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ABSTRACT

The Aβ peptide is a key molecule in the development of Alzheimer’s Disease -

Aβ peptides form toxic aggregates in the brain. Density functional theory (DFT),

Parametric Model 7 (PM7) and Ligand-Field Molecular Mechanics (LFMM) meth-

ods have been used to model the interactions of a series of potential therapeutic

PtII(ligand) complexes with various fragments of the Aβ peptide. LFMM calcula-

tions with the AMBER forcefield were used to generate conformations of PtII-Aβ6-14

via LowMode MD and results validated against BHandH. While LFMM showed in-

sufficient agreement with DFT, the semi-empirical PM7 method displayed strong

geometric and energetic agreement and was used to predict coordination preference

and stable conformations of PtII(bipy) and PtII(phen) complexes. These species

are shown to restrict the conformational freedom of Aβ and the coordination of

PtII(phen) is shown to be in agreement with experimental data. Studies of additional

PtII(ligand) complexes in this manner revealed distinct preferences in metal binding

mode for each of the complexes studied, with varied His Nδ and His Nε coordina-

tion observed. Analysis of peptide conformations using Ramachandran plots and the

STRIDE algorithm indicate that coordination of the PtII(ligand) complexes disrupts

existing peptide structure in a ligand-specific fashion, interrupting or translating the

turn structure, suggesting that controlling peptide structure and behaviour may be

achieved via ligand design. Ligand-field molecular dynamics (LFMD) simulations

of PtII(phen) -Aβ16 and -Aβ42 are compared to those of the metal-free peptides to

investigate the influence of the PtII complex on the structure and properties of the

peptide. Simulations of Aβ16 and PtII(phen)-Aβ16 revealed that PtII coordination

does not drastically alter peptide size, but increases the occurrence of 3,10-helical

conformations while disrupting hydrogen bond and salt bridge networks. Simula-

tion data also highlights the prevalence of π-π stacking interactions between residues

Phe4 and His13 with the phenanthroline ligand. Similarly, microsecond timescale

simulations of PtII(phen)-Aβ42 and Aβ42 illustrate profound effects of PtII coordi-

nation on peptide structure; while Aβ is shown to adopt collapsed conformations,

PtII-Aβ42 systems assume extended structures. PtII coordination also induces large

changes in peptide secondary structure, particularly an increase in helical character

throughout the central hydrophobic region of the peptide, considered a potential

route to preventing formation of Aβ fibrils. The results detailed here provide in-

sight into the coordination of these complexes to the peptide and present a new

understanding of the effects of PtII complexes on Aβ.
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1 Introduction

1.1 Overview

This thesis aims to present research carried out on modelling the interactions be-

tween platinumII-ligand complexes and differing size fragments of the amyloid-β

(Aβ) peptide using various quantum mechanical, semi-empirical and molecular me-

chanics methods. The literature review contained in this chapter concentrates on

three main areas of research related to Aβ in the context of Alzheimer’s disease.

Firstly, the role and nature of Aβ in Alzheimer’s disease will be examined. Sec-

ondly, the role of metal ions in Aβ aggregation and their potential in therapeutics

will be discussed, before finally considering the computational modelling of these

and related metal-biomolecule systems.

1.2 Alzheimer’s Disease

Alzheimer’s disease (AD) is a widespread neurodegenerative disease associated with

progressive cognitive decline in patients and is most commonly seen in those over

the age of 65. AD is the most common cause of dementia in adults - responsible for

60-70% of cases - and currently affects more than 30 million people worldwide [1,

2], with approximately a further 1.5 million additional cases each year.[3] Common

symptoms of AD include short-term memory loss, mild cognitive impairment, con-

fusion and aggression. Over time, cognitive function degrades, and control of bodily

functions is lost, eventually leading to death. As a result, AD is the fourth most

common cause of death in Western countries.[4]

AD is associated with damage to brain regions involved in memory and cognition,

specifically the hippocampus and cerebral cortex.[5] AD brains also exhibit sev-

eral abnormal structures, particularly deposits of neurofibrillary tangles, and senile
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plaques.[6, 7]; formation of these structures is generally accepted to be the major

pathological identifier of Alzheimer’s.[8] In addition, brains show oxidative stress

caused by reactive oxygen species (ROS) [9, 10] and increased concentrations of

metal ions, such as copper [11], zinc [5, 12], iron [13] and calcium.[14] That these

ions are present in such high concentrations suggests there is a breakdown in metal

trafficking regulation in the affected brains.[15, 16]

The causes and development of AD are not well understood - the pathogenesis of

AD is very complex, involving the interplay of a range of molecular, cellular and

physiological processes[17], but risk factors have been reported to include various

lifestyle features (e.g. smoking [18], alcohol use [19], diabetes [20], low physical and

intellectual activity levels [21] and diet [22]) as well as genealogy.[23] However, the

most important risk factor is age.[24] Despite a great deal of research and many

clinical trials, at the time of writing there is no known cure for AD. Current treat-

ments only alleviate symptoms, at best slowing the disease progression by a matter

of months.[25]

1.3 Aβ and the Amyloid Cascade Hypothesis

Many studies have suggested that the development of Alzheimer’s disease is pri-

marily associated with the formation of senile plaques and neurofibrillary tangles

in the brain.[26] These plaques are dense deposits of protein that are typically seen

surrounding nerve cells, while the neurofibrillary tangles – mainly consisting of hy-

perphosphorylated tau protein – are seen inside the nerve cells.[26] The amyloid-β

(Aβ) peptide was first recognised as the main component of the deposited plaques

seen in Alzheimer’s patient brain tissue in 1985, in work by Masters et al. [27] which

signalled the start of the modern era of research into AD. In this section, we consider

the most prominent hypotheses of AD progression, and the chemistry and structure

of Aβ, seemingly a key molecule in AD, is discussed.

There are three main hypotheses on the causes and progression of AD: the amyloid

(cascade) hypothesis, the metal ion hypothesis and the oxidative stress hypothesis.

Importantly, these hypotheses are not independent - metals such as copper and zinc

may act as seeds for amyloid aggregation and/or may play a role in the mechanism

of oxidative stress.
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The amyloid (or amyloid cascade) hypothesis is the most prominent of the current

hypotheses and is arguably the most complete. Here, the main cause of AD is

believed to be the build-up of Aβ in the brain, and that amyloids are the main

neurotoxic substance in disease progression. Alternatively, the metal ion hypothesis

states that AD is caused by a breakdown in the transport and regulation of metal

ions, such as copper, zinc and iron. As a result of this, there is an imbalance be-

tween Aβ generation and clearance, leading to neurotoxicity. This understanding

of the disease progression is becoming increasingly popular. Finally, the oxidative

stress hypothesis suggests that the production of reactive oxygen species in the brain

leads to a greater degree of oxidative stress. This stress then leads to neurological

disorders and cell death.

The research in this thesis sits at the intersection of the amyloid and metal ion

hypotheses, so the rest of this chapter will consider the details of these ideas, rather

than the oxidative stress hypothesis.

Aβ peptides, typically between 39-43 residues in length, are formed by cleavage

of the Amyloid Precursor Protein (APP) - a membrane-associated protein that is

believed to act as a cell surface signalling molecule - by β- and γ-secretases. Of the

peptides produced, Aβ40 and Aβ42 are the dominant forms - Aβ42 is represented

in Figure 1.1. The Aβ40 variant is far in excess of Aβ42, but this longer peptide

is both more prone to aggregation [28, 29] and more toxic to cells.[26, 30–32] The

Aβ monomer is amphiphilic as it contains both a hydrophilic N-terminal region

and a hydrophobic C-terminal region.[5] Aβ – regardless of its form – contains six

negatively charged residues (Asp1, Glu3, Asp7, Glu11, Glu22 and Asp23) and three

positively charged residues (Arg5, Lys16 and Lys28), giving a net charge of -3 on

the monomer. The three histidine residues are neutral at physiological pH.[33]

Early versions of the amyloid hypothesis [34] suggested that Aβ possesses some

innate toxicity and that the plaque deposits indicated an overload of Aβ, causing

AD.[35, 36] This was known as the amyloid cascade hypothesis, where an imbalance

of Aβ generation and clearance leads to gradual accumulation of Aβ plaques in

the brain.[37–40] Thus, the formation of these plaques leads to a local inflamma-

tory response and subsequently to neuronal cell death, leading to gradual cognitive

decline.[8, 26] The rest of the known disease process, including the formation of neu-

rofibrillary tangles containing hyperphosphorylated tau protein, would then occur

from this imbalance of Aβ generation and clearance.[26, 36]
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Figure 1.1: Schematic of Aβ42

While this amyloid cascade hypothesis has been highly credited and provides a gen-

eral framework to explain the disease process, it lacks detail and several observations

do not fit with the hypothesis, as explained below.[8, 26] As a result, the cascade

term is now frequently set aside, and the modified understanding is known simply

as the amyloid hypothesis.

Firstly, the number of amyloid deposits shows a weak correlation with the degree

of cognitive impairment.[25, 35] In fact, patients without symptoms of Alzheimer’s

disease show significant deposits of Aβ [41–43]; there seems to be a much better

correlation of cognitive impairment with the concentration of soluble Aβ oligomers

present.[38, 40] Crucially, it has been shown that soluble oligomeric forms of Aβ are

more toxic than the fibrillated plaques [36, 38, 40]; these oligomeric forms of Aβ are

now increasingly believed to be the key toxic species on AD.[44–47] As a result, the

amyloid hypothesis is now focused on these diverse oligomeric species. Finally, while

Aβ is created throughout the brain [16], AD initiates in specific brain regions such

as the hippocampus, suggesting that there may be another disease trigger specific

to these regions [48] – recent work has shown that these regions show high concen-

trations of transition metal ions (vide infra).
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Figure 1.2: Solution phase structure of Aβ40 [51] containing a central 3,10 helical

structure.

However, the fact remains that understanding the structure of these various forms

of Aβ may play an important role in further elucidating its role in AD progression.

The structure and chemistry of Aβ has been reviewed in detail previously [3, 5, 29,

49, 50], but the physical characteristics of Aβ are still poorly understood:

In monomeric form, Aβ is an intrinsically disordered peptide, meaning that in aque-

ous solution, it adopts a heterogeneous, random coil structure [51–53] – this disorder

means that there is little solution-phase NMR structural data and neither Aβ40 nor

Aβ42 monomers crystallise to provide X-ray crystallographic data. However, the

peptide secondary structure also depends strongly on the chemical conditions (i.e.

solvent, pH etc.) In water, various studies have reported the Aβ monomer to con-

tain between 5-20% helical content and 0-25% β-sheet content, though the peptide

remained mostly “random coil” in nature, as seen in PDB models 2LFM [51], 1AML

[52], 1BA4 [54], and others.[49] In general, the C-terminus of Aβ is considered to

form an extended helix-type structure, as shown in Figure 1.2. This structural vari-

ation poses challenges for studying Aβ, as identifying relevant conformations of the

monomer is critical to understanding the oligomerisation and aggregation process,

as well as for providing appropriate starting structures for computational studies of

Aβ.[26, 29]

In the amyloid hypothesis, Aβ monomers aggregate, forming Aβ oligomers, which

may lead to formation of the mature amyloid fibrils. To date, a broad range of

oligomeric species have been reported,[49, 55] but no high-resolution atomic struc-

ture has yet been defined for any.[50] In particular, Aβ dimers and trimers have

attracted much research interest:
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Aβ trimers have been shown to be especially harmful to brain function,[56] while

dimeric species have been obtained directly from AD brain tissue.[57] There is some

suggestion that a dimeric structure of Aβ may be the precursor to further aggrega-

tion i.e. that mature fibrils of Aβ40 and Aβ42 are constructed from dimers of Aβ

stacked into parallel β-sheets.[58–60]

In general, the β-sheet content of Aβ oligomers appears to increase over time [61], as

well as increasing with the degree of aggregation.[62] However, the smallest oligomers

have also been shown to retain a significant degree of disorder – NMR experiments

detected oligomers which displayed predominantly turn and coil type structure.[63]

Alternatively, analysis of fibril-like Aβ oligomers show that they possess signifi-

cant β-sheet content.[60] Regardless, it appears that the peptide monomer must

undergo some change in conformation, likely involving the formation of a hairpin

near Gly25 flanked by large β-sheets, in order for oligomerisation and aggregation

to take place.[64]

Aβ amyloid fibrils are thought to be the end-point of a complex and protracted

aggregation pathway. The formation of fibrils may be understood in terms of an un-

controlled protein folding process: a monomer interacts with an identical neighbour

and the structure collapses, becoming more ordered. This is repeated over time,

and the aggregate formed becomes increasingly compact and ordered, eventually

forming the mature fibrils of stacked Aβ peptide. These fibrils appear to resemble

the plaques seen in the brains of AD patients.

The formation of these fibrils is generally monitored by a fluorescence assay using

thioflavin T (ThT). Upon fibril formation, a large increase in fluorescence is ob-

served, reaching saturation as complete fibril structures are obtained. ThT binds to

β-sheet regions of Aβ fibrils, so an increased signal corresponds to a greater degree

of β-sheet content and therefore, of fibril formation.

As before, understanding the structure of these Aβ fibrils is crucial for understand-

ing their chemistry. Firstly, it appears that multiple fibril structures exist, generally

based on parallel β-sheet structures,[65, 66] though those containing the anti-parallel

type are also known. Work by Tycko et al. [58], illustrated in Figure 1.3, showed that

fibrils of Aβ40 contain dimeric peptide units stacked into β-sheets, where residues

on adjacent chains are aligned; fibrils of Aβ42 possess identical structure, except
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Figure 1.3: Experimentally determined Aβ fibril structures.[58] Top: Monomer con-

formation in the fibril. Bottom: Association of β-sheet monomers into large fibrils.

that residues are not aligned.[34] Each monomer unit contains two β-sheet regions

(His13-Asp23 and Lys28-Val40) separated by a hairpin turn, and are stabilised by

a salt bridge interaction between Asp23 and Lys28.[58] Alternatively, a 3D struc-

ture of Aβ42 fibrils has been determined by solid-state NMR [60], showing parallel

β-sheets involving residues Val18-Val36. At least two monomers are required to pro-

duce the repeating unit of the fibril. This appears in agreement with other work

[67, 68] which suggest that the central core of Aβ42 consists mainly of β-sheet type

structure, though the exact residues involved vary by study.

In addition, the structure of amyloid fibrils has been studied using X-ray diffraction:

Kirschner et al. [69] characterised Aβ1-28 fibrils as tubular, with average diameter of

86 Å, where the walls consist of cross-β-pleated sheets. Here, the peptide chains run

approximately perpendicular to the fibril axis. In addition, high β-turn potentials

were identified at residues Ser8 and Ser26, and the intervening region adopts either

α-helical or β-sheet conformation. Inouye et al.[70] also identified the amyloid fibril

structure as a tube, with five or six ’crystallites’ forming the wal of the tube, where

each crystallite is made of five or fewer β-pleated sheets. More recently, Sunde et

al.[71] identified Aβ fibril structure as a helix of highly-ordered β-sheet peptides,

arranged parallel to the fibril axis - see Figure 1.4.

While there are certainly weaknesses in the amyloid hypothesis, none of these provide

compelling reasons to abandon this theory. However, they do point to limitations

in the current understanding of Alzheimer’s disease.
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Figure 1.4: Generic fibril structure identified by Sunde et al.[71]
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1.4 Metal ions in AD

1.4.1 Natural Metals

This section will provide an overview of the coordination chemistry of naturally

occurring transition metal ions CuII, ZnII and FeII in the context of Aβ, and their

effects on its aggregation properties.

The metal ion hypothesis (see Section 1.3) is founded on observations that the pro-

gression of AD correlates with the breakdown of CuII / ZnII / FeII ion transport

and distribution in the brain. [5, 72–74] Interestingly, CuII concentration is gen-

erally reported as decreased in AD brain tissue, while FeII concentration appears

elevated.[5] ZnII concentrations are more controversial, with many varied reports on

the subject.[5] The key breakthrough in this area illustrated that the presence of

CuII / ZnII is essential for the formation and stability of amyloid aggregates such

as fibrils or oligomers, [5, 75] while normal metal ion concentrations are unable to

induce Aβ aggregation.

As a result, the role of the natural metal ions in AD is increasingly studied – these

topics have been extensively reviewed elsewhere, and this section aims to provide a

summary of the pertinent points.[5, 12, 13, 29, 49, 50]

1.4.1.1 CuII-, ZnII- and FeII-Aβ Coordination Chemistry

CuII is a redox active, open shell d9 ion which typically interacts with Aβ in a

1:1 stoichiometry, while a second low-affinity CuII binding site has also been de-

tected. These interactions have been well-studied via techniques such as NMR and

electron paramagnetic resonance (EPR), but the nature of the CuII coordination is

pH-dependent and varies depending on the peptide fragment studied.[5, 49] These

different coordination modes are known as type I (dominant at low pH) and type II

binding (dominant at high pH). At physiological pH, type I binding dominates.

Type I CuII coordination consists of two or more species in equilibrium, but typically

involves three N-donor ligands (e.g. His residues or the N-terminal amide) and at
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least one oxygen-donor ligand (e.g. the Ala2 carbonyl oxygen, or possibly the Asp1

sidechain carboxylate) giving a four- or five-coordinate CuII centre.[5, 49] For type

II, various coordination modes have been proposed, though there is no consensus

on the residues involved. This may be partly explained by the fact that addition of

paramagnetic ions such as CuII produces line broadening and loss of signals close to

the metal in NMR spectra.

ZnII is a d10 closed shell ion, and also interacts with Aβ in a 1:1 stoichiometry. NMR

experiments have determined that the ZnII binding site on Aβ involves the three

N-terminal histidines (His6, His13 and His14) alongside Glu11, forming a distorted

tetrahedral geometry at the metal.[76] However, the nature of the final (non-His)

coordinating group is a matter for debate - Tyr10, the Asp1 N-terminal amine and

the deprotonated amide of the Arg-5 backbone have been detected, depending on

reaction conditions. In addition, some studies have shown that ZnII binds to His

residues in adjacent Aβ peptides, thus facilitating aggregation.[77]

Like CuII, FeII is redox active (FeII/ FeIII redox couples are common in biological

systems), but to date, few studies have detected or characterised iron-Aβ binding,

perhaps due to the easy oxidation of FeII to FeIII. However, it appears that the FeII

ligands on Aβ are some combination of Asp1, Glu3, His6, His13 and His14.[78]

1.4.1.2 CuII and ZnII Effects on Aβ Aggregation

It is now generally accepted than the formation of Aβ aggregates in the brain is

not spontaneous, but requires the presence of metal ions, such as CuII or ZnII. A

failure to regulate the concentration of these metal ions may lead to the formation

of Aβ aggregates i.e. metal ions may act as initiators of Aβ aggregation. In fact,

both CuII and ZnII are thought to promote the aggregation of Aβ, perhaps by co-

ordinating multiple peptide chains, as previously mentioned. The binding of these

metal ions to Aβ changes the peptide structure, though the induced changes are

diverse - and often contradictory - and results depend on the relative concentration

of the metal ion. These interactions are described in detail elsewhere.[5, 49] (and

references within.)

Firstly, CuII-amyloids are known to be neurotoxic,[79] but the form of these ag-
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gregates depends on CuII concentration and reaction conditions; in general, sub-

equimolar CuII binding has been shown to accelerate fibril formation,[80, 81] while

higher concentrations of CuII induce formation of amorphous aggregates. Interest-

ingly, these amorphous structures CuII aggregates have been reported to be nontoxic

[79, 82], though there is some evidence that these amorphous aggregates convert into

the structured fibrils on timescales longer than normally studied by experiment.

Additionally, it has been reported that transition of the Aβ monomer from coil to

β-sheet structure upon CuII binding, observed via circular dichroism, is accompanied

by formation of Aβ dimers.[49]

In contrast, ZnII-amyloid structures themselves are generally considered to be non-

toxic, though ZnII has been implicated in the formation of Aβ oligomers.[79] Like

CuII, ZnII coordination may produce fibrillar or amorphous Aβ aggregates depending

on conditions, though these amorphous structures may be converted to the amyloid

fibrils during longer incubation times. The contradictory nature of these results is

evident in studies which suggest that ZnII binding increases the α-helical character

of Aβ, while others suggest that ZnII in fact disrupts the helical nature of the Aβ

monomer, aiding the α-helix to β-sheet transition seen in the aggregation process.[5,

49]

1.4.2 Transition Metal Therapeutics

As we have already seen, there has been a great deal of research interest into eluci-

dating the nature of the interactions between naturally occurring metals and Aβ. At

the same time, there is an emerging field of research that is focused on metal-based

imaging and therapeutic compounds, designed to target Aβ. Full discussion of the

transition metal based imaging agents is beyond the scope of this thesis, but inter-

ested readers are directed to recent reviews on the topic [17, 83] and the references

therein. Instead, this section will focus on the research that forms the foundation

of this work – the use of transition metal based therapeutics to target Aβ in the

context of AD, with a particular focus on PtII compounds.

Importantly, PtII compounds are stable and essentially redox inert when present

in biological systems. The slow kinetics associated with substitution reactions at

the PtII centre means that, once bound to a target, the PtII metal is difficult to

displace. Furthermore, as a ‘soft’ metal, PtII has a preference for ligands with ‘soft’
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donor atoms. Within the Aβ sequence, potential PtII binding sites include the ‘soft’

sulphur atom of Met35 and the imidazole nitrogen atoms of the three histidine side

chains that are considered intermediate between ‘hard’ and ‘soft’ ligands – these

imidazole side chains are known to be excellent ligands for a variety of metal ions,

including PtII.

The field of PtII-based inhibitors of Aβ aggregation was pioneered by Barnham

et al.[84] who examined a series of PtII(Ligand)Cl2 complexes for their ability to

bind to Aβ. Here, the ligands studied were 1,10-phenanthroline (shown as 1 in

Figure 1.5), 4,7-diphenyl-1,10-phenanthroline (2 in Figure 1.5) and 4,7-diphenyl-

1,10-phenanthroline disulfonate (3), while the classic anticancer drug cisplatin (cis-

Pt(NH3)2Cl2) (4) was used as a control. Mass spectrometry (MS) and NMR ex-

periments illustrated that the PtII complexes formed adducts with Aβ. NMR data

showed that while cisplatin binds solely to Met35, PtII(phenanthroline)-type com-

plexes bind to the imidazole side chains of His6, His13, and His14. Furthermore,

data in the cisplatin case was consistent with the formation of Aβ oligomers and

multiple other products.

PtII(phenanthroline) complexes were shown to inhibit Aβ fibril formation using ThT

fluorescence, while cisplatin did not. This was reinforced by electron microscopy

studies; PtII(phenanthroline) generated amorphous Aβ aggregates rather than fib-

rils. PtII(phenanthroline) complexes were also able to suppress hydrogen peroxide

production by CuII-Aβ42, as monitored via fluorimetric assay[85], while cisplatin

produced no observable effect. This is surprising, as cisplatin is shown to coordinate

to Met35, a residue widely implicated in the redox chemistry of Aβ[86, 87]. Finally,

these complexes inhibit Aβ toxicity in mouse neuronal cell cultures, while cisplatin

proved inactive. Importantly, these PtII complexes were not toxic at the concentra-

tions required to produce this restorative effect.

The difference in behaviour between the PtII(phenanthroline) complexes and cis-

platin suggests that the planar aromatic ligands provide some specificity for Aβ to

the platinum complexes. In fact, the free ligands possess an intrinsic (weak) affinity

for the Aβ peptide, as they interact with the aromatic residues Phe-4, Tyr-10, and

Phe-19[88], suggesting that the PtII(phenanthroline)-Aβ interactions were mediated

by π-π stacking arrangements.
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Figure 1.5: Illustration of some of the the PtII-ligand complexes discussed in this sec-

tion. Top row: PtII(1,10-phenanthroline) 1, PtII(4,7-diphenyl -1,10-phenanthroline)

2, PtII(4,7-diphenyl-1,10-phenanthroline disulfonate) 3. Middle row: Cis-platin 4,

PtII(8-BQ) 5, PtII(pyridyl-benzimidazole) 6. Bottom row: PtII(φ-MePy) 7, PtII(2,2-

bipyridine) 8.

Recently, Streltsov et al.[89] used extended X-ray absorption fine structure spec-

troscopy (EXAFS), MS, dynamic light scattering (DLS) and density functional

theory (DFT) to study the interactions of cisplatin and PtII(4,7-diphenyl -1,10-

phenanthroline disulfonate)Cl2 with Aβ16 and Aβ42. DLS experiments confirmed

that PtII(4,7-diphenyl-1,10-phenanthroline disulfonate)Cl2 inhibits the aggregation

of Aβ42. MPW1PW91 / SDD calculations performed in gas phase reproduced crys-

tallographic bond distances and angles at PtII to 0.14 Å or better and 3.60◦ or

better, respectively. DFT-optimised geometries of small models of PtII-Aβ binding

- containing PtII, ligand and either imidazoles or thioethers - were used in conjunc-

tion with EXAFS data to estimate Pt-N, Pt-Cl and Pt-S distances and produce
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Figure 1.6: Cartoon of PtII(phen)-Aβ interaction.[90]

structural models of these interactions.

Work by Ma et al.[90] investigated the interactions of PtII(phenanthroline) with

Aβ16 - displayed in Figure 5.1 - using HPLC, ESI-MS and NMR and detected more

than ten product peaks, though a single product appeared dominant; changing

the reaction conditions (temperature, pH) gave no clear improvement in product

complexity. MS data showed mono- and bis-platinated products, suggesting that

there are multiple coordination sites in Aβ16. In contrast, cisplatin did not react

with Aβ16. ESI-MS/MS and NMR showed that the dominant product had platinum

binding sites at His6 and His14 on Aβ, as shown in Figure 1.6, while no coordination

to His13 was detected. Other major products displayed His6/Lys16 and Asp7/His14

binding, where PtII-coordination is predicted to occur via carboxylate groups. The

fourth major product was identified as the bis-platination adduct, meaning that four

binding sites on Aβ16 may be simultaneously occupied.

Later, the same authors (Ma et al.,[91]) studied the reaction of PtII(phen)Cl2 com-

plexes with CuII- and ZnII-Aβ16 complexes by HPLC, ESI-MS, EPR and tandem

MS. Here, the platinum coordination was shown to alter the binding modes of CuII

and ZnII. Reaction of PtII(phen)Cl2 complexes with Aβ16 formed a new adduct, in-

dicating that CuII-coordination influences the products of this reaction, though His6

and His14 remain the preferred PtII binding site. The presence of CuII slows down

this reaction as CuII binds to the same N-terminal residues as the PtII complex.

Upon incubation with PtII(phen), CuII-Aβ EPR signals were altered, from type I
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(binding via Asp1, His6, His13/His14 and the N-terminus) to type II (binding Ala2,

His6, His13 and His14).

Similarly, reaction of ZnII-Aβ16 with PtII(phen)Cl2 confirmed the formation of mono-

and bis-platinated Aβ16 species, as well as the presence of a Pt-Zn bimetallic species,

though further work to elucidate the metal binding sites of these systems was not

performed.

More recently, Barnham et al.[92] developed a platinum complex suitable for in vivo

testing. Here an inactive PtIV species may be converted in the body to the active PtII

complex by natural reductants. Importantly, these PtIV complexes possess very slow

kinetics, such that in a biological context, the complexes are very stable and able to

survive the acidic environment of the stomach and cross the gut membrane. Here,

the 8-(1H-benzoimidazol-2-yl)-quinoline(8-BQ)[93] (5) ligand was studied – it pro-

vides the large aromatic surface area required to make the platinum complex target

Aβ, while the NH group means the ligand may be easily modified to alter the phar-

macokinetic properties of the complex; in this work, an N,N-dimethylaminoethyl

group was used to improve complex stability and solubility.[94]

This platinum complex was shown to inhibit the formation of amyloid fibrils by ThT

fluorescence and electron microscopy experiments. MS analysis showed that the PtII

complex binds to the peptide by losing one or both chloride ligands. While treat-

ment of mouse neuronal cell cultures with Aβ42 was shown to be toxic, co-incubation

with the active complex almost completely restored cell viability. Importantly, this

complex was not toxic at the concentrations tested. Finally, testing the PtIV pro-

drug in a mouse model of AD showed that treatment lead to a significant reduction

in Aβ42 levels and plaque number.

Work by Yellol et al.[95] also studied a new ligand scaffold for PtII inhibitors of

Aβ, and also studied the corresponding RuII and IrIII complexes, which are dis-

cussed later. Here, the pyridyl-benzimidazole ligand (6) was used, which may also

be easily functionalised to tune the pharmacokinetic properties. Inhibition of Aβ42

aggregation was tested by the ThT fluorescence assay - 1 μM concentration of the

PtII species was sufficient to inhibit the amyloid aggregation process. This result was

confirmed by transmission electron microscopy (TEM). While treatment of mouse

neuronal cell cultures with Aβ is toxic, addition of this PtII complex shows only a
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marginal, insignificant decrease in Aβ toxicity.

In 2012, Sasaki et al.[96] studied the coordination of a new cyclometallated PtII

system to the Aβ28 peptide by EPR, NMR and ESI-MS methods. In this study,

[PtII(φ-MePy)(DMSO)Cl] , where φ-MePy is the 2-phenyl-5-methyl-pyridine ligand,

(7) was compared with the PtII(4,7-diphenyl-1,10-phenanthroline)Cl2 and PtII(2,2’-

bipyridine)Cl2 (8) systems. The cyclometallated system contains a covalent plat-

inum – carbon bond that may impart stability in aqueous solution to the complex.

In fact, the reactivity of the two labile ligands were shown to be different - the ligand

trans to the PtII-C bond is proposed to be more labile than the ligand cis to the

PtII–C bond. The authors proposed that this complex binds Aβ via one His residue,

where this His imidazole ring is located trans to the PtII-C bond, in place of the most

labile ligand. EPR data showed that binding of the cyclometallated complex altered

the CuII coordination, from type I to type II (see Section 1.4.1.1). ESI-MS experi-

ments showed that these complexes primarily formed mono-platinated adducts with

Aβ28.

Later, the same authors[97] investigated the effect of five PtII compounds on ZnII-

induced Aβ28 aggregation and CuII-induced ROS production. These complexes

induced no significant change in ROS production, despite these complexes being

known to alter the CuII-Aβ28 coordination mode, as studied by EPR. Addition of

each of the five PtII complexes to ZnII-Aβ28 samples decreased fibril formation; these

results were confirmed by TEM. Furthermore, NMR and HPLC/MS data suggests

that the cyclometallated complexes react with Aβ28 to a greater extent than the

other PtII species studied. This was further probed using HPLC coupled to MS/MS

experiment, which identified His13 and Glu11 as potential platinum binding sites.

An interesting alternative to these PtII complexes was published by Rangachari et

al.[98] who studied a mixed-binuclear metal complex containing PtII and RuII metal

centres: [(bpy)2Ru
II(dpp)PtIICl2]Cl2 - (9 in Figure 1.7). Here, the bipyridyl ligands

provide a large hydrophobic surface designed to target the complex to Aβ.

ThT fluorescence showed that incubation with the mixed metal complex inhibited

fibril formation, while NMR data suggested that this complex may bind differently

to Aβ42 than the original PtII(phen) species; monomeric Aβ was detected with two

RuII-PtII complexes bound, indicating that there must be more than one binding
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Figure 1.7: Structures of [(bpy)2Ru
II(dpp)PtIICl2]Cl2 (9) [98] and the bifunctional

PtII(bipyridine)(cyclen) complex (10) [99].

site for this compound on the peptide. Furthermore, the authors performed a se-

ries of quantum chemical calculations to study the binding energy of the bimetallic

species. Calculations were performed using the BHandHLYP method with a series

of basis sets, and the PCM solvation model. These data suggest that it is preferable

for the RuII-PtII complex to bind to His residues rather than the N-terminus.

A different approach was taken by Wang et al.[99], who designed bifunctional PtII-

based inhibitors of metal-induced Aβ40 aggregation, where PtII (bipyridine)Cl2 was

used as the Aβ binding unit, with cyclen to chelate the naturally-occurring metal

ions, CuII and ZnII, shown as 10 in Figure 1.7. NMR, MS and tandem-MS exper-

iments showed that these complexes bind to the peptide via one or both of His13

and His14.

Inhibition of Aβ aggregation was studied through turbidimetry, TEM and a protein

assay. Addition of these complexes greatly inhibited CuII or ZnII-induced Aβ aggre-

gation, while CuII-Aβ ROS generation was shown to decrease by approximately 75%.

TEM data showed that addition of the PtII complexes produced small ‘granule-like’

species, with different morphology to either Aβ or the CuII- or ZnII- Aβ samples.

Finally, these complexes were tested in mouse neuronal cell cultures and mouse

models. While the CuII- or ZnII-Aβ samples were toxic to cells, addition of the PtII

species increased cell viability significantly.
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The success of these PtII agents in inhibiting the aggregation of Aβ has lead to

an expanding field of TM-based therapeutics, including the repurposing of existing

biologically-active species to target this process. An overview of these other TM-

based species is given below:

In 2010, Valensin et al. [100] investigated the interactions between a rutheniumII

complex, fac-[RuII(CO)3Cl2(N1-thiazole)], and the Aβ28 peptide. Like platinumII,

RutheniumII complexes are known to target histidine residues, and are typically less

cytotoxic than their group 10 counterparts. ESI-MS and NMR studies confirmed

that the Ru(CO)3 unit binds to the peptide via N-terminal histidine residues, while

the thiazole ligand is released. However, subsequent line-broadening in NMR spectra

prevented detailed analysis of the RuII-Aβ28 adducts formed. NMR signals for both

the peptide and the RuII complex decay over time, which might be accounted for by

the formation of large insoluble aggregates. In addition, circular dichroism studies

illustrated that while the free Aβ28 adopts a random coil conformation, addition of

the RuII species led to formation of insoluble aggregates.

Similarly, Messori et al.[101] studied three rutheniumIII complexes (NAMI A, KP1019

and PMRU20) for their ability to block Aβ42 aggregation and toxicity using an

in vitro model of AD. While NAMI A and KP1019 were poorly active, PMRU20

was shown to be highly active in protecting cortical neurons against Aβ42 toxicity.

In addition, this complex displays no significant cytotoxicity at the concentrations

tested. Characterisation using ESI-MS suggests that a stable adduct is formed be-

tween PMRU20 and Aβ42, while ThT fluorescence assays indicate that the complex

interacts with Aβ42 and reduces Aβ fibril formation. However, later work by Jones

et al.[102] showed that KP1019 is able to interact with Aβ42 and promotes formation

of high molecular weight aggregates rather than toxic Aβ oligomers. In addition,

KP1019 was also shown to limit Aβ42 toxicity in human cell cultures.

As previously mentioned, Yellol et al. [95] studied PtII, RuII and IrIII complexes

with the pyridyl-benzimidazole ligand. Here, 1 μM of all three compounds was suf-

ficient to inhibit Aβ amyloid aggregation, as confirmed by ThT fluorescence and

TEM. However, while the RuII compound is toxic and therefore unable to rescue Aβ

toxicity, the IrIII compound exhibited a robust rescuing of Aβ neurotoxicity.
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Recently, CobaltIII Schiff base complexes have been investigated by Heffern et al.

[103] for their ability to interact with Aβ16, as well as their effects on the aggregation

of Aβ42. HPLC-MS, NMR and fluorescence techniques were used alongside DFT

studies to demonstrate that the CoIII complexes interact with the N-terminal His

residues in Aβ via dissociative ligand exchange at the axial ligand positions. Coor-

dination of the cobalt complexes to Aβ42 altered peptide structure and promoted

the formation of large (> 30 kDa) soluble oligomers – this correlated with a reduced

level of binding of Aβ to synapses in hippocampal neurons. DFT calculations at

the B3LYP/6-31+G(d) level were performed on small models of CobaltIII- Aβ and

determined that coordination of His6 to one axial position and either His13 / His14

to the other was the most favourable ligand arrangement.

Similarly, work by Li et al.[104] used triple-helical dinuclear complexes[105] to enan-

tioselectively inhibit Aβ40 aggregation. These complexes were shown to be able to

cross the blood-brain barrier, bind Aβ, inhibit the aggregation process and desta-

bilise preformed Aβ fibrils. Furthermore, these complexes suppress Aβ40-induced

ROS production in cell cultures. Circular dichroism spectroscopy showed that these

complexes could inhibit the coil-β-sheet structural transition seen in Aβ aggrega-

tion. Molecular docking studies predicted that the complexes bind between residues

16-23. The authors also suggest that benzene rings in the complexes are able to form

π-π stacking interactions with Phe19 and Phe20 residues in the peptide, disrupting

the natural hydrophobic and π-π interactions of these residues.

Work by Man et al.[106] studied iridiumIII and rhodiumIII complexes as inhibitors

of Aβ40 aggregation. Here, the effect of these compounds on Aβ aggregation was

studied by fluorescence microscopy. Of these complexes, the rhodiumIII compound

was shown to be the most effective anti-Aβ agent.

Finally, a different approach to Aβ aggregation inhibition was exhibited by He et

al.[107], who used peroxovanadium-based complexes to bind Aβ and oxidise the

Met35 residue; methionine oxidation has been reported to be important in amyloid

peptide aggregation as the resulting methionine sulfoxide is less flexible and more

polar than the natural residue. ThT fluorescence was significantly decreased after

incubation with the vanadium complexes, suggesting that these complexes reduce

the ability of Aβ to aggregate. In addition, the vanadium complexes induce a change

in Aβ42 secondary structure, as characterised by the circular dichroism spectrum.
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Finally, cell viability studies showed that incubation of the vanadium complexes

decreased the cytotoxic effect of Aβ42.

On this evidence, it appears that there is great potential in the area of metal- and

especially platinumII-based therapeutics for the discovery of new anti-Alzheimer’s

drugs, due in part to the relative lack of research that has been devoted to it.

However, as with all new classes of drugs, it is vitally important to determine the

toxicity of new metal-based compounds; while these compounds are known to target

biologically important proteins, little is known about their neurotoxicity in vivo. It

is especially important to consider the stability of the complex in the body and

its uptake properties. Furthermore, it should be checked that the concentration of

agent required to inhibit aggregation does not cause damage to other organs. If

these conditions are met, it may be possible to develop the drug pharmaceutically.

However, it has been suggested by Barnham [92] that simply reducing the amyloid

build-up in the brain is not enough to recover cognitive function. It has long been

suggested [8] that Aβ deposits up to two decades before patients present clinical

symptoms, meaning that anti-amyloid treatment would need to be begin early on in

the disease process in order to be effective, potentially even at the pre-clinical stage

of the disease if patients could be identified.

1.5 Modelling Aβ and Related Biomolecular Sys-

tems

The flexible nature of Aβ described above means that detailed structural information

is difficult to obtain via experimental methods. As a result, much work has been done

to elucidate the structure and chemistry of these peptides by molecular modelling,

and particularly, molecular dynamics methods. In this section, a selection of this

work will be discussed, with focus on the full Aβ peptide.

1.5.1 Quantum Mechanical Methods

While popular and generally accurate, quantum mechanical approaches are not com-

monly applied to large biological systems; these calculations are often too expensive

to use for biomolecular systems, particularly when trying to find the global minimum

on a large and complex potential energy surface. Importantly, there is no published
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data using quantum mechanical calculations to predict the structure of Aβ. In this

section, a selection of research into modelling small peptides using these methods is

discussed.

Vargas et al. [108] used second-order Moller-Plesset (MP2, with the aug-ccpVDZ,

aug-cc-pVTZ, and aug-cc-pVQZ basis sets) and DFT (B3LYP or BLYP/TZVP+)

calculations to study six conformers of the alanine dipeptide. DFT accurately rep-

resents peptide structure when compared to the higher level method, though in flat

regions of the potential energy surface, structural differences may be large, with

errors in dihedral angles up to 37◦. For the six conformers, all methods predict the

same order of stability - DFT methods give energies that differ by less than 0.40

kcal mol-1, though BLYP/ TZVP+ and MP2/aug-cc-pVXZ levels, give an energy

difference of 1.31 kcal mol-1 i.e. DFT is generally able to reproduce the accuracy of

higher levels of theory for conformations of small biomolecules.

Perczel et al. [109] studied nine gas phase conformers of the alanine dipeptide via HF

and B3LYP (with 3-21G, 6-31+G(d) and 6-311++G(d,p) basis sets) and compared

results to MP2, MP4D and CCSD(T) data. HF and DFT predict between five and

seven minima for this system, rather than all nine. However, the geometries and rel-

ative energies of these lower level calculations show strong correlation with MP2 and

CCSD(T) results. All methods were shown to predict similar potential energy sur-

faces for the peptide, indicating that DFT is able to suitably model peptide systems.

In 2011, Abo-Riziq et al. [110] used B3LYP/6-31G** to study eighty conformers of

Tyr-Gly-Gly peptide. Here, fewer low energy conformers are found than for smaller

Tyr or Tyr-Gly systems. Calculated stable conformations agree with those identified

by experiment, including absorption and vibrational spectra.

Valdes et al.[111] studied realistic models of aromatic-aromatic side chain inter-

actions in proteins using a number of conformations of the phenylalanyl-glycyl-

phenylalanine tripeptide. Here, the system was modelled using a range of DFT

functionals, which were compared to MP2 data. In general, DFT produced accu-

rate peptide geometries and predicted the correct energy ordering of conformations;

in particular, the Truhlar functionals[112] (MUE = 0.42 kcal/mol) and BHandH[113]

(MUE = 0.89 kcal/mol) proved accurate.
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Work by Shields[114] and Holroyd[115] studied conformers of the Tyr-Gly dipetide

using B3LYP/6-31+G(d) and MP2/6-31+G(d). By comparison with higher ab initio

calculations, it was shown that DFT was able to successfully predict the most sta-

ble conformer, while MP2 could not. However, B3LYP DFT calculations produced

incorrect changes in potential energy when the residues are close together, suggest-

ing that these methods require inclusion of dispersion effects to model these systems.

Following this, van Mourik [116] assessed a series of density functionals (B3LYP,

B97-1, X3LYP, BHandH, mPW2-PLYP, PWB6K, M05-2X, M06-2X, M06-L, B3LYP

-D, and mPW2-PLYP-D) to handle this problem, including modelling of several low

energy conformations. This work highlights the difficulty of accurately describing

flexible peptides containing π-interactions; while most methods identify the three

minima expected, only M06-2X and mPW2-PLYP-D predict the correct order of

stability of these three structures.

Shubert et al. [117] assessed the performance of DFT for predicting the gas-phase

structure of two 20-residue peptides (Ac-Ala19-Lys and Ac-Lys-Ala19), where weak

interactions such as dispersion or hydrogen bonds are important. Here, the PBE

and PBE0 functionals used, with several different dispersion corrections, to model

3026 conformations of these peptides. Computational results are validated against

MS and IR data. These calculations predict a low number of stable conformers,

while the lowest energy structure agrees with experimental characterisation.

Rauschenberg et al. [118] used BLYP-D3/def2-TZVP calculations along side exten-

sive experimental data to study the interactions between two cyclic hexapeptides

(Cys-His-Cys and Cys-Tyr-Cys) with a selection of small molecules in aqueous so-

lution in both gas phase and COSMO implicit solvent. 64 conformations of each

complex were optimised using this DFT method and the calculations confirm the

small molecule selectivity of the peptides observed in experiment. In addition, DFT

predicts the formation of multiple intermolecular hydrogen bonds in the most stable

complexes.

Work by Ninkovic[119] studied the interactions of aromatic and aliphatic amino

acids in amyloid formation. Analysis of model systems from the Protein Data Bank

showed that B3LYP-D3/6-31G* calculations showed good geometric and energetic

agreement with CCSD(T)/CBS data; as such these DFT calculations were applied
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to a series of two tetramers of aromatic and aliphatic peptides, used to represent β-

sheet structure in adjacent amyloid peptides. These were analysed for their total in-

teraction energy, as well contributions from sidechain-sidechain, sidechain-backbone

and backbone-backbone interactions. This revealed that in amyloids containing aro-

matic residues, interaction of aromatic-aliphatic side chains are the most important

stabilising factor, while in aliphatic amyloids, stability comes from side-chain inter-

actions with the backbone as well as hydrogen bonds.

Barnham et al. [120] used DFT to propose a reaction scheme for catalytic generation

of H2O2 by Aβ. These calculations suggest that a critical role of Tyr10 in this pro-

cess: a tyrosine radical leads to cross-linked Aβ chains and peptide oligomerisation.

DFT data was shown to be in good agreement with experimental work studying

production of H2O2 by Aβ / CuII.

In summary, the application of quantum mechanical methods to large, flexible or

unstructured biomolecules such as Aβ remains uncommon - i.e. where a single con-

formation is insufficient to describe peptide behaviour - though these methods have

found a great deal of success in modelling smaller or more structured biomolecular

systems.

1.5.2 Semi-Empirical Methods

Semi-empirical methods, particularly the newer PM6 and PM7 methods (see Section

2.6), are also relatively infrequently applied to large, flexible biological systems, in

part due to reasons of cost and in part due to concerns over accuracy. In this section,

a series of applications of these modelling techniques to biomolecules are discussed.

To the knowledge of this author, neither PM6 (and related methods) or PM7 have

previously been applied to studies of intrinsically disordered peptides such as Aβ.

Crucially, Stewart [121] assessed the suitability of PM6 for modelling proteins by

studying the properties of a series of proteins obtained from the Protein Data Bank.

For single amino acid residues, PM6 gave average all-atom RMSD versus B3LYP/6-

31G(d) calculations of 0.225 Å, with errors associated with rotations of carboxylic

acid and amino groups. This work also considered classical protein secondary struc-

tures, and compared PM6 optimised RMSD with that of peptide X-ray structures;

in all cases, errors were low. For 26-residue helices, the all atom RMSD was reported
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as 0.73 Å, with errors in the associated Ramachandran plot (see Section 2.8.3) of ap-

proximately 6◦. β-sheet structures were modelled to approximately the same degree

of accuracy, even in systems containing multiple peptide chains. The performance of

this method for modelling salt-bridge interactions was also studied – here, reported

RMSDs from X-ray data was around 0.9 Å in peptides of up to 46 residues. Protein

tertiary and quaternary structure were also successfully reproduced by PM6, with

RMSD (versus X-ray) values on the order of 1 Å, indicating that PM6 can be used

for accurately modelling protein structures and properties.

Pichierri used semi-empirical PM5 and PM6 methods to study human erythro-

poietin[122] (133 residues) and charybdotoxin, a scorpion venom peptide[123], (37

residues) respectively. In both cases, calculation of the PM5/6 was not validated

against another theoretical method, but calculated HOMOs correlate with reactive

sites in the biomolecule, suggesting that the method suitably describes these systems.

In 2014, Temelso et al.[124] used semi-empirical calculations to determinine low

energy conformers of a threonine-proline-valine-asparagine tetrapeptide. This ap-

proach was used to screen out high-energy conformers using lower levels of theory

and predict accurate peptide structures for the most stable conformers. By compar-

ing results against MP2 data, it was shown that DFT structures gave the highest

agreement (RMSD < 0.2 Å) while all semi-empirical methods (with the exception

of PM3) also produced accurate peptide geometries (RMSD < 1.0 Å). In the case of

the semi-empirical methods, most of this structural deviation was seen in the freely

rotatable capping groups on the peptide. For calculating relative energies of these

conformations, PM6-H2 and PM6-DH+ methods produce the lowest mean-square

errors of all semi-empirical methods tested (0.35 and 0.90 kcal/mol) relative to MP2

data, though observed standard deviations (1.69 and 2.14 kcal/mol) are significantly

greater than those found using DFT.

Faver et al. [125] investigated the performance of various semi-empirical methods,

including PM3, PM6, and PM6-DH2 in modelling the interaction energy of ubiqui-

tin protein fragments by comparing them to MP2/CBS and CCSD(T)/CBS values.

Of these, PM6-DH2 was the most accurate, though standard deviations of the errors

were still quite large.

Dobes et al.[126] used PM6-DH2X and AMBER to investigate complexes of a large
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protein kinase, containing α-helical and β-sheet structural elements, with a series of

9 aromatic, halogen-containing inhibitors. The semi-empirical method was shown

to be able to accurately reproduce known interactions between inhibitors and the

protein, both in terms of overall geometry (PM6-DH2X RMSD = 0.14 Å, AMBER

RMSD = 1.14 Å) and the description of halogen bonds. In addition, binding free

energies were calculated and compared to known experimental inhibition constants.

These data showed strong agreement between the semi-empirical results and exper-

iment (R2 = 0.86), while no agreement was observed for AMBER (R2 = 0.04).

In 2013, Stewart introduced the next iteration of semi-empirical methods, PM7,

which was shown to reduce errors from PM6 and improve applicability of the semi-

empirical methods to biomolecules and crystalline solids.[127] Of particular interest

is the application of PM7 to large biological systems - structures of about 70 pro-

teins from the PDB were modelled, with the assumption that if existing structures

can be accurately modelled, then alternate conformations (i.e. those found in bio-

chemical processes) would also be accurately modelled, and vice versa. Average

all-atom RMSDs for these systems were reported as less than 1 Å, though results

were sensitive to errors in weak, long-range interactions.

Ivan et al.[128] used semi-empirical PM6 and PM7 methods to study twenty-eight

conformations of the relatively complex drug molecule (3S,5S,6S)-6-acetylamidopenicillanic

acid. Few differences were observed in the geometries or heats of formation of these

conformers with the two methods, illustrating that semi-empirical methods can be

used to study many distinct conformations of organic species.

In 2015, Martin et al.[129] investigated the accuracy of PM7 for modelling a series

of 19 in vivo protein structures, containing 21-276 residues. Calculations were per-

formed both in gas phase and implicit solvent via COSMO. The range of size of

proteins studied made comparison of all-atom RMSDs uninformative, but energetic

changes per atom were calculated and shown to be of the order of 1 kcal mol-1/atom

i.e. small changes in peptide geometry introduced by PM7 optimisation. For the

S22 and S88 benchmark data sets, the average change per atom was reported as 0.12

kcal mol-1/atom. However, comparison with B3LYP-D3 data showed that PM7 rou-

tinely underestimated inter-residue interaction distances.

Similarly, Ryan et al.[130] used PM7 to model the MTH1 enzyme (containing >150
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residues, with both α-helix and β-sheet structure present) and its interactions with

a small biomolecule, 8-oxo-dGTP. PM7 reproduced experimental data well - errors

in bond lengths and angles are of the order of 0.04 Å and 2-3◦ while the calcu-

lated all-atom RMSD value versus X-ray is 1.37 Å; backbone RMSD was 0.67 Å,

while sidechain RMSD was 0.93 Å, indicating that most differences originate from

sidechain movements. In addition, PM7 was shown to be able to predict the exis-

tence of charged sites in the protein as well as model interactions between them.

Average errors in hydrogen bond distances of approximately 0.1 Å were observed,

though description of long, weak hydrogen bonds was less accurate.

Hostas et al.[131] assessed the performance of PM6 and its modern variants (PM6-

DH+, PM6-DH2(X) and PM6-D3H4X) as well as PM7 across thirteen standard

data sets; eleven contain geometries and interaction energies of molecular complexes,

while the two remaining sets contain structures and relative energies of different con-

formations of complexes and complex molecules, including peptides. While none of

the methods could be unambiguously recommended for general modelling use, PM6-

D3H4X displayed the most accurate results for non-covalent interactions such as hy-

drogen bonding. The PM7 method produced slightly worse results but was shown

to describe other molecular properties more accurately. Notably, however, PM7

produced relatively poor results for dispersion-bound species, and over-stabilised

systems containing multiple hydrogen bonds, such as biomolecules.

In addition, several authors have used these semi-empirical methods in combination

with quantum mechanical methods in hybrid QM/MM schemes [132] as well as

improving the accuracy of molecular docking results.[133, 134]

1.5.3 Molecular Mechanics and Molecular Dynamics

While there is relatively little quantum mechanical work on Aβ, a great deal of

research has been performed using molecular mechanics and molecular dynamics

techniques. Molecular dynamics has become an increasingly important tool for the

study of biomolecules – several general reviews of its application may be found in

[135, 136], while Aβ-specific examples may be found in reviews by Kepp[5, 49] and

Rauk[29], among others.[50, 137] A selection of this literature is discussed here.

One of the first applications of molecular mechanics techniques to Aβ was performed
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by Mager in 1998.[138] This work did not consider the flexibility of the peptide, but

rather performed a simple optimisation of the peptide using the MM+ forcefield.

This identified two clear regions of secondary structure – an α-helical region at

residues Leu17-Ala21 and a β-sheet at Lys28-Val40. Since then, MM and MD meth-

ods have been extensively applied to studying the free Aβ peptide.

In 2008, Anand et al.[139] applied standard MD and replica-exchange molecular dy-

namics (REMD) to the Aβ39 peptide at room temperature. Here, the authors used

the Generalised-Born implicit solvent model and the AMBER99 forcefield. Dynam-

ics simulations of 90 ns were used, following 0.1 ns of equilibration. Simulation data

indicated that the Aβ monomer does not occupy a single conformation in water,

but adopts one of several low energy structures, consistent with the idea that Aβ is

a disordered peptide. Analysis of peptide secondary structure using DSSP showed

little secondary structure content, with a turn at Val12-Leu17 and helices at Gly15-

Val18, Gln11-Glu22 or Ile32-Met35, illustrated in Figure 1.8. Notably, there was no

β-sheet structure formed, suggesting that β-sheet structures are formed during the

oligomerisation processes and are not found in the monomer.

Figure 1.8: Three dominant structures observed in Aβ1-39 simulations[139].
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Yang and Teplow[140] used microsecond timescale REMD simulations to study Aβ40

and Aβ42 and to construct their free energy surfaces. Here, simulations used Gener-

alised - Born implicit solvent and the AMBER (PARM99SB) forcefield. The authors

used 16 replicas, each for 110 ns, where the first 10 ns were treated as equilibration.

Here, neither Aβ40 nor Aβ42 was found to be unstructured; while neither pos-

sessed high levels of α-helix or β-sheet, each peptide has several independent folding

units, containing residues Asp1–Arg5, Tyr10–His13, Leu17–Glu22, Lys28–Gly37,

and Val39–Ala42, connected by four turns. Residues 6-40 were shown to exist as

turn-type structure with 30-80% probability, while residues His6-Gly9 and Asp23-

Asn27 were most frequently designated as turn-type. The central hydrophobic core

and the C-terminal region of Aβ often displayed α-helical structure, while residues

Lys16–Asn27 and Ala30–Val36 occupied β-sheet structure for 6–8% and 8–14% of

simulation time. The free-energy surfaces of both peptides are characterised by two

large basins, containing conformations with relatively substantial α-helix or β-sheet

content.

In 2007, Raffa and Rauk[141] performed a series of MD simulations on both Aβ42

and CuII-Aβ42 – these metal-containing systems are discussed later. Simulations of

Aβ42 were performed for 790 ns using the GROMOS forcefield with periodic bound-

ary conditions and the simple point-charge (SPC) water model. The first 350 ns of

simulation were considered as equilibration and remaining data used for analysis –

the authors note that this equilibrated conformation may be an intermediate state,

leading to more stable conformers at longer simulation times. The radius of gyration

of Aβ42 was calculated as 9.2 Å, in line with experimental data.[142, 143] Analysis

of the MD trajectories showed that the central core of Aβ adopts predominantly

turn-type structure, with α-helical structure at residues Glu22-Asn27. Only a small

degree of β-sheet structure was detected.

Sgourakis et al.[144] characterised Aβ40 and Aβ42 using REMD and NMR experi-

ments and showed that REMD reproduced NMR data across microsecond timescale

simulations. These simulations were performed using the OPLS forcefield and SPC

water; 52 replicas were modelled for 100 ns each. Aβ40 simulations revealed the

presence of a short 3,10 helix at the N-terminus and a hairpin at residues Val12-

Val18. In contrast, the C-terminus of the peptide (Phe19-Val40) was shown to be

conformationally flexible. In addition, the termini of the peptide were found to be

in close proximity. Aβ42 data showed a disordered N-terminal tail, while residues
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Ser8–Gly29 occupy a series of turn-type structure. Furthermore, the C terminus

of Aβ42 is more structured than that of Aβ40, containing two short β-sheets. The

authors speculate that this reduced C-terminal flexibility may be responsible for the

higher propensity of Aβ42 to form amyloids.

Later, the same authors[145] used REMD to study conformations of Aβ42 in ex-

plicit (TIP4P) water using the AMBER99SB forcefield. Here, 52 replicas of the

peptide were again used, each simulated for 225 ns. Results were shown to converge

to a diverse ensemble representative of experimental data after approximately 60

ns/replica of simulation. β-sheet structures were frequently observed involving the

C-terminus of the peptide - in particular, the authors note the formation of a β-

sheet involving strands Phe4-His6 / Met35-Gly38 / Val18-Phe20 and Gly38-Val40.

In addition, residues Ser8-Val12 and/or Phe20-Asp23 are shown to occupy α-helical

structure in some conformations, while a 3,10-helix was detected at both Gly29-

Gly33 and Ala21-Val24 during simulation. Finally, turn-type structures appeared

at Tyr10, Phe19 and Phe20.

In 2006, Luttmann and Fels[146]performed united-atom (i.e. where non-polar hy-

drogens are collapsed into their heavy atoms) simulations of Aβ40 and Aβ42. These

simulations were performed for 10-20 ns at 300 K using the GROMOS forcefield,

SPC water and periodic boundary conditions. While no explicit consideration of

equilibration is given, only the final 10 ns of the simulations are used for analysis.

While initial conformations (based on NMR data) contain fifteen to twenty residues

of α-helical character, this drops rapidly to between three and ten residues of α-helix

in conjunction with increased population of π-helices; it is generally accepted that

transitions of α-helices to 3,10- or π-helices are important steps in the folding and

unfolding of helices.[147] In addition, the central region of the peptide was shown to

adopt β-sheet and turn-type structure, while the first and final ten residues remain

flexible.

Xu et al.[148] studied the conformational changes of Aβ40 via MD simulations in

both aqueous solution and in a lipid environment. In this work, the 150 ns sim-

ulations used the GROMOS forcefield, SPC water and periodic boundary condi-

tions. Six concurrent MD simulations illustrated that the initial α-helical character

at residues Val24-Gly37 of the peptide was rapidly converted into β-strand and

turn-type structures, while the central hydrophobic region (residues Lys16-Ala21)
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remained largely α-helical, with some 3,10- and π-helical character. Residues Asp1-

His14 were reported as mostly random coil in nature. Overall, Aβ was characterised

as 36% helix, 12% β-sheet and 62% coil. The authors also suggest that residues

Val24–Val40 may be the core for Aβ oligomerisation.

Recently, Huy et al.[149] studied Aβ42 via MD. Here, the AMBER99SB forcefield

was used alongside TIP3P water and simulations were carried out for 1 μs. In-

terestingly, the authors define a quasi-equilibration, where the root-mean-square

deviation (RMSD) of the system fluctuates around a stable value, rather than un-

dertaking full equilibration of the disordered peptide. Of the initial structures stud-

ied, these systems reach quasi-equilibrium at different timescales. The simulations

show that the peptide adopts a compact structure, with radius of gyration 10.1 ±
0.6 Å, which agrees well with existing experimental data.[150] Analysis of peptide

secondary structure showed that the turn- and coil-type content is high (85.8%), in

line with other studies. In addition, the α-helical content is very low (<5%), while

the overall β-sheet content of Aβ42 is around 10%; both of these agree with existing

data.[144, 151, 152] The authors also performed a thorough inspection of intramolec-

ular salt-bridge interactions and frequently observed Lys28-Asp23, Lys16-Glu11 and

Arg5-Asp1 contacts.

In 2013, Ball et al.[153] used the AMBER ff99SB forcefield with TIP4P water to

study both Aβ40 and Aβ42 using REMD. While some similarities were observed,

(e.g. a highly populated turn at Asp7-Ser8 or a helix near Ser26) the two pep-

tides were shown to have substantially different secondary structures – in particu-

lar, Aβ40 occupied both collapsed and extended conformations. In addition, Aβ42

often showed two hairpin-type structures at Lys16-Ala21 and Gly29-Val36, as well

as frequent turn-type structure at residues Ser26-Asn27.

Velez-Vega and co-workers[151] used OPLS REMD simulations with TIP3P water

to model Aβ42 and mutant variations. Here, the authors used 32 replicas, starting

from collapsed peptide conformations, for a total of 1.76 μs simulation. This found

that Aβ is largely unstructured, with 41% coil structure, 52% β-bridge / β-turn,

4% helix and 3% β-sheet. Aβ42 displayed ‘a tendency to adopt a collapsed coil

structure,’ including a helix in the central (residues Phe20-Ala30) peptide region.

Further specific interactions included a hairpin between Gly33-Met35 and Val40-

Ala42 or Ala30-Ile32 and Leu34-Val36, and N- and C-terminal interactions such as
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Asp1-Ala42, Ala2-Val40, and Glu3-Val40.

Rosenmann et al.[154] used a combined NMR/MD method to study Aβ40 and Aβ42.

Here, 52 replicas of REMD simulation performed with the OPLS forcefield and

TIP3P water illustrated that simulation time on the order of ‘hundreds of ns’ is

required to reach convergence. The N-terminus of both peptides was reported to be

disordered, though turn-structures were observed at Phe4-His6 and His14-Lys16 in

Aβ40. These N-terminal residues also appear to be in contact with the rest of the

protein, suggesting a collapsed conformation is favoured. Aβ40 also possessed more

β-sheet type character than Aβ42, particularly at Leu17-Ala21 and Ala30-Val36,

while Aβ42 displayed a variety of hairpin structures near the C-terminus.

Later, these authors[155] studied the same Aβ systems using three different REMD

approaches: OPLS / TIP3P water, AMBER99 SB-ILDN / TIP4P water and CHAR-

MM-22 / TIP3PSP water. Encouragingly, the resulting ensembles show ‘strong con-

vergence in structural properties.’ In particular, β-sheet structures between Leu17-

Ala21 and Ala30-Leu34 are commonly observed, while the central Ala21-Ala30 re-

gion rarely interacts with the rest of the peptide. However, the structure of this

central region was shown to depend on the chosen forcefield. Aβ42 simulations also

displayed a greater degree of hairpin-type structure near the C-terminus. In addi-

tion, OPLS simulations appear to favour especially collapsed conformations, with

large numbers of intramolecular contacts and these contacts depend strongly on the

forcefield used.

An interesting alternative approach was implemented by Mitternacht et al.[156] who

used an all-atom potential where only torsional degrees of freedom were considered.

Here, 10 independent Monte Carlo simulations at six different temperatures were

performed in implicit solvent. This identified two free-energy basins; one corre-

sponded to peptides with extended β-sheet character, while the other contained

much less β-sheet character. The propensity of residues to form α-helical struc-

tures was uniformly low, while β-sheet propensity was much higher, particularly at

residues Leu17-Phe14. In addition, residues His14, Gly25 and Gly37 correspond to

regions of turn-type structure.

Huy et al.[149] also used AMBER dynamics simulations on the μs timescale to study

dimers of Aβ42. Here the peptides displayed 6.5% α-helix and approximately 13%
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β-sheet structure, in agreement with other experiments. In addition, a high num-

ber of intrachain salt-bridges between N- and C- termini were observed. Similar

results were obtained using coarse-grain[152] and discrete molecular dynamics sim-

ulations[157], with β-sheet propensity of 30% and 20%, respectively.

In addition to this, several authors have used coarse-grained molecular mechanics

methods (i.e. where residues are represented by a small number of beads rather

than their constituent atoms) to study Aβ.[152, 158, 159] However, these results

are not discussed in detail as the coarse-grain approach has not been used in this

research.

In the context of this work, it will be important to compare the structure of the

PtII-Aβ complexes with the naturally occurring peptide. However, it is important

to note that the reported secondary structural data here depends on the forcefield

chosen – different forcefields have different propensities to form different secondary

structural elements, leading to significant structural differences and predicted be-

haviour.[49, 53].

Somavarapu et al.[53] assessed a range of 10 forcefields (of various AMBER, OPLS,

GROMOS and CHARMM types) for their ability to reproduce NMR and CD struc-

tural data of the Aβ40 peptide and identified major differences in the structural

ensembles. Simulations of approximately 1 μs for each forcefield revealed that some

over-stabilise helices, others stabilise β-strands, while OPLS variants produce highly

unstructured conformations that generally display very poor agreement with the

experimental data; CHARMM22* and AMBER99sb-ILDN versions were found to

most closely resemble experimental results.

Similar work by Carballo-Pacheco and Strodel[160] assessed a series of forcefields us-

ing REMD simulations with 32 replicas and 200 ns simulation each to model Aβ42.

While all forcefields produced different peptide structures, they were also shown to

accurately reproduce NMR data, though CHARMM22* appeared to be most accu-

rate.

Current MD simulations of the full Aβ peptide take place on the nano- to micro-

second timescale, with REMD simulations (vide supra) the longest of these. How-
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ever, it is notable that in MD simulation work on Aβ peptides, there has been little

discussion of what constitutes equilibration, with the exception of work by Huy et

al. above.[149] This must be in part due to the disordered nature of Aβ, in that it

is sufficiently conformationally diverse that it may never reach true equilibrium, or

if it does, it does so on a timescale beyond what is feasible to study using current

methods.

As discussed, Huy et al.[149] defined a quasi-equilibrium, where the system is stable

enough to obtain useful structural information from the dynamics simulation, even

if the structure is not truly at equilibrium. Aβ42 systems were shown to take on

the order of hundreds of ns to reach this state. Other authors[141] explicitly state

that the conformations sampled may be an intermediate folded form of the peptide,

which may lead to more stable forms at longer simulation times.

Rauk[141] gives an equation for an estimate of the time scale, t, in ns, for folding a

small protein:

exp(0.5N (2/3)) < t < exp(1.5N (2/3)) (1.1)

where N is the number of residues. For Aβ42, this suggests a folding time of 420

ns to 74 ms. Work on the disordered nine-residue vasopressin peptide by Haensele

et al. [161] illustrated that peptides of this size may not equilibrate within 25 μs of

metadynamics simulation, indicating that pursuing full equilibration of Aβ is likely

beyond current capability.

1.6 Modelling Metal-Biomolecule Systems

It is also important to consider modelling approaches to biomolecular systems con-

taining metal ions, as this underpins much of the research in this thesis. This section

consists of a discussion of some of these techniques and their application.

1.6.1 Quantum Mechanical Methods

For reasons of computational cost, quantum mechanical calculations are not usu-

ally applied to complete metal-biomolecule systems. Instead, the region near the

metal is often modelled using quantum mechanical methods while the remainder of

the system is handled using a cheaper method or omitted entirely. In this section,
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recent applications of quantum mechanical methods to metal-biomolecule systems

will be discussed. General reviews of the topic are provided in references.[162–164]

As already mentioned, Streltsov et al. [89] used DFT (MPW1PW91 / SDD) cal-

culations alongside EXAFS data to derive structural models of the interactions of

cisplatin and PtII(phen) complexes with the histidine and methionine residues of

Aβ. This level of theory was judged appropriate based on modelling small model

compounds from the crystal structure database – PtII bond distances and PtII bond

angles agree with the experimental data values to 0.14 Å or better and 3.60◦ or

better, respectively.

Recently, Novato et al.[165] used DFT to study interactions of PtII(phen) and

PtII(dpphen) (1 and 2, respectively, in Figure 1.5) complexes with Met, Lys, His,

Glu, Asp, Asn and Gln residues of Aβ. Here, B3LYP calculations with LanL2DZ

/ 6-31G(d) basis sets were used, while reaction kinetics were calculated using LC-

ωPBE and CAM-B3LYP with SDD / 6-31+G(2df) basis sets. DFT accurately

reproduced experimental geometries – while bond lengths were slightly longer than

those observed in the solid state, bond angles agree within 5%. Results suggest a

reactivity order for these complexes of: Met ∼ Lys ∼ His(ε) > Glu ∼ Asp >> Asn

∼ Gln; thermodynamics data suggests a preference for Lys or His residues, in line

with other experimental data.

Zimmerman et al. have published a series of calculations on the interactions of cis-

platin with cysteine and methionine amino acid residues, both in gas phase [166] and

in implicit solvent[167, 168]. In this work, hydrated cisplatin complexes were used in

a two step reaction with the amino acid – substitution of aqua ligand by the amino

acid before dissociative chelate formation. DFT optimisations were performed at

B3LYP / SDD / 6-31+G(d) level in implicit solvent, where the SDD ECP was ap-

plied to sulphur, chlorine and platinum. Single-point energies were then calculated

at the B3LYP / SDD / 6-311++G(2df,2pd) level. Results suggest a thermodynamic

preference for amino acid coordination: most favourable is binding of cysteine sul-

phur, followed by amino group nitrogen, methionine thioether sulphur, and carboxyl

group oxygen. More specifically, in the case of Cys coordination, coordination via

sulphur is strongly favoured. For Met coordination, coordination depends on the

nature of the cisplatin complex – PtII-N(Met) coordination is preferred in the chloro

complex, but PtII-S(Met) in the hydroxo complex.
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Ali-Torres et al. [169] used homology modelling and quantum mechanics to deter-

mine three-dimensional models for CuII-Aβ16 binding. Here, both ε and δ coordi-

nation of histidines 6, 13, and 14 were considered, with Asp1, Glu3, Asp7, Glu11,

and CO-Ala2 as the fourth ligand. Gas phase DFT calculations (BHandHLYP /

6-31G++G(d,p)) predicted CuII bound to Asp7O, His6Nε, His13Nδ, His14Nδ, while

inclusion of implicit solvent lead to CO-Ala2CO, His6Nε, His13Nδ, His14 bindingNε.

Alternatively, hybrid QM/MM calculations (BHandHLYP: UFF) calculations sug-

gest a different CuII binding mode: Glu3O, His6Nδ, His13Nε, His14Nε. While each

method suggests a different copper coordination sphere, results indicate a preference

for oxygen ligands (Glu3, Asp7) rather than backbone nitrogen atoms.

Marino et al.[170] aimed to determine coordination patterns of CuII and ZnII to Aβ

via DFT calculations on truncated model systems. Here, B3LYP with 6-31G(d)

and 6-31+G(d) basis sets were used, with SDD ECP for metal centres. Results

indicate that while CuII prefers penta-coordination, ZnII is flexible – occupying five-

and four- coordinate states. Furthermore, the most stable CuII coordination was via

two equatorial His residues, an axial Tyr and two waters, while for ZnII, the same

residues with a single water molecule appeared most stable.

Azimi and Rauk [171] used B3LYP/6-31+G(d) and MP2/6-311+(2df,2p) calcula-

tions to study CuI and CuII interactions with models of the Asp1, Ala2, His6, and

His13/His14 regions of Aβ. These data indicate that CuII binds Asp1, His6 and ei-

ther His13 or His14 (component I), while component II CuII binds backbone oxygen

in Ala2, His6, His13, and His14. Free energy calculations suggest that CuI binds

these sites in Aβ more strongly than CuII. Finally, the computed reduction poten-

tial for CuII closely matches experimental data.

Streltsov et al. [172] combined EXAFS and DFT data to study CuII-Aβ16 bind-

ing. In this case, DFT calculations at the B3LYP / LanL2DZ level were used on

hexa-coordinate CuII, bound to three His residues and either Glu and one water

molecule or Tyr and two water molecules. Fitting and refinement against EXAFS

data displayed better agreement with the 3 His, Glu, H2O ligand arrangement than

that containing Tyr.
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Dudev amd Lim [173] used DFT calculations to study ZnII, MgII and CaII binding

affinity and selectivity for nonstandard amino acid residues. Here, the metal and

first coordination sphere was optimised using the S-VWN functional with SDD /

6-31+G* basis set combination, before free energy calculation at the B3LYP / 6-

311++G(2df,2p) level. The remainder of each protein was treated as a continuum

dielectric. While this is a simplistic modelling approach, results suggest that the

nonstandard residues have greater metal binding capacity than their standard coun-

terparts. These residues display preference for ZnII over MgII or CaII, suggest they

could be used as metal-binding sites in protein engineering.

The same authors [174] also studied the competition between protein ligands and

cytoplasmic inorganic anions for Na+, K+, Mg2+ and Ca2+ ions via DFT/continuum

methods. S-VWN / SDD / 6-31+G* optimisation and B3LYP / 6-311++G(2df,2p)

free energy calculations indicate that the metal cation is able to bind its target pro-

tein despite a high concentration of cytoplasmic anions. This is because desolvating

a carboxylate is less energetically expensive than desolvating an inorganic anion,

while the protein acts as a polydentate ligand, providing a chelate effect.

Similarly, the same authors studied the competition between Li+ and Mg2+ in metal-

loproteins using B3LYP / 6-31+G(3d,p) calculations.[175] Here, metal binding sites

were simplified to acetate, amide and backbone groups, while the remainder of the

peptide was not considered. These calculations suggest that competition between

Mg2+ and Li+ depends on the net charge of the metal complex and the solvent

exposure of the binding site; in Mg2+-binding proteins, the binding site is typically

solvent-inaccessible and lined by Asp/Glu residues.

As modelling transition metals often requires electronic structure methods, hybrid

QM/MM approaches are often used to study metal-biomolecule systems. Of par-

ticular interest is the work on PtII-DNA systems by Gkionis and coworkers.[176–

178]

1.6.2 Semi-Empirical Methods

In this section, the application of semi-empirical calculation methods to metal-

biomolecule systems is summarised. While this is not a new approach, there is

little work using this model to model many conformations of large flexible peptide
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units, as seen in this research. In addition, the newer PM7 method, despite its

improved parameterisation, has not yet been widely applied to metal-biomolecule

systems.

In 2010, Stewart[121] demonstrated the applicability of PM6 to modelling bio-

molecules, including a series of metalloproteins. Here, the metal ions studied in-

cluded copper, zinc, iron, cobalt, molybdenum, manganese, magnesium and potas-

sium. In these large metallo-peptide systems, PM6 predicted geometries of both

the covalently-bound and free metal ions in agreement with X-ray crystallographic

data; associated coordination bond lengths agreed with experiment, even for the

electronically difficult CuII systems. In terms of overall metallo-peptide geometries,

PM6 also performed well – successfully reproducing peptide secondary structure

while RMSD from experimental structure was typically below 1 Å.

In 2011, Xia et al.[179] used gas-phase PM6 and B3LYP/6-31G* calculations to

model a cyclodextrin complex with PtII trans-dichloro (dipyridine), a useful but

poorly bioavailable anti-tumour agent. Multiple orientations of the host-guest in-

teraction were considered; while both methods predicted the same PtII-complex –

cyclodextrin orientation, PM6 did not accurately reproduce the difference in relative

energies.

Bertoli et al.[180] used PM6 and DFT (B3LYP/LANL2DZ) calculations to investi-

gate ZnII-citrate isomers in collaboration with experiment. In addition, the authors

calculated thermodynamic properties of these zinc complexes. PM6 was shown to

predict ZnII geometry with similar accuracy to DFT, and both showed good agree-

ment with experiment. The semi-empirical method also correctly predicted energy

ordering of the isomers of the complex (using DFT as a reference), though the rel-

ative energy differences were smaller than in DFT.

In similar work, the same authors [181, 182] studied CdII-, PbII-, CuII- and FeII-

citrate complexes with PM6. Calculation of coordination isomers predicted stable

structures that agreed with experimental data and allowed for assignment of FT-IR

spectra. While PM6 correctly predicted energy ordering, the relative energies were

not correct – PM6 provided less exoenergetic thermodynamic stabilities of all species.
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A series of work by Keglevich and co-workers[183, 184] used PM6, PM6-DH2 and

DFT to study geometries of PtII complexes with phosphine borane ligands. While

DFT calculations showed the best agreement with experimental data, both semi-

empirical methods also modelled these transition metal complexes accurately, in-

cluding the formation of a weak π-stacking interaction.

Shahabadi and Heidari[185] employed PM6 calculations to characterise a PtII (met-

formin) complex in the context of DNA binding. Here, the semi-empirical method

was shown to correctly predict the structure of the complex, as well accurately pre-

dicting vibrational frequencies – including those around the platinum – as compared

with FT-IR spectra.

Suarez et al.[186, 187] used short (100 - 500 ps) PM6 dynamics simulations in im-

plicit solvent to study the structure and thermodynamics of molybdocene-cysteine

and molybdocene-glutathione complexes. These semi-empirical dynamics produced

a range of conformations of the metal-peptide structure; single-point DFT (B3LYP

/ aug-cc-pVDZ) calculations were then used to determine the relative stabilities of

these conformers. In both cases, while calculated geometries were accurate, PM6

relative energies did not agree with experimental data.

Fernandes et al.[188] used semi-empirical PM6 calculations to characterise the metal

binding sites of the heparinase II enzyme, with ZnII and CaII. For the gas-phase ZnII

case, favourable metal coordination was shown to agree with existing experimental

data; for CaII, PM6 predicted much weaker bonds to the peptide, which the authors

suggest could explain the difference in enzyme activity in the presence of the dif-

ferent metals. Explicit inclusion of water molecules around the metal binding site

did not perturb ZnII binding, while CaII showed weak interactions with two solvent

molecules.

In 2014, Shahabadi [189] used PM6 to study the structure of a CuII-aspartame com-

plex. Here, PM6 correctly modelled the individual copper coordination bonds in

agreement with experimental data, but also successfully described the Jahn-Teller

distortion at the metal, giving a distorted octahedral geometry.

De Santis et al.[190] used PM6/COSMO calculations to study the interaction of a
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21-membered cyclopeptoid with CaII, BaII, SrII and MgII metals. These calculations

showed that the peptoid favoured backbone carbonyl coordination, with either 4 or

6 coordinate metals. Importantly, PM6 predictions of coordination structure were

shown to agree with both NMR and CD spectra.

Caturello et al.[191] used PM6-D3H4X in vacuum to study supramolecular com-

plexes, containing repeating ‘layers’ of platinum and palladium complexes with or-

ganic ligands, where the supramolecular arrangement contained π-stacking arrange-

ments. The predicted structures were shown to be in good agreement with exper-

imental results, further indicating that the semi-empirical methods are capable of

modelling complex species containing transition metals. In addition, PM6-D3H4X

calculations were employed to study the thermodynamics of the self-aggregation

of individual complexes to the supramolecular whole, and suggested that a single

supramolecular aggregate is constructed from two smaller columns of monomer units.

Notably, there is some work which uses semi-empirical approaches within molecu-

lar docking simulations of metal-biomolecules[192] but as before, as the underlying

technique is not used in this work, the research is not discussed in detail.

1.6.3 Molecular Mechanics-Based Methods

Modelling transition metal species without resorting to computationally expensive

quantum mechanical or semi-empirical methods is an attractive proposition, and has

been thoroughly explored in the past. The application of these molecular mechanics

based methods to transition metal-biomolecule species is less well studied however

- a selection of this literature is discussed below:

In 1992, Rappe et al.[193] developed the Universal Force-Field (UFF), capable of

modelling the complete periodic table. While the general parameterisation of this

approach limits its accuracy, it was shown to produce accurate geometries of simple

transition metal complexes as well as larger organic species.

A detailed review of ad hoc parameters applied to PtII-DNA complexes may be

found in [194]. Of note is work by Scheeff et al.[195], who developed AMBER

parameters to study cisplatin and oxaliplatin adducts with a double-helical DNA
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strand, based on crystal structure data. This built on previous work by Yao et

al.[196] These parameters produced heavy atom RMSD values of approximately 1

Å from the starting crystal data. Over a 200 ps molecular dynamics simulation,

these parameters successfully predicted the platinum coordination geometry, though

some deviations from expected behaviour were observed in the DNA structure; in

particular, the cyclohexane ring of oxaliplatin distorted the DNA major groove.

Chan et al.[197] studied cadmium- and zinc-containing metallothioneins using the

MM2 forcefield, augmented using metal parameters from the CACHE program,

which estimates forcefield parameters for all elements. Short molecular dynamics

simulations of these systems revealed that metal-geometry and overall peptide con-

figuration show good agreement with spectroscopic data.

More recently, Xiang and Ponder[198] introduced the angular overlap model (see Sec-

tion 2.5.2) to the polarisable AMOEBA forcefield to study two type I CuII proteins.

Parameters were obtained by fitting molecular mechanics data to B2PLYP-D/cc-

pVDZ geometry optimised structures and MP2/cc-pVDZ energies. This produced

good agreement with ab initio results, though AMOEBA-AOM failed to reproduce

the trans effect of some ligands. Here CuII was coordinated to two histidines, one

cysteine and one methionine residue. MD simulations of the copper-proteins (2

ns simulation each) showed that the CuII geometry was very stable, and addition

of the copper parameters did not lead to disruption of the remaining peptide system.

In 2015, Duarte et al.[199] used a dummy atom model to study Mn2+, Zn2+, Mg2+,

Ca2+, Ni2+, Co2+, and Fe2+ interactions with two glyoxalase enzymes. Here, the

metal centre is described by a set of cationic dummy atoms around the central

metal in the specific coordination geometry to be attained – in this case octahedral.

Dummy models do not contain explicit bonds from metal to ligands, allowing for

ligand exchange and conversion between different coordination geometries. Molec-

ular dynamics simulations do not show any ligand exchange, while the calculated

metal-oxygen coordination bonds lie within the range of values seen in experiment,

with errors of approximately 0.04 Å. In addition, metal-peptide systems were very

stable, with little structural deviation observed.

In 2015, Liao et al.[200] introduced a dummy atom model for ZnII and CuII that is

able to model Jahn-Teller distortion. This model was implemented in GROMACS.
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ZnII and CuII parameters were tested in 100 ns MD simulations of two biomolecules

- Aβ16 and the enzyme superoxide dismutase, and correctly predict distorted square

planar geometry in CuII binding sites, while reported bond lengths are in close agree-

ment with experiment. The ZnII model performs less well for these examples, with

large changes in metal coordination geometry.

Of particular relevance to this thesis is the work of Huy et al.[149], who developed

AMBER parameters for CuII-Aβ complexes and performed microsecond timescale

MD calculations using them. Here, both Aβ monomers and dimers were studied,

where CuII was coordinated to His6, His13 (or His14), and Asp1 with distorted

planar geometry. CuII parameters were obtained from small model systems via

UB3LYP calculations in implicit solvent, using the 6-31G(d) basis for main group

elements and the SDD ECP for CuII. Pseudo-equilibration of the metal-peptide

system was reached after several hundred nanoseconds of simulation; this revealed

significant changes in the peptide salt-bridge and hydrogen-bond network upon CuII

coordination, as well as changes in peptide secondary structure and radius of gyra-

tion.

Similarly, Raffa and Rauk[141] developed their own CuII parameters to model CuII-

Aβ interactions. Here, CuII parameters were obtained from B3LYP/6-31G(d) level

optimisations of small model structures, while CuII was bound via a water ligand,

His13, His14 and a backbone nitrogen / oxygen atom. In this case, the metal-peptide

system equilibrated after 350 ns of simulation, and subsequent data showed changes

in peptide structure dependent on the exact metal coordination mode.

While the above authors have found some success in modelling metal-peptide in-

teractions by developing ad hoc metal parameters, an alternative approach, Ligand

Field Molecular Mechanics, was pioneered by Burton and Deeth[201] (see Section

2.5.2), which has also been used in the field of metal-peptide interactions:

Deeth developed LFMM parameters based on DFT modelling of homoleptic model

systems to study the binding of type I copper centres in proteins.[202] Notably, this

was the first application of LFMM to second-row donor atoms such as sulphur; the

parameters used to model these interactions successfully reproduce the trans influ-

ence of these ligands, leading to a lengthening of the pseudo-trans copper-ligand

distance. In addition, this LFMM approach was used to study five complete copper-
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containing proteins. LFMM optimisations of these structures were performed in a 5

Å thick shell of water molecules, and resulting structures display root-mean-square-

deviations (RMSD) from experimental data of less than 0.42 Å.

Following this, in 2007 Deeth used LFMM to model more than twenty copper-

containing proteins, with either four- or five-coordinate copper centres.[203] In this

work, LFMM parameters for Cu-N(imidazole), Cu-S(thiolate), Cu-S(thioether), and

Cu-O(carbonyl) interactions were developed on the basis of experimental and the-

oretical data such that LFMM calculations of model copper-peptide binding sites

agree structurally and energetically with DFT (PW91 / TZP / DZP) calculations.

Here, LFMM optimisations of the complete systems were completed in a 10 Å deep

layer of water and results compared to existing experimental data; LFMM structures

reproduced the entire peptide geometry to “well within experimental error.” Overall,

this LFMM approach is able to provide accuracy equivalent to existing QM/MM

calculations, only several orders of magnitude faster.

Later, Deeth applied the LFMM model to a copper- tyrosinase system using the

AMBER forcefield.[204] Deviations between DFT (BP86/TZP) and LFMM bond

lengths are of the order of 0.02 Å, further highlighting the accuracy of LFMM.

LFMM also reproduced relative energies of different metal binding site geometries.

Two short (16 ns) NVT Ligand Field Molecular Dynamics (LFMD) simulations at

300 K were then performed on the entire copper-peptide system, and the structure

rapidly equilibrated. This equilibrium geometry was compared to X-ray data, giv-

ing RMSD values of all α-carbons of only 1.16 Å. RMSF data in these trajectories

also suggested that the coordinating His residues are less able to move than other

residues, though differences are not pronounced.

Work by Mutter et al.[205] developed LFMM parameters for CuII-Aβ16 systems. Pa-

rameters were validated against B3LYP-D2/6-31G(d)/LANL2DZ optimised struc-

tures on small models of the metal-Aβ interaction, and LFMM bond lengths and

angles were shown to agree to within 0.1 Å and 5◦ of DFT results. These parameters

were then tested in a series of short LFMD simulations; while this is too short to

model peptide behaviour, it is the first LFMM-based foray into CuII-Aβ coordina-

tion geometry.

Following the introduction of a series of LFMM parameters for PtII complexes [206],
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Tai et al.[207] applied the LFMM approach to study DNA distortions induced by PtII

complexes. LFMM descriptions of PtII-guanine interactions were validated against

experimental and DFT data before LFMD simulations were performed. Here, 6 ns

of production data was obtained for the system under periodic boundary conditions

and TIP3P water via DL-POLY-LF. Local metal geometry showed good agreement

with experimental data, while DNA was shown to bend near the minor groove.
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of the American Chemical Society, 2011, 133, 15008–15014.

(170) T. Marino, N. Russo, M. Toscano and M. Pavelka, Interdisciplinary Sciences-

Computational Life Sciences, 2010, 2, 57–69.

(171) S. Azimi and A. Rauk, International Journal of Alzheimer’s Disease, 2011,

2011, 1–15.

(172) V. A. Streltsov, S. J. Titmuss, V. C. Epa, K. J. Barnham, C. L. Masters and

J. N. Varghese, Biophysical Journal, 2008, 95, 3447–3456.

(173) T. Dudev and C. Lim, Annual Review of Biophysics, 2008, 37, 97–116.

(174) T. Dudev and C. Lim, Journal of the American Chemical Society, 2006, 128,

10541–10548.

54



Chapter 1

(175) T. Dudev and C. Lim, Journal of the American Chemical Society, 2011, 133,

9506–9515.

(176) K. Gkionis and J. A. Platts, JBIC Journal of Biological Inorganic Chemistry,

2009, 14, 1165–1174.

(177) K. Gkionis and J. A. Platts, Computational and Theoretical Chemistry, 2012,

993, 60–65.

(178) K. Gkionis, S. T. Mutter and J. A. Platts, Rsc Advances, 2013, 3, 4066–4073.

(179) Y. Xia, X. Wang, Y. Zhang and B. Luo, Computational and Theoretical

Chemistry, 2011, 967, 213–218.

(180) A. C. Bertoli, R. Carvalho, M. P. Freitas, T. C. Ramalho, D. T. Mancini,

M. C. Oliveira, A. de Varennes and A. Dias, Inorganica Chimica Acta, 2015,

425, 164–168.

(181) A. C. Bertoli, R. Carvalho, M. P. Freitas, T. C. Ramalho, D. T. Mancini, M.

C. Oliveira, A. de Varennes and A. Dias, Journal of Inorganic Biochemistry,

2015, 144, 31–37.

(182) A. C. Bertoli, R. Carvalho, M. P. Freitas, T. C. Ramalho, D. T. Mancini,

M. C. Oliveira, A. de Varennes and A. Dias, Spectrochimica Acta Part A:

Molecular and Biomolecular Spectroscopy, 2015, 137, 271–280.

(183) K. M. Pietrusiewicz, A. Flis, V. Ujj, T. Körtvélyesi, L. Drahos, P. Pongrácz,

L. Kollár and G. Keglevich, Heteroatom Chemistry, 2011, 22, 730–736.

(184) G. Keglevich, A. Kerenyi, T. Kortvelyesi, K. Ludanyi and L. Drahos, Letters

in Organic Chemistry, 2010, 7, 235–239.

(185) N. Shahabadi and L. Heidari, Spectrochimica Acta Part A: Molecular and

Biomolecular Spectroscopy, 2014, 128, 377–385.
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2 Theory

2.1 Introduction

In this section, the theoretical concepts behind the computational methods used in

this report will be explained. The basis of this chapter comes from a selection of

the standard computational chemistry textbooks.[1–3]

2.2 Hartree-Fock Theory

2.2.1 The Schrodinger Equation

The Schrödinger equation (Equation 2.1) forms the basis of modern theoretical

chemistry. Expressed here in the time-independent form, the Schrödinger equa-

tion uses the wavefunction of a given particle to predict the steady-state properties

of a system.

ĤΨ = EΨ (2.1)

Where Ĥ is the Hamiltonian operator, Ψ is the wavefunction and E is the energy

eigenvalue of the system. Expansion of this equation yields a second order partial

differential equation. The Hamiltonian may be expressed in terms of the nuclei and

electron positions (R and r, respectively), as illustrated in Equation 2.2:

Ĥ = −1

2

N∑

i=1

∇2
i −

M∑

k=1

1

2Mk

∇2
k −

N∑

i=1

M∑

k=1

Zk

rik
+

N∑

i=1

N∑

j>1

1

rij
+

M∑

k=1

M∑

l>k

ZkZl

Rkl

(2.2)

Where N is the number of electrons, M is the number of nuclei, i and j are elec-

trons, k and l are nuclei, Z is the nuclear atomic number, Mk is the ratio of the
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mass of nucleus k to an electron and ∇2 is the Laplacian operator. In this form,

the first and second terms are equal to the kinetic energy operators for the electrons

and nuclei respectively, while the remaining terms represent the Coulombic interac-

tions of electron-nucleus attraction, electron-electron repulsion and nucleus-nucleus

repulsion, respectively.

2.2.2 Born-Oppenheimer Approximation

Exact solutions to the Schrödinger equation allow for the calculation of electron dis-

tribution within a system. Unfortunately, it is impossible to solve the Schrödinger

equation exactly for any system containing three or more particles. This issue arises

from the correlated motion of particles and is known as the three-body problem.

Therefore, in order to carry out calculations using systems with more than two par-

ticles, approximations must be made.

The first of these is the Born-Oppenheimer approximation, which decouples the

motion of particles by ignoring nuclear kinetic energy and assuming that the inter-

nuclei repulsion remains constant. This approximation can be made as the nuclei

are many times more massive than the electrons and therefore any change in the

position of the electrons may be considered instantaneous in relation to the nuclei.

More simply, we consider the nuclei to be fixed with respect to electronic motion.

As a result, the full Hamiltonian above may be split into nuclear and electronic

components, as shown in Equation 2.3.

Ĥtot = Ĥelec + Ĥnuc (2.3)

Ĥelec = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

A=1

Zk

rik
+

N∑

i=1

N∑

j>i

1

rij
(2.4)

Where the symbols retain their meaning from Equation 2.2 above. The electronic

Hamiltonian therefore contains the first, third and fourth terms from the full Hamil-

tonian shown previously. The nuclear-nuclear potential energy term is retained, but

in the Born-Oppenheimer approximation, this is constant for any nuclear arrange-

ment. The Schrodinger equation is then solved where electrons move in the electro-

static field of the nuclei.
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The wavefunctions expressed in the above equations have no clear physical mean-

ing on their own. However, they may be interpreted as proposed by Born, which

considers the wavefunction as a probability density (see Equations 2.5-2.6).

|Ψ|2 = Ψ∗Ψ (2.5)
∫

Ψ∗Ψδτ = N (2.6)

The calculated value |Ψ|2 multiplied by some volume, δτ, gives the probability of

finding an electron in that volume of space. Furthermore, integration of this proba-

bility density over possible space will equal the total number of electrons, N , present

in the system.

2.2.3 Molecular Orbital Approximation

It is not possible to find exact solutions to the Schrodinger equation for many-

electron systems, so additional approximations are required. The molecular orbital

approximation rewrites the total wavefunction as the product of one electron wave-

functions, or molecular orbitals. As with the Born-Oppenheimer approximation,

this approximation is virtually ubiquitous in modern theoretical chemistry. Here,

we consider the electron spin orientation in addition to its spatial coordinates, where

the spin (‘up’ or ‘down’) is described by functions α or β. Each electron is there-

fore described by four coordinates – three spatial and one spin. The product of the

spatial and spin functions for a given electron yields spin orbitals, denoted χ. Many-

electron systems are then represented as a product of these spin orbitals, displayed

in Equation 2.7.

ΨHP (1, 2...N) = χ1(1)χ2(3)...χN(N) (2.7)

Exchange of any two electrons must also give a change in the sign of the wave-

function. The above Hartree product approach does not satisfy this anti-symmetry

principle. However, a linear combination of these products does satisfy this princi-

ple; the resulting wavefunctions may be expressed as Slater determinants, as shown

in Equation 2.8.
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Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

...
. . .

...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣

(2.8)

2.2.4 Hartree-Fock Approximation

Since the three-body problem cannot be solved exactly, approximate solutions to

the Schrodinger equation are needed. The Hartree-Fock (HF) method utilises the

one-electron Fock operator, f̂ , to simplify the many-electron problem to a one-

electron problem. As Equation 2.9 shows, this operator enables the electron-electron

repulsion to be expressed as the average potential, V HF , that any given electron

experiences from all other electrons in the system.

f̂ = −1

2
∇2

i −
M∑

A=1

ZA

riA
+ V HF (2.9)

V HF =
∑

j

Jj −Kj (2.10)

The first two terms of the Fock operator represent the one-electron Hamiltonian of

an electron moving in space in a constant nuclear field, as described previously. The

average electron-electron repulsion (Equation 2.10) potential contains both Coulom-

bic terms, J , for the electrostatic repulsion between two negatively charged electrons

as well as exchange interactions, K, representing the spin correlation. The Hartree-

Fock equation, where the Fock operator included is found in Equation 2.11.

f̂χi = εχi (2.11)

Here, the Fock operator acts on a molecular orbital, χi, giving the molecular orbital

multiplied by an eigenvalue, ε. A set of orbitals that are a solution to this equation

are known as self-consistent orbitals. The Fock operator depends on the coordinates

of every electron present; a solution for one electron therefore affects the other

electrons, due to the presence of the average potential term V HF . Thus, the Hartree-

Fock method must be solved iteratively, using the self-consistent field approach (see

Section 2.2.6).
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2.2.5 Linear Combination of Atomic Orbitals and the

Roothaan-Hall Equations

Directly solving the above Hartree-Fock equations for molecular systems is impracti-

cal; an alternative is to write each spin orbital, χ, as a linear combination of atomic

orbitals (LCAO), as seen in Equation 2.12

χi =
K∑

ν

Cνiφν (2.12)

Where K is the number of atomic orbitals, Cνi are the coefficients and φν are atomic

orbitals. The Hartree-Fock equations therefore take the form given in Equation

2.13. Using a specific set of these atomic orbitals, termed a basis, produces the

Roothaan-Hall equations, 2.14.

f

K∑

ν

Cνiφν = εi

K∑

ν

Cνiφν (2.13)

FC = SCε (2.14)

Where F is the Fock matrix, C is the matrix of coefficients, S is the overlap matrix

and ε is a diagonal matrix of orbital energies, representing the energy of an electron

in a spin orbital.

2.2.6 Self-Consistent Field Theory

One of the biggest challenges in computational chemistry is the accurate description

of indistinguishable interacting particles, such as electrons. This issue is most com-

monly encountered when attempting to find solutions to the Schrodinger equation,

as we have already seen. The interaction of these particles must be contained within

the Hamiltonian, so the position of these particles must be known in order to find

the Hamiltonian. However, the positions of these particles can only be determined

by finding the Hamiltonian.

To solve this problem, an iterative, self-consistent method is applied. To begin, ap-

proximate wavefunctions, Ψ, are chosen for all occupied molecular orbitals and the

one-electron operators, ĥ, are constructed. The Schrödinger equation is then solved
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using these Hamiltonians to afford a new set of wavefunctions, presumably more

accurate than those before. From these new Ψ, a new set of one-electron Hamilto-

nians are formed and the Schrödinger equation is then solved continuously until the

resulting values converge.

This must be an iterative process, since the effective potential of each electron

depends on all other electrons in the system; reliable results will only be obtained

when the values are self-consistent. All values contained within this report were

calculated according to this method, summed up below:

(i) Guess approximate starting orbitals

(ii) Calculate effective potential (VHF ) for these orbitals

(iii) Adjust orbitals to respond to new VHF

(iv) Compare original and new orbitals. If they are the same, proceed to Step (v);

if they are different, return to Step (ii)

(v) Self Consistent Field achieved
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2.3 Density Functional Theory

One of the most significant flaws in Hartree-Fock theory is that it averages inter-

electronic repulsion, as we have seen. This fundamental assumption of Hartree-Fock

theory allows for calculation of the molecular Hamiltonian, but can cause significant

errors in calculating accurate wavefunctions. The energy error associated with the

Hartree-Fock approximation is known as electron correlation, Ecorr, which can be

expressed as shown in Equation 2.15.

Ecorr = Eexact − EHF (2.15)

The electron correlation energy is important for chemical systems containing many

electrons as well as those containing dispersion interactions. This means that

Hartree-Fock methods would be inappropriate for modelling the systems reported

here.

Density functional theory (DFT), introduced by Hohenberg and Kohn in 1964 [4], is

one of the most successful methods for the investigation of ground state electronic

structure in multi-electron systems. This is as a result of the accuracy of DFT, due

to accounting for the above electron correlation effects, and its low computational

expense when compared to more complex ab initio methods. DFT uses functionals

in order to calculate structural and electronic properties of a system, where function-

als are defined as the function of a function; here the functional is electron density

(ρ), which in turn is a function of position in 3D space. In DFT, the ground state

electronic energy is determined completely by the electron density.

As already mentioned, one major advantage of DFT over wavefunction-based meth-

ods may be illustrated by considering the computational resources required:

The wavefunction for a system containing N electrons has 4N variables – three spa-

tial coordinates (x, y, z) and one spin coordinate for each electron. The electron

density can be considered as the square of the wavefunction, integrated over N-1

electron coordinates. When using orbital-free DFT, each spin density only depends

on three spatial coordinates, regardless of the number of electrons. This means that

while the complexity of a wavefunction increases drastically as the number of elec-

trons in the system increases - as does the computational requirement to complete
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the associated calculations - the electron density has the same number of variables,

independent of the size of the system.

Hohenberg and Kohn [4] are responsible for two theorems that highlight the impor-

tance of electron density to electronic structure calculations. The existence theorem

states that the ground state energy and properties of a given system are governed

purely by the electron density. Thus, the total ground state energy is a unique

functional of the electron density, as seen in Equation 2.16.

E[ρ(r)] =

∫
Vext(r)ρ(r)dr + F [ρ(r)] (2.16)

Here, the first term represents the interaction of the electrons with an external po-

tential, Vext(r), exerted by the nuclei. The second term, F [ρ(r)], is the sum of

electronic kinetic energy and interelectronic interactions.

The variational theorem states the ground state energy may be obtained variation-

ally; a given trial electron density will produce an energy that is greater than or

equal to the true energy. This means that the electron density that minimises the

absolute energy of the system must equal the ground state electron density. How-

ever, this orbital-free density functional theory is flawed, as it does not predict the

binding of molecules from atoms. In addition, the exact form of the second term,

F [ρ(r)], is not known; in turn, this means that the dependence of the total energy

on ρ(r) is not known either.

Subsequently, this method was adapted by Kohn and Sham [5] and has become

the most common DFT formalism used in computational chemistry. In Kohn-Sham

DFT, a set of non-interacting orbitals described by single determinant wavefunctions

are used to reproduce the electron density, shown in Equation 2.17.

ρ(r) =
N∑

i=1

|Ψi(r)|2 (2.17)

Since Kohn-Sham [5] DFT re-introduces orbitals, the computational complexity

increases from 3 to 3N variables. The Kohn-Sham approach aims to correct the

poor description of the interelectronic interactions and kinetic energy in the F [ρ(r)]

term from Hohenberg-Kohn DFT by approximating the term as a sum of different

contributions to the functional - see Equation 2.18.
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F [ρ(r)] = EKE[ρ(r)] + EH [ρ(r)] + EXC [ρ(r)] (2.18)

Where EKE[ρ(r)] is the kinetic energy, EH [ρ(r)] is the electron-electron Coulom-

bic repulsion and EXC [ρ(r)] is the exchange-correlation function, which typically

contributes approximately 1% to the total energy of the system. The exchange-

correlation energy is the only unknown functional in the above expression. Using

these terms, the full expression for the energy in Kohn-Sham DFT may be written

as shown in Equation 2.19.

[Eρ(r)] =
N∑

i=0

∫
ψi(r)(−

∇2

2
)ψi(r)dr +

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2

+ EXC [ρ(r)]−
M∑

k=1

∫
Zk

|r −Rk|
ρ(r)dr (2.19)

2.3.1 Local Density Approximation

The key to accurate DFT calculations is the accurate approximation of the exchange-

correlation functional, yet even simple approximations provide reasonably accurate

models for computational calculations. The distinction between different DFT meth-

ods is the description of the unknown exchange-correlation term, EXC [ρ(r)].

The simplest approximation of the exchange-correlation term is local density ap-

proximation, LDA, where the electron density is assumed to be slowly varying such

that the exchange-correlation energy is identical to a uniform electron gas of equal

density. Integration over all space gives the total exchange-correlation energy, dis-

played in Equation 2.20.

EXC [ρ(r)] =

∫
ρ(r)εXC [ρ(r)]dr (2.20)

Where εXC [ρ(r)] is the exchange-correlation energy of a uniform electron gas. This

LDA approach assumes that electron spin is equal to zero at all points; in instances

where α and β spins are not equal, LDA produces significant errors. One alterna-

tive method for these cases is the more general local spin density approximation
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(LSDA) approach. These LDA methods fail where the gradient of the electron den-

sity changes rapidly, such as in molecules, but still find use in the study of metallic

systems.

2.3.2 Generalised Gradient Approximation

The ideal model of a uniform electron gas introduces errors to the DFT approach.

One solution to this issue was the introduction of the Generalised Gradient Approx-

imation (GGA) method, where the exchange-correlation energy becomes dependent

on the gradient of the electron density i.e. the derivatives of ρ(r).

Popular examples of GGA functionals are Becke’s B88[6] and the functional of Lee,

Yang and Parr.[7] These GGA methods may be expanded to include higher-order

derivatives of the electron density, leading to meta-GGA methods. While these

GGAs do not yield a significant improvement over LDA methods for all systems,

they are known to be more accurate when calculating molecular structures and

modelling inter-molecular bonds.[8]

2.3.3 Hybrids

One development in DFT methods was the introduction of hybrid functionals. These

hybrid methods involve the combination of various correlation and exchange func-

tionals from standard DFT models. Typically, hybrid functionals contain some

contribution from both the exact exchange energy from Hartree-Fock theory and

the exchange and correlation energies from LSDA or gradient-corrected methods.

These hybrid methods provide a simple way of accurately calculating a broad variety

of molecular properties and therefore are very popular in quantum chemistry. Two

popular hybrid functionals are discussed below.

2.3.3.1 B3LYP

The most widely used hybrid functional is B3LYP, introduced following work by

Becke [9] and Lee, Yang and Parr [7]. This method uses a combination of exact,

LSDA and Becke’s B88 exchange energy alongside LSDA and LYP correlation en-
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ergy. These terms are weighted by three parameters, as fitted to experimental data.

The exchange correlation functional may be written as Equaion 2.21.

EXC = EXCLDA+ α0(EXHF − EXLDA)

+ αX(EXGGA− EXLDA) + αC(ECGGA− ECLDA) (2.21)

Where the parameters α0 = 0.20, αX = 0.72 and αC = 0.81. The generalised gra-

dient approximations, EXGGA and ECGGA correspond to the Becke 88 exchange

functional and the LYP correlation functional respectively. The local density ap-

proximation to the correlation functional is written ECLDA.

2.3.3.2 BHandH

An alternate method is the BHandH functional, also referred to as Becke’s ‘half and

half’ functional [9]. This hybrid functional uses a 1:1 mixture of exact and LDA

exchange energies i.e. half of the Hartree-Fock exchange energy and half of the local

density approximation exchange energy, allied to the LYP correlation energy [9],

shown in Equation 2.22

EXC = 0.5EXHF + 0.5EXLDA+ ECLY P (2.22)

2.3.4 Remarks

Despite its success, density functional theory is not without limitations. Firstly,

it is important to note that unlike Hartree-Fock, DFT is not a variational method

i.e. a lower energy value does not necessarily correspond to a better, more accurate

description of a given system. Secondly, there is no way to know whether a given

method will be suitable for a particular system without performing calculations. To

compound this issue, there is no systematic way to improve the functional if it is

inadequate for the system in question.

In addition, dispersion is not included in the construction of traditional Kohn-Sham

DFT, leading to inaccurate modelling of dispersion forces, such as van der Waals

interactions. However, modern DFT methods provide several possible solutions to

this problem; one such example is modifying the exchange-correlation functional.
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The modified functionals, such as the Minnesota functionals of Truhlar, [10] may

be parameterised to account for dispersion interactions. An alternative solution is

the inclusion of an explicit dispersion correction, known as DFT-D, proposed by

Grimme [11], which takes the form of an atom pairwise sum of r-6 potentials. The

most common form of DFT-D is known as a “D2-type” correction, displayed in

Equations 2.23-2.25.

EDFT−D = EKS−DFT + EDISP (2.23)

EDISP = −S6

Nat−1∑

i=1

Nat∑

j=i+1

C ij
6

R6
ij

fdmp(Rij) (2.24)

fdmp(Rij) =
1

1 + e−d(Rij/Rr−1)
(2.25)

Here, s is a global scaling factor, Nat is the number of atoms present, C ij
6 is the

dispersion coefficient for atoms i and j, R6
ij is the distance between atoms i and j

to the power six and fdmp is a damping function, shown in Equation 2.25.

More recently, the “D3-type” dispersion correction (Equation 2.26) has been intro-

duced[12], which has both greater flexibility and increased accuracy over its prede-

cessor, due to its inclusion of r−8 terms in addition to the existing r−6 terms.

ED3
DISP = −1

2

∑

j �=i

(S6
C ij

6

R6
ij + [fdmp(Rij)]6

+ S8
C ij

8

R8
ij + [fdmp(Rij)]8

) (2.26)
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2.4 Basis Sets

The linear combination of atomic orbitals (LCAO) approach, illustrated in Equa-

tion 2.12, Section 2.2.5, is commonly used for calculating molecular orbital energies

and coefficients. As alluded to earlier, the molecular orbitals are expressed as one-

electron functions, centred on atomic nuclei. These are known as basis functions; a

collection of these functions used to describe a chemical system is known as a basis

set. When performing calculations, all quantum mechanical methods used required

a basis set to be specified. The individual basis functions are constructed from

Slater-type (STO) or Gaussian-type orbitals (GTO), shown in Figure 2.1.

Figure 2.1: STO and GTO functions. STO is shown in red, GTO in black.

STOs provide better descriptions than GTOs both at r = 0 and at large r values;

STOs correctly describe the cusp at the nucleus (r = 0), given by the finite slope

and display the expected exponential decay over large r. In contrast, GTOs exhibit

a zero slope at r = 0 and a more rapid decay over large r.

While STOs are more accurate, computing the three- or four-centre two-electron in-

tegrals seen in the HF equations is computationally intensive, largely limiting their

use to small chemical systems. GTOs, though less accurate, are less computation-

ally demanding than STOs and may be used to express atomic orbitals as linear

combinations of the Gaussian basis functions as an approximation to a STO. These

orbitals are known as contracted Gaussian functions (CGF). Despite the increase in

the number of basis functions using CGF, calculation of the required two-electron

integrals is simpler, meaning that GTOs are commonly used.
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The smallest collection of these functions/orbitals that describes all electrons present

in the ground-state of the free atoms that constitute the chemical system is known

as the minimal basis set. Here, each occupied orbital is described by a single basis

function. The traditional example of a minimal basis set is STO-3G, where each

orbital is described by three CGFs.

Unfortunately, such simple basis sets are often inadequate for describing complex

chemical systems. These basis sets may be improved by increasing the number of

basis functions used. The number of basis functions used per atomic orbital is an

indicator of the reliability of a given basis set; more reliable basis sets tend to use

multiple basis functions per atomic orbital. One common alteration to the minimal

basis set is to double or triple the number of basis functions, resulting in double-

ζ (DZ) and triple-ζ (TZ) basis sets. Alternatively, it is common to use one basis

function per atomic orbital for the core electrons and multiple such functions for

the valence electrons. This is known as a split valence basis set. This linear combi-

nation of basis functions affords the valence electrons more flexibility than the core

electrons, leading to a more accurate description of these outer electrons.

Further improvement can be obtained by the inclusion of polarisation and/or diffuse

functions. Polarisation functions, usually denoted by an asterisk (*), consist of the

additional of basis functions with greater angular momentum than is required in the

free atom. This may include the addition of p-functions on hydrogen and d-functions

on first-row elements. These polarisation functions allow for more accurate descrip-

tions of electrons in the molecular environment. Diffuse functions, denoted by a

plus sign (+) involve the addition of shallow Gaussian functions to model the ‘tail’

of atomic orbitals i.e. the region far from the nucleus. These are especially effective

for ‘soft’ anionic systems. As a consequence of the additional functions, these more

complex basis functions require more computational time and resources than their

simpler counterparts.

One split valence basis set used in this work was 6-31G*. This is a standard basis

set, where the core electrons are modelled by six contracted Gaussian functions and

the valence electrons are then described by a double-ζ basis set of three Gaussians

and one Gaussian. This basis set also utilises the first set of polarisation functions,

corresponding to the addition of d-orbitals on all non-hydrogen atoms.
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2.4.1 Effective Core Potentials

Quantum mechanical modelling of elements in the lower rows of the periodic table

poses two significant challenges. First, these elements possess a large number of core

electrons. Modelling these electrons would require a large number of basis functions

to allow for expansion of the corresponding orbitals. As such, the computational

cost associated with explicit modelling of core electrons in heavy atoms is relatively

prohibitive. Secondly, these elements often display relativistic effects; as the core

electrons interact with the increased nuclear charge of these elements their velocities

reach non-negligible fractions of the speed of light. These effects are often signifi-

cant for many chemical properties, but the standard Hamiltonian (see section 2.2)

is incapable of accounting for these effects.

These issues may be solved by assuming that the core electrons are fixed and can be

modelled using a suitable analytical function, a solution first proposed by Hellman

in 1935.[13] Only the valence electrons are treated explicitly. The function used to

model the core electrons is known as an Effective Core Potential (ECP) or Pseu-

dopotential (PP).

These ECP methods may be used to obtain accurate results at a fraction of the com-

putational cost required to model all electrons within these heavy atoms. Used in ab

initio theory, ECPs are able to account for all electrostatic and quantum mechanical

interactions between the valence electrons and the core i.e. Coulombic attraction

and Pauli repulsion effects, in addition to accounting for the relativistic effects seen

in heavy atoms.

The ECP used for large sections of this research was a Stuttgart-Dresden (SDD)

[14, 15] effective core potential. In the case of PtII, this replaces 60 core electrons,

or up to and including those with principal quantum number (n) = 4. This means

that for the PtII ion ([Xe]4f 145d8), only the 5s25p66s25d8 electrons are modelled

explicitly.
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2.5 Molecular Mechanics

Large molecules can often be modelled without resorting to quantum mechanical

methods; the most well-known of these alternative methods is molecular mechanics

(MM). Here, atoms are treated as single particles with an associated mass and charge

i.e. electrons are not considered as individual particles, so electronic motion is com-

pletely neglected. This means that finding solutions to the electronic Schrödinger

equation is avoided; instead, energy is calculated as a function of nuclear positions

and bonding information must be provided explicitly.

In MM, molecules are described by the ‘ball and spring’ model, where the atoms

(balls) are assigned types according to their mass, charge and connectivity, and the

chemical bonds (springs) possess different force constants and an equilibrium bond

length equal to the experimental or calculated bond length. This means that the

dynamics of the system can be approximated by Newtonian mechanics.

The energy of a given system is described by a series of inter-atomic potentials, which

represent the different interactions present, as presented in Equation 2.27.

ETot = Estretch + Ebend + Etorsion + EV DW + Eel (2.27)

Here, Estretch is the energy function for stretching a given bond, Ebend accounts

for the energy required to bend an angle, Etorsion corresponds to the energy for

rotation about a bond, EV DW and Eel represent the non-bonding van der Waals

and electrostatic interactions. The above equation may be expanded to give a more

detailed breakdown of the constituent terms, shown in Equation 2.28.

ETot =
1

2

∑

bonds

ki(li − li,0)
2 +

1

2

∑

angles

ki(θ − θi,0)
2 +

1

2

∑

torsions

Vn(1 + cos(nω − γ))

+
N∑

i=1

N∑

j=i+1

(4εij[(
σij

rij
)12 − (

σij

rij
)6] +

qiqj
4πε0rij

) (2.28)

The first term is a sum of the interactions between bonded pairs of atoms, modelled

using a harmonic potential. This potential gives an increase in energy as the bond

length, li, deviates from the reference bond length, li,0. The second term is a sum
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over every intramolecular bond angle and is also modelled using a harmonic poten-

tial. The third term is a periodic torsional potential used to represent the energy

change involved in bond rotation. The final term combines the van der Waals and

electrostatic interactions between all pairs of atoms (i and j) i.e. those in different

molecules or those in the same molecule but separated by at least three bonds. The

van der Waals term is usually expressed as a Lennard-Jones potential, where the at-

tractive forces fall as r−6, while repulsive forces rise as r−12 and r is the inter-atomic

distance. The electrostatic terms are modelled using Coulombic potentials, where

the energy falls as r−1.

From this energy function of atomic coordinates, molecular geometries and relative

energies can be found by optimising the structures to a minimum of ETot i.e. a

minimum on the potential energy surface.

The collection of atom type definitions and bonding parameters, including equilib-

rium bond lengths, force constants, bond angles etc. used to describe a system

is known as the force-field (FF). The exact implementation of the terms in equa-

tion 2.28 defines the different FFs, and more complex FFs include additional terms,

such as the out-of-plane energy, Eoop, the stretch-bend energy, Estb, and the cross-

coupling energy, Ecross, which describes coupling between Estretch, Ebend and Etorsion.

There are a variety of different FFs available for studying chemical systems, including

AMBER [16], MMFF[17], CHARMM[18], GROMOS[19], OPLS[20] and UFF[21],

each designed for modelling a general class of molecules. Selection of the most ap-

propriate FF is therefore important in producing accurate calculations.

Arguably the biggest advantage of MM methods is that calculations can be per-

formed rapidly, allowing very large systems to be modelled at a fraction of the

computational cost of QM methods. In the limit of large molecules, the compu-

tational time for calculating the forcefield energy increases as approximately the

square of the number of atoms, which compares favourably with the N4 variables (N

= number of electrons) that determine computational time in wavefunction-based

methods (see section 2.3).

One major problem with MM methods is the parameters used to define a force-field;
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if a molecule has not be crystallised or modelled previously, then it is likely that

only poor parameters exist, if any, meaning that accurate modelling of these systems

using MM is difficult. In addition, generation of new parameter sets is an arduous

task. Despite this, MM is still widely used in computational chemistry, particularly

for modelling biological systems.

2.5.1 Molecular Mechanics for Transition Metal Complexes

The extension of MM methods to transition metal (TM) systems is complicated by

two factors:

Firstly, the MM approach cannot consider the effects of d-orbital electrons on com-

plex structures, since the electrons are handled implicitly in the calculations. Sec-

ondly, the typical MM formalism (see Equation 2.28) relies upon a single reference

angle for a given ligand-metal-ligand (L-M-L) atom set.

In traditional organic chemistry, carbon atoms typically adopt one of three standard

geometries, each with a single reference angle i.e. tetrahedral (bond angle 109.5◦),

trigonal planar (120◦) or linear (180◦). In contrast, many metal complexes require

multiple reference angles. For example, a homoleptic octahedral complex would

require two unique L-M-L reference angles (90◦ and 180◦), see Figure 2.2, lower

row, left side) while a trigonal bipyramidal species would require three reference

angles (90◦, 120◦ and 180◦, see Figure 2.2, lower row, right side), meaning that the

traditional MM formalism is inadequate for describing TM complexes.

Figure 2.2: Reference angles in organic and transtion metal chemistry. Top row:

Tetrahedral, trigonal planar and linear carbons. Bottom row: Octahedral and trig-

onal bipyramidal metal centres.
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2.5.2 Ligand Field Molecular Mechanics

Modelling transition metals using MM necessitates an extension to the traditional

MM equation (see Equation 2.28) by including additional potential energy terms to

describe the Ligand Field Stabilisation Energy (LFSE) and the influence of d-shell

electrons (see Equation 2.29). One method that implements these factors is Ligand

Field Molecular Mechanics (LFMM).[22]

ELFMM = Estretch + Ebend + Etorsion + EV DW + Eel + LFSE (2.29)

This idea may be thought of as an amalgamation of Ligand Field Theory and con-

ventional MM, using MM for the ‘organic’ regions of a transition metal complex

(i.e. the ligands) and an angular overlap model (AOM) to account for the LFSE

at the metal centre. Here, the system to be studied is split into two overlapping

regions:

Figure 2.3: Overlapping ligand and coordination regions in Ligand Field Molecular

Mechanics. Adapted from [22].

The larger ligand region contains all atoms except for the metal centre(s), while

the coordination region(s) contain only the metal(s) and any immediately bonded

atoms.[22] (See Figure 2.3.) The LFMM procedure is primarily concerned with the

coordination region(s) and is responsible for the LFSE, metal-ligand bond stretching

and ligand-metal-ligand angle bending.

The LFSE term is implemented in LFMM via the angular overlap model (AOM).

The AOM calculates the strength of the interaction between individual ligand or-

bitals and metal d-orbitals based on the overlap between them; the angular overlap
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name stems from the fact that the degree of overlap depends on the angle between

the metal d-orbital and the approaching ligand orbital.

In the AOM, the total ligand field potential is a sum of the individual, local M-L

contributions. This means that a given complex can be considered as a series of

simple diatomic molecules. Subsequently, these diatomics are separated into σ and

π contributions, represented by AOM parameters eσ, eπx and eπy. The AOM is a

bond-centred approach, meaning the model intuitively corresponds to traditional

bonding concepts i.e. the eσ and eπ parameters relate to the degree of σ- and

π-bonding in a given M-L bond. This means that the energies of the individual

d-orbitals are a function of these AOM parameters for all ligands present.[22] The

d-orbital energies are derived from the 5 x 5 ligand field potential matrix, VLF . The

matrix elements are given by Equation 2.30.

< di|VLF |dj >= N
N∑

l

symm∑

k

F l
ikF

l
kje

l
k (2.30)

where di and dj are d-orbitals, which sum over N ligands and three symmetry modes,

eσ, eπx and eπy, which represent M–L σ-bonding and M–L π-bonding in two perpen-

dicular directions, respectively.[22, 23]

The contribution of a particular ligand to a given d-orbital energy depends on the

square of the orbital overlap, denoted S2, between the d-orbital of interest and a

ligand-based orbital. First, consider σ-donor interactions. The strongest σ interac-

tion occurs when a ligand is located in an axial position, pointing directly at the

z-axis lobe of the metal dz2 orbital. Here, the orbital overlap is at a maximum

i.e. S2 = 1 and the full eσ amount of destabilisation is applied to the dz2 orbital.

The strength of other σ interactions is determined relative to this reference point.

For example, if the ligand is moved to an equatorial position, the overlap is greatly

reduced due to the smaller ‘doughnut’ band of the dz2 orbital. Here S2 = 0.25, so

the dz2 orbital is only destabilised by 0.25eσ. Similar changes in orbital energy arise

from other σ-donor interactions between metal d-orbitals and ligand orbitals, and

the magnitude of the energy change depends on the ligand location and the d-orbital

in question (see Figure 2.4 and Table 2.1).

Many ligands also interact with metal d-orbitals in a π-bonding manner, either

acting as π-acceptors or π-donors. The strongest π-interaction takes place where
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a ligand π∗ orbital overlaps with a metal dxz orbital. The d-obital energy is then

perturbed by the full eπ amount. As before, other π interactions are weaker than

this interaction, with the magnitude dependent on the degree of overlap between

the orbitals (see Table 2.2). However, the sign of this perturbation (i.e. whether the

d-orbital is stabilised or destabilised) depends on the π-bonding characteristics of

the ligand. For π-acceptor ligands, the d-orbitals are stabilised by this interaction,

while for π-donors, the d-orbitals are destabilised. Importantly, the orbital overlap

in π interactions is smaller than the overlap for the σ interactions above, so the

AOM parameters eπ < eσ.

Figure 2.4: Ligand positions in a square planar transition metal complex. These

positions are used for Tables 2.1 and 2.2 below.

Ligand Position dz2 dx2−y2 dxy dxz dyz

1 0.25 0.75 0 0 0

2 0.25 0.75 0 0 0

3 0.25 0.75 0 0 0

4 0.25 0.75 0 0 0

Table 2.1: Sigma interactions (in units of eσ) for square planar ligands with metal

d-orbitals. Ligand positions are given in Figure 2.4. Adapted from [24]
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Ligand Position dz2 dx2−y2 dxy dxz dyz

1 0 0 1 1 0

2 0 0 1 0 1

3 0 0 1 1 0

4 0 0 1 0 1

Table 2.2: Pi interactions (in units of eπ) for square planar ligands with metal

d-orbitals. Ligand positions are given in Figure 2.4. Adapted from [24]

The exact relationship between an AOM parameter and the d-orbital energy is

given by the F-factors in Equation 2.30 above, which are trigonometric functions

that depend on the angular coordinates of the ligands [22, 23] (see Figure 2.5). The

dz2 example is given in Equation 2.31:

Edz2
= F 2

σ (dz2)eσ =
1

16
(1 + 3cos2θ)2eσ (2.31)

Figure 2.5: Plot showing the variation of ligand-metal dz2 orbital overlap with angle,

where θ is the deviation of the coordinating ligand from the z-axis.[23]

In the case of square-planar complexes, such as platinum(II), the resulting d-orbital

energies may be written as shown in Equation 2.32. This produces the familiar

d-orbital splitting diagram, shown in Figure 2.6.

dz2 = eσ − 4eds

dx2−y2 = 3eσ

dxy = 4eπ

dxz = 2eπ

dyz = 2eπ

(2.32)
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Figure 2.6: d-orbital splitting energies for a square planar complex.

The AOM parameters eσ, eπx and eπy are given as a function of the bond length,

r:

Eλ = a0 + a1r + a2r
−2 + a3r

−3 + a4r
−4 + a5r

−5 + a6r
−6 (2.33)

where Eλ represents either eσ, eπx or eπy and the ai terms are empirically determined

parameters.[22] The many terms present in this equation allow a great deal of flexi-

bility, but usually only one term is used, while the others are set to zero . While all

ligands require an eσ parameter, not all ligands need eπ parameters; many ligands

do not form π interactions with the metal due to the nature of the bonding within

the ligand itself.[22] As the parameters eπx and eπy suggest, LFMM is able to handle

asymmetric π-bonding by distinguishing between the eπx and eπy contributions.

In addition, there is a d − s mixing parameter, eds, which describes the configura-

tion interaction between the metal valence s-orbital and a d-orbital with matching

symmetry; this is important in square planar complexes.[22, 25] While the eds term

has little influence on the metal geometry, it has been shown to be important in

predicting the relative energies of metal complexes.[25] This eds term is able to pro-

duce correct d-orbital energies in these cases, while the original σ− and π− only

construction of LFMM failed. The typical example of this is the dz2 orbital in planar

systems with molecular point group D4h e.g. [CuCl4]
2−, where the copper(II) 4s

and 3dz2 orbitals both have A1g symmetry. In the absence of any d − s mixing,

LFMM predicts the dz2 orbital to be approximately 6000 cm-1 higher than it should

be; addition of the d− s mixing term modifies this by -4eds (i.e. eds = 1500 cm-1),

giving the correct dz2 orbital energy.[22]

Finally, the epair parameter facilitates accurate descriptions of different spin state

energies. The LFSE describes the one-electron contribution to the ligand field and
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therefore always favours the low-spin state electron configuration. Conversely, the

two-electron electrostatic terms (i.e. d−d interelectronic repulsion) favour the high-

spin state, while the true spin state is a balance between these opposing factors. As

discussed above, traditional MM methods require distinct parameter sets for each

possible spin state; the epair term is used to model the effects of interelectronic re-

pulsion, allowing LFMM to use a single parameter set for all possible spin states.[22]

In LFMM, the standard forcefield file must be slightly modified to include terms

that span the ligand and coordination regions. With reference to Figure 2.3, the

terms required for LFMM to function correctly are threefold:

(i) M-N-C bond angle

(ii) M-N-C-C torsion angle and

(iii) N-M-N-C torsion angle

However, the implementation of these terms within the forcefield is not uniform.

For the M-N-C and M-N-C-C terms, the magnitude of the forcefield parameters is

derived from existing comparable terms. In contrast, the force constants for any

N-M-N-C torsions must be set to zero. While there would be no issue for cis-N

ligands, trans-N ligands would place the N-M-N triad in a straight line, where the

twist angle cannot be defined.[22]

As already mentioned, the forcefield also contains definitions for all available atoms

in the relevant forcefield. Thus, atom types for metals must be defined and added

to the chosen forcefield.[22] In this work, we are primarily interested in platinum

(Pt(II)) systems, denoted by a new atom type “PT+2”. In addition, care should

be taken regarding the ligand donor atom types. To avoid tedious definition and

parameterisation of new atom types, the donor atom types are carried over from the

free ligand and used when the ligand is bound to a metal centre.

Both metal and ligand atom types must also be assigned correctly, which may be

achieved automatically using the smiles arbitrary target specification (SMARTS)

[26] extension to the simplified molecular input line entry system (SMILES) [27]

notation within the forcefield file. In terms of SMARTS, this means that for the

ligand donor atoms, the general transition metal symbol [#T] must be added to

the existing ligand atom type definition, while PT+2 may be matched by any atom
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with atomic number 78.[22]

While this approach ensures that the treatment of metal-free systems remains un-

changed, it also means that any changes in the ligand which occur when binding to

a metal centre cannot be captured by LFMM. However, as pointed out by Bol and

Comba,[28] the coordination of organic ligands to a transition metal leads to ‘small

but significant’ changes in the ligand structure, with bond length changes between

donor atom-Cα of approximately 1% - the bond in question is illustrated in Figure

2.7.

Figure 2.7: Illustration of the ligand atom - Cα atom bond, highlighted in red.

LFMM fails to model changes in this bond length upon metal coordination.[28]

While the FF file handles the ligand region (in addition to the terms specified above),

LFMM uses a separate parameter (.PAR) file for all metal-ligand interaction terms,

including AOM parameters. Such separation of the parameters for the two regions

allows greater control over the metal-ligand bond stretching term. For example, this

permits the use of Morse functions for metal-ligand bond stretches even in cases

where the original forcefield uses simple harmonic functions for all bond stretch

terms e.g. AMBER. Each metal-ligand bond therefore requires dissociation energy

(D), reference bond length (r0) and curvature parameter (α) in the .PAR file (see

Equation 2.34)[22]

EMorse = D(1− e−α(r−r0))2 (2.34)

LFMM does not require L-M-L angle bend terms, and thus avoids the aforemen-

tioned issue regarding multiple reference angles for a single L-M-L atom set. In

place of these terms, the Valence-Shell Electron Pair Repulsion (VSEPR) method is

used to generate the approximate coordination geometry [22] i.e. ligands around a

metal centre will arrange themselves so as to obtain the greatest possible separation

between them. In addition, LFMM uses a purely repulsive 1,3 ligand-ligand term
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in the form of a Lennard-Jones potential (see Equation 2.28), allied to the L-M-L

angular component of the LFSE, allowing LFMM to model ‘any number of ligands

and any symmetry’.[22]

2.5.2.1 Technical Asides

The LFMM model was incorporated into an existing piece of molecular modelling

software, Molecular Operating Environment (MOE)[29], by the Deeth Inorganic

Computational Chemistry Group at Warwick University. A copy of this program,

d-orbital molecular mechanics in MOE (DommiMOE),[22] was obtained from Pro-

fessor Deeth and used extensively throughout this work.

In addition, the LFMM model was recently ported to the DL-POLY Classic molec-

ular dynamics software package.[30] This DL-POLY-LF allows for long timescale

molecular dynamics simulations to be carried out on high-performance computing

resources using the LFMM technique. However, DommiMOE must still be used to

generate the DL-POLY-LF input files.

One of the advantages of MOE for traditional MM work is that it automatically gen-

erates parameters for any interaction that is not defined within the FF file. However,

in the case of transition metals, these generated parameters are typically poor.[22]

DommiMOE must therefore be able to prevent the use of these parameters, which

is achieved by performing an additional MM calculation on the central coordination

region (see Figure 2.3). The potential energy and first derivatives from this calcu-

lation are subtracted from the total energy and derivatives, which eliminates the

unreliable MOE-assigned parameters from the calculations.[22]

Solvation must also be handled with care. The interaction of the metal and lig-

and–donor atom charges with the solvent dielectric medium is preserved by per-

forming the coordination region calculation specified above with the solvation terms

disabled. In this way, the energy of solvating the metal coordination region is re-

tained.[22]
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2.5.2.2 Alternative Approaches to the LFMM Problem

It should be noted that LFMM is by no means the only method for handling tran-

sition metals within molecular mechanics. A brief overview of a selection of these

alternate methods is given below:

As mentioned above, one of the foremost problems with using MM to model transi-

tion metals species is the issue of multiple L-M-L reference angles. One accessible so-

lution to this problem is focused on the valence shell electron pair repulsion (VSEPR)

model. This ‘points on a sphere’ method was expanded to consider ligand-ligand

repulsions and was used to successfully model the structures of several thousand

compounds by Kepert. [31] While this approach is able to produce regular coordi-

nation structures (i.e. octahedral, tetrahedral), it cannot generate more complex

geometries such as square planar structures, unless this is enforced by the surround-

ing ligand structure.

This design principle has also seen a great deal of use by the Comba group in their

MOMEC package.[32] As before, the L-M-L bond angles are handled using ligand-

ligand repulsion terms. However, MOMEC requires different parameter sets for axial

and equatorial bonds.

The forcefield method VALBOND - based on valence bond theory - is also a popular

alternative for modelling transition metal species.[33–36] VALBOND is based on the

description of atoms, bonds and angles in terms of their hybridisation; here, transi-

tion metals are considered as hypervalent centres. The L-M-L angles are described by

the overlap between sdn hybridised metal-ligand orbitals. The VALBOND-TRANS

variation is also able to model trans effects within complexes.[37]

The valence bond theory approach has also been implemented into the atomic mul-

tipole optimised energetics for biomolecular applications (AMOEBA) method for

Cu(II) and Zn(II) ions, though this AMOEBA-VB method failed to reproduce the

Jahn-Teller distortions of hexa-aqua Cu(II) complexes. [38] This lead directly to the

incorporation of the AOM method into AMOEBA by the same authors.[39].

In addition, Carlsson and Zapata [40], have derived an AOM-type description of the
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d-orbital effects using analytical expressions for the angular potential at the metal,

where the functions depend on the σ or π nature of the ligands. This is essentially

a simplified version of the LFMM method described above.

Lastly, the full LFMM procedure has recently been implemented into the popular

and freely available Tinker [41] modelling software and numerical results validated

against DommiMOE.[42]

2.5.2.3 Final Remarks

Despite its strengths, LFMM remains a relatively niche technique. However, in

recent years it has been successfully applied to a range of transition metal species,

with particular focus given to copper, nickel and platinum systems.[30, 43–47] These

applications are discussed in Chapter 1.

One of the problems with LFMM is due to the parameters required to reliably model

transition metal complexes; a large number of these parameters are needed, but gen-

erating the parameters to accurately reproduce experimental or DFT structures is

a very time-consuming process. The wider application of LFMM in this area of

research is in direct competition with hybrid QM/MM methods, which require no

such parameterisation, but come with their own complications.

In addition, the primary implementation of LFMM is within MOE, a powerful but

expensively licensed commercial software package. This clearly limits the uptake of

the LFMM approach in the wider modelling community, an issue that may be par-

tially remedied by its inclusion in alternative packages outlined above, as surmised

by Foscato et al.: ‘broader availability of LFMM could open up a range of new and

interesting applications to large systems, various computer simulation techniques

and large-scale design studies’.[42]
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2.6 Semi-Empirical Methods

The computational cost of performing Hartree-Fock calculations increases as N4,

where N is the number of basis functions. The greatest contributor to this phe-

nomenon is the number of two-electron integrals required to complete the calculation

i.e. the J and K integrals appearing in the Fock matrix elements. Semi-empirical

methods are molecular orbital theories based on the Hartree-Fock method, but re-

duce the computational demand by reducing the number of two-electron integrals

required. One approach would be to estimate the value of these integrals accurately

in an a priori fashion, such that no numerical integration must be performed. This

forms the basis of the so-called semi-empirical modelling techniques.

The first step in this process is to consider only the valence electrons explicitly. The

core electrons are then dealt with by introducing function(s) to model the repulsion

due to the nuclei and core electrons, or by simply reducing the nuclear charge. The

valence electrons are then described by a minimal set of basis functions i.e. using

only the minimum number of basis functions required to consider the electrons in

the free atom (see section 2.4)

2.6.1 ZDO Approximation

The Zero Differential Overlap (ZDO) approximation is key to semi-empirical method-

ologies. This approximation neglects the products of basis functions that depend

on two electrons located on different atoms. The Coulomb integrals in a Hartree-

Fock calculation consider the interaction of two electrons in regions defined by the

basis functions; if these basis functions are on different atoms, then the value of the

integral will be almost zero and may be neglected. In large systems, it is possible

to discard many of these two electron integrals, meaning that the required number

of calculations is greatly diminished. This process should still provide an answer

relatively close to that obtained from a full calculation.

The ZDO approximation has several consequences: Firstly, it simplifies the Roothaan-

Hall equation (Equation 2.14) to FC = Cε i.e. the overlap matrix is now a unit

matrix. Secondly, all three and four-centre, two electron integrals are neglected. Fi-

nally, all three-centre, one electron integrals are set to zero. The remaining integrals
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are assigned values based on experimental data or accurate computational calcula-

tions. The number of integrals neglected by the ZDO approximation, in addition to

the method for assignment of parameter values, defines the different semi-empirical

methods.

The first semi-empirical method was Complete Neglect of Differential Overlap (CNDO),

where parameters were developed from ab initio calculations.[48–51] Following this,

several other variants have been developed, including Intermediate Neglect of Dif-

ferential Overlap (INDO), Modified Intermediate Neglect of Differential Overlap

(MINDO) and Neglect of Diatomic Differential Overlap (NDDO).

2.6.2 NDDO Approximation

One of the more recent advances in semi-empirical methodology is the Neglect of

Diatomic Differential Overlap (NDDO) approximation. Here, no further simplifi-

cations (i.e. beyond the ZDO approximation) are required. The semi-empirical

methods employed in this research all utilise the NDDO approximation.

2.6.2.1 Parameterised Model 3

Published in 1989, Stewart’s Parameterized Model 3 (PM3) [52] proved to be a

robust semi-empirical model. In contrast to existing methods at the time, all pa-

rameters were simultaneously derived via an automated procedure. In addition,

these parameters were tested using a much larger data set than previous efforts.

PM3 initially provided parameters for just 12 atoms (H, C, N, O, F, Al, Si, P, S,

Cl, Br and I) but subsequent work has enabled parameterisation of all main-group

elements.[53] One of the major problems with earlier semi-empirical techniques was

in predicting hydrogen bond lengths and geometries. To correct this, Dewar et

al., in their AM1 method [54], and later, Stewart, in PM3, modified the nuclear

repulsion term by ’adding a stabilisation Gaussian function to the MNDO core-core

interaction.’ [54, 55] PM3 uses two Gaussian functions for this purpose, as opposed

to the four in AM1.
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2.6.2.2 Parametric Model 6

The relatively recent Parametric Model 6 (PM6) method was developed by Stewart

and contains parameters for 70 atoms. [55] PM6 incorporates the core-core diatomic

interaction parameters of Voityuk [56] as well as Thiel’s d-orbital approximation[57,

58], which enables NDDO methods to model the transition metal elements. Sub-

sequent expansion of this work has lead to variants which implement dispersion,

hydrogen- and halogen-bonding corrections.[12, 59–64] These corrections typically

require some re-parameterisation of the original method.

2.6.2.3 Parametric Model 7

More recently, Parametric Model 7 (PM7) has been published,[65] containing pa-

rameters for 70 elements in total. The PM7 method includes a “D2”-type correction

for dispersion forces , though only elements H, He, B, C, N, O, F, Ne, P, S, Cl, Ar, Br

and Kr are currently supported.[65] Other elements are handled using core-core at-

tractive Gaussian terms to mimic dispersion effects.[66] The dispersion and hydrogen

bond corrections were implemented before parameter optimisation was performed,

meaning that PM7 is designed to reproduce both intermolecular interaction energies

and heats of formation.[65]
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2.7 Exploring Conformational Freedom

The physical, chemical and biological properties of a molecule often depend on the

conformations it can adopt. Conformational analysis – the study of conformations

of a molecule and the influence on its properties – rose to prominence in the mid-20th

century, and allied to emerging techniques such as NMR and X-ray crystallography,

became an important tool for modern chemists. As such, conformational analysis is

widely used in drug discovery and (biological) catalyst design.[3, 67]

The conformational search – identifying the possible conformations of a molecule

– is a critical part of conformational analysis. Conformational searching is used to

locate minima on the molecular potential energy surface; ideally this would produce

the molecule’s preferred conformations – those which determine its properties and

behaviour.

Generally, the aim is to identify every minimum energy conformer. Often, identi-

fying these minimum energy positions is difficult due to the exponential increase in

the number of minima with the number of variables, such as rotatable bonds. This

is known as the combinatorial explosion problem. In these cases, it is often more

useful to sample a representative set of local minima.

The classic example which demonstrates this problem is exploration of the confor-

mations of linear alkanes. Here, there are 3 possible conformations around each

C-C-C-C bond. Thus for any linear alkane with n rotatable bonds, there are 3n pos-

sible conformations. This is illustrated in Table 2.3, for CH3(CH2)n+1CH3 systems:

n Number of possible conformations (3n) Time (1 conformation = 1 second)

1 3 3 seconds

5 243 4 minutes

10 59049 16 hours

15 14348907 166 days

20 3486784401 40356 days

Table 2.3: Combinatorial explosion as illustrated by linear alkanes.[1]
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For larger molecules, this systematic approach is clearly not possible. However,

there are several alternate methods which are applicable to large molecular systems.

In this section, these computational methods for conformational searching will be

introduced.

2.7.1 Stochastic Search Methods

The first conformational search method to be discussed is the stochastic or ‘random’

search. In the stochastic approach, a random change is made to the current confor-

mation at every iteration. This change is usually achieved in one of two ways:

The first of these is the Cartesian method. Here, the new conformation is generated

by adding a random amount to the (x, y, z) coordinates of all atoms in the molecule.

The perturbed geometry produced is then refined using energy minimisation.

The second method applies a random change to the rotatable bonds in a system.

In this approach, the torsion angles are randomly selected and rotated by a random

value. Once again, the structure produced is energy minimised. Stochastic confor-

mational searches performed in the course of this research used MOE [29]/Dommi-

MOE [22] which employs this dihedral approach.

In both cases, if the generated conformer has not been identified previously - as

determined by a user-defined root mean square deviation (RMSD) cut off - and

providing it meets any additional user-specified criteria, such as maximum energy

cut-offs - it is saved. Over time, a database of unique conformations is produced.

A new perturbed structure is then generated from one of these conformers and the

cycle continues.

The procedure is terminated once a given number of iterations have been performed

or no new conformations can be found. In stochastic search methods, there is no

natural end point, since it is almost impossible to be certain that all minimum en-

ergy conformations have been found. In practice, the search is usually performed

until no new conformations are found. This means that in the process of a confor-

mational search, each region of the conformational space is explored many times.
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The stochastic method has been used as a point of comparison for more recent

conformational search methods in a number of studies focused on flexible molecules,

similar to those investigated here.[67–70] However, it was widely out-performed by

the more modern methods, proving its lack of suitability for this research (see Section

2.7.4).

2.7.2 LowMode Molecular Dynamics

In 1996, the ‘Low Mode Search’ (LMOD) conformational search method was pro-

posed by Kolossváry and Guida[71]. This method focused on following low-frequency

vibrations in the structure; for every iteration, the molecular vibrations are calcu-

lated and the system is systematically perturbed along low-frequency vibrational

modes. The conformation produced is then optimised.

The underlying principle of LMOD is attractive for conformational analysis i.e. the

use of low-frequency vibrational modes to “hop” between low-energy conformations.

LMOD also assumes that these transitions between states are able to completely

explore the ensemble of low energy conformations.[67] LMOD is therefore able to

explore conformational space well, and is also able to account for non-bonded in-

teractions, meaning that this approach is suitable for complex molecular systems.

Unfortunately, the vibrational mode analysis conducted at the beginning of each

iteration comes at a significant computational cost, particularly for large systems.

To counteract this, the LLMOD variation was developed,[72] where the vibrational

analysis is performed at the beginning and the vibrational modes produced are used

for the duration of the conformational search.

LowMode MD (LMMD), proposed by Labute in 2010 [67], is a recent addition to the

array of conformational search methods available. Briefly, this may be considered

to be a type of quenched molecular dynamics; a short (1 ps) molecular dynamics

simulation - with random initial velocities - and an energy minimisation, followed

by collating the visited conformations.[69] The success of LMMD stems from its

design; it screens out high-frequency vibrational modes and concentrates kinetic en-

ergy along low frequency modes in molecular dynamics trajectories.[67] LMMD is

able to analyse complex molecular systems such as protein loops and macrocycles

- taking into account complex non-bonded interactions - making it ideal for this

research. It has been shown to be able to locate low-energy conformations for a
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variety of structures in a computationally efficient manner.[67–69] It is notable that

the LMMD approach may be applied using any forcefield, provided that a gradient

is available to perform the relevant energy minimisations.[67]

The LMMD protocol is outlined below:

1. [Start] Energy minimise the system and set the conformation list to empty.

2. [V elocities] Generate a random set of atomic velocities from the

Maxwell-Boltzmann distribution and analytically remove rigid body rotational

and translational velocity, if appropriate.

3. Filter the velocities so that there is little kinetic energy along high-frequency

vibrational modes.

4. Scale the resulting velocities to 300 K.

5. Perform a constant temperature molecular dynamics simulation for 1 ps.

6. [Minimisation] Energy minimise the conformation produced.

7. [Save] If the conformation is not in the conformation list (taking symmetry

into account), then add the conformation to the list. When saving conforma-

tions, any two conformers are deemed to be duplicates if the root-mean-square

deviation between them is less than a user-defined threshold. Conformations

may also be rejected on strain energy grounds.

8. [Terminate] If sufficient conformations have been generated or a user-specified

iteration limit is exceeded then terminate the search; otherwise, go to Step 2.

In practice, the user must specify the total number of iterations of the procedure

i.e. the total number of attempts to find new conformations. In addition, a strain-

energy cut-off and a root-mean-square-distance cut-off must be defined. Finally,

the search will terminate if a certain number of successive failures to generate new

conformations occurs; the user must specify this number of iterations.

The LMMD approach is built on the same foundations as the preceding (L)LMOD

methods, in that it involves perturbing a conformation by concentrating the ki-

netic energy present in a system along low-frequency vibrational modes and using

these transitions to explore the conformational space. However, in LMMD this is

achieved without the need to calculate vibrational frequencies, second derivatives
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of the Hessian matrix or eigenvectors and without the need to specify the low-

frequency threshold value. In LMMD, the undesirable high-frequency vibrations are

dampened, which effectively removes these vibrations from the calculation of veloc-

ities.[67]

While LMMD is similar to (L)LMOD, differences can be identified in the perturba-

tions employed by each. In the (L)LMOD method, the vibrational analysis is per-

formed once and the resulting low-frequency modes are used throughout the search,

as previously mentioned. This assumes that the low-frequency vibrational modes

identified in the original structure are applicable to all subsequent conformers. This

appears implausible, especially if there is a significant change in molecular conforma-

tion. Conversely, the perturbations in LMMD are governed by the molecular forces

of that particular conformation; in principle, this means that the perturbations in

LMMD will be better than the previously discussed approaches.

In addition to this, the methods used to perturb coordinates differs significantly be-

tween (L)LMOD and LMMD; LMMD uses NVTmolecular dynamics while (L)LMOD

uses a linear, systematic perturbation along each low-frequency mode identified.

This means that (L)LMODmay produce large conformational distortions, but LMMD

should not, because all atoms obey the equations of motion throughout a conforma-

tional change.[67]

2.7.3 Molecular Dynamics

Molecular Dynamics (MD) simulations enable the calculation of structural and ther-

modynamic properties and phenomena, as well as the study of time-dependent be-

haviour of atomic or molecular systems, such as conformational changes. As a result,

MD has become a powerful tool in chemistry, biology, physics and materials science.

2.7.3.1 Statistical Mechanics

MD simulations produce data at the microscopic level, such as atomic positions and

velocities. The conversion of this microscopic data to macroscopic properties is the

realm of statistical mechanics. Here, a brief introduction to the relevant statistical
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mechanical concepts is given.

In a classical system, the Hamiltonian, H, depends on both particle positions, r, and

momenta, p, and may be expressed in terms of kinetic energy, K(p), and potential

energy, U(r), as shown in Equation 2.35.

H = H(r,p) = K(p) + U(r) =
∑

i

[
pi
2mi

+ U(r)] (2.35)

Where mi and pi are the mass of particle i and the momentum of particle i, respec-

tively. A single microscopic state of the system may be characterised by values r,p.

In a system of N atoms, 6N values are required to define a state of the system -

three coordinates per atom and three components of the momentum (in the x, y

and z directions). Every combination of position and momentum defines a point

in 6N -dimensional phase space. An ensemble is a collection of points in this phase

space. In MD, the system of interest moves through phase space, generating a se-

ries of points connected by time – for example, a molecular dynamics simulation

performed using the NVE ensemble (i.e. constant system volume and energy) will

sample the phase space with constant energy.

If the number of particles, the volume and the temperature of a system are fixed, the

probability density, ρ, is given by the Boltzmann distribution function (Equation

2.36).

ρ(r,p) = exp(−H(r,p)/kBT )/Z (2.36)

Where Z is the canonical partition function – the integral over all phase space of

the Boltzmann fractions given in the numerator. kB is the Boltzmann constant.

This partition function plays a vital role in statistical mechanics – it allows for

calculation of the thermodynamic average of any dynamic variable, A, such as kinetic

energy, or atomic positions. The average of this property, A, across all possible states

of the system is called the ensemble average and is written in Equation 2.37.

< A >=

∫ ∫
dpNdrNA(pN , rN)ρ(pN , rN) (2.37)
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Here, there should be 6N integral signs, for the 6N positions and momenta of the

particles, though just two are written for convenience. The final term, ρ(pN , rN),

is the probability density of the ensemble, indicating the probability of occupying a

configuration of the system with momenta pN and positions rN . The ensemble aver-

age is then found by integrating over all possible configurations. During a molecular

dynamics simulation, the instantaneous value of the variable A fluctuates due to

interactions between particles. The value of A measured by simulation is an average

of A over the simulation time, and is called the time average, shown in Equation

2.38.

Aave = lim
τ→∞

1/τ

∫ τ

t=0

A(pN(t), rN(t))dt (2.38)

Where τ is the simulation time.

As the simulation time is increased, the value of the time average approaches the

true value, the ensemble average. According to the ergodic hypothesis, for an in-

finitely long simulation, the time average is equal to the ensemble average, provided

the system reaches equilibrium i.e. when the simulation is sufficiently long, the

entire phase space of the system will have been explored, so values of A obtained

via time- and ensemble- averaging become equal.

One major problem with estimating thermodynamic quantities from MD simula-

tions is that we assume that the generated configurations form a representative set

of all possible configurations. In reality, this is impossible to verify. If all points in

the 6N dimensional phase space were sampled, it would be possible to calculate the

partition function and the resulting MD trajectory would be termed ergodic i.e. the

results are independent of the initial configuration. Unfortunately, such sampling is

impractical even for very simple systems, meaning that simulations can only provide

estimates of the true energy (or other dynamic variable) of the system.

A typical MD simulation time is of the order of tens to hundreds of nanoseconds,

which is far too short a timespan to sample all phase space. This means that there

is a risk that a simulation may become trapped in a small region of phase space for

the entire trajectory, providing an unrepresentative sampling. To mitigate this, and

test the sensitivity of the simulation results, several simulations may be performed

with different starting conditions and/or configurations.
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2.7.3.2 Newtonian MD

MD simulations produce configurations of a system connected by time via integration

of Newton’s equations of motion. Newton’s second law (Equation 2.39) states that

the force acting on a particle equals the rate of change of momentum.

Fi = miai = mi
δ2ri
δt2

(2.39)

Where Fi is the force on particle i, mi is the mass of particle i and ai is the accel-

eration of particle i and ri is the coordinate.

Early MD simulations were carried out using a hard-body approach, where atoms

act as solid spheres and do not interact before they collide in a purely elastic man-

ner. This is not a realistic model of atomic interactions, and so more modern MD

simulations use a Lennard-Jones type potential for the interaction between spheres

i.e. the potential force between 2 atoms changes continuously with separation. In

this case, the force on each particle changes if the particle changes its position, or if

any of the other particles that it interacts with changes position. This many-body

problem cannot be solved analytically, so the equations of motion must be integrated

using a finite difference method.

Integrating the equations of motion breaks them down into many small steps, sep-

arated by a time difference, δt. The total force on each particle at time t may be

calculated as a vector sum of all interactions with other particles. Subsequently,

particle accelerations may be found; these values are combined with particle posi-

tions and velocities at time t in order to obtain new particle positions and velocities

at time t+δt. It is assumed that the forces acting on each particle remains constant

during the timestep (from t → δt). Forces acting on the particles must then be

calculated at the new positions, which produce the next set of particle positions and

velocities at t+ 2δt. This procedure is repeated for the duration of the simulation.

There are several common algorithms for implementing this integration method,

which are typically found in most modern MD simulation software. Each of these
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methods assumes that the particle positions, velocities and accelerations can be

approximated using a series of Taylor expansions (Equations 2.40-2.43).

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) +

1

24
δt4c(t) + ... (2.40)

v(t+ δt) = v(t) + δta(t) +
1

2
δt2b(t) +

1

6
δt3c(t) + ... (2.41)

a(t+ δt) = a(t) + δtb(t) +
1

2
δt2c(t) + ... (2.42)

b(t+ δt) = b(t) + δtc(t) + ... (2.43)

Here, r is the particle position, v is the first derivative of the position with respect

to time, corresponding to the velocity, a is the second derivative, the acceleration,

b is the third derivative, c is the fourth derivative and so on.

The first – and most simple – finite difference method is the Verlet algorithm.[73] In

this case, particle positions and accelerations at time t and particle positions at time

t− δt are used to calculate new particle positions at time t+ δt, shown in Equations

2.44-2.46.

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) + ... (2.44)

r(t− δt) = r(t)− δtv(t) +
1

2
δt2a(t)− ... (2.45)

Adding these equations together gives an expression for r(t+δt), shown in Equation

2.46.

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) (2.46)

While the Verlet algorithm is relatively easy to implement and has low memory

requirements – it requires just two sets of particle positions and one set of parti-

cle accelerations – it is not without problems. New particle positions are found by

adding a small δt2at term to two much larger terms (see Equation 2.46), leading

to lack of precision. In addition, particle velocities are not explicitly used in the

calculations, and velocities at time t are not calculated until time t+ δt. Lastly, the

Verlet method is not self-starting – as already mentioned, new particle positions are

calculated from current and preceding sets of positions. However, at time t = 0,

there are no previous particle positions. As such, the Verlet method requires some

other way of generating particle positions at time t−δt. This may be achieved using
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a truncated Taylor series.

The second integration algorithm is the Leapfrog method, proposed by Hockney[74]

and illustrated in Equations 2.47-2.49 which is similar to the above Verlet scheme.

v(t+
1

2
δt) = v(t− 1

2
δt) + δta(t) (2.47)

r(t+ δt) = r(t) + δtv(t+
1

2
δt) (2.48)

v(t) =
1

2
[v(t+

1

2
δt) + v(t− 1

2
δt)] (2.49)

Here, particle velocities at time t − 1/2δt and accelerations at time t are used to

calculate velocities at time t+ 1/2δt, according to Equation 2.47. Positions at time

t+ δt can be calculated from particle velocities and positions at time t, according to

Equation 2.48. This means that the calculated velocities ‘leapfrog’ over the particle

positions, giving velocities at time t + 1/2δt. In turn, positions ‘leapfrog’ over the

velocities, producing particle positions at time t+ δt. This cycle repeats throughout

the simulation.

In the leapfrog algorithm, particle velocities are explicitly included in the calcula-

tions, though velocities and positions are out of synchronisation by half a timestep.

However, this explicit use of particle velocities allows the system to be coupled to an

external heat bath for controlling simulation conditions. In addition, this algorithm

does not require calculation of the difference between large numbers – as such, the

numerical accuracy here is better than for the Verlet method.

The non-synchronous calculation of particle positions and velocities is addressed in

the Velocity Verlet method.[75] Here, particle positions, velocities and accelerations

are calculated simultaneously, without the loss of precision described in the original

Verlet method.

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) (2.50)

v(t+ δt) = v(t) +
1

2
δt[a(t) + a(t+ δt)] (2.51)

v(t+
1

2
δt) = v(t) +

1

2
δa(t) (2.52)
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v(t+ δt) = v(t+
1

2
δt) +

1

2
δt2a(t+ δt) (2.53)

In this case, the particle positions at time t+δt are calculated as shown in Equation

2.50. However, calculation of particle velocities at time t+ δt requires accelerations

at both time t and t+δt (Equation 2.51. The velocities at time t+ 1
2
δt are calculated

using Equation 2.52. New forces acting on the particles are then calculated using

the current positions, giving the acceleration term, a(t + δt). Finally, velocities at

time t+ δt are found using Equation 2.53.

2.7.3.3 Selecting Integration Timestep

Selecting the integration timestep is an important consideration in MD simulations;

the size of the timestep has a profound effect on the errors produced by the inte-

gration algorithms, where the total error is roughly correlated with the size of the

timestep. If a small timestep is used, a better integration quality is obtained, but

a simulation will only cover a limited region of the system’s phase space, while too

large a timestep may lead to unstable simulations caused by high-energy interac-

tions between particles. These scenarios are illustrated in Figure 2.8; clearly there

is a balance between simulating the “correct” trajectory and adequate sampling of

phase space.

Figure 2.8: Illustration of the impact of timestep on MD simulation. Too small a

timestep leads to limited coverage of phase space (left); Too large a timestep leads

to unstable simulation (middle); An appropriate timestep allows a simulation to

efficiently explore phase space (right).[3]

As an approximate guide, the timestep for simulating flexible molecules should be

approximately an order of magnitude smaller than the fastest motion in the sys-

tem. In flexible molecules, the highest frequency vibrations are usually C-H bond

stretches, with a repeat period 10 fs. These bond stretches are often not interesting

as they exert little influence on molecular properties or system behaviour; MD sim-

ulations therefore expend significant effort describing relatively unimportant bond
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stretching motions.

One solution to this problem is to freeze out these high-frequency vibrations by

constraining the bonds to their equilibrium bond length, while still allowing the re-

maining degrees of freedom in the system to vary. Eliminating these high-frequency

vibrations allows a larger timestep to be used.

2.7.3.4 SHAKE algorithm

The SHAKE algorithm[76] is the most common method used to constrain hydrogen

coordinates in MD simulations. In SHAKE, the equations of motion are solved while

simultaneously satisfying any imposed constraints. First, all atoms are allowed to

move under the influence of the forces present, assuming an absence of constraint

forces. Next, the deviation of each bond containing hydrogen from its reference bond

length is used to calculate the constraint force that “corrects” the bond length.

Once this correction has been applied, every relevant bond length is checked; if

the deviation is greater than the specified tolerance, the correction calculation is

repeated until all bond lengths satisfy the criteria. This means that SHAKE uses

an iterative procedure to adjust hydrogen atom coordinates so that the deviation

from the reference bond length falls within a given tolerance for all bonds containing

hydrogen, as shown in Equation 2.54.

Sk =
dk(t)

2 − d2k0
dk0

< ε (2.54)

Where dk(t) is current bond length of interest, dk0 is the reference bond length and

ε is the tolerance value, often 10−4 − 10−8 Angstroms.

2.7.3.5 Long-Range Forces

The most computationally expensive part of a MD simulation is the calculation

of non-bonded energies and forces – while the number of bond, angle and torsion

terms is proportional to the number of particles (N) in a system, the number of

non-bonded interactions increases as a factor of N2. Ideally these non-bonded in-

teractions would be calculated for all particles interacting with all others, but this

becomes impractical for even moderately sized systems. In addition, calculating

these interactions is often not justified. Non-bonded interactions are modelled using

a Lennard-Jones potential, which accurately represents the r−6 distance dependence
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of these interactions. As Figure 2.9 shows, the potential decays rapidly with dis-

tance, such that the value at 2.5r falls to 1% of its value at r.

One practical way to handle the excessively large number of non-bonded interaction

terms is to employ a cut-off in the potential. Here, the interaction energy between

any two particles with a separation of greater than the cut-off is set to zero.

Figure 2.9: Illustration of a Lennard-Jones potential with a potential cutoff, as used

in MD simulation.

Similarly, the charge-charge interaction - which decays as r−1 - is problematic in

molecular dynamics simulations. In this case, a larger cut-off must be applied due

to the slower decay of the interaction energy with distance.

The use of cut-offs for non-bonded and charge-charge interactions inevitably leads to

errors in the simulation and deviations from the true potential, but suitably chosen

cut-offs are able to minimise this.

2.7.3.6 Periodic Boundary Conditions

In MD simulations, it is common to employ boundary conditions, such that the

microscopic system experiences forces and interactions as if it were in a macroscopic

system. This may be achieved using periodic boundary conditions. Here, a three-

dimensional cell (typically a cube) is replicated in all directions – a central cube is
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surrounded by 26 identical cubes (known as images), which are in turn surrounded

by 96 identical cubes and so on, giving a periodic array of cubes. The positions

of the particles in these surrounding periodic images may be found by adding or

subtracting integral multiples of the length of the side of the periodic cell.

If, during the simulation, a particle leaves the original cell, it is replaced by a particle

from the image cell on the opposite side i.e. if a molecule exits through the right

wall of the original cell, its image will enter from the left wall from the adjacent

periodic cell, keeping the number of particles present in the cell constant.

Using periodic boundary conditions also affects the way the long-range forces men-

tioned above are handled. In the case of non-bonded interactions, the minimum

image convention is required. Here, a given particle experiences only one instance

of every other particle in the system and the interaction or force is calculated for

the nearest atom or periodic image. This means that the applied cut-off should not

allow for a given particle to interact with its own image or the same particle twice.

In effect, this limits the cut-off distance to half the length of the cubic simulation cell.

Modelling charge-charge interactions in periodic systems is also challenging as the

interaction extends beyond the length of a simulation cell. One common way to han-

dle this is to use the Ewald summation method[77], where a given particle interacts

with all other particles in the original simulation cell as well as all of their peri-

odic images in the periodic array. The Ewald sum then considers the charge-charge

interaction as a sum of a short range and long range interactions.

2.7.3.7 Molecular Dynamics Ensembles

MD simulations are typically performed in the NVE (micro-canonical) ensemble,

where the system moves through phase space along a contour of constant energy

while the temperature and pressure fluctuate. The total energy is a sum of the

kinetic energy and the potential energy, calculated as shown in Equation 2.55.

Etotal =
N∑ 1

2
miv

2
i + V (r) (2.55)

Where m is the mass of a particle, v is the velocity and r is the position.
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However, there are several alternative ensembles that may be sampled, which provide

results more relevant to experimental conditions. Simulating these other ensembles

necessitates some way to constrain an instantaneous observable property, such as

temperature or pressure. This may be achieved either by directly constraining the

property to a specified macroscopic value at all timesteps or by allowing the in-

stantaneous value to fluctuate while ensuring that the average remains equal to the

desired macroscopic value. Here, an overview of these ensembles and the methods

used to achieve them is covered.

(i) Constant Temperature Simulations

In constant temperature simulations, we control the simulation cell volume

and the system temperature – this is the canonical (NVT) ensemble. The

temperature of this system is related to the average kinetic energy, as shown

in Equation 2.56.

E<kinetic> =
1

2
(3Natoms −Nconstraint)kBT (2.56)

The simplest way to control the temperature of the system is to scale the ve-

locities at every timestep, altering the kinetic energy. If the temperature at

time t is T (t) and the desired temperature is T0, the velocities may be scaled

by a factor of (T0/T (t))
1/2.[78]

Alternatively, the system may be coupled to an external heat bath that is fixed

at the desired temperature and supplies or removes heat from the system as

required. This is known as a thermostat. The kinetic energy of the system is

controlled by scaling the particle velocities, as before, but the rate of change

of temperature depends on the difference between the desired and actual tem-

perature, as illustrated in Equation 2.57. The velocity scaling factor is then

shown in Equation 2.58.

dT (t)

dt
=

1

τ
(Tbath − T (t)) (2.57)

Where τ is a coupling parameter which determines how strongly the heat bath

is coupled to the system. If τ is large, the coupling is weak; if τ is small, the

coupling is large.
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λ = [1 +
dt

τ
(
T0

T (t)
− 1)]1/2 (2.58)

However, both of these methods affect the dynamics such that simulations do

not generate exact canonical ensembles. One final method for performing NVT

dynamics are the extended system methods proposed by Nose and Hoover.[79,

80] Here, the thermal bath is considered as part of the system, represented by

an additional degree of freedom, s. In this case, each state of the extended

system that is generated corresponds to a unique state of the real system. The

particle velocities in the real system may be calculated using Equation 2.59,

while the timestep is given by Equation 2.60 – both depend on the degree of

freedom of the extended system.

vi = s
dri
dt

(2.59)

δt = sδt′ (2.60)

The heat bath has kinetic and potential energy given by Equations 2.61 and

2.62, respectively. Here, f is the number of degrees of freedom (normally 3N-

3), T is the desired temperature and Q is the thermal inertia parameter, which

determines the coupling between the heat bath and the real system. If Q is

large, the energy flow is slow; if Q is small, rapid energy flow leads to unstable,

oscillating temperature in the real system.

Ebath potential = (f + 1)kB ln(s) (2.61)

Ebath kinetic = (
Q

2
)(
ds

dt
)2 (2.62)

(ii) Constant Pressure Simulations

In constant pressure simulations, we control the pressure and the temperature

- this is the isothermal-isobaric (NPT) ensemble. In this case, the pressure is

controlled by changing the volume of the simulation cell. However, this NPT

method does not feature in the work included in this thesis, so discussion of

NPT simulation methods is brief:
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Many of the methods of controlling pressure are analogous to the temperature

controls discussed above i.e. the pressure can be maintained by scaling the

volume at all timesteps. Alternatively, the system may be coupled to a pressure

bath in a similar fashion to the heat bath mentioned earlier. This is known as

a barostat. In the extended system methods, the pressure bath is considered

to be part of the system to be studied. An additional degree of freedom, V , is

added, which corresponds to the volume of the simulation box. This may be

thought of as a piston acting to compress the real system. In effect, pressure

may be maintained by scaling particle positions at every timestep.

2.7.4 Comparisons of Conformational Search Methods

Clearly, the relative computational cost of different conformational search methods,

and the efficiency with which they sample conformations, is an important factor in

their selection for a given research problem. Below, several popular conformational

search methods are compared.

According to work by Labute[67], the biggest problem with molecular dynamics for

exploring conformations is that it must wait for kinetic energy to localise in certain

low-frequency vibrational modes in order to cause large conformational changes. As

the system increases in size, this wait increases, so the large changes in conformation

are less common. In contrast, LMMD works to direct the kinetic energy to the im-

portant low-frequency modes, inducing conformational change much more rapidly.

Recent work[67] illustrated that LowMode MD is far more efficient than traditional

MD for exploring molecular conformations.

The most time-consuming aspect of LMMD is usually the number of force-field

evaluations needed to perform the energy minimisation, though detection of dupli-

cate conformers may also be significant, especially when modelling large, flexible

molecules.[67] While LMMD is the most computationally demanding of the meth-

ods outlined here (per iteration), this increased expense is counterbalanced by the

efficiency with which it identifies low energy conformations:

For a set of simple cyclic alkanes, a LMMD simulation and a stochastic conforma-

tional search (both performed in MOE[29]) find comparable minimum energy struc-

tures.[67] While the stochastic search is less computationally demanding, LMMD
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finds many more low-energy conformations as the alkane ring size increases. This

suggests that as the conformational space grows, the stochastic search method be-

comes increasingly less likely to generate a low-energy conformer.

Secondly, LMMD has been compared to twelve alternate conformational search

methods employed by Bonnet[70] to study a range of macrocyclic peptides and sug-

ars. Originally, Bonnet determined that a self-organising superimposition (SOS2)

variant [81] of the stochastic proximity embedding (SPE) [82] conformational search

was the optimummethod for modelling these macrocyclic compounds, though LMMD

was later proven to identify equivalent or lower global minimum energy conforma-

tions in almost all cases.[67] In addition, LMMD was able to find a greater number

of unique low energy conformations, with a similar or greater degree of diversity

(measured by the difference between the minimum and maximum values of the ra-

dius of gyration (Rgyrmin. and Rgyrmax.) of the macrocycle of interest. Lastly, the

LMMD search was also found to be approximately ten times more efficient than the

SOS2 method preferred by Bonnet [70], where efficiency is calculated as the number

of iterations performed per unique conformer generated. This clearly suggests that

LMMD samples the low energy conformations of these systems more thoroughly

than SOS2; by implication, LMMD is better than the alternate methods analysed

by Bonnet, making it a leading option for the conformational analysis of complex

molecules.

In addition, the performance of many conformational sampling protocols can be in-

fluenced by a range of tuneable settings, including the number of search cycles,

the energy cut-off and the degree of similarity permitted between the retained

conformers, as alluded to when discussing the LMMD process in Section 2.7.2.

This fine-tuning of conformational search methods has been explored by Chen and

Foloppe,[68] who found that adjusting the search protocol to the problem signifi-

cantly improved the performance of the search method.

The aforementioned work studied a range of drug-like, flexible and macrocyclic

compounds and assessed the relative performance of a selection of different confor-

mational search methods and the effects of details of each protocol. These authors

identified LMMD as the best search method for these complex molecules - LMMD

produces larger conformational ensembles (i.e. greater conformational coverage),

more likely to contain a representative of the bioactive structure, while locating the
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global energy minimum more frequently than other available search methods.

Alternatively, research by Watts et al.[69] illustrated that the LMMD approach was

outperformed by the macrocycle baseline search within MacroModel (MMBS) for a

greater range of molecules than included in the research outlined above. Notably,

Watts states that MMBS performs less well for macrocyclic rings containing more

than 30 atoms; importantly for the context of this research, the macrocyclic ring

formed by the binding of Pt(II) to histidine residues in Aβ forms a ring 30+ atoms

in size, so the MMBS approach would be less appropriate.

Clearly, the question of which conformational search method is the best is divisive

and appears to depend on the nature of the molecule being studied. This means

that several methods should be tested before selecting a particular modelling ap-

proach. However, LMMD has been shown to be a generally favourable method to

thoroughly explore the conformational space of complex molecules. In addition, and

perhaps most importantly, LMMD – unlike many of the alternative methods dis-

cussed above – allows for direct implementation of the LFMM procedure (Section

2.5.2) via DommiMOE.

2.8 Practical Considerations

2.8.1 Geometry Optimisation

Optimising the geometry of chemical systems plays an important role in much com-

putational work and a discussion of the approaches to this is best framed in the

context of the potential energy surface (PES) of the system.

The PES (see Figure 2.10) is a function of the nuclear coordinates; if there are N

nuclei present, there are 3N − 6 dimensions to describe the nuclear arrangement.

Visualisation of the PES therefore requires derivatives of the energy at points on

the surface. Of particular interest for chemical systems are the stationary points on

the surface (i.e. where the first derivative, or gradient, of the energy equals zero) –

these correspond to energy minima, maxima and saddle points.

The goal of the optimisation process is usually to identify the global minimum
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energy point, corresponding to the most stable conformation of the system of in-

terest. Chemical systems may move between minima – provided energy is added

– by moving over the surrounding energy barriers via saddle points, also known as

transition states. In order to distinguish between minima and saddle points, where

the first derivative is zero, the second derivative is calculated. Here, negative values

correspond to the transition states and positive values correspond to energy minima.

Figure 2.10: An example Potential Energy Surface, adapted from [83]

Modern computational chemistry packages contain algorithms for this optimisation

procedure; one of the most common is the Newton-Raphson approach. In this

approach, a function f(x) is constructed as a Taylor expansion around point x0.

The first derivative of f(x), f ′(x), may be written as shown in Equation 2.63.

f ′(x) = xf ′(x0) + (x− x0)f
′′(x0) (2.63)

If f(x) takes the form of a quadratic, the second derivative, f ′′(x), is equal at all

points i.e. the second derivative of x is equal to the second derivative of x0. Thus

at the minimum, where f ′(x) = 0, x may be calculated using Equation 2.64.

x = x0 −
f ′(x0)

f ′′(x0)
(2.64)

If x0 is one solution to f ′(x) = 0, x calculated above is a new solution. The above

equation is therefore used to provide an iterative solution. This Newton-Raphson

method is relatively computationally demanding as each iteration requires calcu-

lation and inversion of the Hessian matrix; this lead to the development of quasi-

Newton optimisation methods, which only require first derivatives of the energy and
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construct the inverted Hessian matrix over successive iterations.

2.8.2 Solvent Models

Accurate simulations and modelling of chemical systems necessitates the inclusion

of solvent effects. This is especially true for biomolecular systems. Typically, the

solvent may be accounted for in one of two ways: explicitly or implicitly.

In explicit solvent calculations, each solvent molecule must be specified in the cal-

culation input file. However, adequate solvation usually requires many hundreds

or thousands of solvent molecules; this addition of extra molecules may render a

calculation impractical.

Alternatively, in implicit solvent calculations, the solvent is described as a uniform

polarisable medium with some dielectric constant, ε. A cavity is created in the

solvent medium into which the molecule or system of interest is placed. This is

known as the self-consistent reaction field (SCRF) method. Here, interaction with

the solvent perturbs the molecule, which in turn results in a perturbation of the

reaction field. This may be accounted for in the Hamiltonian, displayed in Equation

2.65.

Htotal = H0 = µT 2(ε− 1)

2(ε− 1)α3
< Ψ|µ|Ψ > (2.65)

Here, H0 is the original unperturbed Hamiltonian, µ is the dipole moment and α is

the radius of the cavity. However, there is an energy penalty associated with creat-

ing the cavity in the solvent, written as ∆Gcavity. This is mitigated by stabilising

electrostatic and van der Waals interactions between the solute and solvent, writ-

ten as ∆Gelec and ∆Gdisp respectively. The total free energy change for solvation,

∆Gsolvation, may be expressed as Equation 2.66.

∆Gsolvation = ∆Gcavity +∆Gelec +∆Gdisp (2.66)

Three solvent models have been used during the course of this work. First, the po-

larisable continuum model (PCM)[84, 85] was used for DFT calculations. Here, the

cavity is modelled using a van der Waals surface. Secondly, the COSMO [86] method,
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which acts as a conductor-like screening method was used for semi-empirical calcu-

lations. In COSMO, the cavity is formed within a conductor with infinite dielectric

constant. Small corrections to this conductor then provide close approximations of

solvents with high dielectric constants, such as water. Lastly, the reaction-field sol-

vation model was used for calculations in MOE and DL-POLY. Here, the solute is

surrounded by a spherical cavity of finite radius. Inside the cavity, electrostatic in-

teractions are calculated explicitly; outside, the system is treated as a dielectric con-

tinuum with a specified dielectric constant. A net dipole in the cavity then induces a

polarisation in the dielectric, which in turn interacts with the given molecule.

2.8.3 Protein Secondary Structure Assignment

Peptide dihedral angles - φ, ψ and ω (see Figure 2.11) - determine peptide conforma-

tions and are responsible for essentially all variation in peptide backbone structure.

By convention, backbone dihedral angles are defined by four atoms in the main

peptide chain. When viewed along the central bond, the dihedral angle is defined

as the angle between the end atom nearest the viewer and the end atom furthest

away. The dihedral angle is positive if this angle is clockwise, and negative if anti-

clockwise.

Figure 2.11: Illustration of ψ, φ and ω peptide backbone dihedral angles.

This means that φ dihedrals are defined by Ccarbonyl(n−1), N(n), Cα(n) and Ccarbonyl(n)

atoms, ψ dihedrals by N(n), Cα(n), Ccarbonyl(n) and N(n+1) atoms and ω dihedrals by

Cα(n−1), Ccarbonyl(n−1), N(n), and Cα(n) atoms. Of these, the ω dihedral angle is

the least important, since it is close to 180◦, producing a trans, planar peptide

where neighbouring α-carbons and the peptide N, H, C, and O atoms lie in a single
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plane.

The φ and ψ angles in a protein may be visualised and analysed using a Ramachan-

dran plot - a graph of φ vs ψ angles, first proposed by Ramachandran et al. [87,

88] Ramachandran plots enable the user to identify energetically allowed regions of

conformational space as well as plot distinct data points within a single structure.

In a Ramachandran plot (see Figure 2.12), there are regions of conformational space

that correspond to the standard secondary structure types (i.e. α-helix and β-sheet),

allowing the user to predict secondary structure using only dihedral angle data.

Figure 2.12: An example Ramachandran plot, Φ vs. Ψ.

2.8.3.1 STRIDE

STRIDE (STRucture IDEntification)[89] is an automatic algorithm for peptide sec-

ondary structure assignment based on backbone torsion angles and hydrogen bond-

ing patterns, given only atomic coordinates and protein residue information. It

allows for classification of secondary structure elements even if the structure does

not fit the ideal secondary structure geometries of α-helix or β-sheet.

Assignments of secondary structure are made based on a weighted product of hydrogen-

bond energies and propensities of amino acids with specific φ, ψ angles to form part

of a particular secondary structure element. In STRIDE, the hydrogen bond energy

depends on the distance of the interaction in question, as well as its angular geome-

try. This means that residues with non-standard backbone torsion angles may still
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be accepted by STRIDE provided they form strong hydrogen bonds and vice versa.

STRIDE was originally developed using large test set of protein structures from the

PDB database, where secondary structure was determined by protein crystallogra-

phy.

The Ramachandran plot is divided into 20◦ by 20◦ regions (i). STRIDE then calcu-

lates the probability that backbone dihedral angles of residues assigned as α-helix/β-

sheet in the test set were found in the ith region of the Ramachandran, illustrated

in Equations 2.67-2.68.

Pα
i =

Nα
i

N total
i

(2.67)

if −180◦ < ψ < 10◦ and −120◦ < φ < 45◦

P β
i =

Nβ
i

N total
i

(2.68)

if −180◦ < ψ < 0◦ and −180◦ < φ < −120◦ or 45◦ < φ < 180◦

Where Nα
i and Nβ

i are the numbers of residues in the φ, ψ zone assigned as either

α-helix or β-sheet, respectively, and N total
i is the total number of residues with tor-

sion angles in the ith zone in the test set. These probability values are set equal to

zero outside of the accepted α-helical and β-sheet regions of the Ramachandran plot.

In STRIDE, a minimal α-helix includes at least 2 consecutive hydrogen bonds be-

tween residues k and k + 4, with a hydrogen bond energy greater than a cutoff.

A β-sheet is defined as two consecutive hydrogen bonded bridges – residues in the

β-sheet must either participate in two hydrogen bonds (via backbone carbonyl and

peptide hydrogen atoms) or be flanked by residues each forming a single hydrogen

bond.

Characterisation of other secondary structure elements such as 310-helices, π-helices

and turns is complicated by their relatively irregular and sparse φ, ψ data. In

STRIDE, 310-helices and π-helices were generally defined using the same rules as

used in the DSSP secondary structure program by Kabsch and Sander.[90]

In addition, turns were defined according to work by Richardson [91], and further

111



Chapter 2

refined by Wilmot and Thornton.[92] Structures are assigned as turns if the α-carbon

atoms in residues i and i+ 4 are less than 7 Å apart, with a hydrogen bond across

from i− i+ 4. Hydrogen bonds are assigned if the electronegative atoms (nitrogen

and oxygen) are < 3.3 Å apart and the angles between the hydrogen atom, elec-

tronegative atom and the next main-chain atom are > 90◦.

Each of the possible turn types are defined by the dihedral angles, φ, ψ, in Table 2.4.

STRIDE does not distinguish between each of these turn-types, instead generalising

any qualifying structure as a turn; further classification is possible according to the

values in Table 2.4.

Turn-type Res. i+ 1 φ / ◦ Res. i+ 1 ψ / ◦ Res. i+ 2 φ / ◦ Res. i+ 2 ψ / ◦

I -60 -30 -90 0

I ′ 60 30 90 0

II -60 120 80 0

II ′ 60 -120 -80 0

V Ia -60 120 -90 0

V Ib -120 120 -60 0

V III -60 -30 -120 120

Table 2.4: Dihedral angles (◦) of residues i + 1 and i + 2 in different turn-types,

according to Wilmot and Thornton [92]

Many alternative algorithms and programs are available for assigning protein sec-

ondary structure, such as DSSP, but there is no consensus on the most accurate

tool. A thorough examination of several popular methods may be found in work by

Zhang.[93]

2.8.4 Programs and Methods

The vast majority of DFT calculations have been performed using Gaussian 09.[94]

A small remainder were performed using NWCHEM[95] and these are noted in the

text. Unless specified otherwise, the BHandH functional [9] has been used with the

6-31G(d) basis set in conjunction with the Stuttgart-Dresden (SDD) ECP [14, 15,

96] for transition metals. Where appropriate, the PCM solvent model [84, 85] has

been used for aqueous solvation.
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Semi-empirical calculations using the PM6, [55] PM6-DH2, [59, 61] and PM7[65]

methods were carried out using MOPAC.[66] Where appropriate, the COSMO [86]

solvent model has been used.

All LFMM calculations contained in Chapters 3 and 4 were performed within the

DommiMOE [22] extension to MOE.[29] MD and LFMD calculations in Chap-

ter 5 were performed using DL-POLY CLASSIC [97] and DL-POLY-LF, respec-

tively.[30]

For simulations of the free peptide, DL-POLY input files (CONFIG, FIELD and

CONTROL) were generated using DL-FIELD.[98] For simulations containing plat-

inum, DL-POLY-LF input files (CONFIG, FIELD, CONTROL and lfse.in) were

generated in DommiMOE using scripts written by the Deeth group.

For all LFMM data in Chapters 3 and 4, the original AMBER94 TM [22] force-

field was used alongside the reaction-field solvent model with default parameters.

All MM calculations were carried out in MOE. LFMD calculations (Chapter 5) were

performed using the corrected version of the AMBER94 TM forcefield. Analysis

of LFMD trajectories was performed using Visual Molecular Dynamics (VMD) [99],

while secondary structure assignment was achieved using the STRIDE program. [89]

Geometrical data was obtained using either Molden [100] or Gaussview [101] visu-

alisation software. Overlay images were obtained using Chimera[102] or MOE. The

RMSD values for static structures contained within Chapters 3-5 were calculated

using a python script obtained via GitHub [103, 104] and checked using Chimera.

Finally, Ramachandran plots in Chapter 4 were obtained using JMP.[105]
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(63) J. Řezáč and P. Hobza, Journal of Chemical Theory and Computation, 2012,

8, 141–151.
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3 Modelling PtII-Amyloid-β Complexes

3.1 Introduction

The work in this chapter aims to test the suitability of various modelling approaches,

including DFT and semi-empirical methods, for calculating structures and energies

of platinum complexes bound to fragments of the Aβ peptide. Small model systems

have been studied to validate these methods before studying different platinum-Aβ

binding modes as well as exploring conformations of the N-terminal region of the

peptide.

Research contained in this chapter comes from work by our group, published in

reference [1]. All of the work contained here from this publication was carried out

by myself.

3.2 Modelling PtII Crystal Structures

PtII complexes are known to interact with biomolecules, particularly via nitrogen

or sulphur donor atoms, such as histidine residues or DNA bases (see Chapter 1).

Recently, PtII complexes have been found to bind to the Aβ peptide and inhibit its

aggregation, thought to be a key part of the development of Alzheimer’s disease (see

Section 1.4.2). Before work concerning the binding of platinum to large Aβ peptides

could begin, it was important to conduct preliminary experiments on small model

systems using different modelling techniques in order to determine which computa-

tional methods produced the most reliable results, with the aim of identifying which

method and basis set reproduced existing experimental data most accurately.

The choice of density functionals and basis set for this work was investigated by

calculating the optimised, gas-phase geometries for several high-resolution crystal
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structures of simple PtII complexes containing histidine or methyl-imidazole groups

- as models of the key histidine residues in Aβ (see Chapter 1) - from the Cambridge

Structural Database. Cartesian coordinates were obtained from the original refer-

ences for each system and modelling was performed in Gaussian09[2] using a range

of DFT methods: BHandH[3], B97D[4], B3LYP[3, 5, 6], PBE1PBE[7, 8], ωB97xD[9]

and LC-ωPBE[10]. In addition, each of these functionals was tested using thirteen

different basis sets, given below, leading to 78 combinations of functional and basis

set.

• lan2dz

• cep-121G

• SDD

• SDD/6-31G(d)

• SDD/6-311G(d)

• SDD/6-31G(dp)

• SDD/6-31+G(d)

• SDD/6-31+G(dp)

• SDD/6-31+G(2dp)

• SDD/6-31++G(2dp)

• SDD/6-31+G(2dfp)

• SDD/cc-pVDZ

• SDD/TZV

The selected crystal structures are displayed in Figure 3.1.
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Figure 3.1: Complexes used for DFT methods validation, where structures are taken

from X-ray crystallographic data. Top row, left-right: (Dichloro-(histamine-N,N’)-

platinum(II) CSD ID: XUKWUV [11], chloro-(1-methyl-1H-imidazole)-(2-(pyridine-

2-yl)phenyl)-platinum(II) CSD ID: OXUYUC [12], trans-Diamminebis (N-methyl-

imidazole) platinum(II) chloride CSD ID: DAMIPT[13]. Bottom row, left-right:

Chloro (ethylenediamine) (1-methylimidazole)platinum(II) nitrate CSD ID: HEK-

JEM[14] and Pt(N-methylimidazole)4 CSD ID: MIMDPT[15].

For much of this early work, we are primarily interested in the bond distances and

angles of platinum and its coordinating ligands, as these are the most relevant to the

binding of a platinum complex to Aβ. Selected geometric data for the five crystal

structures are shown in Tables 3.1 - 3.5, using the SDD/6-31G(d) basis set i.e. using

a SDD ECP[16][17] for PtII and the 6-31G(d) basis for all other atoms.

The calculated geometries of these structures show that the bond distances and

angles show excellent agreement with the experimental (crystal) values. However,

BHandH clearly outperforms the other DFT methods for these complexes. In partic-

ular, the platinum bond distances and angles agree to within 0.028 Å or better and

3.2◦ or better, respectively. For comparison, the best non-BHandH approach used

the LC-ωPBE functional and the SDD/6-31++G(2dp) basis, where values agreed

to 0.044 Å or better and 3.4◦ or better (see Table A.2). This is in contrast to work

from Malik and Michalska[18], who found that the LC-ωPBE functional performed
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best for cis-platin type complexes, though BHandH was not studied during that

work.
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CSD I.D. Bond (Å)/Angle (◦) Expt. Value BHandH B97D B3LYP PBE1PBE wB97xD LC-wPBE

XUKWUV Pt-N(ring) 1.994 2.013 2.064 2.063 2.035 2.054 2.036

Pt-NH2 2.046 2.050 2.135 2.111 2.082 2.099 2.074

Pt-Cl(1) 2.299 2.289 2.343 2.342 2.314 2.325 2.303

Pt-Cl(2) 2.309 2.292 2.342 2.343 2.315 2.326 2.303

Cl-Pt-Cl 91.7 93.6 93.2 93.5 93.3 93.6 93.4

N(ring)-Pt-Cl(2) 90.2 89.9 90.7 90.4 90.2 90.2 90.1

NH2-Pt-Cl(2) 86.9 83.7 84.0 83.8 83.7 84.0 83.9

Table 3.1: Selected geometric data for crystal structure XUKWUV, where data was obtained by experimental and various DFT methods

using the SDD/6-31G(d) basis.
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CSD I.D. Bond (Å)/Angle (◦) Expt. Value BHandH B97D B3LYP PBE1PBE wB97xD LC-wPBE

OXUYUC Pt-N(His) 2.026 2.008 2.053 2.057 2.032 2.045 2.033

Pt-N(ppy) 2.017 2.012 2.055 2.051 2.030 2.046 2.033

Pt-C(ppy) 1.978 1.975 2.003 2.007 1.987 1.992 1.985

Pt-Cl 2.411 2.396 2.476 2.470 2.432 2.444 2.411

C(ppy)-Pt-N(ppy) 81.3 91.1 80.9 80.8 81.0 80.9 91.0

N(His)-Pt-C(ppy) 94.8 96.4 96.0 97.1 96.7 96.3 96.4

N(His)-Pt-Cl 87.5 87.4 87.3 86.9 86.9 87.2 87.1

N(ppy)-Pt-Cl 96.6 95.2 95.9 95.4 95.5 95.7 95.7

Table 3.2: Selected geometric data for crystal structure OXUYUC, where data was obtained by experimental and various DFT methods

using the SDD/6-31G(d) basis.
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CSD I.D. Bond (Å)/Angle (◦) Expt. Value BHandH B97D B3LYP PBE1PBE wB97xD LC-wPBE

DAMIPT Pt-N(imid)(1) 1.998 2.011 2.057 2.059 2.035 2.045 2.036

Pt-N(imid)(2) 1.998 2.012 2.059 2.061 2.037 2.046 2.035

Pt-NH3(1) 2.067 2.040 2.106 2.093 2.068 2.082 2.065

Pt-NH3(2) 2.067 2.040 2.107 2.093 2.068 2.082 2.065

NH3(1)-Pt-N(imid)(1) 90.4 89.9 90.0 90.0 90.0 89.9 89.9

NH3(1)-Pt-N(imid)(1) 89.6 90.2 90.1 90.1 90.2 90.2 90.2

Table 3.3: Selected geometric data for crystal structure DAMIPT, where data was obtained by experimental and various DFT methods

using the SDD/6-31G(d) basis.

CSD I.D. Bond (Å)/Angle (◦) Expt. Value BHandH B97D B3LYP PBE1PBE wB97xD LC-wPBE

HEKJEM Pt-N(imid) 2.026 2.002 2.040 2.046 2.023 2.033 2.024

Pt-NH2(1) 2.038 2.036 2.103 2.086 2.062 2.078 2.057

Pt-NH2(2) 2.040 2.062 2.144 2.125 2.094 2.108 2.085

NH2(2)-Pt-N(imid) 93.2 95.8 95.9 96.7 96.4 96.0 96.2

NH2(1)-Pt-NH2(2) 83.4 83.3 82.4 82.6 83.0 82.7 83.2

Cl-Pt-N(imid) 91.8 91.4 91.4 90.8 90.7 91.0 90.8

Table 3.4: Selected geometric data for crystal structure HEKJEM, where data was obtained by experimental and various DFT methods

using the SDD/6-31G(d) basis.
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CSD I.D. Bond (Å)/Angle (◦) Expt. Value BHandH B97D B3LYP PBE1PBE wB97xD LC-wPBE

MIMDPT Pt-N(1) 1.985 2.013 2.053 2.057 2.034 2.043 2.034

Pt-N(2) 2.012 2.009 2.061 2.059 2.039 2.049 2.037

Pt-N(3) 1.985 2.013 2.053 2.057 2.034 2.043 2.034

Pt-N(4) 2.012 2.009 2.061 2.059 2.039 2.049 2.037

N(1)-Pt-N(2) 92.6 89.7 90.2 90.0 90.2 90.2 90.2

N(1)-Pt-N(4) 87.4 90.3 89.8 90.0 89.8 89.8 89.8

Table 3.5: Selected geometric data for crystal structure MIMDPT, where data was obtained by experimental and various DFT methods

using the SDD/6-31G(d) basis.127
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Data for additional basis sets may be found in the Appendix (Tables A.1 and A.2).

In general, these data show that BHandH is the optimum functional for complexes

of this type. In addition, these data suggest that for the basis sets studied here, the

choice of basis has relatively little influence on the results.

3.3 Molecular Mechanics for PtII Complexes

While DFT calculations are in principle able to model any system, and are shown

to accurately model PtII crystal structures (Section 3.2), their high computational

expense means that they are impractical for the study of large, flexible peptides such

as Aβ. For this, forcefield-based methods are required, though these are typically

not parameterised for transition metal elements (see Section 2.5.1).

3.3.1 Forcefield Validation

The deciding factor in the accuracy of molecular mechanics calculations is the choice

of forcefield. As discussed in Section 2.5, different forcefields are parameterised to

best model particular classes of molecule - the most common family of forcefields

for modelling proteins is AMBER.

The performance of the AMBER forcefield - explicitly designed for peptide and DNA

molecules - was also investigated for the small organic ligands that are bound to the

PtII centre in these potential therapeutic agents. Here, for the sake of brevity, only

data for the phenanthroline ligand is included. DFT calculations were carried out in

G09 using the BHandH functional with a 6-31G(d) basis set for all atoms. Solvation

was handled using the polarised continuum model.[19, 20] AMBER calculations

were performed in MOE[21], using AMBER94[22] parameters for all atoms and the

reaction-field solvation model. Resulting bond distances and angles are shown in

Table 3.6, where atom numbering corresponds to Figure 3.2.
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Figure 3.2: Atom numbering for the phenanthroline ligand, used for forcefield vali-

dation.
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Bond Ave. DFT Bond Ave. AMBER Bond ∆ AMBER-DFT

Length / Å Length / Å Length / Å

N-C2 1.305 1.350 0.045

N-C3 1.335 1.363 0.028

C3-C3 1.441 1.426 -0.015

C2-C4 1.395 1.406 0.011

C4-C5 1.363 1.405 0.043

C5-C6 1.397 1.407 0.011

C6-C7 1.421 1.406 -0.015

C7-C7 1.344 1.403 0.060

C2-H2 1.085 1.084 -0.001

C4-H4 1.081 1.082 0.001

C5-H5 1.083 1.082 -0.001

C7-H7 1.083 1.083 -0.000

MUE 0.019

Angle Ave. DFT Bond Ave. AMBER Bond Angle ∆ AMBER-DFT

Angle / ◦ Angle / ◦ Angle / ◦

C3-N-C2 118.46 122.37 3.91

N-C2-C4 123.90 120.23 -3.67

C2-C4-C5 118.18 119.77 1.59

C4-C5-C6 119.39 118.66 -0.74

C5-C6-C3 117.77 119.89 2.12

C6-C3-N 122.30 119.09 -3.21

C6-C7-C7 120.69 120.07 -0.62

C7-C6-C3 120.48 120.71 0.24

C6-C3-C3 118.84 119.22 0.39

MUE 1.83

Table 3.6: Geometric data for the phenanthroline ligand, calculated using

BHandH/SDD/6-31G(d) and AMBER94.

This data shows that AMBER models this small organic ligand well; all bond dis-

tances agree with DFT calculations to within 0.06 Å and all internal angles of the

ligand agree to within 4◦. This accuracy in performance illustrates that there is

little problem in using the AMBER forcefield to handle molecules of this type, such

as other small aromatic ligands will be investigated later.
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3.3.2 PtII Complexes

As we have seen, molecular mechanics methods are generally not able to model

transition metal complexes without modification. Modelling the PtII complexes in

this work requires AMBER parameters for the region of the peptide that is coordi-

nating to platinum, as well as platinum itself. Fortunately, this is not a new problem.

Approximate AMBER parameters were obtained from work by Scheeff[23] - origi-

nally used for modelling cisplatin-DNA adducts - and then implemented into the

forcefield files. In order for the central platinum to remain square planar, several

new atom types were defined in the forcefield and identified using SMILES[24] and

SMARTS.[25] These atom types - the histidine nitrogen atoms coordinating to PtII

- were given identical properties to pre-existing atom types, but given type names

which allowed distinction between those in different residues. These new AMBER

types - NX, NZ and NA1 (see Figure 3.3) - were necessary to control the platinum

geometry using proper torsion potential energy terms. Proper torsions were used be-

cause the more convenient out-of-plane and improper torsion potential energy terms

are not present in the construction of the AMBER forcefield. Without these addi-

tional torsion terms, the PlatinumII centre adopted a tetrahedral geometry.

Figure 3.3: Illustration of AMBER types for PtII and surrounding ligands, based on

work by Scheeff [23].

However, this approach requires validation of the literature parameters as well as

accurate parameterisation of these new torsion terms, achieved by fitting to exper-
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imental or high-level computational data. For this reason, this pure-MM approach

was not utilised beyond this point.

Alternatively, Ligand Field Molecular Mechanics (LFMM)[26–28] is a powerful tool

for modelling transition metal complexes (see Section 2.5.2). As the AMBER force-

field is the most appropriate for modelling peptide systems and is also capable of

accurately modelling the aromatic ligands involved in this work, DommiMOE[27]

was configured to use this forcefield type. While recent iterations of the AMBER

family of forcefields are typically available (e.g. AMBER99 and those using Ex-

tended Huckel Theory), the choice of forcefield in this work is dictated by what

is available in the DommiMOE program. At this stage, AMBER94 is the only

iteration available. Importantly, however, there is very little difference in the pa-

rameterisation of the newer versions compared to AMBER94 for the peptide atoms

(i.e. carbon, nitrogen, oxygen, sulphur and hydrogen) and the bonds between them,

so this choice will have little effect on the generation and modelling of conformations

of these systems.

Even though LFMM is an established technique for complexes of the type studied

here, it is important to validate the parameters and check that LFMM produces

accurate structures of PtII complexes.

To this end, LFMM optimisations were performed for appropriate small model sys-

tems from Section 3.2 and geometries compared to experimental and calculated data.

Unfortunately, crystal structures XUKWUV, OXUYUC, DAMIPT and HEKJEM

(see Figure 3.1) are not suitable for this purpose, as there are no forcefield parameters

for some of the atom types e.g. coordinated NH2R and Cl groups and no correspond-

ing LFMM parameters. In lieu of additional crystal structures, a series of complexes

of the the type PtII(ligand)(Me-imidazole)2 were constructed and optimised using

DFT (BHandH/SDD/6-31G(d)) in Gaussian09, where the ligand may be bipyridine,

phenathroline, diphenyl-phenanthroline or dipyridophenazine (DPPZ), as shown in

Figure 3.4. Each of these additional ligand systems was modelled with all combina-

tions of Me-imidazole binding via Nδ and Nε atoms, giving twelve combinations of

ligand and Me-imidazole binding mode.
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Figure 3.4: Example small model systems used for validation of LFMM parameters.

Top row: Crystal structure MIMDPT[15], PtII(bipy)(εε Me-imidazole)2

and PtII(phen)(δε Me-imidazole)2. Bottom row: PtII(Dpphen)(δδ Me-imidazole)2

and PtII(Dppz)(δε Me-imidazole)2.

CSD I.D. Bond (Å)/Angle (◦) Expt. BHandH LFMM

MIMDPT Pt-N(1) 1.9585 2.013 1.971

Pt-N(2) 2.0119 2.009 1.970

Pt-N(3) 1.9585 2.013 1.971

Pt-N(4) 2.0119 2.009 1.970

N(1)-Pt-N(2) 92.6 89.7 90.5

N(1)-Pt-N(4) 87.4 90.3 89.8

MUE (Bond) 0.026 0.015

MUE (Angle) 0.0 0.2

Table 3.7: Selected geometric data for crystal structure MIMDPT, where data was

obtained by experimental, DFT and LFMM methods.

133



Chapter 3

Bipy Nδ Nδ Bond (Å)/Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.011 1.960

Ave. Pt-NMe-imid 2.005 1.952

NMe-imid-NMe-imid 87.9 89.3

NLig-NLig 80.5 92.7

NMe-imid-NLig 95.8 89.5

MUE (Bond) 0.052

MUE (Angle) 2.4

Table 3.8: Selected geometric data for the small model system PtII(bipy)(Me-imid)2

where Me-imid is bound by Nδ atoms, as noted in the top left. Data obtained by

DFT and LFMM methods.

For the sake of brevity, only one of the twelve data tables for the PtII(ligand)(Me-

imidazole)2 complexes are placed here - the remainder may be found in the Appendix

(Tables A.3 - A.13). The LFMM-optimised geometries of these structures show good

agreement with experimental data and those calculated using BHandH. Here, PtII-

containing bond lengths and angles agree with experiment to within 0.042 Å and

2.4◦, respectively. In addition, platinum bond lengths agree with DFT data to within

0.060 Å (largest deviation 0.058 Å). Coordination angles fare less well, but are still

reasonable - these agree to within 13.7◦ of DFT results. This relatively large devi-

ation from calculated DFT values appears only for the angle between Nlig-Pt-Nlig:

DFT predicts that this angle is compressed, with values 80.4-81.2◦ observed, while

LFMM predicts values 92.2-94.5◦. For all other coordination angles, LFMM data

agree with DFT to within 7.3◦.

This data illustrates that LFMM - with the current parameters - is able to reproduce

experimental and DFT data in both gas and condensed phases to a good degree of

accuracy, though in general, the LFMM geometries are too rigidly square planar,

with less variation in coordination geometry than predicted by DFT. In principle, it

is possible to improve the fit of the LFMM data to the crystal and calculated data,

but this is at the risk of decreasing the transferability of the parameters.
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3.4 Modelling the Metal-Binding Region of Aβ

In this section, a protocol for modelling PtII(ligand) complexes bound to the Aβ6-14

fragment of the Aβ peptide is established and is validated for the two most simple

PtII(ligand) complexes examined in this work.

The peptide sequence His6-Asp-Ser-Gly-Tyr-Glu-Val-His-His14, taken from the N-

terminal domain of Aβ, was built in an extended conformation in MOE.[21] Pt

was added in eight distinct coordination modes (i.e. to His6 and either His13 or

His14 through Nδ or Nε), and the bipyridine or phenanthroline ligand manually

constructed, as shown in Figure 3.5 and Table 3.9.

Figure 3.5: Schematic of PtII(ligand) complexes binding to His6 and His13 (left)

and His6 and His14 (right). The ligand, represented by the blue scaffold, may be

either bipyridine or phenanthroline.
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Binding Mode His-6 His-13 His-14

1 Nδ Nδ -

2 Nδ Nε -

3 Nε Nδ -

4 Nε Nε -

5 Nδ - Nδ

6 Nδ - Nε

7 Nε - Nδ

8 Nε - Nε

Table 3.9: Possible binding modes of platinum complexes to the histidine residues

of Aβ

3.4.1 Charge Schemes

An important factor in molecular mechanics-type approaches is the method used to

determine atomic partial charges. Several possible methods for assigning charges

were explored in this research, as detailed below.

Firstly, it is possible to use the AMBER forcefield partial charges for all atoms, in-

cluding the PtII(ligand) complex. In DommiMOE, this calculation is instantaneous,

so forcefield charges are very easy to apply. However, using a forcefield designed for

organic structures to calculate the partial charge of a transition metal ion and its co-

ordinating ligands leads to peculiar atomic charges around the platinum centre e.g.

4-valent nitrogen atoms are given negative atomic partial charges. This is likely due

to the fact that the MOE software attempts to automate parameters and charges

for unknown structures - in the case of transition metal systems, these parameters

are often poor. Despite its ease of use, this method was not used beyond initial tests

in this research.

It is important that the method used to define partial charges is consistent with the

underlying AMBER forcefield approach. To this end, calculation of Merz-Kollman

partial charges for the entire system (approx. 100-200 atoms) was performed by cal-

culating the electrostatic potential at the HF/6-31G(d)/SDD level in Gaussian09,

with Pt given a van der Waals radius of 2.0 Å i.e. calculate the atomic partial

charges that would reproduce the electrostatic potential (ESP) of the molecular
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surface. This relatively fast calculation must be done outside of DommiMOE, but

the charges are input manually. For systems of this size, this is a very slow pro-

cess. These Merz-Kollman charges show good agreement with those calculated by

AMBER for the peptide, with the exception of the region close to the platinum.

However, this approach produces asymmetric charges for chemically identical atoms

such as N-donor atoms in the 2,2-bipyridyl ligand. Additionally, these charges were

found to be highly dependent on the platinum binding mode and the peptide confor-

mation. This means that one set of these charges would be inadequate for describing

all conformations of these systems.

Alternatively, it is possible to calculate Merz-Kollman charges in the same manner

for only the region close the metal centre i.e. the ligand, the methyl imidazole

regions of the coordinating histidine residues and the metal itself (see Figure 3.6).

These small structures were optimised to obtain molecular symmetry prior to Merz-

Kollman charge calculations. The remaining peptide region – relatively distant from

the metal centre – was modelled using standard AMBER forcefield charges. This

method produced chemically reasonable and essentially symmetric partial charges,

unlike the approaches detailed above. Since a Merz-Kollman calculation of this size is

rapid (approx. 50-60 atoms, depending on the ligand) manual input of these charges

is not excessively time-consuming. Furthermore, since only a fast Merz-Kollman

charge calculation is required, this approach is applicable to peptide systems of any

size. As such, for practical as well as chemical reasons, this “MK-FF” approach was

deemed to be both the most reliable and most applicable for both this and future

work, and was used to model all PtII(ligand) systems studied. Calculated charges

are contained within Tables 3.10-3.11.
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Figure 3.6: Atom names/numbers for an example PtII(phen)(Me-imid)2 MK partial

charge calculation

Metal His Bipy

Atom Name Charge / e Atom Name Charge / e Atom Name Charge / e

Pt 0.560 Nε 0.324 N1 0.093

Cε -0.140 C2 -0.050

Nδ -0.350 C3 0.189

Cδ -0.448 C4 -0.243

Cγ 0.293 C5 0.069

Cβ -0.423 C6 -0.294

HδN 0.425 H2 0.195

HδC 0.267 H4 0.213

Hβ1 0.160 H5 0.180

Hβ2 0.162 H6 0.218

Table 3.10: Merz-Kollman partial charges for PtII(bipy)(Me-imid)2 subsystem of Aβ

peptide. Atom names are given in Figure 3.6.
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Metal His Phen

Atom Name Charge / e Atom Name Charge / e Atom Name Charge / e

Pt 0.560 Nε 0.324 N1 0.025

Cε -0.140 C2 0.001

Nδ -0.350 C3 0.134

Cδ -0.448 C4 -0.262

Cγ 0.293 C5 -0.017

Cβ -0.423 C6 0.077

Hε 0.248 C7 -0.219

HδN 0.425 H2 0.190

HδC 0.267 H4 0.217

Hβ1 0.160 H5 0.192

Hβ2 0.162 H7 0.216

Table 3.11: Merz-Kollman partial charges for PtII(phen)(Me-imid)2 subsystem of

Aβ peptide. Atom names are given in Figure 3.6.

3.4.2 Exploring Conformations of PtII-Aβ6-14

It is also important to establish a method for exploring the conformational freedom

of the disordered Aβ peptide, since there is little or no experimental data that pro-

vides a complete structure of the peptide or the platinated adducts.

Firstly, the MOE stochastic conformational search was used to model PtII(ligand)-

Aβ6-14, with the MK-FF charge scheme as discussed above. However, the random

nature of this method lead to the inversion of amino acid chiral centres and genera-

tion of implausible chemical structures, where the peptide backbone passes through

the centre of aromatic rings, giving a conformation that is tying itself in knots.

The stochastic method was unable to escape these unlikely structures, leading to

termination of the conformational search and insufficient exploration of possible con-

formers. This approach was not used beyond initial testing.

As explained in Sections 2.7.2 - 2.7.4, molecular dynamics does not provide fast

enough exploration of possible conformations to be suitable for producing a large

number of different structures in a computationally tractable time-frame. However,

the LowMode MD method [29] in MOE is considered a rapid, accurate method
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for generating low energy conformations of complex molecules (see Sections 2.7.2 -

2.7.4) and was used to explore the flexibility of this peptide fragment.

Several technical factors were investigated in order to establish the optimum Low-

Mode MD protocol: the number of iterations in the search, the failure limit, the

energy window and the RMSD.

(i) The number of iterations is the maximum number of attempts to identify pos-

sible conformations. Clearly, a large number of iterations are required in order

to adequately explore the conformational space and produce a representative

sample of conformations of a given structure. Since this is simply a maximum

number and we want to thoroughly investigate the possible conformations, an

arbitrarily high iteration limit of 10,000 was selected throughout this work.

The termination of the search was controlled by the other three factors:

(ii) The failure limit is the number of successive iterations that fail to generate

new conformations before the search terminates.

(iii) The RMSD cut-off controls the detection of duplicate conformations i.e. if

two conformations have a root mean square deviation (of atomic coordinates)

less than a specified value then they are considered duplicates and the sec-

ond conformer is not saved. Altering the RMSD cut-off allows us to control

the number of conformations that are retained by changing the threshold for

what is considered a duplicate i.e. large RMSD values restrict the number of

conformers saved, while small RMSD values do not.

(iv) The final factor in LowMode MD is the energy window. This is the value (in

kcal mol-1 - all other energy values in these results are reported in kJ mol-1)

of the maximum allowable energy relative to the most stable conformation.

Otherwise feasible conformations which are found by LFMM to be ‘high en-

ergy’ (i.e. outside this energy window) are discarded. Typically, structures

with relative energies above 10 kcal mol-1 are not significantly occupied at

physiological temperature.

Tuning these settings to the research problem at hand affects the performance of the

method. Here, these settings were altered systematically - akin to work by Chen and

Foloppe [30] - to determine optimum LowMode parameters. Each set of parameters

were used three times in order to negate the inherent random nature of the method

and the average number of conformations found are reported in Tables 3.12-3.13.
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During a LowMode MD conformational search a large portion of the kinetic energy

was localised on the four Pt-N coordination bonds. These bonds are not important

for exploring conformations since their final position is determined by the LFSE

contribution to LFMM (i.e. PtII is always square planar). Often, this led to the

LowMode search becoming ‘stuck’ and unable to escape a certain conformation,

resulting in the premature termination of the LowMode procedure. This issue was

resolved by setting the platinum centre at a fixed potential. This has the effect of

making the mass of the fixed atom effectively infinite, meaning that when LowMode

calculates vibrational frequencies, the bonds containing the fixed atom have a zero

frequency. These bonds are then screened in the LowMode procedure, so the kinetic

energy in the MD run is then concentrated on bonds that are more involved in

peptide conformations.
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System Rejection Limit RMSD / Å E cutoff / kcal mol-1 Ave. No. Confs

Aβ6-14 100 0.25 7 9

200 0.25 7 8

500 0.25 7 16

1000 0.25 7 18

2000 0.25 7 11

10000 0.25 7 14

100 0.25 20 216

200 0.25 20 257

500 0.25 20 695

1000 0.25 20 552

2000 0.25 20 412

10000 0.25 20 865

100 0.25 50 8014

200 0.25 50 7455

500 0.25 50 7941

1000 0.25 50 8093

2000 0.25 50 7838

1000 0.25 50 8007

100 0.5 7 5

200 0.5 7 7

500 0.5 7 5

1000 0.5 7 12

2000 0.5 7 42

10000 0.5 7 8

100 0.5 20 112

200 0.5 20 393

500 0.5 20 617

1000 0.5 20 854

2000 0.5 20 614

10000 0.5 20 545

100 0.5 50 7325

200 0.5 50 7362

500 0.5 50 8092

1000 0.5 50 7592

2000 0.5 50 7730

10000 0.5 50 7186

Table 3.12: Testing LMMD parameters with the free Aβ peptide
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These data show that for conformers of the free peptide, the energy cut-off is the

most important factor - as this restriction is loosened, the number of conformations

increases drastically. In addition, with a small energy cut-off (note that these values

are in kcal mol-1), the number of structures found remains small, regardless of the

failure limit or RMSD cut-off i.e. increasing the rejection limit or RMSD cut-off

does not result in an appreciable increase in the number of identified conformations.

Furthermore, increasing the rejection limit greatly extends the time taken for the

conformational search, but does not produce significantly more structures.
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System Rejection Limit RMSD / Å E cutoff / kcal mol-1 Ave. No. Confs

Pt(Aβ) 100 0.25 20 12

200 0.25 20 34

500 0.25 20 21

100 0.25 50 36

200 0.25 50 57

500 0.25 50 23

100 0.25 100 104

200 0.25 100 83

500 0.25 100 97

100 0.25 1000 221

200 0.25 1000 156

500 0.25 1000 253

100 0.25 10000 672

200 0.25 10000 689

500 0.25 10000 681

100 0.50 20 9

200 0.50 20 25

500 0.50 20 31

100 0.50 50 33

200 0.50 50 41

500 0.50 50 42

100 0.50 100 52

200 0.50 100 71

500 0.50 100 78

100 0.50 1000 112

200 0.50 1000 124

500 0.50 1000 104

100 0.50 10000 172

200 0.50 10000 186

500 0.50 10000 205

100 1.00 20 5

200 1.00 20 17

500 1.00 20 44

100 1.00 50 49

200 1.00 50 22

500 1.00 50 45
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(cont.)

System Rejection Limit RMSD / Å E cutoff / kcal mol-1 Ave. No. Confs

Pt(Aβ) 100 1.00 100 42

200 1.00 100 19

500 1.00 100 26

100 1.00 1000 6

200 1.00 1000 10

500 1.00 1000 41

100 1.00 10000 37

200 1.00 10000 12

500 1.00 10000 38

Table 3.13: Testing LMMD parameters with the Pt(Aβ) system

Equivalent data for the platinated system shows that this system is much more

restricted than the free peptide with fewer conformations identified, regardless of

settings. However, the energy cut-off is again key - increasing this lead to greater

sampling of possible conformations. Importantly, these LFMM energies are not

yet validated, so selecting a protocol with a large energy cut-off to generate many

structures without pre-emptively screening them on an energetic basis was necessary.

In addition, data for the RMSD cut-off indicates that a small value is required - this

maximises the number of conformations and does not screen out those that are

geometrically similar without being identical. A larger RMSD cut-off (1 Å) reduced

the number of conformations drastically, leading to too few peptide conformations

for a system of this size. On the basis of the above data, the final Low-Mode protocol

was set to use 10,000 search iterations, 100 iteration failure limit, RMSD cut-off 0.25

Å and 10,000 kcal mol-1 energy cut-off, as the LFMM energies are not validated.

With the exception of the energy cut-off, this is identical to the optimum Low-Mode

protocol determined by Chen and Foloppe[30].

3.4.3 Application of the Modelling Protocol

Following the above testing of methods, databases of conformations of PtII(ligand)-

Aβ6-14 were generated using the optimum parameters determined above: Complexes

were described using molecular mechanics via a combination of ligand field molec-

ular mechanics (LFMM) for PtII[31, 32] and AMBER94 parameters for all other
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atoms, as implemented in the DommiMOE extension to MOE. Partial charges were

calculated as detailed in Section 3.4.1. Solvation effects were modelled using the

reaction-field model with default parameters.

Conformational freedom was explored through the LowMode MD method in MOE.

LowMode MD searches were configured to terminate after 100 successive failures to

generate a new molecular conformation, up to a maximum of 10,000 iterations. A

large energy cut-off (10,000 kcal mol-1) was used alongside an RMSD cut-off of 0.25

Å for retention of all new conformations.

Using this conformational search protocol, searches were performed on the eight

platinum binding modes of interest for each ligand system. This produced between

400 and 1600 conformers for each platinum binding mode (Table 3.14).

PtII Binding Mode Bipy Phen

His-6 Nδ His-13 Nδ 893 425

His-6 Nδ His-13 Nε 426 495

His-6 Nε His-13 Nδ 484 468

His-6 Nε His-13 Nε 995 405

His-6 Nδ His-14 Nδ 574 411

His-6 Nδ His-14 Nε 1570 454

His-6 Nε His-14 Nδ 429 618

His-6 Nε His-14 Nε 1135 450

Table 3.14: Number of conformations identified for each possible binding mode of

two platinum-ligand species with Aβ.

There is appreciable variation between sets which may be at least partially due to

the stochastic nature of the LowMode MD method as well as the inherent flexibility

of the different complexes. For comparison, an identical simulation of the peptide

fragment without PtII-coordination results in 9,962 conformations from a total of

10,000 starting iterations. It is therefore apparent from Table 3.14 that PtII binding

to two His residues allows the peptide chain significant flexibility, no matter which

coordination mode is considered, but that this conformational freedom is signifi-

cantly reduced compared to the free peptide.
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While the LMMD method used to generate data in Table 3.14 has been successfully

applied to many similar problems, it is important to validate the results it provides

against other theoretical approaches. In particular, we note that LFMM has long-

standing use for metal-peptide binding, but that PtII is not yet among the metals

used. However, PtII parameters are available, and have been used to model Pt-DNA

complexes[32]. In the current case, the relatively flexible peptide fragment contrasts

with more structured protein and DNA for which LFMM has typically been used.

While LFMM produces accurate structures for small model PtII complexes (see Sec-

tion 3.3.2), structures and relative energies of larger systems are yet to be tested.

Unfortunately, it is impractical to perform quantum-level calculations on these en-

tire databases, so a subset of 158 unique low-energy conformers, encompassing sev-

eral different platinum-binding modes, was selected in order to test further com-

putational methods. DFT calculations were performed via Gaussian09, using the

BHandH functional with a 6-31G(d) basis set on all atoms in conjunction with a

Stuttgart-Dresden (SDD) effective core potential for platinumII, within a polarisable

continuum model (PCM) model of aqueous solvation[19, 20], as tested above. In

addition, two more modern functionals, B97D [4] and M06-2X[33], specifically de-

signed to account for dispersion, were tested using the same SDD/6-31G(d)/PCM

approach.

We first consider the relative energies of LFMM-generated structures, calculated

without further geometry relaxation. We find little correlation between LFMM and

BHandH relative energies at LFMM geometry (R2 = 0.14), suggesting that the com-

bined LFMM/AMBER approach does not accurately predict the relative energies

of different conformers of PtII-Aβ6-14 complexes.

In order to check the reliability of this DFT method used as a benchmark, a set of

non-platinated conformations was constructed by removing the PtII(ligand) species

from conformations located as discussed above, and their energies calculated using

DFT and AMBER. The three different DFT methods (BHandH, B97D and M06-

2X, all using the 6-31G(d) basis) show excellent agreement with one another (R2

BHandH vs. B97D = 0.94, BHandH vs. M06-2X 0.93, B97D vs. M06-2X 0.95),

supporting the conclusion that BHandH is a suitable method for these structures.

Furthermore, these DFT methods show little agreement with the AMBER-TM en-
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ergies for these non-platinated systems (R2 BHandH vs. AMBER = −0.02). This

suggests that the poor agreement between DFT and LFMM/AMBER energies de-

scribed above stems from the use of AMBER94-TM for the peptide, rather than

from use of LFMM for the metal centre.1

Due to the high computational expense of DFT calculations, it is not feasible to op-

timise all structures in the large conformational databases produced, as optimisation

of a single conformer takes approximately three days on the computing resources

available to us. This means that a faster computational method was required to

identify conformers of interest.

To this end, the semi-empirical methods outlined in Section 2.6 may be used at a

fraction of the computational cost. Several common semi-empirical methods (PM6,

PM6-D3, PM6-DH+ and PM7) were used to model the X-ray crystal structures in

Section 3.2 using the MOPAC [34] package and the COSMO model of aqueous sol-

vation.[35] In the case of PM7, full relaxation was achieved through use of keywords

LET and DDMIN=0. Results were compared to the original experimental data

as well as the optimum DFT method determined above, BHandH/SDD/6-31G(d).

Selected geometric data is contained in Tables 3.15 - 3.19.

Bond (Å) / Angle (◦) Expt. BHandH PM6 PM6-D3 PM6-DH+ PM7

Pt-N 1.994 2.013 1.932 1.935 1.932 1.981

Pt-NH2 2.046 2.050 2.054 2.057 2.053 2.086

Pt-Cl(1) 2.299 2.289 2.332 2.332 2.332 2.264

Pt-Cl(2) 2.309 2.292 2.318 2.318 2.319 2.264

Cl-Pt-Cl 91.7 93.6 96.1 95.8 96.4 94.5

N-Pt-Cl(2) 90.2 89.9 86.5 86.8 86.2 88.5

NH2-Pt-Cl(2) 86.9 83.7 79.8 80.0 79.7 83.5

MUE (Bond) 0.001 0.003 0.002 0.003 0.013

MUE (Angle) 0.5 2.1 2.1 2.2 0.8

Table 3.15: Selected geometric data for crystal structure XUKWUV, where data

was obtained by experimental, DFT and semi-empirical methods.

1This issue of inaccurate AMBER-TM energies was later resolved with the help of Chemical

Computing Group, the developers of the MOE software. As such, data within Chapter 5 uses the

corrected AMBER-TM forcefield.
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Bond (Å) / Angle (◦) Expt. BHandH PM6 PM6-D3 PM6-DH+ PM7

Pt-N(His) 2.026 2.008 1.949 1.948 1.944 1.954

Pt-N(ppy) 2.017 2.012 1.977 1.976 1.978 1.980

Pt-C(ppy) 1.978 1.975 1.997 1.996 1.997 1.952

Pt-Cl 2.411 2.396 2.431 2.430 2.428 2.356

C(ppy)-Pt-N(ppy) 81.3 81.1 82.2 82.3 82.2 81.2

N(His)-Pt-C(ppy) 94.8 96.4 99.2 99.1 96.6 100.1

N(His)-Pt-Cl 87.5 87.4 82.0 82.1 82.1 82.0

N(ppy)-Pt-Cl 96.6 95.2 96.7 96.6 97.1 96.7

MUE (Bond) 0.010 0.019 0.020 0.021 0.048

MUE (Angle) 0.0 0.0 0.0 0.1 0.1

Table 3.16: Selected geometric data for crystal structure OXUYUC, where data was

obtained by experimental, DFT and semi-empirical methods.

Bond (Å) / Angle (◦) Expt. BHandH PM6 PM6-D3 PM6-DH+ PM7

Pt-N(imid)(1) 1.998 2.011 1.979 1.977 1.977 1.984

Pt-N(imid)(2) 1.998 2.012 1.979 1.977 1.977 1.982

Pt-NH3(1) 2.067 2.040 2.059 2.059 2.059 2.042

Pt-NH3(2) 2.067 2.040 2.059 2.059 2.059 2.042

NH3(1)-Pt-N(imid)(1) 90.4 89.9 89.7 89.5 90.0 90.2

NH3(1)-Pt-N(imid)(1) 89.6 90.2 90.0 89.8 90.2 89.8

MUE (Bond) 0.007 0.014 0.015 0.015 0.020

MUE (Angle) 0.1 0.2 0.4 0.1 0.0

Table 3.17: Selected geometric data for crystal structure DAMIPT, where data was

obtained by experimental, DFT and semi-empirical methods.
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Bond (Å) / Angle (◦) Expt. BHandH PM6 PM6-D3 PM6-DH+ PM7

Pt-N(imid) 2.026 2.002 1.963 1.962 1.963 1.973

Pt-NH2(1) 2.038 2.036 2.030 2.033 2.030 2.029

Pt-NH2(2) 2.040 2.062 2.067 2.070 2.066 2.044

NH2(2)-Pt-N(imid) 93.2 95.8 97.4 96.7 97.5 98.5

NH2(1)-Pt-NH2(2) 83.4 83.3 87.3 87.3 87.3 82.4

Cl-Pt-N(imid) 91.8 91.4 87.9 88.7 87.7 91.4

MUE (Bond) 0.001 0.015 0.013 0.015 0.019

MUE (Angle) 0.7 1.4 1.4 1.4 1.3

Table 3.18: Selected geometric data for crystal structure HEKJEM, where data was

obtained by experimental, DFT and semi-empirical methods.

Bond (Å) / Angle (◦) Expt. BHandH PM6 PM6-D3 PM6-DH+ PM7

Pt-N(1) 1.985 2.013 1.976 1.975 1.975 1.971

Pt-N(2) 2.012 2.009 1.977 1.975 1.975 1.970

Pt-N(3) 1.985 2.013 1.976 1.975 1.975 1.971

Pt-N(4) 2.012 2.009 1.977 1.975 1.975 1.970

N(1)-Pt-N(2) 92.6 89.7 90.3 90.7 90.7 90.5

N(1)-Pt-N(4) 87.4 90.3 89.7 89.4 89.4 89.8

MUE (Bond) 0.012 0.022 0.024 0.024 0.028

MUE (Angle) 0.0 0.0 0.1 0.1 0.2

Table 3.19: Selected geometric data for crystal structure MIMDPT, where data was

obtained by experimental, DFT and semi-empirical methods.

Here, there is relatively little difference in calculated geometries for each of the semi-

empirical methods tested: PM6 agrees with experimental data to within 0.077 Å

and 7.1◦; PM6-D3 agrees within 0.078 Å and 6.9◦; PM6-DH+ agrees within 0.082

Å and 7.2◦ and PM7 agrees within 0.073 Å and 5.5◦. These data illustrate that

semi-empirical methods are able to reproduce the geometry of these crystal struc-

tures to approximately the same degree of accuracy as DFT, giving confidence that

they may perform well for PtIIAβ6-14 systems.

While the semi-empirical PM6 method and its variants (PM6-D3 and PM6-DH+)

are able to reproduce the experimental data seen above, the predicted relative en-
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ergies of PtIIAβ6-14 conformations show little agreement with DFT - calculated R2

values for relative energies of these conformers against DFT are: PM6 R2 = 0.56;

PM6-D3 R2 = 0.61; PM6-DH+ R2 = 0.66. However, PM7 and BHandH energies of

PtII-Aβ6-14 conformations at MM geometries are in good agreement with one an-

other (R2 = 0.78) - see Figure 3.7. PM7 therefore reproduces DFT relative energies

at a much lower computational cost. This - along with data above for modelling

crystal structures - suggests that PM7 is a suitable theoretical method for structures

of this type. This assertion is reinforced by the modelling of the non-platinated con-

formations: BHandH and PM7 calculations show strong agreement (R2 = 0.77),

further showing that PM7 is an accurate and reliable alternative to DFT.

Figure 3.7: Plot of DFT vs. PM7 relative energies at LFMM geometry

The other key consideration of the LFMM results is whether the geometries produced

are reliable. We therefore carried out DFT geometry optimisation of this subset of

158 platinated conformers, and evaluated the all-atom RMSD of the resulting struc-

tures from those obtained from LFMM energy minimisation. Here, overlay figures

were obtained using Chimera imaging software.[36] RMSD values were calculated

using a python script obtained via GitHub.[37][38] Table 3.21 reports the results

of such comparison, and demonstrates that LFMM and DFT are in good general
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- LFMM PM7 DFT

LFMM 1.00 0.38 0.14

PM7 - 1.00 0.78

DFT - - 1.00

Table 3.20: Correlation between relative energies of 158 conformers of PtIIAβ6-14,

modelled using three different methods.

agreement i.e. DFT optimisation of a selected structure does not significantly al-

ter the overall geometry, indicating that LFMM produces robust geometries (see

Figures 3.8 - 3.9).

RMSD Values LFMM vs. DFT PM7 vs. DFT

Mean 0.670 0.817

SD 0.191 0.307

Min. 0.336 0.339

Max. 1.293 1.982

Table 3.21: Summary of geometry comparison between LFMM, PM7 and DFT.

Figure 3.8: Representative overlay of LFMM (blue) vs DFT (grey) geometry of

PtII(bipy)-Aβ6-14 complex.
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Figure 3.9: Representative overlay of PM7 (yellow) vs DFT (grey) geometry of

PtII(bipy)-Aβ6-14 complex.

We also investigated whether the much faster PM7 approach might be suitable for

this purpose. Table 3.21 shows that, on average, PM7-optimised structures are

slightly further from DFT ones than LFMM structures (mean RMSD 0.82 vs. 0.67

Å). These values include data from 9 conformers for which PM7 predicts large (>

1.3 Å) RMSD from DFT-optimised geometry. For the remaining 149 structures, the

mean RMSD is 0.77 Å. Interestingly, further DFT optimisation for the 9 complexes

with large RMSD, starting from the PM7 endpoint produced significant reduction in

energy, indicating that in some cases PM7 geometry optimisation in MOPAC is able

to escape from the local minimum located by LFMM conformational search. One

such case is illustrated in Figure 3.10 below, in which DFT optimisation following

initial PM7 refinement leads to a structure that is 62.3 kJ mol-1 more stable than

that reached by optimisation directly from the LFMM structure.
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Figure 3.10: DFT optimised structure (grey) overlaid with PM7-DFT optimised

structure (yellow) of PtII(bipy)-Aβ6-14 complex.

We therefore surmise that PM7/COSMO optimisation following initial LFMM con-

formational search is a useful step in obtaining reliable energy and geometry data.

Although the extra step requires significant additional computational effort (PM7

optimisation takes approximately 20 minutes per structure on a single compute

node), the evidence above indicates that it provides a more balanced set of data

than either LFMM alone or PM7 at the LFMM geometry.

We therefore performed this step for all conformations located for both ligands, a

total of 6506 for 2,2-bipyridine (ligand 1) and 3726 for 4,10-phenanthroline (ligand

2). The resulting relative energies were collated and used in Boltzmann weighting to

determine the binding mode(s) and conformation(s) that contribute significantly to

the overall ensemble at 310 K, the results of which are reported in Table 3.22.

On the basis of these results, we predict that PtII binds to histidine residues via

Nε rather than Nδ. The first conformations that feature binding via Nδ of any His

residue are found over 22 and 15 kJ mol-1 for bipyridyl and phenanthroline ligands,

respectively, and so contribute almost nothing to the Boltzmann-weighted ensemble

of structures. This is an inherent property of the histidyl residue: calculations on

a model system Pt(bipy)(Cl)His gives a preference for Nε over Nδ of 5 kJ mol-1

using DFT, and 3 kJ mol-1 using PM7. The data in Table 3.22 indicate that, out

of the several thousand conformations considered, just a small number contribute

significantly to the Boltzmann-weighted ensemble. A single conformation accounts
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Ligand Coordination Mode Rel. E / kJmol-1 Boltzmann Fraction

Bipy His-6 NεHis-13 Nε 0.00 0.79

” 6.27 0.07

” 7.07 0.05

” 7.51 0.04

Phen His-6 NεHis-14 Nε 0.00 0.38

” 0.77 0.28

” 1.96 0.18

” 4.14 0.08

” 4.38 0.07

Table 3.22: Relative energy and Boltzmann fractions for low energy conformations

of platinum complexes with ligands 1 & 2.

for almost 80% of the ensemble of bipy complexes, and four conformations for over

95%. Three low energy conformations account for over 80% of the ensemble of phen

complexes, and five account for 99%. This shows that coordination of Pt massively

reduces the conformational freedom of the peptide by “pinning” two histidines to

the metal centre. The low-energy structures identified in this process are shown in

Figures 3.11 and 3.12.

Figure 3.11: Low energy conformation of PtII(bipy)Aβ6-14.
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Figure 3.12: Lowest (grey), second- and third-lowest (yellow and blue, respectively)

conformations of PtII(phen)Aβ6-14 system.

There is also a clear preference in coordination mode for each ligand; metal binding

occurs via Nε of His-6 and His-13 for the bipy systems and via Nε of His-6 and

His-14 for the phenanthroline systems. This result is particularly promising for the

phenanthroline case, since the preferred metal-binding mode identified here (6ε -

14ε) was also determined to be the binding mode of this ligand system in experi-

mental work carried out by Ma et al.[39] The fact that a relatively small change in

ligand from bipy to phen alters the preferred coordination mode is somewhat sur-

prising, and suggests that binding mode can be controlled through suitable choice

of ligand.

To probe this change of binding mode in more detail, Table 3.23 reports selected

details of the DFT-optimised structures of the low energy conformation(s) for each

ligand system. These data show that there is almost no variation in Pt—N bond

lengths following change in conformation and/or coordinated ligand. In the bipy

complex, the bonds to the N-donor ligands are slightly longer than those to the

histidine residues of Aβ (mean values 1.963 ± 0.004 vs. 1.986 ± 0.000 Å). Moreover,

Pt—NHis distances are slightly shorter in the low energy bipy conformation than the

average over all conformations located for the same binding mode (mean = 1.966

± 0.005 Å), whereas Pt—NLig distances are slightly larger (mean = 1.981 ± 0.004

Å). However, differences are typically within 1 or 2 standard deviations, and so not
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statistically significant. One apparently significant difference lies in the NHis-Pt-NHis

angle that is on average 84.5 (± 1.75)◦ for the collection of 6ε - 13ε conformations

but 88.5◦ in the single low-energy conformation. It is notable that these Pt—N

distances are in good agreement with those reported by Streltsov et al. Pt–Nimidazole

and Pt–Nphen bond distances of 1.99(1) Å and 1.993(5) Å, respectively.[40]

Ligand Structure Pt-NHis Pt-NLig NHis-Pt-NHis NHis-Pt-NHis

Length / Å Length / Å Angle / ◦ Angle / ◦

Bipy #1 1.960, 1.966 1.986, 1.986 88.5 80.9

Phen #1 1.958, 1.961 1.994, 1.989 85.2 82.1

#2 1.964, 1.966 1.994, 1.993 83.1 81.8

#3 1.961, 1.976 1.992, 1.995 82.8 81.6

Table 3.23: Selected geometrical details of the single low energy conformation of

PtII(bipy) complex and three low energy conformations of PtII(phen) complex.

Ligand Structure No. H-bonds No. π-π Interactions

Bipy #1 14 1

Phen #1 12 0

#2 7 0

#3 6 0

Table 3.24: Number of hydrogen bonds and π-π interactions in the single low energy

conformation of Pt-1 and three low energy conformations of Pt-2.

As expected for biomolecular systems, a large number of intramolecular hydrogen

bonds are present in the low energy conformations, including backbone-backbone,

backbone-side chain and side chain-side chain interactions, as shown in Table 3.24.

The low energy Pt-bipy complex contains 14 H-bonds, as judged by geometri-

cal criteria. Of these, five are concentrated around Glu11 and a further three

around Asp7. Four of these H-bonds are relatively long at over 2 Å, but a num-

ber of strong interactions were also identified, including those between backbone

and residue (Asp7sidechainC=O - Tyr10backboneN−H at 1.659 Å and Glu11sidechainC=O

- N-terminalN−H at 1.794 Å) and residue-residue (Glu11sidechainC−O - His14Nε−H

at 1.691 Å and Asp7sidechainC=O - His13Nδ−H at 1.775 Å) which may be respon-

sible for the stability of this conformation. In addition, four backbone-backbone

H-bonds were identified in residues Gly9-His14: Gly9C=O - Val12N−H , Tyr10C=O -
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His13N−H , Glu11C=O - His14N−H and Val12C=O - C-terminalN−H . The low energy

bipy conformation also contains a possible π-π interaction between bipy and the

imidazole side chain of His14. The two ring systems lie in an approximately parallel

orientation (angle between mean planes = 29.9◦) with an inter-centroid distance of

approximately 4 Å, as shown in Figure 3.13.

Figure 3.13: π- π interaction in the PtII(bipy)Aβ6-14 system.

The Pt-phen complexes identified exhibit markedly fewer H-bonds than the bipy

complex, and also no evidence for π − π stacking interactions is found in these low

energy conformations (see Figure 3.12). As before, the H-bonds are generally found

around residues Glu11 (Glu11sidechainC=O - Tyr10backboneN−H , Glu11sidechainC=O -

His13backboneN−H , Glu11sidechainC=O - His14backboneN−H) and Asp7, including Asp7

sidechainC=O - His6Nδ−H and a strong interaction (average length 1.526 Å over the

three phen conformations) between the hydroxyl group of Tyr10 and Asp7sidechainC=O.

3.5 Conclusions

LFMM has previously been demonstrated to be a powerful tool in predicting geome-

tries and conformations of biomolecules bound to TM species. In the present work,

we aim to apply this methodology to the study of platinum-complexes of the type

studied by Barnham[41, 42] bound to model Aβ fragments in order to determine

favourable metal-binding modes and peptide conformations. Thorough exploration
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of the conformational space of these biomolecules was achieved using LowMode MD

in conjunction with AMBER molecular mechanics parameters. Comparison of cal-

culated relative energies of a subset of these conformations indicates that LFMM

fails to reproduce DFT results (R2 = 0.14). However, QM evaluation of structures

of this size is computationally expensive, so the less expensive semi-empirical PM7

method was utilised, which agrees well with QM results (R2 = 0.78); PM7 therefore

reproduces DFT energies at a much lower computational cost. In addition, PM7

optimisation generally retains the DFT structure, with average all-atom RMSD of

0.817 Å over 158 conformers. This illustrates that PM7 accurately reproduces DFT

geometries as well as energies. The present results indicate that PM7 is an appropri-

ate and computationally manageable approach to modelling these metal-biomolecule

systems.

This semi-empirical approach was subsequently extended to all conformations iden-

tified by LFMM. Boltzmann weighting was applied to the generated databases in

order to generate relative populations of each conformer at 310K. It was found that

platinum coordination occurs via the Nε atom in His residues for both the bipy and

phen ligand systems investigated. Favourable platinum-coordination modes were

identified for each ligand: 6ε-13ε and 6ε-14ε for bipy and phen complexes, respec-

tively. Furthermore, this change in binding mode for different ligands suggests that

the binding mode can be controlled by the choice of ligand.

In the bipy systems, the Boltzmann population is dominated by a single conformer

that accounts for almost 80% of the weighted ensemble containing a large num-

ber of intramolecular H-bonds and a possible π-stacking interaction between His 14

and the bipy ligand. In the phenanthroline case, three conformations make signif-

icant contributions to the ensemble. Each of these conformations contains fewer

intramolecular H-bonds than the dominant bipy conformation and no evidence of

π-π stacking interactions was found.
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4 Predicting Ligand Effects on Platinum(L)-Aβ

Coordination

4.1 Introduction

The work in this chapter aims to utilise the modelling protocol established in Chap-

ter 3 and apply it to a series of PtII(ligand) systems that may be used as inhibitors

of the Aβ aggregation process. The choice of ligands studied is determined by recent

literature on the subject (see Section 1.4.2). In particular, this chapter focuses on

the differences in metal binding and peptide conformation induced by coordination

of the different ligand systems.

Research contained in this chapter comes from work by our group, published in

reference [1]. All of the work contained here from this publication was carried out

by myself.

4.2 Application of the Modelling Protocol

Ligand field molecular mechanics (LFMM) and semi empirical Parametric Model 7

(PM7) methods are applied to a series of six PtII-Ligand systems (shown in Figure

4.1) binding to the N-terminal domain of the Aβ peptide (residues 6-14, see Figure

3.5), as described above. This peptide contains the N-terminal residues necessary

to study transition metal binding, and is sufficiently small to allow calibration of

findings through use of density functional theory (see Chapter 3). Molecular dy-

namics using a combined LFMM/Assisted Model Building with Energy Refinement

(AMBER) approach is used to explore the conformational freedom of the peptide

fragment, and identify favourable platinum binding modes and peptide conforma-

tions for each ligand investigated.
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Figure 4.1: Schematic of ligand systems studied. Top row, left-right: bipyridyl (1),

phenanthroline (2); Middle row, left-right: diphenylphenanthroline (3), dppz (4);

Bottom row, left-right: 8-(1H-benzimidazol-2-yl)quinolone [2] (5) and 2-pyridyl-

benzimidazole [3] (6).

4.2.1 Computational Details

The peptide sequence His6-Asp-Ser-Gly-Tyr-Glu-Val-His-His14 was built in an ex-

tended conformation in Molecular Operating Environment (MOE)[4], and proto-

nation states at pH of 7.4 assigned using the Protonate3D module of this package.

PtII(ligand) complexes were manually constructed and bound to the peptide in eight

distinct binding modes from all combinations of Nδ and Nε of His6 and His13/His14.

Complexes were described using a combination of ligand field molecular mechanics

(LFMM) for PtII [5, 6] and Assisted Model Building with Energy Refinement 94
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(AMBER94)[7] parameters for all other atoms, as implemented in the d-orbital ex-

tension to MOE (DommiMOE).[8] Partial charges were calculated for model PtII-

(imidazole)2(ligand) systems using the Merz-Kollman scheme from HF/6-31G(d)/

SDD electrostatic potential in Gaussian09[9], with PtII given a van der Waals radius

of 2.0 Å. The remaining peptide atoms were assigned AMBER94 charges as calcu-

lated by MOE. Solvation effects were modelled using the reaction-field model with

default parameters.

Conformational freedom was explored via the LowMode MD (LMMD)[10] method in

MOE.[4] LMMD searches were configured to terminate after 100 successive failures

to generate a new conformation up to a maximum of 10,000 iterations, with a large

energy cut-off (10,000 kcal/mol) and an Root-Mean-Square Deviation (RMSD) cut-

off of 0.25 Å used for removal of any duplicate conformations. During the LMMD

search, the platinum centre was set at a fixed potential to avoid premature termi-

nation of the conformational search.[11]

Semi-empirical calculations were performed using the Molecular Orbital PACkage

(MOPAC) in its 2012 version[12], with the Parametric Model 7 (PM7) method[13]

and the CONductor-like Screening MOdel (COSMO) model of aqueous solvation.[14]

Overlay images were obtained using Chimera imaging software.[15] Ramachandran

maps were plotted using the JMP statistical package.[16]

4.2.2 Modelling Six Different Ligand Systems

In this section, we generate and analyse conformations of a series of PtII species

(see Figure 4.1) bound to a fragment of Aβ peptide, with the aim of identifying

favourable metal-binding modes and peptide conformations. Using the protocol

outlined above, conformational searches were performed on each platinum binding

mode for all ligand systems - 8 for the symmetric ligands 1 - 4; 16 for the asym-

metric ligands 5 and 6, where the ligand 5-membered ring may be cis- or trans-

to His6. This produced a large number of possible conformers for each platinum

binding mode (Table 4.1).
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Coordination Mode 1 2 3 4 5 6 Ratioa

His6 δ -His13 δ 893 425 477 970 2531 1595 1.00

His6 δ -His13 ε 426 495 1114 423 1640 3254 1.07

His6 ε -His13 δ 484 468 469 680 1736 1707 0.80

His6 ε -His13 ε 995 405 434 670 1709 1556 0.84

His6 δ -His14 δ 574 411 1407 508 1204 4627 1.27

His6 δ -His14 ε 1570 454 513 626 3146 1152 1.08

His6 ε -His14 δ 429 618 404 403 1430 2118 0.78

His6 ε -His14 ε 1135 450 768 298 1226 1350 0.76

Ratiob 1.00 0.57 0.86 0.70 2.67 2.25

Table 4.1: Number of conformers found for each platinum coordination mode using

LowMode MD for the six ligands studied.
a: Ratio of the total number of conformations of a coordination mode, relative to

His6 δ - His13 δ.
b: Ratio of the total number of conformations of a ligand, relative to ligand 1

There is a great deal of variation in the number of conformations found between

these six different ligands and coordination modes. As noted previously, an identical

simulation using the equivalent free peptide fragment produced 9962 conformations,

emphasising the fact that coordination of these platinum complexes greatly reduces

the conformational freedom of Aβ.[11]

It is particularly notable that both asymmetric ligands (5 and 6) produced signif-

icantly greater numbers of possible structures than their symmetric counterparts

(1-4). While some of this difference may be attributed to the increased number of

conformational searches required for these systems, i.e. two different simulations for

the two orientations of the ligands, with the ligand 5-membered ring cis- or trans-

to His6, this does not explain the large numbers of structures identified for certain

coordination modes. This greater number of conformations suggests that these lig-

ands do not restrict the flexibility of Aβ to the same extent as the first four ligands.

It is also notable that the number of conformations for a given coordination mode

are similar (Ratioa = 0.76-1.27, Table 4.1), but vary dramatically across the ligand

series (Ratiob = 0.57-2.67). This suggests that the nature of the ligand affects the
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flexibility of Aβ more than the coordination mode.

As we have shown previously (work contained in Chapter 3 and reference [11]),

PM7/COSMO optimisation of each conformation is able to provide both accurate

geometries and relative energies of these systems. We therefore performed this step

for all conformations identified above, a total of over 52,000 conformations. The re-

sulting relative energies were collated and used in Boltzmann weighting calculations

to determine the binding mode(s) and conformation(s) that contribute significantly

to the overall ensemble at 310 K, the results of which are reported in Table 4.2.
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Ligand Coordination Rel. E / kJ/mol Boltzmann Fraction

1 His6 ε-His13 ε 0.00 0.79

His6 ε-His13 ε 6.27 0.07

His6 ε-His13 ε 7.07 0.05

His6 ε-His13 ε 7.51 0.04

2 His6 ε-His14 ε 0.00 0.38

His6 ε-His14 ε 0.77 0.28

His6 ε-His14 ε 1.96 0.18

His6 ε-His14 ε 4.14 0.08

His6 ε-His14 ε 4.38 0.07

3 His6 δ-His13 ε 0.00 0.67

His6 δ-His13 ε 5.80 0.07

His6 δ-His13 ε 6.30 0.06

His6 ε-His13 ε 6.45 0.05

His6 δ-His14 ε 7.54 0.04

4 His6 δ-His14 δ 0.00 0.99

His6 ε-His13 δ 12.69 0.01

His6 ε-His13 δ 13.22 0.01

5 aHis6 δ-His14 ε 0.00 0.39
aHis6 δ-His14 ε 0.31 0.34
aHis6 δ-His14 ε 3.00 0.12
aHis6 δ-His14 ε 5.42 0.05

6 aHis6 ε-His14 ε 0.00 0.47
aHis6 ε-His14 ε 1.79 0.23
aHis6 ε-His14 ε 2.28 0.19
aHis6 δ-His14 δ 3.74 0.11

Table 4.2: Relative energy and Boltzmann factors at 310K for low energy confor-

mations.
a: His6 bound trans to ligand 5-membered ring

While low energy conformations are the main focus of this work, we note that the
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range of relative energy of conformations found in this process is large; the maximum

PM7 energy for each ligand system is as follows: PtII(1): 583, PtII(2): 403, PtII(3):

233, PtII(4): 372, PtII(5): 657, PtII(6): 726 kJ mol-1. That such high-energy con-

formations survive LFMM followed by PM7 optimisation is slightly surprising, but

gives us reassurance that the conformational freedom of the peptide has been sam-

pled. We also note that PM7 optimisation resulted in between 10 and 20 (1 to 2%)

of conformations reported in Table 4.1 no longer being unique, as judged by peptide

dihedral angles - a small value that attests to the quality of the geometries that

result from LFMM and LowMode MD.

On the basis of these results, we predict that the binding of PtII to histidine residues

is strongly dependent on the identity of the ligand, though these systems exhibit

some preference for PtII-binding via Nε rather than Nδ in His residues. This ap-

pears to be an inherent property of the histidyl residue: calculations on a series

of model PtII(Ligand)(Cl)His complexes using PM7 and DFT (performed at the

BHandH/SDD/6-31G(d) level, as discussed in Chapter 3) gives preference for Nε

binding in His residues, except in the case of ligands 4 and 6, where His binding via

Nδ is strongly favoured (see Table 4.3). However, the relative stability of Nε vs. Nδ

binding in these model systems is not always reflected in the full peptide systems

(see Table 4.2, with particular emphasis on ligand 6) i.e. this preference can be

overcome by stabilising other binding modes with intramolecular interactions, such

as hydrogen-bonding or π-π stacking arrangements, and/or low strain peptide con-

formations.
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Ligand Nδ / Nε Binding PM7 Rel. E / kJ/mol DFT Rel. E / kJ/mol

1 δ 6.79 17.46

ε 0.00 0.00

2 δ 7.84 9.01

ε 0.00 0.00

3 δ 1.09 10.68

ε 0.00 0.00

4 δ 0.00 0.00

ε 19.50 21.84

5 δ1a 4.08 2.75

δ2b 1.77 6.88

ε1a 4.26 1.85

ε2b 0.00 0.00

6 δ1a 0.00 0.00

δ2b 25.59 12.26

ε1a 18.57 28.36

ε2b 17.22 24.20

Table 4.3: PM7 and DFT (BHandH/SDD/6-31G(d)) relative energies of different

His binding modes in PtII(ligand)(Cl)His model systems.
a: His bound trans to ligand 5-membered ring
b: His bound trans to ligand 6-membered ring

In the model systems using asymmetric ligands 5 and 6, the orientation of the lig-

ands appears to be important; the coordination of ligand 5 when His coordinates

trans- to the 6-membered ring is significantly more stable than when His coordi-

nates cis- to the 6-membered ring (see Figure 4.1 for reference). Interestingly, while

Nε binding is favoured by approximately the same amount in the first two ligand

systems, there is very little energy difference between the Nδ / Nε binding for the

ligand 3. This may go some way to explaining the mixed Nδ / Nε coordination

mode seen in the low energy conformations (Table 4.2).
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Furthermore, the orientation of the ligand remains important in the full peptide

systems: in the case of ligand 5, the lowest energy conformation where His6 coor-

dinates trans- to the 6-membered ring rather than the 5-membered ring is located

46 kJ/mol above the most stable conformer. Similarly, in the case of ligand 6, the

first conformation identified where His6 coordinates trans- to the 6-membered ring

appears 49 kJ/mol above the minimum energy conformer.

The data in Table 4.2 also indicate that a very small number of conformations

contribute significantly to the Boltzmann-weighted ensemble at 310 K. For ligands 1,

3 and 4, a single conformer dominates the ensembles, whereas for 2, 5 and 6 several

conformers are predicted to co-exist with significant probability. The alternative

low energy conformations of these complexes are discussed in more detail below.

These results are consistent with our previous findings and reinforce the assertion

that coordination of these PtII complexes greatly reduces conformational freedom of

Aβ.[11] The low energy conformations identified in Table 4.2 are shown in Figures

4.2-4.7.

Figure 4.2: Low energy conformation of PtII(1)-Aβ6-14
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Figure 4.3: Low energy conformation of PtII(2)-Aβ6-14

Figure 4.4: Low energy conformation of PtII(3)-Aβ6-14
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Figure 4.5: Low energy conformation of PtII(4)-Aβ6-14

Figure 4.6: Low energy conformation of PtII(5)-Aβ6-14
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Figure 4.7: Low energy conformation of PtII(6)-Aβ6-14

Table 4.2 also shows there is distinct preference in coordination mode for each of

the ligands studied; this coordination is summarised in Table 4.4 below. This also

provides further evidence that changing the ligand bound to platinum is able to

influence the preferred PtII-binding mode and thus, that the binding mode may be

controlled through choice and design of the ligand.

Ligand Coordination Mode

1 His6 ε - His13 ε

2 His6 ε - His14 ε

3 His6 δ - His13 ε

4 His6 δ - His14 δ

5 aHis6 δ - His14 ε

6 aHis6 ε - His14 ε

Table 4.4: Favoured PtII-coordination mode for each ligand system.
a: His6 bound trans to ligand 5-membered ring

To investigate these results further, we focus on two structural features: i) PtII

coordination and ii) peptide backbone geometry, in order to assess the range of

geometries sampled in the conformational searching process and to identify any fea-

tures of low energy conformations.
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The calculated bond lengths and angles around the central platinum in each ligand

system are summarised in Table 4.5. These data show that there is little variation

in PtII—N(His) bond lengths following change in conformation and/or coordinated

ligand, but that there is notable variation of the PtII-N(Lig) bond distances across

the range of ligands. Additionally, these data show that there is a systematic dif-

ference in length of the PtII-N(Lig) and PtII-N(His) bonds – specifically the average

PtII-N(His) bond distances are slightly shorter than the corresponding PtII-N(Lig)

bond distances. However, comparison with the geometrical data for the low en-

ergy conformations (Table 4.5, every second row) clearly shows that these stable

structures are not significantly different from the average conformation in each case,

suggesting that the platinum geometry is not especially important in determining

complex stability. It is also notable that these PtII—N distances are in good agree-

ment with those of Streltsov et al.[17] for ligand 2, who reported PtII–N(imidazole)

and PtII–N(phen) bond distances of 2.03(1) Å and 1.993(5) Å, respectively, as well

as confirming the square planar coordination of this ligand to amino acids.

Ligand Pt-NLig Pt-NHis His-Pt-His

Bond Length / Å Bond Length / Å Bond Angle / ◦

1 1.982 ± 0.005 1.966 ± 0.004 84.5 ± 1.75

1.986 ± 0.000 1.963 ± 0.003 88.5

2 1.993 ± 0.059 1.967 ± 0.050 85.7 ± 3.65

1.991 ± 0.003 1.960 ± 0.001 85.2

3 1.986 ± 0.005 1.966 ± 0.006 85.5 ± 2.10

1.984 ± 0.000 1.960 ± 0.001 85.1

4 1.986 ± 0.031 1.967 ± 0.018 86.2 ± 2.15

1.983 ± 0.001 1.964 ± 0.003 87.4

5 1.976 ± 0.037 1.968 ± 0.057 87.0 ± 2.65

1.975 ± 0.013 1.963 ± 0.006 88.1

6 1.984 ± 0.040 1.965 ± 0.037 86.3 ± 2.38

1.983 ± 0.014 1.961 ± 0.002 82.5

Table 4.5: Selected geometrical parameters over all conformations for each ligand (Å

and ◦). First line: average and standard deviation; second line: value from lowest

energy conformer

Backbone dihedral angles for all conformations were also calculated, allowing Ra-

machandran plots to be constructed. This allows us to identify any secondary struc-
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ture elements formed within the usually random coil N-terminal region of Aβ. The

free Aβ6-14 fragment was modelled using an identical protocol, which identified 9962

possible conformations; backbone dihedrals for these conformations were calculated

and used to produce a Ramachandran map using JMP[16] (see Figure 4.8).

Figure 4.8: Ramachandran map of the generated conformations of the free Aβ6-14

fragment, plotted using JMP[16]

In agreement with previous findings, this fragment of the Aβ peptide is highly

flexible, illustrated by the wide coverage of the Ramachandran plot.[18–21] Confor-

mations are concentrated around two distinct right-handed helical regions of con-

formational space, with smaller contributions from β-sheet and turn regions. Values

of φ , ψ for the lowest energy conformation located are reported in Table 4.6, and

secondary structure assigned by STRIDE[22] in Table 4.7. Despite occupying the

region of φ,ψ space expected for helices, Aβ6-14 residues are best described as turn

or coil due to lack of H-bonding expected in α- and 310-helices, in agreement with

the findings of Yang and Teplow.[21] Those authors also identified ‘highly populated

turn structures, centred at [residues] 6-9’ of the free Aβ peptide, and highlighted

the importance of such turns for aggregation.

Ramachandran plots were then generated for each PtII(ligand) system studied. For

example, Figure 4.10 shows that for the favoured His6 ε - His14ε coordination of the

platinum complex with ligand 2, conformations cover a similar range to that observed

176



Chapter 4

for the free peptide, but the concentration of residues in the right-handed helical

region is reduced, with much greater scatter of φ , ψ angles in the area expected

for helical peptides, including a significant contribution at negative φ/ positive ψ.

Moreover, the Pt(2) complex exhibits a greater propensity for turn-like structures

centred around +70 / -60◦.

Figure 4.9: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(1)-Aβ6-14
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Figure 4.10: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(2)-Aβ6-14

Figure 4.11: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(3)-Aβ6-14
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Figure 4.12: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(4)-Aβ6-14

Figure 4.13: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(5)-Aβ6-14
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Figure 4.14: Ramachandran map for the generated conformations of the low energy

binding mode of PtII(6)-Aβ6-14

Analogous plots for each coordination mode with ligand 2 (see Appendix, Figures

A.1 - A.8) illustrate Ramachandran maps are broadly similar regardless of plat-

inum binding mode. In all cases, the second lowest energy conformation has similar

backbone conformation to the lowest energy one, and in Pt(6) especially the third

conformation differs only in one angle of one residue (Tyr10). Thus, even in cases

where multiple conformations are identified the overall flexibility of the peptide

backbone is still very restricted. As noted above, three complexes exhibit multiple

low-energy conformations.

However, as illustrated in Table 4.2, many of the generated conformations are of

relatively high energy, so are of little biological relevance. The peptide geometries

within these low energy conformations are summarised in Table 4.6.
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Angle / ◦ Free Aβ 1 2 3 4 5 6

φHis6 -77.6 -94.8 -130.9 -81.2 -115.9 -125.7 -88.7

ψHis6 -21.7 -49.4 -91.6 172.4 -64.0 -52.2 -27.5

φAsp7 -131.1 -143.0 -67.1 -101.0 -130.5 -52.1 -149.6

ψAsp7 -50.7 -17.3 -46.5 7.2 -34.6 177.6 -67.1

φSer8 -162.7 76.1 -152.9 -149.0 -154.5 -149.1 -99.5

ψSer8 6.3 -5.8 174.9 162.7 -67.2 46.3 -76.3

φGly9 82.5 -110.3 -87.6 -80.3 101.2 -81.5 -112.6

ψGly9 -43.0 -68.8 159.7 81.2 11.2 4.8 -95.0

φTyr10 -86.3 -66.3 173.9 -131.7 -59.1 114.8 -126.4

ψTyr10 -9.0 -12.5 38.9 -21.1 -25.4 32.6 73.1

φGlu11 70.3 -28.0 -157.3 -113.3 -99.1 77.7 -100.0

ψGlu11 11.1 -43.4 -108.8 -124.6 -10.4 55.9 -81.5

φVal12 -130.6 -55.5 -128.0 -101.4 74.0 -128.2 168.3

ψVal12 66.9 -5.8 -22.5 -27.6 37.3 -22.6 -30.7

φHis13 -122.7 -67.6 -102.8 -109.8 -132.7 -116.0 -61.4

ψHis13 -33.0 -19.6 -47.6 -34.6 -53.2 -10.1 -15.4

φHis14 56.0 -111.1 -106.3 76.4 -96.1 103.1 -51.3

ψHis14 17.9 -45.7 -0.2 -50.1 19.7 33.9 -30.7

Table 4.6: Dihedral angles (◦) of the lowest energy conformations for free Aβ in

addition to each PtII(ligand) complex studied.

Analysis of these conformations using STRIDE to identify any secondary structure

elements was performed and results shown in Table 4.7. Data for the free peptide

are in agreement with previous findings[23] of a turn in residues 5 – 9, with coil-

like structure in residues 10-14. In general, a clear picture of disruption of the

free peptide’s turn between residues 5 and 10 emerges from this analysis. The

detailed effect of platination on this pattern varies with ligand: in most cases, a

mix of turn and coil values are found, but the location of the turn residues changes.

Pt(3) is probably the closest to the free peptide but truncates the observed turn by

two residues, whereas Pt(2), Pt(4) and Pt(6) move the turn later in the sequence.

Interestingly, STRIDE identifies a short stretch of 310-helix in the low energy Pt(1)

structure, while Pt(5) is assigned as almost completely turn in nature.
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Residue Aβ Pt(1) Pt(2) Pt(3) Pt(4) Pt(5) Pt(6)

His6 Turn Coil Coil Turn Coil Coil Coil

Asp7 Turn Turn Coil Turn Coil Turn Coil

Ser8 Turn Turn Turn Turn Coil Turn Coil

Gly9 Turn Turn Turn Turn Turn Turn Coil

Tyr10 Turn Turn Turn Coil Turn Turn Turn

Glu11 Turn 3,10 Turn Coil Turn Turn Turn

Val12 Coil 3,10 Turn Coil Turn Turn Turn

His13 Coil 3,10 Turn Coil Coil Turn Turn

His14 Coil Coil Coil Coil Coil Turn Coil

Table 4.7: Secondary structure analysis of the lowest energy conformations of free

Aβ and each Pt(ligand) system studied using STRIDE[22].

Conformations were also analysed for close contacts between peptide and ligand,

defined as the distance between Cγ in a residue and a C atom in the centre of

the ligand. This revealed that Tyr10 in particular forms numerous contacts with

ligands, and that such contacts are more prevalent in the favoured coordination

modes than in alternative forms. Figures 4.15 - 4.18 compare such contacts between

the favoured coordination mode and the next most stable for Pt(1) and Pt(2). In

both cases, the favoured coordination mode exhibits a distribution skewed towards

short distances between ligand and Tyr10. The situation is less clear cut for other

ligands, but in general the favoured coordination mode has on average one of the

shortest contact distances. We speculate, therefore, that formation of such contacts

are one of the main factors in determining how a particular ligand system alters how

platinum binds to Aβ.

Figure 4.15: Ligand-Tyr10 distances in a) PtII(1) His6 ε - His13 ε
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Figure 4.16: Ligand-Tyr10 distances in b) PtII(1) His6 δ - His13 ε

Figure 4.17: Ligand-Tyr10 distances in c) PtII(2) His6 ε - His14 ε

Figure 4.18: Ligand-Tyr10 distances in d) PtII(2) His6 δ – His13 δ .

4.3 Conclusions

LFMM is a powerful modelling tool for the study of transition metal complexes

and has previously found success in predicting their interactions with biomolecules.

In this work, we apply the LFMM approach to a series of six PtII complexes - as

studied by Barnham[2, 3, 24] and others[25–27] - and their interaction with model

fragments of the Aβ peptide in order to determine favourable metal binding modes
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as well as their influence on peptide secondary structure. Conformational space of

Aβ was explored using LowMode MD with AMBER molecular mechanics parame-

ters, followed by further optimisation using the semi-empirical PM7 method.

Boltzmann populations for each conformation were calculated at 310 K and favourable

platinum binding modes were identified for each complex studied. The preferred

binding mode was found to be dependent on the nature of the ligand, with varied

Nδ or Nε coordination across the N-terminal histidine residues of Aβ. These changes

in binding mode suggest that the platinum coordination may be controlled via the

choice of the ligand. Furthermore, the Boltzmann populations for these complexes

indicate that a small number of conformations contribute significantly to the ensem-

ble at 310 K, suggesting that the flexibility of the peptide is severely reduced after

coordination of these platinum complexes.

Analysis of the platinum coordination geometry illustrated that the low energy con-

formations were not significantly different from the average across databases, mean-

ing that their stability is likely conferred by the peptide conformation rather than

the metal geometry, and in particular close contacts between residue side chains

the planar ligands. It is surprising that such ligands, which differ only slightly in

their steric and electronic nature, effect such large changes on coordination and

conformation. The available peptide conformations were plotted as Ramachandran

maps, allowing for identification of secondary structure elements within the peptide.

While the N-terminal region of Aβ is known to be disordered, the most stable con-

formation of the free peptide found here was shown to exhibit turn-type secondary

structure in residues His6-Glu11. Coordination of each platinum-ligand complex dis-

rupts this secondary structure differently, including interrupting or translating the

existing turn-type structure in a ligand-specific fashion, as well as forming a short

3, 10-helix. Restricting the conformational freedom and disrupting the secondary

structure of Aβ may have consequences for the effect of these complexes on limiting

aggregation, for instance by hindering the formation of β-sheet structures known to

be important in plaques.

184



Bibliography

(1) M. Turner, R. J. Deeth and J. A. Platts, Journal of Inorganic Biochemistry,

2017, 173, 44–51.

(2) K. J. Barnham, V. B. Kenche, L. W. Hung, K. Perez, I. Volitakes, G. Cicco-

tosto, J. Kwok, N. Critch, N. Sherratt, M. Cortes, V. Lal, C. L. Masters, K.

Murakami, R. Cappai and P. A. Adlard, Angewandte Chemie-International

Edition, 2013, 52, 3374–3378.

(3) G. S. Yellol, J. G. Yellol, V. B. Kenche, X. M. Liu, K. J. Barnham, A.

Donaire, C. Janiak and J. Ruiz, Inorganic Chemistry, 2015, 54, 470–475.

(4) Molecular Operating Environment (MOE),(2013.08), version 2013.08, 1010

Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013.

(5) A. E. Anastasi and R. J. Deeth, Journal of Chemical Theory and Computa-

tion, 2009, 5, 2339–2352.

(6) H.-C. Tai, R. Brodbeck, J. Kasparkova, N. J. Farrer, V. Brabec, P. J. Sadler

and R. J. Deeth, Inorganic Chemistry, 2012, 51, 6830–6841.

(7) W. Cornell, P. Cieplak, C. Bayly, I. Gould, K. Merz, D. Ferguson, D. Spellme

yer, T. Fox, J. Caldwell and P. Kollman, Journal of the American Chemical

Society, 1995, 117, 5179–5197.

(8) R. J. Deeth, N. Fey and B. Williams–Hubbard, Journal of Computational

Chemistry, 2005, 26, 123–130.

(9) M. Frisch and G. Trucks et al., Gaussian09, Wallingford, CT, 2009.

(10) P. Labute, Journal of Chemical Information and Modeling, 2010, 50, 792–

800.

(11) M. Turner, J. A. Platts and R. J. Deeth, Journal of Chemical Theory and

Computation, 2016, 12, 1385–1392.

(12) J. J. Stewart, http://openmopac.net/index.html.

(13) J. J. P. Stewart, Journal of Molecular Modeling, 2013, 19, 1–32.
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5 Molecular Dynamics Simulations of PtII(L) -

Aβ Systems

5.1 Introduction

In this chapter, molecular dynamics simulations will be used to explore the be-

haviour of Aβ over time, and the effect of PtII(phenanthroline) coordination on the

structure, interactions and dynamics of the peptide. Here, simulations of the free

Aβ16 and Aβ42 peptides will be used to illustrate the effects of PtII-coordination.

Research in this chapter comes from work by our group, contained in reference [1].

All of the work contained here from this publication was carried out by myself.

5.2 Aβ16 and PtII(phen)-Aβ16 Simulations

The sixteen-residue N-terminal fragment of Aβ is considered a useful model of the

full peptide - it is often used in experimental work as it has better handling prop-

erties and does not aggregate. Importantly, this peptide fragment contains the

N-terminal metal-binding residues (e.g. histidines) and has been used in studies

of the coordination and effects of PtII complexes (see 1.4.2). Illustrations of this

sixteen-residue peptide fragment with and without the PtII(phen) unit attached are

shown in Figures 5.1 and 5.2, respectively.
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Figure 5.1: Schematic of Aβ16

Figure 5.2: Schematic of PtII(Aβ16)

5.2.1 Computational Details

Molecular Dynamics (MD) and Ligand-Field Molecular Dynamics (LFMD) simula-

tions were carried out using a serial version of DL-POLY Classic[2] and DL-POLY-

LF.[3] PtII(Aβ) complexes were described using a combination of ligand field molec-

ular mechanics (LFMM) for PtII [3, 4] and Assisted Model Building with Energy

Refinement 94 (AMBER94)[5] parameters for all other atoms. The Aβ1-16 peptide

was built in an extended conformation in MOE[6] and protonation states at pH of

7.4 assigned using the Protonate3D module of this package. PtII(phenanthroline)

complexes were bound to the peptide via His6-Nε and His14-Nε, as identified in

previous chapters.[7, 8] Initial peptide conformations for MD and LFMD simula-

tion were selected from a LowMode Molecular Dynamics[9] simulation in MOE.

DL-POLY input files were generated using DL-FIELD[10] and the DommiMOE[11]

extension to MOE.
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For all simulations of the free Aβ peptide, AMBER partial charges were used.

For PtII(phen)-Aβ simulations, Merz-Kollman charges were calculated for model

Pt(phen)(Me-imidazole)2 systems from HF/6-31G(d)/SDD electrostatic potential

in Gaussian09[12], with PtII given a van der Waals radius of 2.0 Å. The remaining

peptide atoms were assigned AMBER94 charges as calculated by MOE. PtII(phen)-

Aβ MK charges are summarised in Table 5.1.

Figure 5.3: PtII(phen)(Me-imid)2 region used in calculation of Merz-Kollman partial

charges.
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Metal His Phen

Atom Charge / e Atom Charge / e Atom Charge / e

Pt 0.560 Nε 0.324 N1 0.025

Cε -0.140 C2 0.001

Nδ -0.350 C3 0.134

Cδ -0.448 C4 -0.262

Cγ 0.293 C5 -0.017

Cβ -0.423 C6 0.077

Hε 0.248 C7 -0.219

HδN 0.425 H2 0.190

HδC 0.267 H4 0.217

Hβ1 0.160 H5 0.192

Hβ2 0.162 H7 0.216

Table 5.1: Merz-Kollman partial charges for PtII(phen)(Me-imid)2 subsystem of

PtII(phen)-Aβ. Atom names are given in Figure 5.3.

In all MD simulations, complexes were modelled as isolated systems, with reac-

tion field solvation and dielectric constant 78.4. Simulations were performed in the

NVT ensemble, where temperature was controlled at 310 K using the Nosé-Hoover

thermostat[13, 14] with relaxation constant 0.5 ps. Equations of motion were in-

tegrated using a Verlet Leapfrog algorithm, with a timestep of 1 fs. The SHAKE

algorithm[15] with tolerance 10−8 Å was used to constrain bonds containing hydro-

gen. The vdW forces were calculated with a cutoff of 1 nm, while 2.1 nm was used

as a cutoff for electrostatics. A series of other electrostatics cut-offs were tested, but

showed little influence on results. In each molecular dynamics trajectory, atomic

positions and velocities were recorded every 500 fs and used for subsequent analysis.

Five simulations (labelled A-E) of the free Aβ16 fragment were carried out, each for

200 ns. An overlay image of initial conformations A-E is shown in Figure 5.4, where

the conformations are superposed in such a way as to minimise the RMSD between

them. Individual images of these initial conformations are shown in the Appendix.
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Figure 5.4: Superposed conformations A-E of Aβ16.

Table 5.2 shows an RMSD matrix of each Aβ16 starting configuration against all

others, illustrating that all initial conformations are significantly different from one

another, ensuring more efficient sampling of the molecular phase space during sim-

ulations. The most similar conformations are A and B, with RMSD of 2.140 Å, but

visual inspection of these structures (Figures 5.4 and A.9) shows that the peptide

adopts a notably different structure, with different secondary structure elements

present; while conformation A is assigned as purely random coil in nature, B has

several turn-type residues, as determined by STRIDE[16], illustrated by the green

sections of the peptide ribbon.

RMSD / (Å) A B C D E

A - 2.140 4.420 6.459 8.213

B - - 4.310 6.362 8.259

C - - - 5.488 7.261

D - - - - 5.763

E - - - - -

Table 5.2: RMSD matrix of conformations A-E

In addition to this, five identical simulations (labelled F-J) were performed for the
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PtII(Aβ16) system. As for the free Aβ16 system, an RMSD matrix of these initial

conformations was constructed, and is shown in Table 5.3. Here, the conformations

with the lowest RMSD are G and I, at 3.301 Å. As before, an overlay image of these

conformations, shown in Figure 5.5, illustrates these RMSD values and the different

structures being studied. Individual images of the initial configurations are shown

in the Appendix.

RMSD / (Å) F G H I J

F - 7.605 6.344 7.485 6.323

G - - 6.400 3.301 5.949

H - - - 5.744 5.807

I - - - - 5.797

J - - - - -

Table 5.3: RMSD matrix of conformations F-J.

Figure 5.5: Superposed conformations F-J of PtII(Aβ16).
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5.2.2 Aβ16 Equilibration

In all MD simulations, it is important to properly equilibrate the system of interest.

However, equilibrating an intrinsically disordered peptide such as Aβ is challenging.

In DL-POLY and DL-POLY-LF, equilibration is controlled by the ‘equilibration’

directive, where a number of timesteps must be specified, in which the system will

be brought to the desired physical conditions (temperature, pressure etc.). In this

work, we do not consider equilibration to be a stabilisation of the physical con-

ditions; rather, we are interested in equilibration in terms of molecular structure

i.e. the system reaches a stable configuration. Therefore, if the system is deemed to

equilibrate during this ‘equilibration’ phase of the simulation, measures of molecular

shape and size (e.g. Rg, RMSD) are expected to stabilise. However, this approach

proved insufficient to equilibrate these flexible systems; various tests using 10 ps to

10 ns of ‘equilibration’ were run, and while system properties (e.g. temperature)

stabilised, the peptide remained structurally unstable. Thus, equilibration must be

monitored over the course of the simulation.

Work by Huy et al.[17] on the Aβ42 system utilised the concept of pseudo-equilibration

i.e. stabilisation of molecular RMSD over time indicates that the system MD tra-

jectory has stabilised sufficiently for useful data to be extracted from production

MD. Similarly, in this work, systems were considered to be equilibrated when the

RMSD fluctuates around a central point by approximately 1 Å, as used by Dong et

al.[18] for simulations of the Aβ40 peptide.
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Figure 5.6: RMSD (Å) vs time for 5 simulations of Aβ1-16 (A-E).

Here, RMSD values were calculated against the starting structure, generated by

LMMD conformational searches in DommiMOE. As Figure 5.6 shows, the Aβ16

systems reach stable RMSD values relatively quickly, indicating that LMMD pro-

duced stable conformations of the peptide as starting points for MD simulations.

Aβ16 conformations reached equilibration at 80 ns, 40 ns, 10 ns, 20 ns and 10 ns for

conformations A-E, respectively. Simulation data beyond these points was used for

analysis. These plots may be directly compared to those for the PtII(phen)-Aβ16

system.
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Figure 5.7: RMSD (Å) vs time for 5 simulations of PtII(Aβ1-16) (F-J).

Figure 5.7 shows the RMSD of PtII(Aβ16) systems over the course of 200 ns LFMD

simulation. Similarly to the free Aβ16 systems above, the PtII(Aβ16) systems reach

stable RMSD values quickly, and are then considered to be equilibrated. Confor-

mations F-J reach equilibration at 50 ns, 25 ns, 30 ns, 25 ns and 25 ns respectively.

As for the Aβ16 simulations, trajectories after these points were used for further

analysis.

5.2.3 Aβ16 Production MD

Resulting MD trajectories were analysed using VMD[19], with RMSD, radius of gy-

ration, peptide secondary structure, hydrogen bonds, salt bridges, solvent accessible

surface area and RMSF data being recorded.
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Table 5.4 summarises RMSD data for the five Aβ16 production runs (A-E), where

RMSD values remain relative to the initial configuration. Each of these simulations

shows an RMSD value around 3 Å, though conformations C and E are significantly

larger and smaller than this value, respectively (i.e. more than two standard de-

viations from the other data points). Based on this standard deviation data, con-

formation B shows the greatest degree of variance in structure over the course of

the simulation, while each of these conformers shows a similar range of calculated

RMSD values.

Aβ16 Ave. RMSD / (Å) SD Min. Max.

A 2.946 0.083 2.535 3.514

B 3.043 0.162 2.299 3.774

C 3.503 0.140 2.671 4.182

D 2.969 0.088 2.549 3.485

E 2.686 0.149 2.090 3.449

Table 5.4: Average, standard deviation, min. and max. RMSD of production MD

for Aβ16 simulations A-E.

The corresponding data for the PtII(Aβ16) simulations is shown in Table 5.5, where

RMSD values are once again measured versus the initial molecular configuration.

Here, RMSD values tend to be higher than for the free peptide, indicating that the

structures sampled during PtII(Aβ16) simulations deviate more from the initial con-

formations produced by LMMD than the corresponding free peptide simulations.

The standard deviation data for the PtII(Aβ16) simulations is broadly similar to

that of the free peptide, suggesting that these structures fluctuate to a similar de-

gree. In addition, PtII(Aβ16) simulations also display similar range of RMSD data

as the free peptide.
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PtII(Aβ16) Ave. RMSD / (Å) SD Min. Max.

F 6.292 0.101 5.680 6.777

G 4.225 0.192 3.251 4.887

H 2.984 0.135 2.413 3.471

I 3.794 0.166 3.013 4.382

J 4.501 0.176 3.628 5.092

Table 5.5: Average, standard deviation, min. and max. RMSD of production MD

for PtII(Aβ16) simulations F-J.

While RMSD plots illustrate the overall degree of change in structure over time,

molecular radius of gyration provides more information regarding molecular shape

over time. Figure 5.8 shows radius of gyration (Rg) data for the Aβ16 simulations.

These Rg values are summarised in Table 5.6.

Figure 5.8: Rg (Å) vs time for 5 simulations of Aβ1-16 (A-E).
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Aβ16 Ave. Rg / (Å) SD Min. Max.

A 6.695 0.060 6.456 7.084

B 6.627 0.095 6.324 7.177

C 6.998 0.057 6.609 7.292

D 6.706 0.051 6.484 7.060

E 6.675 0.058 6.450 7.043

Table 5.6: Average, standard deviation, min. and max. Rg of production MD for

Aβ16 simulations A-E.

These data show that the free Aβ16 fragment adopts a relatively compact structure,

with Rg values typically less than 7 Å. For comparison, the Aβ16 peptide in an ex-

tended conformation has Rg of 16.99 Å, and for an α-helical structure has an Rg of

9.16 Å. The standard deviation within this data is also small, indicating that there

is little change in the compactness of the peptide structure during simulation, sug-

gesting that it is more favourable for the peptide to form stabilising intra-molecular

interactions than to interact with the reaction-field solvent. Further discussion of

these intra-molecular interactions is included later in the text.

In general, these systems display a similar range of Rg values; this suggests that

while the peptide as a whole remains compact, flexible peptide side-chains may

be responsible for the similar degree of variation observed. However, simulation

C shows a Rg value of 6.998 ± 0.06 Å that is significantly different to the other

simulations (i.e. more than two standard deviations from other data). Interestingly,

simulation C also displayed the greatest average RMSD value of the Aβ16 systems

studied (see Table 5.4). The significantly different Rg suggests that this conformer

occupies a noticeably different configuration than A, B, D and E during the course

of the simulation. Equivalent Rg data for the PtII(Aβ16) simulations is shown in

Figure 5.9 and summarised in Table 5.7.
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Figure 5.9: Rg (Å) vs time for 5 simulations of PtII(Aβ1-16) (F-J).

PtII(Aβ16) Ave. Rg / (Å) SD Min. Max.

F 8.659 0.196 7.932 9.173

G 7.786 0.125 7.252 8.165

H 7.417 0.126 7.085 7.812

I 7.786 0.125 7.252 8.156

J 7.481 0.095 7.121 7.831

Table 5.7: Average, standard deviation, min. and max. Rg of production MD for

PtII(Aβ16) simulations F-J.

In contrast, the PtII(Aβ16) simulations display significantly larger Rg values than

their free peptide counterparts - with values generally exceeding 7.4 Å- illustrating

that coordination of the large, sterically demanding PtII(phenanthroline) system

to the peptide forces the structure to adopt different, less compact conformations.

Standard deviation data is consistent across these simulations, though slightly larger
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than for the free peptide systems.

The data in Table 5.7 show that the PtII(Aβ16) simulations are centred around 3

distinct Rg values, approximately 7.45 Å, 7.78 Å and 8.66 Å. Simulation F displays

the largest Rg of all PtII(Aβ16) systems (8.66 ± 0.2 Å), significantly larger than

all other simulations examined. The PtII(phen) unit itself has Rg of 2.29 Å, so the

PtII(Aβ16) adducts are smaller than the sum of PtII(phen) plus peptide. Interest-

ingly, simulation F displays a high prevalence of stabilising π-π interactions, which

may cause the peptide backbone to extend and re-organise in order to accommodate

these stacking arrangements. These π-π interactions are discussed in detail later.

Interestingly, data in Figure 5.9 and Table 5.7 illustrate that conformations G and

I display incredibly similar Rg values. Here, average Rg values are identical to

4 decimal places, with approximately the same degree of similarity in minimum

and standard deviation of Rg values. Comparison of snapshots of the simulated

structures at time = 200 ns indicates that not only is the Rg identical, but that

the structures are near-identical as well, as judged by RMSD calculations. These

RMSD values are shown in Table 5.8 and snapshots are overlaid in Figure 5.10. This

means that despite the simulations starting from distinctly different conformations,

the simulations have converged to a common structure within the equilibration pe-

riod.

Conformations compared RMSD at 0 ns / (Å) RMSD at 200 ns / (Å)

G vs. I 3.301 0.106

Table 5.8: Comparison of RMSD for simulations G and I of the PtII(Aβ16) system

at time = 0 ns and time = 200 ns.
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Figure 5.10: Superposition of snapshots at time = 200 ns of simulations G and I of

the PtII(Aβ16) system.

Next, the root mean square fluctuation (RMSF) of each residue was measured dur-

ing simulations using VMD. Figure 5.11 and Figure 5.12 show the RMSF values by

residue of trajectories A-E and F-J, respectively. In addition, plots of RMSF values

by residue, averaged across simulations for the Aβ16 and PtII(Aβ16) simulations are

shown in the Appendix.

Figure 5.11: RMSF per residue for simulations A-E of Aβ16
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Figure 5.12: RMSF per residue for simulations F-J of PtII(Aβ16). Data for simula-

tion G is obscured by simulation I.
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Figure 5.13: Top: Comparison of RMSF per residue for Aβ16 and PtII(Aβ16) sim-

ulations. Bottom: Difference in RMSF between Aβ16 and PtII(Aβ16) simulations

Figure 5.13 shows a comparison plot of RMSF data for the Aβ16 and PtII(Aβ16)

simulations, as well as a plot of ΔRMSF i.e. the difference in peptide RMSF caused

by coordination of the PtII(phenanthroline) complex. Here, negative values cor-

respond to the PtII(Aβ16) system displaying lower RMSF than Aβ16. For the free

peptide, large RMSF values are observed for Phe4, His6, Tyr10 and Val12, and small

values for Asp1, Glu3, Arg5, and Glu11. Coordination of PtII(phen) at histidines 6

and 14 unsurprisingly reduces their RMSF, with Phe4 also moving less than in the
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metal-free case, whereas values for Tyr10, Val12 and Lys16 are on average larger

after platinum coordination. These data therefore suggests that coordination of

PtII(phen) affects the peptide in more subtle ways than might first be thought, in

particular promoting more flexibility in residues lying between coordination sites.

However, differences between free and PtII(phen) trajectories are of similar magni-

tude to those between repeat simulations. RMSF for Tyr10, for instance, is relatively

constant at 0.53 ± 0.09 Å over five simulations of the free peptide, but varies rather

more (0.67 ± 0.31 Å, max = 0.95 Å, min = 0.29 Å) for the equivalent PtII(phen) tra-

jectories. Only three residues (His6, His14 and Gln15) exhibit differences in RMSF

that exceed the sum of standard deviations - full details can be found in the Ap-

pendix.

The clear increase in the Rg of the peptide when bound to PtII(phenanthroline) is

consistent with the increased solvent accessible surface area (SASA) observed, rela-

tive to the free peptide. SASA is calculated by a Monte Carlo sampling procedure,

using 50,000 sample points to estimate the accessible surface area.

Average SASA per residue for simulations A-E of Aβ16 is shown in Figure 5.14, while

Figure 5.15 shows the corresponding data for conformations F-J of the PtII(Aβ16)

systems. Data for each individual simulation is shown in the Appendix. Each of the

simulations A-E show similar values and trends in SASA data by residue, indicating

that while each residue has a different solvent accessible surface area, the peptide

SASA does not vary drastically with conformation; A similar pattern is seen for

conformations F-J.
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Figure 5.14: Average SASA per residue of Aβ16 simulations A-E

Figure 5.15: Average SASA per residue of PtII(Aβ16) simulations F-J.

The SASA data corresponding to Figures 5.14-5.15 are reported in Table 5.9. In par-

ticular, this data shows that the most solvent-exposed residues in the Aβ16 systems

are Arg5, Tyr10 and Phe4 - the largest residues - while the least solvent-exposed

residues are Ser8, Ala2 and Gly9. For the PtII(Aβ16) simulations, residues Arg5,

Tyr10 and Phe4 remain the most solvent exposed while Ser8, Ala2 and Gly9 remain

the least solvent exposed. The PtII(phen) fragment itself has a SASA of 240.3 ±
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9.6 Å2. Data in Table 5.9 illustrates that for the sixteen-residue peptide, SASA is

governed more by the two-dimensional chemistry rather than the three-dimensional

peptide conformation i.e. peptide primary structure is more important than peptide

secondary structure.

Residue Aβ16 SASA / (Å2) PtII(Aβ16) SASA / (Å2)

1 269.5 ±,5.18 270.1 ± 2.35

2 219.0 ± 2.46 220.3 ± 0.86

3 283.1 ± 2.67 285.3 ± 0.89

4 327.6 ± 5.70 328.9 ± 1.38

5 348.4 ± 7.03 345.4 ± 4.80

6 300.6 ± 2.03 302.4 ± 3.21

7 262.6 ± 2.61 265.1 ± 3.06

8 234.1 ± 1.52 234.5 ± 1.49

9 195.3 ± 0.77 195.1 ± 0.94

10 340.7 ± 2.81 345.7 ± 1.58

11 286.8 ± 3.92 293.3 ± 4.17

12 264.2 ± 1.94 266.3 ± 1.51

13 301.4 ± 2.40 302.3 ± 2.46

14 302.6 ± 4.87 302.0 ± 4.07

15 296.5 ± 7.08 297.3 ± 3.99

16 309.2 ± 4.78 326.3 ± 2.82

Table 5.9: SASA data per residue for Aβ16 and PtII(Aβ16) simulations

Total average SASA values for the whole Aβ16 and PtII(Aβ16) systems are sum-

marised in Table 5.10. These data show that while the PtII(Aβ16) systems display

greater total SASA than the free Aβ16 systems, the difference between them is

largely accounted for by the large PtII(phenanthroline) complex, rather than any

major changes in peptide conformation upon metal binding. Here, the difference

between Aβ16 and PtII(Aβ16) SASA ranges from 265-307 Å2, meaning that there is

a small increase in overall SASA of the peptide.
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Aβ16 A B C D E

SASA / (Å2) 4544.6 4524.3 4537.0 4550.5 4550.0

PtII(Aβ16) F G H I J

SASA / (Å2) 4831.3 4831.6 4810.12 4831.53 4815.52

Table 5.10: Total SASA for Aβ16 and PtII(Aβ16) simulations A-E and F-J, respec-

tively

In addition, the effect of PtII(phenanthroline) coordination on the peptide secondary

structure was considered. While Aβ is widely considered to be an intrinsically disor-

dered peptide, little work has been done to determine the effects of PtII coordination

on this structure, though it is thought that platinum coordination promotes amor-

phous aggregation, rather than fibril formation.[20] The STRIDE algorithm[16], as

implemented in VMD, was used for secondary structure calculation. This charac-

terised each residue as either Turn, β-sheet, β-bridge, α-helix, 3,10-helix, π-helix or

Coil- type structure.

Total percentage secondary structure for simulations A-J is shown in Table 5.11. In

addition, Figure 5.16 and Figure 5.17 show plots of the peptide secondary structure,

per residue, over the course of simulations i) A-E and ii) F-J for the Aβ16 and

PtII(Aβ16) systems, respectively.
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Turn β-sheet Bridge α-helix 3,10-helix π-helix Coil

Aβ16 A 73.52 0.00 0.07 0.00 4.69 0.00 21.72

B 67.77 0.00 2.57 0.00 0.73 0.03 28.90

C 77.21 0.00 0.00 0.00 0.00 0.00 22.79

D 66.20 0.00 0.00 0.00 0.00 0.00 33.80

E 59.09 0.00 0.00 0.00 0.00 0.00 41.91

PtII(Aβ16) F 41.62 0.00 0.00 0.00 16.35 0.00 42.03

G 82.66 0.00 0.00 0.00 0.00 0.00 17.34

H 55.90 0.00 0.00 0.00 0.00 0.00 44.10

I 82.68 0.00 0.00 0.00 0.00 0.00 17.32

J 53.27 0.00 0.00 0.00 0.00 0.00 46.73

Table 5.11: Total percentage secondary structure for Aβ16 and PtII(Aβ16) simula-

tions

Figure 5.16: Percentage secondary structure by residue for Aβ16 simulation. Sec-

ondary structure assigned using STRIDE algorithm.
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Figure 5.17: Percentage secondary structure by residue for PtII(Aβ16) simulation.

Secondary structure assigned using STRIDE algorithm.

As expected for an intrinsically disordered peptide, the majority of the residues

throughout trajectories A-E exhibit coil or turn conformations. Interestingly, there

is a low propensity (4% of total simulation time) for residues Tyr10-Glu11-Val12 to

form a minimal (3 residue) 3,10 helix, while residues Gly9 and Gln15 infrequently

(4% of simulation) adopt β-bridge (i.e. hairpin) structures. The prevalence of turn

and coil structures in these simulations is in good general agreement with most data

for Aβ, though the propensity of residues to adopt turn structures is surprisingly

high. Other authors have noted that STRIDE has a greater tendency to assign

turn structure than other secondary structure programs[21], but observed that most

residues in Aβ exist as turn structure with approximately 30-80% probability. In

addition, their simulations of Aβ42[21] displayed 3,10-helical structure for residues

Tyr10-Val12 of approximately 3-5%, in agreement with this data, though they ob-

served similar propensity throughout the peptide.

In the PtII(Aβ16) simulations, secondary structure is again predominantly assigned

as either turn- or coil-type conformations, but the percentage of each secondary

structure element is different from the free peptide system. This indicates that while

coordination of the PtII(phenanthroline) complex does not drastically change the

secondary structure of this N-terminal fragment of the Aβ peptide, it induces subtle

effects on peptide backbone structure. Here, residues Val12-His13-His14 adopt a
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3,10 helical structure for 15% of total simulation time; coordination of the platinum

complex not only increases the incidence of this well-defined secondary structure,

but also shifts the helix towards the C-terminus relative to the free peptide. Strik-

ingly, residues involved in metal binding (His6, His14) show an increase in defined

secondary structure (i.e. turn or helix) in the PtII(Aβ16) simulations compared to

the natural peptide, from approximately 50% in Aβ16 to 60-80% in the platinated

system.

Furthermore, the formation of hydrogen bond networks was also studied using VMD,

as hydrogen bonds not only link in to the secondary structure data above, but pro-

vide further insight into the differences in intramolecular interactions between the

free Aβ16 peptide and PtII(Aβ16) simulations.

The total number of hydrogen bonds present per frame of the Aβ16 and PtII(Aβ16)

simulations was calculated and data presented in Table 5.12 and Table 5.13. In

general, the PtII(Aβ16) systems consistently show fewer hydrogen bonds than the

free Aβ16 simulations, suggesting that the PtII(phenanthroline) system may interfere

with the natural hydrogen bonding patterns of Aβ16. Further, the maximum number

of hydrogen bonds in the PtII(Aβ16) systems never reaches the maximum observed

in the free Aβ16 simulations. However, this difference was not significant, as the

large standard deviation values (ca. 1.9-2.0) suggest that the hydrogen bonds are

transient. Surprisingly, this data shows that some frames of all Aβ16 and PtII(Aβ16)

simulations display no hydrogen bonds. In addition, there is no significant difference

in the number of hydrogen bonds between all of the free Aβ16 systems or all of the

PtII(Aβ16) systems, suggesting that peptide conformation has little effect on the

ability of the peptide to form these intramolecular interaction networks.

Aβ16 Ave. # HB SD Min. Max.

A 6.4 2.0 0 16

B 5.6 1.9 0 14

C 7.1 1.9 0 17

D 7.1 2.1 0 17

E 5.8 1.8 0 15

Table 5.12: Average, SD, min. and max. values of the number of hydrogen bonds

present in Aβ16 simulation.
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PtII(Aβ16) Ave. # HB SD Min. Max.

F 5.7 1.7 0 13

G 5.2 1.7 0 13

H 3.9 1.6 0 12

I 5.2 1.7 0 12

J 6.0 1.8 0 13

Table 5.13: Average, SD, min. and max. values of the number of hydrogen bonds

present in PtII(Aβ16) simulation.

Finally, intramolecular salt bridge interactions were monitored during the course of

the simulations. Salt bridges are known to be important in the formation of fibrils,

so any disruption of this network by the PtII(L) system may provide an explanation

as to how these agents disrupt the Aβ aggregation process. As the Aβ16 peptide

fragment has two positively charged and four negatively charged residues, there are

a total of eight possible salt bridge interactions. These salt bridge interactions were

measured in VMD, and are defined as any contact of less than 3.2 Å between O-N

atoms in charged residues.

The salt bridge data for the Aβ16 simulations is summarised in Table 5.14 and

presented graphically in Figure 5.18, while equivalent data for the PtII(Aβ16) sim-

ulations may be found in Table 5.15 and Figure 5.19.

Aβ16 Asp1 Glu3 Asp7 Glu11

Arg5 20.99 25.93 85.64 55.88

Lys16 55.90 21.39 0.00 28.57

Table 5.14: Combined salt-bridge data (% presence) for Aβ16 simulations
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Figure 5.18: Salt bridge contact map for Aβ16 simulation

PtII(Aβ16) Asp1 Glu3 Asp7 Glu11

Arg5 77.62 79.71 61.26 0.00

Lys16 39.57 0.00 61.91 99.44

Table 5.15: Combined salt-bridge data (% presence) for PtII(Aβ16) simulations
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Figure 5.19: Salt bridge contact map for PtII(Aβ16) simulation

In the free Aβ16 systems, there are a large number of salt bridges present for only

low fractions of the total simulation time. Here, Arg5 predominantly interacts with

Asp7 (86% of frames), but also forms frequent interactions with Glu11 (56%), to-

wards the C-terminus of this peptide fragment. This Arg residue also forms salt

bridges less frequently with residues closer to the N-terminus, such as Glu3 and

Asp1. Similarly, Lys16, found at the C-terminus of this fragment, forms salt bridges

most frequently with Asp1 (56%), at the N-terminus, though it also interacts with

Glu3 and Glu11 for 20-30% of total simulation time. In all Aβ16 simulations, Lys16

does not form salt bridge interactions with Asp7. The three most common salt-

bridges in Aβ16 simulation are shown in Figure 5.20.

Binding the PtII(phenanthroline) to this peptide fragment induces clear changes in

salt bridge structure, as shown in Figure 5.19. In the PtII(Aβ16) system, Arg5 still

interacts with Asp7 but with reduced frequency (61%), and instead primarily in-

teracts with Glu3 and Asp1 (ca. 80%). In contrast to the free peptide, PtII(Aβ16)

simulations show no formation of Arg5-Glu11 salt bridges. In addition, Lys16 forms
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a near-constant salt bridge with Glu11, as well as frequent interactions with Asp7

(62% of simulation) and Asp1 (40%). In contrast to the free peptide, Lys16 does

not form a salt bridge with Glu3 in the PtII(Aβ16) simulations. The three most

common salt-bridges in Pt(Aβ16) simulation are shown in Figure 5.21.

In general, coordination of the PtII(phenanthroline) unit to Aβ16 causes Arg5 salt

bridges to switch between primarily interacting with Asp7 and Glu11 in the free

peptide to Glu3 and Asp1, while Lys16 salt bridges are formed with Glu11 and

Asp7 instead of Asp1. It is interesting that the combined frequency of the observed

salt bridge interactions exceeds 100%, indicating that residues are close enough

to their charged partners to be able to form multiple salt bridge-type interactions

simultaneously.
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Figure 5.20: Images of the three most prominent salt-bridges in Aβ16 simulation.

From top to bottom: Arg5-Asp7, Asp1-Lys16, Arg5-Glu11. Negatively charges

residues are highlighted in blue; positively charged residues are highlighted in red.
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Figure 5.21: Images of the three most prominent salt-bridges in PtII(Aβ16) sim-

ulation. From top to bottom: Lys16-Glu11, Lys16-Asp7, Arg5-Asp7. Negatively

charges residues are highlighted in blue; positively charged residues are highlighted

in red.
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The formation of π-π stacking interactions between the ligand and aromatic residues

in Aβ are thought to be important in targeting the PtII(L) drugs to the N-terminus

of Aβ, as well as stabilising the PtII(L)(Aβ) adducts.

Here, the contact distance between the phenanthroline ligand and each of the aro-

matic residues in Aβ16 that could form these stacking interactions (i.e. Phe4, Tyr10

and His13) was monitored during PtII(Aβ16) simulations. This contact was defined

as the distance between Cγ in the aromatic residue and a carbon atom in the centre

of the ligand. Histograms showing the distribution of these inter-plane contacts are

shown in Figure 5.22.

This revealed that Phe4 in particular forms frequent π-π interactions with the

phenanthroline ligand, with a high distribution of contacts < 5 Å (see plot A in Fig-

ure 5.22). Tyr10 forms almost no π-π interactions with the phenanthroline ligand,

with only a small distribution of frames at distances of approximately 5-6 Å, while

His13 shows moderate distribution of states where the π-π inter-plane distance is

less than 5 Å, sufficient for weak π-π interaction (see plots B and C in Figure 5.22,

respectively). At short π-π distances, the aromatic planes planes are essentially

parallel - see Figure 5.23 - while larger distances (>6 Å) are not important for π-π

interactions, and so the angles between planes is not measured.
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Figure 5.22: π-π contact distance for A) Phe4, B) Tyr10 and C) His13 residues with

the phenanthroline ligand in PtII(Aβ16) simulation

Of particular interest is simulation F, where both Phe4 and His13 simultaneously

form π-π stacking arrangements with the ligand for approximately 150 ns of the

simulation, with one residue above and below the ligand plane, as shown in Figure

5.23.
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Figure 5.23: Snapshot of PtII(Aβ16) simulation F, where Tyr10 and His13 form π-π

contacts of less than 5 Å with the phenanthroline ligand. Other residues are omitted

for clarity

In addition, the π-π contact distance may be plotted as a function of time. Figure

5.24 shows the contact distance for simulation F, where both Phe4 and His13 form

π-π interactions with the phenanthroline ligand with contact distance of 4-5 Å.

Corresponding data for simulations G-J is shown in the Appendix.

Figure 5.24: Plot of π-π contact distance over production MD trajectory of simu-

lation F. Phe4-ligand distance is shown in black, Tyr10-ligand distance in red and

His13-ligand distance in blue.
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5.3 Aβ42 and PtII(phen)-Aβ42 Simulations

While the Aβ16 fragment provides a useful model of PtII-Aβ interaction and has

been characterised experimentally (see Chapter 1), greater insight into the metal-

peptide interactions would be gained by modelling the full 42-residue Aβ peptide.

In this section, four further molecular dynamics simulations are performed on each

PtII(phen)-Aβ42 and Aβ42 systems, along with preliminary analysis of the trajec-

tories, towards determining the effects of the PtII(phen) complex on peptide size,

secondary structure, and formation of hydrogen bonding and salt bridges.

5.3.1 Computational Details

Here, MD and LFMD calculations were performed as described in Section 5.2.1,

although for this work a parallel version of DL-POLY and DL-POLY-LF were used.

Conformations of Aβ42 and PtII(phen)-Aβ42 were generated using LowMode MD, as

described previosuly.[9] Conformations were selected to give a range of both collapsed

and extended conformations. Initial conformers of the Aβ and PtII(phen)-Aβ42

systems used for simulation are shown in Figures 5.25 - 5.26.

Figure 5.25: Overlay of initial Aβ42 conformations. Hydrogens, and non-aromatic,

non-charged residues omitted for clarity

220



Chapter 5

Figure 5.26: Overlay of initial PtII-Aβ42 conformations. PtII(phen) shown in black.

Hydrogens and non-aromatic residues omitted for clarity.

5.3.2 Aβ42 Equilibration

True equilibration of these large disordered peptides is beyond current capability; as

before, systems were judged to be pseudo-equilibrated when the RMSD stabilised

and fluctuated around a central value.[17]. RMSD plots of Aβ42 and PtII(phen)-

Aβ42 trajectories are shown in Figures 5.27 and 5.28:
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Figure 5.27: RMSD (Å) vs time for 4 simulations of Aβ42

As such, the systems were considered to be pseudo-equilibrated at 300, 700, 100

and 400 ns for simulations of Aβ42. While simulation 2 occupies a meta-stable

state through 300-550 ns, this data was not used for analysis. Similarly, there is

a jump in RMSD for simulation 3 at approximately 800ns after a long period of

stable simulation. Data from 100-800 ns was used, but data after 800 ns was not.

That simulations require hundreds of nanoseconds to reach stable structures is also

in agreement with existing work.[17, 22]
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Figure 5.28: RMSD (Å) vs time for 4 simulations of PtII-Aβ42

Similarly, pseudo-equilibration was reached at 250, 700, 250 and 400 ns for PtII-

Aβ42 simulations; RMSD data for the pseudo-equilibrated trajectories is shown in

Tables A.14 and A.15 in the Appendix. Trajectories beyond these points were used

for further analysis.

Notably, the reported RMSD vales are much larger for Aβ42 systems than their Aβ16

counterparts. While this may be partly explained by their increased size and flexi-

bility, it is also important that a range of starting conformations was used, including

both extended and collapsed structures. Significant conformational changes of either

of these extremes during equilibration would give rise to a large RMSD.
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5.3.3 Aβ42 Production MD

As before, simulations were analysed using VMD and associated tools.[19] Radius of

gyration data for Aβ42 simulations is shown in Figure 5.29 and summarised in Table

5.16, while the corresponding data for PtII(phen)-Aβ42 is shown in Figure 5.30 and

Table 5.17.

Figure 5.29: Rg (Å) vs time for simulations of Aβ42

Aβ42 Ave. Rg / (Å) SD Min. Max.

1 9.070 0.044 8.897 9.927

2 9.217 0.076 8.928 9.618

3 9.482 0.066 9.225 9.835

4 10.725 0.089 10.152 11.187

Table 5.16: Average, standard deviation, min. and max. Rg of production MD for

Aβ42 simulations.
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Figure 5.30: Rg (Å) vs time for simulations of PtII-Aβ42

PtII(Aβ42) Ave. Rg / (Å) SD Min. Max.

5 16.277 0.274 14.647 17.290

6 11.488 0.061 11.199 11.732

7 15.517 1.046 13.347 17.817

8 17.971 0.946 14.356 20.168

Table 5.17: Average, standard deviation, min. and max. Rg of production MD for

PtII(Aβ42) simulations.

The Rg data in Figure 5.29 for the Aβ42 systems are generally in agreement with

other simulations (see Section 1.5.3), as well as experimental work, which report

values of 9±1 Å and 10.1±0.6 Å (see [17] and references within). The fourth sim-

ulation shows much larger Rg than the others, but is still within results referred to

above. While the first two simulations are not significantly different to one another,

the third and fourth display Rg values that are significantly different to the others -
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indicating that we are sampling multiple stable conformations of Aβ42, as expected

for an intrinsically disordered peptide.

In contrast, the PtII-Aβ42 systems display much larger Rg values than their non-

platinated counterparts. To date, there is no experimental data to compare this

against. As mentioned above, the PtII(phen) fragment has an Rg of 2.29 Å, so the

addition of this fragment alone cannot account for the difference observed i.e. the

PtII(phen) unit therefore induces a significant structural change in the Aβ42 pep-

tide, from collapsed (small Rg) to extended (larger Rg). Simulations 5 and 7 are

not significantly different to one another, judged on SD data. By the same assess-

ment, simulation 8 is significantly different to simulation 7 but not simulation 5.

Simulation 6 is significantly different to all other PtII-Aβ42 simulations. Here, there

is a greater range of Rg values observed, suggesting that with the PtII(phen) unit

attached, the peptide becomes more flexible, perhaps due to disruption of other in-

tramolecular interactions (vide infra); Rg standard deviations are also much larger

for the PtII(phen) simulations, supporting the suggestion of greater overall flexibility.

In addition, RMSF per residue data was collected for these trajectories. Plots of

average RMSF by residue for simulations 1-4 of Aβ42 and simulations 5-8 of PtII-

Aβ42 as well as a comparison, is shown in Figure 5.31. As before, negative values

indicate that the PtII-Aβ42 system has lower RMSF than Aβ alone. Plots of only

Aβ42 and PtII-Aβ42 are shown in Figures A.19 and A.20 in the Appendix.
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Figure 5.31: Average RMSF per residue for simulations 1-4 of Aβ42 and simulations

5-8 of PtII-Aβ42 (top) and the difference in RMSF between Aβ42 and PtII-Aβ42

(bottom)

For Aβ42, relatively large RMSF values are observed for the central region of the

peptide, particularly residues Leu17-Phe20. Other notably large RMSF values oc-

cur at Val24, Leu34-Val36 and Val40. On the other hand, the peptide N-terminus

displays surprisingly low RMSF, with values typically below 0.65 Å. In PtII-Aβ42,

RMSF values are consistently larger than for the free peptide - only His14 and Phe20

display lower RMSF than in Aβ42. Of these, His14 is one of the PtII binding sites,

so it is not surprising that RMSF values decrease. However, His6 does not show this

behaviour. Of particular note are the very large RMSF values observed for residues

in the C-terminal region of PtII-Aβ42. Here, RMSF generally remains above 1 Å,

with Ile32, Leu34 and Met35-Ala42 displaying values up to approximately 2.2 Å.

In this peptide segment, Gly33 shows a clear decrease in RMSF relative to adja-

cent residues that is reflected in the free peptide; while possibly due to its small

size, the small RMSF values are not seen to the same extent for Gly37-38. In the
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ΔRMSF plot, the greater fluctuations of PtII-Aβ42 over Aβ42 are clearly illustrated.

However, these highly flexible systems provide large standard deviations in RMSF

values, even for these stable regions of simulation. As a result, none of the differ-

ences in RMSF described here were significant (i.e. no differences in RMSF exceed

two standard deviations).

As before, peptide secondary structure was calculated using STRIDE in VMD. Over-

all secondary structure plots for Aβ42 and PtII-Aβ42 simulations are shown in Fig-

ures 5.32 and 5.33, respectively.

Figure 5.32: Percentage secondary structure by residue for Aβ42 simulation. Sec-

ondary structure assigned using STRIDE algorithm

As for the shorter Aβ16 fragment, the free Aβ42 adopts largely turn-/coil- type sec-

ondary structure (69% and 22%, respectively). This is in agreement with many other

modelling studies, reviewed in Chapter 1. Encouragingly however, these Aβ42 sim-

ulations show considerable amounts of 3,10-helical structure, at residues Asp7-Gly9

(25%) and Ser26-Ile31 (up to 35%), unlike many other simulations (see Chapter 1).

The appearance of this structure is in agreement with experimentally determined

secondary structure of Aβ in water (PDB code: 2LFM) though the location is dif-

ferent - in that case, 3,10-helical structure was observed at residues Val12-Val24. In

addition, residues Arg5 (26%), Asp7 (17%), Glu11 (17%), Ile31 (26%), Met35 (38%),

Gly38 (16%) and Ile41 (5%) occupy β-bridge conformations for significant periods of
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simulation time. Furthermore, the Aβ simulations also display a small amount (<

8%) of α-helical structure in residues Asn27-Ile32 of the central hydrophobic region

of the peptide.

Figure 5.33: Percentage secondary structure by residue for PtII-Aβ42 simulation.

Secondary structure assigned using STRIDE algorithm

In the PtII-Aβ42 simulations, residues are overwhelmingly assigned as turn- or coil-

type secondary structure (58% and 24%) respectively. Among these data, the high

probability of turn-structure within the N-terminus is in agreement with work dis-

cussed in previous chapters, though there is also a considerable amount of 3,10 helix

found in residues Arg5-Asp7 (55% of total simulation time). Interestingly, the de-

gree of helical character is significantly increased in the PtII-Aβ42 systems compared

to the free Aβ42 peptide; there are a succession of short 3,10 helices in PtII-Aβ42 at

Val12-Lys16 (up to 62%), Phe19-Ser (up to 13%) Ala30-Val36 (up to 42%). There is

also low propensity for the central region of the peptide Val18-Gly25 to adopt an α-

helical conformation (< 8%). Finally, the PtII-Aβ42 simulations also show decreased

prevalence of β-bridge structures relative to the free peptide, though residues Ala30-

Ile41 all show some degree of β-bridge character. Residues Gly29-Val40 also display

extended conformations for small periods of the simulation (< 7%). This illustrates

that not only does coordination of the PtII(phen) unit to Aβ alter the shape and

size of the peptide, it also disrupts the existing peptide secondary structure. Despite

binding near the N-terminus, these effects on structure are observed over the entire
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peptide chain.

Interestingly, the helices in these PtII-Aβ42 simulations are observed in the central

hydrophobic region of the peptide, which is known to be important in amyloid aggre-

gation. In MD simulations of Aβ, Yang and Teplow [21] highlighted the importance

of helices for peptide aggregation and suggested that agents that stabilise helical

conformations (or destabilise β-sheets) would block the formation of Aβ oligomers.

The increased prevalence of helical structures in our PtII-Aβ42 simulations suggest

that PtII(phen) stabilises these structures, thereby inhibiting the formation of toxic

oligomers.

The peptide salt bridge network was also calculated using VMD. In the full 42-

residue peptide there are three positively charged and six negatively charged amino

acid residues, giving a total of eighteen possible salt bridge interactions. As before,

salt bridges are defined as any contact distance of less than 3.2 Å between O-N

atoms in charged residues. Salt bridge contact maps for Aβ42 and PtII-Aβ42 are

shown in Figures 5.34 and 5.35 and the underlying data are contained in Tables

A.16 and A.17.
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Figure 5.34: Salt bridge contact map for Aβ42 simulation.
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Figure 5.35: Salt bridge contact map for PtII-Aβ42 simulation.

In the free Aβ42 system, thirteen of the possible salt bridges are occupied during

simulation, though most are only formed for a low proportion of time, similar to

the Aβ16 results above. However, the identity of these interactions are different. In

Aβ42, Arg5 predominantly interacts with Asp7 (54%) and Glu3 (47%) and forms

sporadic interacts with Asp1 (27%) and Glu11 (11%). Lys16 frequently forms salt

bridges with Glu11 (53%), Glu22 (49%) and Asp1 (49%) - this high incidence of

Lys16 salt bridge interactions is possibly due to its location between two collapsed

regions of the peptide (vide supra). In contrast to the Aβ16 peptide, Lys16 does

interact with Glu3 in our simulations. Finally, Lys28 most commonly interacts with

Asp23 (38%) - a common salt bridge in Aβ- while forming less abundant salt bridges

with Glu22 (26%), Glu11 (26%), Asp1 (23%) and Asp7 (22%). As before, the com-

bined frequency of the observed salt bridge interactions exceeds 100%, indicating

that residues are close enough to form multiple salt bridge-type interactions simul-

taneously.

In a similar fashion to the Aβ16 systems, coordination of the PtII(phen) unit to
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the peptide causes significant disruption to the salt bridge pattern. Here, only nine

of the possible eighteen interactions are observed during simulation. In PtII-Aβ42,

Arg5 frequently interacts with Asp1 (85%), and forms less common salt bridges with

Glu3 (37%), Asp23 (31%) and Glu22 (27%). Interestingly, Arg5 does not interact

with Asp7 - these residues are either side of the PtII(phen) binding site, suggest-

ing that coordination of the metal complex prevents this salt bridge from forming.

Lys16 predominantly forms a salt bridge with Glu22 (87%), much more frequently

than observed for the free peptide; this residue still interacts with Glu11, but with

reduced frequency compared to Aβ42 (34%). Lys28 forms notably fewer salt bridges

in PtII-Aβ42, only interacting with Asp23 (38%) and Asp7 (21%).

The Lys28-Asp23 salt bridge is noted for its importance in stabilising β-sheet struc-

tures and subsequent fibril formation. As such, agents which decrease the prevalence

of this interaction are thought to reduce the likelihood of Aβ fibril formation (see

Chapter 1).[17] Interestingly, the PtII(phen) system studied here has no effect on

this salt bridge, though it decisively impacts others. Given that PtII(phen) is known

to prevent fibril formation (see Chapter 1, [20]), this suggests that its effects on

peptide (secondary) structure and other interactions are more important than its

effect on Lys28-Asp23 interaction, precluding β-sheet and fibril formation.

Finally, hydrogen bond networks were analysed. The total number of hydrogen

bonds per simulation frame for Aβ42 and PtII(Aβ42) were calculated and data shown

in Tables 5.18 and 5.19, respectively. Similar to the results for the 16-residue peptide

studied above, the PtII-Aβ42 systems display fewer hydrogen bonds than their non-

platinated Aβ42 counterparts, though the difference is generally not significant due

to the large SD values. This again suggests that hydrogen bonds in these systems

are highly transient. In contrast to Aβ16, the Aβ42 systems never adopt confor-

mations with no hydrogen bonds. In addition, the PtII-Aβ42 systems do not form

the maximum observed number of hydrogen bonds seen in Aβ42 in three of the four

simulations. It is probable that the exact identity of the hydrogen bonds will be dif-

ferent in the PtII-Aβ42 and Aβ42 simulations, especially as the prevailing secondary

structures in these systems are different. Further work could analyse the changes in

hydrogen bonding patterns in more detail (i.e. on an atom-by-atom basis) but was

not performed for this thesis due to time constraints.
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Aβ42 Ave. # HB SD Min. Max.

1 14.0 2.8 2 26

2 13.7 2.8 2 25

3 10.5 2.4 2 22

4 13.3 2.7 3 24

Table 5.18: Average, SD, min. and max. values of the number of hydrogen bonds

present in Aβ42 simulation.

PtII(Aβ42) Ave. # HB SD Min. Max.

5 11.6 2.5 2 23

6 7.6 2.0 1 15

7 11.5 2.4 2 22

8 9.0 2.4 0 19

Table 5.19: Average, SD, min. and max. values of the number of hydrogen bonds

present in PtII(Aβ42) simulation.

5.4 Conclusions

Molecular dynamics, using LFMM description of metal coordination coupled with

AMBER description of peptide, elaborates details of the structure and properties

of the complex formed between PtII(phenanthroline) and both the metal binding

N-terminal fragment and the complete Aβ peptide.

Modelling the PtII(phenanthroline)-Aβ16 fragments was achieved using five distinct

starting structures, along with analogous simulations of the metal-free peptide.

Here, simulations reach equilibration within a few tens of nanoseconds. A total

of over 800 ns of equilibrated data for metal-free and platinated peptides allow for

detailed comparison of size, secondary structure, and formation of hydrogen bond-

ing and salt bridges. Small changes in overall size are observed on PtII binding,

but rather larger differences in the mobility of individual residues, measured by root

mean square fluctuation, occur. Changes in secondary structure, hydrogen bonding

and salt-bridges on complexation of PtII are also observed: in general, His6 and

His14 that are bound to PtII are less mobile and more structured than their PtII-
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free counterparts. Residues between these are slightly more mobile when bound,

and exhibit slightly greater propensity to adopt turn and 3, 10-helical structures.

Hydrogen bonding is reduced by complexation, but salt bridges are more likely to

form in the presence of PtII, while close contacts between phenanthroline ligand and

aromatic residues Phe4, Tyr10 and His13 are present in at least some of the tra-

jectories, with one structural motif of a sandwich of phenanthroline between Phe4

and His13 observed in a significant proportion of simulation time. In summary, mi-

crosecond timescale molecular dynamics quantifies the subtle but definite changes

induced by coordination of PtII(phen) to the N-terminal portion of the Aβ peptide.

For the PtII(phenanthroline)-Aβ42 and Aβ42 systems, four simulations of each were

performed using the same modelling protocol. Each of the eight simulations was run

for 1 μs and equilibration was reached over the course of several hundred nanosec-

onds. Equilibrated data was again used to study peptide size, secondary structure

and intramolecular interactions such as hydrogen bonds and salt bridges. In this

complete peptide system, pronounced changes are observed upon PtII coordination,

particularly for shape, size and secondary structure; PtII-Aβ42 systems adopt more

extended conformations than their free peptide counterparts, while the prevalence of

helical structure was also greatly increased. Such stabilisation of helices is thought

to prevent β-sheet formation, a critical component of amyloid fibril structure.[21]

This, along with the range of conformations adopted by PtII-Aβ42, supports the

suggestion that these PtII agents promote amorphous aggregation rather than fibril

formation.[20] Further effects of PtII coordination are seen in the salt bridge network,

where PtII decreases the number of interactions, likely as a result of its influence on

the overall peptide structure. These results provide the first insight into the pre-

cise intramolecular interactions of PtII(phen)-Aβ42 systems and provide a plausible

explanation for the experimentally observed effects of PtII(phen) on Aβ42.
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6 Conclusion

The work presented in this thesis aims to summarise investigations into modelling

the interactions of a series of platinumII complexes and the amyloid-β peptide,

believed to play a critical role in the development of Alzheimer’s disease. These

complexes have been shown experimentally to interact with the Aβ peptide and

prevent the formation of amyloid fibrils, but there has been limited modelling work

performed on these systems. Here, this was achieved using a range of DFT, semi-

empirical and molecular mechanics-based approaches.

Though many PtII agents have previously been studied, only the coordination mode

of the original PtII(phen) complex has been elucidated by experiment. Coordination

of these PtII agents to single amino acid residues to model their basic coordination

preference is not representative of the true PtII-Aβ complexes, and so larger peptide

models were pursued in this work. Initially, the metal binding region (His6 – His14)

was studied before extension to the 16-residue N-terminal fragment (Aβ16) and the

complete Aβ42 peptide.

While accurate, DFT methods are too expensive to be used to generate and model

large numbers of conformations of flexible molecules such as Aβ. As an alternative,

semi-empirical and molecular mechanics-based methods are considered. Tradition-

ally, molecular mechanics approaches fail to model the d-electron effects of transition

metals, though parameters to handle PtII in biological systems have previously been

published. However, implementation of this purely classical technique required addi-

tional parameterisation and may not provide the desired flexibility in the description

of PtII coordination. As a result, the LFMM model - which directly introduces the

influence of d-electrons to the classical forcefield - was explored as a computation-

ally tractable alternative to DFT. Additionally, this LFMM approach requires no

additional parameterisation.
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Aβ is an intrinsically disordered peptide – it contains little or no defined structure –

and so the consideration of peptide flexibility and the sampling of available peptide

conformations is key to this work. While systematic and stochastic conformational

searches are impractical for systems of the size studied here, the recent LowMode

MD search method is known to efficiently identify low energy conformations of flex-

ible macromolecules, making it an attractive option for studies of Aβ. In addition,

while LowMode MD is able to produce distinct conformations of the peptide, fur-

ther insight into the effects of PtII coordination on Aβ are obtained using molecular

dynamics techniques.

Following modelling of various PtII crystal structures using a range of DFT methods,

the hybrid BHandH functional was shown to accurately model PtII coordination ge-

ometry and has been used for similar investigations previously. Studies of two PtII

agents, namely PtII(bipy) and PtII(phen), with Aβ6-14 were used to validate the

LFMM and LowMode MD methods against BHandH results; while LowMode MD

produces accurate peptide geometries, LFMM was shown to accurately and reliably

represent PtII coordination, though relative energies of conformations were initially

poorly reproduced. Investigation of semi-empirical methods showed that PM7 was

able to reproduce both the geometries of these crystal structures and the relative

energies and geometries of PtII-Aβ complexes at the DFT level at much lower com-

putational expense.

With the suitability of the LFMM / PM7 approach ascertained, this protocol was

used to model a series of six PtII(ligand) complexes, consisting mainly of those taken

directly from current chemical literature, and study their effects on Aβ6-14 peptide

structure in detail. In particular, the preferred coordination sites of these com-

plexes and resulting peptide secondary structure were investigated. Importantly,

the coordination of these PtII complexes to Aβ is found to greatly restrict the con-

formational freedom of the peptide fragment, regardless of the ligand present. In

addition, Boltzmann weighting of the energies of these conformations shows that

PtII complexes possess only a small number of accessible conformations at 310 K.

However, each of the different complexes show a clear Aβ coordination preference,

with varied binding to His6, His13 and His14 as well as Nδ and Nε atoms within

those residues. Among these, the PtII(phen) complex is shown to bind to His6 Nε

His14 Nε , in agreement with experimental data.
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Furthermore, analysis of the peptide structure in the PtII-Aβ adducts using Ra-

machandran plots and the STRIDE algorithm revealed that complexes largely adopt

conformations found in α-helical areas of conformational space regardless of the lig-

and, though wide coverage of the Ramachandran plot was observed in all cases.

Notably, the non-planar ligand (5) promotes conformations found on the right hand

side of the Ramachandran plot – these conformations are observed much more fre-

quently than for any of the other ligand systems studied, suggesting some importance

of this ligand structure. Analysis of peptide secondary structure using STRIDE

showed that the free peptide adopts turn-type secondary structure in residues His6-

Glu11; coordination of the PtII complexes disrupts this secondary structure in a

ligand-specific manner, interrupting or translating the turn structure or forming a

3,10-helix. These results suggest that PtII coordination preference depends on the

nature of the ligand in the complex, and that this also strongly affects the secondary

structure of the N-terminal region of Aβ. As such, the metal coordination and sub-

sequent alteration of peptide structure may be controlled via ligand design.

Further studies using ligand-field molecular dynamics on PtII(phen) -Aβ16 and -

Aβ42 have been used to investigate the influence of the PtII complex on the structure

and properties of Aβ. True structural equilibration of this intrinsically disordered

peptide is beyond current simulation capability, but both Aβ and PtII-Aβ systems

were pseudo-equilibrated in timescales up to several hundred nanoseconds. Anal-

ysis of dynamics trajectories allowed for comparisons of size, secondary structure

and intramolecular interactions (hydrogen bonds and salt bridges) of the Aβ and

PtII(phen)-Aβ systems.

MD results for free Aβ monomers are shown to be in general agreement with exist-

ing experimental and simulation data. Coordination of the PtII(phen) unit to Aβ16

does not induce large changes in peptide size - all structures remain in collapsed

conformations - but this is not the case for Aβ42, where PtII coordination produces

clear changes in peptide size and structure, particularly through the peptide’s cen-

tral and C-terminal regions. Furthermore, while secondary structural elements in

both free and platinated peptides are generally consistent across Aβ16 and Aβ42

systems, notable deviations, such as additional helices in PtII-Aβ42, are observed in

the complete peptide model. In addition, important differences are also observed in

salt bridge patterns within the N-terminus of Aβ42 systems compared to Aβ16. This

suggests that while Aβ16 is a useful model when considering the N-terminal metal
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binding sites, peptide models larger than the 16-residue N-terminus are required to

capture the full extent of the effects of PtII coordination on Aβ. Importantly, the

PtII-Aβ42 structures display a clear increase in α- helical and 3,10-helical character

throughout the central hydrophobic region of the peptide, as well as the N-terminus

compared to free Aβ42; stabilisation of helical structure in Aβ has been previously

suggested as a route to preventing β-sheet and amyloid fibril formation. As a result,

these simulations suggest a rationale for how these complexes affect Aβ structure

and its ability to form amyloid fibrils, a phenomenon that was previously unex-

plained.

The results presented in this thesis provide the first computational approaches to

study the interactions of a series of PtII-based agents - purported to be useful in

the treatment of Alzheimer’s disease - and the amyloid-β peptide. Notably, this

work presents both the first dynamics simulations of these anti-Aβ PtII complexes

and the first long-timescale results of LFMD. These investigations offer insight into

the nature of the coordination of these complexes to the peptide, their effects on

peptide structure and dynamics, and provide a reasonable explanation for their

experimentally observed effects on Aβ.
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7 Further Work

There are several research avenues that follow directly from the work in this thesis:

First, the molecular dynamics simulations in Chapter 5 could be expanded in both

simulation length and scope. In particular, exploration of enhanced sampling tech-

niques such as metadynamics or replica-exchange molecular dynamics may provide

further insight into the structure and behaviour of these peptides over time. Un-

fortunately, the DL-POLY-LF program is not capable of REMD simulations, so the

ligand-field procedure would need to be implemented in another simulation package.

In addition to this, molecular dynamics simulations of PtII-Aβ dimer species may

provide more detailed information into how these agents disrupt Aβ aggregation.

Furthermore, the inclusion of explicit solvent in these simulations may influence the

available peptide conformations and the transitions between them.

Secondly, it would be interesting to model the φ-MePy ligands proposed by Faller

and co-workers (see Section 1.4.2). These complexes contain a PtII-C bond that

is not parameterised in DommiMOE, so modelling would require thorough param-

eterisation and validation of any new work. However, the formally anionic C is

isoelectronic with nitrogen, for which LFMM parameters do exist; these current

parameters would provide a useful starting point. Once this was complete these

PtII complexes could be modelled as described in this thesis and any similarities or

differences in metal coordination and induced peptide behaviour noted.

Finally, LFMM parameters could be developed to study the RuII and CoIII anti-

Aβ-aggregation agents described in Section 1.4.2. While the PtII parameters used

in this work could serve as a useful starting point, accurate parameterisation of two

new metals and all associated ligands would likely be a long process. However, once

complete, the procedures in this thesis could be replicated for these different classes

of compound, and comparisons drawn.
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A Appendix

A.1 Appendices for Chapter 3

A.1.1 DFT Modelling of Xray Crystal Structures
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Basis B3LYP BHandH PBE

Err. Length (Å) Err. Angle (◦) Err. Length (Å) Err. Angle (◦) Err. Length (Å) Err. Angle (◦)

LANL2DZ 0.123 4.4 0.065 4.5 0.090 4.4

cep-121G 0.105 4.1 0.048 4.3 0.071 4.2

SDD 0.102 4.0 0.042 4.1 0.070 4.0

SDD / 6-31G(d) 0.099 3.5 0.027 3.2 0.075 3.3

SDD / 6-311G(d) 0.103 3.6 0.052 3.3 0.077 3.3

SDD / 6-31G(d,p) 0.099 3.5 0.055 3.2 0.075 3.2

SDD / 6-31+G(d) 0.096 3.8 0.050 3.4 0.075 3.3

SDD / 6-31+G(d,p) 0.090 3.7 0.050 3.4 0.075 3.3

SDD / 6-31+G(2d,p) 0.096 3.5 0.046 3.7 0.071 3.6

SDD / 6-31++G(2d,p) 0.096 3.5 0.046 3.7 0.071 3.6

SDD / 6-31+G(2d,f,p) 0.087 3.5 0.044 3.6 0.068 3.4

SDD / cc-pVDZ 0.100 3.6 0.052 3.1 0.077 3.4

SDD / TZV 0.108 4.0 0.048 4.2 0.068 4.1

Table A.1: Max errors in crystal structures XUKWUV, OXUYUC, DAMIPT, HEKJEM, and MIMDPT using different DFT functionals

and basis sets
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Basis B97-D ωB97xD LC-ωPBE

Err. Length (Å) Err. Angle (◦) Err. Length (Å) Err. Angle (◦) Err. Length (Å) Err. Angle (◦)

LANL2DZ 0.135 4.1 0.103 4.5 0.079 4.3

cep-121G 0.120 3.8 0.083 4.0 0.072 4.0

SDD 0.112 3.6 0.082 3.9 0.068 3.9

SDD / 6-31G(d) 0.095 2.9 0.084 2.9 0.075 3.0

SDD / 6-311G(d) 0.106 2.8 0.086 2.9 0.078 3.1

SDD / 6-31G(d,p) 0.108 2.8 0.084 2.9 0.075 3.0

SDD / 6-31+G(d) 0.106 3.0 0.084 3.1 0.075 3.1

SDD / 6-31+G(d,p) 0.109 2.9 0.083 3.0 0.075 3.1

SDD / 6-31+G(2d,p) 0.104 3.1 0.068 3.4 0.044 3.4

SDD / 6-31++G(2d,p) 0.104 3.1 0.068 3.4 0.044 3.4

SDD / 6-31+G(2d,f,p) 0.106 3.0 0.078 3.2 0.069 3.3

SDD / cc-pVDZ 0.095 2.8 0.076 2.9 0.052 2.8

SDD / TZV 0.118 3.6 0.084 3.9 0.055 4.0

Table A.2: Max errors in crystal structures XUKWUV, OXUYUC, DAMIPT, HEKJEM and MIMDPT using different DFT functionals

and basis sets
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A.1.2 LFMM Parameters

The relevant LFMM.par parameters are shown here in MOE format:

[Morse]

#T1 T2 dist D a

M+2 * 2.000 200.000 1.000

* * 2.000 200.000 1.000

Pt+2 NA 2.075 60.0 1.70 0.0 0.0

Pt+2 NB 2.075 60.0 1.70 0.0 0.0

[vdW]

#M L A B

* * 10000 500

[ll]

#M L rep n

* * 1000 6

Pt+2 NA 3000 6

Pt+2 NB 2500 6

[esig]

#M L esig0 esig1 esig2 esig3 esig4 esig5 esig6

* * 0 0 0 0 0 0 0

Pt+2 NA 0 0 0 0 105000 0 0

Pt+2 NB 0 0 0 0 102000 0 0

[epix]

#M L epix0 epix1 epix2 epix3 epix4 epix5 epix6

* * 0 0 0 0 0 0 0

Pt+2 NA 0 0 0 0 0 0 0

Pt+2 NB 0 0 0 0 0 0 0

[epiy]

#M L epiy0 epiy1 epiy2 epiy3 epiy4 epiy5 epiy6

* * 0 0 0 0 0 0 0

Pt+2 NA 0 0 0 0 20000 0 0

Pt+2 NB 0 0 0 0 16000 0 0
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[exds]

#M L exds0 exds1 exds2 exds3 exds4 exds5 exds6

* * 0 0 0 0 0 0 0

Pt+2 NA 0 0 0 0 0 0 147000

Pt+2 NB 0 0 0 0 0 0 137000

[pair]

#M L P0 P1 P2 P3 P4 P5 P6

* * 0 0 0 0 0 0 0

A.1.3 Validation of LFMM Parameters

Bipy εε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.011 1.979

Ave. Pt-NMe-imid 2.004 1.997

NMe-imid-NMe-imid 87.3 83.9

NLig-NLig 80.4 92.2

NMe-imid-NLig 96.2 92.02

Table A.3: Selected geometric data for the small model system PtII(bipy)(Me-imid)2

where Me-imid is bound by Nε atoms. Data obtained DFT and LFMM methods.

Bipy δε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.011 1.960

Ave. Pt-NMe-imid 2.007 1.952

NMe-imid-NMe-imid 87.7 90.3

NLig-NLig 80.4 92.7

NMe-imid-NLig 96.0 88.9

Table A.4: Selected geometric data for the small model system PtII(bipy)(Me-imid)2

where Me-imid is bound by Nδ and Nε atoms. Data obtained DFT and LFMM

methods.
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Phen δδ Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.011 1.960

Ave. Pt-NMe-imid 2.007 1.952

NMe-imid-NMe-imid 88.5 89.6

NLig-NLig 81.2 94.8

NMe-imid-NLig 95.3 88.3

Table A.5: Selected geometric data for the small model system PtII(phen)(Me-imid)2

where Me-imid is bound by Nδ atoms. Data obtained DFT and LFMM methods.

Phen εε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.019 1.982

Ave. Pt-NMe-imid 2.001 1.998

NMe-imid-NMe-imid 88.1 84.0

NLig-NLig 81.2 93.9

NMe-imid-NLig 95.4 91.2

Table A.6: Selected geometric data for the small model system PtII(phen)(Me-imid)2

where Me-imid is bound by Nε atoms. Data obtained DFT and LFMM methods.

Phen δε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.019 1.972

Ave. Pt-NMe-imid 2.003 1.971

NMe-imid-NMe-imid 88.4 85.2

NLig-NLig 81.2 94.5

NMe-imid-NLig 95.2 90.4

Table A.7: Selected geometric data for the small model system PtII(phen)(Me-imid)2

where Me-imid is bound by Nδ and Nε atoms. Data obtained DFT and LFMM

methods.
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DpPhen δδ Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.014 1.958

Ave. Pt-NMe-imid 2.008 1.951

NMe-imid-NMe-imid 88.4 89.6

NLig-NLig 80.8 93.0

NMe-imid-NLig 95.5 89.3

Table A.8: Selected geometric data for the small model system PtII(phen)(Me-imid)2

where Me-imid is bound by Nδ atoms. Data obtained DFT and LFMM methods.

DpPhen εε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.013 1.958

Ave. Pt-NMe-imid 2.003 1.950

NMe-imid-NMe-imid 87.9 90.5

NLig-NLig 80.7 92.8

NMe-imid-NLig 95.8 88.68

Table A.9: Selected geometric data for the small model system PtII(phen)(Me-imid)2

where Me-imid is bound by Nε atoms. Data obtained DFT and LFMM methods.

DpPhen δε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.013 1.958

Ave. Pt-NMe-imid 2.004 1.951

NMe-imid-NMe-imid 88.4 90.5

NLig-NLig 80.8 92.9

NMe-imid-NLig 95.4 88.8

Table A.10: Selected geometric data for the small model system PtII(phen)(Me-

imid)2 where Me-imid is bound by Nδ and Nε atoms. Data obtained DFT and

LFMM methods.
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DPPZ δδ Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.020 1.962

Ave. Pt-NMe-imid 2.006 1.950

NMe-imid-NMe-imid 88.4 91.2

NLig-NLig 81.0 93.4

NMe-imid-NLig 95.3 88.0

Table A.11: Selected geometric data for the small model system PtII(phen)(Me-

imid)2 where Me-imid is bound by Nδ atoms. Data obtained DFT and LFMM

methods.

DPPZ εε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.018 1.954

Ave. Pt-NMe-imid 2.001 1.950

NMe-imid-NMe-imid 88.0 90.9

NLig-NLig 81.1 93.5

NMe-imid-NLig 95.5 88.2

Table A.12: Selected geometric data for the small model system PtII(phen)(Me-

imid)2 where Me-imid is bound by Nε atoms. Data obtained DFT and LFMM

methods.

DPPZ δε Bond (Å) / Angle (◦) BHandH LFMM

Ave. Pt-NLig 2.019 1.962

Ave. Pt-NMe-imid 2.001 1.944

NMe-imid-NMe-imid 88.5 89.2

NLig-NLig 81.1 93.5

NMe-imid-NLig 95.3 89.1

Table A.13: Selected geometric data for the small model system PtII(phen)(Me-

imid)2 where Me-imid is bound by Nδ and Nε atoms. Data obtained DFT and

LFMM methods.
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A.2 Appendices for Chapter 4

Figure A.1: Ramachandran map for the generated conformations of the His6 Nδ

His13 Nδ binding mode of PtII(2)-Aβ6-14

Figure A.2: Ramachandran map for the generated conformations of the His6 Nδ

His13 Nε binding mode of PtII(2)-Aβ6-14
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Figure A.3: Ramachandran map for the generated conformations of the His6 Nε

His13 Nδ binding mode of PtII(2)-Aβ6-14

Figure A.4: Ramachandran map for the generated conformations of the His6 Nε

His13 Nε binding mode of PtII(2)-Aβ6-14

252



Chapter A

Figure A.5: Ramachandran map for the generated conformations of the His6 Nδ

His14 Nδ binding mode of PtII(2)-Aβ6-14

Figure A.6: Ramachandran map for the generated conformations of the His6 Nδ

His14 Nε binding mode of PtII(2)-Aβ6-14
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Figure A.7: Ramachandran map for the generated conformations of the His6 Nε

His14 Nδ binding mode of PtII(2)-Aβ6-14

Figure A.8: Ramachandran map for the generated conformations of the His6 Nε

His14 Nε binding mode of PtII(2)-Aβ6-14
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A.3 Appendices for Chapter 5

A.3.1 Aβ16 and Pt(Aβ16) Data

Figure A.9: Initial conformations of Aβ16 simulations. Top row: Conformations

A-C. Bottom row: Conformations D-E.

Figure A.10: Initial conformations of Pt(phen)-Aβ16 simulations. Top row: Con-

formations F-H Bottom row: Conformations I-J
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Figure A.11: RMSF data for trajectories A-E of Aβ16

Figure A.12: RMSF data for trajectories F-J of PtII-Aβ16
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Figure A.13: SASA by residue for simulations A-E of Aβ16
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Figure A.14: SASA by residue for simulations F-J of PtII-Aβ16

Figure A.15: Plot of π-π contact distance over production MD trajectory of simu-

lation G. Phe4-ligand distance is shown in black, Tyr10-ligand distance in red and

His13-ligand distance in blue.
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Figure A.16: Plot of π-π contact distance over production MD trajectory of simu-

lation H. Phe4-ligand distance is shown in black, Tyr10-ligand distance in red and

His13-ligand distance in blue.

Figure A.17: Plot of π-π contact distance over production MD trajectory of simu-

lation I. Phe4-ligand distance is shown in black, Tyr10-ligand distance in red and

His13-ligand distance in blue.
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Figure A.18: Plot of π-π contact distance over production MD trajectory of simu-

lation J. Phe4-ligand distance is shown in black, Tyr10-ligand distance in red and

His13-ligand distance in blue.

A.3.2 Aβ42 and Pt(Aβ42) Data

Aβ42 Ave. RMSD / (Å) SD Min. Max.

1 4.120 0.082 3.754 4.561

2 4.973 0.134 4.513 5.428

3 19.087 0.090 18.707 19.631

4 15.786 0.111 15.201 16.221

Table A.14: Average, standard deviation, min. and max. RMSD of production MD

for Aβ42 simulations.

Aβ42 Ave. RMSD / (Å) SD Min. Max.

5 10.860 0.342 8.551 12.180

6 5.891 0.073 5.498 6.179

7 10.333 0.944 8.241 12.304

8 12.555 1.087 8.704 15.230

Table A.15: Average, standard deviation, min. and max. RMSD of production MD

for PtII-Aβ42 simulations.
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Figure A.19: Average RMSF per residue for simulations 1-4 of Aβ42

Figure A.20: Average RMSF per residue for simulations 5-8 of PtII-Aβ42

Aβ42 Asp1 Glu3 Asp7 Glu11 Glu22 Asp23

Arg5 27.25 46.69 53.51 11.37 0.00 2.23

Lys16 48.56 0.00 0.00 52.78 48.62 0.00

Lys28 22.63 0.00 22.48 26.38 26.43 37.66

Table A.16: Combined salt-bridge data (% presence) for Aβ42 simulations

261



Chapter A

PtII(Aβ42) Asp1 Glu3 Asp7 Glu11 Glu22 Asp23

Arg5 85.22 37.30 0.00 0.00 27.09 31.25

Lys16 43.71 0.00 0.00 34.26 97.47 0.00

Lys28 0.00 0.00 21.26 0.00 0.00 37.50

Table A.17: Combined salt-bridge data (% presence) for PtII-Aβ42 simulations

A.4 Guide for LFMD in DL-POLY

This guide aims to cover how the user should set up DL-POLY Ligand Field Molec-

ular Dynamics simulations using MOE.

(i) Construct your system using MOE, ensuring that all metal and ligand donor

atoms appear in the same chain. This can be checked using the atom manager,

or via the SEQ button in the top right of the MOE main window. In most cases,

this may be achieved by adding an arbitrary atom to one of the coordinating

residues, then using the atom manager to convert this new atom to the metal

of interest.

(ii) Save structure as .MOE and .PDB formats, then close the system.

(iii) Re-open the PDB file. Check atom types of metals and ligand donor atoms

and correct if necessary.

(iv) Calculate forcefield charges for all peptide atoms.

(v) Run MT/STM adjustcharge.svl script to add Merz-Kollman charges to metal

atoms and coordinated ligands. For novel systems, this script must be modified

to include the new coordination types and appropriate Merz-Kollman charges.

(vi) Save as .MOE file.

(vii) Open the SVL window via the button in the top right of the MOE main

window.

(viii) In the SVL window, run LFMM main[ ], selecting the appropriate number of

d-electrons and spin-state.

(ix) In the SVL window, run LFMM export lfse input[ ].

(x) In the SVL window, run LFMM write dlpoly inp[ ]
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You should now have the DL-POLY FIELD file, lfse.in file and the DL-POLY CON-

FIG file and PDB file, with atoms in the same order, required for post-simulation

analysis.

Post-simulation analysis and visualisation is possible using the Visual Molecular

Dynamics (VMD) package, version 1.9.2:

(i) In the VMD main window, click File → NewMolecule and open the PDB

file generated earlier in MOE using Load.

(ii) Once loaded, click File → NewMolecule in the main window again. In the

drop-down for LoadF iles For : select the PDB file. Open the DL-POLY HIS-

TORY file, making sure to specify the DL-POLY v2 HISTORY file type. Press

Load. Your simulation will now open, and will include residue information such

that the analysis tools in VMD may be used.
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