40].

There has been criticism of the convergence properties of this algorithm (and

hence the BASCULA package), see, for example, the technical paper [12].

3.7 Summary

In this chapter, existing calibration algorithms that are implemented by many

standard software packages have been described. The exact mathematical formu-

lation of these algorithms cannot be found in existing literature. The behaviour

and convergence properties of these algorithms has been explored and a critical

analysis of existing software packages given.

A critical analysis of existing calibration algorithms and software packages has

been provided. Some of these algorithms are more efficient than others, due to the

form of a matrix that is used within the algorithms, referred to as H(s) throughout
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this chapter. The impact of the various forms of this matrix has been described,

and the recommendation is to use the Newton-Raphson form of the matrix since

this is the form that is derived theoretically. The matrix with g-weights on the

diagonal generally performed the worst, and although this generally gives a stable

solution when the Newton-Raphson method does not, use of the identity matrix

generally performs better.

This chapter has predominantly focused on the algorithms that are used in exist-

ing software packages. However, there is scope to extend these algorithms to other

calibration functions. In the next chapter, the choice of the calibration functions

shall be discussed in more detail. The benefits and drawbacks of various calibra-

tion functions, including those presented in this chapter, shall be further explored.

69



4 Functions for Calibration

In this chapter, a class of new calibration functions is proposed that have sev-

eral desirable properties, including satisfying necessary range restrictions for the

weights. The impact of these new functions on the calibrated weights shall be

explored.

4.1 Introduction

In Chapter 2, the calibration problem was introduced as an optimization problem.

Recall that the hard calibration problem can be described as

Φ(G) → min
G∈G

, where G = {G : L ≤ G ≤ U and A′G = T}. (17)

Recall also that the soft calibration problem considered in this thesis is

Φ(G) + Ψ(A′G, T ) → min
G∈G

, where G = {G : L ≤ G ≤ U}. (18)

In both cases,

Φ(G) = Φ(g1, . . . , gn) =
n∑

i=1

qiφi(gi) . (19)

Here φ is a specified calibration function and q1, . . . , qn are given non-negative

numbers. In the majority of applications qi = di for all i; it is assumed that

qi = di throughout this chapter. The vectors L and U are n-vectors of lower and

upper bounds for the g-weights G, respectively, A is a known matrix derived from

the sample observations, and T is an m-vector of known population totals.

In this chapter, only consider choices of the function φ in Φ are considered. The

function Ψ will be discussed in more detail in Chapter 5.
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4.2 Choice of the function φ

In this section, the choice of the functions φi in (19) is discussed. See Section 4.3

for examples of calibrated weights obtained using different forms of functions φi.

The function φi : (li, ui) → R+ needs to satisfy the following:

(i) φi(g) ≥ 0 for all g ∈ (li, ui),

(ii) φi(1) = 0,

(iii) φi is twice continuously differentiable and strictly convex.

The function φi does not have to be defined outside the open interval (li, ui). If

all φi satisfy conditions (i)-(iii) then the function Φ defined in (19) satisfies the

conditions (I)-(IV) formulated in Section 2.5.

Since these functions are chosen in the same manner for all i, the subscript i will

be dropped and the function φi will be denoted simply by φ. Correspondingly,

the lower and upper bounds li and ui for the g-weights gi will be denoted by l and

u, respectively.

As mentioned in Chapter 1, the functions φ are often referred to as ‘distance’

functions in the classical calibration literature, see for example [8] and [19]. How-

ever, it should be noted that several of the functions φ(1) to φ(8) do not satisfy

the triangle inequality. Therefore, these functions are better thought of as objec-

tive functions or divergence measures (see [44] for further discussion of divergence

measures).

It is important to distinguish between the following two types of functions φ:

Type I φ(g) is defined for all g either in R or R+ = (0,∞) and does not depend

on l and u.

Type II φ(g) is defined for g ∈ (l, u) but not outside the interval [l, u]. The

functional form of g depends on l and u and hence the notation φ(g; l, u)

will be used for the functions φ of this type.
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The authors of the classical papers [19] and [20] suggest six choices for the function

φ. Five of these are Type I functions and are as follows:

(1) φ(1)(g) = (g − 1)2,

(2) φ(2)(g) = g ln g − g + 1,

(3) φ(3)(g) = (
√
g − 1)2,

(4) φ(4)(g) = − ln g + g − 1,

(5) φ(5)(g) = (g − 1)2 /g.

The function φ(1) is simply quadratic; in the literature on calibration it is usually

referred to as the ‘chi-square’ function (see for example [45], equation (2.10)). It

is by far the most popular in practice. The function φ(2) is often referred to as

the multiplicative or raking function (see for example [2]).

Many authors consider solving optimization problem (17) without the constraint

L ≤ G ≤ U . However, in this case using the function φ(1) in the optimization may

lead to extreme and negative weights. Whilst the function φ(2), by the nature

of its domain, only permits non-negative values for the optimized weights, the

weights may still take very large values. This also applies to functions φ(3), φ(4)

and φ(5). The functions φ(3), φ(4) and φ(5) have received much less attention in

the literature on calibration.

The above criticism of the functions φ(1)–φ(5) can be extended to all functions of

Type I. Note that if functions φ of Type I are used then the optimization prob-

lem (17) is an optimization problem with many variables and many constraints

(recall that n is typically very large).

To overcome the issue of negative and extreme weights, the authors of [19] pro-

posed the introduction of range restrictions on the weights. Recall that this re-

quires defining two vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′ such that the

g-weights satisfy li ≤ gi ≤ ui for all i = 1, . . . , n. Equivalently, the calibrated

weights W = (w1, . . . , wn) must satisfy the constraint lidi ≤ wi ≤ uidi for all

i = 1, . . . , n.
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The authors of [19] proposed two approaches to this problem. The first approach

is to run a constrained optimization problem, such that the objective function is

any calibration function φ of Type I. The second approach is to define suitable

calibration functions that incorporate the constraints within the function defini-

tion, i.e. defining a function that can only take values within the required range.

In order to define an appropriate function, the function (in terms of the g-weights)

should take its minimum value is at 1 and that increases rapidly as li and ui are

approached. These are Type II functions.

Let us consider three functions φ of Type II:

φ(6)(g; l, u) = (g − l) ln

(
g − l

1− l

)
+ (u− g) ln

(
u− g

u− 1

)
,

φ(7)(g; l, u) = (1− l) ln

(
1− l

g − l

)
+ (u− 1) ln

(
u− 1

u− g

)
, (20)

φ(8)(g; l, u, α) =
(g − 1)2

[(u− g)(g − l)]α
, α > 0 . (21)

The shape of several functions φ are illustrated in Figures 15–17. In all these

figures, the values l = 1/4, u = 4 are used and all the functions are plotted in

the interval (l, u) = (1
4
, 4), despite some of the functions are defined on a larger

domain.

As our intention in this section is illustrating shapes of the possible calibration

functions φ. Thus, scaled versions of these functions are plotted using appropriate

multiples (so that different functions become visually comparable). In Figure 15,

each of the Type I functions ckφ
(k)(g), k = 1, . . . , 5, are plotted with the constants

ck chosen so that ckφ
(k)(3) = 1.

In Figure 16, the functions c1φ
(1)(g), c6φ

(6)(g; 1
4
, 4), c7φ

(7)(g; 1
4
, 4) and c8,1φ

(8)(g; 1
4
, 4, 1)

are plotted with the constants c1, c6, c7 and c8,1 chosen so that c1φ
(1)(3) = 1,

ckφ
(k)(3; 1

4
, 4) = 1 for k = 6, 7 and c8,1φ

(8)(3; 1
4
, 4, 1) = 1.

In Figure 17, function φ(8) is plotted for various values of the parameter α. In

Figure 17(a), the constants c8,α are chosen so that c8,αφ
(8)(3; 1

4
, 4, α) = 1. In

Figure 17(b), the constants c8,α are chosen so that c8,αφ
(8)(1

2
; 1
4
, 4, α) = 1

2
.
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(a) φ(1) (line), φ(2) (dot-dash) and φ(3)

(dash)
(b) φ(1) (line), φ(4) (dot-dash) and φ(5)

(dash)

Figure 15: Calibration functions of Type I scaled so that ckφ
(k)(3) = 1,

k = 1, ..., 5.

(a) φ(6) (line) and φ(7) (dot-dash) and φ(1)

(dash)
(b) φ(6) (line), φ(7) (dot-dash) and φ(8) with
α = 1 (dash)

Figure 16: Functions φ(1) φ(6), φ(7) and φ(8) scaled so that c1φ
(1)(3) = 1 and

ckφ
(k)(3; 1

4
, 4) = 1, k = 6, 7 and c8,1φ

(8)(3; 1
4
, 4, 1) = 1.

The function φ(6) is defined on the closed interval g ∈ [l, u] so that by conti-

nuity φ(6)(l; l, u) = (u − l) ln u−l
u−1

and φ(6)(u; l, u) = (u − l) ln u−l
1−l

. The function

φ(6)(g; l, u) is not defined outside the interval [l, u]. Using this function in (19)

creates difficulties for the algorithms that optimize (19) because of discontinuity
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(a) φ(8) scaled so that c8,αφ
(8)(3; l, u, α) = 1:

α = 0.2 (line), α = 1 (dot-dash) and α = 5
(dash)

(b) φ(8) scaled so that c8,αφ
(8)(12 ; l, u, α) =

1
2 :

α = 0.2 (line), α = 1 (dot-dash) and α = 5
(dash)

Figure 17: Function φ(8)(g; l, u, α) for various values of α with l = 1/4 and u = 4.

(and loss of convexity) of φ(6)(g; l, u) at g = l and g = u. A way around this is the

use of constrained optimization algorithms but then the criticism above directed

to Type I functions can be extended to the function φ(6).

The functions φ(7)(g; l, u) and φ(8)(g; l, u, α) are derived by us. These two func-

tions are defined only in the open interval g ∈ (l, u) and tend to infinity as g tends

to either l or u. Both functions can be classified as interior penalty functions. The

expression for the function φ(7) has been derived by applying a suitable transfor-

mation (including taking a logarithm) to the density of the Beta-distribution on

[0, 1]. The convexity of the function φ(7) follows from the expression for its second

derivative:

∂2φ(7)(g; l, u)

∂g2
=

(u− l) (g2 − lu− 2 g + l + u)

(g − l)2 (u− g)2
=

(u− l) [(g − 1)2 + (u− 1)(1− l)]

(g − l)2 (u− g)2
.

Since 0 ≤ l < 1 < u ≤ ∞, this second derivative is positive for all g ∈ (l, u)

so that the function φ(7)(g; l, u) is convex. The analytic forms of the functions

φ(6) and φ(7) are very similar, but the properties of the function φ(7) are more

attractive for the problem at hand than the properties of the function φ(6).
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For any α > 0, the function φ(8) has properties similar to the function φ(7): it is

defined in the open interval g ∈ (l, u), it is convex in this interval, and it tends

to infinity as g → l or g → u. The function φ(8) depends on an extra shape

parameter α, see Figure 17, so that the penalty for g deviating from 1 can be

adjusted by the user.

A very important special case of the function φ(8) occurs when α = 1:

φ(8)(g; l, u, 1) =
(g − 1)2

(u− g)(g − l)
. (22)

The most attractive property of function φ(8) is its invariance with respect to the

change g ↔ 1/g in the case l = 1/u (which is a very common case in practice).

Recall that g = w/d is the ratio of the calibrated weight w to the initial weight d

and therefore the multiplicative scale for measuring deviations of g from 1 is the

most appropriate. This means that it is very natural to penalize g as much as 1/g

for deviating from 1. Assuming α = 1 and l = 1/u, then

φ(g; u) = φ(8)(g; 1/u, u, 1) =
(g − 1)2

(u− g)(g − 1/u)
.

For this function, φ(g; u) = φ(1/g; u). This function possesses the additional

property of equally penalizing g and 1/g.

4.3 Hard Calibration

In this section, the optimization problem (17) is considered, namely calibration

with hard constraints. For several examples, the calibrated weights obtained using

each of the functions considered in Section 4.2 shall be compared.

To solve the optimization problem (17), the ‘solnp’ function within the Rsolnp

package in R (see [25]) is used. Using this software, it is possible to directly

solve optimization problem (17) using the Augmented Lagrange Multiplier (ALM)

method (see [30] for more details) for any choice of Type I or Type II function.

For a comprehensive optimization software guide, see [39].
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Recall that there are three choices for the vectors of lower and upper bounds, i.e.

three choices for L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′, respectively. These are

(a) no constraints: li = −∞ and ui = ∞ for all i;

(b) non-negativity constraint: li = 0 and ui = ∞ for all i;

(c) general constraints: 0 ≤ li < 1 < ui ≤ ∞.

There are many software packages that perform calibration using an iterative

Newton method, see Chapter 3.3 for further information. Examples of the software

packages include the ‘calib’ function within the sampling package in R (see [60]),

the g-CALIB-S module within SPSS (see [62]) and the package CALMAR in SAS

(see [19]). See Section 3.6 for more information about these and other calibration

packages.

Many statistical offices throughout Europe use calibrated weights obtained via

these packages. When comparing the weights obtained using direct optimization

with the weights given by these packages, the weights obtained through direct

optimization and using the calibration packages were usually the same to within

computer error (despite the running time was in some cases very different). Some

of the issues with the calibration packages has already been discussed in Chapter 3.

For the remainder of this chapter, the calibration problem shall be solved using

direct optimization by the ALM method.

To begin, let us consider an example adapted from [29] using data from [14]. In this

example, the calibrated weights for various calibration functions are investigated,

including an illustration of how Type I functions may lead to negative and extreme

weights.

4.3.1 Example 1: Estimating the Population Total of 49 Cities

Consider the following example adapted from Huang and Fuller in [29] using data

from Cochran in [14]. Throughout this example the units are in thousands of

people. Suppose the population total of 49 cities in 1930 needs to be estimated.

A sample of 12 of these cities is taken and needs to be weighted appropriately to
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provide an estimate the population total from all 49 cities. For the 12 sampled

cities, the number of people living in these cities in 1920 and 1930 is known.

The size of the population from all 49 cities in 1920 is known to be 5054, i.e.

T = 5054. In reality, the size of the population from all 49 cities in 1930 would

be unknown. However, for this example it is known to be 6262. This value will

be useful comparative purposes when comparing estimates of the total size of the

49 cities in 1930. The key information for this example is summarized in the

following table.

Size of city in 1920 (X) Size of city in 1930 (Y )
12 sample values known 12 sample values known

Total size of population known Total size of population to be estimated
(49 cities) (49 cities)

Table 11: Summary of the data available in Example 1

The initial vector of g-weights is G = 1 and the initial weights are taken to be

D = (49/12, 49/12, ..., 49/12)′. These initial weights are derived using the classical

Horvitz-Thompson estimator [28]. In practice, some adjustments are made to the

initial weights D to account for the sampling method used and any non-response

in survey responses. However, for this example, the classical Horvitz-Thompson

estimator shall be considered.

Recall from Section 2.1, that hard calibration constraints can be written in the

form X ′W = T or equivalently A′G = T , with aij = dixij . There is only

one auxiliary variable in this example, thus X and A reduce to 12 × 1 vec-

tors. The size of the 12 sampled cities in 1920 is given in the 12 × 1 vec-

tor X , where X = (93, 77, 61, 87, 116, 2, 30, 172, 36, 64, 66, 60)′. The size of the

12 sampled cities in 1930 is known, and given in the 12 × 1 vector Y , where

Y = (104, 89, 69, 105, 130, 50, 111, 183, 46, 77, 86, 57)′.

Note that X ′D = A′1 = 3528 6= 5054. Also, the value of Y ′D is approximately

4520 which is much smaller than the known value of 6262. Therefore, for the

initial weights G = 1, the constraint A′G = T is not satisfied and our estimate

does not approximate the true total of the Y -variable well. This motivates the

need to calibrate.
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Several approaches to calibrating the g-weights are considered, and the affect this

has on the estimates Y ′W is explored. Figure 18 shows the g-weights obtained

when optimizing (17) for the functions φ(1), φ(2) and φ(3) using classical hard

calibration, i.e. L and U are taken as vectors whose entries are −∞ and ∞,

respectively. The case qi = di is considered in (19). Figure 18(a) shows the

calibrated weights when the constraint 1′G = 12 is not imposed. The calibrated

weights obtained when this constraint is included in the optimization are shown

in Figure 18(b).

1 4 6 8 12

−
1

0
1

2
3

4

(a) g-weights for functions φ(1), φ(2) and φ(3)

with the sum of weights unconstrained

1 4 6 8 12

−
1

0
1

2
3

4

(b) g-weights for functions φ(1), φ(2) and φ(3)

with the sum of weights constrained

Figure 18: Comparison of g-weights with 1 for the functions φ(1) (red, cross),
φ(2) (blue, plus) and φ(3) (green, circle).

For these functions, observe that not imposing the constraint 1′G = 12 results

in all the weights increasing from, or remaining at, their initial value of 1. It

can be verified that the calibrated weights for each of these functions satisfy the

constraint A′G = T . In all cases, 1′G > 12 due to the calibrated weights being

larger than the initial weights of 1, and all estimates of Y ′W are approximately

6840 (recall the true value is 6262). As all the weights have increased, our estimate

Y ′W has over estimated the true value. However, it has improved on the original

estimator of Y ′D = 4520.

Imposing the extra constraint 1′G = 12 results in weights both above and below

1. One of the g-weights for function φ(1) (indexed 6 in Figure 18(b)) is negative,
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whilst the weight indexed 8 has taken a large value in comparison to the other

g-weights. For functions φ(2) and φ(3), there is not a negative weight at index 6;

however, the value of the weight at index 8 is still large in comparison with the

other weights. Thus, whilst functions φ(2) and φ(3) prevent negative weights, they

do not prevent large positive weights. For these weights, A′G = 5054, as expected.

The estimate of Y ′W is approximately 5760. Compare this with the true value

of 6262. In this case, the total size of the 49 cities has been underestimated by

approximately 600,000.

Note that the behaviour of the weights for functions φ(4) and φ(5) is very similar to

that for functions φ(2) and φ(3). Plots of the weights comparing functions φ(1), φ(4)

and φ(5) are very similar to the plots in Figs. 18(a) and 18(b). Hence weights for

functions φ(4) and φ(5) shall not be plotted here. These functions are seldom used

in practice, and struggle to prevent the weights taking large values since there is

a lack of penalty for large positive values.

To overcome the issue of negative weights in the previous problem, one may simply

consider projecting any weights falling outside of the bounds defined by L and

U back onto the boundary values. Choosing l = 12/49 and u = 120/49 for the

example above (so that the weights di are restricted between 1 and 10) gives

weights such that A′G = 4822.967 6= 5054 = T . So by simply re-scaling our

weights we no longer satisfy the hard calibration constraint. The estimate Y ′W is

approximately 5520, meaning we are now underestimating the true value of 6262

by approximately 700, 000. This approach represents one step of an algorithm

used by several of the calibration packages that are presented in Section 3.6.

The algorithm continues solving and projecting weights until the hard calibration

constraint A′G = T is satisfied.

An alternative method for overcoming the issue of negative and extreme weights,

is to include the constraint L ≤ G ≤ U as part of the optimization procedure.

Consider vectors L and U with repeated entries l and u, respectively, where 0 ≤
l < 1 < u ≤ ∞. Any feasible solution to this problem is guaranteed to be within

the bounds pre-specified by the user. However, recall from Section 2.1 that the

feasible solution of this problem may be empty depending on the choice of L and

U .
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Returning to our example, suppose the we impose the g-weight bounds L ≤ G ≤ U

where L = (l, l, ..., l)′ and U = (u, u, ..., u)′ are both 12 × 1 vectors. Let l = 12
49

and u = 120
49

so each g-weight gi (i = 1, . . . , n) will be bounded between 12
49

and
120
49
, whilst the weights wi will be bounded between 1 and 10.

Figure 19 shows the g-weights obtained by optimizing (17) for functions φ(1), φ(2)

and φ(3). Figure 19(a) shows the calibrated weights when we do not impose the

constraint 1′G = 12. Figure 19(b) shows the calibrated weights when we include

this constraint.

For the weights in Figure 19(a), observe that when we do not impose the constraint

1′G = 12, all the weights increase from, or remain at, their initial value of 1.

The weights in Figure 19(a) are identical to those in Figure 18(a). However, in

Figure 19(b), we see that imposing the extra constraint 1′G = 12 results in weights

that are distributed both above and below 1. Many of the weights are near the

upper and lower bounds u and l, respectively. The weights in Figure 19(b) are

different from those in Figure 18(b).
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(a) g-weights for functions φ(1), φ(2) and φ(3)

with the sum of weights unconstrained
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3

(b) g-weights for functions φ(1) (red, cross),
φ(2) (plus) and φ(3) (circle) with the sum of
weights constrained

Figure 19: Comparison of g-weights with 1 for the functions φ(1) (red, cross),
φ(2) (blue, plus) and φ(3) (green, circle); dotted lines indicate bounds.
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Note that the behaviour of the weights for functions φ(4) and φ(5) is very similar

to that for functions φ(2) and φ(3), both with and without the constraint 1′G = 12

imposed. Hence, we do not plot the weights for these functions here.

Recall the relationship wi = digi. Since the vector of initial weights D is given, and

we have calculated the g-weights, we can now compute the weights wi. Computing

the weights wi for function φ(1) from the g-weights in Figure 19(b) gives the same

weights as those derived in [29].

Figure 20 shows the g-weights obtained by optimizing (17) for the functions φ(1),

φ(6) and φ(7). Figure 20(a) shows the calibrated weights when we do not in-

clude the sum of weights constraint 1′G = 12. Figure 20(b) shows the calibrated

weights when the constraint is included within the optimization. There are clear

differences in the g-weights with indices 2 and 4 when we optimize using different

calibration functions.
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(a) g-weights for functions φ(1), φ(6) and φ(7)

with the sum of weights unconstrained
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(b) g-weights for functions φ(1), φ(6) and φ(7)

with the sum of weights constrained

Figure 20: Comparison of g-weights with 1 for functions φ(1) (red, cross), φ(6)

(blue, plus) and φ(7) (green, circle); dotted lines indicate bounds.

Figure 21 shows the g-weights obtained by optimizing (17) for function φ(8) with

α chosen to be 0.2, 1 and 5. Figure 21(a) shows the calibrated weights when

we do not impose the constraint 1′G = 12. Figure 21(b) shows the calibrated

weights when we include this constraint within the optimization. Observe that as
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the value of α increases, the algorithm tends to move the weights more towards

the boundaries.
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(a) g-weights for function φ(8) with α = 0.2
(cross), α = 1 (plus) and α = 5 (circle) with
the sum of weights unconstrained
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(b) g-weights for function φ(8) with α = 0.2
(cross), α = 1 (plus) and α = 5 (circle) with
the sum of weights constrained

Figure 21: Comparison of g-weights with 1 for function φ(8); dotted lines
indicate bounds.

Again, we observe that when the constraint 1′G = 12 is not imposed, the weights

all increase or remain at the initial values of 1. As our initial estimate of Y ′D is

underestimating the true total of all the y-values from the population, the weights

increase to give estimates Y ′W that are generally closer to the true value than

the estimate Y ′D.

When the constraint 1′G = 12 is imposed, the weights are more evenly distributed

above and below 1. More of the weights move towards the boundary values im-

posed by L and U . Since we have added an additional constraint to the calibration,

this increases the complexity of the calibration problem. In practice, it should be

verified that this constraint has meaning and is necessary. In Chapter 5, soft

calibration is considered for investigating how restrictive the constraint 1′G = 12

actually is.

In summary, not imposing the constraint 1′G = 12 results in calibrated weights

that are less variable than the calibrated weights obtained when this constraint

is included. For this example, we saw that when the constraint 1′G = 12 was
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not included, the calibrated weights all increased from the initial values of 1 but

did not exhibit any extremal behaviour, lying well within the g-weight bounds.

However, including the constraint 1′G = 12 gave calibrated weights that were

more variable and likely to move towards the boundaries.

This shows how the inclusion of additional calibration constraints can have an

adverse and often undesirable effect on the final calibrated weights. In practice,

care should be taken to ensure the variables and constraints included as part of the

calibration are suitable for the problem at hand. However, in practice, this is often

not the case. For example, estimates of unemployment are obtained every quarter

using the same calibration variables and constraints from quarterly Labour Force

Survey datasets (albeit with different values due to different samples). However,

whilst some variables may be suitable in some quarters, they may have an adverse

effect on the calibration weights and estimates in other quarters.

For the remaining examples in this chapter, we shall explore the effects the choice

of L and U have on the calibrated weights G. In all the examples we will include

the constraint 1′G = n (where n denotes the sample size), and take qi = di in

(19).

4.3.2 Example 2: Changing the Upper and Lower Bounds

Suppose we are given the vector X = (93, 77, 87, 116, 2, 30, 172, 36, 64, 60)′ and the

10 × 1 vector of initial weights D = (4, 4, ..., 4)′. The parameter value T = 3900

is assumed known. Recall that we impose the upper and lower bounds U =

(u, u, ..., u)′ and L = (l, l, ..., l)′, where U and L are both 10 × 1 vectors whose

entries are u and l, respectively. Consider the case l = 1/u. The objective is to find

the smallest value of u such that optimization problem (17) has a feasible solution.

In this example, experimentation gave the smallest value of u as approximately

2.0.

In Figure 22 we plot the calibrated weights when we take l = 1/2 and u = 2. In

this case, solving the optimization problem (17) for functions φ(1), φ(6) and φ(7)
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gives the weights in Figure 22(a). Figure 22(b) shows the weights for function φ(8)

with α = 0.2, α = 1 and α = 5.
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(a) Weights obtained for φ(1) (red, cross),
φ(6) (blue, plus) and φ(7) (green, circle)
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(b) Weights obtained for φ(8) with α = 0.2
(red, cross), α = 1 (blue, plus) and α = 5
(green, circle)

Figure 22: Comparison of weights for functions φ(1), φ(6), φ(7), and φ(8) for
various α with l = 1/2 and u = 2; dotted lines indicate bounds.

For this example, a feasible solution to problem (17) exists for the (approximate)

bounds 0 ≤ l ≤ 1/2 and u ≥ 2. Let us consider the effect that changing the values

of l and u has on the calibrated weights.

Figure 23 shows the calibrated weights when l = 1/4 and u = 2. In Figure 23(a)

we plot the weights for functions φ(1), φ(6) and φ(7) whilst in Figure 23(b) we plot

the weights for function φ(8) with α = 0.2, α = 1 and α = 5. Reducing the lower

bound results in fewer weights taking values at the lower bound. Note that the

calibrated weights for function φ(8) tend to move towards the boundaries more

than the weights obtained for functions φ(1), φ(6) and φ(7), with this tendency

more evident as the value of α increases.

Now consider the effect of increasing u. In Figure 24, we keep l = 1/4 and consider

the calibrated weights when u = 4. In Figure 24(a) we plot the calibrated weights

for the functions φ(1), φ(6) and φ(7) whilst in Figure 24(b) we plot the calibrated

weights for function φ(8) with α = 0.2, α = 1 and α = 5. Increasing the upper

85



1 4 7 10

0
1

2
3

(a) Weights obtained for φ(1) (red, cross),
φ(6) (blue, plus) and φ(7) (green, circle)
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(b) Weights obtained for φ(8) with α = 0.2
(red, cross), α = 1 (blue, plus) and α = 5
(green, circle)

Figure 23: Comparison of weights for functions φ(1), φ(6), φ(7), and φ(8) for
various α with l = 1/4 and u = 2 (dotted lines indicate bounds)

bound has resulted in some of the weights increasing slightly in comparison to the

weights in Figure 23. However, there are no weights on the upper bound.
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(a) Weights obtained for φ(1) (red, cross),
φ(6) (blue, plus) and φ(7) (green, circle)
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(b) Weights obtained for φ(8) with α = 0.2
(red, cross), α = 1 (blue, plus) and α = 5
(green, circle)

Figure 24: Comparison of weights for functions φ(1), φ(6), φ(7), and φ(8) for
various α with l = 1/4 and u = 4 (dotted lines indicate bounds)
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To conclude, this example has shown that taking l = 1/u and minimizing the

value of u such that the calibration problem (17) has a feasilbe solution often

results in many of the weights taking values at the boundaries. Increasing the

value of u gives extra freedom to the optimization problem and, as a result, there

are typically fewer weights at the boundaries.

In the remaining two examples, we only consider the smallest value of u for which

the optimization problem (17) has a feasible solution when l = 1/u. The phe-

nomenon of weights clustering at the boundary is further explored. An investiga-

tion of whether certain calibration functions are more or less likely to give weights

that approach the boundaries is also given.

4.3.3 Example 3: Comparisons with the New Calibration Functions

Suppose we are given the 100 × 1 vector of initial weights D = (5, ..., 5)′ and

suppose that T = 49500. The vector of auxiliary values X is formed by extending

the auxiliary vector from Example 4.3.2. Form a 100 × 1 vector that has the

values from the auxiliary vector in Example 4.3.2 as its first ten entries. The

remaining entries are formed by adding or subtracting constants to each of the

first ten elements.

Impose the upper and lower bounds U = (u, u, ..., u)′ and L = (l, l, ..., l)′, where

L and U are both 100 × 1 vectors whose entries are u and l = 1/u, respectively.

For this example, experimentation gives the smallest value of u as approximately

2 (and so the largest corresponding value of l is 1
2
).

In Figure 25, we compare the g-weights for functions φ(6), φ(7) and φ(8) (taking

α = 1) with those for function φ(1). In Figure 25(a), we observe that most of the

points in the scatterplot lie on the main diagonal. This indicates the similarity of

the weights for functions φ(1) and φ(6). However, in Figure 25(b), we observe that

there are fewer weights on the diagonal. This indicates that, for function φ(7),

more of the weights approach the boundary. In Figure 25(c), we see this even

more clearly with a distinct band of weights at the upper and lower bounds of
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2 and 1
2
, respectively. This shows that functions φ(7) and φ(8) are more likely to

send the g-weights towards the bounds.
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(a) Comparison of weights for
function φ(1) against φ(6)
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(b) Comparison of weights for
function φ(1) against φ(7)
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(c) Comparison of weights
for function φ(1) against φ(8)

(α = 1)

Figure 25: Comparison of weights for function φ(1) against functions φ(6), φ(7)

and φ(8) (α = 1), with l = 1/2 and u = 2

For the next example, we keep the sample size at n = 100 and increase the number

of auxiliary variables to m = 3.

4.3.4 Example 4: Impact of Functions on CPU Times

Suppose we are given a 100× 1 vector of initial weights D = (5, ..., 5)′, and know

the vector of totals to be T = (49500, 49540, 41000)′. The 100 × 3 matrix of

auxiliary values X is defined as follows. The first column of X is the same as the

auxiliary vector from Example 3 in Section 4.3.3. For the second column of X is

chosen such that it does not highly correlate with the first column. For the third

column, we take 100 values generated at random from a Normal distribution with

mean 80 and standard deviation 48 (these are similar to the mean and standard

deviations for the other columns).

Impose the lower and upper bounds L = (l, l, ..., l)′ and U = (u, u, ..., u)′, where

L and U are both 100 × 1 vectors whose entries are u and l = 1/u, respectively.

For this example, experimentation gives the smallest value of u as approximately

u = 2 (and so the corresponding largest value of l is 1
2
).
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In Figure 26, we compare the calibrated weights using function φ(1) with the

calibrated weights for functions φ(6), φ(7) and φ(8) (α = 1).
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(a) Comparison of weights for
function φ(1) against φ(6)
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(b) Comparison of weights for
function φ(1) against φ(7)
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(c) Comparison of weights
for function φ(1) against φ(8)

with α = 1

Figure 26: Comparison of weights for the function φ(1) against φ(6), φ(7) and φ(8)

(α = 1)

Figure 26 has many similarities with Figure 25 in Example 4.3.3. Observe that

the weights for functions φ(1) and φ(6) are very similar. However, the calibrated

weights for functions φ(7) and φ(8) show clear differences to the calibrated weights

for function φ(1). Again, we observe the distinct band of weights at the upper and

lower bounds of 2 and 1
2
for functions φ(7) and φ(8), compared with the weights for

functions φ(1) and φ(6) that are more evenly distributed between the upper and

lower bounds.

Now the CPU times taken to obtain the weights in Figure 26 are compared. These

CPU times were computed on a computer with an Intel(R) Core(TM) i7-4500U

CPU Processor with 8GB of RAM. The CPU times are given in Table 12. Observe

that the CPU times for functions φ(7) and φ(8) (α = 0.2) are less than those for

the classical functions φ(1) and φ(6). CPU time is related to the complexity of the

optimization problem, see [43] on a comprehensive discussion of how to measure

numerical complexity of an optimization problem.

The longest CPU time recorded was for function φ(6). This is likely due to the slow

convergence of the algorithm, as we have seen in the previous examples. Recall

also that the algorithm for φ(1) requires the weights that fall outside the bounds

to be projected back to the bounds before the calibration problem is performed
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again. This is likely to have resulted in the higher CPU time for this function in

comparison to functions φ(7) and φ(8).

Function CPU Time (seconds)

φ(1) 0.609
φ(6) 0.734
φ(7) 0.544
φ(8) (α = 0.2) 0.569
φ(8) (α = 1) 0.559

Table 12: CPU times for various functions φ in solving the optimization
problem (17) in Example 4

4.4 Summary

In this chapter, the choice of the objective function in the calibration problem has

been explored. The influence of the function φ, the main component of objective

function, on the complexity of the optimization problem and the final solution

has been studied. Two new calibration functions φ(7) and φ(8) have been sug-

gested. These are more flexible than existing calibration functions in that they

automatically take into account the constraint L ≤ G ≤ U . This could be of high

importance in practice as the dimension of the problem (which is the size of the

sample) may be very large.

In the case of large samples, there may not be a solution to the hard calibration

problem defined by (19) and (17). In this case, it may be preferable to use soft

calibration, either as a method for deriving calibrated weights or for assessing

which of the constraints are performing poorly. In doing so a potentially difficult

constrained optimization problem (17) has been replaced with a much simpler

problem (18), which is an unconstrained convex optimization problem. The soft

calibration problem shall be described further in the next chapter.
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5 Soft Calibration

In this chapter, the soft calibration problem shall be presented. The previous

chapters have focused on the hard calibration problem. Whilst the hard calibra-

tion is more frequently used in practice, it is not guaranteed to have a solution.

This is particularly prevalent in the case of strict upper and lower bounds for the

g-weights.

One approach to resolve this problem is simply relaxing the bounds on the cali-

brated weights until a solution can be found. However, this can result in different

bounds being used for different samples of the same survey. For example, the

Labour Force Survey is conducted quarterly by the Office for National Statistics.

Each quarterly sample is calibrated to Census data. Whilst a particular choice

of lower and upper bounds may be suitable for the data from one quarter, these

bounds are not guaranteed to work for the next quarter.

Another approach is to use soft calibration. Instead of relaxing the bounds on the

calibration weights, the calibration constraints are relaxed. There is a practical

benefit to this, since the totals used to form the calibration constraints are often

themselves estimated from Census data. Whilst these totals are often taken to

be the ‘truth’, they will inevitably have their own margin of error. Therefore, a

small relaxation of the calibration constraints can help account for the error in

the calibration totals.

There are two uses of soft calibration considered in this chapter. Firstly, the

soft calibration problem shall be presented as a calibration method in its own

right. Despite the benefits described above, soft calibration is not deemed a viable

method by many practitioners. However, the second use of soft calibration is for

identifying ‘problematic’ constraints in the hard calibration problem. This has

practical appeal as a diagnostic tool before running the hard calibration problem.
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5.1 Introduction

Recall that the soft calibration problem considered in this thesis is

Φ(G) + Ψ(A′G, T ) → min
G∈G

, where G = {G : L ≤ G ≤ U}. (23)

where

Φ(G) = Φ(g1, . . . , gn) =

n∑

i=1

qiφi(gi) . (24)

Here φ is a specified calibration function and q1, . . . , qn are given non-negative

numbers. In the majority of applications qi = di for all i; it is assumed that

qi = di throughout this chapter. The vectors L and U are n-vectors of lower and

upper bounds for the g-weights G, respectively, A is a known matrix derived from

the sample observations, and T is an m-vector of known population totals.

The function Ψ assesses the deviation between the population totals and the

calibration estimator A′G. The functions Φ and Ψ can take many forms, including

any of the functions given in Chapter 4. However, the purpose of this chapter is

to highlight the use of the calibration problem rather than explore the choice of

the functions. Therefore, for simplicity, Φ and Ψ shall only be considered to be

quadratic functions. Soft calibration with other choices of functions remains an

interesting area for further research.

Rewriting the soft calibration problem (23) using quadratic functions for Φ and

Ψ leads to the following optimization problem:

n∑

i=1

qi(gi − 1)2 + β−1(A′G− T )′C(A′G− T ) → min
G∈G

, (25)

where G = {G : L ≤ G ≤ U}, q1, ..., qn are given non-negative numbers, C is a

user-specified m×m positive definite (usually diagonal) matrix and β > 0 is some

constant.

In the objective function above, the first term above assesses the deviation between

the calibrated weights and 1, whilst the second penalty controls the deviation be-

tween the calibrated estimates and the known population totals. The amount of
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importance given to this penalty will determine how much the calibration con-

straints are relaxed. This is controlled by the value of the parameter β. The

larger the value of β, the smaller the value of β−1 and the less importance given

to this term. However, for small values of β, β−1 will be large and therefore

greater importance is given to this term. Note that the function Ψ considered in

this chapter has the following form:

Ψ(A′G, T ) = β−1(A′G− T )′C(A′G− T ) (26)

Soft calibration is synonymous with ridge regression. The parameter β here em-

ulates a ridge parameter. Informally, the ridge parameter helps enable a solution

to be found to the regression problem in cases when a solution otherwise could

not be found. Similarly, the parameter β can be used in soft calibration to enable

solutions to be found when the corresponding hard calibration problem cannot

be solved. Throughout this chapter, β shall be referred to as the soft calibration

paramter.

The classical approach to soft calibration is to minimize the objective function

given in (25) without any restrictions imposed on the weights, i.e. the weight

bounds L ≤ G ≤ U are not included within the optimization. This method shall

be referred to as classical soft calibration (see for example [8]). The value of the

parameter β is then varied so that the weights are within the upper and lower

bounds. There are several problems with this method, that shall be described

throughout this chapter.

However, formulating soft calibration via the optimization problem above allows

the constraint L ≤ G ≤ U to be included within the optimization algorithm and

means the problem (23) can be solved directly. This is something that has not

been considered or addressed in existing literature. For this approach, the choice

of the parameter β is determined in advance. This enables the same value of

β to be used for different sample datasets. Using the classical soft calibration

approach, different β values are often needed to ensure the weights fall within the

specified bounds.
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In Section 5.2, the classical soft calibration problem is considered. The drawbacks

of this approach shall be discussed. Section 5.3 introduces the new approach to

soft calibration, which considers soft calibration as a direct optimization method.

The benefits of this approach shall be described and contrasted with classical soft

calibration. Finally, Section 5.4 describes how soft calibration can be used as a

diagnostic tool for identifying problematic calibration constraints.

5.2 The Classical Approach to Soft Calibration

The classical soft calibration problem was proposed both to deal with cases when

the hard calibration problem has no solutions, and as a way to deal with negative

and extreme weights. Classical soft calibration allows an analytic solution to be

found to the optimization problem (25). Let D be an n×n diagonal matrix, whose

entries are the weights d1, d2, ...dn. Furthermore, take qi = di and let β denote the

soft calibration parameter. Then, for the classical soft calibration approach, the

analytic form of the weights that satisfy optimization problem (25) is given by

G = 1+ A
(
A′
D

−1A+ βC−1
)−1

(T −A′1) . (27)

This is an equivalent formulation of equation (2.4) from [8], expressed in terms of

g-weights. The term (A′D−1A+ βC−1)
−1

is similar to the inverse matrix term in

ridge regression (see for example [50]).

Observe that this problem has not imposed any constraints on the calibrated

weights. Whilst this method guarantees that a solution can be found to the

calibration problem, it does not prevent weights becoming negative or extreme.

Therefore, just as in the case of the quadratic function with no constraints in hard

calibration, the solution may have negative and/or extreme weights.

However, to address this point, authors such as Beaumont and Bocci in [8] consider

the effect of changing the parameter β in (25). As β tends to zero, the optimization

problem (25) reduces to minimising the expression (A′G − T )′C(A′G − T ) for

G ∈ G. As this term is quadratic, the minimum occurs when A′G − T = 0 or

equivalently A′G = T . This is the hard calibration constraint. Therefore, the case
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β → 0 corresponds to solving the hard calibration problem (3). This is consistent

with (27), since β−1 → ∞ as β → 0, which gives the expression for the g-weights

in classical hard calibration using function φ(1).

As β tends to infinity, the term (A′G− T )′C(A′G− T ) becomes negligible. This

results in the optimization problem (25) reducing to the problem of minimizing

Φ(G) =
∑n

i=1 qiφ
(1)(gi) for G ∈ G, which is minimized at G = 1 (by definition of

the function Φ). Again, this is consistent with (27), since β−1 → 0 as β → ∞,

and hence A (A′D−1A+ βC−1)
−1

(T −A′1) tends to zero giving G = 1.

Ideally, the value of the soft calibration parameter should be small. The value of

β−1 can be thought of as the relative importance of the term (26). The larger

the value of β−1, the more importance is placed on satisfying the calibration

constraints. In contrast, the smaller the value of β−1, the less importance is

placed on satisfying the calibration constraints. Approximately satisfying the

calibration constraints is very important, since one of the main motivating factors

for calibration is consistency with known totals.

To illustrate the soft calibration problem, the example from Section 4.3.1 shall

be revisited. Recall that the size of 12 cities in 1930 is known and the aim is to

estimate the population total from 49 cities. The size of the 12 cities is known

in 1920, as is the population total of the 49 cities from 1920. Using the standard

notation, T = 5054 is the population total of the 49 cities in 1920 (in thousands),

D = (49/12, ..., 49/12)′ are the initial weights and the size of each of the 12 sam-

pled cities in 1930 is given in X = (93, 77, 61, 87, 116, 2, 30, 172, 36, 64, 66, 60)′

Recall that multiplying the entries in the i-th row of X by the ith initial weight

gives the entries of the matrix A.

In Figure 27, the weights given by (27) are plotted as the value of β varies. The

values of β are plotted against the calibrated weights. For simplicity, take C = Im,

where Im denotes the m ×m identity matrix. Figure 27(a) plots the weights for

values of β from 0 to 40. This plot confirms the earlier assertions that as β → 0,

G tends to the classical hard calibration weights. Figure 27(b) plots the weights

for values of β between 0 and 1.6 × 106. This plot confirms that as β → ∞, the

g-weights tend to the initial values of 1.
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(b) Soft calibration weights for β from 0 to
1.6× 106

Figure 27: Plots of classical soft calibration weights (27) as a function of β−1

When deriving the explicit solution, (27), to the classical soft calibration problem,

there are no constraints specified on the weights G. However, suppose that the

weight constraint L ≤ G ≤ U is required. Observe from Figure 27(a) that as the

value of β increases (and so β−1 decreases), the range of the weights decreases.

In classical soft calibration, having obtained the analytic solution (27) for the

calibrated weights, the approach to satisfying the constraint L ≤ G ≤ U is to

choose the smallest value of β for which the weights in (27) are within the specified

bounds. Clearly, the value of β that satisfies the constraints L ≤ G ≤ U is sample

dependent.

Returning to Example 1 from Section 4.3.1, suppose the lower and upper bounds

of l = 12/49 and u = 120/49 are required. These bounds could be satisfied using

the hard calibration problem. In order to satisfy these bounds for classical soft

calibration, the smallest value of β that gives weights within the required bounds

is approximately 9.0. This is a relatively large value of β, since β−1 = 1/9, and

there is relatively little importance on the term (26).

Note that in this case the values of the calibration constraints are 1′G = 13.527 6=
12 and A′G = 5053.899 6= 5054, therefore the constraints 1′G = 12 and A′G = T

are no longer satisfied. Having relaxed these constraints in the soft calibration

penalty, there will inevitably be some variation between A′G and T and between
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Figure 28: Plots of A′G and g-weights that satisfy optimization problem (27) for
β = 0.1

1′G and 12. The larger the value of β, the smaller the value of β−1 and less

importance is assigned to the penalty (26). However, for large values of β there is

less variation in the weights. In contrast, for small values of β, the penalty (26)

is given more importance allowing less variation between A′G and T and between

1′G and 12. However, in this case there will be greater variability in the weights.

To illustrate this, 10,000 simple random samples of size 12 are taken from the

data in [14] used for throughout this example. Figure 28 shows the distribution

of weights and values of A′G with β = 0.1. Figure 29 shows the distribution

of weights and values of A′G for β = 9, as required for this example to ensure

the weights are between L and U . Observe that although β = 9 gave g-weights

satisfying the bounds L ≤ G ≤ U for one sample, this value of β does not

guarantee that the g-weights will satisfy these bounds for every sample.

Interesting comparisons can be drawn between the histograms in Figure 28 and

Figure 29. The distribution of the estimates A′G is much less variable in Figure 28,

since the small value of β has assigned relatively high importance to the term

(26). However, the distribution of weights is more variable in Figure 28, since
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Figure 29: Plots of A′G and g-weights that satisfy optimization problem (27) for
β = 9

the weights are forced to deviate more in order to satisfy the more stringent

constraints.

Another important conclusion from these histograms is that the soft calibration

parameter β will vary considerably from sample to sample in order to satisfy im-

posed weight constraints. Many of the weights in Figures 28(b) and 29(b) lie well

beyond the weight constraints indicated by the vertical dashed lines. Whilst the

parameter β = 9 gave weights that satisfied the bounds for the sample considered

previously, it clearly will not work for every sample.

This is the main drawback of classical soft calibration. The parameter β is decided

as an ‘after-thought’ of the process, but arguably this should be decided up front.

The changing of the value of the β is purely an after ‘trick’ to satisfy the required

weight bounds.

In the next section, a new approach to soft calibration shall be proposed that uses

direct optimization. The soft calibration problem was framed in Chapter 2. Since

soft calibration can be framed as an optimization problem, direct optimization

methods can be used to solve the problem. There are two clear advantages of this
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method over classical soft calibration. Firstly, the weight constraints can be in-

corporated as part of the problem. Secondly, the ridge parameter β is determined

up front, and a solution to the problem can always be found independent of the

value of β.

5.3 A New Approach to Soft Calibration

In the previous section, the classical soft calibration problem was described. Two

main problems were identified. Firstly, the value of β is determined after the

calibration has been performed, in order to adjust the weights until they fall

within pre-determined bounds. Secondly, the value of β needed to satisfy these

bounds is entirely sample dependent.

It is unclear why this is still the only main methodology that exists in the area

of soft calibration. Of course, there is the practical appeal of being able to derive

the general solution given in (27). However, software packages and algorithms

are now so advanced that the need to derive an explicit formula for the general

solution seems unnecessary.

Instead of this classical approach, soft calibration can be considered as the op-

timization problem described in (23). As stated in Section 2.1, optimization

problem (23) has a solution for any value of β > 0. Therefore, given any L and U ,

a solution to optimization problem (23) can always be found, independent of the

choice of β. That is the key factor in making this approach different to classical

soft calibration.

Returning to the example considered in the previous section, which considered

classical soft calibration for the example from Section 4.3.1, the same data set

is calibrated using the optimization problem (23) with L ≤ G ≤ U where L =

(l, ..., l)′ and U = (u, ..., u)′ are 12 × 1 vectors with entries l = 12
49

and u = 120
49
,

respectively. Recall that small values of β give a solution that is close to the hard

calibration solution, and ensure that the calibration constraints are approximately

satisfied. Taking γ = 0.01, soft calibration weights can be obtained that are very

similar to those derived for hard calibration in Section 4.3.1.
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In this instance, solving problem (23) has little advantage over solving the cor-

responding hard calibration problem (3). This is an important point, since in

cases when the hard calibration problem can be solved, there will be little or no

difference between the solutions derived from both methods.

Solutions to the optimization problem (23) are derived for various values of the

soft calibration parameter β. The resulting weights are shown in Figure 30. Once

again, for small values of β the solution tends to the hard calibration weights,

whilst for large values of β the weights tend to 1.
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(b) Soft calibration weights for β from 0 and
5× 105

Figure 30: Plots of weights that satisfy the optimization problem (27) as a
function of β

However, hard calibration will have a ‘breaking’ point, that is to say that once

the upper and lower bounds are too tight it will not be possible to find a solution

to the problem. However, soft calibration will still be able to find an approxi-

mate solution in this case. Furthermore, as shall be described in Section 5.4, the

soft calibration can also help understand why a solution cannot be found to the

corresponding hard calibration problem.

Returning to the example, consider the bounds l = 24/49 and u = 96/49, cor-

responding to bounding the weights wi between the lower and upper bounds of

2 and 8, respectively. In this case, there is no feasible solution to the hard cali-

bration problem. Solving this problem using classical soft calibration requires a
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value of β = 16 to ensure that the weights are between the specified bounds. In

this case β−1 = 1/16, which indicates that the calibration constraints are given

very little importance due to the ‘restrictive’ weight bounds.

Now consider using the new direct optimization approach for soft calibration.

Again imposing the lower and upper bounds of l = 24/49 and u = 96/49, respec-

tively, and taking β = 10−9, the calibrated weights G are such that the constraint

values are A′G = 5053.910 and 1′G = 13.435. The hard calibration constraints

require A′G = 5054 and 1′G = 12. The constraint A′G = 5054 is virtually sat-

isfied, however the constraint 1′G = 12 is not fully met. This suggests that the

condition 1′G = 12 was too restrictive, and this will be further discussed in the

next section.

The important point here is that the value of β was determined in advanced, and

not decided based on the sample. Furthermore, a solution was found directly that

was able to satisfy the given weight bounds.

This is a very elementary introduction to a method that guarantees a solution to

the calibration problem. The key contribution in this thesis is the methodology

and framing of soft calibration as an optimization problem. Much more inves-

tigation is needed to fully highlight the benefits of this approach. Furthermore,

alternative soft calibration functions Φ and Ψ in (23) should be investigated.

Soft calibration has many practical benefits. A solution can always be found, no

matter how strict the weight bounds or the calibration constraints. Additionally,

the penalty for not satisfying the calibration constraints can be determined upfront

(through the soft calibration parameter β). This is in contrast to classical soft

calibration which guarantees a solution, but makes use of the soft calibration

parameter to satisfy the weight bounds.

In the next section, the use of soft calibration as a diagnostic tool shall be explored.

Whilst practitioners may not wish to adopt soft calibration as a direct calibration

tool, it has the benefit of being able to identify problematic constraints and give

a clear indication of whether a solution could be found to the corresponding hard

calibration problem.
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5.4 Soft Calibration as a Diagnostic Tool

In this section, the new approach to soft calibration as described in Section 5.3

shall be used as a tool for identifying problematic constraints and as a diagnostic

tool that can be used before carrying out hard calibration.

Statistical offices are unlikely to adopt soft calibration as a methodology. The

main argument for this is that hard calibration guarantees consistency, whilst

soft calibration does not. However, a counter-argument to this statement would

be that soft calibration guarantees a solution whilst hard calibration does not.

Despite this, soft calibration could also be used as a diagnostic tool to investigate

whether the corresponding hard calibration problem will have a solution.

Returning again to the example considered the previous two sections. When the

lower and upper bounds were l = 12
49

and u = 120
49
, the solution obtained via the

new soft calibration method with γ = 10−9 was virtually identical to the solution

from hard calibration. This was in fact the case for all values of γ less than

1. Furthermore, the calibration constraints were approximately satisfied, with

differences between the sample estimates and the population totals of the order

1× 10−2 or less.

However, when the lower and upper bounds of l = 24/49 and u = 96/49 were used

with γ = 10−9, the calibrated weights G were such that A′G = 5053.910 and 1′G =

13.435. Given the hard calibration constraints were A′G = 5054 and 1′G = 12,

the constraint A′G = 5054 has been virtually satisfied. However, the constraint

1′G = 12 has not been satisfied. The value of the estimate is approximately 12%

larger than the constraint value. This suggests that the condition 1′G = 12 was

too restrictive.

This example demonstrates a clear application for soft calibration as a diagnostic

tool. By running soft calibration first, the proximity of the estimates and the

known constraint values can be examined to determine whether the hard cali-

bration problem will have a solution. If the estimates and constraint values are

virtually the same, this suggests that hard calibration will find a solution to the

102



problem. However, if the constraints are not satisfied approximately, there is

unlikely to be a solution to the corresponding hard calibration problem.

In the case that the constraints are not met exactly, the user can then decide

how to proceed. Of course, the weights obtained from the soft calibration prob-

lem could be used. Alternatively, an investigation of the sample data and the

constraint values may be needed to identify any outliers and problematic values.

Alternatively, the weight bounds can be relaxed slightly and the soft calibration

performed again to diagnose the likelihood of a hard calibration solution.

5.5 Summary

In this section, the soft calibration problem has been introduced. Its use as a

method for solving the calibration problem has been described, and shown to give

virtually identical solutions to hard calibration in the cases of “well-behaved” con-

straints. Unlike hard calibration, soft calibration is guaranteed to give a solution

to the calibration problem.

(recall that all constraints in (18) are taken into account due to a clever choice of

the functions φi). If β is large then the solution of this problem is guaranteed to

be very close to the solution of the original problem (17).

The use of soft calibration as a diagnostic tool has also been explored. This allows

identification of challenging constraints that may lead to lack of convergence when

applying the hard calibration problem.

In the next chapter, a new approach to calibration is proposed. This approach

involves minimization of the mean squared error of the calibration estimator. This

approach is practically appealing, since it is the variance and bias of the calibration

estimators that are often of more interest to practitioners.
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6 Mean Square Error Calibration

In the previous chapters, calibration has been presented as a technique for adjust-

ing the sample weights assigned to sample members within a survey. Properties

of these weights and corresponding estimates have been described, along with

an investigation of how these weights change for various choices of calibration

algorithms and functions.

Problems considered so far include negative weights, extreme weights and a lack

of solution to the calibration problem. These have been addressed in several

ways, including alternative calibration functions and algorithms and the use of

soft calibration.

Despite this, it is often the variance and bias of the calibration estimates that are

of more interest to practitioners than the weights themselves. Therefore, in this

chapter, a new approach to calibration is proposed that adjusts the sample weights

through direct minimization of the mean squared error (MSE) of the calibration

estimator.

For this section, it is easier to derive the results using the calibration weights them-

selves instead of the g-weights. Therefore, we adapt the notation seen previously

in terms of the calibrated weights W rather than the g-weights G.

6.1 Introduction

Recall that the size of the population is denoted by N and the size of the sample

is denoted by n. Let πk denote the inclusion probability for the k-th member

of the population (k = 1, . . . , N). Let πkl denote the joint-inclusion probability

for the k-th and l-th population units. The use of the word probability here

may be misleading, in the sense that πk is not a probability itself, but rather a

sum of probabilities for all of the samples that element k appears in. Therefore,
∑N

k=1 πk = n, and not 1. Furthermore, πkl denotes the sum of the probabilities

for all samples that elements k and l appear in together.
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The indices 1, . . . , n shall be used to denote the sample members. Note that

these do not, necessarily, correspond with the indices 1, . . . , n, . . . , N used for the

population members.

A vector of initial sample weights D = (d1, . . . , dn)
′ is given. Assume that di =

1
πi
,

i = 1, . . . , n. Since the inclusion probabilities, πi, are always finite and positive,

the initial weights di will also be positive, that is: di > 0 for all i. As in the earlier

chapters, it shall be assumed that the initial weights are known in advance and

have been adjusted to account for biases and non-response in the sample.

Let Y denote the variable of interest. For this variable, only the sample values are

known. The unknown population total, mean or proportion needs to be estimated.

This chapter focuses on the estimation of population totals.

To estimate the unknown population total, the estimator Y ′W =
∑n

i=1wiyi,

where wi denotes the calibrated weight for the i-th sample member (i = 1, . . . , n),

W = (w1, . . . , wn)
′ and Y = (y1, . . . , yn)

′. This is a linear weighted estimator of

the unknown population total. This unknown population total shall be denoted

TY . The initial weights could be used, however calibrated weights are generally

favourable since they usually give estimators with smaller variance.

In the process of calibrating the weights, known auxiliary information for m vari-

ables is used. Let X=




x1

x2

...

xn




= (xij)
n,m
i,j=1. The (i, j)-th entry xij of X denotes

the value that the i-th member of the sample takes on the j-th auxiliary variable,

where i = 1, . . . , n and j = 1, . . . , m.

The population totals for the m auxiliary variables are given in the vector TX =

(t1, . . . , tm)
′. Exact (hard) constraints can be written as X ′W = TX . These

constraints are used for calibration of the weights. Soft constraints of the form

X ′W ≃ TX can also be used. Note the use of the subscript X to distinguish the

vector of known population totals TX for each of the m auxiliary variables from

the unknown population total TY of the variable of interest, Y .
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Additional constraints on W , in addition to X ′W = TX , can also be imposed. It is

desirable for the calibrated weights to be non-negative; that is, wi ≥ 0 for all i (see

for example [3, 4, 23]). Recall the informal definition of a weight describing how

many people in the population a sample member represents. Negative weights

suggest that the sample member does not represent anyone. Clearly a sample

member should represent themselves, and it is desirable that they represent a

certain section of the population to have made the inclusion of this member in

the sample worthwhile.

Stricter conditions on the calibrated weights W are often imposed of the form

L◦D ≤ W ≤ U◦D, where L◦D = (l1d1, . . . , lndn)
′ and U◦D = (u1d1, . . . , undn)

′

are some given n× 1 vectors, and ◦ denotes element wise multiplication. This is

synonymous to the constraints L ≤ G ≤ U that have been seen in the previous

chapters.

If li = 0 and ui = ∞ for all i, then the constraint lidi ≤ wi ≤ uidi coincides

with the simple non-negativity constraint wi ≥ 0. In the majority of practical

problems, li = l and ui = u for all i with 0 ≤ l < 1 < u ≤ ∞, where strict

inequalities l > 0 and u < ∞ are very common.

There are three common choices of the vectors L = (l1, . . . , ln)
′ and U = (u1, . . . , un)

′,

which have also been seen in previous chapters. These are:

(a) no constraints: li = −∞ and ui = ∞ for all i;

(b) non-negativity constraint: li = 0 and ui = ∞ for all i;

(c) general constraints: 0 ≤ li < 1 < ui ≤ ∞.

The feasibility domain W for the vector of calibrated weights W is defined to be

W = {W = (w1, . . . , wn)
′ : L ◦D ≤ W ≤ U ◦D and X ′W = TX} , (28)

where L, U,D ∈ Rn, TX ∈ Rm and X ∈ Rn×m are all given. Note that if the

bounds L ◦D ≤ W ≤ U ◦D for W are too narrow, then the feasible domain W

may be empty due to the strict requirement that X ′W = TX .
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An alternative feasibility domain W1 for the vector of calibrated weights W is

defined to be

W1 = {W = (w1, . . . , wn)
′ : L ◦D ≤ W ≤ U ◦D and X ′W ≃ TX} , (29)

where L, U,D ∈ R
n, TX ∈ R

m and X ∈ R
n×m are all given. Note that, in this

case, the feasible domain is always non-empty. This corresponds to the constraints

that have been seen for soft calibration in the previous chapter. Whilst the hard

calibration with weight constraints is not guaranteed to have a solution, a solution

can always be found in the corresponding soft calibration case.

For the development of this method, hard calibration constraints shall be the

main focus. Practitioners typically prefer the use of hard calibration because of

the consistency it gives with known population totals. As outlined in Chapter 5,

the existing soft calibration methodology has its flaws and is likely to explain the

lack of use in practice.

An interesting area for future work is to develop both the soft calibration problem

and mean square error calibration simultaneously. Both are interesting areas of

research in their own right, and shall be considered separately for the purpose of

this thesis. However, there is certainly scope to bring these two approaches to

calibration together. A brief explanation of how this can be done will be described

in Section 6.4.

Recall that in the process of calibration, the weights W have to stay as close

as possible to the initial weights D. This is generally a practical requirement,

since time is spent ensuring that the initial weights D adjust for biases and non-

response appropriately. To measure the closeness of W and D, it is customary to

use calibration functions of the form

Φ(W ) = Φ (w1, . . . , wn) =

n∑

i=1

qiφ (wi) , (30)

where φ(·) is a univariate, strictly convex function with φ(di) = 0 and q1, . . . , qn are

given non-negative numbers; typically, qi = 1 for all i. In this case, the function Φ

is assessing the deviation between the calibrated weights W and the initial weights
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D. It is not uncommon to see these functions expressed as Φ(W,D) in existing

literature. However, as the initial weights are considered fixed, the function Φ is

simply a function of the calibrated weights W .

The function (30) plays the role of the objective function in the calibration opti-

mization problem. Hard calibration can be written as the following optimization

problem:

Φ(W ) → min
W∈W

, where Φ(·) and W are defined in (30) and (28), respectively.

(31)

Soft calibration can be written as the following optimization problem:

Φ(W ) → min
W∈W1

, where Φ(·) and W1 are defined in (30) and (29), respectively.

(32)

These optimization problems will be fully defined if we specify the function φ in

(30). There are two natural conditions on the function φ in (30) (as given in [20]):

(a) φ(·) is twice differentiable and strictly convex on its domain;

(b) φ(di) = 0, φ′(di) = 0, where the derivatives are taken with respect to the

argument of the function φ (w).

The first of these conditions guarantees that the function is ‘well-behaved’ and has

a minimum at the initial weights. The second condition requires that the function

is 0 at the initial weights, since there is no deviation between the calibrated and

initial weights in this case. Requiring the derivative to be zero at the initial

weights also guarantees that there is a stationary point at these values, and due

to the twice differentiability and strict convexity of the function, it is guaranteed

to be a minimum.

The choices of the function φ have been discussed in detail in Chapter 4. How-

ever, in this chapter, only existing calibration functions shall be considered. This

is to allow direct comparisons between the new approach and existing software

packages, including the SAS Macro CALMAR [33] and the ‘sampling’ package in

R [61].
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The following three functions φ are implemented in many of the software packages

and shall be considered throughout this chapter:

(i) Quadratic:

φ(Q) (w) =
(w − d)2

2d
;

(ii) Raking:

φ(R) (w) = w ln
(w
d

)
− w + d;

(iii) Logit:

φ(L) (w) =
1

C

[
(w − ld) ln

(
w − d

d− ld

)
+ (ud− w) ln

(
ud− w

ud− d

)]
;

where C = u−l
(1−l)(u−1)

.

In order to derive the new mean square error calibration methodology, the bias

and variance of the calibration estimator is required. Before this can be done, let

us revisit the notions of design-based and model-based sampling.

As described in Chapter 1, model-based sampling relies on a specific underlying

probability model that describes the random process to generate the data. There

are many possible choices for this model. Since we consider the model as a process

for generating the data, it is possible to make conclusions that can be generalized

to other data generated using the same process. However, a model can only ever

approximate the true data. It is often difficult to truly know how deviations from

the model will affect the analysis.

Analysis in survey sampling however is usually design-based. In this case, the

population is pre-specified and data values for the population are considered to

be fixed, rather than random. The observed sample is instead considered ran-

dom, since the sample is generated by selecting individuals randomly from the

fixed population. Since the random selection of individuals, referred to as the

sample design, can be controlled, the probabilities of selecting individuals can of-

ten be known exactly. Design-based sampling uses the sample members to derive

estimates of the fixed population. In the design-based framework, one cannot

generalize the results of the inference to other populations.
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Recall that sampling methods form the basis of design-based inference. Examples

include simple random sampling, stratified sampling and cluster sampling. Any

sampling method should satisfy the following conditions [35]:

• All individuals in the population have a non-zero probability of being se-

lected in the sample. For individual i we denote this probability by πi.

• The probability πi must be known for every individual in the population,

even those who do are not in the selected sample.

• Every pair of individuals must have a non-zero probability of both being in

the sample. For individuals i and j we denote this probability as πij .

• The probability πij must be known for every pair of individuals in the pop-

ulation, even those who do are not in the selected sample.

Suppose that we work in the design-based framework, but introduce a model

that considers the relationship between the variables in the survey. In computing

estimates and standard errors, we do not consider the goodness of fit of the model.

However, the gain in precision from using the model is inevitably dependent upon

the model’s fit.

Model-assisted inference is the term used to describe estimation that is valid

regardless of model fit, and efficient when the model fits well. The model is often

referred to as a working model, which is a term also used in longitudinal data

analysis (see, for example, [66]). The use of this term indicates that there is no

assumption that the model is accurate, rather that the model is a practical tool

that can be used to get more precise estimates.

To summarise, there are three approaches to sampling: design-based, model-based

and model-assisted. An informal summary of each of these is given below.

Design-based sampling: the randomness is only attributed to the sampling

variation. Observations are assumed to be fixed, and the only error is attributed

to the sampling.
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Model-based sampling: the variability in observations can be explained by

a model, where the model variance can be split between observation errors and

sampling errors.

Model-assisted sampling: one works in the design-based framework, however

a model is introduced for purposes of estimation and computing standard errors

that can be used to derive results regarding bias and variance. Estimators are

valid regardless of model fit, and efficient when the model fits well.

In this chapter, a new approach to survey calibration is proposed that seeks to

minimize the mean square error of the calibration estimator. In order to do this,

the formulae for the variance and bias of the calibration estimator need to be

derived. This enables us to formulate our approach in terms of both hard and

soft calibration.

In Section 6.2, the variance and bias of the calibration estimator is derived. Mean

square error calibration for hard constraints shall be predominantly described in

this chapter, and outlined in Section 6.3. A brief overview of how this new method

could be used for soft constraints is given in Section 6.4.

6.2 Bias and Variance of the Calibration Estimator

Working in the “model-assisted” framework, assume there is a model relating the

variable of interest, Y , to the auxiliary variables X . This will allow the derivation

of results regarding variance and bias. Remember that, in the model-assisted

framework, the model does not have to be correct. The following model shall be

assumed:

Y = Xθ + ε,

where E(ε) = 0n and D(ε) = σ2V , where V is some (usually diagonal) matrix to

be specified. For simplicity, a linear regression model has been assumed. There is

scope to consider more complicated models, but that remains an area for further

research.
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Two possible cases for the matrix V shall be considered:

• Vd = diag(q1d1, . . . , qndn), where di denotes the ith initial weight,

• Vw = diag(q1w1, . . . , qnwn), where wi denotes the ith calibrated weight,

and qi, i = 1, . . . , n, are arbitrary constants (usually set to 1). Both of these

matrices have been suggested in existing literature (see for example [19] and [20]).

The benefit of the first of these forms is that it only requires knowledge of the

initial weights. The second matrix contains the calibrated weights, which are

themselves derived as part of the process. This makes the calculations more

challenging and complex.

Recall that πi denotes the inclusion probability of the i-th member of the sample,

and πij denotes the joint inclusion probability of the i-th and j-th sample members.

The inclusion probability is defined to be the sum of probabilities for each sample

that sample member i will be selected for, whilst the joint inclusion probability is

the sum of probabilities for the samples that members i and j will both be selected

for. Let E be an n× n matrix with entries Eij =
πij−πiπj

πij
, (i, j = 1, . . . , n).

There is no known exact formula for the variance of the calibration estimator.

This is due to the design-based nature of survey sampling. However, according to

Deville et. al (1992), a model-assisted estimator of the variance of Y ′W is given

by:

Var(Y ′W ) =

n∑

i=1

n∑

j=1

(πij − πiπj)

πij

(wiei)(wjej) = W̃ ′EW̃ , (33)

where ei = yi − xiθ̂, θ̂ satisfies the normal equations:

(X ′V X)θ̂ = X ′V Y,

and W̃ has elements w̃i = wiei for i = 1, . . . , n.

In the case V = Vd, the regression coefficients θ̂ do not depend on the calibrated

weightsW . However, in the case V = Vw, observe that θ̂, and therefore ei, depends

on the calibrated weights W . Let θ̂d denote the regression coefficients in the case

V = Vd. In the case V = Vw, we shall write θ̂w, to indicate the dependence of θ̂

on W .
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Let EM denote expectation with respect to the model, whilst ED denotes expecta-

tion with respect to the sampling design. The total expectation, E, is then defined

as EMED = EDEM . Note that we can always interchange the expectation when

the model and design are independent of each other.

Let us now consider the bias of the estimator Y ′W , assuming hard constraints of

the form X ′W = TX :

E(Y ′W − TY ) = EDEM [Y ′W − TY ]

= ED(W
′Xθ)− TY

= ED(W
′X)θ − TY

= T ′

Xθ − TY .

For soft calibration, the constraints are of the form X ′W ≈ TX . Therefore, the

expression above gives the approximate bias in the case of soft calibration.

Having obtained expressions for the variance and the bias of the calibration es-

timator, we can now derive the mean square error. Recall that the mean square

error is the sum of the variance and the square of the bias. In the following sec-

tions methods for minimizing the mean square error of the calibration estimators

in the case of hard and soft constraints shall be derived.

6.3 Mean Square Error Calibration for Hard Constraints

In the previous section, it was shown that the variance of the calibration estimator

is given by W̃ ′EW̃ , where W̃ has elements w̃i = wiei for i = 1, . . . , n and the ei

are the errors derived from the assisting regression model. Recall that the matrix

E has entries Eij =
πij−πiπj

πij

This chapter makes use of the following result.

Definition 6.1 (Mean Square Error). Let θ be an unknown parameter and

suppose that θ̂ is an estimator of θ. The mean square error, MSE, of the estimator

θ̂ is given by

MSE(θ̂) = Var(θ̂) + (bias(θ̂))2.
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Recall that there are two possibilities for the matrix V where D(ε) = σ2V .

Either Vd = diag(q1d1, . . . , qndn), where di denotes the ith initial weight, or

Vw = diag(q1w1, . . . , qnwn), where wi denotes the ith calibrated weight. Mean

square error calibration for hard constraints shall be considered in both of these

cases.

Case 1: If V = Vd, then the estimate of θ is θ̂d and the resulting estimate of the

bias is:

bias(Y ′W ) = T ′

X θ̂d − TY .

Note that this does not depend on the calibrated weights W . Therefore, the

weights that minimize the variance will be equivalent to those that minimize the

mean squared error. So in this case, the bias does not need to be considered as

part of the mean square error calibration.

Recall that the feasibility domain for the hard calibration problem is given by

W = {W = (w1, . . . , wn)
′ : L ◦D ≤ W ≤ U ◦D and X ′W = TX}. Using this, we

can state the calibration problem as follows:

W ′EW → min
W∈W

. (34)

Case 2: If V = Vw, then the estimate of θ is θ̂w and in this case the estimate of

the bias is given by:

bias(Y ′W ) = T ′

X θ̂w − TY .

Note that this does depend on the calibrated weights W . Therefore, it needs to be

considered as part of the calibration problem. Using (28), the calibration problem

can be stated as follows:

W ′EW + (T ′

X θ̂w − TY )
2 → min

W∈W
. (35)

Several examples shall now be considered to explore the behaviour of the calibra-

tion problems described above. Case 2 is computationally challenging to imple-

ment and still require further investigation. Therefore, unless otherwise stated,

only case 1 shall be considered in the examples that follow.
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6.3.1 Simulation Example

In this example, the population has size N = 100, and 10,000 simple random

samples of size n = 20 are taken. Random vectors X and Y are generated, both

from a normal distribution, such that the correlation between X and Y is 0.9.

The non-negativity constraint wi ≥ 0 is imposed throughout. Results are com-

pared from classical calibration using the quadratic function φ(Q) (classical method

1, denoted CM1), with the calibrated weights using (34) (alternative method 1,

denoted AM1) and (35) (alternative method 2, denoted AM2). The MSE and

variance of the estimator Y ′W are compared in both cases.

In Figures 31, the variance of the estimator Y ′W for AM1 and the variance of the

estimator using CM1 are compared. A scatter plot of the variance of Y ′W using

AM1 against the variance of Y ′W using CM1 is given in Figure 31(a). The ratio

of the variance of Y ′W using AM1 to the variance of Y ′W using CM1 is given in

Figure 31(b). Similarly, Figure 32 compares the MSE of the estimator Y ′W using

methods CM1 and AM2. Figure 32(a) shows a scatter plot of the MSE of the

estimator Y ′W using weights from AM2 against the MSE of the estimator using

weights from CM1. Figure 32(b) shows a histogram of the ratio of the MSE of

Y ′W using AM2 to the MSE of Y ′W using CM1.

Observe in both scatter plots that all the points lie under the main diagonal, and

the ratio of the variances/MSE in the histograms is between 0 and 1. Hence, the

variance is always smaller using the AM1 than using CM1, and the MSE is always

smaller using AM2 than using CM1. These graphs confirm that the methods have

worked and have found a calibration estimator with smaller variance/mean square

error. This is of course to be expected, since the weights derived using AM1

were obtained using the mean square error as the optimization criteria. Further

investigation is needed to compare these methods according to other suitable

measures. Examples could include the reliability of estimates and the distribution

of the derived calibrated weights. This remains an area for further investigation.

For this example, similar results were obtained when comparisons were made with

other calibration functions. Therefore, additional scatter plots and histograms are
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Figure 31: Comparison of variance of the estimator Y ′W when using AM1 and
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Figure 32: Comparison of MSE of the estimator Y ′W when using AM2 and CM1

not included here. This example has confirmed that the methodology correctly

finds calibration estimators with smaller variance/MSE. In the next example, the

behaviour of alternative method 1 (AM1) is compared with classical calibration

approaches for various sampling methods. The alternative method will be shown

to always give estimators that have smaller variance/mean squared error.
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6.3.2 California Academic Performance Index (API) Example

In this example, the Academic Performance Index (API) datasets included as

part of the ‘survey’ package in R (see [36] for more details) shall be considered.

The data sets include information about the academic performance index for

6194 schools in California in 1999 and 2000. The academic performance index is

calculated from standardized tests that are taken by all students in elementary,

middle and high schools in California.

The first data set, ‘apipop’, contains all schools in California with at least 100

students. The second dataset, ‘apisrs’, contains a simple random sample of 200 of

the 6194 schools from the ‘apipop’ dataset. The third dataset, ‘apistrat’, contains

a stratified sample of 200 schools stratified by school type (elementary, middle

and high).

For the fourth dataset, ‘apiclus1’, the 757 school districts within California are

treated as clusters. The apiclus1 dataset contains the 183 schools that are in

15 randomly selected school districts (clusters). Finally, the ‘apiclus2’ dataset

contains 126 schools that were obtained through two-stage cluster sampling. For

the two-stage cluster sample, 40 school districts (clusters) were selected at random,

with random samples being taken within each cluster.

The purpose of the calibration is to estimate the total number of students that

were tested in the 1999-2000 academic year. Within each of the datasets, the

variable api.stu gives the number of students that were tested at each school. The

auxiliary variables in this example will be school type. Therefore the columns of

X are vectors of 0s and 1s, where xij = 1 if school i is type j (j = 1, 2, 3), and

xij = 0 otherwise.

For these datasets, the performance of the mean square error calibration shall

be investigated for various sampling schemes, namely simple random sampling

(SM1), stratified sampling (SM2), cluster sampling (SM3) and two-stage cluster

sampling (SM4).
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For each of these sampling methods, the variance of estimates obtained using

mean square error calibration shall be compared with weights derived using four

classical calibration methods:

• Calibration Method 1 (CM1): Quadratic, no weight bounds,

• Calibration Method 2 (CM2): Raking, non-negativity bounds,

• Calibration Method 3 (CM3): Quadratic, li = 0.25, ui = 4 for i = 1, . . . , n,

• Calibration Method 4 (CM4): Logit, li = 0.25, ui = 4 for i = 1, . . . , n,

The table below gives the ratio of the variance of estimates using mean square

error calibration with the variance of estimates using classical calibration methods.

Methods CM1 CM2 CM3 CM4
SM1 0.843 0.812 0.838 0.838
SM2 0.639 0.565 0.606 0.606
SM3 0.715 0.679 0.695 0.695
SM4 0.682 0.623 0.645 0.645

Table 13: Ratio of variance of the calibration estimator using classical
calibration methods to the variance of the calibration estimator using the new
method for various sampling methods (SM) and calibration methods (CM).

Observe that all the ratios in Table 1 are less than 1. Therefore, for every sam-

pling method and classical calibration method, mean square error calibration has

resulted in estimates with smaller variance. This again indicates the success of

the methodology in finding calibration estimators with smallest mean square er-

ror. This example has simply demonstrated that mean square error calibration

works. Comparing these methods using other criteria, such as the distribution of

the calibrated weights, should also be conducted and remains an area for further

research.

The final example in this section shall explore the impact of adding additional

calibration variables to the model. The examples considered so far have only had

one auxiliary variable. Additional auxiliary variables shall be added to the model

and the mean square error of the resulting estimates considered.
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6.3.3 Belgian Municipalities Example

Again, consider the Belgian municipalities dataset included in the ‘sampling’ pack-

age in R, as used for the example in Section 6.3.1. Recall that the data provides

information about the Belgian population at July 1st 2004 compared with July

1st 2003 and includes some financial information about the municipality incomes

at the end of 2001. Data is available for the 589 municipalities in Belgium. There

are 17 variables in the dataset including the municipality name and province num-

ber. However, the 4 variables of interest in this example are the number of men

on July 1st 2003, the number of women on July 1st 2003, total taxable income in

Euros in 2001, and total taxation in Euros in 2001.

The purpose of this example is to investigate the impact of adding additional

calibration variables to the model. In the simple example of Section 6.3.1, only

one auxiliary variable was considered. This section begins by considering two

variables, namely the number of males in 2003 and the number of females in

2003. For the population data, these two variables proved significant in a multiple

linear regression model. The variables for total taxable income and total taxation

shall then be added. These variables were not significant in the multiple linear

regression model.

Taking 1,000 simple random samples of size 50 and assign initial weights as

di=N/n where N is the size of the population and n is the sample size (in this

example N = 589 and n = 50). These would be the weights used in the Horvitz-

Thompson estimator [28]. The values of the variables of interest for each of the

50 sample members are used to form the 50×m matrix X , where m denotes the

number of variables included in the calibration model. Here, the cases m = 2 and

m = 4 are considered.

Each sample shall be calibrated using the following classical calibration approaches:

• Classical Method 1 (CM1): Quadratic function φ(Q), no weight bounds.

• Classical Method 2 (CM2): Raking function φ(R), non-negativity bounds.
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• Classical Method 3 (CM3): Quadratic function φ(Q), li = 0.25, ui = 4 for

i = 1, . . . , n.

• Classical Method 4 (CM4): Logit function φ(L), li = 0.25, ui = 4 for i =

1, . . . , n.

In this section, the following methods are also considered:

• Alternative Method 1 (AM1): Solving (34) with no weight bounds.

• Alternative Method 2 (AM2): Solving (34) with non-negativity bounds.

• Alternative Method 3 (AM3): Solving (34) with li = 0.25, ui = 4 for i =

1, . . . , n.

Firstly consider m = 2. Therefore, there are two auxiliary variables, namely the

number of males in 2003 and the number of females in 2003. In Figure 33, the

MSE of the estimator Y ′W using weights from the AM1 against the MSE using

CM1 is plotted. A histogram of the ratio of the MSE for the estimator using

AM1 to the MSE using CM1 is also given. Similarly, Figure 34 plots the MSE of

the estimator Y ′W using weights from AM2 against the MSE using weights from

CM2. A histogram of the ratio of the MSE of the estimates using AM2 to the

MSE when using CM2 is also provided.

For m = 2, similar pictures for comparisons of AM1, AM2 and AM3 against

the classical methods with corresponding weight bounds can be derived. In all

cases, they show that mean square error calibration gives estimates with smaller

variance/mean square error.

Now consider m = 4, meaning there are four auxiliary variables. These are: the

number of males in 2003, the number of females in 2003, total taxable income in

2001 and total taxation in 2001. Recall that two of these variables, namely total

taxable income and total taxation, were not significant when a multiple linear

regression was run.

In Figure 35, the variance of the estimator Y ′W using weights from AM1 is

compared with the MSE using weights from CM1. Scatter plots of the variances,

and a histogram of the ratio of the variances are given. Again, comparisons
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Figure 33: Comparison of MSE of Y ′W when using AM1 and CM1 (m = 2)
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Figure 34: Comparison of MSE of the estimator Y ′W when using AM2 and
CM2 (m = 2)

of AM1, AM2 and AM3 against the classical methods with corresponding weight

bounds gave similar scatter plots and histograms. Therefore, they are not included

here.
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Figure 35: Comparison of MSE of the estimator Y ′W when using AM1 and
CM1 (m = 4)

So far, the weights from mean square error calibration have not been consid-

ered. These are now compared with the weights from classical calibration. In

Figure 36(a), the weights from AM1 are plotted against the weights from CM1.

The scatter plot shows that the weights from AM1 are far more variable than the

weights from classical calibration.

In Figure 36(b), the weights from AM3 are compared with the weights from CM3.

More of the weights approach the boundary values of 0.25 and 4 in the case of

AM3, compared to the weights from CM3 that are more clustered around 1.

In Figure 37, the distribution of the estimates Y ′W is given for each of the four

classical calibration methods, and the three alternative methods. The estimates

for m = 2 are given in Figure 37(a) and the estimates for m = 4 are shown in

Figure 37(b). In both figures, we see that the estimates for AM1 and AM2 are

far more variable than the estimates using CM1 and CM2, respectively. This is

counter-intuitive, since our objective with this method is to minimize the mean

squared error of the estimates. Similarly, there is very little difference in the

variability of the estimates from AM3 compared to the estimates using CM3 and

CM4.
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cases

Further study is needed to investigate the causes of this. There is a contradiction

here, since the variance and mean square error are smaller according to the for-

mulae given in 6.3. However, as we have seen in the histograms in Fig. 37, there

is a much greater variability in the estimates from this method, compared to the

estimates from classical calibration.
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Figure 37: Distribution of Y ′W for the case m = 2 and m = 4 for various
calibration methods

Mean square error calibration is still a relatively new methodology. It has been

shown in these examples to significantly reduce the mean square error of the
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estimates, however there is still much scope for further comparisons with existing

methodologies to highlight the key benefits of this method.

In the next section, a brief overview of how mean square error calibration can be

conducted in the case of soft constraints is given.

6.4 Mean Square Error Calibration for Soft Constraints

By relaxing the constraint X ′W = T , we can define the soft feasibility domain

W1 = {W = (w1, . . . , wn)
′ : L ◦ D ≤ W ≤ U ◦ D and X ′W ≃ TX . Again, two

cases are considered depending on the form of the matrix V .

Case 1: If V = Vd, the bias is constant with respect to W . Therefore, it is not

included in the calibration problem, which can be stated as follows:

W ′EW + β−1(X ′W − T )′C(X ′W − T ) → min
W∈W1

, (36)

where C is a diagonal matrix (often taken to be the identity matrix), and β is

some chosen constant.

Case 2: If V = Vw, the bias does depends on the calibrated weights W . There-

fore, in this case, the calibration problem can be stated as follows:

W ′EW + (T ′

X θ̂w − TY )
2 + β−1(X ′W − T )′C(X ′W − T ) → min

W∈W1

, (37)

where C is a diagonal matrix (often taken to be the identity matrix), and β is

some chosen constant.

More investigation is needed for this approach, and the suitability of using the

approximate bias requires further study. However, it remains an interesting area of

future investigation to combine mean square error calibration with soft calibration.
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6.5 Summary

In this chapter, a new approach to the calibration problem has been presented.

This aims to minimize the mean square error of the calibration estimator directly,

whist satisfying the calibration constraints either exactly or approximately.

This is still a relatively new area of research, and there is scope for further devel-

opment and improvement of the methodology. Further comparisons with existing

methods is also needed to truly highlight benefit of this new approach.

In the next chapter, the findings from this thesis are summarised and areas for

future research considered.
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7 Conclusion and Further Work

This research has investigated the calibration problem and developed several

methods for solving this key official statistics problem. As well as building on ex-

isting methodologies, it has also introduced a new approach to calibration based on

the practical requirements of the calibration estimator. This chapter will present

a summary of the key findings and conclusions that can be drawn from the re-

search. It also outlines the contributions made to the field and identifies areas for

future research.

This chapter is structured as follows. Section 7.1 concludes the research presented

in this thesis and provides a summary of each of the chapters. Section 7.2 outlines

areas for further investigation and future research questions based on this research.

Section 7.3 provides some closing remarks to the thesis.

7.1 Conclusion

This research has provided a unified theory for describing the calibration prob-

lem through use of optimization. Several new calibration functions have been

presented, with their benefits described. We have also explored the use of soft

calibration, presenting the drawback with existing approaches and describing soft

calibration’s potential as a constraint diagnostic tool. A new method for calibra-

tion has also been proposed that involves direct minimization of the mean squared

error of the calibration estimator.

An overview of each chapter is given, with the main conclusions and contributions

that can be drawn from each chapter.

Chapter 1 described the benefits of calibration problem and highlighted several

practical considerations when using calibration. This provided the motivation for

the research presented in this thesis. The two main approaches to calibration,

namely hard calibration and soft calibration, were also presented.
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Chapter 2 outlined a new framework for calibration, namely calibration as an op-

timization problem. Whilst many authors have described the calibration problem,

they have not done so via optimization.

Chapter 3 explored several algorithms and software packages currently used to

perform calibration. This research described these algorithms mathematically,

and highlighted some of the flaws in existing calibration software.

Chapter 4 provided a critical analysis of existing calibration functions and intro-

duced two new calibration functions that improve upon those that are currently

implemented.

Chapter 5 described soft calibration, firstly via optimization as a method for

solving the calibration problem. Whilst appealing since it guarantees a solution

to the calibration problem, it is unlikely to be adopted in practice due to the

relaxing of the calibration constraints (albeit slight in most cases). However,

a clear practical use for soft calibration is as a diagnostic tool for identifying

problematic calibration constraints.

Chapter 6 presented a new approach to calibration that directly minimizes the

mean square error of the calibration estimator. This has practical appeal, since

the variance of the calibration estimator has a relative importance to practitioners.

In the next section, we explore ways in which the research in this thesis can be

extended. We consider both theoretical extensions of this research, as well as

practical considerations for implementation of the findings in this thesis.

7.2 Further Work

Inevitably, there is scope for further work and extensions to the research presented

in this thesis. Opportunities for future research associated with this thesis are

outlined in this section.

In this thesis, we focused on the classical calibration problem and its formulation in

terms of optimization. However, there is a vast literature on calibration with many
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methods not considered in this thesis. An interesting area for future investigation

is the use of the optimization framework to describe these methods. Optimization

is likely to provide a standardized approach through which many other calibration

methods can be described. This would bring together many approaches under one

standard theory.

Several new calibration functions have been presented in Chapter 4. These were

motivated primarily from the practical use of reducing the number of calibration

weights that cluster at the bounds. There is scope to further explore the theoret-

ical properties of these functions, as well as using them as part of soft calibration

as described in Chapter 5.

The work in Chapter 3 mainly provided a critical analysis of the existing algo-

rithms and software. An interesting area for further research is extending these

algorithms to include the new calibration functions presented in Chapter 4. Fur-

thermore, as calibration can be considered as an optimization problem, there is

scope to experiment with various alternative optimization algorithms.

Soft calibration has received far less attention in calibration literature, and na-

tional statistical offices are reluctant to use this approach as a calibration method.

However, it guarantees a solution to the problem, and leads to virtually the same

solution as hard calibration in the majority of cases. Through further research, the

optimization approach to soft calibration proposed in this thesis can be extended

and its practical use further explored.

Whilst this thesis focused on quadratic functions for soft calibration, the func-

tions presented in Chapter 4 could also be incorporated as part of the problem.

Experimenting with various choices of the two soft calibration functions remains

an area for further investigation.

An alternative practical use of soft calibration is as a diagnostic tool. This allows

those performing calibration to identify the ‘challenging’ constraints. There has

been interest from the Office for National Statistics to incorporate this method as

part of their ‘library of methods’ for analysing survey data. Development of this

methodology with the ONS is an interesting area for future collaboration.
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The new approach of mean square error calibration is still in its early stages of de-

velopment. Whilst practically appealing for leading to reduced mean square error

of the calibration estimator, there is scope for further investigation of the esti-

mates obtained using this approach. The mean square error calibration presented

in this thesis only considered ‘hard calibration’ constraints. There is arguably still

much work needed to further develop and extend the theoretical ideas presented

in this thesis. A natural extension of this area of research is the combination of

mean square error calibration with ‘soft calibration’ constraints.

7.3 Final Remarks

The research in this thesis has identified the importance of the calibration problem

in the analysis of sample surveys. It is a vital tool in the analysis of offical

statistics. Calibration is a method of providing consistency between surveys,

reducing the variance of estimates and accounting for non-response or coverage

bias. This thesis has focused on the first two of these motives for calibration.

In this chapter, we have outlined the significant findings from this research, which

has included several alternative approaches to calibration in survey sampling.

Areas for further research and investigation have been identified. There is scope

for these methods to be adopted by national statistical offices, and the Office for

National Statistics has played an important role in contributing to the practical

viewpoint of this research. There is interest to adopt the methodologies presented

in this research at the Office for National Statistics.

One of the key contributions of this thesis has been to present a unified framework

for both the hard and soft calibration problems. Also, new calibration functions

have been proposed, and a the methodology for soft calibration developed. Fur-

thermore, a new calibration methodology has been introduced that minimizes the

mean square error of the calibration estimator. Further research into both soft

calibration and mean square error calibration presents an interesting scope for

further research.
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