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ABSTRACT

The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the

moment of the explosion are consistent with the core-collapse formation of a neutron star. However,

no compelling evidence for the presence in SN1987A of a compact object of any kind has been found
yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star

survived and, if it did, on its properties. Starting from the analysis of recent Chandra observations,

here we appraise the current observational situation. We derived limits on the X-ray luminosity of a

compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s−1,

corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN1987A of ≈(0.5–

1.5) × 1038 erg s−1. However, a much brighter X-ray source cannot be excluded if, as is likely, it

is enshrouded in a cloud of absorbing matter with metallicity similar to that expected in the outer
layers of a massive star towards the end of its life. We found that other limits obtained from various

arguments and observations in other energy ranges either are unbinding or allow a similar maximum
luminosity of the order of ≈1035 erg s−1. We conclude that while a pulsar alike the one in the Crab

Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample

space for an ‘ordinary’ X-ray-emitting young neutron star, born with normal initial spin period,

temperature and magnetic field, to be hiding inside the evolving remnant of SN1987A.

Keywords: supernovae: individual (SN 1987A) — stars: neutron

1. INTRODUCTION

The supernova (SN) designated ‘1987A’ was discov-

ered on 1987 February 23 in the Large Magellanic Cloud

(LMC). It was the brightest and nearest SN explo-

sion observed since Kepler’s SN 1604 and is providing

a wealth of information on the last evolutionary stage of

massive stars as well as on the formation of a supernova

remnant (Arnett et al. 1989; McCray 1993; McCray &

Fransson 2016). The explosion also confirmed the col-

lapse of the progenitor star’s core in Type II supernovae

through a burst of neutrinos detected by multiple instru-

ments (Hirata et al. 1987; Bionta et al. 1987; Alekseev
et al. 1987).

SN 1987A is surrounded by a triple-ring system that

formed ∼20 kyr before the explosion from material

ejected by the progenitor, possibly as a result of its fast

E-mail: P.Esposito@uva.nl

rotation or a binary merger (Morris & Podsiadlowski

2007; Chita et al. 2008). The progenitor was identified
in pre-explosions images to be Sanduleak (Sk) −69◦ 202,

which was a B3 I blue supergiant with mass estimated

at ∼14M⊙ at the time of the explosion and initially

at ∼20M⊙, while in the case of a binary merger, the

standard model assumes two stars originally of ∼15 and

∼5M⊙ (Rousseau et al. 1978; Gilmozzi et al. 1987; Hille-
brandt et al. 1987; Sonneborn et al. 1987; Woosley et al.

1987; Walborn et al. 1989; Podsiadlowski 1992).

The progenitor’s mass and the neutrino flash observed

at the time of the SN are consistent with the birth of

a neutron star, though the formation of a black hole,

directly or at a later time from fallback, cannot be ex-

cluded (Perego et al. 2015; Blum & Kushnir 2016). So
far, however, no convincing detection of a neutron star—

such as the observation of pulsed emission or of a point-

like source—or compelling signs of its presence were ob-

tained in any wavelength, and the upper limits provided
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by deep observations in the various bands are often per-
ceived as ruling out the presence of a ‘standard’ neutron

star (see e.g. McCray 1993; Graves et al. 2005; Park

et al. 2005; Manchester 2007; McCray 2007; McCray &

Fransson 2016).
The aim of this work is to appraise the situation us-

ing currently available X-ray data. We derive new up-
per limits on the emission from a compact source in
SN1987A from recent Chandra observations, trying also

to take into account the uncertainties due to the compli-
cate environment and to the unknown pulsar’s spectrum
and rotational parameters. We then discuss the results
in the context of the properties of neutron stars. In the

following, unless the precise nature of the possible com-

pact object left in SN1987A is the focus of a sentence,

we will use neutron star, pulsar and central source or

object, more or less like synonyms.

2. THE Chandra OBSERVATIONS

The Chandra X-ray Observatory is the only instru-

ment with good enough spatial resolution to resolve
(partially) the structure of SN 1987A in X-rays. Chan-

dra has two focal plane instruments: the micro-channel

plate High Resolution Camera (HRC; Murray et al.

2000) and the Advanced CCD Imaging Spectrometer

(ACIS; Garmire et al. 2003). The ACIS provides some-
what lower spatial resolution than the HRC and in imag-

ing mode its readout speed is inadequate to sample the
period of a fast-spinning pulsar, but it has a much larger
effective area, especially at high energies, and is there-

fore better suited for our purpose. In fact, the effective

area of the HRC drops rapidly by a factor ∼4 after the

peak at 1 keV and above 2 keV is several time smaller

than that of the ACIS. Since the opacity of the envelope

to the high-energy emission is expected to decrease with
time approximately as ∝ t2 (e.g. McCray 1993; Cheva-

lier & Fransson 1994; Perna et al. 2008), here we used

only the data from three of the longest and most recent

Chandra observations in the archive (see Table 1 and

Frank et al. 2016 for their details, and Park et al. 2004,

2005; Ng et al. 2009 for limits from older observations).

Table 1. Log of the Chandra observations used in this work.

Instrument Obs.ID Date Exposure

dd-mm-yyyy (ks)

ACIS-S/HETG 15809 13-03-2014 70.5

HRC-S/LETG 16757 14-03-2015 67.7

ACIS-S/HETG 16756 17-09-2015 66.6

The data were processed and analysed with the Chan-

dra Interactive Analysis of Observations software pack-
age (CIAO version 4.8; Fruscione et al. 2006) and the

calibration files in the CALDB database (version 4.7.1.).

In all the observations, the instruments were operated

with the grating spectrometers, the Low Energy Trans-

mission Grating (LETG) for the HRC and the High En-

ergy Transmission Grating (HETG) for the ACIS. All
the analysis presented here is based on the zero-order
images, count rate and spectra. We note that the sig-

nificant advantage of the ACIS over the HRC in terms

of effective area for hard photons remains also when the

transmission gratings are used.1 For the ACIS data, we

removed the pixel randomization added by the Chandra
software and used the energy-dependent sub-pixel event

repositioning (EDSER) algorithm by Li et al. (2004) to

achieve sub-pixel resolution. The HRC data were used

mainly to check that the procedure did not produce im-

age artefacts.

2.1. Analysis of the ACIS data

In the X-ray band, at the time of the observations
we considered (2014–2015, see Table 1), SN 1987A could

be enclosed in a ≈3′′ by 4′′ (axes) ellipse (see Fig. 1).

The innermost structure, the ‘equatorial ring’ (radius

R ≈ 0.′′4, equivalent to ∼0.1 pc at 50 kpc), has been

interacting with the ejecta for many years (Frank et al.

2016) and is rather bright in X-rays (Fig. 1).

The main aims of the analysis described in this section
are to see whether there are reasons to suspect that part

of the X-rays originate from a pulsar and to measure the

absorption in its direction. For the two ACIS observa-

tions we extracted the spectra from an inner circular

region with radius of 0.′′3 (Fig. 1). This choice, which

entails the use of only a small fraction of the photon
collected with Chandra, is motivated by the fact that

for reasonable assumptions on the speed of a neutron

star (projected velocity <2,000 km s−1, see e.g. Hobbs

et al. 2005), the compact source must be within this ra-

dius. The background spectra were extracted from an

annulus with radii of 2′′ and 4′′, well outside the X-ray-

bright rim of the supernova. This selection resulted in

0.5–8 keV spectra of 414 photons for the first observation

[net source count rate of (5.8±0.3)×10−3 counts s−1, for

a total of 411±20 source counts and a signal-to-noise ra-

tio of 99.4%] and 325 photons for the second observation

[net source count rate of (4.8 ± 0.3) × 10−3 counts s−1,

323± 18 net counts and signal-to-noise of 99.3%].

The spectra can be described by a model with one or
more shock components (we used pshock in XSPEC /

xspshock in Sherpa) modified for the absorption. Sim-

1 See for example http://cxc.harvard.edu/caldb/prop_plan/
pimms/.
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15809 16756

Figure 1. ACIS 2014 and 2015 images of SN 1987A in the 0.3–8 keV band with subpixel binning (1/8 of the native pixel size);
the Obs.ID is indicated in each panel. The dashed circles show the area we considered to evaluate the limits (approximately
0.′′3 radius). The brightest drawn contour levels in each panel correspond to ∼25 counts bin−1 and the other levels are spaced

by a factor of
√
2.

ilarly to previous analyses (e.g. Zhekov et al. 2006),

we found that the fit with a one-shock model results

in an unreasonably low value of the absorption col-

umn density (∼9 × 1019 cm−2), consistent with zero

and much lower that both the average total Galactic

column density towards the LMC (1.6 × 1021 cm−2;
Kalberla et al. 2005) and the density measured in the

direction of SN1987A [∼(2–3)× 1021 cm−2; Fitzpatrick

& Walborn 1990; Michael et al. 2002; Park et al. 2004;

Kalberla et al. 2005]. Additionally, fixing the NH to a
more plausible value of 2 × 1021 cm−2, we obtained a

worse fit (although, still statistically acceptable), with

a reduced χ2 (χ2
ν
) that increased from 1.18 for 29 de-

grees of freedom (dof) to 1.43 for 30 dof. On the

other hand, a two-shock model yields an absorption,

as well as temperatures, in agreement with previous

works. To obtain a better estimate of the magnitude

of the absorption,2 we fit simultaneously the two spec-

tra with a numerical factor to account for the different
fluxes (the results of the simultaneous fit are consistent
with those of the individual fits). We obtained NH =

(2.6+0.8
−0.9)×1021 cm−2 (with the solar system abundances

by Anders & Grevesse 1989 and the photoelectric ab-

sorption cross sections by Balucinska-Church &McCam-
mon 1992), kT1 = 0.7+0.4

−0.2 keV and kT2 = 2.8+1.5
−0.5 keV,

with χ2
ν
= 0.88 for 27 dof. The observed 0.5–10 keV

fluxes are ∼1.8 × 10−12 and 1.6 × 10−12 erg cm−2 s−1

for Obs.IDs 15809 and 16756, respectively. The photon

2 Considered the relatively large uncertainties and that the two
observations were taken only 18 months apart, it seems reasonable
to us to assume the same NH value for the two spectra.

statistics of the spectra is too low to fit the elemental

abundances in the region, but we verified that an ac-

ceptable fit (χ2
ν
= 1.02 for 27 dof) and essentially iden-

tical results are found using the vpshock XSPEC model
with the abundances fixed at the values of Zhekov et al.

(2006, table 1), who measured shock temperatures of 0.5
and 2.7 keV. We note that the use of a single absorption

component with solar abundances is an oversimplifica-

tion, since at least a Galactic and a LMC component

should be considered; however, here we are not inter-

ested in an absolute measurement of the column den-

sity: our purpose is to parameterize the absorption with

a simple indicator that will be used in the following sec-
tions. Finally, by using in Sherpa the jdpileup pileup
model by Davis (2001), we estimated in both observa-

tions a pileup fraction lower than 1%, so no attempt to

correct for it was made in the following.

2.2. Upper limits on the X-ray emission of a central

point source

To set the most conservative upper limits on the lu-
minosity of a central source, one should assume that all

the flux observed inside the central ring is produced by

the central source. However, the spectral analysis of

Sect. 2.1, with the low absorption and the shock com-

ponents, strongly suggests that most of the X-ray lumi-

nosity is produced by the shocked circumstellar matter

and supernova debris and does not come from the in-

nermost region of the remnant, where the pulsar would

be expected to reside. In light of this, we chose to es-

timate the upper limit as the 3σ noise level (evaluated

from the Poisson fluctuations of the background) in the

0.3-arcsec-radius region at the center of SN 1987A. This
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turned out to be 3.9 × 10−4 counts s−1 in observation
15809 and 4.1 × 10−4 counts s−1 in observation 16756

(2–8 keV), ≈30% of the 2–8 keV counts in both cases.

We checked that point sources simulated with ChaRT

and MARX (Carter et al. 2003; Davis et al. 2012) with
those rates at the center of the supernova are detected

in the X-ray images at the expected confidence level (in
the simulations we adopted various thermal and non-
thermal models, as well as different absorption levels, as

discussed in Sections 2.2.1 and 2.2.2, but the results were

virtually independent of the specific spectral shape).3

As a further test of consistency of the different pieces

of information, we fit to the 0.5–8 keV spectra a model
consisting of a shock component with absorption fixed
at NH = 2.6× 1021 cm−2 plus a power law with photon

index fixed at Γ = 2.1 (which is the model that describes

the emission of the Crab pulsar in the soft X-ray band;

Kirsch et al. 2005) modified by a second, independent
absorption component (free to vary), so to see if the

emission expected from a young pulsar is compatible
with the available data. We obtained an acceptable fit
and a reasonable shock temperature (χ2

ν
= 1.05 for 28

dof and kT = (1.5 ± 0.2) keV) with the ‘pulsar compo-

nent’ accounting for ≈25% of the total emission (<65%

at 3σ) and a 3σ upper limit on the local absorption of
NH < 1.8× 1023 cm−2.

To convert the ACIS count rate limits into luminos-
ity limits (using XSPEC and the ancillary response files

for the spectra extracted from the 0.3-arcsec-radius re-

gions to correct for the PSF and effective area fractions),

several hypotheses and assumptions are necessary. We

discuss them in the following sections.
Even though the bulk of the counts collected by the

HRC are below 2 keV (because of the thermal spectrum

and the effective area curve of the detector), for the sake

of diligence, we also searched its events within 0.3 arcsec

(around 1,100 photons in the 0.1–10 keVband) for co-

herent pulsations between 0.5ms and 1 s. No statisti-

cally significant periodic signal was found and the upper

limits on the pulsed fraction are not constraining (they

are larger than 100%).

2.2.1. Thermal emission

Let us start by considering the thermal emission that
arises from the entire surface of the star due to ini-

tial cooling. For a newly-born neutron star, most cool-
ing curves indicate a surface temperature of Teff ≈

2.7 × 106 K (e.g. Yakovlev & Pethick 2004; Aguilera

3 Strictly speaking, both methods yield an estimate of the sen-
sitivity of the observation to the flux from a point source rather
than an upper limit on it; however, considered the comparatively
high number of photons and for the aims of this study, the two
related quantities can be considered equivalent.

et al. 2008; Page et al. 2009; Viganò et al. 2013), which
is equivalent to kTeff ≈ 0.23 keV. This value can be

considered an upper limit, since the temperature would

actually be lower if fast neutrino cooling processes were

present (e.g. Yakovlev & Pethick 2004; Page et al. 2009).

However, for prudence and to assess better the situa-

tion, we explored also the possibility of higher temper-
atures, up to 0.5 keV. If for the radiating surface we
take a neutron star radius of 12 km (Lattimer 2017),

the bolometric luminosity is between L ≃ 5.5 × 1034

and 1.2 × 1036 erg s−1 for kTeff ≈ 0.23 and 0.5 keV,

respectively.4 The corresponding 2–8 keV unabsorbed
fluxes are ∼3.7 × 10−15 and 3.4 × 10−12 erg cm−2 s−1,

and the 2–8 keV X-ray luminosity for the distance D =
53.7 ± 3 kpc (McCray & Fransson 2016) ranges from

LX ≃ 1.3× 1033 to 4.7× 1035 erg s−1.

A crucial issue is the absorption of the X-rays com-

ing from the centre of SN 1987A. The X-ray opacity is

likely dominated by photoelectric absorption on inner-

shell electrons of metals rather than by the Thomson

scattering (see Corrales et al. 2016), which we shall ne-
glect. Here we assume the envelope surrounding the

compact object to be a sphere of uniform density and

homogeneous composition; for the moment, for simplic-

ity we assume as metal abundance Z = Z⊙, so that we

can use the values derived from the spectral analysis of

the inner part of the remnant, but we shall discuss this

later (Sect. 2.2.3); we also neglect the possible ioniza-
tion of the neutral matter by the central source. As the

absolute minimum of the absorbing column, we posit

the value derived from our X-ray fit, 2.6 × 1021 cm−2,

which in the following we round off to 3 × 1021 cm−2;

lacking more information, for the maximum we take the

above-mentioned limit of 1.8 × 1023 cm−2. To have a

rough order-of-magnitude reference value between these
two extremes, we follow Zanardo et al. (2014), who as-

sume the presence of MH ≈ 2.5M⊙ of matter within a

region r ≃ 0.′′4 (about 0.1 pc), which is roughly the size

of the equatorial ring (see also Blinnikov et al. 2000;

Fransson et al. 2013). Correspondingly, the density is

4× 10−20 g cm−3 and NH ≈ 3MH/(4πmpr
2) ≃ 3× 1022

cm−2, where mp is the proton mass.5 The correspond-

4 A ‘color-correction’ factor fc = TBB/Teff is usually used to
take into account the distortion due to the stellar atmosphere in
the spectrum emitted by the neutron star surface and connect it
to the observed blackbody with temperature TBB. For the X-ray
flux, FX ∝ T 4

BB(RBB/D)2 = T 4
eff(R∞/D)2, with R∞ = RBBf

2
c =

D10 kpc

√
kf2

c , where RBB is the observed blackbody radius, D
the distance to the source (D10 kpc when in units of 10 kpc), and
k is the normalization of the XSPEC bbodyrad model. Typical
values are in the range 1 . fc . 1.8 (e.g. Özel 2013). Since the
color-correction factor acts so as to keep the luminosity constant
correcting for the high temperatures observed, its presence would
not affect our discussion.

5 In principle, one should add to this value the Galactic ab-
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ing limits on the thermal emission for the different ab-
sorption levels are shown in Fig. 2. It is apparent that

for the lower end of the range of temperature consid-

ered (kT . 0.3 keV) a purely thermally-emitting neu-

tron star, even if present, would not have been detected

even for the lowest conceivable NH value.

2.2.2. Nonthermal emission

Unless some mechanism suppressing the neutron star
magnetospheric activity that converts a fraction of ro-

tational energy into X-rays is at work, the high-energy
emission of an isolated young pulsar is expected to have
a large—likely dominating—contribution from a non-
thermal component (e.g. Kaspi et al. 2006). For the

pulsars for which the main rotational parameters (pe-

riod P and slow-down rate Ṗ ) and the X-ray luminosity
have been measured, there appears to exist a correla-

tion between the latter quantity and the rotational en-
ergy loss Ėrot (Seward & Wang 1988; Becker & Truem-

per 1997). Albeit they have all a large scatter, sev-

eral empirical LX–Ėrot relations have been derived from

different surveys, samples of sources, etc (see Shibata

et al. 2016 and references therein); here we adopt that
of Possenti et al. (2002), logLX = 1.34 log Ėrot − 15.34,

which is valid over the 2–10 keV range. Under the usual
assumption of a magnetic dipole rotating in vacuum,

Ėrot = B2 sin2 θΩ4R6/(6c3) ≃ 3×1043B2
14P

−4
10ms erg s−1,

where Ω = 2π/P , P10ms is in units of 10ms, R = 12 km,

and for the angle between the magnetic and spin axes we
take θ = π/2. For the spectral model, the natural choice
is to use a power law with photon index fixed at Γ = 2.1,

the value measured for the pulsar in the Crab nebula
(PSRJ0534+2200; LX = 1.1 × 1037 erg s−1), which is

the best studied young pulsar we currently know of (but

note that essentially all the young rotationally-powered

pulsars known have similar spectral shape and slope; e.g.

Becker & Truemper 1997; Possenti et al. 2002; Gotthelf
2003).

In Fig. 3 we show the limits for the same NH values
discussed for the thermal emission, together with the

nonthermal X-ray luminosity expected for some combi-

nations of the neutron star period and magnetic field.

While a pulsar akin that in the Crab nebula is not com-

patible with the data, there is ample room for viable

combinations of parameters (e.g. B = 1012 G and any
period P > 25ms).

2.2.3. The shielding curtain

Now we devote some attention to the composition of

the matter in the curtain screening the site of the possi-

sorption of ∼(2–3)× 1021 cm−2. However, given the considerable
uncertainties in the estimate and the relatively small size of the
change, the correction is unimportant.

ble compact object, where metals that have a large cross
section for photoelectric absorption for photons with en-
ergy of &1 keV, such as C, O, Si, and Fe (Morrison &

McCammon 1983), can be expected to be overabundant.

We used the ejecta composition in table 1 of Dessart &

Hillier (2010), which is based on hydrodynamical models
by Woosley et al. (2002, and references therein), to cre-

ate an abundance table for the photoelectric absorption

model in XSPEC (Table 2). For the elements for which

they do not provide information, we fixed the abundance

at the solar value by Anders & Grevesse (1989). We

stress that this is not an attempt to model properly
the absorption, but only to get an idea of how a non-

standard composition can impact the limits.
Using the chemical mix in Table 2, the NH of 3 ×

1022 cm−2 that we derived from the assumption of

a local density of 4 × 10−20 g cm−3 becomes ≈7.6 ×

1021 cm−2. Note that the lower nominal NH value only

reflects the smaller H fraction in the mix and, with the
abundances in Table 2, it actually results in a much

larger X-ray abatement. In fact, with this absorption
(again, we neglected the Galactic absorption compo-
nent), the upper limit on the nonthermal luminosity of
a pulsar derived from the data is ≈1.3 × 1040 erg s−1

(Fig. 3), which is much larger than the luminosity of the

Crab pulsar. The upper limit on the thermal component
is even less binding (LX > 1041 erg s−1).

Table 2. Abundances adopted. The solar system val-

ues are from Anders & Grevesse (1989) and all abun-

dances are relative to H.

Element Solar system Z/H Custom Z/H

H 1.00 1.00

He 9.77e–02 2.29

Li 1.45e–11 1.45e–11

Be 1.41e–11 1.41e–11

B 3.98e–10 3.98e–10

C 3.63e–04 1.55e–01

N 1.12e–04 6.85e–03

O 8.51e–04 3.05e–01

F 3.63e–08 3.63e–08

Ne 1.23e–04 8.63e–02

Na 2.14e–06 2.14e–06

Mg 3.80e–05 1.52e–02

Al 2.95e–06 2.95e–06

Si 3.55e–05 2.03e–02

P 2.82e–07 2.82e–07

Table 2 continued
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Figure 2. Constraints on the thermal emission from a neutron star. The solid black line shows the 2–8 keV X-ray luminosity as a
function of the blackbody temperature (see Section 2.2.1); the upper X axis show the corresponding bolometric luminosity. The
dashed lines indicate the 3σ upper limits obtained for different values of NH: 3×1021 (red), 3×1022 (blue), and 1.8×1023 cm−2

(green).

Table 2 (continued)

Element Solar system Z/H Custom Z/H

S 1.62e–05 7.61e–03

Cl 3.16e–07 3.16e–07

Ar 3.63e–06 1.27e–03

K 1.32e–07 1.32e–07

Ca 2.29e–06 1.02e–03

Sc 1.26e–09 1.26e–09

Ti 9.77e–08 1.65e–05

V 1.00e–08 1.00e–08

Cr 4.68e–07 4.68e–07

Mn 2.45e–07 2.45e–07

Fe 4.68e–05 2.54e–03

Co 8.32e–08 8.32e–08

Ni 1.78e–06 2.13e–02

Table 2 continued

Table 2 (continued)

Element Solar system Z/H Custom Z/H

Cu 1.62e–08 1.62e–08

Zn 3.98e–08 3.98e–08

3. DISCUSSION AND CONCLUSIONS

The mass of Sk−69◦ 202 and the burst of neutrinos

that accompanied the explosion suggest that a neutron
star was formed in SN1987A by the process of core col-

lapse (although it cannot be excluded that it further col-

lapsed in a black hole if enough fallback material piled

upon its surface; e.g. Zampieri et al. 1998). However,

thirty years after the explosion and despite observations

in every band of the electromagnetic spectrum, there is

still no positive evidence for a compact object of any

kind in the remnant.
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Figure 3. Constraints on the nonthermal emission from a neutron star. The solid black lines show the 2–8 keV X-ray luminosity
as a function of the period for a few values of the magnetic field, as indicated by the labels. The dark green star marks the
position of the Crab pulsar. The dashed lines indicate the 3σ upper limits obtained for different values of NH: 3 × 1021 (red),
3× 1022 (blue), and 1.8× 1023 cm−2 (green). The three-dot-dashed line (violet) shows the extrapolation of the 2σ upper limit
derived with INTEGRAL in the 20–60 keV band. The purple dot-dashed line indicates the limit derived for the absorption with
abundances similar to those of the ejecta (see Section 2.2.3).

Optical and ultraviolet (UV) searches were performed

for both periodic signals and point-like emission. After
some claims of detection of pulsations that were later
retracted or not confirmed by subsequent observations

or reanalysis, upper limits on the pulsed emission for

periods between 0.2 and 10 s were set with a limit-

ing V magnitude of ∼24.6 using HST and the ground-

based Anglo-Australian Telescope (Percival et al. 1995;

Manchester & Peterson 1996). Graves et al. (2005) as-
sumed an attenuation due to the dust absorption in the

remnant ≤97% and derived with HST UV/optical limits

on the luminosity of a compact remnant of a few× 1033

to 1034 erg s−1. Recent observations in the far-infrared

(IR) and in the sub-mm continuum with Herschel and

ALMA (Matsuura et al. 2011, 2015; Indebetouw et al.

2014) showed the presence of substantial amount of dust
in the ejecta. If the dust is distributed in clumps, some

light could scatter around the clumps and the extinction

could be lower than the limit assumed by Graves et al.

(2005), at least in some lines of sight. However, if nearly

half a solar mass of dust (Matsuura et al. 2011, 2015;

Indebetouw et al. 2014) fills the ejecta uniformly, even

higher extinction might be possible and the site of the
pulsar would be cloaked in a cloud impenetrable to the

IR/optical light.

A limit on the luminosity of the alleged central source

can also be derived by comparing the bolometric emis-

sion of the remnant with the power injected by titanium-

44 (44Ti) decay (Grebenev et al. 2012; Boggs et al. 2015;

McCray & Fransson 2016). The decay of the 44Ti at

10,000 days is expected to deposit energy at a rate of

L44Ti ∼ 280L⊙, most of which is radiated at IR wave-

lengths from a population of ∼0.5M⊙ of dust grains

(Matsuura et al. 2011; Indebetouw et al. 2014) with lu-

minosity Ldust ∼ 220L⊙. While there seem to be not

much room for an additional energy input from a cen-
tral source, one must consider that (i) both the 44Ti en-

ergy deposition and the IR luminosity have uncertain-

ties of the order of 20 per cent or more and (ii) most

of the X-ray flux from the central source would be ab-
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sorbed via photoionization, the majority of the energy
(≈75%) being used to photoionize and only the remain-

ing (≈25%) available for heating of the dust particles.6

We conclude that the comparison of the dust emission

with the 44Ti energy deposition rates is consistent with
the presence of a central source with a luminosity of

Ldust − fL44Ti & 100L⊙ (∼4× 1035 erg s−1).

Repeated observations in radio at different frequen-

cies provided limits on the flux density <115µJy for

pulsed emission (Manchester 2007). These limits are not

particularly constraining however, because of the large
distance to the LMC (e.g. Manchester et al. 2005). Fur-

thermore, the non detection could be due to free–free ab-

sorption in the supernova remnant (see also Wang et al.

2017), or simply to an unfavourable beaming. Indeed,

there are numerous young and energetic pulsars (includ-

ing and, seemingly, mostly rotation-powered ones) that

are not detected as radio pulsars (e.g. Caraveo 2014).
In X-rays, the deepest upper limits on the emission of

a point source can be obtained using Chandra. We be-
lieve that, when the substantial uncertainties involved

in the X-ray analysis (in particular, in the absorption)

are considered, the limits are not particularly restric-

tive even in this band. The thermal component of the

emission of a pulsar would easily escape detection in

the available data sets; in particular, for the lower tem-

peratures in the range of what can be expected from
a ‘baby’ neutron star (kT . 0.3 keV), the limits are

not constraining even in the case of the lowest conceiv-
able absorption, corresponding to the total Galactic NH

(with solar-system abundances) along the line of sight
towards SN1987A (Fig. 2).
In the case of the nonthermal emission, the situation

is more critically dependent on the absorption. A pulsar

as bright in X-rays as the one in the Crab nebula (and

with a similar emission spectrum), should be detectable

for the range of NH that we explored if the composition

of the absorbing matter is similar to that of the solar
system. However, our exercise of altering the chemical
composition of the absorber, so to reflect an enrichment

of the elements that should be abundant in the ejecta of

a massive star at the end of its life, shows that the X-ray

limits become totally loose in the instance of very high

metallicity. In that case, the Crab pulsar itself could be

6 We considered a power-law photon spectrum with index
α, dn

dν
= N0(

ν

ν0
)−α, and we approximated the photoionization

cross section as σ(ν) = σ0(
ν

ν0
)−3. The ratio of the energy in

heat over the total photoionization energy is f = Ethermal

Etotal
=

∫
+∞

ν0
(hν−hν0)σ(ν) dn

dν
dν

∫
+∞

ν0
hνσ(ν) dn

dν
dν

= 1
α+2

. For α = 0, half of the energy

goes into heating. For a more reasonable α = 2, only 25% of the
absorbed radiation is turned into heat.

lurking in the remnant (Section 2.2.3). Lacking sound
information on the quantity and the composition (and

ionization state) of the absorbing gas, the most reliable
limits are probably those obtained in soft γ-rays. Using

the IBIS/ISGRI hard-X-ray telescope on board INTE-

GRAL, Grebenev et al. (2012) derived a 2σ upper limit

of 3 × 1035 erg s−1 in the 20–60 keV band for a power-
law continuum with photon index Γ = 2.1. This value,

extrapolated to the 2–8 keV band by assuming the Crab

pulsar’s spectrum, corresponds to 4.7× 1035 erg s−1, as

shown in Fig. 3. This luminosity is higher than, but com-

parable to, the limits that we obtained assuming solar-
system-like abundances: a few × 1035 erg s−1 (Fig. 3).

It is also consistent with the limit derived from the
reprocessed radiation from the 44Ti decay. We note

that for a pulsar, a nonthermal X-ray luminosity of

≈(1–5)× 1035 erg s−1 corresponds to a rotational en-

ergy loss of ≈(0.5–1.5)× 1038 erg s−1.

Overall, it seems that while a Crab-like pulsar is in-

compatible with the observations (essentially, the γ-ray

observations), there is ample room for the presence of
an X-ray-emitting neutron star. In fact, many combi-
nations of period and magnetic field plausible for an

ordinary young neutron star are allowed by the limits

in Fig. 3. A recent work by Gullón et al. (2014), for in-

stance, found that the observed Galactic population of

neutron stars is well reproduced by distributions of in-

tial periods (P0) in the range 0.1–0.5 s, with only a small
fraction of objects with P0 < 0.1 s, and initial mag-

netic field strength logB0[G] ≈ 13.0–13.2 with width

σ(logB0) = 0.6–0.7 (see also Faucher-Giguère & Kaspi

2006; Popov et al. 2010).

While a supposed pulsar in SN1987A does not nec-

essarily have to be an ‘unusual’ neutron star, an object
similar to the so-called ‘central compact objects’ (CCOs;
e.g. De Luca 2017) is certainly a very viable possibility.

CCOs are steady X-ray sources with seemingly thermal

spectra and no counterparts in radio and gamma wave-

bands; their periods, although measured in only a few

sources, are in the 0.1–0.5 s range. These properties are

clearly consistent with the observational constraints for
SN1987A, and CCOs seem to be relatively common in
our Galaxy (De Luca 2008). The emerging scenario for

CCOs is that of young neutron stars either born with a

weak magnetic field (B < 1011 G) or with a normal field

‘buried’ beneath the surface (Ho 2011; Viganò & Pons

2012; Gotthelf et al. 2013). In the latter hypothesis, the

submergence of the magnetic field is the consequence of a
stage of hypercritical accretion of debris matter after the
supernova explosion, a situation that could have taken

place in SN1987A (Viganò & Pons 2012). Conversely,

a magnetar, given their typically higher thermal lumi-

nosities and hotter thermal components with respect to

normal neutron stars (Viganò et al. 2013; Perna et al.
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2013), would be somewhat disfavoured.
Finally, a new interesting piece of information has

been recently produced by Zanardo et al. (2014),

who reported on the possible detection with ALMA

at 102–672 GHz (after removing synchrotron emission

modelled with ATCA at 44GHz) of a flat-spectrum re-

gion slightly westward of the SN site, whose properties
are consistent with a pulsar wind nebula (PWN). They
estimated LPWN ≈ 5.4 × 1033 erg s−1 for frequencies

between 102 and 672 GHz. If the PWN is powered by
the pulsar with an efficiency of ∼1%, the radio luminos-

ity implies a rotational energy loss Ėrot . 1035 erg s−1

and hence an X-ray luminosity not larger than LX ≈

1032 erg s−1 (Zanardo et al. 2014). Even in the case
the identification of the PWN is correct, we do not re-

gard these limits as compelling, since the luminosity in

the 102–672 GHz would be only a lower limit for its

emission. Furthermore, the relationship between pulsar

spin-down power and PWN luminosity is rather uncer-

tain and, similarly to the LX–Ėrot relation for pulsars,

has a large scattering (e.g. Mattana et al. 2009). How-
ever, this candidate PWN is the only hint of the presence

of a pulsar in SN1987A obtained so far. Further studies

of this possible PWN or, more in general, the detection

of a compact radio source with flat spectrum and/or po-

larized emission near the center of the supernova rem-

nant, probably represent the best hope to establish the
presence of a neutron star in SN1987A in the next few
years.
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