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1 ABSTRACT  13 

What role does the progressive geometric evolution of subduction-related mélange shear zones play in the 14 

development of strain transients? We use a “virtual shear box” experiment, based on outcrop-scale 15 

observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New 16 

Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is 17 

dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip 18 

boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-19 

viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the 20 

progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under 21 

constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by 22 

aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of 23 

strain transients such as slow slip. 24 

 25 

2 INTRODUCTION 26 

Subduction megathrust faults can exhibit a wide range of slip behaviors (e.g., Ide et al., 2007; e.g., Peng and 27 

Gomberg, 2010). Some are interseismically locked to ~20-30 km depths, accumulating stress slowly 28 

between large earthquakes, and transitioning to steady aseismic creep at greater depths where temperatures 29 

exceed those required for quartz plasticity (>350°C; e.g., Hyndman and Wang, 1993). Other megathrust 30 

faults can experience punctuated slow slip events (SSEs) – characterized by aseismic creep that occurs at 31 

rates that are subseismic but faster than plate boundary averages – that last for days to years (e.g., Miyazaki 32 

et al., 2006; Peng and Gomberg, 2010). Slow slip rates are commonly 0.15 – 1.0 m year-1, and up to ~2 cm 33 

day-1 (e.g., Miyazaki et al., 2006; Schwartz and Rokosky, 2007; Wallace and Beavan, 2010; Bartlow et al., 34 

2014). Transient slow slip is commonly associated with episodic tectonic tremor and/or microseismicity, and 35 

may play a significant role in stress cycling at subduction zones (Ide et al., 2007; Schwartz and Rokosky, 36 

2007; Peng and Gomberg, 2010). Many SSEs occur at depths of >20–30 km, although they have also been 37 

detected at <5–20 km depths (e.g., Wallace et al., 2012; Araki et al., 2017). Several recent explanations for 38 



shallow episodic tremor and slip (ETS) focus on the transitional frictional behavior of clays, and the effects 39 

of evolving clay mineralogy on frictional stability and strength with increasing pressure and temperature, 40 

based on experimental deformation of clay- and quartz-rich gouges (e.g., Ikari and Saffer, 2011; den Hartog 41 

et al., 2012; Ikari et al., 2013; Ikari et al., 2015). Other explanations relate to frictional stability variations 42 

resulting from low normal stresses associated with zones of highly overpressured fluids, and the effects of 43 

heterogeneous stresses and materials (e.g., Scholz, 1998, 2002; Liu and Rice, 2005, 2007; Skarbek et al., 44 

2012; Wang and Bilek, 2014; Saffer and Wallace, 2015, and references therein).  45 

Laboratory experiments on clay- and quartz-rich gouges have documented the effects of evolving clay 46 

mineralogy on frictional stability and strength with pressure and temperature (e.g., Ikari et al., 2013; Saito et 47 

al., 2013). Such shear box experiments typically deform mm-thick gouge layers. In contrast, studies of 48 

exhumed subduction faults suggest that at ≳1 km depths, the subduction interface between upper and lower 49 

plates at convergent margins can be hundreds of meters wide, with multiple discrete, anastomosing, 50 

simultaneously active fault strands organized within 5-35 m thick tabular high-strain zones (Rowe et al., 51 

2013). Exhumed subduction thrusts also exhibit a complex rheological mix of materials that have 52 

experienced mixed brittle fracturing, ductile shear, and solution-precipitation creep, accompanied by 53 

transient near-lithostatic fluid pressure cycling (e.g., Bachmann et al., 2009; Fagereng and Sibson, 2010; 54 

Fagereng, 2011a; Hayman and Lavier, 2014). To date, only a few attempts have been made to capture such 55 

complex rheological interactions using laboratory and numerical experiments (e.g., Skarbek et al., 2012; 56 

Reber et al., 2015).  57 

Here, we attempt to understand subduction zone slip behavior at scales greater than those attained in 58 

laboratory experiments, by simulating a “virtual shear box” using numerical modeling. We deform a two-59 

phase mélange, volumetrically dominated by large competent clasts, surrounded by a weak interconnected 60 

matrix. Our results suggest that geometric reorganization within a subduction mélange can drive significant 61 

oscillations in shear stress and/or slip velocities of durations and frequencies of months to years.  62 

 63 



3 CHRYSTALLS BEACH COMPLEX: AN ANCIENT SUBDUCTION ANALOGUE 64 

The initial distribution and rock materials in our model domain are based on field exposures of the 65 

Chrystalls Beach Complex (CBC), New Zealand. The CBC is a <4 km thick tectonic mélange deformed 66 

along an ancient subduction interface between 175–155 Ma, at <550 MPa and ~300°C peak metamorphic 67 

conditions (Fagereng and Cooper, 2010; Fagereng, 2011a, and references therein). Within the CBC, 68 

asymmetric competent clasts of sandstone, chert and basalt – themselves derived from non-coaxial shear and 69 

layer-perpendicular shortening of original bedding – are surrounded by a weak phyllitic matrix (Fagereng, 70 

2011a). The frequency-size distributions of competent lenses follow a power-law distribution, where the 71 

power law exponent depends on the volume ratio of competent to incompetent material (Fagereng, 2011b). 72 

The competent clasts contain internal fault-fracture networks comprising extension fractures that are 73 

dominantly oriented perpendicular to clast long axes (Fagereng, 2011b).  74 

The CBC has been intensely sheared in a mixed continuous-discontinuous style, where discontinuous 75 

deformation records localized seismic and/or aseismic slip adjacent to volumetrically continuous fabrics that 76 

have experienced aseismic flow (Fagereng and Sibson, 2010, and references therein). Exposures express a 77 

complex superposition of deformation structures, indicating formation in a time-progressive sequence of 78 

increasing cohesive strength (Fagereng, 2011a). Fagereng (2011a) has suggested that within the CBC, 79 

different mineral-scale deformation mechanisms, the degree of continuous versus discontinuous deformation, 80 

and bulk rheological behavior, all depend on the local volumetric ratio of competent clasts to matrix, and 81 

that transient, locally high fluid pressures were required to form slickenfibres, extension fractures, and vein 82 

deposits.  83 

 84 

4 THE “VIRTUAL SHEAR BOX” 85 

The finite element code SULEC (Buiter and Ellis, 2012) is used to model aseismic slip in a “virtual shear 86 

box” that represents a portion of an actively deforming subduction thrust interface, which may itself be up to 87 

hundreds of meters thick (Rowe et al., 2013). We use a representative clast-dominated mélange 88 

configuration from the CBC (Fagereng and Sibson, 2010), characterized by ~70% competent clasts and ~30% 89 



mudstone matrix (Fig. 1). The exposure is representative of a clast-dominated zone within the mélange; this 90 

differs from zones where the matrix is volumetrically dominant, and bulk steady creep inferred to have 91 

occurred (Fagereng and Sibson, 2010). We assume that the current observed outcrop configuration 92 

approximates the subduction system immediately prior to exhumation, such that it is appropriate for 93 

modeling deformation at peak metamorphic conditions. Therefore, we do not model a time-progressive 94 

increase in clast cohesion – rather we hold the model domain at a constant depth for the duration of the 95 

model run (which lasts for months – decades). 96 

We apply a composite matrix rheology, including a combination of pressure-sensitive Coulomb yield and 97 

linear precipitation-solution creep, derived from a microphysical model of phyllosilicate gouge (Niemeijer 98 

and Spiers, 2005; Den Hartog and Spiers, 2013; Fagereng and den Hartog, 2017), and viscous non-linear 99 

dislocation creep (Supplement S1), (Mares and Kronenberg, 1993; Bukovská et al., 2016). At each time-step, 100 

the deformation mechanism (frictional shear combined with pressure solution, or non-linear creep) is 101 

determined at each node as the mode of lowest yield stress. The strong cohesive clasts may only deform 102 

brittlely, and have a Byerlee friction coefficient of 0.72, and cohesive strength of 70 MPa (see Supplement 103 

S1). Our experiments are run at 250C, lithostatic pressure corresponding to 20 km depth (520 MPa, 104 

assuming a bulk rock density of 2650 kg m-3), and constant fluid pressure ratios  = (Pf /z) of 0.67, 0.8 or 105 

0.9, where Pf is fluid pressure, and z is overburden stress. Here we assume that fluid pressure is greater than 106 

hydrostatic (i.e., =0.38), and may approach lithostatic values ( ≥ 0.9) consistent with structural 107 

interpretations of Fagereng et al. (2010) from orientations and microstructures of shear and extension veins 108 

within the CBC. In order to simplify modeling, we do not allow tensile hydrofractures to occur; instead, we 109 

impose a lower cutoff to maintain effective stresses at a small positive value (effectively reducing rock yield 110 

strength to a lower limit of 1 MPa). Implicit in this simplification is an assumption of volume conservation 111 

within the model domain. Given that tensile veins in mélanges are commonly filled by locally derived 112 

materials (e.g., Fisher et al., 1995), and that the microphysical model for frictional-viscous creep assumes 113 

microscale material transport around quartz clasts (den Hartog and Spiers, 2014), we acknowledge the 114 

possibility of long-term volume changes within mélanges, but expect that a closed system behavior at the 115 

scale of our model is reasonable approximation at the modeled time scales.  116 



 117 

5 EXPERIMENT 1: CONSTANT VELOCITY EXPERIMENTS 118 

In experiment 1, a uniform horizontal velocity is applied at the upper boundary (Vtop), above a fixed lower 119 

boundary. We measure the average shear stress at the upper boundary (τtop) required to deform the mélange 120 

at a prescribed Vtop – either 5 cm year-1 (i.e., plate tectonic rates; Fig. 2a), or 3 cm week-1 (i.e., rates 121 

representative of slow slip on the northern Hikurangi Margin; Fig. 2b), (Wallace and Beavan, 2010). This 122 

experiment is analogous to an experimental shear box apparatus that deforms at constant velocity, only at 123 

larger scale. 124 

Fig. 2a and b illustrate that the τtop necessary to deform the modeled mélange depends on the fluid pressure 125 

ratio , with lower stresses required for higher . These models experience significant temporal variations in 126 

τtop for a given , with variations of up to 70% of the time-averaged shear stress. For example, for Vtop = 5 127 

cm year-1, the τtop required to deform the model domain can vary between 35 – 60 MPa ( = 0.67), 20 – 48 128 

MPa ( = 0.8), and 2 – 30 MPa ( = 0.9; Fig. 2a). These stress fluctuations result from the reorganization of 129 

clast geometry over time, as clasts interact and transmit stress. Stress cyclicity is a function of the clast-130 

dominated model architecture, where mutually obstructing competent clasts force strain to localize into 131 

narrow adjacent matrix channels (Fig. 3). Tightly-packed clasts form stress bridges that dip in the direction 132 

of slip (cf., Deubelbeiss et al., 2011; Hayman and Lavier, 2014) - where we define stress bridges as parts of 133 

the model domain where shear stresses exceed 100 MPa. When clasts obstruct matrix pathways, actively 134 

straining matrix channels are more distributed and less interconnected throughout the model area, and 135 

experience lower strain-rates. Stress bridges develop between adjacent clasts (orange shaded areas, Fig. 3a, 136 

Fig. 3c). When clasts are instead widely spaced and matrix pathways are unobstructed, strain localizes onto 137 

a small number of interconnected matrix pathways, and little force is transmitted between the clasts (i.e., 138 

devolved stress bridges; Fig. 3b). This interplay results in an oscillation between a state where the model is 139 

characterized by an interconnected weak matrix, and one where elevated shear stresses are supported by a 140 

strong load-bearing framework. Stress cycling continues indefinitely for larger amounts of shear strain (γ) 141 

than is shown in Fig. 2 (γ ≳ 6.0), because block rotation (which inhibits and/or disrupts the development of 142 

through-going layers of matrix material) competes with progressive clast disaggregation. 143 



Shear stress fluctuations can be converted to effective friction coefficients. A bulk Coulomb friction 144 

coefficient for the entire model is calculated by dividing τtop by the effective overburden stress. The higher 145 

the pore fluid pressure ratio, the lower the effective friction coefficient – this can be very low, e.g., for  = 146 

0.8 it is ~0.06. This effective friction coefficient has the same temporal cycling as seen in the stress plots in 147 

Fig. 2a. 148 

Shear strain preferentially localizes within the phyllitic matrix and along the edges of competent clasts. 149 

Where matrix shear pathways are forced to localize onto narrow channels between interacting clasts, the 150 

matrix deforms partly by frictional sliding/pressure solution, and partly by nonlinear phyllosilicate 151 

dislocation creep where shear pathways widen and strain-rates are reduced. The active matrix deformation 152 

mechanism is controlled by the effective stress, shear strain rate (  ), and temperature at each node. Despite 153 

the fluid pressure ratio  being held constant in each model run, interactions between competent clasts and 154 

stress bridges between them can cause large variations in dynamic stresses, sometimes causing effective 155 

pressure to locally drop to zero where clast interactions lead to extensional stresses (Fig. 3, right-hand 156 

panels). Interestingly, this effect is greatest for the model where the fluid pressure ratio are modest (e.g.,  = 157 

0.67, 0.8) rather than at higher fluid pressures (e.g.,  = 0.9); this is because dynamic stresses are reduced for 158 

the high fluid pressure experiment. Fig. 3 also illustrates that the principal compressive stress direction at 159 

each node can vary by up to ±45 from the expected orientation of ~45. Local stress rotations occur as clast 160 

geometry and matrix pathways evolve, causing locally elevated dynamic stress effects. 161 

Fig. 2 demonstrates short-period stress fluctuations of a few MPa, superimposed on longer time-scale cyclic 162 

stress oscillations. Short-term fluctuations result from individual clast interactions, while the longer 163 

timescale oscillation reflects wholescale development and break-down of stress bridges across the model. 164 

Longer timescale stress oscillations have a period that depends on Vtop (Fig. 2a versus b), since the rate of 165 

geometric reorganization depends on the speed at which the box is shearing. For example, when the box is 166 

sheared at 5 cm year-1, spectral analysis of Fig. 2a indicates that large-scale stress changes occur over a 167 

superposition of periods of ~years to tens of years, whereas when Vtop = 3 cm week-1 they occur over periods 168 

of months to years (Fig. 2b). The periodicity in these models is not very regular, owing to the complex 169 

geometry derived from outcrop scale. The periodicity derived from such an outcrop-scale volume would be 170 



expected to average out for deformation over a shear zones at larger scales of ~100 m – 1 km. The 171 

periodicity of stress cyclicity also depends on the thickness of the deforming region, for a constant Vtop. If 172 

deformation is distributed over multiple anastomosing shear zones at a larger scale than we have modelled, 173 

then a given Vtop will result in lower strain-rates, increasing the period of stress cyclicity. For example, if our 174 

model domain accommodated 20% of the total subduction zone slip rate, then for tectonic rates of 5 cm 175 

year-1 stress cyclicity would have a period of 25 – 300 years. 176 

 177 

6 EXPERIMENT 2: CONSTANT SHEAR STRESS EXPERIMENTS 178 

In experiment 2 (Fig. 4a, b) we hold the fluid pressure ratio constant at  = 0.8, and apply a constant shear 179 

stress at the upper boundary (τtop), while we allow the slip velocity at the upper boundary Vtop to vary freely. 180 

The shear stress imposed on the modeled subduction mélange section is constant in time. Sufficiently high 181 

τtop results in time-variable cycling in Vtop, while lower applied shear stress is insufficient to deform the box. 182 

To illustrate this, we apply a constant τtop of 32 MPa (equal to the average shear stresses required to deform 183 

the model domain in experiment 1 for  = 0.8), (Fig. 4; cf. Fig. 2a, b). As stress bridges disintegrate and 184 

redevelop within the model domain (inset panels, Fig. 4a), the resistance of the modeled mélange to the 185 

imposed shear stress fluctuates – this causes periods of low slip speed interspersed by period of high slip 186 

speed (up to m year-1). The model exhibits a rough periodicity in time at about 2 – 5 years, although it is not 187 

very regular (Fig. 4a). The corresponding plot of slip velocity versus total slip at the top of the box (Fig. 4b) 188 

is more regular, because periods with low slip velocity do not contribute to total slip.  189 

The higher the applied τtop, the higher the average Vtop (Fig. 5, Fig. 6). For τtop = 34 MPa, slip speeds are up 190 

to 20 m year-1, and slip speeds above a minimum threshold of 5 cm year-1 occur more frequently than for 191 

lower applied shear stresses (Fig. 5). The model continues to creep at low strain-rates between major slip 192 

events. If the applied τtop is insufficient to induce any response in the shear box (such that Vtop0), the 193 

model domain becomes permanently locked. In a real subduction setting, this state would persist until τtop 194 

increases due to the steady accumulation of elastic strain and plate tectonic loading, or due to a perturbation 195 



in regional stresses and/or fluid pressure state occurs – for example due to a nearby earthquake, slip of 196 

adjacent parts of the interface, or fluid generation/release on or below the subduction interface.  197 

 

7 DISCUSSION 198 

The experiments run at constant Vtop (experiment 1), and at constant τtop (experiment 2), show cyclical stress 199 

and slip behavior on timescales of weeks to years. The constant stress numerical models predict aseismic 200 

slip transients at rates of up to meters year-1, despite the model not incorporating the transition to velocity-201 

weakening behavior at very high strain-rates (Fig. 4, Fig. 5). Cyclical stress and slip behaviors in 202 

experiments 1 and 2 are clearly linked to the progressive development of transient stress bridges that arise 203 

from interaction between competent clasts in a mélange matrix, where slip is accommodated by mixed 204 

brittle-viscous deformation (Fig. 3, Fig. 4). In models run at constant shear stress (experiment 2), transient 205 

slip events are marked by rapid reorganization of competent clasts along localized shear zones and 206 

consequent degradation of stress bridges, and are accompanied by elevated frictional-viscous creep rates in 207 

surrounding matrix shear pathways (e.g., Fig. 4a, top inset). Competent clasts within a clast-dominated 208 

mélange fail brittlely when subjected to elevated shear stresses, because of obstruction by other competent 209 

clasts. Transient slip events rapidly terminate as clasts impact one another, re-establishing stress bridges 210 

(e.g., Fig. 4a, bottom inset).  211 

Our model experiments are subject to several assumptions and limitations. Significantly, we have restricted 212 

slip transients to speeds below dynamic rupture propagation. Whereas the frictional rheology we use is 213 

partly strain-rate dependent (Supplement S1), we have imposed a maximum slip rate to limit velocity 214 

weakening as stress bridges unload and matrix pathways become open. This allows us to explore slip 215 

transients similar in magnitude to those found during slow slip events for the accumulation of large finite 216 

strains in the virtual shear box, although this also means that our model runs are not representative of the 217 

entire seismic cycle. 218 

It should also be noted that because these experiments were run in two dimensions, the magnitudes of stress 219 

fluctuations may be overestimated, due to greater matrix connectivity in three dimensions, and the ability of 220 



mutually obstructed clasts to move in the third dimension (e.g., Mair and Hazzard, 2007). In experiment 1, 221 

the timing and magnitude of stress cycling is controlled by the imposed Vtop and , each assumed to be 222 

constant. Furthermore, in all model runs, stress cycling characteristics also depend on the exact initial model 223 

geometry (e.g., Fagereng and Sibson, 2010; Cyprych et al., 2016), the volumetric ratio of clast to matrix 224 

material (e.g., Ji et al., 2003), and relative material strengths.  225 

 226 

7.1 SCALING OUTCROP MODELS OF STRESS AND SLIP CYCLING UP TO SUBDUCTION 227 

FAULTS 228 

To understand the wider implications of our model experiments, they must be considered in the context of a 229 

larger plate-boundary subduction interface. Our results support the idea that a real subduction mélange (in 230 

which both Vtop and τtop are free to vary) may experience transient deformation driven by geometric 231 

reorganization of clasts within a weaker matrix. Experiments 1 and 2 show that – even in the absence of 232 

other transient mechanisms, such as variable fluid pressure, and a conditionally stable rheology – a 233 

deforming subduction mélange may experience significant natural variability in both slip rate and shear 234 

stress during the interseismic period.  235 

During subduction deformation, any part of the mélange shear zone is connected laterally and vertically with 236 

a larger deforming system that may contain several anastomosing shear zones at scales of ~1 – 100 meters 237 

(Rowe et al., 2013). Any outcrop-scale stress or slip fluctuations (such as those modeled here) are likely to 238 

be out of phase with those within adjacent volumes, canceling each other out. However, the power-law 239 

distribution of clast geometries within the CBC (Fagereng, 2011b) can be used to infer behavior at larger 240 

scales. Mélange volumes with high clast density (such as that modeled here) form aggregate volumes at 241 

larger scales, surrounded by large matrix-dominated volumes (Fagereng, 2011a). These 10 – 100 m scale 242 

aggregates will interact to produce stress and strain transients in much the same way as our outcrop-scale 243 

mélange domain. If these aggregate volumes are of approximately the same scale as the width of the 244 

subduction thrust interface, stress oscillations associated with their deformation are not canceled by signals 245 

from adjacent volumes, and will dominate slip and stress cycling within the tabular megathrust shear zone.  246 



At times when τtop is high, we would expect deformation to temporarily shift to another volume with internal 247 

geometry more suitable for slip, which would temporarily suppress deformation within our model domain. 248 

In general, deformation within a subduction mélange would be expected to be preferentially partitioned into 249 

matrix dominated volumes; however, if clast-dominated volumes locally span the full width of the 250 

subduction thrust interface, they will be forced to deform as shear stress accumulates (Fagereng, 2011b). For 251 

example, since the CBC outcrop analogue was demonstrably deformed near peak metamorphic conditions, 252 

this volume may potentially represent part of an asperity on or just below the subduction interface. 253 

 254 

7.2 RELATING MODEL RESULTS TO SUBDUCTION ZONE SLIP BEHAVIORS  255 

The limitations in scale, and restriction to velocity-strengthening rheologies in our model setup, mean that it 256 

is not able to model all aspects of the seismic cycle. Nevertheless, it may still provide important insights into 257 

stress and slip cycling in a subduction zone mélange. For example, while we do not allow for the opening of 258 

tensile fractures, our models predict regions of net tensile stress within the modeled mélange, where clasts 259 

interact to create local dilation zones adjacent to zones undergoing continuous matrix frictional-viscous 260 

shearing flow, resulting in rotation of the local σ1 direction (Fig. 3, right-hand panels). An implication of this 261 

is that the formation of tensile veins - which results from locally negative effective normal stresses (e.g., Fig. 262 

3) – can be explained by locally elevated deviatoric stresses, rather than elevated fluid pressures. This style 263 

of deformation is consistent with the mixed continuous-discontinuous mode of deformation described in the 264 

CBC by Fagereng and Sibson (2010). The rotation of σ1 near dilation zones can also help to explain the wide 265 

range in orientations of fractures observed in the field within the CBC (Fagereng, 2011a). This model 266 

observation of negative effective stress caused by local tension without fluid-driven hydrofracture conditions, 267 

implies that vein formation can occur without local and transient elevation in fluid pressure if local dilation 268 

arises from local deviatoric stress. Precipitation of vein quartz without hydrofracture was also suggested in 269 

dilatant sites within an exhumed accretionary prism by Lewis and Byrne (2003). 270 

We do not include velocity-weakening effects – we instead model clasts as velocity-neutral brittle blocks in 271 

a velocity-strengthening matrix, the mineral scale deformation mechanisms of which include pressure 272 

solution and dislocation creep. However, microphysical models of quartz-phyllosilicate gouge and 273 



laboratory experiments predict a transition from velocity-strengthening to velocity-weakening behavior with 274 

increasing strain-rates, and that this transition depends on ambient pressure, temperature and matrix 275 

composition (den Hartog and Spiers, 2014; Fagereng and den Hartog, 2017). Other work has shown that the 276 

range of temperatures, pressures and strain-rates at which transitional slip behavior can occur may be 277 

enhanced in a tectonic mélange that contains clasts of brittle, competent, velocity-weakening material 278 

surrounded by a matrix of low-viscosity, incompetent, velocity-strengthening material (Biemiller and Lavier, 279 

2017). By relating the ratio of competent to incompetent material to a smoothing factor that averages rate-280 

state properties along a fault, they demonstrated that a heterogeneous mix of velocity-strengthening and 281 

velocity-weakening material can promote seismic slip transients. While we do not explore such processes, 282 

we show that even without prescribing velocity-weakening behavior, subduction mélanges can develop 283 

oscillations in shear stress and slip velocity 284 

Rapid subseismic slip episodes modeled in experiment 2 may potentially be interpreted as slip transients that 285 

arise during periods of low sliding resistance to bulk shear stress. The stress and slip transients in 286 

experiments 1 and 2 occur on time periods comparable to instrumentally observed SSE events – i.e., 287 

durations of days to years (Miller et al., 2002; Rogers and Dragert, 2003; Obara et al., 2004; Peng and 288 

Gomberg, 2010), with cyclicity on timescales of months to years (Miller et al., 2002; Rogers and Dragert, 289 

2003; Obara et al., 2004; Peng and Gomberg, 2010). While such outcrop-scale stress and slip cycling within 290 

subduction mélanges is not directly analogous to larger scale SSE or ETS on subduction interfaces (e.g., 291 

Hayman and Lavier, 2014), time periodicities are roughly comparable with those of slow slip transients 292 

observed at subduction margins (Fig. 5). For example, along the southern Hikurangi subduction margin, 293 

deep SSEs lasting ~1 – 1.5 year occur every ~5 year, while further north shallow SSEs last a few weeks and 294 

occur every 1 – 2 years (Wallace et al., 2012). Furthermore, modeled stress and strain-rate transients occur 295 

at pressure and temperature conditions for which we would also expect ETS (Ide et al., 2007). High 296 

frequency stress fluctuations in experiment 1 (with stress variations of ca. 0.1-5 MPa; Fig. 2), can lead to 297 

ephemeral pressure shadows where effective pressures approach zero, compatible with conditions under 298 

which local seismic tremor is thought to occur during slow slip in subduction zones. The observation of 299 

many small and frequent slip transient episodes in experiment 2 - with slip velocities only slightly higher 300 

than plate rates - in between much larger slip transients (slip rates >0.5 m year-1; Fig. 4) is also consistent 301 



with recent studies pinpointing very small slow slip events, which suggest that a spectrum of slow slip 302 

magnitudes occur during the interseismic period (Frank, 2016). Fagereng (2011b) suggest that the 303 

frequency‐size distribution of clasts within the CBC may impose a frequency‐size distribution of 304 

characteristic length scales of brittle deformation in the mélange that will correspond to a range of seismic 305 

styles and earthquake magnitudes, with estimated Mw < 0 at the outcrop scale. However, at larger scales, 306 

these variations may be smoother; the magnitudes of our modeled, local stress changes are high compared 307 

with stress drop magnitudes inferred for non-volcanic tremor from earthquake and tidal triggering 308 

(Rubinstein et al., 2007; Houston, 2015). 309 

 310 

8 CONCLUSIONS 311 

We use outcrop-scale numerical models to simulate stress and strain transients within a clast-dominated 312 

tectonic mélange. Experiments where a constant boundary velocity is imposed produce shear stress cyclicity 313 

of ~ 25-80%; experiments where a constant top shear stress is imposed show transient slip episodes where 314 

slip velocities increase by 1-2 orders of magnitude. Slip transients are accomplished by mixed brittle-viscous 315 

deformation, with strain concentrated into the weaker incompetent matrix and at boundaries between 316 

adjacent competent clasts. The periodicity of stress cycling and/or slip velocity cycling, and the magnitude 317 

of slip velocity transients are comparable with observations of slow slip observed at convergent margins, 318 

while development of locally low effective stresses due to dynamic stress variations between clasts in a 319 

mélange may help to explain the occurrence of episodic tremor. Because we do not require fluctuations in 320 

fluid pressure or velocity-weakening behaviors to generate stress and strain transients, it is possible that they 321 

occur primarily as a natural consequence of progressive geometric reorganization within subduction 322 

mélanges. 323 
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 441 

11 FIGURE CAPTIONS 442 

Fig. 1 – Model initial set up and boundary conditions. Model set up (bottom) is based on a clast-dominated 443 

outcrop from the Chrystalls Beach Complex from Fagereng and Sibson (2010) (top). Model dimensions are 444 

repeated 45 cm to either side to avoid boundary effects, and we impose a thin 1 cm-thick clast layer at the 445 

top. Periodic material flow and free velocity boundary conditions were applied at the left and right 446 

boundaries. Material leaving the right-hand boundary is reinjected at the left-hand boundary. Black 447 

represents mudstone matrix and grey regions are competent sandstone clasts. Two types of experiments 448 

were run: in experiment 1 we applied a constant shear slip velocity at the upper boundary (Vtop); in 449 

experiment 2 we applied a constant shear stress at the upper boundary (τtop; see text for details). See 450 

Supplement S1 for more details regarding the numerical model and rheology. 451 

 452 

Fig. 2 – Summary of results from experiment 1, showing fluctuations in shear stress at the upper boundary 453 

(τtop) necessary to shear the box at a prescribed slip rate at the upper boundary (Vtop). a) Model deformed at 454 

plate tectonic slip velocities (5 cm year-1). Stress magnitudes vary cyclically by ~25-40% over timescales of 455 

months to decades, superimposed on shorter-timescale fluctuations (weeks). The 3 curves are for different 456 

fluid pressure ratios . b) Model deformed at slow slip velocities (3 cm week-1). Stress magnitudes cycle by 457 

~25-80% over weeks, superimposed on shorter-timescale fluctuations (days). Note that the a) and b) are run 458 

to approximately the same amount of total slip on the top of the model (3 m). Dotted lines and labels in 459 

brackets refer to times shown in Fig. 3. 460 



 461 

Fig. 3 – Temporal snapshots showing reorganization of clasts with increasing time, corresponding to 462 

indicated locations on Fig. 2a with  = 0.8 and Vtop = 5 cm year-1. Panels at left show clasts in black; high-463 

strain-rate pathways (strain-rate invariant >5×10-9 s-1) in light brown; and stress bridges (based on a 464 

threshold in shear stress xy, where orange scale increases gradually from black (≤ 80 MPa) to orange (≥ 120 465 

MPa) with midpoint at 100 MPa). Right-hand panels show clasts in grey, and corresponding deformation 466 

mechanisms in matrix (dislocation creep- bright orange; frictional pressure-solution creep: dark blue). The 467 

green regions have effective (dynamic) mean stress ≤ 0, even though we prescribe a constant fluid 468 

pressure/overburden ratio of 0.8 (see discussion in text). Yellow lines indicate direction of principal 469 

compressive stress, and illustrate how this direction can vary by over 45 owing to local stress perturbations. 470 

a) At 10 years the stress bridges are well developed, τtop is high, and matrix shear is distributed over multiple 471 

pathways. b) At 30 years, where stress bridges are mostly absent, τtop is low, and the matrix is highly 472 

interconnected with one main high strain-rate pathway. Some regions of low effective stress still occur in the 473 

matrix (right-hand panel). c) At 55 years, the clasts have inhibited matrix connectivity; high strain-rate 474 

channels have split into multiple strands and numerous stress bridges are present. Note that at the times 475 

shown, matrix deformation is concentrated into the center of the model domain where horizontal matrix 476 

interconnectivity is greatest.  477 

 478 

Fig. 4 – Summary of results of experiment 2 for pore fluid pressure ratio  = 0.8 and an applied top shear 479 

stress at the upper boundary τtop = 32 MPa. a) The slip rate at the upper boundary (Vtop) is plotted as a 480 

function of time. As stress bridges disintegrate and redevelop within the model domain, the resistance of the 481 

modeled mélange to the imposed shear stress changes rapidly. Decongestion of clasts leads to short period 482 

of rapid slip (up to m year-1, lasting for ~2 days), followed by long periods where the clast congestion 483 

inhibits deformation. Bursts of rapid slip are quasi-periodic. Inset panels show the clasts (black regions), 484 

strain-rates in the matrix (log10 of the second strain-rate invariant), and stress bridges (regions with shear 485 

stress >100 MPa shaded in orange) for two time snapshots corresponding to a time of high slip-rates (time= 486 

5.35 years, slip velocity = 0.18 m/year) and low slip-rates (time = 6.35 years, slip velocity = 0.025 m/year). 487 



b) The same experiment, with Vtop plotted as a function of slip. Background color shading indicates the non-488 

linear relationship between time and slip, with total model slip of 0.1 m occurring in the first 0.75 years, and 489 

a further 0.1 m of slip occurring after another 3.95 and 8.5 years, respectively.  490 

 491 

Fig. 5 – The variation in slip velocity Vtop over a ten-year period as the shear stress applied at the top of the 492 

model shear box increases. Results are for experiment 2, with fluid pressure ratio  = 0.8. Black, green, blue 493 

and red show increasing applied shear stress at top of box τtop of 28, 30, 32 and 34 MPa. Background shaded 494 

strips indicate times where top slip velocity is greater than 5 cm/year.  495 

 496 

Fig. 6 – Plot of the increase in slip velocity with increasing τtop. Fluid pressure ratio  = 0.8. Main panel 497 

shows slip velocity versus total slip for four different applied top shear stress values ranging from 28-34 498 

MPa. Inset shows how maximum slip velocity (during first 0.15m of slip) increases with applied shear stress 499 

τtop. 500 
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