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A B S T R A C T

Calcineurin is required for long-term depression and activity-dependent spine shrinkage, and calcineurin mu-
tations have been identified in patients with schizophrenia. Moreover, mice with conditional knockout of cal-
cineurin B (CNB-KO) exhibit behavioral abnormalities suggestive of schizophrenia. Changes in the dendritic
spines of these mice, however, have not been investigated. We therefore examined the dendritic spines of CNB-
KO mice, and observed a significant reduction in small spines and an increase in large spines in the prefrontal
and visual cortices. The effect of CNB-KO on the spine sizes was relatively moderate, possibly due to the presence
of spontaneous fluctuations (dynamics) in the dendritic spines themselves. Thus, CNB-KO mice showed a spine
phenotype similar to those recently reported in patients with schizophrenia.

1. Introduction

Calcineurin is the only serine/threonine phosphatase controlled by
Ca2+/calmodulin [1], and is involved in various neuronal functions
[2], including long-term depression (LTD) [3–5], spine shrinkage [6],
and axonal guidance [7]. Calcineurin is a heterodimer comprising a
catalytic subunit, calcineurin A (CNA), and a regulatory subunit, cal-
cineurin B (CNB) [2]. CNB1 is an isoform of CNB and the only reg-
ulatory subunit expressed in the brain. In contrast, several different
isoforms of CNA are expressed in the brain [8,9], with the PPP3CC-
encoded γ isoform showing single-nucleotide polymorphisms in pa-
tients with schizophrenia [10–12]. CNB knockout (CNB-KO) mice ex-
hibit certain behavioral abnormalities typically observed in schizo-
phrenia [13], including impairments in hippocampus-dependent
working memory and episodic-like memory, while contextual memory,
cued fear conditioning, and spatial reference memory are all preserved
[13,14].

To gain insight into the possible relationship between schizo-
phrenic-like behavior and calcineurin dysfunction, it is valuable to
study the effect of CNB-KO on spine structure in vivo—especially since
CNB-KO should abolish activity-dependent decreases in spine size [6].
However, it is important to note that, in addition to activity-dependent

spine enlargement and shrinkage, activity-independent slow changes in
spine size occur [15–21]. Such intrinsic fluctuations (dynamics) have
been detected in the presence of inhibitors for NMDAR, as well as
voltage-dependent Ca2+ and Na+ channels, and are known to reflect
cell metabolism [15,22]. A recent study revealed that such dynamics
also occur in vivo, and are exacerbated in autism spectrum disorders
[22], further emphasizing the need to take into account activity-in-
dependent spine dynamics when assessing the influence of activity-
dependent changes on spine structures.

We examined visual area V1 and frontal area 2 (Fr2), which is the
rodent analogue of the dorsolateral prefrontal cortex [23], to evaluate
possible differences in the distribution of spine sizes between wild-type
(WT) and CNB-KO mice. We found significant differences in the dis-
tribution of spine sizes in both cortical areas. These differences, how-
ever, were relatively small, consistent with the presence of intrinsic
spine dynamics.

2. Materials and methods

2.1. CNB-KO mice

Forebrain-specific CNB knockout mice, which harbor yellow
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fluorescent protein (YFP H-line in [24]) in a small subset of neurons,
were generated by mating a male mouse heterozygous for floxed CNB
(CNBflox/wild in [13]) and homozygous for the YFP allele (YFP+/+) with a
female CNBflox/wild mouse carrying the α-calcium–calmodulin-dependent
kinase II (αCaMKII)-Cre transgene [αCaMKII-Cre (+/−)]. This pairing led
to the generation of CNBflox/flox, αCaMKII-Cre (+/−), YFP(+/−) mice for
the CNB-KO group and CNBwild/wild, αCaMKII-Cre (+/−), YFP (+/−) for
the littermate control (WT) group. The background strain used to gen-
erate the mutation was C57BL/6J. Mice were housed in a room with a
12-h light-dark cycle (lights on at 9:00 a.m.), with access to food and
water ad libitum. Tail DNA was collected to identify the genotype of each
animal by using polymerase chain reaction. All procedures were ap-
proved by the Animal Experiment Committee of the University of Tokyo.
Procedures were carried out in accordance with the University of Tokyo
Animal Care and Use Guidelines. All surgeries were performed under
isoflurane anesthesia, and all efforts were made to minimize suffering.

2.2. Slice preparation

Mice were anesthetized with isoflurane, and transcardially perfused
with 4% paraformaldehyde (PFA; pH 7.4); thereafter, their brains were
dissected and post-fixed in 4% PFA for 12 h at room temperature. Coronal
sections (150-μm) were obtained using a vibratome (VT1000, Leica
Biosystems, Germany), and brain slices were subjected to free-floating
immunofluorescence staining with a slight modification to the method
described in a previous study [25]. In brief, the slices were permeabilized
with perm/blocking buffer (2.5% normal goat serum [v/v] in phosphate-
buffered saline [PBS] with 0.1% Triton X-100 [v/v]), followed by in-
cubation for 48 h at 4 °C with the primary antibodies against anti-green
fluorescent protein (anti-GFP, D153-3, MBL, Japan). After rinsing with
PBS (8 times, 5min each), the slices were stained with the Alexa 488 goat
anti-Rat IgG and mounted on slides.

2.3. Image analysis

Measurements of spine head cross-sectional areas and densities were
performed using National Institutes of Health ImageJ software. Before
quantifying the spine area, we binarized each imaged dendrite using the
following threshold: mean value plus 4 times the standard deviation of
the background intensity around the dendrite.

2.4. Statistical analysis

Distributions of spine areas were compared using the
Kolmogorov–Smirnov test. Two-way analyses of variance (ANOVAs),
with genotype (i.e., CNB and wild-type) and cortical areas (i.e., Fr2 and
V1) as between-subjects factors, were performed to assess differences in
spine areas and densities. ANOVAs were performed using type II sum of
squares (SS) to adjust for unequal sample sizes, along with post hoc
Bonferroni multiple comparison tests. We calculated eta squared η2,
which represents the coefficient of determination for ANOVA, as

=η SS SS/between total
2

where SSbetween and SStotal represent the SS between groups and the
overall SS, respectively. Within the WT and CNB-KO groups, spines
were categorized into small (< 0.3 μm2) and large sizes using Fisher’s
exact test.

3. Results

A confocal microscope was used to image spines in fixed slice pre-
parations of YFP-expressing H-line mice mated with CNB-KO mice or
their WT litter-mates. We investigated spines on the first branches of
apical dendrites of layer 5 pyramidal neurons, where they appeared in
layer 2/3 (located 200–300 μm away from the soma), in two neocortical
areas (Fr2 and V1). Mice used in this study were aged P26–32 (Fig. 1),

which is within the critical period for V1. In each case, spine head sizes
were measured in the focal plane yielding the largest area in each case.
Using this approach, we observed significant changes in the distribution
of spine head sizes in both cortical areas of CNB-KO mice compared to
control mice (Fig. 1B–E).

To assess whether small spines (< 0.3 μm2) were less frequent in the
cortices of CNB-KO mice than in those of WT mice, we used Fisher’s
exact test for WT and CNB-KO mice (Fig. 1B and C). We adopted
0.3 μm2 as the threshold for the smallest spines because morphological
plasticity has been shown to decrease by at least 0.3 μm2 (∼0.1 μm3 in
terms of volume) when assuming that spine heads are spherical
[26,27]. We found that small spines were significantly less frequent,
and large spines more frequent, in CNB-KOs than in WTs for both Fr2
and V1 cortices.

Previous studies have reported that mean spine head area varies by
cortical region and that, in the mouse, spine heads are largest in the
motor cortex [28]. Similarly, in this study, we found that mean spine
head area varied between Fr2 and V1 in WT mice (Fig. 2), with spines
in Fr2 being significantly larger than those in V1 (Fig. 2). On the other
hand, mean spine areas in CNB-KO mice were larger in both Fr2 and V1
than in WT mice (Fig. 2). A two-way ANOVA showed a significant effect

Fig. 1. Distributions of spine areas in WT and CNB-KO groups.
(A) Fluorescence images of representative dendrites in the Fr2 and V1 areas of P26–32
mice. Scale bar, 1 μm.
(B, C) Distribution densities of spine areas in (B) Fr2 of P26–32 WT [574 spines, 14
dendrites, 3 mice] versus KO [709 spines, 20 dendrites, 3 mice] mice; (C), V1 of P26–32
WT [281 spines, 9 dendrites, 3 mice] versus KO [372 spines, 10 dendrites, 3 mice] mice.
Vertical dashed lines indicate 0.3 μm2, and Fisher’s exact tests were performed for the two
populations separated by the dashed lines. n.s., not significant; **p < 0.01.
(D, E) Cumulative distributions of spine areas in Fr2 (D) and V1 (E). The findings of
Kolmogorov-Smirnov tests are presented in D and E. Statistical significances are also
indicated. Error bars indicate the standard errors of the mean.
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of genotype across the two cortical areas (15–18%; ANOVA:
p < 0.001, η2=0.014) but no significant interaction between geno-
type and cortical area (p > 0.05). Interestingly, the differences be-
tween WTs and CNB-KOs did not appear to be larger than the difference
between the two cortical areas in WT or CNB-KO mice (21–24%;
ANOVA: p < 0.001, η2=0.021). Moreover, overall, the difference in
spine head size due to CNB knockout was rather small.

Since spine density is often affected in patients with schizophrenia
[29–31], we also examined the number of spines in WT and CNB-KO
mice. However, no significant difference in spine density was found
between phenotypes for Fr2 nor V1; spine density (spine number/μm)
in Fr2 was 1.45 ± 0.08 (mean ± standard error, n=16) and
1.63 ± 0.12 (n=8) for WT and KO mice, respectively (p=0.22),
while the spine density in V1 was 1.25 ± 0.07 (n=14) and
1.60 ± 0.18 (n=6) for WT and KO mice, respectively (p=0.06).

4. Discussion

Consistent with our hypothesis, we found a reduction in small spines
in CNB-KO mice, suggesting that the prevention of spine shrinkage in
these animals allows small spines to be readily enlarged. Previous
studies have shown that CNB-KO mice exhibit schizophrenia-like be-
haviors, such as weak spatial working memory and normal spatial re-
ference memory [14]. The formation of working memory requires rapid
synaptic changes and likely involves small spines which undergo more
pronounced enlargement [15,26,27,32,33]. In CNB-KO mice, working
memory deficits may reflect a reduction in the number of small spines
that are available for potentiation and enlargement. Recently, a sys-
tematic postmortem study of human patients with schizophrenia re-
ported a specific loss of small spines in the neocortices [31,34]—con-
sistent with our current findings in CNB-KO mice.

The differences between CNB-KO and WT mice observed in the
current study were relatively moderate (Fig. 1F). In contrast, activity-
dependent spine shrinkage is typically severe [6], and predicts the
marked enlargement of spines. This discrepancy may be explained by
intrinsic dynamics in spine volume which, unlike activity-dependent
plasticity, occur continuously over long periods of time and are the
major factor determining spine size distributions [15,35]. Due to these
intrinsic dynamics, large spines can shrink back to small spines, and
CNB-KO may only have a more moderate influence on spine size dis-
tribution than the differences between cortical regions.

In conclusion, our current findings of a moderate reduction in small
spine densities in CNB-KO mice are akin to observations made in pa-
tients with schizophrenia. Further, we hypothesize that CNB-KO-in-
duced reductions were moderate because of the presence of sponta-
neous dynamics in dendritic spine sizes.
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