

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/109986/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Blokland, Gabriëlla A. M., Mesholam-Gately, Raquelle I., Toulopoulou, Timothea, del Re, Elisabetta C., Lam, Max, DeLisi, Lynn E., Donohoe, Gary, Walters, James , Seidman, Larry J. and Petryshen, Tracey L. 2017. Heritability of neuropsychological measures in Schizophrenia and non-psychiatric populations: a systematic review and meta-analysis. Schizophrenia Bulletin 43 (4) , pp. 788-800. 10.1093/schbul/sbw146

Publishers page: http://dx.doi.org/10.1093/schbul/sbw146

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Heritability of neuropsychological measures in schizophrenia and non-psychiatric populations: A systematic review and metaanalysis

Gabriëlla A.M. Blokland1,2,3, Raquelle I. Mesholam-Gately2,4,5, Timothea Toulopoulou6,7,8, Elisabetta C. del Re2,9, Max Lam10, Lynn E. DeLisi2,10, Gary Donohoe11,12, James T.R. Walters13, GENUS Consortium, Larry J. Seidman2,4,5, and Tracey L. Petryshen1,2,3,*

1 Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA;

2 Department of Psychiatry, Harvard Medical School, Boston, MA;

3 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; 4 Commonwealth Research Center, Harvard Medical School, Boston, MA;

5 Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA;

6 Psychology Department, Bilkent University, Ankara, Turkey;

7 Department of Psychology, University of Hong Kong, Pokfulam,

Hong Kong;

8 Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK; 9Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA;

10 Institute of Mental Health, Woodbridge Hospital, Singapore;

11 School of Psychology, National University of Ireland, Galway, Ireland;

12 Neuropsychiatric Genetics Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College, Dublin,

Ireland;

13 Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK

Schizophrenia is characterized by neuropsychological deficits across many cognitive domains. Cognitive phenotypes with high heritability and genetic overlap with schizophrenia liability can help elucidate the mechanisms leading from genes to psychopathology. We performed a meta-analysis of 170 published twin and family heritability studies of >800 000 nonpsychiatric and schizophrenia subjects to accurately estimate heritability across many neuropsychological tests and cognitive domains. The proportion of total variance of each phenotype due to additive genetic effects (A), shared environment (C), and unshared environment and error (E), was calculated by averaging A, C, and E estimates across studies and weighting by sample size. Heritability ranged across phenotypes, likely due to differences in genetic and environmental effects, with the highest heritability for General Cognitive Ability (32%-67%), Verbal Ability (43%-72%), Visuospatial Ability (20%-80%), and Attention/Processing Speed (28%-74%), while the lowest heritability was observed for Executive Function (20%–40%). These results confirm that many cognitive phenotypes are under strong genetic influences. Heritability estimates were comparable in nonpsychiatric and schizophrenia samples, suggesting that environmental factors and illness-related moderators (eg, medication) do not substantially decrease heritability in schizophrenia samples, and that genetic studies in schizophrenia samples are informative for elucidating the genetic basis of cognitive deficits. Substantial genetic overlap between cognitive phenotypes and schizophrenia liability (average $r_{g} = -.58$) in twin studies supports partially shared genetic etiology. It will be important to conduct comparative studies in wellpowered samples to determine whether the same or different genes and genetic variants influence cognition in schizophrenia patients and the general population.

Introduction

There is extensive evidence that cognition is significantly impaired in schizophrenia. Relative to healthy individuals, schizophrenia patients as a whole have a generalized impairment across many cognitive functions, demonstrated by meta-analyses of over 200 schizophrenia neuropsychological studies.1,2 At the individual patient level, 75%–100% of patients exhibit cognitive impairments, depending on the method of classifying deficits.3 A meta-analysis by Mesholam-Gately and

colleagues4 of neuropsychological functioning in first episode schizophrenia patients showed that, in the early stages of disease when the brain is less affected by antipsychotic medications, performance across several cognitive domains is impaired on average 0.91 SDs below the healthy control mean. Individuals at clinical high-risk for psychosis are less impaired than first episode patients, although there are greater deficits in high risk individuals who later develop a full psychotic illness than those who do not.5,6 In addition, unaffected family members at genetic risk for developing the disorder have poorer cognition compared to unaffected individuals without a family history of schizophrenia.7–10 Cognitive deficits are relatively unimproved by antipsychotic medications and consequently have a substantial impact on the functional outcome of patients.11–17 Elucidating the molecular mechanisms underlying cognition is essential for identifying novel targets for the development of new treatments that improve cognitive functioning in patients with schizophrenia.

Recent advances in the field of psychiatric genetics have led to the identification of a large number of common genetic variants that confer risk for schizophrenia. 18–27 Determining how these risk variants contribute to brain-based phenotypes that are abnormal in schizophrenia, such as cognitive deficits, can greatly contribute to our understanding of the biological pathways leading from risk genes to disease. A prerequisite for such studies is evidence that the phenotypes are heritable and have a genetic basis that overlaps with that of schizophrenia liability.28–30 Measures of General Cognitive Ability are highly heritable (h2 > 65%),31,32 although there is less consistent evidence for heritability of measures indexing specific cognitive domains. Toulopoulou, Owens and colleagues estimated from a series of twin studies that genetic correlations between cognitive measures and liability of schizophrenia range between -.09 and -1.00, averaging -.58,33–38 indicating that a substantial proportion of the variance in cognition and schizophrenia liability is due to common genetic factors.

We performed a systematic review of twin- and family-

based heritability studies of cognitive phenotype sin schizophrenia and non psychiatric populations with several objectives in mind. Given the lack of available quantitative studies, we performed meta-analyses of data available for many neuropsychological tests and cognitive domains to determine the best estimates ofheritability. We determined whether studies of nonpsychiatricindividuals and schizophrenia patients differin heritability to examine whether, as claimed, heritability in patients is lower due to environmental factors and illness-related moderators, such as higher rates of smoking and substance use, fluctuations in medication, or clinical state during testing.³⁹⁻⁴¹ Further, as family studies cannot disentangle genetic and shared environmental sources of phenotypic variance, we compared variance component estimates from family and monozygotic/ dizygotic (MZ/DZ) twin study designs.

Methods

Detailed methods are provided in the supplementary material.

Data Collection

A literature search performed in PubMed and PsycINFO resulted in >2000 papers published prior to January 2016. Following abstract review, identification of additional articles from the reference lists, and exclusion of studies according to pre-established criteria (supplementary methods, supplementary tables 1–4), 170 empirical articles describing twin or family studies were included in the analyses (supplementary figure 1). These studies investigated the heritability of >600 neuropsychologicaltest variables in 64 independent cohorts (supplementary tables 1, 5–8). See supplementary material for a complete list of references included in the meta-analyses.

Statistical Analyses

We performed separate meta-analyses for studies of nonpsychiatric twins (129 studies), nonpsychiatric families (13), and schizophrenia families (22). We meta-analyzed neuropsychological test variables that were reported in at least 2 independent studies. Additionally, neuropsychological test variables were assigned to one of the following 11 domains based on prior meta-analyses_{2.4} of cognition in schizophrenia: General Cognitive Ability, Attention/ Processing Speed, Attention/Vigilance, Working Memory, Verbal Learning and Memory, Nonverbal Learning and Memory, Executive Function, Verbal Ability, Visuospatial Ability, Motor Skills, and Social Cognition. Metaanalyses of cognitive domains utilized all tests within a domain regardless of how many studies analyzed a particular test variable. If multiple tests within a cognitive domain were available for a given cohort, we included the average

estimates for additive genetic effects (A), common (shared) environment (C), as well as unique (unshared) environment and error (E) across those tests in the domain metaanalysis. Supplementary Table 9 describes the tests included in this meta-analysis, the cognitive functions they assess, and the cognitive domains they index.

For each neuropsychological test or cognitive domain, the proportion of total variance accounted for by A, C, and E was calculated by averaging each component across studies from independent cohorts while weighting by sample size. Family studies without twins cannot distinguish the influences of A and C, therefore the estimate of familiality (A+C) was used as A. Heritability was calculated as the proportion of total variance due to additive genetic effects (A / A+C+E). All analyses were carried out in R (http://www.r-project.org) using custom scripts.

Wald tests₄₂ were applied to identify significant differences in the heritability of domain were available for a given cohort, we included the average estimates for additive genetic effects (A), common (shared) environment (C), as well as unique (unshared) environment and error (E) across those tests in the domain meta-analysis. Supplementary table 9 describes the tests included in this meta-analysis, the cognitive functions they assess, and the cognitive domains they index.

For each neuropsychological test or cognitive domain, the proportion of total variance accounted for by A, C, and E was calculated by averaging each component across studies from independent cohorts while weighting by sample size. Family studies without twins cannot distinguish the influences of A and C, therefore the estimate of familiality (A+C) was used as A. Heritability was calculated as the proportion of total variance due to additive genetic effects (A/ A+C+E). All analyses were carried out in R (http://www.r-project.org) using custom scripts. Wald tests⁴² were applied to identify significant differences in the heritability of cognitive phenotypes estimated from meta-analyses of schizophrenia and nonpsychiatric twin and family studies. P-values were Bonferroni-corrected for 15 phenotypes tested for each of the two comparisons (0.05/15=0.0033).

Results

Twin correlations as indicators of heritability

Supplementary Figure 2 illustrates that non-psychiatric MZ twin correlations for cognitive phenotypes averaged 0.6 (range 0-0.95), while DZ twin correlations averaged 0.2 (range 0.25-0.80), suggesting sizeable influences of A and E, and minor influences of C. General Cognitive Ability had the highest MZ/DZ correlation ratios (mean $m_{MZ} / r_{DZ} = 0.75 / 0.44$), indicating that a large proportion of the variation can be attributed to A, consistent with reports of high heritability.⁴³ Although more variable, ratios for Verbal Ability and Visuospatial Ability were also high (0.66 / 0.40 and 0.55 / 0.30).

Meta-analyses of heritability of cognitive phenotypes

Non-psychiatric twins. The studies of non-psychiatric twins aged >16 (Supplementary Table 5) reported 375 test variables from all 11 cognitive domains. Of these, 48 variables from 8 domains were studied in 2-11 independent cohorts and meta-analyzed. Heritability estimates ranged between 20% and 80% (Figure 1). High heritability (h_2) was observed for measures of General Cognitive Ability (h2=53%) and the Index Scores obtained from the Wechsler Adult Intelligence Scale (WAIS) (*h*₂=53–80%), as well as WAIS Digit Symbol Coding (*h*₂=59%) and Arithmetic (*h*₂=58%), and the Educational Testing Service (ETS) tests (h2=67-74%). Overall, the cognitive domain showing the highest heritability was Visuospatial Ability (h2=51%), followed by Verbal Ability (h2=41%) and Attention/Processing Speed (h₂=45%), primarily driven by the high heritability of the WAIS subtests within each of these three domains. Non-psychiatric families. The family studies of non-psychiatric individuals (Supplementary Table 6) reported 64 test variables from 10 of the 11 cognitive domains (except Motor Skills), of which 9 variables were studied in 2-3 independent family cohorts and meta-analyzed. Heritability estimates ranged from 30 to 55% (Figure 2). Heritability was high for measures of General Cognitive Ability (h2=53%), as well as the IQ subtest scores of WAIS Letter-Number Sequencing (h2=55%) and WAIS Matrix Reasoning (h2=53%). Overall, the individual cognitive domains showing the highest heritability

were Visuospatial Ability (h_2 =52%), which was primarily driven by the high heritability of Matrix Reasoning, and Verbal Ability (h_2 =52%).

Schizophrenia families. The family studies of schizophrenia (Supplementary Table 7) reported 142 test variables from all 11 cognitive domains, of which 41 variables were studied in 2-7 independent cohorts and meta-analyzed. Heritability estimates ranged from 15 to 74% (Figure 3). Heritability was high for measures of General Cognitive Ability (h_2 =63%) and WAIS Vocabulary ($h_2=74\%$), as well as WRAT Reading ($h_2=74\%$), often used as a proxy measure for premorbid IQ. Furthermore, high heritability was apparent for the Wechsler Memory Scale (WMS) subtest Logical Memory Immediate Recall, CVLT Long Delay Free Recall, Penn Word Memory, WAIS Block Design and Similarities, and Judgment of Line Orientation (h_2 =52%–62%). Overall, the cognitive domain showing the highest heritability was Verbal Ability (h_2 =55%), followed by Visuospatial Ability (h_2 =51%), again driven mostly by the high heritability of the WAIS subtests within each domain. Supplementary Figures 3-13 show heritability data from individual studies included in the metaheritability estimates. The forest plots show the heritability of individual neuropsychological test variables and the overarching cognitive domains. The resulting meta-estimates of individual tests (bold) and domains (bold italic) correspond to the data in Figures 1 to 3.

In summary, twin and family studies show highest heritability for the following tests: WAIS Digit Symbol Coding, Letter-Number Sequencing, Digit Span, Vocabulary, Information, and Block Design, as well as ETS Hidden Patterns and Identical Pictures, and Thurstone Picture Memory.

Heritability estimates do not substantially differ between schizophrenia and nonpsychiatric samples

Comparison of heritability estimates from schizophrenia and non-psychiatric samples indicated that cognitive phenotypes do not have lower heritability in patients, in contrast to what has been thought due to environmental factors and illness-related moderators. Figure 4 shows the results from each study design for phenotypes that were meta-analyzed in the non-psychiatric twin and at least one other study design. Of the 15 phenotypes available in both schizophrenia and non-psychiatric family studies, 13 phenotypes did not significantly differ in heritability. Attention/Processing Speed had significantly lower heritability and Semantic Fluency had significantly higher heritability in schizophrenia families compared to non-psychiatric families (Wald test $p=3.5x10_{-4}$ and $p=3.9x10_{-5}$). However, the difference in Semantic Fluency may not be accurate, as it was driven by low heritability in non-psychiatric families based on only two studies. Heritability estimates also did not markedly differ between 15 phenotypes available in non-psychiatric twin and family designs, with only WAIS Digit Symbol Coding and Semantic Fluency having significantly lower heritability in families than twins (Wald test $p=7.3 \times 10^{-6}$ and $p=1.0 \times 10^{-3}$). The confidence intervals of the heritability estimates were typically narrower for phenotypes with larger numbers of studies and larger total sample sizes, as expected. Taking the sample sizes into account, heritability estimates appeared equally precise for schizophrenia and non-psychiatric studies.

Genetic overlap between schizophrenia liability and cognition

To assess the genetic overlap between schizophrenia liability and cognitive functions, we summarized data reported in the Maudsley Twin and Family Studies and by the overarching Schizophrenia Twins and Relatives Consortium (STAR Consortium),₄₄ a series of studies of twins and other family members concordant or discordant for schizophrenia (Supplementary Table 8).₃₃₋₃₈ Figure 5 shows the cross-twin-cross-trait correlations, i.e., the correlations between phenotype 1 in co-twin 1 and phenotype 2 in co-twin 2, and vice versa._{36,37} Significantly larger cross-twin-cross-trait correlations for MZ twin pairs (rMZcT-cT) than for DZ twins (rDZcT-cT) resulted in greater genetic overlap (r_9) with schizophrenia liability, as noted for verbal and non-verbal memory measures (Logical Memory [-0.34 to - 0.58], Verbal Paired Associates [-0.26 to -0.50], and Visual Reproduction [-0.34 to -0.99]), Full-scale IQ (-0.46 to -0.69), and WAIS Index Scores (-0.34 to -0.79), which are major components of IQ. Some

cognitive phenotypes had very high genetic correlations, (r_{g} >0.8, Trail Making Test A and B, Semantic Fluency) which may be overestimations since the confidence intervals for those correlations were relatively wide (Supplementary Table 8). The genetic overlap between cognitive phenotypes and schizophrenia liability ranged widely, possibly due to small samples causing imprecise estimates, but overall was relatively high (average r_{g} = -0.58; SD = 0.22).

Discussion

This study reports a comprehensive meta-analysis of heritability data across cognitive domains in non-psychiatric individuals and those with schizophrenia. We confirm the high heritability of multiple cognitive domains and demonstrate that this applies to both schizophrenia and non-psychiatric samples. To our knowledge, this is the first systematic, meta-analytic demonstration that the heritabilities of cognitive phenotypes in schizophrenia are equivalent to those in healthy populations. The most heritable phenotypes (h_2 >64%) were IQ, Spearman's 'g', and some WAIS index scores that comprise IQ (Verbal Comprehension, Perceptual Organization), as well as tests that comprise or are highly correlated with IQ, such as WAIS Vocabulary and Block Design (h₂=57-60%). Interestingly, phenotypes within the Attention/Processing Speed domain differed substantially in heritability, with measures indexing information processing speed (e.g., Digit Symbol Coding, ETS Hidden Patterns) having relatively high heritability (h2=59-74%), and timed measures dependent on motor response having lower heritability ($h_2=28$ -50%). For the most part, tests that we considered indexes of executive functioning (e.g., Wisconsin Card Sorting Test. Tower of London) had relatively low heritability ($h_2=20$ -40%). Given the multifactorial nature of neuropsychological tests, our categorization of tests into cognitive domains is not the only possible arrangement. For example, Stroop Interference and Trail Making Test B could be grouped in the Executive Function domain instead of the Attention/Processing Speed domain; however, doing so would not increase the Executive Function heritability estimate since the heritability of these tests was also low. Thus, we provided individual test data in the tables to enable evaluation of test-specific heritability estimates, in addition to domain estimates.

The fact that we report substantial heritability across cognitive phenotypes has important implications. While high heritability does not indicate that any particular gene has a large effect on the phenotype, it does suggest that the phenotype has a sizeable genetic component that improves precision for defining gene function in cognition. The range in heritability across phenotypes could result from differences in genetic architecture, where different genes and/or the same genes with different effects (possibly due to different genetic variants) mediate the phenotypes. Alternatively, differences in environmental effects or measurement error between phenotypes could affect heritability, since heritability is a proportion of the total phenotypic variance, which also comprises variance due to common environment (C), and unique environment and measurement error (E). Measurement error is likely not a major factor, however, since test-retest reliability is generally high (intra-class correlations >0.7) for most neuropsychological tests. An exception is executive function tasks that tend to have low reliability 49, 50 (e.g., intra-class correlations <0.7 for WCST indices). This might be due to their sensitivity to practice effects, which may explain their relatively low heritability in our meta-analyses. In contrast, environmental factors have substantial influences on some cognitive phenotypes; for example, verbal tests are particularly sensitive to education and socioeconomic status. In reality, both genetic and environmental factors likely underlie the range in heritability observed across the cognitive phenotypes. An important implication is that cognitive phenotypes with similar degrees of genetic effects could differ in heritability due to different environmental effects, a notion that is typically not appreciated by heritability studies, which tend to invoke genetic explanations for heritability differences.

The current study also compared heritability between schizophrenia and nonpsychiatric study designs and did not find consistent differences. This is perhaps the most important and novel finding of this study, and has several important implications. First, similar heritability suggests that genetic factors contributing to schizophrenia do not disrupt normal genetic influences on cognition in the general population. Second, it suggests that schizophrenia and non-psychiatric samples should be equally informative for genetic studies of cognition. Third, similar heritability indicates The current study also compared heritability between schizophrenia and non-psychiatric study designs and did not find consistent differences. This is perhaps the most important and novel finding of this study, and has several important implications. First, similar heritability suggests that genetic factors contributing to schizophrenia do not disrupt normal genetic influences on cognition in the general population. Second, it suggests that schizophrenia and nonpsychiatric samples should be equally informative for genetic studies of cognition. Third, similar heritability indicates that illness-related moderators (e.g., medication, higher rates of smoking and substance use in patients) and environmental factors, which are often assumed to have larger effects in schizophrenia samples, have negligible effects on heritability. However, the lack of marked differences between schizophrenia and non-psychiatric samples in the measurement accuracy of neuropsychological tests₄₆₋₄₈ suggests that fluctuations in illness-related moderators have negligible effects on cognitive performance. While there is some evidence that illness-related moderators affect some cognitive domains, 55 56-59 two large cohort studies did not find consistently higher variances in several cognitive phenotypes in schizophrenia patients compared to healthy subjects (e.g., BACS composite score, Continuous Performance Test, CVLT, Letter-Number Sequencing).60-63 Also, we found similar confidence interval widths for heritability estimates of cognitive phenotypes across schizophrenia and non-psychiatric samples, indicating that heritability in schizophrenia samples is fairly consistent despite differences in environmental factors and illness related moderators (due to differences in ascertainment, inclusion/exclusion criteria, etc.). Therefore, the degree to which genetic studies of cognition in schizophrenia will be informative for elucidating the biology and informing novel treatment approaches for cognitive impairment will depend on the variance explained by genetic factors (i.e., the heritability), rather than illness related moderators and environmental factors. This is an important issue because it is commonly thought that environmental factors and illness-related moderators hinder the detection of genetic effects in schizophrenia samples. For this reason, some studies have focused on unaffected relatives of patients, who carry genetic risk for schizophrenia and have impaired cognition (although less severe than patients), 9, 64, 65 but lack or have milder illness-related moderators, as a means to examine the genetics of cognition in schizophrenia. Instead, similar heritability suggests that studying schizophrenia samples is valuable and, some might argue, more informative for understanding the relationship between cognition and schizophrenia.

Some cognitive domains that are impaired in schizophrenia_{1,4} are relatively understudied genetically, particularly Social Cognition, Attention/Vigilance, Non-Verbal Memory, and Executive Function. Fewer studies and smaller sample sizes can lead to inaccurate heritability estimates that may explain, in part, the low heritability observed for some of these domains. Heritability could be inaccurate in family studies since they do not distinguish influences of genetic effects (A) and common environment (C); therefore, these influences are combined into "familiality". However, the lack of consistent differences in heritability using a family design compared to the MZ/DZ twin design suggests that C has negligible influence on most cognition phenotypes. Thus, for family studies, A+C is almost entirely A, and "familiality" is a good proxy for heritability.

An emerging method to estimate heritability utilizes population-based SNP data to determine the collective variance in a phenotype that is explained by common genetic variation (e.g., ⁶⁶, ⁶⁷). SNP-based heritability of cognitive phenotypes in adults is estimated to be 29% for general cognitive ability (Spearman's 'g')⁶⁸ and 19-56% for other cognitive phenotypes.⁶⁹⁻⁷⁴ These estimates are lower than those from our meta-analyses, but in line with a twin study that reported considerably lower heritability estimated from SNP data than from variance components.⁷¹ This 'missing heritability' suggests that other inherited factors not indexed by SNPs, such as rare variants and structural variation, as well as heritable epigenetic modifications and other factors, contribute to individual variation in cognitive phenotypes⁷⁵. It will be important to develop analytical methods that incorporate other potential sources of genetic variation to estimate heritability using population-based approaches.

We also examined the genetic overlap between cognitive phenotypes and schizophrenia liability from a summary of schizophrenia twin studies.33-38 We found moderate to high genetic correlations (average $r_g = -0.58$), consistent with a previous report of significant correlations between several cognitive domains and negative symptoms and disorganization.76 However, the twin study genetic correlations ranged widely across phenotypes, possibly due to small samples causing imprecise estimates, or because some cognitive constructs have stronger genetic relationships to schizophrenia than others. The genetic overlap suggests that shared genes regulate neurodevelopmental processes mediating both cognition and psychosis.77 Alternatively, the genes may have pleiotropic effects reflecting multiple roles in neural processes that govern cognition and other mechanisms underlying schizophrenia. In an attempt to assess causality between cognition and schizophrenia liability, Toulopoulou et al.38 performed multivariate structural equation modeling in schizophrenia twinfamily samples and found evidence that cognitive deficits lie upstream of liability, with a genetic correlation of -0.51. Populationbased studies also support genetic overlap of cognition with schizophrenia liability, although possibly lower (e.g., genetic correlation of -0.26)78 than that estimated by schizophrenia studies. Molecular genetic overlap between cognition and schizophrenia is supported by recent GWAS mega-analyses.19, 79-81 Specifically, polygenic variation influencing cognitive functioning in healthy cohorts was significantly associated with schizophrenia case status in independent datasets.19 In parallel, polygenic risk for schizophrenia was significantly associated with poorer cognition in healthy cohorts.79-81 These studies suggest that polygenic variants influencing schizophrenia risk modulate neural processes involved in cognition in the general population, although the contribution is small (explaining <1% variance in cognition).79-81 It is conceivable that schizophrenia genetic factors have a stronger impact on cognition in patients, possibly because dysfunctional neural circuits are more sensitive to the genetic effects than normally functioning circuits. Unfortunately, the few patient studies examining schizophrenia genetic variants in cognition produced inconsistent results, possibly due to small sample sizes.82-84 In addition, there have been no studies specifically examining the genetic basis of the degree of cognitive impairment in patients separate from the genetic basis of cognitive ability. While schizophrenia risk genes may influence the degree of impairment, as suggested by the presence of cognitive deficits in unaffected relatives genetically predisposed to schizophrenia, 9, 64, 65 other genes that are not causal in schizophrenia may be involved. Indeed, the partial genetic overlap between cognition and schizophrenia liability indicates that genes not involved in schizophrenia also have a substantial influence on cognition. It is unclear whether cognition genes have the same effects in schizophrenia and nonpsychiatric populations, or whether the effects differ despite heritability being similar. While there has been considerable effort to elucidate the genetic architecture of cognition in non-psychiatric populations, 43, 68, 79, 85 there is a dearth of high-powered genetic studies of cognition in schizophrenia samples. Analyses of large, wellphenotyped samples consisting of both patients and healthy individuals, which we

are actively undertaking, will be important to clarify this issue. If the same genes influence cognition in schizophrenia patients and the general population, the neural mechanisms regulated by these genes may nonetheless operate differently in patients, perhaps due to genetic variation associated with cognitive impairment. A similar genetic basis in schizophrenia and non-psychiatric populations would not invalidate cognitive markers as endophenotypes of schizophrenia, since cognitive deficits in patients meet the criteria for endophenotypes notwithstanding.²⁸ Cognition is a particularly important endophenotype because delineating its underlying genetic mechanisms may identify promising targets for improving cognitive functioning in patients.

At this time, it is difficult to recommend specific neuropsychological tests or cognitive domains that are the most appropriate for examining the genetic basis of cognition in schizophrenia. This judgment depends on both the heritability of the phenotype and its genetic overlap with schizophrenia. Our meta-analyses identified several cognitive phenotypes having high heritability, such as IQ, Spearman's 'g', and WAIS index scores mentioned above, which could be prioritized for genetic studies. However, the genetic correlation data from twin studies are too limited to conclusively identify phenotypes having the largest genetic overlap with schizophrenia. Similarly, analyses of the effects of schizophrenia risk genes and polygenic factors across multiple cognitive phenotypes are limited, although two recent studies reported that polygenic risk explains more variance in Attention/Language than Verbal Memory,⁸¹ and Performance IQ than Verbal IQ and Full-Scale IQ.⁸⁰ Additional studies are required to determine which cognitive phenotypes have the strongest genetic relationships to schizophrenia and are most appropriate as markers for studying the genetics of cognition in schizophrenia.

Recent studies have also identified genetic overlap of cognitive phenotypes with brain structuralphenotypes.₃₈ Further, the heritability of specific cognitive abilities is comparable to the heritability of volume and cortical thickness of brain structures subserving those abilities, ⁸⁶, ⁸⁷ many of which involve the prefrontal cortex. Schizophrenia onset during adolescence and early adulthood coincides with the maturation of brain regions that are abnormal in schizophrenia, such as the temporal and frontal lobes.⁸⁸⁻⁹⁰ Indeed a putative mechanism underlying schizophrenia might be mistiming of brain maturation processes that are important for higher order cognitive functions.⁹¹ Brain maturational stages would therefore be important to consider when interpreting genetic relationships between schizophrenia and cognition or other phenotypes. It would also be important to consider sex differences in cognitive deficits given known sexual dimorphism in normal neurodevelopmental processes and their timing, as well as those associated with schizophrenia.⁹²

Conclusions

Taken together, our results show that most cognitive phenotypes have moderate to high heritability, although estimates range widely, **likely due to differences in both genetic and environmental influences.** Our results also indicate that heritability of cognitive phenotypes does not markedly differ between schizophrenia and non-psychiatric populations, suggesting that schizophrenia samples are valuable for studying the genetic basis of cognitive impairment in patients. Genetic overlap between schizophrenia and cognitive phenotypes supports a shared genetic etiology; however, more studies are required to verify whether the same genes influence cognitive variation in schizophrenia patients and the general population.

Funding

This work was supported by the National Institute of Mental Health (NIMH) of the National Institutes of Health (NIH) grant number R01MH092380 to T.L.P. supporting the Genetics of

Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) Consortium. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors have declared that there are no conflicts of interest in relation to the subject of this study.

Acknowledgements

The authors would like to thank Melissa DeLeon, Emma Parrish, and Gautami Shashidhar for their contributions to the preparation of the Supplementary Tables.

References

1. Fioravanti M, Bianchi V, Cinti ME. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. *BMC Psychiatry*. 2012;12:64.

2. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. *Neuropsychology*. 1998;12:426-445.

3. O'Carroll R. Cognitive impairment in schizophrenia. *Adv Psychiatr Treat.* 2000;6:161–168.

4. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: A meta-analytic review. *Neuropsychology.* 2009;23:315-336.

5. Fusar-Poli P, Deste G, Smieskova R, et al. Cognitive functioning in prodromal psychosis: A meta-analysis. *Arch Gen Psychiatry*. 2012;69:562-571.

6. Giuliano AJ, Li H, Mesholam-Gately RI, Sorenson SM, Woodberry KA, Seidman LJ. Neurocognition in the psychosis risk syndrome: A quantitative and qualitative review. *Curr Pharm Des.* 2012;18:399-415.

7. Bhojraj TS, Francis AN, Montrose DM, Keshavan MS. Grey matter and cognitive deficits in young relatives of schizophrenia patients. *Neuroimage*. 2011;54 Suppl 1:S287-292.

8. Agnew-Blais J, Seidman LJ. Neurocognition in youths and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. *Cogn Neuropsychiatry*. 2013;18:44-82.

9. Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ, Stone WS. The Consortium on the Genetics of Schizophrenia: neurocognitive endophenotypes. *Schizophr Bull.* 2007;33:49-68.

10. Snitz BE, Macdonald AW, 3rd, Carter CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: A meta-analytic review of putative endophenotypes. *Schizophr Bull.* 2006;32:179-194.

11. Keefe RS, Sweeney JA, Gu H, Hamer RM, Perkins DO, McEvoy JP, Lieberman JA. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: A randomized, double-blind 52-week comparison. *Am J Psychiatry.* 2007;164:1061-1071.

12. Allott K, Liu P, Proffitt TM, Killackey E. Cognition at illness onset as a predictor of later functional outcome in early psychosis: Systematic review and methodological critique. *Schizophr Res.* 2011;125:221-235.

13. Allott KA, Cotton SM, Chinnery GL, et al. The relative contribution of neurocognition and social cognition to 6-month vocational outcomes following Individual Placement and Support in first-episode psychosis. *Schizophr Res.* 2013;150:136-143.

14. Nuechterlein KH, Subotnik KL, Green MF, et al. Neurocognitive predictors of work outcome in recent-onset schizophrenia. *Schizophr Bull.* 2011;37 Suppl 2:S33-40.

15. Zaragoza Domingo S, Bobes J, García-Portilla M-P, Morralla C, EPICOG-SCH Study Group. Cognitive performance associated to functional outcomes in stable outpatients with schizophrenia. *Schizophr Res Cogn.* 2015;2:146-158.

16. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? *Am J Psychiatry.* 1996;153:321-330.

17. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the "right stuff"? *Schizophr Bull.* 2000;26:119-136.

18. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. *Nat Genet.* 2011;43:969-976.

19. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature*. 2014;511:421-427.

20. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature*. 2009;460:748-752.

21. Ripke S, O'Dushlaine C, Chambert K, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. *Nat Genet.* 2013;45:1150-1159.

22. Shi J, Levinson DF, Duan J, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. *Nature.* 2009;460:753-757.

23. Shi Y, Li Z, Xu Q, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. *Nat Genet.* 2011;43:1224-1227.

24. Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. *Nature.* 2009;460:744-747.

25. Irish Schizophrenia Genomics Consortium, the Wellcome Trust Case Control Consortium. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. *Biol Psychiatry.* 2012;72:620-628.

26. Ikeda M, Aleksic B, Kinoshita Y, et al. Genome-wide association study of schizophrenia in a Japanese population. *Biol Psychiatry*. 2011;69:472-478.

27. Yue WH, Wang HF, Sun LD, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. *Nat Genet.* 2011;43:1228-1231.

28. Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. *Am J Psychiatry*. 2003;160:636-645.

29. Glahn DC, Knowles EE, McKay DR, Sprooten E, Raventos H, Blangero J, Gottesman, II, Almasy L. Arguments for the sake of endophenotypes: Examining common

misconceptions about the use of endophenotypes in psychiatric genetics. *Am J Med Genet B Neuropsychiatr Genet.* 2014;165B:122-130.

30. Rieder RO, Gershon ES. Genetic strategies in biological psychiatry. *Arch Gen Psychiatry.* 1978;35:866-873.

31. Briley DA, Tucker-Drob EM. Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. *Psychol Sci.* 2013;24:1704-1713.

32. Haworth CM, Wright MJ, Luciano M, et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. *Mol Psychiatry.* 2010;15:1112-1120.

33. Owens SF, Picchioni MM, Ettinger U, et al. Prefrontal deviations in function but not volume are putative endophenotypes for schizophrenia. *Brain.* 2012;135:2231-2244.
34. Owens SF, Picchioni MM, Rijsdijk FV, et al. Genetic overlap between episodic memory

deficits and schizophrenia: Results from the Maudsley Twin Study. *Psychol Med.* 2011;41:521-532.

35. Owens SF, Rijsdijk F, Picchioni MM, Stahl D, Nenadic I, Murray RM, Toulopoulou T. Genetic overlap between schizophrenia and selective components of executive function. *Schizophr Res.* 2011;127:181-187.

36. Toulopoulou T, Goldberg TE, Mesa IR, et al. Impaired intellect and memory: A missing link between genetic risk and schizophrenia? *Arch Gen Psychiatry*. 2010;67:905-913.
37. Toulopoulou T, Picchioni M, Rijsdijk F, Hua-Hall M, Ettinger U, Sham P, Murray R.

Substantial genetic overlap between neurocognition and schizophrenia: Genetic modeling in twin samples. *Arch Gen Psychiatry*. 2007;64:1348-1355.

38. Toulopoulou T, van Haren N, Zhang X, et al. Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. *Mol Psychiatry*. 2015;20:1386-1396.

39. Roth M, Hong LE, McMahon RP, Fuller RL. Comparison of the effectiveness of Conners' CPT and the CPT-identical pairs at distinguishing between smokers and nonsmokers with schizophrenia. *Schizophr Res.* 2013;148:29-33.

40. Hahn E, Vollath A, Ta TT, Hahn C, Kuehl LK, Dettling M, Neuhaus AH. Assessing long-term test-retest reliability of the CPT-IP in schizophrenia. *PLoS One.* 2014;9:e84780.
41. Cole VT, Weinberger DR, Dickinson D. Intra-individual variability across

neuropsychological tasks in schizophrenia: A comparison of patients, their siblings, and healthy controls. *Schizophr Res.* 2011;129:91-93.

42. Engle RF. Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics. In: Intriligator MD, Griliches Z, eds. *Handbook of Econometrics II*: Elsevier; 1983:796–801.
43. Plomin R, Deary IJ. Genetics and intelligence differences: Five special findings. *Mol Psychiatry*. 2015;20:98-108.

44. van Haren NE, Rijsdijk F, Schnack HG, et al. The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: The Schizophrenia Twins And Relatives consortium. *Biol Psychiatry*. 2012;71:915-921.
45. Nuechterlein KH, Green MF, Kern RS, et al. The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity. *Am J Psychiatry*. 2008;165:203-213.

46. Light GA, Swerdlow NR, Rissling AJ, et al. Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. *PLoS One.* 2012;7:e39434.

47. Wilk CM, Gold JM, Bartko JJ, Dickerson F, Fenton WS, Knable M, Randolph C, Buchanan RW. Test-retest stability of the Repeatable Battery for the Assessment of Neuropsychological Status in schizophrenia. *Am J Psychiatry*. 2002;159:838-844.
48. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV. Stability and course of neuropsychological deficits in schizophrenia. *Arch Gen Psychiatry*. 2001;58:24-32.

49. Rabbitt P. *Methodology of frontal and executive function*. Hove, UK: Psychology PressLtd; 1997.

50. Strauss E, Sherman EMS, Spreen O. *A compendium of neuropsychological tests: Administration, norms, and commentary.* New York, NY: Oxford University Press, Inc.; 2006.

51. Paolo AM, Axelrod BN, Tröster AI. Test-retest stability of the Wisconsin Card Sorting Test. *Assessment.* 1996;3:137-143.

52. Lowe C, Rabbitt P. Test/re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: Theoretical and practical issues. Cambridge Neuropsychological Test Automated Battery. International Study of Post-Operative Cognitive Dysfunction. *Neuropsychologia.* 1998;36:915-923.

53. Jefferson AL, Gibbons LE, Rentz DM, Carvalho JO, Manly J, Bennett DA, Jones RN. A life course model of cognitive activities, socioeconomic status, education, reading ability, and cognition. *J Am Geriatr Soc.* 2011;59:1403-1411.

54. Contador I, Bermejo-Pareja F, Del Ser T, Benito-Leon J. Effects of education and word reading on cognitive scores in a community-based sample of Spanish elders with diverse socioeconomic status. *J Clin Exp Neuropsychol.* 2015;37:92-101.

55. Lee J, Green MF, Calkins ME, et al. Verbal working memory in schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) study: the moderating role of smoking status and antipsychotic medications. *Schizophr Res.* 2015;163:24-31.

56. Wing VC, Bacher I, Sacco KA, George TP. Neuropsychological performance in patients with schizophrenia and controls as a function of cigarette smoking status. *Psychiatry*Wing VC, Bacher I, Sacco KA, George TP. Neuropsychological performance in patients with schizophrenia and controls as a function of cigarette smoking status. *Psychiatry Res.* 2011;188:320-326.

57. Zhang XY, Chen DC, Xiu MH, Haile CN, Sun H, Lu L, Kosten TA, Kosten TR. Cigarette smoking and cognitive function in Chinese male schizophrenia: A case-control study. *PLoS One.* 2012;7:e36563.

58. Ahlers E, Hahn E, Ta TM, Goudarzi E, Dettling M, Neuhaus AH. Smoking improves divided attention in schizophrenia. *Psychopharmacology.* 2014;231:3871-3877. Stone WS, Mesholam-Gately RI, Braff DL, et al. California Verbal Learning Test-II

performance in schizophrenia as a function of ascertainment strategy: Comparing the first and second phases of the Consortium on the Genetics of Schizophrenia (COGS). *Schizophr Res.* 2015;163:32-37.

60. Hill SK, Reilly JL, Keefe RS, et al. Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. *Am J Psychiatry.* 2013;170:1275-1284.

61. Greenwood TA, Lazzeroni LC, Calkins ME, et al. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. *Schizophr Res.* 2016;170:30-40.

62. Millard SP, Shofer J, Braff D, et al. Prioritizing schizophrenia endophenotypes for future genetic studies: An example using data from the COGS-1 family study. *Schizophr Res.* 2016;174:1-9.

63. Nuechterlein KH, Green MF, Calkins ME, et al. Attention/vigilance in schizophrenia: performance results from a large multi-site study of the Consortium on the Genetics of Schizophrenia (COGS). *Schizophr Res.* 2015;163:38-46.

64. Horan WP, Braff DL, Nuechterlein KH, et al. Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: findings from the

Consortium on the Genetics of Schizophrenia. *Schizophr Res.* 2008;103:218-228. **65.** Barrantes-Vidal N, Aguilera M, Campanera S, Fatjo-Vilas M, Guitart M, Miret S, Valero S, Fananas L. Working memory in siblings of schizophrenia patients. *Schizophr Res.* 2007;95:70-75.

66. Lee SH, DeCandia TR, Ripke S, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. *Nat Genet.* 2012;44:247-250.
67. Bulik-Sullivan BK, Loh PR, Finucane HK, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet.*

2015;47:291-295.

68. Davies G, Armstrong N, Bis JC, et al. Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949). *Mol Psychiatry*. 2015;20:183-192.

69. Hatzimanolis A, Bhatnagar P, Moes A, et al. Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in young adulthood.
70. Am J Med Genet B Neuropsychiatr Genet. 2015. Kirkpatrick RM, McGue M, Iacono WG, Miller MB, Basu S. Results of a "GWAS Plus:"

General cognitive ability is substantially heritable and massively polygenic. *PLoS One.* 2014;9:e112390.

71. Plomin R, Haworth CM, Meaburn EL, Price TS, Wellcome Trust Case Control C, Davis OS. Common DNA markers can account for more than half of the genetic influence on cognitive abilities. *Psychol Sci.* 2013;24:562-568.

72. Rowe SJ, Rowlatt A, Davies G, et al. Complex variation in measures of general intelligence and cognitive change. *PLoS One.* 2013;8:e81189.

73. Toro R, Poline JB, Huguet G, et al. Genomic architecture of human neuroanatomical diversity. *Mol Psychiatry.* 2014.

74. Vogler C, Gschwind L, Coynel D, et al. Substantial SNP-based heritability estimates for working memory performance. *Transl Psychiatry.* 2014;4:e438.

75. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. *Nature.* 2009;461:747-753.

76. Chen LS, Rice TK, Thompson PA, Barch DM, Csernansky JG. Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. *Schizophr Res.* 2009;111:159-166.

77. Bora E, Murray RM. Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: Do the cognitive deficits progress over, or after, the onset of psychosis? *Schizophr Bull.* 2014;40:744-755.

78. Fowler T, Zammit S, Owen MJ, Rasmussen F. A population-based study of shared genetic variation between premorbid IQ and psychosis among male twin pairs and sibling pairs from Sweden. *Arch Gen Psychiatry.* 2012;69:460-466.

79. Lencz T, Knowles E, Davies G, et al. Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics consorTium (COGENT). *Mol Psychiatry.* 2014;19:168-174.

80. Hubbard L, Tansey KE, Rai D, et al. Evidence of common genetic overlap between schizophrenia and cognition. *Schizophr Bull.* 2016;42:832-842.

81. Liebers DT, Pirooznia M, Seiffudin F, Musliner KL, Zandi PP, Goes FS. Polygenic risk of schizophrenia and cognition in a population-based survey of older adults. *Schizophr Bull.* 2016;42:984-991.

82. Martin AK, Robinson G, Reutens D, Mowry B. Common genetic risk variants are associated with positive symptoms and decision-making ability in patients with schizophrenia. *Psychiatry Res.* 2015;229:606-608.

83. van Scheltinga AF, Bakker SC, van Haren NE, et al. Schizophrenia genetic variants are not associated with intelligence. *Psychol Med.* 2013:1-8.

84. Yeo RA, Gangestad SW, Walton E, et al. Genetic influences on cognitive endophenotypes in schizophrenia. *Schizophr Res.* 2014;156:71-75.

85. Verhaaren BF, Vernooij MW, Koudstaal PJ, Uitterlinden AG, van Duijn CM, Hofman A, Breteler MM, Ikram MA. Alzheimer's disease genes and cognition in the nondemented general population. *Biol Psychiatry.* 2013;73:429-434.

86. Blokland GAM, de Zubicaray GI, McMahon KL, Wright MJ. Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies. *Twin Res Hum Genet.* 2012;15:351-371.

87. Stone WS, Seidman LJ. Neuropsychological and structural neuroimaging endophenotypes in schizophrenia. In: Cicchetti D, ed. *Developmental Psychopathology.* Vol 2, Developmental Neuroscience. 3 ed: John Wiley & Sons; 2016:931-965.

88. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. *Schizophr Res.* 2001;49:1-52.

89. Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, Gur RC. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. *Arch Gen Psychiatry.* 1998;55:145-152.

90. DeLisi LE, Stritzke P, Riordan H, et al. The timing of brain morphological changes in schizophrenia and their relationship to clinical outcome. *Biol Psychiatry.* 1992;31:241-254.

91. Catts VS, Fung SJ, Long LE, et al. Rethinking schizophrenia in the context of normal neurodevelopment. *Front Cell Neurosci.* 2013;7:60.

92. Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. *Int Rev Psychiatry.* 2010;22:417-428.

Figure Legends

Figure 1. Variance component estimates for cognitive phenotypes based on metaanalysis of non-psychiatric twin studies.

Percentage variance explained by A (Additive genetic influences), C (Common environment), and E (Unique environment and Error) for individual test variables (plain font) and cognitive domains (bold font). Error bars and numbers in parentheses indicate 95% confidence intervals. The sample size for a given cognitive domain differs from the summed sample size for test variables within that domain because inclusion criteria differ (see Supplementary Methods).

Figure 2. Variance component estimates for cognitive phenotypes based on metaanalysis of non-psychiatric family studies.

Percentage variance explained by A + C (Additive genetic + Common environment influences) and E (Unique environment and Error) for individual test variables (plain font) and cognitive domains (bold

font). A and C are combined because they cannot be disentangled in the family design. Error bars and numbers in parentheses indicate 95% confidence intervals. The sample size for a given cognitive domain differs from the summed sample size for test variables within that domain because inclusion criteria differ (see Supplementary Methods).

Figure 3. Variance component estimates for cognitive phenotypes based on metaanalysis of schizophrenia family studies.

Percentage variance explained by A + C (Additive genetic + Common environment influences) and E (Unique environment and Error) for individual test variables (plain font) and cognitive domains (bold font). A and C are combined because they cannot be disentangled in the family design. Error bars and numbers in parentheses indicate 95% confidence intervals. The sample size for a given cognitive domain differs from the summed sample size for test variables within that domain because inclusion criteria differ (see Supplementary Methods).

Figure 4. Heritability of cognitive phenotypes across study designs.

Phenotypic variance explained was determined by meta-analysis for non-psychiatric twin, non-psychiatric family, and schizophrenia family studies, or from the original study estimates for schizophrenia twin studies. Cognitive domains (bold) and test variables (plain) meta-analyzed in the non-psychiatric twin and at least one other study design are shown. Error bars indicate 95% confidence intervals. *p<0.05 (Bonferroni-corrected). WCST = Wisconsin Card Sorting Test; CVLT = California Verbal Learning Test; IR, DR = Immediate, Delayed Recall.

Figure 5. Genetic overlap between cognitive phenotypes and schizophrenia liability based on twin data.

Cross-twin cross-trait (CT-CT) correlations for cognition in co-twin 1 and schizophrenia liability in cotwin 2 for MZ pairs (rMZ_{CT-CT}) and DZ pairs (rDZ_{CT-CT}). r_{ph} is the total phenotypic correlation between the cognitive phenotype and schizophrenia liability, of which r_{ph-a} is the amount due to additive genetic influences. r_{g} is the genetic correlation between the cognitive phenotype and schizophrenia liability. All correlations are negative (e.g., poor cognition associated with high liability) but are shown as positive values for plotting consistency. Data are maximum likelihood estimates reported in $_{34-37}$. Study reference numbers are shown in parentheses. CT-CT correlations were only reported for studies $_{36}$ and $_{37}$. FIQ and WMS subtests were analyzed in multiple studies; only data from studies reporting CT-CT correlations are shown. See Supplementary Table 8 for all reported data. IR, DR = Immediate, Delayed Recall; WAIS = Wechsler Adult Intelligence Scale; WMS = Wechsler Memory Scale.

d	૾ૡૺૡૺ૿ૡૺ૿ૡૺ૿ૡૺૡ૾ૡૺૡ૾ૡૺ૿ૡૺ૿ૡૺ૿ૡૺ૿					
		A	C	E	Studies	Subjects
General Cognitive Ability		53 (47-59)	13 (9-16)	34 (28-41)	25	47,890
Full-scale IQ	1 C C C C C C C C C C C C C C C C C C C	64 (61-67)	12 (9-16)	24 (21-28)	9	17,120
Performance IQ		67 (59-75)	3 (0-6)	30 (25-35)	6	4,880
Verbal IQ		65 (60-71)	17 (12-22)	18 (16-20)	6	4,880
Spearman's g		64 (54-74)	13 (6-21)	23 (16-30)	10	9,582
Raven's Progressive Matrices		42 (30-54)	4 (1-6)	54 (45-64)	2	16,104
AFQT		50 (41-58) 32 (19-46)	25 (16-34) 17 (8-27)	25 (25-26) 51 (45-56)	4	7,644
Attention/Processing Speed		45 (37-54)	5 (1-9)	50 (42-57)	18	9,939
Choice RT Mean RT		50 (37-63)	1 (0-3)	49 (34-62)	4	2,752
WAIS Digit Symbol Coding		59 (56-63)	3 (0-7)	38 (35-41)	11	6,080
ETS Hidden Patterns		67 (62-73)	6 (2-9)	27 (19-36)	2	1,416
ETS Identical Pictures		74 (70-79)	0 (0-0)	26 (21-30)	3	1,784
Simple RT Mean RT		34 (5-63)	6 (0-16)	60 (39-79)	3	1.300
Stroop Color-Word	and the second se	54 (50-57)	2 (0-4)	44 (43-46)	2	588
Stroop Interference		33 (25-41)	11 (4-19)	55 (44-67)	3	1,812
Trail Making Test A Time		28 (0-55)	9 (0-28)	63 (53-72)	2	656
Trail Making Test B Time		33 (0-68)	15 (0-43)	52 (45-59)	2	590
Attention/Vigilance		35 (32-38)	3 (0-7)	62 (58-67)	4	3,564
Working Memory		41 (36-47)	6 (3-9)	53 (47-58)	20	11,223
Spatial 2-back Accuracy	T	32 (24-39)	3 (0-10)	65 (52-80)	2	1,446
WAIS Arithmetic		58 (51-66)	8 (4-12)	34 (26-41)	6	3.028
WAIS Digit Span Backward		44 (35-54)	6 (0-12)	50 (44-55)	5	2,870
WAIS Digit Span Forward		38 (30-45)	8 (0-17)	54 (47-61)	6	4,396
VAIS Digit Span Forward + Backward		45 (35-55)	8 (4-12)	47 (40-54)	8	4,140
WAIS Letter-Number Sequencing	Ī	42 (29-56)	12 (1-23)	46 (43-48)	2	1,750
SDRT Accuracy		26 (0-53)	3 (0-9)	71 (49-92)	2	1,730
WAIS Working Memory Index		53 (36-71)	19 (0-37)	28 (19-37)	3	2,168
Verbal Memory		26 (20 32)	8 (6 10)	66 (61 71)	0	16,815
CVLT Trials 1-5 Sum		34 (29-38)	5 (0-11)	61 (51-71)	2	1,704
WMS Logical Memory DR		54 (53-55)	1 (0-2)	45 (44-45)	4	1,934
WMS Logical Memory IR		47 (47-47)	5 (3-8)	48 (45-50)	2	1,910
Non-Verbal Memory	1	39 (32-46)	4 (1-7)	57 (49-65)	8	6,354
Thurstone Picture Memory		63 (27-100)	3 (0-7)	34 (0-74)	2	2,316
WMS Visual Reproduction DR	I	43 (34-51)	2 (1-3)	55 (48-63)	2	1,448
WMS Visual Reproduction IR		44 (27-62)	8 (1-15)	48 (39-57)	2	1,910
Verbal Ability		41 (34-47)	13 (10-16)	46 (40-53)	21	24,530
WAIS Comprehension		53 (39-67)	8 (1-14)	39 (26-49)	4	1,964
DSB Synonyms		46 (31-61)	19 (8-29)	35 (31-40)	2	1,730
WAIS Information		63 (56-69)	13 (5-21)	24 (20-27)	7	4,626
Phonemic Fluency		55 (47-64)	3 (0-8)	42 (36-46)	6	2,008
Semantic Fluency		47 (40-53)	0 (0-0)	53 (47-60)	4	2,788
WAIS Similarities		43 (28-59)	10 (3-16)	47 (33-60)	4	1,964
WAIS Verbal Comprehension Index		72 (59-86)	12 (0-23)	16 (12-20)	3	2,168
WAIS Vocabulary		57 (48-65)	13 (7-18)	30 (22-39)	15	9,361
Visuospatial Ability		51 (45-56)	5 (2-8)	44 (40-49)	8	5,056
WAIS Block Design		60 (55-65)	6 (2-10)	34 (27-41) 44 (36-52)	3	
ETS Card Rotations		50 (39-60) 51 (40-55)	6 (2-11)	49 (45 52)	3	1,134
UF30 Mental Rotation WAIS Object Assembly		52 (45-59)	0 (0 0) 7 (2-11)	40 (45 52) 41 (37-50)	5	2,964
WAIS Object Assembly WAIS Perceptual Organization Index		80 (67-92)	1 (0-3)	19 (8-32)	3	2,964
WAIS Perceptual Organization Index WAIS Picture Arrangement		39 (20-58)	1 (0-3)	19 (8-32) 60 (41-76)	4	1,964
WAIS Picture Arrangement WAIS Picture Completion		20 (8-32)	14 (4-25)	66 (52-80)	4	1,964
Executive Function		32 (22-43)	6 (2-11)	62 (52-80)	7	4,513
WCST Perseverative Errors		32 (22-43) 37 (32-41)	7 (3-12)	56 (56-56)	2	4,513
WCST Perseverative Errors		20 (0-51)	14 (0-30)	66 (51-82)	2	386
WCST Perseverative Hesponses WCST Trials to 1st Category		40 (34-46)	3 (1-5)	57 (49-64)	2	958
Motor Skills		33 (16-51)	24 (17-31)	43 (33-52)	2	1,852
MOLOF SKIIIS		33 (10-31)	24 (17-31)	49 (09:02)	2	1,802

ଽୄ୲ଽୄଽଽୢୄୡୄୢୄଽୡୄୢୄୡୄୢୄୡୄୡୄୡୄୢୄୡୄ

261x381mm (300 x 300 DPI)

		A+G	E	Studics	Subjects
General Cognitive Ability		68 (49-87)	32 (13-51)	3	11,707
Attention/Processing Speed	H Contraction of the second seco	42 (39-46)	58 (54-61)	6	8,722
WAIS Digit Symbol Coding	-	45 (40-50)	55 (50-60)	3	7,532
Trail Making Test B Time		44 (29-60)	56 (40-71)	3	2,206
Attention/Vigilance	1	30 (28-31)	70 (69-72)	2	1,426
Working Memory		34 (26-41)	66 (59-74)	3	4,650
WAIS Digit Span Backward		31 (17-46)	69 (54-83)	2	4,493
WAIS Digit Span Forward		37 (28-47)	63 (53-72)	2	4,493
WAIS Letter-Number Sequencing	and the second	55 (53-56)	45 (44-47)	2	1,426
Verbal Memory	-	34 (27-40)	66 (60-73)	6	11,766
CVLT Trials 1-5 Sum		34 (25-42)	66 (58-75)	3	2,206
Verbal Ability		52 (45-59)	48 (41-55)	5	8,530
Semantic + Phonemic Fluency		46 (38-54)	54 (46-62)	3	6,528
Semantic Fluency	and the second	36 (36-36)	64 (64-64)	2	2,049
Visuospatial Ability	1	52 (45-59)	48 (40-55)	3	1,359
WAIS Matrix Reasoning		53 (44-61)	47 (39-56)	2	1,286
Executive Function		33 (20-46)	67 (54-80)	3	1,484

୰ୖୄ୷ୄୖ୶ୢୄୖ୶ୢୄୖ୶ୢୖୄୖ୶ୢୖୄ୰ୢ୷ୄୖୄ୶ୄୖ୷ୄୖ

97x59mm (300 x 300 DPI)

		A+C	E	Studies	Subjects
General Cognitive Ability		63 (45-81)	37 (19-55)	5	2,139
Full-scale IQ		69 (60-79)	31 (21-40)	3	1,822
Attention/Processing Speed	T	26 (18-34)	74 (66-82)	9	3,947
CNB JOLO RT	T	27 (20-35)	73 (65-80)	2	1,957
CNB PCET RT	1	24 (20-29)	76 (71-80)	2	1,947
CNB Penn Face Memory RT		22 (20-24)	78 (76-80)	2	1,968
CNB Penn Word Memory RT	1	21 (18-24)	79 (76-82)	2	1,950
CNB VOLT RT		18 (11-25)	82 (75-89)	2	1,935
Trail Making Test A Time		26 (6-46)	74 (54-94)	4	661
Trail Making Test B Time		20 (7-34)	80 (66-93)	5	778
WAIS Digit Symbol Coding		39 (19-58)	61 (42-81)	5	1,663
Attention/Vigilance	I	29 (20-37)	71 (63-80)	6	3,566
CPT-Degraded Stimulus d-prime		39 (27-50)	61 (50-73)	2	1,151
Working Memory	H	40 (00-47)	57 (50-62)	10	G,101
WAIS Letter-Number Sequencing		44 (34-54)	56 (46-66)	4	2,750
WAIS Digit Span Backward		26 (9-43)	74 (57-91)	3	616
WAIS Digit Span Forward		42 (7-78)	58 (22-93)	3	616
WAIS Digit Span Forward + Backward		30 (8-53)	70 (47-92)	3	288
WMS Spatial Span		36 (6-65)	64 (35-94)	2	301
Verbal Memory		44 (36 52)	56 (48 64)	0	4,757
CNB Penn Word Memory IR + DR		52 (41-62)	48 (38-59)	2	2,018
CVLT Trials 1-5 Sum		35 (26-45)	65 (55-74)	7	2,740
CVLT Semantic Clustering		39 (24-53)	61 (47-76)	2	533
9			56 (47-65)	3	619
CVLT Recognition		44 (35-53)		2	
CVLT Long Delay Free Recall		55 (41-69) 62 (47-76)	45 (31-59) 38 (24 63)	2	355
WM6 Logical Memory IR Non-Verbal Memory		38 (32-44)	62 (56-68)	7	4,773
WMS Visual Reproduction IR		50 (16-84)	50 (16-84)	2	163
,		43 (21-65)	57 (35-79)	2	162
WMS Visual Reproduction DR CNB Penn Face Memory IR + DR		36 (31-42)	64 (58-69)	3	2,948
· · · · · · · · · · · · · · · · · · ·		38 (29-47)	62 (53-71)	2	2,340
CNB Penn Face Memory IR CNB VOLT IR + DR		31 (28-34)	69 (66-72)	2	2,139
				8	
Verbal Ability		55 (44-66)	45 (34-56)	2	5,102
WRAT Reading		74 (68-80)	26 (20-32)	3	1,056
WAIS Vocabulary		74 (69-80)	26 (20-31)		1,955
WAIS Similarities		51 (20-81)	49 (19-80)	2	348
Semantic Fluency		48 (42-54)	52 (46-58)	2	449
Semantic + Phonemic Fluency		37 (20-54)	63 (46-80)	2	1,092
Phonemic Fluency		33 (21-45)	67 (55-79)		353
Visuospatial Ability		51 (46-55)	49 (45-54)	7	4,912
CNB JOLO Accuracy		54 (52-56)	46 (44-48)	3	2,862
WAIS Block Design		54 (39-68)	46 (32-61)	2	314
WAIS Matrix Reasoning		45 (33-56)	55 (44-67)	3	1,813
Executive Function		21 (14-28)	79 (72-86)	8	7,982
CNB PCET Accuracy		30 (19-40)	70 (60-81)	3	2,903
WCST Perseverative Errors	-	22 (19-26)	78 (74-81)	3	2,502
WCST Categories Completed		15 (15-15)	85 (85-85)	2	2,381
Motor Skills	1	39 (37-40)	61 (60-63)	4	1,443
CNB Mouse Practice Task RT		42 (33-51)	58 (49-67)	2	1,280
Pundue Peghoard Time Left + Bight	1	37 (34-40)	63 (60-66)	2	170
Social Cognition	T	25 (17-32)	75 (68-83)	3	2,879
CNB Emotion Recognition Accuracy		23 (16-30)	77 (70-84)	2	2,502

*ଽ*୶ୖ୶ୢ୶ୢ୶ୢ୶ୡୄ୶୶ୄୠୄ୶ୢୢୖ୶ୢୖୄ

ૡૺૢૡૺ૿ૡૢૺ૾ૡૢૺ૾ૡૢૺ૾ૡૢૺ૾ૡૢૺ૾ૡૺ૾ૡૺ૾ૡૺ૾ૡૺ૾ૡૺ

237x354mm (300 x 300 DPI)

209x245mm (300 x 300 DPI)

179x179mm (300 x 300 DPI)

Supplementary Materials for Blokland et al., Heritability of neuropsychological measures in schizophrenia and non-psychiatric populations: A systematic review and meta-analysis

GENUS Consortium Collaborators	2
Supplementary Methods	
Supplementary Table 1 – Cohort Index	6
Supplementary Table 2 – Twin and Family Studies of Other Disorders Exclude	d from Meta-
Analyses	8
Supplementary Table 3 – Non-Psychiatric and Schizophrenia Twin and Family	
Excluded from Meta-Analyses	9

Supplementary Table 4 – Characteristics of Non-Psychiatric Twin Studies < 16 Years of Age Supplementary Table 5 – Characteristics of Non-Psychiatric Twin Studies > 16 Years of Age Supplementary Table 6 – Characteristics of Non-Psychiatric Family/Pedigree Studies Supplementary Table 7 – Characteristics of Schizophrenia Family/Pedigree Studies Supplementary Figure 1 – Flow Diagram of Literature Search, Inclusion, and Exclusion.... 28 Supplementary Figure 2 – MZ versus DZ twin correlations for neuropsychological variables

GENUS Consortium Collaborators

Genetics of Endophenotypes of Neurofunction to Understand Schizophrenia (GENUS) Consortium

Gabriella A. M. Blokland_{1,2,3}, Jordan W. Smoller_{1,2,3}, Shaun M. Purcell_{1,2,3}, Robert W. McCarley_{4,2}, Martha E. Shenton_{5,2}, Elisabetta C. del Re_{4,2,5}, Raquelle I. Mesholam-Gately_{6,2}, Neeltje E. M. van Haren7, Rene S. Kahn7, Hilleke E. Hulshoff Pol7, Wiepke Cahn7, Sonja M. de Zwarter, Gary Donohoe8,9,10, Aiden P. Corvin9,10, Michael Gill9,10, Derek W. Morris8,9,10, Sinead Kelly9,10,12, Donna Cosgrove8, Dan Rujescu13,14, Ina Giegling13, Annette M. Hartmann13, Bettina Konte13, Robin M. Murray15, Timothea Toulopoulou15,16,17,18, Anthony S. David15, Elvira Bramon15, Marco M. Picchioni15, Manuela Russo15, M Aurora Falcone15, Anil K. Malhotra_{19,20,21}, Joey W. Trampush_{19,20,21}, Todd Lencz_{19,20,21}, Jorge Jovicich_{22,23}, James T. R. Walters24, Jessica A. Turner25,26, Stefan Ehrlich27,28,2, Esther Walton27, Randy L. Gollub28,2, Dara S. Manoach₂₈, Vince D. Calhoun_{25,29}, S. Charles Schulz₃₀, Scott R. Sponheim₃₀, Joshua L. Roffman31,28,32, Daphne J. Holt31,28, Donald C. Goff33,31, Rick P. F. Wolthusen27,2,28, Jill M.Goldstein_{34,35,32,28}, Larry J. Seidman_{6,2}, Stephen L. Buka₃₇, Sara Cherkerzian_{34,38}, Lynn E. DeLisi4,2, Heidi W. Thermenos6,2, Marek Kubicki5,40,41,1, Matcheri S. Keshavan6,2,43, Zora Kikinis5,2, Paul G. Nestor4,2,45, Aristotle N. Voineskos46,47, Erin W. Dickie46, Marta Di Forti15, Paola Dazzan15, Evangelos Vassos15, Simone Ciufolini15, Tiago Reis Marques15, Jimmy Lee48, Kang Sim48, Max Lam48, New Fei Ho48, Tracey L. Petryshen1,2,3

¹Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research & Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; ²Department of Psychiatry, Harvard Medical School, Boston, MA, United States; ³Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States; ⁴Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States; ⁵Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States; ⁶Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States: 7Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands; 8The Cognitive Genetics and Cognitive Therapy Group, Department of Psychology, National University of Ireland, Galway, Ireland; 9Neuropsychiatric Genetics Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland; 10 Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; 11Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland; 12Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; 13Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle-Wittenberg, Halle an der Saale, Germany; 14Department of Psychiatry, Ludwig Maximilians University, Munich, Germany; 15Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom; 16Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China; 17State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China; 18Psychology Department, Bilkent University, Bilkent, Ankara, Turkey; 19Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Division of Northwell Health, Manhasset, NY, United States; 20Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, NY, United States: 21Hofstra Northwell School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, United States; 22Department of Cognitive Sciences, University of Trento, Trento, Italy; 23MRI laboratory at the Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, Rovereto, TN, Italy: 24Department of Psychological Medicine, Cardiff University, Cardiff, United Kingdom; 25The Mind Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States; 6 Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States; 7Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands; 8The Cognitive Genetics and Cognitive Therapy Group, Department of Psychology, National University of Ireland, Galway, Ireland; Neuropsychiatric Genetics Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland: 10Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; 11Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, 11Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland; 12Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; 13Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle-Wittenberg, Halle an der Saale, Germany; 14Department of Psychiatry, Ludwig Maximilians University, Munich, Germany; 15Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom; 16Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China; 17State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China; 18Psychology Department, Bilkent University, Bilkent, Ankara, Turkey; 19Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Division of Northwell Health, Manhasset, NY, United States; 20 Division of Psychiatry Research, The Zucker Hillside Hospital, Division of Northwell Health, Glen Oaks, NY, United States; 21Hofstra Northwell School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, United States; 22Department of Cognitive Sciences, University of Trento, Trento, Italy; 23MRI laboratory at the Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, Rovereto, TN, Italy; 24Department of Psychological Medicine, Cardiff University, Cardiff, United Kingdom; 25The Mind Research Network, Albuquerque, NM, United States; 26Departments of Psychiatry and Psychology, University of New Mexico, Albuquergue, NM, United States; 27Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany; 28MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,

United States: 29Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States; 30Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States; 31Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; 32Brain Genomics Lab. Psychiatric Neuroimaging Division. Massachusetts General Hospital. Boston. MA. United States; 33Nathan S. Kline Institute for Psychiatric Research, Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States; ³⁴Connors Center for Women's Health and Gender Biology, Division of Women's Health, Departments of Psychiatry and Medicine, Brigham and Women's Hospital, Boston, MA, United States; 35Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA. United States: 36Psychiatric Neuroimaging Division, Massachusetts General Hospital, Boston, MA, United States; 37Department of Epidemiology, Brown University, Providence, RI, United States; 38Department of Psychiatry and Medicine, Harvard Medical School, Boston, MA, United States; 39Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States; 40Departments of Psychiatry and Radiology, Harvard Medical School, Boston, MA, United States; 41Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; 42Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; 43University of Pittsburgh Medical Center, Pittsburgh, PA, United States: 44Veterans Affairs Boston Healthcare System, Brockton, MA, United States; 45Laboratory of Applied Neuropsychology, University of Massachusetts, Boston, MA, United States; 46Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; 47Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada; 48Institute of Mental Health, Woodbridge Hospital, Singapore

Supplementary Methods

Data collection

A literature search was performed in PubMed and PsycINFO using combinations of the following search terms: [heritability, genetic influences, behavior genetics, twin research, family, pedigree, individual differences, neuropsychological test, cognition, cognitive ability, endophenotype]. Additionally, we searched specifically for schizophrenia studies using combinations of the following search terms: [schizophrenia, genetic overlap, genetic correlation, cognition, endophenotype]. A flow diagram of the literature search, inclusion, and exclusion is shown in Supplementary Figure 1. The search resulted in a list of >2000 papers published prior to January 2016. Based on abstract review, 269 articles were retrieved and evaluated for their suitability for inclusion. An additional 93 articles were identified from the reference lists of the retrieved articles. We identified 296 studies of non-psychiatric twins or families, and 32 studies of schizophrenia twins or families, as well as 35 studies reporting estimates for other psychiatric and neurological disorders only that are not included in our analyses (Supplementary Table 2), from a total of 126 independent twin and family cohorts, listed in Supplementary Table 1. Thirtyseven non-psychiatric twin studies were excluded for various reasons outlined in Supplementary Table 3, including statistical model and phenotype. Furthermore, studies that reported variance component estimates (including heritability) based on MZ and DZ twin intra-pair correlations (30) or familial correlations (4) were excluded, since these estimates often do not sum to one and would therefore affect the accuracy of heritability meta-estimates (Falconer et al. 1996). Finally, based on the observation that, during development, heritability increases linearly with age (Haworth et al. 2010), 86 studies of non-psychiatric twins younger than 16 years were excluded from the meta-analyses (Supplementary Table 4). Non-psychiatric studies usually excluded individuals with a current psychiatric or neurological disorder, but did not necessarily screen for lifetime DSM-IV diagnosis, family history of psychiatric illness, or medical conditions that could impact cognition.

After these exclusions, 168 empirical articles describing twin or family studies were included in the analyses. These studies investigated the heritability of >600 neuropsychological test variables (outcome measures) in 64 independent twin and family cohorts. Among these 168 studies, there were 129 twin studies (Supplementary Table 5) and 13 family studies (Supplementary Table 6: 1 study was part of a publication also reporting on a schizophrenia family study) of non-psychiatric individuals, and 20 schizophrenia family studies (14 independent) (Supplementary Table 7). Additionally, there were 7 studies of twins/siblings concordant or discordant for schizophrenia (Supplementary Table 8); however, these were not meta-analyzed as there were no common neuropsychological measures across the two independent samples, thereby the requirement for meta-analysis was not met. Of the 129 nonpsychiatric twin studies, there were 30 late adolescent (16–17 years), 39 young adult (18-40 years), 25 middle age (41-65 years), and 35 older (>65 years) studies. We performed separate meta-analyses of non-psychiatric twins, non-psychiatric families, and schizophrenia families. We meta-analyzed neuropsychological test variables that were reported in at least two independent cohorts. Additionally, neuropsychological test variables were assigned to one of the following 11 domains based on prior meta-analyses of cognition in schizophrenia (Heinrichs et al. 1998, Mesholam-Gately et al. 2009): General Cognitive Ability, Attention/Processing Speed, Attention/Vigilance, Working Memory, Verbal Learning and Memory, Non-Verbal Learning and Memory, Executive Function, Verbal Ability, Visuospatial Ability, Motor Skills, and Social Cognition. Meta-analyses of cognitive domains utilized all tests within a cognitive domain regardless of how many studies analyzed a particular test variable. If multiple tests within a cognitive domain were available for a given cohort, we included the average estimates for additive genetic effects (A), common environment (C), as well as unique environment and measurement error (E) across the tests in the domain meta-analysis.

Therefore, the sample size for a given cognitive domain differs from the summed sample size for test variables within that domain, because the inclusion criteria differed. Supplementary Table 9 describes the tests included in this meta-analysis, the cognitive functions they assess, and the cognitive domains they index.

Computation of A/C/E meta-estimates

The classical twin study design allows the decomposition of phenotypic variance into that due to additive genetic effects (A), common (shared) environment (C), and unique (unshared) environment and measurement error (E) (ACE model) (Blokland et al. 2013). In an alternative twin model, the phenotypic variance is divided into additive genetic (A), dominance genetic (D) and unique environmental (E) influences (ADE model). Because an ACE model was fitted in over 95% of the studies, for consistency we selected the variance component estimates from an ACE model over variance components from an ADE model if both models were reported. Variance component estimates from the full ACE model were selected over estimates from more parsimonious nested models (AE, CE, E). Family study (or extended pedigree) designs that do not include twins cannot distinguish the influences of A and C and therefore only provide an estimate of familiality (A+C), as well as E. Three of 13 family studies included a small proportion of twins (<1% of cohort) and therefore reported C. However, given the small number of twins, we summed A and C for those studies. In addition to decomposing the variance in one phenotype, twin and family studies can also decompose the co-variance between multiple phenotypes into A, C, and, E, thereby providing estimates of genetic overlap.

For each neuropsychological test or cognitive domain, the proportion of total variance accounted for by A, C, and E was calculated by averaging each component across studies from independent cohorts while weighting by sample size. For twin studies, the sample size equalled the total number of individuals from complete twin pairs plus any additional non-twin siblings multiplied by two (as each additional non-twin sibling provides two additional data points). For family studies, the sample size equaled the total number of individuals within each family. Due to insufficient available data, we were not able to meta-analyze heritability estimates separately for males and females. Therefore, if parameters were

reported for males and females separately, the average was included in our meta-analyses. For studies that reported on the same neuropsychological test variable utilizing the same cohort, we only included data from the largest sample in our meta-analyses. For studies that estimated heritability for the same individuals at multiple time points, the heritability estimate for the time point with the largest sample size was included in the meta-analyses. Composite phenotypes (e.g. average Z-score across multiple tests) and principal component phenotypes were excluded, with the exception of general cognitive ability (first unrotated principal component), and a combined semantic + phonemic verbal fluency phenotype. All analyses were carried out in R (http://www.r-project.org) using custom scripts.

Comparison of heritability estimates between study designs

For cognitive phenotypes meta-analyzed in more than one study design, we assessed whether meta-heritability estimates were significantly different using a Wald test (Engle 1983). We specifically compared non-psychiatric twins and non-psychiatric families, as well as nonpsychiatric families with schizophrenia families. As some schizophrenia twin studies did not provide data to calculate standard errors of heritability estimates, Wald tests could not be performed for this design. P-values were Bonferroni-corrected for testing 15 cognitive phenotypes that were available for at least two study designs (0.05/15=0.0033).

			Made and an all Description of the second second second second
ANT	Antioquia, Colombia	MPSS	Multidimensional Psychopethology Study of Schizophrenia, Telwen *
ATR	Australian Twin Registry*	MTFS	Minnesota Twin Family Study *
B-SNIP	Bipolar-Schizophrenia Network on Intermediate Phenotypes*	MTR	Missouri Twin Registry *
CAP	Colorado Adoption Project	MTS	Maudaley Twin Study * / **
CAMH	Centre for Addiction and Mental Health	MTSADA	Minnesota Twin Study of Adult Development & Aging *
CONMD	Center for the Neuroscience of Mental Disorders *	N2CAP	Northeast-Northwest Collaborative Adoption Projects
CFAM	Colorado Adolescent Substance Abuse Family Study	NAF	Norwegian Armed Forces *
CLDRC	Colorado Learning Disabilities Research Center *	NAM	National Alliance for the Mentally II *
CLFADS	Caribbean Latino Familial Alzheimer's Disease Study	NASTR	National Academy of Sciences Twin Registry *
CLTS	Colorado Longitudinal Twin Study *	NCCP	National Collaborative Perinatal Project
CMHHC	Centers of Mental Health of Hevane City *	NCN	North Caroline Neuropsychiatry
CNLSY	National Longitudinal Survey of Youth 1979 Children's	NHLBI	National Heart, Lung, and Blood Institute *
COGS	Consortium on the Genetics of Schizophrenia *	NIHSS	National Institutes of Health Sibling Study **
CRP	Colorado Reading Project	NLSAH	National Longitudinal Study of Adolescent Health*
CTS	Colorado Twin Study *	NLSY	National Longitudinal Survey of Youth 1979 *
CVCR	Central Valley of Costa Rica *	NMTS	National Merit Twin Study
DHS	Diabetes Heart Study	NPHIE	National Public Health Institute of Finland **
ECLS-B	Early Childhood Longitudinal Study, Birth Cohort	NTR	Netherlands Twin Registry *
EFPT8	East Flanders Prospective Twin Study *	OATS	Older Australian Twin Study *
EMPE	El-Minie Province, Egypt	OOA	Old Older Amish *
ERF	Eresmus Rucphen Family Study *	OSC	Ontario Science Centre
E-RISK	E-Risk Longitudinal Twin Study	OTSN	Osio Twin Sample Norway *
FinnTwin12	Finnish population-based twin registry - Cohort 12*	PAARTNERS	Project Among African-Americans to Explore Risks for Schizophrenia *
FinnTwin16	Finnish population-based twin registry - Cohort 16	PMFS	Pennsylvania Multigenerational Family Study *
FRI	Fels Research Institute	PUC	Peking University, China *
FSTR	Florida State Twin Registry *	PUMG	Philipps University of Marburg, Germany
FTPRBE	Florida Twin Project on Reading, Behavior, and Environment	QNTS	Quebec Newborn Twin Study
GMTR	Greater Manchester Twin Register	QTR	Qingdeo Twin Registry *
GNUA	Group of Neurosciences, University of Antioquia, Colombia	RSTR	Russian School Twin Registry *
GOBS	Genetics of Brain Structure and Function *	SATSA	Swedish Adoption/Twin Study of Aging *
GOSAT	German Observational Study of Adult Twins *	SEFO8	Study on Etiological Factors of Schizophrenia, Talwan
GTR	Georgia Twin Registry	SFAHS	San Francisco Area High Schools
HATS	Non-Psychiatric Aging Twin Study *	SFHS	Scottish Family Health Study *
HFSC	Hawaii Family Study of Cognition	SMS1932-47	Scottish Mental Surveys of 1932 and 1947
HNFS	Harvard Neuropsychology Family Study **	STCLUHS	Scientific Twin Centre, Lithuanian University of Health Sciences
HSI	Haryana State, India	STR	Swedish Twin Registry *
нил	Hebrew University, Jerusalem, Israel	SUCC	Sichuan University, Chengdu, China*
IMAGE	International Multisite ADHD Genetics project	SYMTS	Swedish Young Male Twins Study **
INSERM	INSERM, France*	TCHS	Taipei City high schools, Taiwan

Supplementary Table 1 – Cohort Index

INSPE	Institute of Experimental Neurology, Italy *	TEDS	Twins Early Development Study
IOP	Institute of Psychiatry, King's College London, UK	TSLS	Telwan Schizophrenia Linkage Study*
ITR	Italian Twin Registry *	TwinsUK	St Thomas' Adult UK Twin Registry *
JUH	Jena University Hospital, Germany **	UBVS	Utah Bureau of Vital Statistics
KINDAI	Kinki University School of Medicine, Osaka, Japan	UCLA	University of California, Los Angeles *
KMTP-IUTP	Kinship of Monozygotic Parents & Indiana University Twin Panel *	UHK	University of Hong Kong
KTP	Keio Twin Project *	UK-DCSF	UK Department for Children, Schools and Families
LAS	London Area Schools	UK-MGSG	UK Mid Glamorgan & South Glamorgan counties
LLFS	Long Life Family Study *	UMCU	University Medical Center Utrecht, Netherlands */
LOADES	Late Onset Alzheimer's Disease Family Study	UMMS	University of Milan Medical School, Italy
LSADT	Longitudinal Study of Aging Danish Twins *	UMN	University of Minnesota
LTS	Louisville Twin Study	UOB	University of Barcelona, Spain * / **
MADT	Middle Age Danish Twin study	UOCIL	University of Chicago, Illinois
MALTS	MecArthur Longitudinal Twin Study	UOZC	University of Zegreb, Croatia *
MAPS	Memory, Attention, and Problem Solving*	UPTS	University of Pittsburgh Twin Study *
MBF	Multiple Births Foundation	UUT	University of Utah
MBRNS	Medical Birth Registries of Norway and Sweden	UWO	University of Western Ontario *
MCM	Mesico City, Mesico *	VETR	Vietnam Era Twin Registry *
MCTFR	Minnesota Center for Twin and Family Research *	VETSA	Vietnem Era Twin Study of Aging *
MFS	Maudaley Family Study **	WOTP	Western Ontario Twin Project
MGH	Massachusetts General Hospital	WRAP	Wisconsin Registry for Alzheimer's Prevention
MHRC	Mental Health Research Centre, Moscow*	WRRP	Western Reserve Reading Project*
MISTRA	Minnesota Study of Twins Reared Apart *	WRTP	Western Reserve Twin Project
MOAFTS	Missouri Addescent Female Twin Study*	WTCHG	Welcome Trust Centre for Human Genetics

Supplementary Table 2 – Twin and Family Studies of Other Disorders Excluded from Meta-Analyses

	Reference	Twin Cohort(s) ^a	Disorder
1	Kieseppä et al. (2005)	NPHIF	Bipolar Disorder
2	Betjemann et al. (2010)	CLDRC	Reading Disability
3	Davis et al. (2001)	CRP / CLDRC	Reading Disability
4	Gayán et al. (2001)	CLDRC	Reading Disability
5	Knopik et al. (1997)	CLDRC	Reading Disability
6	Knopik et al. (1998a)	CLDRC	Reading Disability
	Knopik et al. (1998b)	CLDRC	Reading Disability (Healthy individuals included in Suppl Table 4)
	Knopik et al. (1999)	CLDRC	Reading Disability (Healthy individuals included in Suppl Table 4)
7	Knopik et al. (2002)	CLDRC	Reading Disability
8	LaBuda et al. (1987)	CRP	Reading Disability
	Light et al. (1998)	CLDRC	Reading Disability (Healthy individuals included in Suppl Table 4)
	Wadsworth et al. (1995)	CRP	Reading Disability (Healthy individuals included in Suppl Table 4)
9	Willcutt et al. (2007)	CLDRC	Reading Disability + Attention Deficit/Hyperactivity Disorder
10	Willcutt et al. (2010)	CLDRC	Reading Disability + Attention Deficit/Hyperactivity Disorder
11	Kremen et al. (2007c)	VETSA	Posttraumatic Stress Disorder
12	Latvala et al. (2011)	FinnTwin16	Alcohol Dependence
13	Kovas et al. (2005)	TEDS	Learning Disability
14	Kanakam et al. (2013)	IOP	Eating Disorder

	Reference	Family Cohort(s) ^a	Disorder
15	Antila et al. (2007)	NPHIF	Bipolar Disorder
16	Antila et al. (2009)	NPHIF	Bipolar Disorder
17	Fears et al. (2014)	ANT / CVCR	Bipolar Disorder
18	Glahn et al. (2010)	GOBS / CVCR / MCM	Bipolar Disorder
	Hill et al. (2013)	B-SNIP	Bipolar Disorder (Schizophrenia individuals included in Suppl Table 7)
19	Darst et al. (2015)	WRAP	Alzheimer's Disease
20	Johnson et al. (2007a)	CLFADS	Alzheimer's Disease (unaffected only)
21	Lee et al. (2004)	CLFADS	Alzheimer's Disease
22	Wilson et al. (2011)	LOADFS	Alzheimer's Disease
23	Andreou et al. (2007)	IMAGE	Attention Deficit/Hyperactivity Disorder
24	Cheung et al. (2012)	IMAGE	Attention Deficit/Hyperactivity Disorder + Reading Disability
25	Crosbie et al. (2013)	OSC	Attention Deficit/Hyperactivity Disorder
26	Doyle et al. (2008)	MGH	Attention Deficit/Hyperactivity Disorder
27	Frazier-Wood et al. (2012)	IMAGE	Attention Deficit/Hyperactivity Disorder
28	Kuntsi et al. (2010)	IMAGE	Attention Deficit/Hyperactivity Disorder
29	Peskin et al. (2015)	CVCR	Attention Deficit/Hyperactivity Disorder
30	Pineda et al. (2011)	GNUA	Attention Deficit/Hyperactivity Disorder
31	Rommelse et al. (2008)	IMAGE	Attention Deficit/Hyperactivity Disorder
32	Wood et al. (2011)	IMAGE	Attention Deficit/Hyperactivity Disorder
33	Cox et al. (2014)	DHS	Diabetes Mellitus
34	Marlow et al. (2001)	WTCHG	Reading Disability
35	Francks et al. (2003)	WTCHG	Reading Disability

^aFor cohort name abbreviations see Supplementary Table 1.

Supplementary Table 3 – Non-Psychiatric and Schizophrenia Twin and Family Studies Excluded from Meta-Analyses

	Reference	Non-Psychiatric Twin Cohort(s)*	Reason
1	Chipuer et al. (1990)	MISTRA	Assortative Mating model
2	Kirkpatrick et al. (2015)	MTFS	Genes x Environment (GxE) Interaction model
3	Turkheimer et al. (2003)	NCCP	Genes x Environment (GxE) Interaction model
4	Finkel et al. (2000b)	SATSA	Inclusion of non-NP measure in factor phenotype.
5	Luo et al. (2003)	WRTP	A+C+E do not sum to one (i.e. A+C+E explained <100% or >100% of the phenotypic variance not due to rounding errors)
6	Myles-Worsley et al. (1997)	UBVS	A+C+E do not sum to one
7	Finkel et al. (1996)	SATSA	Graphical display of results only
8	Finkel et al. (1998b)	SATSA	Graphical display of results only
9	Finkel et al. (2006)	SATSA	Graphical display of results only
10	McGue et al. (2013)	MADT	Graphical display of results only
11	Bishop et al. (2008)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
12	Haworth et al. (2009a)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
13	Haworth et al. (2009b)	TEDS / WRRP / MTFS / CLTS / CTS / CLDRC / MAPS / NTR	Liability Threshold Model / DeFries-Fulker Extremes Analysis
14	Hayiou-Thomas et al. (2010)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
15	Hayiou-Thomas et al. (2014)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
16	Kirkpatrick et al. (2011)	MISTRA	Liability Threshold Model / DeFries-Fulker Extremes Analysis
17	Petrill et al. (1997)	MALTS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
18	Petrill et al. (2001)	STR	Liability Threshold Model / DeFries-Fulker Extremes Analysis
19	Price et al. (2004)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
20	Reynolds et al. (2006)	STR	Liability Threshold Model / DeFries-Fulker Extremes Analysis
21	Saudino et al. (1994)	SATSA	Liability Threshold Model / DeFries-Fulker Extremes Analysis
22	Spinath et al. (2004)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
23	Viding et al. (2003)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
24	Viding et al. (2004)	TEDS	Liability Threshold Model / DeFries-Fulker Extremes Analysis
25	Asbury et al. (2005)	TEDS	Observational measure of infant development
26	DeThome et al. (2005)	TEDS	Observational measure of infant development
27	Eley et al. (1999)	TEDS	Observational measure of infant development
28	Emde et al. (1992)	MALTS	Observational measure of infant development
29	Koeppen-Schomerus et al. (2000)	TEDS	Observational measure of infant development
30	Koeppen-Schomerus et al. (2003)	TEDS	Observational measure of infant development
31	McArdle (1986)	LTS	Observational measure of infant development
32	Plomin et al. (1993)	MALTS	Observational measure of infant development
33	Price et al. (2000)	TEDS	Observational measure of infant development
34	Scourfield et al. (1999)	UK-MGSG	Observational measure of infant development
35	Spinath et al. (2003)	TEDS	Observational measure of infant development
36	Tucker-Drob et al. (2011)	ECLS-B	Observational measure of infant development
37	Tucker-Drob et al. (2012)	ECLS-B	Observational measure of infant development
38	Austin et al. (1980)	IOP	No Structural Equation Modeling
39	Bouchard Jr. (1983)	MISTRA	No Structural Equation Modeling
40	Bouchard et al. (1990)	MISTRA	No Structural Equation Modeling
41	Byrne et al. (2010)	CTS / ATR	No Structural Equation Modeling

42	Campana et al. (1996)	UMMS	No Structural Equation Modeling
43	Detterman et al. (1990)	WRTP	No Structural Equation Modeling
44	Foch et al. (1980)	CTS	No Structural Equation Modeling
45	Friedman et al. (2006)	CLTS	No Structural Equation Modeling
46	Grigorenko et al. (1992)	RSTR	No Structural Equation Modeling
47	Hayakawa et al. (1992)	KINDAI	No Structural Equation Modeling
48	Holmes et al. (2002)	GMTR	No Structural Equation Modeling
49	Jensen et al. (1979)	SFAHS	No Structural Equation Modeling
50	Kalasūnienė et al. (2013)	STCLUHS	No Structural Equation Modeling
51	Kremen et al. (2007a)	VETR	No Structural Equation Modeling
52	Pal et al. (1997)	HSI	No Structural Equation Modeling
53	Pedersen et al. (1985)	STR	No Structural Equation Modeling
54	Petrill et al. (2004)	N2CAP	No Structural Equation Modeling
55	Plassman et al. (1995)	NASTR	No Structural Equation Modeling
56	Rodgers et al. (1987)	FRI	No Structural Equation Modeling
57	Rushton et al. (2007)	WOTP / MISTRA	No Structural Equation Modeling
58	Sabb et al. (2013)	UCLA	No Structural Equation Modeling
59	Sachdev et al. (2011)	OATS	No Structural Equation Modeling
60	Segal (1985)	UOCIL	No Structural Equation Modeling
61	Swan et al. (1992)	NHLBI	No Structural Equation Modeling
62	Vemon (1989)	WOTP	No Structural Equation Modeling
63	Wilmer et al. (2010)	ATR	No Structural Equation Modeling
	Reference	Non-Psychiatric Family Cohort(s)	Reason
64	Bennett et al. (1985)	HFSC	No Structural Equation Modeling
65	Guttman (1974)	HUJI	No Structural Equation Modeling
66	Hervey et al. (2012)	NCN	No Structural Equation Modeling
67	McGee (1978)	UMN	No Structural Equation Modeling
68	Nagoshi et al. (1987)	HFSC	No Structural Equation Modeling
	-	•	1
	Reference	SCZ Twin/Family Cohort(s)	Reason
69	Cannon et al. (2000)	NPHIF	No Structural Equation Modeling
70	Goldberg et al. (2010)	MTS / UOB	No Structural Equation Modeling
71	Grove et al. (1991)	UMN	No Structural Equation Modeling
72	Kremen et al. (2006)	VETR	No Structural Equation Modeling
73	Pardo et al. (2000)	WUTR	No Structural Equation Modeling
1-			•

*For cohort name abbreviations see Supplementary Table 1.

Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c}
PEDIATRIC (ages 0-12; 8	1 studies)	•		
Anokhin et al. (2010)	MTR	T1: 12.5±0.2 T2: 14	MZ: 166; DZ: 119	WCST
Arden et al. (2014)	TEDS	T1: 4 T2: 14	T1: MZ: ~3719; DZ: ~3719 T2: MZ: ~1174; DZ: ~1174	Spearman's 'g'
Bartels et al. (2002)	NTR	T1: 5.3 [5–5] T2: 6.8 [6–7] T3: 10 [10–10] T4: 12 [12–12]	T1: MZ: 89; DZ: 120 T2-4: MZ: 96; DZ: 96	FIQ
Benyamin et al. (2005)	SMS1932-47	11 [11-11]	MZ: 316; DZ: 773	Moray House Test
Bishop et al. (2003)	CLTS / CAP	T1: 1; T2: 2; T3: 3; T4: 4; T5: 7; T6: 9; T7: 10; T8: 12	MZ: 331; DZ: 267	MDI, SBIS, WISC: Spearman's 'g'
Brooks et al. (1990)	CRP	12.5 [7.6-20.5]	MZ: 86; DZ: 60	PIAT Reading Recognition, Reading Comprehension, Spelling; WISC/WAIS FIQ
Brouwer et al. (2014b)	NTR	T1: 9.1±0.1 T2: 12.1±0.3	T1: MZ: 38; DZ: 46 T2: MZ: 23: DZ: 28	WISC-III FIQ, VIQ, PIQ
Byme et al. (2002)	CLTS / ATR / MBRNS	CLTS: 4.9 [3.9–5.7] ATR: 4.9 [4.5–5.9] MBRNS: 5.1 [4.8–5.6]	MZ: 125; DZ: 125	Word Blending; Syllable and Phoneme Blending; Sound Matching; Word Elision; Syllable and Phoneme Elision; Rhyme & Final Phoneme Match; Phoneme Identity Training; Visuospatial Learning; Story Memory; Auditory- Visual Paired-Associate Learning; HPNT; Nonword Repetition; RAN; Productive Morphology; Productive Grammar; Environmental Print; WRMT Word Recognition; Letter Name Recognition; Letter-Phoneme Recognition; Print Conventions; WPPSI-R Block Design, Vocabulary, Sentence Memory; Composites
Byrne et al. (2005)	CLTS / ATR	CLTS: 6.3 [6-6] ATR: 6.1 [6-6]	MZ: 172; DZ: 153	TROG Items; TOWRE Reading; Spelling; Phonological Awareness; Rapid Automatized Naming
Byme et al. (2006)	CLTS / ATR / MBRNS	CLTS: 4.9 [3.9–5.7] ATR: 4.8 [4.5–5.9] MBRNS: 5.1 [4.8–5.6]	MZ: 312; DZ: 315	Phonological Awareness; Rapid Automatized Naming; Print Awareness; Composites
Byme et al. (2008)	CLTS / ATR / MBRNS	MZ: 8.2±0.4; DZ: 8.3±0.4	MZ: 225; DZ: 214	Orthographic Learning; WRAT Spelling; Decoding Errors; WPPSI-R Block Design
Byme et al. (2009)	CLTS / ATR / MBRNS	CLTS: 8.4±0.3 ATR: 7.9±0.3 MBRNS: 8.7±0.3	MZ: 303; DZ: 312	TOWRE Sight Word Efficiency, Phonemic Decoding Efficiency; WRMT-R Passage Comprehension; WRAT Spelling; BNT
Byme et al. (2013)	CLTS / ATR / MBRNS	T1: CLTS: 4.9 [3.9–5.7] T1: ATR: 4.9 [4.5–5.9] T1: MBRNS: 5.3 [4.8–5.6] T2: CLTS: 8.440.3 T2: ATR: 7.9±0.3 T2: MBRNS: 8.7±0.3	T1: MZ: 520; DZ: 522 T2: MZ: 433: DZ: 437	WRAML Story Memory. Sound-symbol; Nonword Repetition; WPPSI Sentence Memory. Vocabulary; Hundred Pictures Naming Test; BNT; Letter Knowledge; Orthographic Learning; TOWRE Sight Word Efficiency, Phonemic Decoding Efficiency
Calvin et al. (2012)	UK-DCSF / PRIMA	UK-DCSF: 11.2±0.3 PRIMA: T1: 8; T2: 10; T3: 12	UK-DCSF: MZ: 1056; DZ: 495 PRIMA: MZ: 785; DZ: 327	CAT Verbal Reasoning, Nonverbal Reasoning, Quantitative Reasoning; Spearman's 'g'; Academic Measures; FIQ; Arithmetic, Language
Cherny et al. (1992)	MALTS / CAP	T1: 1; T2: 2; T3: 3	T3: MZ: 34; DZ: 28	SBIS FIQ
Cheung et al. (2014)	TEDS	8.8±0.7 [7-10]	MZ: 257; DZ: 387	WISC Digit Span Forward, Digit Span Backward; Go/No-Go + Choice RT SD
Chow et al. (2011)	UHK	6.7±? [3–11]	MZ: 228; DZ: 84	HKT-SLD Word Reading: PPVT; Phonological Memory; Tone Awareness, Syllable & Rhyme Awareness, Morphological Awareness, Orthographic Skills; RAN
Chow et al. (2013)	UHK	6.7±? [3–11]	MZ: 228; DZ: 84	RCPM; Composites of HKT-SLD Word Reading, PPVT, Phonological Memory, Tone Awareness, Syllable & Rhyme Awareness, RAN,

Supplementary Table 4 – Characteristics of Non-Psychiatric Twin Studies < 16 Years of Age Excluded from Meta-Analyses

Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,e} Morphological Awareness, Orthographic Skills
Coventry et al. (2011)	CLTS / ATR / MBRNS	4.9±? [4-5]	MZ: 496; DZ: 489	Static Phonological Awareness, Dynamic Phonological Awareness, Letter Knowledge; TOWRE
Dale et al. (2010)	TEDS	12.0 [12-12]	MZ: 1758; DZ: 3134	WISC-III Vocabulary; TOAL Listening Grammar; TOLC Making Inferences, Figurative Language
Davis et al. (2008)	TEDS	10 [10–10]	MZ: 919; DZ: 1622	Mathematics; PIAT Reading Comprehension; Spearman's 'g'
Davis et al. (2009)	TEDS	T1: 2 T2: 3 T3: 4 T4: 7 T5: 9	T1: MZ: 1633; DZ: 3208 T2: MZ: 1379; DZ: 2685 T3: MZ: 2078; DZ: 4050 T4: MZ: 1616; DZ: 2889 T5: MZ: 1045; DZ: 1767 T8: MZ: 2020; DZ: 1440	Phonological decoding; Orthographic Choice; PIAT; Spearman's 'g'
Davis et al. (2014)	TEDS		T6: MZ: 838; DZ: 1440 MZ: 1011; DZ: 1783	Composite of PIAT Reading Comprehension + GOAL Reading Comprehension + WRMT Reading Fluency + TOWRE Word Reading
DeThome et al. (2008)	WRRP	MZ: 7.1±0.7; DZ: 7.1±0.6 [6-8]	MZ: 78; DZ: 112	Efficiency, Composite of UK National Curriculum Tests BNT; SBIS Vocabulary
Edmonds et al. (2008)	MBF	MZ/DZ: 11.5±2.1 [7.9–17.3]; SIB: 12.5±2.8 [7.5–16.5]	MZ: 67; DZ: 44; SIB: 19	Line Discrimination Task; WISC-III VIQ, PIQ, FIQ
Gayán et al. (2003)	CLDRC	10.6 [7.8–18.6]	MZ: 257; DZ: 183	WISC-R/WAIS-R FIQ; PIAT Phoneme Awareness; TWR Word Recognition, Phonological Decoding, Orthographic Coding composite
Greven et al. (2014)	TEDS	12 [12-12]	MZ: 2191; DZ: 3930	Spearman's 'g'; Composite; Mathematics
Groot et al. (2004)	NTR	5.8±0.1	MZ: 125; DZ: 112	Go/No Go; Sustained Attention Task
Harlaar et al. (2005)	TEDS	7.1±0.2 [7–7]	MZ: 2292; DZ: 4184	TOWRE; Composite
Harlaar et al. (2007)	TEDS	10 [10–10]	MZ: 1561; DZ: 2068	PIAT Reading Comprehension
Harlaar et al. (2010)	WRRP	9.9±0.9	MZ: 89; DZ: 131	WRMT Word Attack, Word Identification, Passage Comprehension; TOWRE Phonemic Decoding Efficiency, Sight Word Efficiency; CELF Understanding Spoken Paragraphs, Word Chains; TNL Narrative Comprehension; PIAT Reading Comprehension; BNT
Hart et al. (2007)	WRRP	T1: 6.0±0.7 [4.3-7.9] T2: 7.2±0.7 [6.0-8.8]	MZ: 123; DZ: 164	SBIS FIQ
Hart et al. (2009)	WRRP	T1: 6.1±0.7 [4.3–8.3] T2: 7.2±0.7 [6.0–8.8]	MZ: 128; DZ: 175	BNT
Hart et al. (2013a)	FTPRBE	T3: 8.3±0.7 [6.2–10.0] T1: 6–7 T2: 7–8 T3: 8–9 T4: 9–10 T4: 9–10	T1: MZ: 243; DZ: 455 T2: MZ: 224; DZ: 411 T3: MZ: 152; DZ: 297 T4: MZ: 54; DZ: 90 T5: MZ: 24: DZ: 42	DIBELS Oral Reading Fluency
Hart et al. (2013b)	FTPRBE	T5: 10-11 8.2±1.3 [8-9]	T5: MZ: 24; DZ: 43 MZ: 189; DZ: 388	FCAT Reading Comprehension
Hayiou-Thomas et al. (2006a)	TEDS	4.5±0.2 [4-4]	MZ: 221; DZ: 226	Bus Story; Renfrew Action Picture Test Grammar Score; BAS Verbal Comprehension; Word Knowledge; Semantic Fluency; Verbal Memory; Phonological Awareness; GF Articulation; Non-word Repetition; Composite
Hayiou-Thomas et al. (2006b)	TEDS	4.5±0.2 [4-4]	MZ: 281; DZ: 275	Bus Story; Renfrew Action Picture Test Grammar Score; BAS Verbal Comprehension; Word Knowledge; Semantic Fluency; Verbal Memory; Phonological Awareness; GF Articulation; Non-word Repetition
Hayiou-Thomas et al. (2012)	TEDS	T1: 2; T2: 3; T3: 4; T4: 7; T5: 9;	MZ: 3959; DZ: 3927	WISC-III Vocabulary; TOLC Figurative Language, Making Inferences; TOAL
Heiser et al. (2006)	PUMG	T6: 10; T7: 12 9.0±2.0 [6–11]	MZ: 17; DZ: 12	Listening Grammar Go/No Go
Ho et al. (1988)	CRP / CLDRC	MZ: 12.9±2.7; DZ: 13.1±2.5 [8.5– 18]	MZ: 30; DZ: 30	FIQ; RAN; Colorado Perceptual Speed
Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c}
Ho et al. (2012)	UHK	7.8±1.6 [5–11.5]	MZ: 190; DZ: 80	PPVT; HKT-SLD Word Reading, Sentence Comprehension, Passage Comprehension; RCPM
Hohnen et al. (1999)	LAS	T1: 5.8 [5.7-6.1] T2: 7.0 [6.8-7.3]	T1: MZ: 89; DZ: 120 T2: MZ: 89; DZ: 120	PIQ; Composites
Jacobs et al. (2001)	EFPTS	[8-14]	MZ: 270; DZ: 181	WISC-R Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span, VIQ, PIQ, FIQ
Jacobs et al. (2002)	EFPTS	11.1±1.5 [8-14]	MZ: 286; DZ: 377	FIQ
Kirkpatrick et al. (2009)	MTFS	C1: 11.8±0.4 [10–13] C2: 17.5±0.5 [16–18]	MZ: 2392; DZ: 1372	FIQ
			MZ: 206; DZ: 208	PIAT discriminant function score (DISCR) Reading Recognition, Reading
(nopik et al. (1998b)	CLDRC	11.8 [8-20]	WIZ. 200, DZ. 200	Comprehension Spelling
				Comprehension, Spelling PLAT Reading Recognition, Reading Comprehension, Spelling, Mathematic
Knopik et al. (1999)	CLDRC	11.7 [8–20]	MZ: 220; DZ: 135	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors
(nopik et al. (1999) Koenen et al. (2006)	CLDRC E-RISK	11.7 [8–20] 5 [5–5]	MZ: 220; DZ: 135 MZ: 603; DZ: 513	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ
(nopik et al. (1999) (oenen et al. (2008) (untsi et al. (2006)	CLDRC E-RISK TEDS	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 156; DZ: 244	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic
Knopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2008) Light et al. (1998)	CLDRC E-RISK TEDS CLDRC	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 156; DZ: 244 MZ: 132; DZ: 91	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematio WISCWAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding
Cnopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2006) Light et al. (1998) Logan et al. (2013)	CLDRC E-RISK TEDS	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 156; DZ: 244	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit
Knopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2006) Light et al. (1998) Logan et al. (2013) Luo et al. (1994)	CLDRC E-RISK TEDS CLDRC WRRP	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 61: T2: 7.2: T3: 8.2: T4: 9.8: T5: 10.9: T6: 12.1 [8-12]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Smillarities, Comprehension, Arithmetic, Picture
Knopik et al. (1999) Koenen et al. (2008) Light et al. (2008) Logan et al. (1998) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012)	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS / ATR / MBRNS	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span
Cnopik et al. (1999) Coenen et al. (2006) Cuntsi et al. (2006) 	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS/ATR/	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] T1: CLTS: 4.10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 5.0±1.7 T2: CLTS: 6.5±3.8 T2: MERNS: 8.9±3.7	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Blook Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage
Knopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2006) Logan et al. (1998) Luo et al. (1994) Mosing et al. (2012) Dison et al. (2007) Peterson et al. (2013)	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS/ATR/ MBRNS	11.7 [9-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [6-12] 12 [12-12] T1: CLTS: 4.10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 5.0±1.7 T2: CLTS: 8.5±3.8 T2: MBRNS: 8.9±3.7 T3: CLTS: 10.5±3.9	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Blook Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CNRT; WPPSI Sentence Memory, Vocabulary; BNT Spearman's 'g'
Knopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2008) Light et al. (1998) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012) Dison et al. (2007) Peterson et al. (2013) Petril et al. (1993)	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS / ATR / MBRNS	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] T1: CLTS: 4, 10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 5.0±1.7 T2: CLTS: 8, 8±3.8 T2: MBRNS: 8.9±3.7 T3: CLTS: 10.5±3.9 T1: 5; T2: 7; T3: 8	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525	PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition, Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Pattems; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Smillarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CNRT; WPPSI Sentence Memory, Vocabulary; BNT
Cnopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2006) 	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS / ATR / MBRNS WRTP	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] T1: CLTS: 4.10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 5.0±1.7 T2: CLTS: 6.5±3.8 T2: MBRNS: 8.9±3.7 T3: CLTS: 10.5±3.9 T1: 6; T2: 7; T3: 8 9.5±1.8 [8-13]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525 MZ: 89; DZ: 74	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CNRT; WPPSI Sentence Memory, Vocabulary; BNT Speaman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold WISC Information, Picture Arrangement, Block Design, Opiert Assembly, Digit Span VISC Difformation, Single, Span
Cnopik et al. (1999) Coenen et al. (2006) Cuntsi et al. (2008) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012) Dison et al. (2017) Peterson et al. (2013) Petrill et al. (1995) Petrill et al. (1996)	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS / ATR / MBRNS WRTP WRTP	11.7 [9-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [9-20] T1: 6.1; 27.72; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] T1: CLTS: 4.10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 6.0±1.7 T2: CLTS: 8.5±3.8 T2: ATR: 7.11±4.5 T2: MBRNS: 8.9±3.7 T3: CLTS: 10.5±3.9 T1: 5; T2: 7; T3: 8 9.5±1.8 [8-13] 9.8±1.8 [8-13]	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525 MZ: 89; DZ: 74 MZ: 149; DZ: 138	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CNRT; WPPSI Sentence Memory, Vocabulary; BNT Speaman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold
Knopik et al. (1999) Koenen et al. (2008) Kuntsi et al. (2008) Light et al. (1998) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012) Dison et al. (2007) Peterson et al. (2013) Petrill et al. (1995) Petrill et al. (1996)	CLDRC E-RISK TEDS CLDRC WRRP WRTP WRTP CLTS / ATR / MBRNS CLTS / ATR / MBRNS WRTP WRTP WRTP	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] 11: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] 11: CLTS: 4.10±2.3 T1: MBRNS: 5.0±1.7 T2: CLTS: 8.5±3.8 T2: ATR: 7.11±4.5 T2: MBRNS: 8.8±3.7 T3: CLTS: 10.5±3.9 T1: 5; T2: 7; T3: 8 9.5±1.8 [8-13] 9.6±1.8 [8-13] 9.6±1.8 [8-13] 3 [3-3] MZ: 6.1±0.8 [5.0-7.9]; DZ: 6.1±0.7	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525 MZ: 89; DZ: 74 MZ: 149; DZ: 138 MZ: 135; DZ: 128	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification. Word Attack. Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CINRT; WPPSI Sentence Memory, Vocabulary; BNT Spearman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold WISC Information, Picture Arrangement, Block Design, Object Assembly, Digit Symbol, Digit Span (VISC Information, Similarities, Arithmetic, Vocabulary; Comprehension, Picture Completion, Picture Arrangement, Block Design, Object Assembly, Digit Symbol, Coding, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold Surger Probal Problement, Block Design, Object Assembly, Digit Symbol, Digit Span, CAT Learning, Self-Paced Probe Recall, Stimulus
Knopik et al. (1998b) Knopik et al. (1999) Koenen et al. (2008) Kuntsi et al. (2008) Light et al. (1998) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012) Olson et al. (2017) Peterson et al. (2013) Petrill et al. (1993) Petrill et al. (1995) Petrill et al. (1998) Petrill et al. (1998) Petrill et al. (2006a)	CLDRC E-RISK TEDS CLDRC WRRP WRTP WRTP CLTS / ATR / MBRNS CLTS / ATR / MBRNS WRTP WRTP WRTP WRTP MALTS	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] T1: 6.1; 27.7 2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [6-12] 12 [12-12] T1: CLTS: 4.10±2.3 T1: ATR: 4.9±3.4 T1: MBRNS: 5.0±1.7 T2: CLTS: 8.5±3.8 T2: MBRNS: 6.0±1.7 T2: CLTS: 10.5±3.9 T1: 5; T2: 7; T3: 8 9.5±1.8 [8-13] 9.6±1.8 [8-13] 9.6±1.8 [8-13] 9.6±1.8 [8-13] 9.6±1.8 [6-7.9]; D2: 6.1±0.7 [4.9-7.7]; MZ: 6.1±0.7 [5.0-7.9]; D2: 6.1±0.7	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 600 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525 MZ: 89; DZ: 74 MZ: 149; DZ: 138 MZ: 135; DZ: 128 MZ: 156; DZ: 145	PIAT Reading Recognition. Reading Comprehension. Spelling, Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ Go/No Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension, Spelling, Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification, Word Attack, Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Similarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Blook Design, Digit Symol Coding. Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CNRT; WPPSI Sentence Memory, Vocabulary; BNT Spearman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Stimulus Discrimination, Probe Recall, Story, Ongrehension, Picture Completion, Picture Arrangement, Block Design, Object Assembly, Digit Symol, Digit Span VISC Information, Similarities, Arithmetic, Vocabulary; BNT Spearman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Story, Object Assembly, Digit Symol, Digit Span, CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold WISC Information, Picture Arrangement, Block Design, Object Assembly, Digit Symol, Digit Span, CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Thresho
Chopik et al. (1999) Koenen et al. (2006) Kuntsi et al. (2008) Light et al. (1998) Logan et al. (2013) Luo et al. (1994) Mosing et al. (2012) Dison et al. (2007) Peterson et al. (2013) Petrill et al. (1993) Petrill et al. (1995) Petrill et al. (1998) Petrill et al. (1998)	CLDRC E-RISK TEDS CLDRC WRRP WRTP MAPS CLTS / ATR / MBRNS WRTP WRTP WRTP WRTP WRTP WRTP WRTP	11.7 [8-20] 5 [5-5] 8.4±0.3 [7-9] 12.1 [8-20] 11: 6.1; T2: 7.2; T3: 8.2; T4: 9.8; T5: 10.9; T6: 12.1 [8-12] 12 [12-12] 11: CLTS: 4.10±2.3 T1: MBRNS: 5.0±1.7 T2: CLTS: 8.5±3.8 T2: ATR: 7.11±4.5 T2: MBRNS: 8.8±3.7 T3: CLTS: 10.5±3.9 T1: 5; T2: 7; T3: 8 9.5±1.8 [8-13] 9.6±1.8 [8-13] 9.6±1.8 [8-13] 3 [3-3] MZ: 6.1±0.8 [5.0-7.9]; DZ: 6.1±0.7	MZ: 220; DZ: 135 MZ: 603; DZ: 513 MZ: 166; DZ: 244 MZ: 132; DZ: 91 MZ: 371; DZ: 213 MZ: 148; DZ: 135 MZ: 57; DZ: 112 T1: MZ: 497; DZ: 500 T2: MZ: 406; DZ: 424 T3: MZ: 176; DZ: 213 MZ: 520; DZ: 525 MZ: 89; DZ: 74 MZ: 149; DZ: 138 MZ: 136; DZ: 128 MZ: 156; DZ: 145 MZ: 118; DZ: 163	PIAT Reading Recognition. Reading Comprehension. Spelling. Mathematic WISC/WAIS Arithmetic; WRAT Arithmetic; latent factors FIQ GolNo Go; Fast Task; MICDA; WISC Digit Span PIAT Reading Recognition. Reading Comprehension. Spelling. Mathematic WISC/WAIS Arithmetic; Phonological Decoding WRMT Word Identification. Word Attack. Reading Comprehension; RAN CAP Verbal Fluency; PMA Spatial Relations; Colorado Perceptual Speed; ETS Hidden Patterns; CAP Names & Faces; HFSC Picture Memory; WISC Vocabulary, Information, Smilarities, Comprehension, Arithmetic, Picture Completion, Picture Arrangement, Object Assembly, Block Design, Digit Symbol Coding, Digit Span VESPARCH1 BNT; TOWRE Word Recognition, Decoding; WRMT Passage Comprehension; Composites CINRT; WPPSI Sentence Memory, Vocabulary; BNT Spearman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold WISC Information, Picture Arrangement, Block Design, Object Assembly, Digit Symbol, Digit Span VESPARCH1 Spearman's 'g' CAT Learning, Self-Paced Probe Recall, Stimulus Discrimination, Probe Recall, Tachistoscopic Threshold SIS FIQ Phonological Awareness; RAN; WRMT Reading

Reference	Cohort ^a	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c}
Rietveld et al. (2003)	NTR	T1: 5.3 [5–5] T2: 6.8 [6–7] T3: 10.0 [10–10]	T1: MZ: 89; DZ: 120 T2: MZ: 79; DZ: 113 T3: MZ: 82; DZ: 115	RAKIT Exclusion, Discs, Hidden Figures, Verbal Meaning, Learning Names, Idea Production
Samuelsson et al. (2005)	CLTS / ATR / MBRNS	CLTS: 4.9±0.2 [3.9–5.7] ATR: 4.9±0.3 [4.5–5.9] MBRNS: 5.1±0.2 [4.8–5.6]	MZ: 312; DZ: 315	RAN; Phonological Awareness; Composites
Samuelsson et al. (2008)	CLTS / ATR / MBRNS	T1: CLTS: 6.340.3 T1: ATR: 6.0±0.4 T1: MBRNS: 6.740.3 T2: CLTS: 7.440.3 T2: ATR: 7.0±0.4 T2: MBRNS: 7.7±0.3	T1-2: MZ: 402; DZ: 410 T3: MZ: 341; DZ: 348	TOWRE Reading, BFB Spelling, WRAT Spelling
Schachar et al. (2011)	QNTS	8.4±0.1	MZ: 55; DZ: 76	Stop Task (Go / No Go + SST)
Soden-Hensler et al. (2012)	FTPRBE	5.6±0.4 [5-5]	MZ: 427; DZ: 825	Letter Naming Fluency; Phoneme Segmentation Fluency; Nonsense Word Fluency
Stins et al. (2004)	NTR	12 [12-12]	MZ: 75; DZ: 64	SCWT; Eriksen Flanker Task
Stins et al. (2005)	NTR	5.8±0.1 [5.7-5.9]	MZ: 125; DZ: 112	ANT Selective Attention, Memory Search
Taylor et al. (2010)	FTPRBE	T1: 5.5±0.3 T2: 6.6±0.4	MZ: 1834; DZ: 3542	Letter Naming Fluency; Phoneme Segmentation Fluency; Nonsense Word Fluency
Thapar et al. (1994)	WRTP	9.5±1.8 [6-13]	MZ: 137; DZ: 127	CAT Learning, Probe Recall, Self-Paced Probe Recall; SCA Picture Memory; Names & Faces; WISC Digit Span
Thompson et al. (1991)	WRTP	9.8 [6-12]	MZ: 92; DZ: 41	Composites; MAT Reading, Mathematics, Language
Thompson et al. (1993)	WRTP	9.6±1.8 [5-13]	MZ: 148; DZ: 135	Composite; FIQ; Achievement
Tosto et al. (2014a)	TEDS	11.6±0.7 [11-12]	MZ: 1539; DZ: 2635	Composite of NFER Jigsaws + Hidden Shapes; UK National Curriculum Tests Mathematics
van Leeuwen et al. (2008)	NTR	MZ/DZ: 9.1±0.1 [9–9]; SIB: 11.8±1.2 [9–14]	MZ: 48; DZ: 64; SIB: 100	RSPM
van Leeuwen et al. (2009a)	NTR	MZ/DZ: 9.1±0.1 [9–9]; SIB: 11.8±1.2 [9–14]	MZ: 48; DZ: 64; SIB: 100	RSPM; WISC Verbal Comprehension Index, Perceptual Organization Index, Processing Speed Index
van Leeuwen et al. (2009c)	NTR	MZ/DZ: 9.1±0.1 [9-9]; SIB: 11.8±1.2 [9-14]	MZ: 48; DZ: 64; SIB: 100	WISC FIQ, Digit Span; Corsi Block Tapping; n-back; OMRT Reading
van Soelen et al. (2009)	NTR	MZ/DZ: 9.1±0.1 [9-9]; SIB: 11.8±1.2 [9-14]	MZ: 48; DZ: 64; SIB: 100	RAVLT
van Soelen et al. (2011)	NTR	T1: MZ/D2: 9.1±0.1 [9–11]; SIB: 10.9±10.4 [9–11] T2: MZ/D2: 12.1±0.3 [12–14]; SIB: 12.8±0.9 [12–14]	T1: MZ: 48; DZ: 64; SIB: 46 T2: MZ: 40; DZ: 49; SIB: 69	WISC VIQ, PIQ, FIQ
ADOLESCENCE (ages 13-1	6; 5 studies)	• •		
Abdel-Rahim et al. (1990)	EMPE	14.7 [12-19]	MZ: 36; DZ: 57	ETS/DAT composites; Spearman's 'g'
Chou et al. (2010)	TCHS	13.7±0.9 [12-16]	MZ: 257; DZ: 140	WCST
Molenaar et al. (2012)	GTR	15.3±1.6 [12-20]	MZ: 247; DZ: 230	Mazes; Object Aperture test; Arithmetic; Newcastle Spatial test; Spearman's 'g'
Wadsworth et al. (1995)	CRP	11 [8-20]	MZ: 109; DZ: 74	PIAT Reading Recognition, Reading Comprehension, Spelling; DTLA Auditory Attention Span; WISC-R/WAIS-R Digit Span; Composites
Waldman (2005)	GTR	13.2±2.5 [6-18]	MZ: 51; DZ: 34	TMT-A; TMT-B

Valorman (2005)

GTR

13.222.5 (0-16)

MC: 51, D2: 34

MTI-A, IM

For test name abbreviations see Supplementary Table 1.

For test name abbreviations see Supplementary Table 9.

Semicolons separate instruments, commas separate subtest of same instrument.

Abbreviations: MZ = Monozygotic (n pairs); DZ = Dizygotic (n pairs); SIB = Siblings; PC = Principal Component; T = Time; C = Cohort.

Supplementary Table 5 - Characteristics of Non-Psychiatric Twin Studies > 16 Years of Age

Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c,d}
LATE ADOLESCENCE (a	ges 16-17; 30 stu	dies)	•	•
Beaver et al. (2013)	NLSAH	NLSAH: T1: 16.1±1.7 [12-21]; T2: [18-26]	MZ: 278; DZ: 437; SIB: 2744	PPVT*
Bratko (1996)	UOZC	MZ: 17.0±1.3; DZ: 17.4±1.4 [15-19]	MZ: 71; DZ: 78	ETS Surface Development, Card Rotations; Phonemic Fluency; MFBT Vocabulary
Bratko et al. (2010)	UOZC	MZ: 17.0±1.3; DZ: 17.4±1.4 [15-19]	MZ: 71; DZ: 78	ETS Surface Development*, Card Rotations*; Phonemic Fluency*; MFBT Vocabulary*
Friedman et al. (2008)	CLTS	T1: 16.6±0.8 [15.8–20.0] T2: 17.3±0.6 [16.1–20.1]	MZ: 316; DZ: 266	Spearman's 'g'', WAIS-III FIQ, Vocabulary', Similarities', Information', Comprehension', Arithmetic', Digit Span', Picture Completion', Block Design', Picture Arrangement', Object Assembly', Digit Symbol Coding', Verbal Comprehension Index', Working Memory Index', Processing Speed Index, Perceptual Organization Index', Go / No Go', SCWT'; n-back'; ETS Hidden Pattems', Identical Pictures'; Colorado Perceptual Speed'
Friedman et al. (2011)	CLTS	T1: 16.6±0.8 [15.8–20.0] T2: 17.3±0.6 [15.8–20.1]	MZ: 217; DZ: 189	WAIS-III FIQ, Vocabulary, Similarities, Comprehension, Arithmetic, Digit Span, Picture Completion, Block Design, Picture Arrangement, Object Assembly, Digit Symbol Coding; Go / No Go; SCWT; n-back; ETS Hidden Patterns, Identical Pictures; Colorado Perceptual Speed
Godinez et al. (2012)	CLTS	17.3±0.6 [15.8-20.1]	MZ: 191; DZ: 165; SIB: 40	WCST"
Hansell et al. (2005)	MAPS	16.2±0.3 [15.4–18.1]	MZ: 252; DZ: 297	FIQ; SDRT Accuracy'; Choice RT 2-choice Mean RT; Line Discrimination Inspection Time
Hansell et al. (2015)	MAPS	17.0±2.2 [15.9–29.6]	MZ: 138; DZ: 199; SIB: 113	FIQ; Latin Square task"; N-term task"; Sentence Comprehension"; PC Relational Complexity; Composite of WAIS Matrix Reasoning + MAB Arithmetic; Composite of WAIS Digit Span Backwards + LNS
Haworth et al. (2010)	WRRP / TEDS / MCTFR / CLTS / CTS / CLDRC / MAPS / NTR	T3: 17 [14–34]	T2: MZ: 2222; DZ: 2712; T3: MZ: 1498; DZ: 1577	FIQ*
Keller et al. (2013)	CLTS / CTS / CFAM / MAPS	MZ/DZ: [12-28]; SIB: [10-35]	MZ: 1062; DZ: 1310; SIB: 1664	FIQ"
Luciano et al. (2001a)	MAPS	16.2±0.3 [15–18]	MZ: 184; DZ: 208	MAB VIQ, PIQ, FIQ; Line Discrimination
Luciano et al. (2001b)	MAPS	16.2±0.3 [15–18]	MZ: 166; DZ: 190	MAB FIQ; CRT; DRT
Luciano et al. (2003)	MAPS	16.2±0.3 [15–18]	MZ: 184; DZ: 206	MAB Information, Arithmetic, Vocabulary, Spatial, Object Assembly; WAIS Digit Symbol Coding
Luciano et al. (2004)	MAPS	16.2±0.3 [15–18]	MZ: 245; DZ: 298	MAB VIQ, PIQ; Line Discrimination; Choice RT; SDRT*
Luciano et al. (2005)	MAPS / NTR	MAPS: 16.2±0.3 [15–18] NTR: C1: 25.8±2.9 [<36] C2: 49.4±6.8 [36+]; SIB: 17.2±1.1 [15–22]	MZ: 385; DZ: 451; SIB: 670	MAB VIQ*, PIQ*; Line Discrimination
Luciano et al. (2006)	MAPS	QCST: 17.3±0.4 [16–18] MAB: MZ/DZ: 16.2±0.3 [15–18]; SIB: 17.2±1.1 [15–22]	MZ: 157-210; DZ: 166-288; SIB: 91-163	MAB VIQ, PIQ; QCST
Rijsdijk et al. (1998)	NTR	T1: 16.1±0.6 T2: 17.6±0.5	T1: MZ: 80; DZ: 108; T2: MZ: 74; DZ: 100	Simple RT*: Choice RT*: RSPM: WAIS Information, Comprehension, Arithmetic, Similarities, Digit Span, Vocabulary, Digit Symbol, Picture Completion, Block Design, Picture Arrangement, Object Assembly
Rijsdijk et al. (2002)	NTR	17.6±0.5	MZ: 83; DZ: 111	WAIS FIQ, VIQ, PIQ, Information*, Comprehension*, Arithmetic*, Similarities*, Digit Span*, Vocabulary, Digit Symbol Coding*, Picture Completion*, Block Design*, Picture Arrangement*, Object Assembly*, Index Scores; RSPM*
Rommel et al. (2015)	TEDS	T3: 16.5±0.3 [15.8–17.3]	MZ: 1745; DZ: 3026	Mill Hill Vocabulary Scale"; RPM*

Age (M±SD [range]) H 16.0±1.7 [13-18] C2: 17.0±0.5 [16-17] 18.6±0.3 [16.4-18.2] GC5T: 17.3±0.4 [16.3-18.6] MAB: 16.2±0.4 [16.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [16.3-18.6] MAB: 16.2±0.4 [15.4-18.4] GCST: 17.3±0.4 [16.3-18.6] MAB: 16.2±0.4 [15.4-20.1] T2: 17.4±0.6 [16.5-20.0] T2: 17.4±0.6 [16.5-20.0] T2: 17.4±0.6 [16.5-20.0] tudies) 19.9±3.5 21.7±2.8 22.2±0.4 [15-67] 22.5±8.4 [15-67] 23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 21.8±0.0 [19.5-55.9]; DZ: 28. I/INTR MZ: 31.1±0.0 [19.5-55.9]; DZ: 28. J/NTR MZ: 31.1±0.0 [19.5-55.9]; DZ: 28. I/INT	MZ: 49; DZ: 25 246.0 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	MAB VIQ, PIQ; QCST Comprehend & Collect, Structure & Sequence, Analyze, Assess & Conclude, Create & Present', Apply Techniques & Procedures 128 MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination MAB FIQ DRT; MAB FIQ Go / No Go; SCWT Go / No Go; SCWT VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ N-back; MAB FIQ No Go; SCWT VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closus Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures
10.6±0.3 [16-16] 10.2±0.3 [15.4-18.2] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] I0.5 [16.2±0.4 [15.4-18.4] I15.5 [16.2±0.4 [15.4-18.4] I15.5 [16.2±0.4 [15.4-18.4] I15.5 [16.2±0.4 [15.4-18.4] I10.5 [16.2±0.4 [15.4-18.4] I10.5 [16.2±0.4 [15.4-18.4] I10.5 [16.2±0.4 [15.4-18.4] I10.5 [16.2±0.4 [15.4-18.4] I10.1 [12	MZ: 836: DZ: 1422 MZ: 225; DZ: 275 MZ: 168-256; DZ: 199-3; MZ: 188-261; DZ: 208-3; MZ: 188-261; DZ: 208-3; MZ: 188-266; DZ: 199-3; MZ: 188-266; DZ: 199-3; MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 188-266; DZ: 199-3; MZ: 188-266; DZ: 199-3; MZ: 188-266; DZ: 199-3; MZ: 198; DZ: 27 MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 199; DZ: 134 MZ: 87; DZ: 62 MZ: 50; DZ: 25 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 MZ: 40; DZ: 25 MZ: 40; DZ: 26; MZ: 40; DZ: 27; SIB: 19 MZ: 40; DZ: 27 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	Number Sense Task MAB Vocabulary', Information', Arithmetic', Spatial', Object', Digit Symbol'; CCRT Reading; SGWRT Reading 128 MAB VIQ, PIQ; QCST MAB VIQ, PIQ; QCST, Choice RT'; Line Discrimination MAB FIQ DRT; MAB FIQ Go / No Go; SCWT VQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back; MAB FIQ MAB-VIQ, PIQ*; Composite of RT tasks n-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Provertos, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Uvcabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS-VID Reversid Quary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fl
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	MZ: 226; DZ: 275 MZ: 168-266; DZ: 199-3; MZ: 188-266; DZ: 199-3; MZ: 188-266; DZ: 199-3; MZ: 182-261; DZ: 208-3; MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 189, DZ: 266 MZ: 199, DZ: 255 MZ: 58; DZ: 25 MZ: 29; DZ: 31 MZ: 75; DZ: 60 MZ: 49; DZ: 24; SIB: 20 MZ: 49; DZ: 25 MZ: 20; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 109	MAB Vocabulary', Information', Arithmetio', Spatial', Object', Digit Symbol'; CCRT Reading; SGWRT Reading 28 MAB VIQ, PIQ; QCST MAB VIQ, PIQ; QCST MAB VIQ, PIQ; QCST Comprehend & Collect, Structure & Sequence, Analyze, Assess & Conclude, Create & Present', Apply Techniques & Procedures 28 MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination MAB FIQ DRT; MAB FIQ Go / No Go; SCWT VIQ', PIQ'; Composite of RT tasks n-back; MAB FIQ n-back'; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed', Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverts, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding; Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Inclucie Pictures WAIS-III FIQ', VIQ', PIQ' Attentional Network Test' Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vicabulary', Block Design', Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-A; TMT-B'; WCST', WMS Logical Memory, Visual Reproduction', Grooved Pegboard'
i 16.2±0.3 [15.4-18.2] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] Io.5 [16.2±0.4 [15.4-20.1] T2: 17.4±0.8 [16.5-20.0] nudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15-57] 24.4±1.7 [21-27] 23.0±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 II.9.1-51.6]; SIB: 28.0±3.1 [20.2±3 II.9.1-51.6]; SIB: 28.0±3.1 [20.2±3 II.9.1-51.6]; SIB: 28.0±3.1 [20.2±3 II.9.2±1.5 [18-67] II.9.2±1.5 [18-67] II.9.2±1.5 [18-67] II.9.2±1.5 [18-20] II.9.2±1.5 [18-20] II.9.2±1.5 [18-30]	MZ: 168-256; DZ: 199-3; MZ: 168-256; DZ: 199-3; MZ: 168-266; DZ: 199-3; MZ: 168-256; DZ: 199-3; MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 159; DZ: 27 MZ: 159; DZ: 134 MZ: 159; DZ: 134 MZ: 56; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 Z26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 109	Symbol'; CCRT Reading; SGWRT Reading MAB VIQ, PIQ; QCST MAB VIQ, PIQ; QCST Comprehend & Collect, Structure & Sequence, Analyze, Assess & Conclude, Create & Present', Apply Techniques & Procedures MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination MAB FIQ DRT; MAB FIQ Go / No Go; SCWT VIQ', PIQ'; Composite of RT tasks n-back; MAB FIQ NUCST' VIQ', PIQ'; Composite of RT tasks n-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed', Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, EXIST and Dutational Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ', VIQ', PIQ' Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS-III SP: WalS Visual Reproduction', Grooved Pegboard'
QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.4-18.4] Io.5 [16.2±0.4 [15.4-20.1] T2: 17.4±0.8 [16.5-20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15-57] 24.4±1.7 [21-27] 23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 II9.1-51.6]; SIB: 28.0±3.1 [20.2-3] II9.1-51.6]; SIB: 28.0±3.1 [20.2-3] II9.1-51.6]; SIB: 28.0±3.1 [20.2-3] II9.4±1.5 [18-67] II9.6±1.5 [18-67] II9.6±1.5 [18-67] II9.6±1.5 [18-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T6: 18 C2: MZIDZ: 18.2±0.2 [18-18]; SIB II8.5±4.7 29.1±3.5 [22-36] II1:	MZ: 168-256; DZ: 199-3; MZ: 168-256; DZ: 199-3; MZ: 168-266; DZ: 199-3; MZ: 168-256; DZ: 199-3; MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 159; DZ: 27 MZ: 159; DZ: 134 MZ: 159; DZ: 134 MZ: 56; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 Z26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 109	128 MAB VIQ, PIQ; QCST 154 MAB VIQ, PIQ; QCST Comprehend & Collect, Structure & Sequence, Analyze, Assess & Conclude, Create & Present', Apply Techniques & Procedures 154 MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination 128 MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination 129 MAB FIQ DRT; MAB FIQ DRT; MAB FIQ Go / No Go; SCWT VIQ', PIQ'; Composite of RT tasks n-back; MAB FIQ n-back'; MAB FIQ n-back'; MAB FIQ NetST' VIQ', PIQ'; Composite of RT tasks n-back'; MAB FIQ NAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closure Mechanical Ability, Spatial Ability, Memory Span, Flexibility of Closure Mechanical Ability, Spatial Ability, Memory Span, Flexibility of Closure Mechanical Ability, Spated of Closure, Colorado Parceptual Speed', Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesotar Paper Form Board, Hidden Patterns, Guttiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ', VIQ', PIQ' Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design', Digit Span', Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-A; TMT-B; WCST', WMS Logical Memory, Visual Reproduction', Grooved Pegboard'
MAB: 18.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] QCST: 17.3±0.4 [15.3-18.6] MAB: 16.2±0.4 [15.4-18.4] 10.5 [16.2±0.4 [15.4-18.4] 110.5 [16.2±0.1] T2: 17.4±0.8 [16.6-20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15-57] 24.4±1.7 [21-27] 23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: I19.4±1.8 J/NTR MZ: 31.1±0.0 [19.5-55.9]; DZ: 28. [14.42] 37.1±0.5 [18-67] 19.6±1.5 [16-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZIDZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [22-36] 11.9.8±1.5 [16-31]	MZ: 182-261; DZ: 208-3 MZ: 182-261; DZ: 208-3 MZ: 188-266; DZ: 199-3 MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 180-256 MZ: 180-256 MZ: 199: DZ: 134 MZ: 87; DZ: 62 MZ: 56; DZ: 25 MZ: 60; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 MZ: 40; DZ: 25 MZ: 40; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	MAB VIQ, PIQ; QCST Comprehend & Collect, Structure & Sequence, Analyze, Assess & Conclude, Create & Present', Apply Techniques & Procedures MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination MAB VIQ, PIQ; QCST; Choice RT'; Line Discrimination MAB FIQ DRT; MAB FIQ Go / No Go; SCWT Kyodai NX15 Spatial WM', Verbal WM' WCST' VIQ', PIQ'; Composite of RT tasks n-back; MAB FIQ m-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed', Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Provertos, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ', VIQ', PIQ' Attentional Network Test' Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design', Digit Span', Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-A; TMT-B'; WCST', WMS Logical Memory, Visual Reproduction'; Grooved Pegboard'
 MAB: 16.2±0.4 [15.4–18.4] QCST: 17.3±0.4 [15.3–18.6] MAB: 16.2±0.4 [15.4–18.4] 16.5 [16.2–17.3] 16.3±0.5 [15.4–20.1] T2: 17.4±0.6 [16.5–20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15-67] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 RA 39.9±11.8 J/NTR MZ: 31.1±9.0 [19.5–55.9]; DZ: 28. 19.0±1.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [18–22.21.8±2.6 T5: 18 C2: MZ[DZ: 18.2±0.2 [18–18]; SIB R4.7 29.1±3.5 [22–36] T1: 19.8±1.5 [18–31] 	MZ: 168-256; DZ: 199-3; MZ: 28; DZ: 27 MZ: 218; DZ: 256 MZ: 159; DZ: 134 MZ: 56; DZ: 256 MZ: 57; DZ: 62 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 20; DZ: 24; SIB: 20 MZ: 49; DZ: 25 MZ: 20; DZ: 27; SIB: 19 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 26 MZ: 177; DZ: 109	Procedures 128 MAB VIQ, PIQ; QCST; Choice RT*; Line Discrimination MAB FIQ DRT; MAB FIQ DRT; MAB FIQ Go / No Go; SCWT ViQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back; MAB FIQ n-back; MAB FIQ NUQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ wAIS-III FIQ CAB Numerical Ability, Spedial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, WO Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Provertos, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding: HFSC Vental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding: Vocabulary, Provertos, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Vocabulary, Vocabulary, Provertos, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Mathemark, Under States of Apper Folding, Second States of Comparisons, Paper Folding, Vocabulary, Paper Folding, Vocabulary, Mathemark, Under States of Closure, Colorado Parceptus Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit
 MAB: 16.2±0.4 [15.4–18.4] 10.5 [16.2–17.3] 10.3±0.5 [15.4–20.1] T2: 17.4±0.6 [16.5–20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15–57] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 28.0±5.1 [20 2–3] [19.1–51.6]; SIB: 28.0±3.1 [20 2–3] [14-42] 37.1±0.5 [18–67] 19.6±1.5 [18–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ[DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [12–36] T1: 19.8±1.5 [18–31] 	MZ: 28; DZ: 27 MZ: 28; DZ: 27 MZ: 218; DZ: 256 MZ: 159; DZ: 134 MZ: 58; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 MZ: 20; DZ: 27; SIB: 20 MZ: 40; DZ: 26 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 109	MAB FIQ DRT; MAB FIQ Go / No Go; SCWT Kyodai NX15 Spatial WM*, Verbal WM* WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverts, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Incluse Provences, Different U Visual Memory, Viaz, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS' Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCS**, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
i 16.3±0.5 [15.4-20.1] T2: 17.4±0.6 [16.5-20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15-57] 24.4±1.7 [21-27] 23.6±1.8 [20-26] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: II.9.1.8 30.9±11.8 J/ NTR MZ: 31.1±0.0 [19.5-55.9]; DZ: 28. II.9.1-51.6]; SIB: 28.0±3.1 [20.2-3] [14-42] 37.1±0.5 [18-67] 19.6±1.5 [10-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ[DZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [22-36] 29.1±3.5 [22-36] T1: 19.8±1.5 [16-31]	MZ: 218; DZ: 256 MZ: 159; DZ: 134 MZ: 87; DZ: 62 MZ: 56; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 40; DZ: 25 MZ: 20; DZ: 27; SIB: 20 MZ: 40; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 109	DRT; MAB FIQ Go / No Go; SCWT Kyodai NX15 Spatial WM*, Verbal WM* WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back?; MAB FIQ MAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverts, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory', Visual Reproduction*; Grooved Pegboard*
T2: 17.4±0.6 [16.6–20.0] tudies) 19.9±3.5 21.7±2.8 25.2±8.4 [15–57] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 19.0±1.1.8 J / NTR MZ: 31.1±0.0 [19.5–55.9]; DZ: 28. [14.42] 37.1±0.5 [18–67] 19.0±1.5 [10–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZIDZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] A 19.1±3.5 [18–31]	MZ: 159: DZ: 134 MZ: 87; DZ: 82 MZ: 58; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 49; DZ: 24; SIB: 20 MZ: 49; DZ: 25 MZ: 20; DZ: 27; SIB: 19 MZ: 20; DZ: 27; SIB: 19 MZ: 20; DZ: 27; SIB: 19 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	Go / No Go; SCWT Kyodai NX15 Spatial WM*, Verbal WM* WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back*; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverts, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCS**, WMS Logical Memory, Visual Reproduction*; Grooved Pegboard*
Mail Mail 10.9±3.5 21.7±2.8 25.2±8.4 [15–67] 25.2±8.4 [15–67] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ 30.9±11.8 J / NTR MZ: 31.1±9.0 [19.5–55.9]; DZ: 28. [19.1–61.6]; SIB: 28.0±3.1 [20.2–3] [14–42] 37.1±6.5 [18–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [12–36] T1: 19.8±1.5 [16–31]	MZ: 87; DZ: 62 MZ: 56; DZ: 25 MZ: 50; DZ: 32 MZ: 29; DZ: 31 MZ: 75; DZ: 66 27.8±4.2 MZ: 24; DZ: 24; SIB: 20 MZ: 49; DZ: 25 2±6.0 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 120 3: C2: MZ: 77; DZ: 109	Kyodai NX15 Spatial WM*, Verbal WM* WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back*; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hilden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary," Block Design", Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory, Visual Reproduction*; Grooved Pegboard*
19.9±3.5 21.7±2.8 25.2±8.4 [15-57] 24.4±1.7 [21-27] 23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 1 IV.TR MZ: 31.1±0.0 [19.5-55.9]; DZ: 28.1 19.1-51.6]; SIB: 28.0±3.1 [20.2-3] [14-42] 37.1±0.5 [18-67] 19.0±1.5 [16-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ[DZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [12-36] 11: 19.8±1.5 [16-31]	M2: 58; D2: 25 M2: 50; D2: 32 M2: 20; D2: 31 M2: 75; D2: 86 27.8±4.2 M2: 24; D2: 24; SIB: 20 M2: 49; D2: 25 2±6.0 M2: 20; D2: 27; SIB: 19 M2: 26; D2: 26 M2: 100; D2: 73 M2: 64; D2: 46 M2: 89; D2: 120 31:	WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back*; MAB FIQ WAIS-III FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling: HFSC Mental Rotation, ETS C and Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory', Visual Reproduction*; Grooved Pegboard*
21.7±2.8 25.2±8.4 [15–57] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: INTR MZ: 31.1±0.0 [10.5–55.9]; DZ: 28. [19.1–51.6]; SIB: 28.0±3.1 [20.2–3 [14–42] 37.1±0.5 [18–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [12–36] A T1: 19.8±1.5 [16–31]	M2: 58; D2: 25 M2: 50; D2: 32 M2: 20; D2: 31 M2: 75; D2: 86 27.8±4.2 M2: 24; D2: 24; SIB: 20 M2: 49; D2: 25 2±6.0 M2: 20; D2: 27; SIB: 19 M2: 26; D2: 26 M2: 100; D2: 73 M2: 64; D2: 46 M2: 89; D2: 120 31:	WCST* VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back*; MAB FIQ WAIS-III FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling: HFSC Mental Rotation, ETS C and Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory', Visual Reproduction*; Grooved Pegboard*
25.2±8.4 [15–57] 24.4±1.7 [21–27] 23.6±1.8 [20–28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 30.0±11.8 MZ: 31.1±0.0 [10.5–55.9]; DZ: 28. [19.1–51.6]; SIB: 28.0±3.1 [20.2–3 [14–42] 37.1±0.5 [18–67] 10.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 20.1±3.5 [22–36] A T1: 19.8±1.5 [18–31]	M2: 50; D2: 32 M2: 29; D2: 31 M2: 29; D2: 31 M2: 75; D2: 66 27.8±4.2 M2: 24; D2: 24; SIB: 20 M2: 49; D2: 25 2±6.0 M2: 20; D2: 27; SIB: 19 M2: 26; D2: 26 M2: 100; D2: 73 M2: 1774; D2: 1429 M2: 64; D2: 26 M2: 64; D2: 46 M2: 99; D2: 120 31:	VIQ*, PIQ*; Composite of RT tasks n-back; MAB FIQ n-back*; MAB FIQ WAIS-III FIQ WAIS-III FIQ CAB Numerical Ability, Special Ability, Memory Span, Flexibility of Closs, Mechanical Ability, Speed of Closure, Colorado Perceptual Speed*, Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverbs, Spelling: HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding: Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory', Visual Reproduction*; Grooved Pegboard*
5 24.4±1.7 [21-27] 5 23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 2 MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: 2 RA 39.9±11.8 J/NTR MZ: 31.1±0.0 [10.5-55.9]; DZ: 28. [19.1-51.6]; SIB: 28.0±3.1 [20.2-3] [14-42] 37.1±0.5 [18-67] 37.1±0.5 [18-67] 10.6±1.5 [16-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [22-36] T1: 19.8±1.5 [16-31]	MZ: 29; DZ: 31 MZ: 27; DZ: 86 27:8±4.2 MZ: 24; DZ: 24; SIB: 20 MZ: 49; DZ: 25 2±6.0 MZ: 49; DZ: 25 31.3 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 101; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	n-back; MAB FIQ n-back; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closur Mechanical Ability, Speed of Closure, Colorado Perceptual Speed; Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Foolding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-4; TMT-8; WCST*, WMS Logical Memory', Visual Reproduction*; Grooved Pegboard*
23.6±1.8 [20-28] MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: RA 39.9±11.8 J / NTR MZ: 31.1±9.0 [19.5-55.9]; DZ: 28: [19.1-51.6]; SIB: 28.0±3.1 [20.2-3] [14-42] 37.1±6.5 [18-67] 19.0±1.5 [16-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18-18]; SIB [18.5±4.7] 29.1±3.5 [22-36] T1: 19.8±1.5 [16-31]	MZ: 75; DZ: 86 27.8±4.2 MZ: 24; DZ: 24; SIB: 20 MZ: 49; DZ: 24; SIB: 20 MZ: 49; DZ: 25 2±6.0 MZ: 49; DZ: 25 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	n-back'; MAB FIQ WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closur Mechanical Ability, Speed of Closure, Colorado Perceptual Speed', Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-4; TMT-8; WCST*, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
MZ: 28.3±3.6; DZ: 28.0±5.2; SIB: RA 39.9±11.8 J/NTR MZ: 31.1±9.0 [19.5–55.9]; DZ: 28: [19.1–51.6]; SIB: 28.0±3.1 [20.2–3 [14-42] 37.1±6.5 [18–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] A T1: 19.8±1.5 [18–31]	27.8±4.2 MZ: 24; DZ: 24; SIB: 20 MZ: 49; DZ: 25 2±6.0 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	WAIS-III FIQ CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closure Mechanical Ability, Speed of Closure, Colorado Perceptual Speed", Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design', Digit Span*, Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-; TMT-B'; WCST', WMS Logical Memory', Visual Reproduction'; Grooved Pegboard*
RA 39.9±11.8 J / NTR MZ: 31.1±9.0 [19.5–55.9]; DZ: 28: [19.1–51.6]; S18: 28.0±3.1 [20.2–3 [14–42] 37.1±6.5 [19–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T6: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; S18 18.5±4.7 29.1±3.5 [22–36] A T1: 19.8±1.5 [16–31]	MZ: 49; DZ: 25 246.0 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	CAB Numerical Ability, Spatial Ability, Memory Span, Flexibility of Closu Mechanical Ability, Speed of Closure, Colorado Perceptual Speed", Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memor Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design', Digit Span', Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-A; TMT-B'; WCST', WMS Logical Memory', Visual Reproduction'; Grooved Pegboard*
J / NTR MZ: 31.1±0.0 (19.5–55.9); DZ: 28. [19.1–51.6]; SiB: 28.0±3.1 [20.2–3] [14.42] 37.1±0.5 [18–67] 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZIDZ: 18.2±0.2 [18–18]; SIB [18.5±4.7] 29.1±3.5 [22–36] T1: 19.8±1.5 [18–31]	226.0 MZ: 20; DZ: 27; SIB: 19 MZ: 26; DZ: 26 MZ: 100; DZ: 73 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 23: C2: MZ: 77; DZ: 109	Mechanical Ability, Speed of Closure, Colorado Perceptual Speed, 'Wo Fluency, Inductive Reasoning, Associative Memory, Meaningful Memory Vocabulary, Proverbs, Spelling; HFSC Mental Rotation, ETS Card Rotations, Minnesota Paper Form Board, Hidden Patterns, Cube Comparisons, Paper Folding, Vocabulary, Subtraction & Multiplication, Word Beginnings & Endings, Pedigrees, Things Categories, Different U Visual Memory, Lines and Dots, Identical Pictures WAIS-III FIQ*, VIQ*, PIQ* Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
17.101R [19.1–51.6]; SiB: 28.0±3.1 [20.2–3 [14-42] 37.1±0.5 [18–67] 37.1±0.5 [18–67] 19.0±1.5 [10–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] T1: 19.8±1.5 [16–31]	M2: 20, 02: 27, 318, 10 M2: 26; D2: 26 M2: 100; D2: 73 M2: 1774; D2: 1429 M2: 64; D2: 46 M2: 89; D2: 120 8: C2: M2: 77; D2: 109	Attentional Network Test* Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Span*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B'; WCST*, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
[14-42] 37.1±6.5 [18-67] 19.6±1.5 [10-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T6: 18 C2: MZ/DZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [22-36] T1: 19.8±1.5 [18-31]	MZ: 26; DZ: 28 MZ: 100; DZ: 73 MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 8: C2: MZ: 77; DZ: 109	Composite of Operation-Word Span + Sentence-Letter Span AFQT Premorbid IQ WAIS Vocabulary', Block Design', Digit Span', Digit Symbol Coding'; JOLO'; COWAT Phonemic Fluency'; TMT-A; TMT-B'; WCST', WMS Logical Memory', Visual Reproduction'; Grooved Pegboard'
37.1±8.5 [18-87] 19.6±1.5 [16-30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18-18]; SIB 18.5±4.7 29.1±3.5 [22-36] T1: 19.8±1.5 [16-31]	MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 3: C2: MZ: 77; DZ: 109	AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
 19.6±1.5 [16–30] MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] T1: 19.8±1.5 [16–31] 	MZ: 1774; DZ: 1429 MZ: 64; DZ: 46 MZ: 89; DZ: 120 3: C2: MZ: 77; DZ: 109	AFQT Premorbid IQ WAIS Vocabulary*, Block Design*, Digit Symbol Coding*; JOLO*; COWAT Phonemic Fluency*; TMT-A; TMT-B*; WCST*, WMS Logical Memory*, Visual Reproduction*; Grooved Pegboard*
MZ: 21.4±3.2; DZ: 21.8±2.6 T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] T1: 19.8±1.5 [18–31]	MZ: 64; DZ: 46 MZ: 89; DZ: 120 3: C2: MZ: 77; DZ: 109	WAIS Vocabulary", Block Design", Digit Span", Digit Symbol Coding"; JOLO"; COWAT Phonemic Fluency"; TMT-A; TMT-B"; WCST", WMS Logical Memory", Visual Reproduction"; Grooved Pegboard"
T5: 18 C2: MZ/DZ: 18.2±0.2 [18–18]; SIB 18.5±4.7 29.1±3.5 [22–36] A T1: 19.8±1.5 [18–31]	MZ: 89; DZ: 120 3: C2: MZ: 77; DZ: 109	Logical Memory*, Visual Reproduction*; Grooved Pegboard*
18.5±4.7 29.1±3.5 [22–36] A T1: 19.8±1.5 [16–31]	C2. M2. 77, D2. 109	· · · · · · · · · · · · · · · · · · ·
29.1±3.5 [22–36] T1: 19.8±1.5 [16–31]		WAIS VIO: CVI T* Phonomic Elucrov* Somontio Elucrov*
A T1: 19.8±1.5 [16-31]		WAIS VIQ; CVLT*; Phonemic Fluency*; Semantic Fluency*
	MZ: 57; DZ: 60; SIB: 246 T1: MZ: 1669; DZ: 1303 T2: MZ: 200: DZ: 170	
ort* Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c,d}
R 21.7±3.3 [18–28]	MZ: 40; DZ: 40	WAIS FIQ", VIQ", PIQ"
S 18±3.0 [11.6–28.7]	MZ: 175; DZ: 302; SIB: 4	
P/ 5/ 5/ 5/CTS/ T4: 18.8±2.7 [17–34] CC/ S/NTR	T4: MZ: 350; DZ: 308	FIQ
40.7±7.7 [27-54]	MZ: 1210; DZ: 1358	RPM'
R 21.3±1.1 [18+]	MZ: 25; DZ: 13	ETS Paired Associate Memory*, Digit Span*; Sentence Picture Verification
AT 34.3±13.0 [18-70]	MZ: 169: DZ: 131	Spearman's 'g''; LPS FIQ', Vocabulary', Reasoning', Word Fluency',
	· · ·	Spatial; Embedded Figures Test'; Closure'; RAPM'; SMST'; PLMT'
C2: 50.4±7.5 [29.1–71.0]		
C1: 20.2±4.2 [13.9–42.6] C2: 50.4±7.5 [29.1–71.0]	C1: MZ: 54; DZ: 73; SIB: C2: MZ: 48; DZ: 58; SIB:	
26.2±4.2 [13.9-42.6]	MZ: 24; DZ: 31; SIB: 25	FIQ
C1: 26.2±4.2 [13.9–42.6] C2: 50.4+7 5 [29.1–71.0]	MZ: 102; DZ: 131; SIB: 1	89 Eriksen Flanker Task*
C1: 28.2±4.2 [13.9-42.6]	M7- 102- D7- 121- CID- 1	WAIS Verbal Comprehension Index*, Working Memory Index*, Processing
C2: 50.4±7.5 [29.1–71.0]		Speed index , Perceptual Organization index
RM M2: 23:2; D2: 22:3	MZ: 19; DZ: 13	Arithmetic* WAIS FIQ*, VIQ*, PIQ*, Information*, Comprehension*, Arithmetic*, Similarities*, Digit Span*, Vocabulary*, Digit Symbol Coding*, Picture Completion*, Block Design*, Picture Arrangement,* Object Assembly*, Verbal Comprehension Index*, Working Memory Index*, Perceptual Organization Index*
MZ: 23.3±12.3; DZ: 23.9±10.2 [18	-83] MZ: 80; DZ: 29	WCST; SCWT*
24.9±4.4 [17-36]	MZ: 84; DZ: 19	Kyodai NX15 composites: verbal ability, spatial ability, reasoning
C2: T1: 16 [16-16] C2: T2: 18 [18-18] C3: 26.2±4.1	C2: T1: MZ: 88; DZ: 122 C2: T2: MZ: 83; DZ: 105 C3: MZ: 63; DZ: 85	• • • • • • • •
C4: 49.5±7.1	C4: MZ: 190; DZ: 209	
TS 27±7.5 [18-46]	MZ: 187; DZ: 111	PC of AVLT, SCWT, CST, TMT, LDST
[~18-22]	MZ: 757; DZ: 1093	Speaman's 'g'*
		· · · · · · · · · · · · · · · · · · ·
MZ: 21.1±6.6; DZ: 21.1±6.7 * 37.7±20.9 [10-86]	MZ: 221; DZ: 98 MZ: 154; DZ: 173; SIB: 4	Recognition*, Emotion Intensity Discrimination*, Age Differentiation*,
37.7±20.9 [10-96] C2: MZ/D2: 18.2±0.2 [18-18]: SIB	MZ: 154; DZ: 173; SIB: 4	CNB PCET [*] , Penn CPT [*] , Penn Letter n-back [*] , Penn Word Memory [*] , Pen Face Memory [*] , VOLT [*] , JOLO [*] , Penn Matrix Reasoning [*] , Penn Verbal Reasoning [*] , Finger Tapping [*] , Mouse Practice Task [*] , Emotion Recognition [*] , Emotion Intensity Discrimination [*] , Age Differentiation [*] , Spearman's 'g' [*]
37.7±20.9 [10-86]	MZ: 154; DZ: 173; SIB: 4	CNB PCET [*] , Penn CPT [*] , Penn Letter n-back [*] , Penn Word Memory [*] , Pen Face Memory [*] , VOLT [*] , JOLO [*] , Penn Matrix Reasoning [*] , Penn Verbal Reasoning [*] , Finger Tapping [*] , Mouse Practice Task [*] , Emotion Recognition [*] , Emotion Intensity Discrimination [*] , Age Differentiation [*] , Spearman's 'g' [*]
	/ (TS / /	Image:

Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c,d}
MIDDLE AGE (ages 41-65;	25 studies)			
Bartfai et al. (1991)	SATSA	41.9±6.4 [29-52]	MZ: 19; DZ: 14	Choice RT*; FIQ*
Docherty et al. (2014)	VETSA	56.1±2.6 [51-60]	MZ: 132; DZ: 92	AFQT Premorbid IQ
Finkel et al. (1995a)	MTSADA / SATSA	MTSADA: C1: 36±4.3 [27-49] MTSADA: C2: 61±3.1 [50-64] MTSADA: C3: 71±6.9 [65-88] SATSA: C4: 41±5.9 [27-49] SATSA: C6: 59±4.3 [50-64] SATSA: C6: 72±4.8 [65-85]	MTSADA: MZ: 132; DZ: 91 SATSA: MZ: 86; DZ: 110	WAIS Digit Span; WMS Logical Memory, Visual Reproduction; TPM; CAP Names & Faces; PC
Finkel et al. (1995b)	MTSADA / SATSA	MTSADA: C1:38.0±4.4 MTSADA: C2: 60.1±3.9 MTSADA: C3: 60.3±5.8 [27–68] SATSA: C4: 41.1±5.9 SATSA: C4: 58.8±4.3 [27-64] SATSA: C6: 71.6±4.8 [65–85]	MTSADA: MZ: 119; DZ: 72 SATSA: MZ: 93; DZ: 134	WAIS Information", Block Design", Digit Symbol Coding", Digit Span"
Finkel et al. (1998a)	MTSADA	C1: 43.4±8.3 [27-59] C2: 69.8±10.5 [60-94]	MZ: 201; DZ: 140	Word Recall from Line Drawings"; WMS Logical Memory", Visual Reproduction"; PC
Finkel et al. (2007)	MTSADA	58.7 [27-95]	MZ: 185; DZ: 131	PC of 12 Simple RT and Choice RT tests
Goldberg et al. (2013)	MTS / UOB	MZ: 37.6±13.0 [17-65]; DZ: 40.6±13.5	MZ: 186; DZ: 78	WAIS FIQ*, Letter-Number Sequencing*
Johnson et al. (2005)	MISTRA	[17-65] 42.7±13.6 [18-79]	MZ: 44; DZ: 33; SIB: 2	HFSC Pedigrees"; CAB Flexibility of Closure, Inductive Reasoning; MISTRA Reading Comprehension", Spelling"; Slosson Word Recognition";
Johnson et al. (2007b)	MISTRA	42.7±13.8 [18-70]	MZ: 74; DZ: 52	WRIT Word Identification* WAIS Information*, Comprehension*, Vocabulary*, Digit Symbol Coding*, Anthmetic*, Similarities*, Digit Span*, Picture Completion*, Block Design*, Picture Arrangement*, Object Assembly*; PC; Spearman's 'g*, RPM*, CAB Numerical Ability, Speed of Closure*, Perceptual Speed*, Word Fluency*, Inductive Reasoning*, Associative Memory, Meaning*ul Memory*, Vocabulary, Proverbs*, Spelling*; Minnesota Paper Form Board*; ETS Card Rotations*, Hidden Patterns*, Identical Pictures*, Cube Comparisons*, Paper Folding*, Vocabulary, Subtraction & Multiplication*, Word Beginnings & Endings*, Pedigrees, Things Categories*, Different Uses; HFSC Lines and Dots*, Picture Memory, Mental Rotation*
Kremen et al. (2005)	VETR	MZ: 47.8±3.6; DZ: 47.9±2.9 [41-58]	MZ: 177; DZ: 169	WRAT Reading*
Kremen et al. (2007b)	VETR	47.9±3.3 [41-58]	MZ: 173; DZ: 166	WMS Digit Span"; WRAT Reading; Reading Span"
Kremen et al. (2009)	VETR	47.9±3.3 [41-58]	MZ: 173; DZ: 166	Tower of London"
Kremen et al. (2011a)	VETR	47.9±3.3 [41–58]	MZ: 161; DZ: 155	SDRT*; ODRT*
Kremen et al. (2011b)	VETSA	55.4±2.5 [51-60]	MZ: 349; DZ: 265	CPT-AX*
Kremen et al. (2014)	VETSA	55.4±2.5 [51-59]	MZ: 349; DZ: 265	CVLT*; WMS Logical Memory*, Visual Reproduction*
Panizzon et al. (2011)	VETSA	MZ: 55.3±2.5; DZ: 55.6±2.4	MZ: 323; DZ: 250	CVLT*
Panizzon et al. (2014)	VETSA	55.4±2.5 [51-59]	MZ: 346; DZ: 265	WASI Vocabulary, Matrix Reasoning; WMS Digit Span*, Letter-Number
Panizzon et al. (2015)	VETSA	T1: 55.8±2.5 [51-59]	T1: MZ: 349; DZ: 265	Sequencing"; AFQT Vocabulary", Box Folding"; THFT"; TMT-A CVLT; WMS Logical Memory, Visual Reproduction
Rose et al. (1981)	KMTP-IUTP	T2: 61.6±2.4	T2: MZ: 269; DZ: 203 MZ: 57; DZ: 127	ETS Identical Pictures"
	NMIT-IVIT	[6-62]	M2. 57, D2. 127	WAIS Vocabulary", Matrix Reasoning"; Semantic Fluency"; AFQT;
Vasilopoulos et al. (2012a)	VETSA	55.4±2.5 [51–60]	MZ: 349; DZ: 270	Composites of THFT+ ETS Card Rotations, WMS Logical Memory + Visual
Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c,d}
		•		Sequencing, DKEFS TMT-2 + TMT-3 + SCWT, TMT-4 + Category
Vasilopoulos et al.	VETSA	55.4±2.5 [51-60]	MZ: 342; DZ: 266	Switching TMT-A; TMT-B
(2012b) van den Berg et al. (2004)	NTR	T1: 44 [34-63] T2: C1: 26 [18-34]	T1: MZ: 95; DZ: 118	GIT Vocabulary*
		T2: C2: 49 [36-71]	T2: MZ: 144; DZ: 172	-
Vinkhuyzen et al. (2010)	NTR	36.7±12.6 [13-70]	MZ: 93; DZ: 91; SIB: 164	SMST*
Vinkhuyzen et al. (2012)	NTR	46.6±12.4 [23-75]	MZ: 136; DZ: 152; SIB: 265	WAIS FIQ
Vuoksimaa et al. (2015)	VETSA	55.7±2.6 [51-60]	MZ: 131; DZ: 96	AFQT Premorbid IQ, Verbal Ability", Arithmetic", Tool/Mechanical Reasoning", Spatial Processing"
OLDER (ages 65+; 35 stud	dies)			
Carmelli et al. (2002a)	NHLBI	73.0±3.0 [69–80]	MZ: 72; DZ: 70	PC of SCWT + Verbal Fluency + Digit Symbol + TMT-A + TMT-B; MMSE
Carmelli et al. (2002b)	NHLBI	MZ: 72.3±3.0; DZ: 71.8±2.9 [69-80]	MZ: 72; DZ: 67	PC of MMSE + ISBMD + SCWT + CVLT + Digit Symbol + TMT-A + TMT-B
Doty et al. (2011)	LSADT	F: 83.1±5.3; M: 80.3±4.6 [70-100]	MZ: 99; DZ: 110	Composite of MMSE + Semantic Fluency + Digit Span + Word List Learning
Finkel et al. (1993)	MTSADA	MZ: 66.6±6.7; DZ: 67.9±6.7 [60-88]	MZ: 93; DZ: 67	Word Recall; WMS Logical Memory*, Visual Reproduction
Finkel et al. (2000a)	SATSA	64±8 [40-84]	MZ: 112; DZ: 180	WAIS Digit Symbol Coding", Information, Block Design, Digit Span"; DSB Figure Identification", Synonyms", Figure Logic"; WIT-III Analogies"; ETS Card Rotations"; TPM; CAP Names & Faces"; PC
Finkel et al. (2000c)	SATSA	[44.8-82.1]	MZ: 95; DZ: 11	WAIS Information, Block Design, Digit Span; ETS Card Rotations
Finkel et al. (2004)	SATSA	[50-96]	T1: MZ: 240; DZ: 400 T2: MZ: 216; DZ: 374	WAIS Information*, Block Design*; TPM*; Spearman's 'g'*
Finkel et al. (2005)	SATSA	63.9±9.2 [27-85]	T3: MZ: 206; DZ: 356 MZ: 112; DZ: 180	PC of WAIS Information + Block Design + Digit Span; WIT-III Analogies; DSB Figure Logic, Synonyms, Figure Identification; ETS Card Rotations;
Finkel et al. (2009)	SATSA	69.7±7.7 [50.0-88.9]	MZ: 329; DZ: 541	TPM: CAP Names & Faces; Symbol Digit PC of Information + Synonyms + Analogies; PC of Figure Logic + Block Design + ETS Card Rotations; PC of Digit Span + Picture Memory +
Finkel et al. (2014)	SATSA	69.7±7.7 [54.3-89.2]	MZ: 32: DZ: 48	Names & Faces; PC of Symbol Digit + Figure Identification Simple RT + Choice RT mean/range Decision Time*, mean/range
				Movement Time"; WAIS-R PC Token Test"; RCPM"; Phonemic Fluency"; Semantic Fluency"; Attentional
Giubilei et al. (2008)	ITR	MZ: 67.9±4.8; DZ: 76.5±4.7 [62-80]	MZ: 35; DZ: 58	Matrices; BVRT Copying Drawings"; Story Recall*
Johnson et al. (2009)	LSADT	76.0±4.6 [70–100]	MZ: 464; DZ: 619	Semantic Fluency; WAIS Digit Span; Word List Learning WAIS Digit Span*; COWAT Phonemic Fluency*; SCWT*; TMT-B/A*;
Lee et al. (2012a)	OATS	71.0±5.2 [65–88]	MZ: 117; DZ: 98	Spearman's 'g'
Lee et al. (2012b)	OATS	70.7±5.2 [65-88]	MZ: 119; DZ: 99	WAIS-III Digit Symbol Coding"; TMT-A"; SCWT*; Simple RT*; Choice RT*; Spearman's 'g'
Lessov-Schlaggar et al. (2007)	NHLBI	T1: 63.1±2.9 [59-70] T2: 72.3±3.0 [68-80]	T1: MZ: 137; DZ: 129 T2: MZ: 94; DZ: 91 T2: MZ: 56; DZ: 57	WAIS Digit Symbol; SCWT*; TMT-B
(2007) McArdle (2006)	SATSA	T3: 76.6±1.9 [71-83] 71.8±4.9 [65-88]	T3: MZ: 56; DZ: 57 MZ: 34; DZ: 59	WAIS Information
McArdle (2006) McArdle et al. (2009)	NASTR		MZ: 34; DZ: 59 MZ: 2987; DZ: 3453	TICS Word List Learning"
McArdle et al. (2009) McClearn et al. (1997)	STR	66.5 [59-75] 82.3 [80-100]	MZ: 2987; DZ: 3453 MZ: 110; DZ: 130	Spearman's 'g'; WAIS FIQ; WAIS Digit Symbol; Composites DSB Synonyms + Information, Figure Logic + Block Design; WAIS Digit Span +
				HFSC Picture Memory
McGue et al. (2001)	LSADT	MZ: 80.0±5.9; DZ: 79.4±5.5 [75+]	MZ: 168; DZ: 235	Semantic Fluency"; Digit Span"; CVLT; Spearman's 'g'; MMSE

Reference	Cohort*	Age (M±SD [range])	Sample size	Neuropsychological phenotypes ^{b,c,d}
McGue et al. (2002)	LSADT	75.7±4.5 [70–96]	MZ: 408; DZ: 582	Spearman's 'g'
McGue et al. (2007)	LSADT	77.4±5.5 [70-102]	MZ: 451; DZ: 661	MMSE; Spearman's 'g''
Pedersen et al. (1992)	SATSA	65.6±8.4 [27-85]	MZ: 67; DZ: 89	Spearman's 'g'; WAIS Information, Digit Symbol, Digit Span; DSB Synonyms, Figure Logic, Figure Identification; Koh's Block Design; WIT Analogies; ETS Card Rotations; CAP Names & Faces; TPM
Pedersen et al. (1996)	SATSA	66.3±7.6 [50-88]	MZ: 99; DZ: 150	MMSE; Composite of DSB Synonyms + Figure Logic + Figure Identification + Block Design
Plomin et al. (1994)	SATSA	64.1±7.5 [27-85]	MZ: 82; DZ: 141	Koh's Block Design; ETS Card Rotations; DSB Figure Logic, Synonyms, Figure Identification; WAIS Information, Digit Symbol; WIT-III Analogies; CAP Names & Faces; TPM
Read et al. (2006)	STR	MZ: 80.5±8.7; DZ: 77.7±12.0*	MZ: 99-153; DZ: 337-468	WAIS Block Design", Digit Span", Digit Symbol Coding"; DSB Synonyms"; TPM"; Spearman's 'q'"
Reynolds et al. (2002)	SATSA	C1: [44.5-65] C2: [66-90.9]	C1: MZ: 65; DZ: 106 C2: MZ: 65; DZ: 106	Koh's Block Design; TPM; Symbol Digit Modalities
Reynolds et al. (2005)	SATSA	65.0±8.2 [27-85]	MZ: 135; DZ: 221	WAIS Information, Digit Span, Digit Symbol Coding; WIT-III Analogies; DSB Synonyms, Figure Logic, Figure Identification; Koh's Blook Design; ETS Card Rotations; TPW; Spearman's 'g'
Singer et al. (2006)	TwinsUK	56 [18-76]	MZ: 108; DZ: 170	CANTAB composites; NART Reading"; Simple RT + Choice RT*
Steves et al. (2013)	HATS	T1: 55.5±7.8 [42–72] T2: MZ: 66.6±7.6; DZ: 65.8±7.2 [52–83]	T1: MZ: 95; DZ: 149 T2: MZ: 63; DZ: 98	CANTAB Choice RT*, Simple RT*, Paired Associates Learning*, Pattern Recognition Memory*, Delayed Matching to Sample*, Spatial Span*, Spatia Working Memory*, PC, Spearman's 'q*
Svedberg et al. (2009)	SATSA	67±9.3 [50-84]	MZ: 148; DZ: 148	WAIS Information, Digit Span; Koh's Block Design; TPM; Symbol Digit Modalities
Swan et al. (1990)	NHLBI	63.1±2.9 [59-70]	MZ: 134; DZ: 133	Composite; MMSE; WAIS Digit Symbol Coding*
Swan et al. (1999)	NHLBI	71.8±2.9 [68-80]	MZ: 94; DZ: 89	CVLT
Swan et al. (2002)	NHLBI	71.5±2.6 [68-80]	MZ: 80; DZ: 78	SCWT; Phonemic Fluency*; WAIS Digit Symbol Coding; TMT-B; PC
Tucker-Drob et al. (2014)	SATSA	[50-96]	MZ: 160; DZ: 265	Composites; Spearman's 'g'
Xu et al. (2015)	QTR	51.6 [33-80]	MZ: 244; DZ: 140	Digit Span"; MoCA
*Ages were reported for five	ns see Supplem otypes included uments, comma e zygosity group	entary Table 9.		C = Cohort.

Supplementary Table 6 - Characteristics of Non-Psychiatric Family/Pedigree Studies

Reference	Cohort*	Age (M±SD [range])	Sample size (n individuals [n families])	Neuropsychological phenotypes ^{5,4,4}	
Chen et al. (2009)	CCNMD	20.6±0.5; Relatives: 19.7±0.5	157 [77]	WAIS/WMS Matrix Reasoning", Digit Span", Spatial Span", Letter-Number Sequencing", Logical Memory", Family Pictures', n-back'; CVLT'; Semantic + Phonemic Fluency'; TMT-B'; WCST'; CPT-DS'; CPT-AX'; CPT-IP'; Composites	
Galimberti et al. (2013)	INSPE	28.6±11.9; Relatives: 3.1±13.6	58 [29]	Iowa Gambling Task"; WCST"	
Glahn et al. (2013)	GOBS	44.2±14.0 [18-83]	1129 [81]	WAIS FIQ*, Letter-Number Sequencing, Digit Span, Digit Symbol Coding, Matrix Reasoning*, Vocabulary*; Digi Symbol Recall*; Phonemic Fluency; Semantic Fluency; TMT-A; TMT-B; CPT-IP; SDRT; CVLT*; CNB Penn Fac Memory*, Emotion Recognition, PCET	
Greenwood et al. (2011)	SCA	Nonagenarian: 93.4±3.0; Offspring: 66.4±5.0	253 [85]	WAIS Similarities"; Word List Memory"; WMS Logical Memory, TMT-A + TMT-B"; Semantic Fluency + Phonemic Fluency"; Target Cancellation; Composites	
Hart et al. (2010)	CNLSY	9.6±2.7 [4.9-14.8]	924-9376 [2400]	PIAT Reading, Mathematics; PPVT	
Karlsgodt et al. (2010)	GOBS	47.8±13.5 (19-85)	462 [32]	SDRT; WAIS Digit Span, Letter-Number Sequencing	
Knowles et al. (2014)	GOBS	44.8±15.2 [18–97]	1269 [75]	WAIS Letter-Number Sequencing*, Digit Span*, Digit Symbol Coding*; Digit Symbol Recall*; Phonemic Fluency*; Semantic Fluency*; TMT-A*; TMT-B*; CPT-IP*; SDRT*; CVLT*; CNB Penn Face Memory*, Emotion Recognition*, PCET*	
Kochunov et al. (2016)	OOA	48.7±17.1 [18-75]	145 [17]	WAIS Digit Symbol Coding*	
Luciano et al. (2010)	SFHS	47.4±14.5 [18–99]	6118 [1983]	WAIS Digit Symbol Coding"; WMS Logical Memory; Semantic Fluency + Phonemic Fluency"; Mill Hill Vocabula Spearman's 'd'	
Matteini et al. (2010)	LLFS	72.5±16.4 [31-110]	3224 [480]	WAIS Digit Span"; Semantic Fluency; CERAD Word List Memory"	
Rowe et al. (1999b)	CNLSY	[14-23]	4460 [2230]	AFQT	
Sleegers et al. (2007)	ERF	50.2±14.3 [18+]	780 [1]	RAVLT'; Semantic Fluency'; SCWT'; TMT-B'	
Smalley et al. (1989)	UCLA	[12+]	73 [1]	ETS Cube Comparisons", Card Rotations", Hidden Patterns"; HFSC Mental Rotation"; LPS Embedded Figures Tes	

*For cohort name abbreviations see Supplementary Table 1. *For test name abbreviations see Supplementary Table 9. *Asterisk (*) indicates phenotypes included in meta-analyses. *Semicolons separate instruments, commas separate subtest of same instrument.

Supplementary Table 7 - Characteristics of Schizophrenia Family/Pedigree Studies

Reference	Cohort*	Age (M±SD [range])	Sample size (n individuals [n families])	Neuropsychological phenotypes ^{8,5,4}	
Alfimova et al. (2003)	MHRC	Pro: 30±10; UA-REL: 44±15	199 [72]	PC	
Aukes et al. (2008)	UMCU	Pro: 40.7±14.7; UA-REL: 48.6±16.9	180 [25]	Semantic Fluency"; WMS Spatial Span"	
Aukes et al. (2009)	UMCU	Pro: 40.7±14.7; UA-REL: 48.6±16.9	133 [24]	WAIS FIQ"	
Bertisch et al. (2010)	NAMI	[13-56]	110 [47]	WAIS Vocabulary', Similarities', Information', Block Design', Matrix Reasoning', Digit Span', Digit Symbol Coding', Letter-Number Sequencing', WRAT Reading', Spelling', Arithmetic', CVLT'; WMS Verbal Paired Associates', Visual Reproduction'; BNT'; PPUT'; COWAT Phonemic Fluency'; SCWT; TMT-A'; TMT-B'; Tinger Tapping', Purdue Repdoard'; PC; Speaman's 'g'	
Calkins et al. (2010)	PAARTNERS	Pro: 39.9±11.6; UA-REL: 45.6±15.8	1538 [491]	CNB PCET*, Penn CPT, Penn Word Memory*, Penn Face Memory*, Penn Verbal Reasoning*, VOLT*, Penn Letter n-back*, JOLO*, Finger Tapping, Mouse Practice Task, Emotion Recognition/Discrimination	
Chen et al. (1998)	MPSS	Pro: 30.7±8.0; UA-REL: 46.9±16.2; CON: 32.3±7.6; CON-REL: 38.4±14.8	270 [80]	CPT-DS", CPT-19"	
Chen et al. (2009)	CCNMD	Pro: 22.7±0.4; UA-REL: 22.0±0.5; CON: 20.6±0.5; CON-REL: 19.7±0.5	SCZ: 278 [133]; CON: 157 [77]	WAIS/WMS Matrix Reasoning", Digit Span", Spatial Span", Letter-Number Sequencing", Logical Memory", Family Pictures", n-back"; CVLT"; Semantic + Phonemic Fluency"; TMT-B"; WCST"; CPT-AX; CPT-AY; CPT-IP"	
Glahn et al. (2007)	GOBS / CVCR / MCM	SCZ: 37.5±15.0 [15–72]; BPD: 42.7±12.0 [18-59]; MDD: 35.1±10.0 [19-52]; Other Dx: 48.4±14.0 [24–70]; UA-1DR: 48.0±15.0 [19–79]; UA-2DR: 30.0±9 [20–51]; CON: 33.0±12.0 [15–63]	269 [104]	WAIS Digit Symbol Coding"; Digit Symbol Recall"; Digit Span"; Phonemic Fluency"; Semantic Fluency"; TMT-A"; TMT-B"; CPT-IP"; SDRT"; CVLT"; RPM"; AIM Abstraction	
Glahn et al. (2014)	GOBS	SCZ: 46.9±13.5; UA-1DR: 49.4±12.5; UA-2DR: 454.1±22.1; UA-3DR: 52.1±10.2; UA-4DR: 34.8±12.6; UA-5DR: 35.8±16.2; UA-6DR: 34.1±5.8; UA-7DR: 20.6±2.0; CON: 44.3±15.5	1606 [75]	WAIS FIQ*, Letter-Number Sequencing*; Digit Span; Digit Symbol Coding; Matrix Reasoning*; Vocabulary*; Phonemic Fluency; Semantic Fluency; TMT-A; TMT-B; CPT-IP*; SDRT; CVLT; CNB Penn Face Memory*; PCET*, Emotion Recognition*	
Greenwood et al. (2007)	COGS	Pro: 34.2±10.8; AF-SIB: 45.0±12.9; UA-SIB: 36.9±11.4; UA-PAR: 62.3±10.6 [18–65]	609 [183]	CPT-DS; CVLT; UMD Letter-Number Span; CNB PCET, Penn Face Memory, VOLT, JOLO, Mouse Practice Task, Emotion Recognition	
Greenwood et al. (2013)	COGS	[18-65]	949 [296]	CPT-DS; CVLT*; UMD Letter-Number Span*; CNB PCET*, Penn Face Memory*, VOLT*, JOLO*, Mouse Practice Task*, Emotion Recognition*	
Gur et al. (2007)	PMFS	Pro: 45.3±13.0; UA-REL: 43.8±17.8; CON: 41.9±17.9	430 [35]	CNB PCET ⁴ , Penn CPT ⁴ , Penn Word Memory ⁴ , Penn Face Memory ⁴ , VOLT ⁴ , JOLO ⁴ , Finger Tapping, Mouse Practice Task ⁴ , Emotion Intensity Discrimination ⁴	
Hill et al. (2013)	B-SNIP	SCZ: 35.9±12.8; SADD: 38.2±11.9; SADM: 35.8±11.7; UA-REL SCZ: 43.2±15.0; UA-REL SADD: 41.7±15.9; UA-REL SADM: 40.1±16.6; PBPD: 36.2±12.8; UA-REL PBPD: 40.5±15.9	SCZ: 971 [458]; BPD: 486 [227]	WRAT Reading"; BACS Composite, List Learning", Digit Sequencing", Token Test", Verbal Fluency (Semantic + Phonemic Fluency)", Symbol Coding", TOL"	
Husted et al. (2009)	CAMH	SCZ: 51.8±9.5; UA-REL: 49.1±10.5	83 [17]	WAIS FIQ*, Digit Symbol Coding*, Digit Span*; WMS Visual Reproduction*, Logical Memory*; Purdue Pegboard*; TMT-A*; TMT-B*; RAVLT*; WCST*	
Lin et al. (2013)	MPSS / TSLS / SEFOS	Multiplex Pro: 35.0±7.7; UA-PAR: 63.0±8.7; UA-SIB: 36.7±8.7; Simplex Pro: 31.7±8.0; UA-PAR: 56.3±7.8; UA-SIB: 33.4±9.2	2300 [821]	WČST*	
Mendoza Quiñones et al. (2009)	CMHHC	Pro: 36.2±11.1; UA-REL: 47.4±14.0	225 [80]	TMT-A'; TMT-B'	
Seidman et al. (2015)	COGS	Pro: 32.4±10.0; UA-REL: 35.9±11.4; CON: 34.8±12.7 [18-65]	SCZ: 234 [83]; CON: 209 [209]	PC	
Tuulio-Henriksson et al. (2002)	NPHIF	Pro (F/M): 48.5±7.6; 45.6±7.6; UA-REL (F/M): 48.0±7.3; 46.1±8.2	264 [131]	WAIS Vocabulary", Similarities", Block Design", Digit Symbol Coding"; WMS Digit Span", Visual Span"; CVLT*	
Wang et al. (2010)	SUCC	Pro: 23.2±7.5; CON: 34.5±3.2; PAR: 47.9±8.2; SIB/OFF: 26.1±6.4	740 [214]	PĈ .	
Wiener et al. (2013)	PAARTNERS	Pro: 39.9±11.6; UA-REL: 45.6±15.8	1606 [514]	CNB PCET*, Penn CPT, Penn Face Memory*, Penn Word Memory*, Penn Verbal Reasoning*, Penn Letter n-back*, VOLT*, JOLO*	

*For cohort name abbreviations see Supplementary Table 1. *For test name abbreviations see Supplementary Table 9. *Asterisk (*) indicates phenotypes included in meta-analyses. *Semicolons separate instruments, commas separate subtests of same instrument. <u>Abbreviations</u>: Pro = probands; SIB = Siblings; PAR = Parents; OFF = Offspring; CON = controls; AF = affected; UA = unaffected; REL =
Supplementary Table 8 - Characteristics of Schizophrenia Twin Studies

Reference	Cohort*	Age (M±SD [range])	Sample size [% SCZ]	Neuropsychological phenotypes ^b	Г д (95% СІ)	Г _с (95% СІ)	Г _е (95% СІ)	Г _{рћ} (95% СІ)	Г _{рһ-а} (95% СІ)	Г _{рһ-с} (95% СІ)	Г _{рћ-е} (95% СІ)
Fowler et al. (2012)	STR / SYMTS	37.0±10.1	MZ: 3379; DZ: 3904; SIB pairs: 369,960 [3%]	SEB Premorbid IQ	-0.26 (-0.37; -0.08)	-0.15 (-0.32; 0)	-0.06 (-0.33; -0.01)	-0.11			
Owens et al. (2011a)	MTS	MZ CCA: 38.1±9.9 [22-60]; MZ DCA: 30.3±10.11 [20- 53]; MZ DCU: 30.1±10.1 [20-53]; MZ Con: 41.7±12.8 [19-71]; DCA: 40.8±11.6 [24-80]; DCU: 39.6±11.6 [21-60]; DZ Con: 42.2±11.1 [19-58]	(74) MZ: 91; DZ: 48 [27%]	FIQ WMS Verbal Paired Associates IR WMS Verbal Paired Associates DR WMS Visual Paired Associates IR WMS Visual Paired Associates DR WMS Logical Memory IR WMS Logical Memory DR WMS Visual Reproduction IR WMS Visual Reproduction IR	-0.69 (-1:-0.52) -0.26 (-1:0) -0.39 (-1:0) -0.71 (-1:-0.28) -0.09 (-1:-0.29) -0.58 (-1:-0.29) -0.58 (-1:-0.33) -0.99 (-1:-0.33) -0.55 (-1:0) (-1:0	-1 (-1; 0) -1 (1; 0) -0.39 (-1; 0) -1 (-1; 0) -1 (-1; 0) -0.93 (-1; 0) -0.12 (-1; 0) -0.39 (-1; 0) -1 (-1;	-0.18 (-0.63; 0) -0.24 (0.64; 0) 0 (-0.34; 0) -0.04 (-0.46; 0) -0.19 (-0.59; 0) -0.21 (-0.55; 0) -0.21 (-0.25; 0) -0.23 (-0.73; 0)	-0.64 (-0.73; -0.53) -0.26 (-0.38; -0.14) -0.22 (-0.33; -0.11) -0.24 (-0.51; -0.31) -0.24 (-0.51; -0.30) -0.40 (-0.51; -0.30) -0.48 (-0.58; -0.37) -0.30 (-0.41; -0.18) (-0.37, -0.55) (-0.37, -0.55) (-0	-0.49 (-0.51; -0.30) -0.17 (-0.34; 0) -0.22 (-0.33; 0) -0.36 (-0.51; -0.08) -0.04 (-0.31; 0) -0.35 (-0.49; -0.12) -0.33 (-0.54; -0.13) -0.22 (0.36; 0) -0.30 (-0.30) -0.30 (-0.30) -0.30 (-0.30) -0.30 (-0.30) -0.20 (-0.30) -0.30 (-0.30) -0.20 (-0.30) -0.20 (-0.30) -0.20 (-0.31) (-0.30) -0.21 (-0.31) (-0.32) (-0.31) (-0.32) (-0.32) (-0.35) (-0.32) (-0.35) (-0.32) (-0.35) (-0.32) (-0	-0.12 (-0.25; 0) -0.05 (-0.23; 0) 0 (-0.23; 0) -0.05 (-0.24; 0) -0.17 (-0.26; 0) -0.14 (-0.22; 0) -0.11 (-0.24; 0) -0.04 (-0.22; 0) -0.03 (0.27; 0) (-0.03; 0)	-0.03 (-0.03; 0) -0.05 (-0.12; 0) 0 (-0.08; 0) -0.01 (-0.05; 0) -0.04 (-0.12; 0) -0.04 (-0.12; 0) -0.04 (-0.13; 0) -0.05 (-0.14; 0) (-0.14; 0) (-0.05 (-0.05)
Owens et al. (2011b)	MTS	MZ CCA: 37.2±9.7 [21-60]; MZ DCA: 34.5±11.1 [21-65]; MZ DCU: 34.7±11.4 [21-65]; MZ Con: 43.1±12.6 [19-71]; DCA: 38.6±11.5 [22-60]; DCU: 38.5±11.8 [21-60]; DZ Con:	MZ: 121; DZ: 79 [25%]	TMT-A Time TMT-B Time TMT-B - TMT-A Difference Phonemic Fluency	(-1; -0.07) 0.84 (0.41; 1) 1 (0.60; 1) 1 (0.42; 1) -0.67 (-1; -0.24) -0.88	(-1; 0) -0.45 (-1; 1) -0.64 (-1; 1) -1 (-1; 1) 1 (-1; 1) 0.58	(-0.72; 0) 0.17 (-0.22; 0.54) 0.28 (-0.08; 0.60) 0.25 (-0.12; 0.61) 0.08 (-0.33; 0.49)	(-0.47; -0.25) 0.48 (0.39; 0.56) 0.54 (0.45; 0.62) 0.41 (0.31; 0.49) -0.30 (-0.40; -0.19)	(-0.41; -0.03) 0.49 (0.18; 0.63) 0.58 (0.31; 0.67) 0.47 (0.22; 0.55) -0.43 (-0.57; -0.16) 0.22	(-0.23; 0) -0.04 (-0.16; 0.23) -0.09 (-0.16; 0.17) -0.12 (-0.17; 0.11) 0.12 (-0.13; 0.21)	(-0.13; 0) 0.03 (-0.04; 0.11) 0.05 (-0.01; 0.11) 0.05 (-0.03; 0.13) 0.01 (-0.06; 0.09)
Owens et al. (2012)	MTS/ MFS	42.7±12.7 [19-80] Pro: 35.8±10.5 [17-74]; UA-REL: 47.1±15.7 [16-85]; Con: 40.9±13.4 [18-77]	MZ: 151; DZ: 82; SIB: 510 [13%]	Semantic Fluency FIQ PC: general executive control PC: planning, strategy formation	-0.00 (-1; -0.13) -0.42 (-0.63; -0.25) -0.40 (-0.19; -0.65) -0.45 (-0.21; -0.78)	(-1; 0) 1 (-1; 1) 0.84 (-1; 1) 1 (-1; 1)	-0.33 (-0.68; 0.06) -0.46 (-0.82; -0.03) -0.08 (-0.25; 0.44) -0.16 (-0.18; 0.49)	-0.37 (-0.46; -0.26) -0.31 (-0.34; -0.24) -0.30 (-0.22; -0.37) -0.31 (-0.24; -0.38)	-0.39 (-0.54; -0.04) -0.33 (-0.45; -0.20) -0.29 (-0.13; -0.42) -0.31 (-0.14; -0.45)	0.09 (-0.22; 0.20) 0.07 (-0.02; 0.07) 0.01 (-0.10; 0.11) 0.02 (-0.12; 0.10)	-0.07 (-0.14; 0.01) -0.06 (-0.11; 0) -0.01 (-0.04; 0.07) -0.03 (-0.03; 0.09)
Toulopoulou et al. (2007)	MTS	MZ CC: 37.8±1.5; MZ DC: 29.7±2.3; MZ Con: 40.9±1.1; DZ DC: 37.6±3.7; DZ Con: 44.0±1.3	MZ: 92; DZ: 41 [27%]	FIQ WAIS Working Memory Index WAIS Processing Speed Index WAIS Perceptual Organization Index WAIS Verbal Comprehension Index	-0.75 (-1; -0.49) -0.79 (-1; -0.34) -0.46 (-1; 1) -0.61 (-1; -0.39) -0.34 (-0.98; -0.08)	-0.96 (-1; 1) 0.79 (-1; 1) -0.98 (-1; 1) -0.99 (-1; 1) -1 (-1; 1)	-0.09 (-0.70; 0.57) -0.43 (-0.89; 0.31) -0.92 (-0.99; -0.48) 0.03 (-0.57; 0.62) -0.14 (-0.80; 0.57)	-0.61 (-0.71; -0.48) -0.51 (-0.62; -0.39) -0.57 (-0.70; -0.45) -0.53 (-0.63; -0.41) -0.42 (-0.53; -0.30)	-0.56 -0.57 -0.27 -0.43 -0.21	-0.03 0.11 -0.13 -0.11 -0.11	-0.01 -0.05 -0.17 0.01 -0.02

Reference	Cohort*	Age (M±SD [range])	Sample size [% SCZ]	Neuropsychological phenotypes ⁶	(95% CI)	Г _с (95% СІ)	r _e (95% CI)	(95% СІ)	r _{ph-a} (95% CI)	F ph-c (95% CI)	(95% CI)
Toulopoulou et al. (2010)	MTS/ MFS/	Pro: 37.1±10.2; UA-REL:	MZ: 92; DZ: 41;	FIQ	-0.46 (-0.52; -0.32)	0 (-0.10; 1)	-0.33 (-0.36; 0.18)	-0.38 (-0.46; -0.38)	-0.34 (-0.35; -0.33)	0 (0; 0)	-0.05 (-0.05; -0.05)
	NIHSS / HNFS	41.8±13.9; Con: 38.9±12.9	Other Pro/REL:	WMS Visual Reproduction IR	-0.34 (-0.37; -0.32)	0 (-0.34; 0)	-0.75 (-0.77; -0.67)	-0.35 (-0.39; -0.27)	-0.25 (-0.25; -0.22)	0 (0; 0)	-0.10 (-0.09; -0.05)
		0.00.000	1065 [49%]	WMS Visual Reproduction DR	-0.50 (-0.67; -0.41)	0 (-0.31; 0)	-0.29 (-0.47; -0.21)	-0.37 (-0.38; -0.28)	-0.32 (-0.42; -0.21)	0 (0; 0)	-0.05 (-0.05; -0.02)
			[10.0]	WMS Verbal Paired Associates IR	-0.34 (-0.37; -0.32)	0 (-0.34; 0)	-0.75 (-0.77; -0.67)	-0.35 (-0.39; -0.27)	-0.25 (-0.25; -0.22)	0 (0; 0)	-0.10 (-0.09; -0.05)
				WMS Verbal Paired Associates DR	-0.50 (-0.67; -0.41)	0 (-0.31; 0)	-0.29 (-0.47; -0.21)	-0.37 (-0.38; -0.28)	-0.32 (-0.42; -0.21)	0 (0; 0)	-0.05
				WMS Logical Memory IR	-0.34 (-0.37; -0.32)	0 (-0.34; 0)	-0.75 (-0.77; -0.67)	-0.35 (-0.39; -0.27)	-0.25 (-0.25; -0.22)	0 (0; 0)	-0.10 (-0.09; -0.05
			WMS Logical Memory DR	-0.50 (-0.67; -0.41)	0 (-0.31; 0)	-0.29 (-0.47; -0.21)	-0.37 (-0.38; -0.28)	-0.32 (-0.42; -0.21)	0 (0; 0)	-0.05 (-0.05; -0.02	
Toulopoulou et al. (2015)	MTS/ MFS/	MZ CCA: 38.3±10.6;	MZ: 395; DZ: 231	FIQ	-0.62 (-0.89; -0.26)	0.48 (-0.90; 1)	-0.49 (-0.81; -0.10)	-0.46 (-0.57; -0.34)	-0.48 (-0.68; -0.2)	0.09 (-0.19; 0.23)	-0.07 (-0.12; -0.01)
UMCU / MZ DCA: [16% NPHIF / 40.9±11.5; UOB / MZ DCU: JUH 40.9±11.5; MZ CCU: 37.6±12.4; DZ DCA: 45.1±10.9; DZ DCU: 44.1±11.0;	[16%]	Composite of WMS Logical Memory IR, Visual Reproduction IR, Verbal Paired Associates, Digit Span, Visual Memory Span	-0.63 (-1; -0.43)	-1 (-1; 0.24)	-0.45 (-0.89; -0.04)	-0.86 (-1; -0.72)	-0.48 (-0.81; -0.29)	-0.28 (-0.37; 0.03)	-0.11 (-0.21; -0.01		
		DZ DCA: 45.1±10.9; DZ DCU:		Composite of WMS Logical Memory DR, Visual Reproduction DR	-0.67 (-1; -0.45)	-1 (-1; 1)	-0.57 (-0.87; -0.14)	-0.76 (-0.89; -0.63)	-0.64 (-0.92; -0.36)	-0.01 (-0.25; 0.20)	-0.11 (-0.18; -0.03

DZ CCU: 30.6±12.8 "For cohort name abbreviations see Supplementary Table 1. "For test name abbreviations see Supplementary Table 0. <u>Abbreviations</u>: MZ = Monozygotic (in pairs); DZ = Dizygotic (in pairs); SIB = Siblings; Pro = probands; Con = controls; UA = unaffected; REL = relatives; CCA, CCU = Concordant Affected, Unaffected; DCA, <u>DCU = Discordant Affected</u>, Unaffected; CI = Confidence Interval; FIQ = Full-scale Intelligence Quotient; r_a = genetic correlation; r_a = common environmental correlation; r_a = unique environmental correlation; r_a = phenotypic correlation; r_{bma} = part of phenotypic correlation explained by genetic factors; r_{bma} = part of phenotypic correlation explained by unique environmental factors; see = swedish Enlistment Battery; TMT = Trail Making Test; WAIS = Wechsler Adult Intelligence Scale; WMS = Wechsler Memory Scale; IR = Immediate Recall; DR = Delayed Recall.

Neuropsychological Test/Phenotype	Test Summary Score(s)	Test Reference(s)		
(organized by domain)*				
General Cognitive Ability (GCA)				
Verbal IQ (VIQ)	VIQ from MAB; WAIS-III; RAKIT; WAIS; Norwegian adaptation of WAIS; WAIS- R; WISC-R; WISC-III	Wechsler (1955), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Bleichrodt et al. (1984), Jackson (1984), Wechsler (1991), Wechsler (1997a)		
Performance IQ (PIQ)	PIQ from MAB; WAIS-III; RAKIT; WAIS; Norwegian adaptation of WAIS; WAIS- R; WISC-R; WISC-III	Wechsler (1955), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Bleichrodt et al. (1984), Jackson (1984), Wechsler (1991), Wechsler (1997a)		
Full-scale IQ (FIQ)	FIQ from WAIS; WAIS-R; WAIS-III; LPS; MAB; prorated from MAB Information, Arithmetic, Vocabulary, Spatial and Object Assembly subbests; BMDI: PRIMA IQ Test; RAKIT; SBIS; WISC-III; RSPM; RCPM; WISC-R; WAIS-III, Dutch version; SRB; Norwegian adaptation of WAIS; WASI; WISC, WISC-III; prorated from WISC-III vocabulary, Similarities, Picture Completion and Block Design subtests; WISC-R; prorated from WISC-R Similarities, Vocabulary, Block Design and Object Assembly subtests	Raven (1938), Raven (1947), Wechsler (1949), Wechsler (1955), Dureman e al. (1959), Bayley (1960), Terman et al. (1973), Wechsler (1974), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Bleichrodt et al. (1984), Jackson (1984), Thomdike et al. (1988), Wechsler (1991), Raven (1988), Wechsler (1987a), Wechsler (1989), Wechsler (2000), Webbink et al. (2006)		
Spearman's g	Spearman's g from CANTAB; ETS GCA; CAT-3; LPS; BMDI; PARCA/MCDI-III, an extension of the short form MCDI: Words and Sentences; SBIS; Telephone Battery; WAIS; WAIS-III; WISC-R	Wechsler (1955), Horn (1962), Bayley (1969), Terman et al. (1973), Wechsle (1974a), Ekstrom et al. (1976), Thomdike et al. (1986), Kent et al. (1987), Robbins et al. (1994), Wechsler (1997a), Saudino et al. (1998), Fenson et al. (2000), Smith et al. (2001), Oliver et al. (2002)		
Raven's Progressive Matrices	RSPM; RCPM; RAPM	Raven (1938), Raven (1947), Raven (1965), Raven et al. (1977), Raven (1994), Raven (1996)		
AFQT	Total score	Uhlaner (1952)		
MMSE	Total score/ index of global cognitive functioning from MMSE; Modified MMSE (3MSE)	Folstein et al. (1975), Folstein et al. (1983), Teng et al. (1987)		
Attention/Processing Speed				
ETS	ETS Hidden Patterns; Identical Pictures	Ekstrom et al. (1976)		
WAIS/WISC Digit Symbol/Coding	Digit Symbol/Coding subtest from WAIS; WAIS-R; WAIS-III; WAIS-IV; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R; WISC-IV	Wechsler (1955), Stinissen et al. (1970), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a), Wechsler (2003), Wechsler (2008)		
TMT	TMT-A time to completion; TMT-B time to completion	Reitan (1958)		
Choice RT	Mean RT from CANTAB; CAT; Span of Apprehension Test; 2-4-8-choice task; 2-choice task; 4-choice task; 8-choice task; 4-choice FastTask	Asarnow et al. (1982), Detterman (1990), Robbins et al. (1994), Rijsdijk et al. (1998), Hansell et al. (2001), Luciano et al. (2001b), Kuntsi et al. (2005), Sachdev et al. (2010)		
Simple RT	Mean RT from CANTAB; CAT; Simple RT experimental tasks	Detterman (1990), Robbins et al. (1994), Rijsdijk et al. (1998), Kuntsi et al. (2005), Sachdev et al. (2010)		
PCET	Reaction time score	Kurtz et al. (2004)		
Penn Word Memory	Reaction time score	Gur et al. (1993)		
Penn Face Memory	Reaction time score	Gur et al. (1993)		
VOLT	Reaction time score	Glahn et al. (1997)		
JOLO, computerized version	Reaction time score	Gur et al. (2001)		
Colorado Perceptual Speed	Accuracy score	DeFries et al. (1981)		
SCWT	Stroop Interference score; Stroop Color-Word score (# of words completed)	Golden et al. (1978)		
Attention/Vigilance				
CPT-Degraded Stimulus	d-prime	Nuechterlein et al. (1983), Chen et al. (1998), Nuechterlein et al. (1999)		
Working Memory				
WAIS/WISC Vocabulary	Vocabulary subtest from WAIS; WAIS-R; WAIS-III; WASI; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R; WISC-III; WISC-IV	Wechsler (1949), Wechsler (1955), Stinissen et al. (1970), Wechsler (1974b), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a), Wechsler (1999), Wechsler (2003)		
WAIS/WISC Arithmetic	Arithmetic subtest from WAIS; WAIS-R; WAIS-III; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a)		
WAIS/WISC Digit Span Forward + Backward	Sum of Forward + Backward score from Digit Span subtest from WAIS; WAIS- R; WAIS-III; WAIS-IV; Dutch adaptation of WAIS; Norwegian adaptation of	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Wechsler (1991), Wechsler (1997a), Wechsler		

Neuropsychological Test/Phenotype	Test Summary Score(s)	Test Reference(s)
organized by domain)*		
WAISMISC Digit Span Forward	Forward score from Digit Span subtest from WAIS-III; WAIS-IV; WISC-III; WISC-IV	Wechsler (1991), Wechsler (1997a), Wechsler (2003), Wechsler (2008)
WAIS/WISC Digit Span Backward	Backward score from Digit Spen subtest from WAIS-III; WAIS-IV; WISC-III; WISC-IV	Wechsler (1991), Wechsler (1997a), Wechsler (2003), Wechsler (2008)
WAIS/WISC Working Memory Index	Working Memory Index from WAIS-III; Norwegian adaptation of WAIS	Engvik et al. (1978), Wechsler (1997a)
WAIS/WISC Letter-Number Sequencing	Letter-Number Sequencing subtest from WAIS-III; WAIS-IV; WISC-IV	Wechsler (1997a), Wechsler (2003), Wechsler (2008)
SDRT	SDRT Accuracy	Glahn et al. (2003)
Spatial n-back	2-back Accuracy	Kirchner (1958), Friedman et al. (2008)
WMS Spetial Span	Spatial Span subtest from WMS-III	Wechsler (1997b)
erbal Learning and Memory		
CVLT	Trials 1-5 Sum, Long Delay Free Recall, Recognition, and Semantic Clustering indices from the CVLT or CVLT-2	Delis et al. (1987), Delis et al. (2000)
Penn Word Memory	Accuracy score	Gur et el. (1993)
WMS Logical Memory IR	Logical Memory IR subtest from WMS; WMS-R; WMS-III	Wechsler (1945), Wechsler (1987), Wechsler (1997b)
WMS Logical Memory DR	Logical Memory DR subtest from WMS; WMS-R; WMS-III	Wechsler (1945), Wechsler (1987), Wechsler (1997b)
Von-Verbal Learning and Memory		
Penn Face Memory	IR: IR + DR total accuracy score	Gur et al. (1993)
VOLT	Accuracy	Glahn et al. (1997)
TPM	TPM Accuracy score	Thurstone (1938)
WMS Visual Reproduction IR	Visual Reproduction IR subtest from WMS: WMS-R: WMS-III	Wechsler (1945), Wechsler (1987), Wechsler (1997b)
WMS Visual Reproduction DR	Visual Reproduction DR subtest from WMS; WMS-R; WMS-III	Wechsler (1945), Wechsler (1987), Wechsler (1997b)
/erbal Ability		
DSB Synonyms	Synonyms total correct	Dureman et al. (1971)
Phonemic/Letter Fluency	PhonemicLetter Fluency as measured by: "FAS" or "BHR" letters from D- KEFS, 8 letters representing three levels of difficulty, Letter "S", "R" or "T letters, Letter naming fluency, initial sound fluency. UPS word fluency	Horn (1982), Borkowski et al. (1987), Good et al. (1982), Kaminski et al. (1998), Kaminski et al. (1998), Fortury et al. (2001), Delis et al. (2004), Hoekstre et al. (2000), Owens et al. (2011b)
Semantic Fluency	Semantic Fluency as measured by: CAP verbal fluency, CERAD Arimal category, "Categories" fluency, D-KEFS Semantic fluency, MSCA semantic fluency, Animals or professions categories; Animals, flutbs, vegetables, Animal fluency, "Four-legged animals"	Borkowski et al. (1987), McCarthy (1972), Morris et al. (1989), Cardon et al. (1992), Fortuny et al. (2001), McGue et al. (2001), Wilson et al. (2002), Delis et al. (2004), Hoekstra et al. (2009), Johnson et al. (2009), Owens et al. (2011b)
Semantic + Phonemic Fluency	BACS Semantic + Phonemic Fluency; Animal Naming + FAS-CFL from COWAT	Benton et al. (1989), Kaefe et al. (2004), Keefe et al. (2008)
WAISMISC Vocabulary	Vocabulary subtest from WAIS; WAIS-R; WAIS-III; WASI; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R; WISC-III; WISC-IV	Wechsler (1949), Wechsler (1955), Strissen et al. (1970), Wechsler (1974b) Engylk et al. (1978), Wechsler (1981), Wechsler (1997), Wechsler (1997), Wechsler (1999), Wechsler (2003)
WAISMISC Information	Information subtest from WAIS; WAIS-R; WAIS-III; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R; WISC-IV	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974e), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a), Wechsler (2003)
WAISMISC Similarities	Similarities subtest from WAIS; WAIS-R; WAIS-II; Dutch edeptation of WAIS; Norwegian edeptation of WAIS; WISC-R; WISC-IV	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974e), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a), Wechsler (2003)
WAISMISC Comprehension	Comprehension subtest from WAIS; WAIS-III; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1997a)
WAISAWISC Verbel Comprehension Index	Verbal Comprehension index from WAIS-R; WAIS-III; WISC-R; WISC-III	Wechsler (1974a), Wechsler (1981), Wechsler (1991), Wechsler (1997a)
WRAT, Reading subtest	Reading subtest from WRAT-R; WRAT-III; WRAT-4	Jastak et al. (1984), Wilkinson (1993), Wilkinson et al. (2008)
/isuospatial Ability		
WAIS/WISC Block Design	Block Design subtest from WAIS; WAIS-R; WAIS-III; Dutch edeptation of WAIS; Norwegian edeptation of WAIS; WISC-R; WISC-IV	Wechsler (1955), Stirissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Wechsler (1997a), Wechsler (2003)
WAISMISC Picture Completion	Picture Completion subtest from WAIS; WAIS-III; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1997a)

Neuropsychological Test/Phenotype (organized by domain)*	Test Summary Score(s)	Test Reference(s)
WAIS/WISC Picture Arrangement	Picture Arrangement subtest from WAIS; WAIS-II; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1997a)
WAISMISC Object Assembly	Object Assembly subtest from WAIS; WAIS-III; Dutch adaptation of WAIS; Norwegian adaptation of WAIS; WISC-R	Wechsler (1955), Stinissen et al. (1970), Wechsler (1974a), Engvik et al. (1978), Wechsler (1997a)
WAISWISC Perceptual Organization Index	Perceptual Organization Index from WAIS-R; WAIS-III; Norwegian adaptation of WAIS; WISC-R; WISC-III	Wechsler (1974a), Engvik et al. (1978), Wechsler (1981), Wechsler (1991), Wechsler (1997a)
WAIS/WISC Metrix Reasoning	Mattix Reasoning subtest from WAIS-III; WASI; WISC-IV	Wechsler (1997a), Wechsler (1990), Wechsler (2003)
HFSC bettery	Mental Rotation	DeFries et al. (1974)
JOLO	JOLO Accuracy	Benton et al. (1983)
ETS	Card Rotations	Ekstrom et al. (1976)
Executive Function		
PCET	Accuracy	Kurtz et al. (2004)
WCST, paper or computerized versions	Perseverative Responses; Perseverative Errors; Categories Completed; Trials to Complete 1 ^e Category	Heaton et al. (1993), Heaton (2000)
Motor Skills		
CNB mouse practice task	Reaction time	Gur et al. (2001)
Purdue Pegboard	Pegboard Time Left + Right	Tiffin (1968)
Social Cognition		
Penn Emotion Recognition	Accuracy	Kohler et al. (2003)

* only includes 'primary' (individual) tests that were reported in at least 2 samples for calculation of meta-estimates of heritability

Abbreviations: AFQT - Armed Forces Qualification Test; BACS - Brief Assessment of Cognition in Schizophrenis; BMDI - Bayley Mental Developmental Index; BVRT - Benton Visual Retention Test; CATTaB - Cambridge Neuropsychological Test: Automated Battery; CAP - Colorado Adoption Project; CAT - Cognitive Abilities Test; CERAD - Consortum to Establish a Registry for Alzhelmer's Disease; CNB - Computerized Neurocognitive Battery; COP - Controlled Oral Word Association Test; CAT - Cognitive Abilities Test; CERAD - Consortum to Establish a Registry for Alzhelmer's Disease; CNB - Computerized Neurocognitive Battery; COWAT- Controlled Oral Word Association Test; CAT - Cognition; Part - Establish Service; FiQ - Full-scale Intelligence Quotent; GCA - General Cognitive Ability; GT - Groninger Intelligence Test; HFSC - Hawaii Family Study of Cognition; IR - Immediate Recal; JOLO - Judgment of Line Ortentation; JPS - Leissingsprüfbystem; MAB - Mutidimensional Aptitude Battery; MAT - Metropolian Achievement Test; MOCA - MacArthur-Bates Communicative Development Inventories; MMBE - Mini Mental State Exam; MSCA - McCarity Scales of Children's Abilities; PCET - Penn Conditional Exclusion Test; PIQ - Penromance Intelligence Quotent; PPVT - Peabody Picture Vocabulary Test; R - Revised; RAKIT - Revised Amsterdam Child Intelligence Test; RAPRA - Raven's Advanced Progressive Matrices; RAVLT - Rev Auditory Verbal Learning Test; RCPM - Raven's Colored Progressive Matrices Test; RSFM - Raven's State Sam; KT - Fraction Time; SBIB - Stantford-Binet Intelligence Scale; SCWT - Stroop Color-Word Test; SDMT - Symbol Digit Modalities Test; SDRT - Spatial Delayed-Response Tast; TMT - A Trail Making Test; Part A: TMT + B - Thail Making Test; PARA - Wesher Abbreviated Scale of Intelligence; WCS - Wisconsin Card Sorting Test; WISC - Wechsler Intelligence Scale; SCWT - Westin Intelligence Test; WAS - Wechsler Memory Scale; WRAT - Wide Range Achievement Test

Supplementary Figure 1 - Flow Diagram of Literature Search, Inclusion, and Exclusion

Supplementary Figure 2 – MZ versus DZ twin correlations for neuropsychological variables grouped by cognitive domain

cognitive domain Reported monozygotic (MZ) twin correlations (x-axis) from non-psychilatric twin studies are plotted against the corresponding dizygotic (DZ) twin correlations (y-axis) for those same neuropsychological variables. Each dot represents the correlation estimate for a particular neuropsychological variable from one study. The locations of the correlations on the plot indicate the magnitude of additive (A) or dominance (D) genetic influences and common (C) or unique (E) environmental influences, as well as the reliability of the phenotype. The diagonal indicates equality of MZ and DZ correlation. Neuropsychological variables above the diagonal have no evidence for additive genetic variance, while those below the diagonal have some degree of genetic variance ($h_{KZ} > h_{CZ}$). Variables in ellipse "A" have moderate to high additive genetic influences. Variables in the lower right comer ($h_{KZ} > h_{CZ}$) have some degree of dominant genetic effects ("D"). Variables close to the diagonal ($h_{KZ} < 2(h_{CZ})$) have some degree of common environmental influences ("C"). Variables in the bottom left comer ($h_{KZ} > 0(h_{CZ})$) have some degree of a univormental influences ("C"). Variables in the bottom left comer ($h_{KZ} < h_{CZ}$) have some degree of a univormental influences ("C"). Variables in the bottom left comer ($h_{KZ} < h_{CZ}$) have some degree of a univormental influences ("C"). Variables in the bottom left comer (how h_{KZ} and low h_{CZ} and largely influenced by unique environmental influences ("C"). Variables having MZ or DZ twin correlations near or below zero are unreliable. Data included in this plot were obtained from the studies insisted. Asupplementate. Influences or more

Reference	Cohort	N	Measure
Grant, 2010	VETR	8,408	AFOT
Vasliopoulos, 2012a	VETSA	1,238	AFOT
Meta-estimate	2 Studies	7.644	AFOT
Keller, 2013	CLTS/CTS	8.072	Full-scale IQ
Neubauer, 2000	GOSAT	600	Full-scale IQ
Silventoinen, 2012	MTFB	1,252	Full-scale IQ
Goldberg, 2013	MTS/UCB	528	Full-scale IQ
Tarres, 1984	OTSN	160	Full-scale IQ
Malykh, 2005	ROTR	160	Fail-scale IQ
Bartlai, 1991	BATBA	66	Full-scale /Q
Brouwer, 2014a	UMCU/NTR	132	Full-scale IQ
Haworth, 2010	WRRP / TEDS	8,150	Ful-scale IQ
Meta-estimate	9 Studies	17,120	Full-scale IQ
Giubilei, 2008	ITR	386	NMSE
McGue, 2007	LSADT	2.224	MMBE
Swan, 1990	NHLBI	634	MMBE
Pedersen, 1996	SATSA	495	MMSE
Mota-estimate	4 Studies	3.442	MMSE
Ku, 2015	OTR	758	MpCA
Luciano, 2005	MAPS/NTR	3.012	Performance Q
Silventoinen, 2012	MIPS	1,292	Performance IQ
Tambs, 1984	OTSN	160	Performance IQ
Malykh, 2005	RSTR	350	Performance IQ
Brozwer, 2014a	UMCU / NTR	132	Performance IQ
Baker, 1991	UWO	164	Performance IQ
Mota-estimate	6 Studies	4,000	Performance ID
Neubauer, 2000	GOBAT	600	Raven's Progressive Matrices
Glubiei, 2008	ITR	186	Ravest's Progressive Matrices
Johnson, 2007b	MISTRA	252	Raven's Progressive Matrices
Rijsdik, 2002	NTR	386	Raven's Progressive Matrices
Mosting, 2014	STR	5,138	Reven's Programme Matrices
Rommal, 2015	TEDS	9,542	Raver's Progressive Matrices
Nota-estimate	6 Studies	16,104	Reven's Progressive Matrices
Friedman, 2008	CLTS	1,164	Spearman's g
Neubouer, 2000	GOSAT	600	Spearmar's g
Staves, 2013	HATS	488	Speaman's g
McGue, 2007	LSADT	2.224	Spearman's g
Johnson, 2007b	MISTRA	252	Speamar's g
Sundet, 1988	NAF	634	Speamar's g
Swageman, 2016	NTR	1.632	Spearman's g
Lee. 2012b	DATS	436	Speamar's g
Finkel 2004	SATSA	1,290	Speaman's g
Read, 2004	STR	872	Speaman's g
Moto-entimate	10 Gludica	0,502	Spearmen's g
Lucieno, 2005	MAPS / NTR	3.012	Verbel IQ
Silventoinen, 2012	MIES	1,252	Vertail IQ
Tarrbs, 1984	OTSN	160	Vertui IO
Mayin, 2005	RSTR	160	Verbal IQ
Brouwer, 2014a	UMCU/NTR	132	Vertual IO
Baker, 1991	UWO	164	Verbal IQ
Mota-estimate	6 Studies	4,803	Verbal IQ
Mata-sutimate	25 Station	47,890	General Cognitive Ability Demain
and a second to	40 0 10 0 M	47,850	annual calitates yourly poursu

B. Non-Psychiatric Families

Reference	Cohort	N	Measure	
Mowe, 1996b	NLSY	4,460	APQT	
Glahn, 2013	GOBS	1,129	Ful-scale IQ	
Lucieno, 2010	SFHS	6.118	Spearman's g	
Meta-estimate	3 Studies	11,707	General Cognitive Ability Domain	

. . 10 20 30 40 50 60 70 80 90 % Variance Explained (Heritability) ó 100

C. Schizophrenia Families

Reference	Cohort	N	Measure	
Husted, 2009	CAMH	83	Full-scale IQ	
Glahn, 2014	0085	1,606	Full-scale IQ	•
Aukes, 2009	UMCU	100	Full-scale IQ	
Moto-estimate	a Grudico	1,822	Fail-seals IQ	
Glahn, 2007	GOBS / CVCR	2003	Raven's Progressive Matrices	
Bertisch, 2010	NAMI	48	Spearman's g	
Meta-estimate	5 Studies	2,139	General Cognitive Ability Domain	

0 10 20 30 40 50 60 70 80 90 100 % Variance Explained (Heritability)

Supplementary Figure 3 – Heritability of General Cognitive Ability Forest plot of individual study and meta heritability estimates and 05% confidence intervals (Cis) based on (A) Non-Peychiatric Twins; (B) Non-Psychiatric Families; and (C) Schizophrenia Families. IQ measures were obtained from the VIAB or VIBSC, except for Wainweight et al. (2005b) and Luciano et al. (2005b) They used the Multidemensional Apticube Battery, which correlates very highly with the WAIS. The Ci is based on the variance across studies in the variance component estimates. For studies that reported the standard error (RS), the CI was calculated (variance across studies in the variance component estimates. For studies that reported the standard error (RS), the CI was calculated (variance component estimate s (1:06 = SE). (Ci is an of studies of this d not report CI or SE. For (Pedersen et al. 1006). Sub-othis et al. 2010, Silverbins et al. 2012, the everage variance component estimates for males and females were included in the meta-analysis. The subject number of the overall domain estimate (1:06 = SE). (Ci is the event of the mothers across all independent cohorts in the pote (patien ford), some of which er as iso included in the meta-estimate for one or more individual neuropsychological tests (brid fort). For plotting purposes, the cohort name was truncated for Kaler et al. (CLTS / CTS / CFA/VI / MAPS), and Heavorth et al. (WHRP / TEDS / CTS / CTS / CTA / MAPS / MTC / AMPS / MTC / MTC / CTS / CTS / CTS / CFA/VI / MAPS / MTC / AMPS / MTC / MTC / CTS /

Reference Fan, 2001 Johnson, 2007b		102	Measure Attentional Meteory Text ST	
oneson, 20010	PUC	104	Attentional Network Test RT	
Annual to Manual	MISTRA	252	CAB Perceptual Speed	
Bartfal, 1991	SATSA		Choice RT Accuracy	
Reves, 2013	HATS	488	Choice RT Mean RT Choice RT Mean RT	
Vakvwright, 2008 Nasdijk, 1998	MAPS	1,452	Choice RT Mean RT	
kjodija, 1998	NTR	376	Choice RT Mean RT	
ee. 2012b	OATS	436	Choice RT Mean RT	•
Aota-estimate	4 Studies	2,752	Choice RT Mean RT	
wageman, 2016	NTR	1,632	CNB Age Differentiation RT	
wageman, 2016	NTR	1,632	CNB Emotion Intensity Discrimination RT	
Swagerman, 2016	NTR	1,632	CNS Emotion Recognition RT	
wagemen, 2016	NTR	1.632	CNB JOLO #T	termination of the second seco
wageman, 2016	NTR	1.632	CNS PCET RT	
Asagerman, 2016	NTR	1.632	CNS Perm CPT RT	
Reagerman, 2016	NTR	1,632	CNS Penn Face Memory DR RT	
Augernan, 2016	NTR	1,632	CNS Penn Face Nemory IR RT	
wageman, 2016	NTR	1,632	CNS Penn Letter n-back RT	
kespernan, 3016				
Asageman, 2016	NTR	1,632	CNB Penn Matrix Reasoning RT	
kaspernan, 2016	NTR	1,632	CNB Penn Verbal Reasoning RT	
Swagerman, 2016	NTR	1,632	CNB Penn Ward Memory DR RT	
Swagerman, 2016	NTR	1,632	CNB Penn Word Memory IR RT	
Swagerman, 2016	NTR	1,632	CNB VOLT DR RT CNB VOLT IR RT	Room Contract of
wageman, 2016	NTR	1.632	CNB VOLT IR RT	And and a second s
riedman, 2008	CLTS	1,164	Colorado Perceptual Speed	
Cochunov, 2016	MTR	726	Comparison Processing Speed Test	
inkel 2000a	SATSA	584	DSB Figure Identification	
Viedman, 2008	OLTS	1,104	CT018den Paterna	
Viedman, 2005 Iohnson, 2007b	MISTRA	1,104	ETS Hidden Patterns	
Aeta-estimate	2 Studies	1,416	ETS Hidden Patterns	
riedman, 2008	CLTS	1,164	ETS Identical Pictures	
toes, 1981	KMTP-LITP	368	ETS Identical Pictures	
kihnaon. 2007b	MISTRA	252	ETS Identical Pictures	
Anta-estimate	3 Studies			
		1,784	ETS Identical Pictures	
hattuma 2002b	NTR	472	Flanker DT Congruent Stimuli	
lohnaon, 2007b	MISTRA	252	HFSC Lines and Dota	
kandagopal, 2010	FSTR	76	Sentence Picture Verification RT	
inger, 2006 Inkel, 2014	TutnaUK	506	Simple RT + Choice RT	
inkel, 2014	SATSA	160	Sample RT + Choice RT Mean DT	
inkel, 2014	SATSA	160	Simple RT + Choice RT Nean MT	
inkel, 2014	SATSA	160	Simple RT + Choice RT Rance DT	
Trikel, 2014	SATSA	160	Simple RT + Choice RT Range MT	
Barran, 2212	HATE	488	Bhight RT Mean RT	
Njisdija, 1998	NTR	376	Simple RT Mean RT	
ee. 2012b	OATB	436	Simple RT Mean RT	
Acto-estimate	3 Studies	1,300	Simple RT Mean RT	
	3 800045	1,390	Simple KT Wean KT	
eubauer, 2000	GOBAT		SMST 1-digit RT SMST 1-digit RT Non-Target Trials	•
Snkhuyzen, 2010	NTR	696	SMST 1-0gt KT Non-Target Thats	
Ankhuyzen, 2010	NTR	696	SMS11-digt K11arpet Trans	
Heubiauer, 2000 Heubiauer, 2000	GOSAT	600	SMST 3-digit RT	
Heubauer, 2000	GOSAT	600	SMBT 5-digt RT	
8okland, 2011	MAPS	282	Spatial 0-back RT	
Soliand, 2011	MAP8	282	Spatial 2-back RT	
aylar, 2007	FSTR	218	Stroop Color Naming	
au, 2012b	DATS	438	Stroop Color Neming+Word Reading	
laylar, 2007	FSTR	218	Stroop Color-Word	
seace-5., 2007	NHLBI	370	Stroop Color-Word	
Auta-extimate	2 Studies	588	Stroop Color-Word	
riedman, 2008	CLTS	1,164	Stroop Interference	
aylor, 2007	FSTR	218	Stroop Interference	
ee, 2012a	DATS	430		
Aeta-estimate	3 Studies	1,812	Stroop Interference Stroop Interference	•
aylar, 2007	FSTR	218	Stroop Word Reading	
oyor, 2001	OATS	436	Trad Making Tast & Tran	
ee, 2012b lail, 1996	UPTS		Trail Making Test A Time	•
108, 1980		220	Trail Making Test A Time	•
Aeta-estimate	2 Studies	656	Trail Making Test A Time	
essow-S., 2007	NHLBI	370	Trail Making Test B Time	
tall. 1896	UPTS	220	Trail Making Test B Time	•
Aota-estimate	2 Studies	590	Trail Making Test B Time	
80. 20128	OATB	430	Trail Making Test B-to-A Ratio WAIS Digit Symbol Coding	
riedman, 2008	CLTS	1,164	WAIS Digit Symbol Coding	
Vairwright, 2004	MAPS	1.000	WAIS Digit Symbol Coding	
ohrson, 2007b	MISTRA	262	WAIS Digit Symbol Coding WAIS Digit Symbol Coding	
inkel, 1995b	MISADA	382	WAIS Digit Symbol Coding	
wan, 1990	NHLDI	534	WAIS Digit Symbol Coding	
Ejectijk, 2002	NTR	208	WAIS Digit Symbol Coding	
ee. 2012b	OATS	436	WAIS Digit Symbol Coding	
ombs. 1984	OTSN	160	WAIS Digit Symbol Coding	
innitel, 1984 Finikel, 2000a	BATSA	584	WAIS Digit Symbol Coding	
lead, 2006	STR	960	WAIS Digit Symbol Coding	•
4020, 2006 4a8, 1996	UPTS	220	WARD Date Darked Coding	
	0118		WAIS Digit Symbol Coding	
Arta-estimate Posthuma, 2003	11 Studies	6,080	WAIS Digit Symbol Coding	
	NTR	844	WAIS Processing Speed Index	
	18 Studies	9,339	Attention/Processing Speed Domain	and and a second s
Rela-estimate				
				L
				0 10 20 30 40 50 60 70 80 90

B. Non-Psychiatric Families

Reference	Cohort	N	Measure	
Sleegers, 2007	ERF	780	Birsop Color-Want	
Greenwood, 2011	CVCR	263	Trail Making Test-A + B Time	
Knowles, 2014	GOB5	1.260	Trail Making Test-A Time	
Cheri, 2009	COMMD	157	Trail Making Test-B Time	
Sleegers, 2007	ERF	780	Trail Making Test-B Time	
Knowles, 2014	GOBS	1,269	Trail Making Test-B Time	
Meta-astimate	3 Studies	2,206	Trail Making Test-B Time	
Knowkis, 2014	0086	1,260	WAIS Digit Symbol Coding	
Kochutov, 2016	A00	145	WAIS Digit Symbol Coding	
Lucieno, 2010	5173-45	6,118	WARE Digit Symbol Coding	
Moto-extimate	3 Studies	7,632	WAIS Digit Symbol Coding	
Meta-estimate	# Studies	8,722	AttentionProcessing Speed Domain	
				0 10 20 30 40 50 60 70 80 90 100
				% Variance Explained (Haritability)

C. Schizophrenia Families

Reference	Cohort	N	Measure
Sur. 2007	PMFS	377	CNB Emotion Intensity Discrimination RT
Calkins, 2010	PAARTNERS	1,538	CN9 JOLO RT
Gur. 2007	PMFS	419	CNB JOLO RT
Meta-estimate	2 Studies	1,957	CNB JOLO RT
Calkins, 2010	PAARTNERS	1.538	CNS PCET RT
Gur. 2007	PMFS	409	CNB PCET RT
Viota-estimate	2 Studies	1,947	CNB PCET RT
Gar. 2007	PMPS	419	CNS Perm CPT RT
Calkina, 3010	RAARTNERS	1,639	CNR Penn Face Memory RT
Ser. 2007	PMFS	430	CNB Penn Face Memory RT
Veta-estimate	2 Studies	1,968	CNB Penn Face Memory RT
Calkins, 2010	PAARTNERS	1,538	CNS Peon Letter n-back RT
Calkins, 2010	PAARTNERS	1,536	CNS Perm Verbal Reasoning RT
alkins, 2010	PAARTNERS	1.538	CNS Penn Word Memory RT
Sur. 2007	PMFS	412	CNS Penn Word Memory RT
keta-extimate	2 Studies	1,950	CNB Penn Word Memory RT
alkins, 2010	PAARTNERS	1,538	CNB VOLT RT
lar. 2007	PMPS	397	CNB VOLT RT
ieta-estimate	2 Studies	1,935	CNB VOLT RT
ertisch 2010	NAMI	81	Stroop Color-Word
kertisch, 2010	NAM	50	Trail Making Test-A Percentile
usted, 2009	CAMH	82	Trail Making Tust-A Time
endoza-Q., 2009	CMHHC	225	Trail Making Test-A Time
lahn, 2007	COBS CVCR	269	Trail Making Test-A Time
ertisch, 2010	NAMI	85	Trail Making Test-A Time
leta-entimate	4 Studies	661	Trail Making Test-A Time
lendrze-Q. 2009	CMHHC	225	Trail Making Test-B - A Difference
enisch 2010	NAMI	53	Trail Making Test-B Percentile
unled, 2009	CAMH	82	Trail Making Test-B Time
hen, 2006	COMMO	121	Trail Making Test-B Time
landcasi-Q., 2000	CMHHC	225	Trail Making Test-B Time
lahn, 2007	GOBS CVCR	269	Trail Making Test-8 Time
ertisch. 2010	NAMI	.81	Trail Making Test-B Time
Wets-Automate	5 553848	//8	Irai Making Leat-la Time
Vendoza-Q., 2008	CMHHC	225	Trail Making Test-B-to-A Ratio
HII. 2013	8-SNIP	971	WAIS Digit Symbol Coding
Husted, 2009	CAMH	80	
3ahn, 2007	GOBS CVCR	269	WAIS Digit Symbol Coding
	NAMI		WAIS Digit Symbol Coding
Bertisch, 2010	NPHP	84. 259	WAIS Digit Symbol Coding
Tuulio-H., 2002			WAIS Digit Symbol Coding
Vieta-estimate	5 Studies	1,663	WAIS Digit Symbol Coding
Neta-estimate	9 Studies	2,947	Attention/Processing Speed Domain

0 10 20 30 40 50 60 70 80 00 100 % Variance Explained (Heritability)
Supplementary Figure 4 – Heritability of Attention/Processing Speed
Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability, for neuropsychological tests that fail within the
Attention/Processing Speed domain, based on (A) Non-Psychiatric Twins, (B) Non-Psychiatric Families, and (C) Schizophrenia Families, Pedgrees.

estimate (bold italic) is the sum of subject numbers across all independent cohorts in the piot (plain font), some of which are also included in the meta-estimate for one or more individual neuropsychological tests (bold font). For plotting purposes, the cohort name was truncated for Glahn et al. (GOBS / CVCR / MCM). <u>Abbreviations</u>: ANT = Amsterdam Neuropsychological Tasks; CNB = Computerized Neurocognitive Battery; CPT = Continuous Performance Test; DSB = Dureman-Salide Battery; CT = Decision Time; ETS = Education Treating San/dec, HFCC = Hawaii Family Study of Cognition; JOLO = Judgment of Line Orientation; MIT = Movement Time; PCET = Penn Continuous Exclusion Test; RT = Rescription; SMST = Sterriberg Memory Scanning Test; = Treal Making Test Part A; TMT-B = Treal Making Test Part B; VOLT = Visual Object Learning Test.

Reference	Cohort	N	Measure		
Fan. 2001	PUC	104	Attentional Network Test Alerting		
Fan. 2001	PUC	104	Attentional Network Test Conflict	and some	
Fan. 2001	PUC	104	Attentional Network Test Orienting		
Swegerman, 2016	NTH	1,632	CNB Pann CPT Hta	1.00	
Knemen, 2011b	VETBA	1,228	CPT-AX d-prime		
Kownesi, 2011b	VETBA	1.228	CPT-AX False Alartis		
Kremen, 2011b	VETSA	1,226	CPT-AX Non-corriext Errors RT		
Knemen, 20116	VETSA.	1,228	CPT-AX Omission Errors	1.00	
Neubauer, 2000	GOBAT	600	PLMT RT Ofference NI - PI		
Neubauer, 2000	GOSAT	600	PLMT RT Name Identity		
Neubauer, 2000	COSAT	600	PLMT RT Physical Identity		
Meta-estimate	4 Studies	3,564	Attention/Vigilance Domain		

B. Non-Psychiatric Families

Reference	Cohort	N	Measure
Chen. 2009	CONVD	157	CPT-AX Acountry
Chen. 2009	CONIND	157	CPT-Degraded Stimulus Accuracy
Chen. 2009	COMMD	157	CPT-IP 4-item d-prime
Knowles, 2014	GOBS	1,259	CPT-IP False Alarris
Knowles, 2014	COBS	1,259	CPT-IP Hts
Meta-estimate	2 Studies	1,428	Attention/Vigilance Domain

C. Schizophrenia Families

Reference	Cohort	N	Measure	
Gur, 2007 .	PMF8	419	CNS Perm CPT Hits	•
Chen, 1998	MP88	270	CPT-19 d-prime	
Cheri, 2009	COMMD	121	CPT-AX Accuracy	
Chan, 2009	CONMD	121	CPT-Degraded Stimulus Accuracy	•
Greenwood, 2013	C0G8	881	CPT-Degraded Stimulus d-prime	
Chen. 1996	MPSS	270	CPT-Degraded Stimulus d-prime	
Mota-astimate	2 Studies	1,151	CPT-Degraded Stimulus d-prime	
Ohen, 2009	CONND	121	CPT-IP 4-tem d-prime	
Olahn: 2007	GOBS / CVCR	269	CPT-IP a-prime	
Glahn, 2007	GOBS / CVCR	209	CPT-IP bela	
Glahn, 2014	GOBS	1,006	CPT-IP Hits	the second s
Meta-estimate	8 Studies	2,566	Attention/Vigilance Domain	
				0 10 20 30 40 50 60 70 80 90 100
				% Variance Explained (Heritability)

Supplementary Figure 5 – Heritability of Attention/Vigilance Formit plot of individual heritability estimates included in meta-analysis, and meta-analysis and meta-analysis and meta-analysis and meta-analysis and meta-analysis. For Attention/Vigilance, based on (A) Non-Psychiatric Termines (B) Non-Psychiatric Termines (C) Schizophrenia Families/Pedgrees. For Non-Psychiatric termines, and (C) Schizophrenia Families/Pedgrees. For Non-Psychiatric termines and Non-Psychiatric families/Pedgrees. For Non-Psychiatric termines and Non-Psychiatric families/Pedgrees. For Non-Psychiatric termines and Non-Psychiatric families/Pedgrees. Termines/Pedgrees. Termines/Pedgrees. Termines/Pedgrees. Termines/Pedgrees. Heritability of Attention/Vigilance (S) Schizophrenia Families/Pedgrees. Termines/Pedgrees. Heritability of Attention (S) Schizophrenia Families/Pedgrees. Termines/Pedgrees. Heritability (S) Schizophrenia Families/Pedgrees. Heritability (S) Schizophree

	Cohort	N	Measure
Audesimaa, 2014	VETSA	454 488	AFOT Arithmetic Caluttan Delevad Matching to Essentia
Reves, 2013 Seves, 2013	HATS	458	CANTAB Delayed Matching to Sample CANTAB Spatial Span
iteves, 2013	HATS	488	CANTAB Spatial Working Memory Errors
Ausgeman, 2016	NTR	1 612	CNB Penn Letter n-back Accuracy
an Loeuwon, 2009b	NTR	558	Carsi Block Tapping
khnson 2007b	MISTRA	252	ETS Subtraction & Multiplication
vido, 2001	KTP	296	Ryothe NK15 Spatial WM Executive
vido, 2001	KTP	290	Hyodai NX15 Spatal WM Storage
vido, 2001	KTP	296	Ryodai NX15 Verbal WM Executive
vado, 2001	KTP	226	Kyodai NK15 Verbai WM Storage
Vernen, 2011a	VETR	632	ODRT Acouracy
Cremen, 2011a	VETR	632	ODRT Errori
Vemen, 20075	VETR	678	Reading span
lansel, 2005	MAPS	1.098	SDRT Accuracy
Cernen, 2011a	VETR	632	SDRT Acturacy
Aeta-estimate	2 Studies	1,738	SORT Accuracy
Greeneen, 201 ta	VETR	632	SDRT Errors
aciento, 2004	MAPS	1.086	SDRT Initiation Time
sciano, 2004	MAPS	1.085	SDRT MT
2004	MAPS	1.085	SURT WINENDS
eubauer, 2000	GOBAT	600	SMST increase RT with set size
leubauer, 2000	GOSAT	600	SMST Intercept
riedman, 2008	CLTS	1,164	Spatial 2-back Accuracy
iokland, 2011	MAPS	282	Spatial 2-back Accuracy
lota-estimate	2 Studies	1.445	Spatial 2-back Accuracy
an Loouwan, 2009b	NTR	558	
riedman, 20095	CLTS	1,164	Spatial 3-back Accuracy WAIS Arithmetic
neaman, 2008 Inel, 2013	CL18 INSERV	1,164	WAIS Arthmetic
Vainwright, 2004	MAPS	1,000	WAIS Arithmetic
lahnson, 2007b	MISTRA	252	WAIS Arithmetic
lijsdijik, 2002 Tambs, 1984	NTR OTSN	388	WAIS Arithmetic WAIS Arithmetic
Antos, 1964 Anto-estimate	6 Studies	3.028	WAIS Arithmetic
Contract of the second s	14 B 44 B 44 B 4		The set of the set of the set of the set.
landagopal, 2010	FSTR	76	WAIS Digit Span Backward
an Leeuwen, 2009b	NTR	558	WAIS Digit Span Backward
.ee, 2012a	OATS	-430	WAIS Digit Span Backward
inhel, 2000a	BATBA	584	WAIS Digit Span Backward
Panizzon, 2014	VETSA	1,222	WAIS Digit Span Backward
Arta-estimate	5 Studies	2,870	WAIS Digit Span Backward
ohnson, 2007b	MISTRA	252	WAIS Digit Span Forward
an Leeuwen, 20095	NTR	558	WAIS Digt Span Forward
inkel, 2000a	BATSA	584	WAIS Digit Span Forward
land, 2006	5782	1,102	WAIS Digit Span Forward
verren, 20075	VETR	678	WAIS Digit Span Forward
Vanizzon, 2014	VETSA	1,222	WAIS Digit Span Forward
fota-estimate	6 Studies	4,396	WAIS Digit Span Forward
riedman, 2008	CLTS	1,164	WAIS Digit Span Forward + Backward
loGue, 2001	LSADT	806	WAIS Digit Span Forward + Backward
ohnaon, 2007b	MISTRA	252	VAIS Digt Span Forward + Backward
inkel, 1995b	MTSADA	382	WAIS Digit Span Forward + Backward
Njedijk, 2002	NTR	388	WAIS Digit Span Foneard + Backward
ambs, 1984	OTBN	160	WAIS Digit Span Forward + Beckward
QJ, 2015	OTR	768	WAIS Digit Span Forward + Backward
tell, 1996	UPTS	220	WAIS Digit Span Forward + Backward
Acta autimate	A Shieles	4.1.68	WAR Bigit Span Farmand + Baskward
Soldberg, 2013	MTS/UOB	528	WAIS Letter-Number Sequencing
Panizzon, 2014	VETSA	1,222	WAIS Letter-Number Sequencing
Auta-estimate	2 Studies	1,750	WAIS Letter-Number Sequencing
riedman, 2008	CLTS	1,164	WAIS Working Memory Index
hathuma, 2003	NTR	844	WAIS Working Memory Index
ambs, 1984	OTSN	160	WAIS Working Memory Index
	3 Studies	2,165	WAIS Working Memory Index
Anta-estimate			
Aeta-estimate Aeta-estimate	20 Studies	11,223	Working Memory Domain

B. Non-Psychiatric Families

Reference	Cohort	N	Measure
Knowles, 2014	COBS	1,269	SDRT Accuracy
Chen, 2009	COMMD	157	Spatial 2-back Accuracy
Knowles, 2014	GOBS	1,269	WAIS Digit Span Backward
Matteini, 2010	LLFS	3,224	WAIS Digit Span Backward
Mota-estimate	2 Studies	4,493	WAIS Digit Span Backward
Knowles, 2014	GOBS	1,268	WAIS Digit Span Forward
Matteini, 2010	LLFS	3,224	WAIS Digit Span Forward
Meta-estimate	2 Studies	4,493	WAIS Digit Span Forward
Chen, 2009	COMMD	157	WAIS Digit Span Forward + Backward
Chen, 2009	COMMD	167	WAIS Letter-Number Sequencing
Knowles, 2014	GOBS	1,259	WAIS Letter-Number Sequencing
Meta-estimate	2 Studies	1,426	WAIS Letter-Number Sequencing
Chen, 2009	COMMD	157	WMS Spatial Span
Meta-estimate	3 Studies	4,650	Working Memory Domain

C. Schizophrenia Families

Reference	Cohort	N	Measure	
HII, 2013	B-SNIP	971	BACS Digit Sequencing	
Allener, 2013	PAARTNERS	1,606	CNB Penn Letter n-back Accuracy	
Glahn, 2007	GOBS / CVCR	269	SDRT Accuracy	
Chen, 2009	COMMD	121	Spatial 2-back Accuracy	
Slahn, 2007	GOBS / CVCR	269	WAIS Digit Span Backward	•
Bartisch, 2010	NAMI	85	WAIS Digit Span Backward	•
Tuulio-H., 2002	NPHIE	262	WAIS Digit Span Backward	
Meta-estimate	3 Studies	616	WAIS Digit Span Backward	
Slahn, 2007	GOBS / CVCR	269	WAIS Digit Span Forward	
Bartisch, 2010	NAMI	85	WAIS Digit Span Forward	•
Tuulio-H., 2002	NPHIE	262	WAIS Digit Span Forward	
Weta-estimate	3 Studies	616	WAIS Digit Span Forward	
Husted, 2009	CAMH	82	WAIS Digit Span Forward + Backward	
Chen, 2009	COMMD	121	WAIS Digit Span Forward + Backward	
Bertisch, 2010	NAMI	85	WAIS Digit Span Forward + Backward	•
Weta-estimate	3 Studies	288	WAIS Digit Span Forward + Backward	
Chen, 2009	COMMD	121	WAIS Letter-Number Sequencing	
Greenwood, 2013	COGS	951	WAIS Letter-Number Sequencing	
Stahn, 2014	GOBS	1,606	WAIS Letter-Number Sequencing	
Partiech, 2010	NAMI	72	WAIS Letter-Number Sequencing	1
Nota-estimate	4 Studies	2,750	WAIS Letter-Number Sequencing	
Cher, 2009	COMMD	121	WMS Spatial Span	
Aukas, 2008	UMCU	180	WMS Spetial Span	
Weta-estimate	2 Studies	301	WMS Spatial Span	
Tuulio-H., 2002	NPHIF	201	WMS Visual Span Backward	
Tuulio-H., 2002	NPHIE	261	WMS Visual Span Forward	
Bertisch, 2010	NAMI	86	WRAT Arithmetic	
Wets-estimate	10 Studies	6,131	Working Memory Domain	
			l	0 10 20 30 40 50 60 70 80 90
				% Variance Explained (Heritability)

Variance Explained (Heritability
 Supplementary Figure 5 – Heritability of Working Memory)
 Forest plot of individual heritability estimates included in meta-analysis, and meta-analysis (Constraints)
 Forest plot of individual heritability estimates included in meta-analysis, and meta-analysis
 Supplementary Figure 5 – Heritability of Working Memory
 Forest plot of individual heritability estimates
 Individual heritability estimates
 Individual heritability (Constraints)
 Forest plot of individual heritability for Working Memory,
 based on (A) Non Psychiatric Trains, (B) Non-Psychiatric Families, Podgress,
 Some of which are also induvidual in the pixel (plot families) in the second Nandapopal et al. (2010) who used Educational Testing Service (ETS) Digit Span,
 The subject number of the overal domain estimate (boil failc) is the sum of subject numbers across al independent cohorts in the pixel (plain fort),
 some of which are also induvidual in the meta-assimate for core or more individual neuropsychological tests (boil fort). For pixeling purposes, the cohort
 name was funcated for Glahn et al. (COBS / CVCR / MCM).
 Alternations: CAB = Computerized Neurocognitive Battery, SDRT = Spatial Delayed Response Tesk; SMST =
 Sternberg Memory Scanning Tesk; RT = Reaction Time; WRAT = Wide Range Achievement Test.

Reference	Cohort	N	Measure
Volk, 2008	MOAFTS	190	15-Word List Learning Free Recal
Volk, 2006	MOAFTS	190	30-Word List Learning Cued Recall City
Valk, 2005	MOAFTS	190	30-Word List Learning Free Recall City
Johnson, 2007b	MISTRA	252	CAB Meaningful Memory
Swageman, 2016	NTR	1,632	CNB Penn Word Memory DR Accuracy
Swagerman, 2016	NTR	1,632	CNB Penn Word Memory IR Accuracy
Knaman, 2014	VETRA	1,208	CVLT Long Dolay Free Recel
Kremen, 2014	VETSA	1,228	CVI.T Short Delay Free Recall
Hoekstra, 2009	NTB	556	CVLT Trials 1-5 Sem
Panizzon, 2011	VET8A.	1,148	CVLT Trials 1-5 Sum
Meta-estimate	2 Studies	1,704	CVLT Trials 1-5 Sum
Nandagopal, 2010	FSTR	76	ETS Paired Associate Memory DR
McArde, 2009	NASTR	12,880	TICS Word List Learning IR + DR
Glubilei, 2008	ITR	186	WMS Logical Memory DR
Finkal, 1993	MISADA	300	WMS Logical Memory DR
Hall, 1996	UPTS	220	WMS Logical Memory DR
Infomon, £3/14	VLID0	1,009	YENU LOGIDELMOTORY ULL
Meta-extinute	4 Studies	1,934	WMS Logical Memory DR
Finkel, 1998a	MTBADA.	682	WMS Logical Memory IR
Krement, 2014	VETSA	1,228	WMS Logical Memory IR.
Meta-estimate	2 Studies	1,910	WMS Logical Memory IR
Finitel, 1998a	MTSADA	682	Word Recall from Line Drawings
Meta-estimate	9 Studies	16,845	Verbal Memory Domain

20 30 40 50 60 70 80 00 % Variance Explained (Heritability) 10

B. Non-Psychiatric Families

Reference	Cohort	N	Measure
Mattern, 2010	LLFB	3,224	CERAD Word List Memory DR
Matteini, 2010	LLF8	3.224	CERAD Word List Memory IR
Knowles, 2014	GOBS	1,209	CVLT Long Delay Free Recal
Glahn, 2013	COBS	1,129	CVLT Recognition
Knowles, 2014	GOBS	1,269	CVLT Semantic Clustering
Chen. 2008	CONNO	157	CVLT Trials 1-5 Sum
Sleepers, 2007	ERF	780	CVLT Trials 1-6 Sum
Kitowies, 2014	0089	1.209	CNLT Trials 1-5 Burn
Meta-autimate	3 Studies	2,704	CVLT Trials 1-5 Surn
Steepers, 2007	ERF	780	RAVETOR
Sleepors, 2007	ERF	780	RAVLT Recognition
Chen, 2009	COMMD	157	WMS Family Pictures IR
Chen. 2009	CONMO	157	WMS Logical Memory IR
Luciano, 2010	SFHS	6,118	WMS Logical Memory IR + DR
Greenwood, 2011	CVCR	253	Word List Learning Recognition
Meta-estimate	6 Stockes	11,765	Verbal Memory Domain

C. Schizophrenia Families

	Cohort	N	Measure	
Viener, 2013	PAARTNERS	1,606	CNB Penn Word Memory IR + DR	
iur, 2007	PMFS	412	CNS Penn Word Memory IR + DR	•
Aota-estimate	2 Studies	2,018	CNB Penn Word Memory IR + DR	
Tuulio-H., 2002	NPHIE	264	CVLT intrusions	
Tuulio-H., 2002	NPHIF	264	CVLT Learning Strategy Primacy	
Tuulio-H., 2002	NPHIE	264	CVLT Learning Strategy Recency	
Slahn, 2007	GOBS / CVCR	269	CVLT Long Delay Free Recall	
Bertisch, 2010	NAMI	86	CVLT Long Delay Free Recall	
Nota-estimate	2 Studies	355	CVLT Long Delay Free Recall	
fuulio-H., 2002	NPHIE	264	CVLT Perseverations	· • · · · · · · · · · · · · · · · · · ·
Glahn, 2007	GOBS / CYCR	209	GVLT Reception	
Bartisch, 2010	NAMI	86	CVLT Recognition	
Tuulio-H., 2002	NPHIE	264	CVLT Recognition	
Nota-estimate	3 Studies	619	CVLT Recognition	
Slahn, 2007	GOBS / CVCR	269	CVLT Semantic Clustering	
Tuulio-H., 2002	NPHIF	264	CVLT Semantic Clustering	
Weta-estimate	2 Studies	533	CVLT Semantic Clustering	
Bartisch, 2010	NAMI	86	CVLT Short Delay Free Recall	
HII. 2013	B-SNIP	971	CVLT Trials 1-5 Sum	
Husted, 2009	CAMH	80	CVLT Trials 1-5 Sum	
Chen, 2009	COMMD	121	CVLT Trials 1-6 Sum	
Greenwood, 2013	COGS	949	CVLT Trials 1-5 Sum	
Glahn, 2007	GOBS / CVCR	269	CVLT Trials 1-5 Sum	
Bertisch, 2010	NAMI	86	CVLT Trials 1-5 Sum	
fuulio-H., 2002	NPHIF	264	CVLT Trials 1-5 Sum	
Vieta-estimate	7 Studies	2,740	CVLT Trials 1-5 Sum	
Chen, 2009	COMMD	121	WMS Family Pictures IR	
448360, 2009	CAMH	80	WMS Logical Memory DR	
Husbed, 2009	CAMH	80	WMS Logical Memory IR	
Chen, 2009	COMMD	121	WMS Logical Memory IR	
Weta-estimate	2 Studies	201	WMS Logical Memory IR	
Sertisch, 2010	NAMI	84	WMS Verbal Paired Associates DR	
Deathershy (2014)	NAMI	84	WMS Verbal Paired Associates IR	
Bertisch, 2010	9 Studies	4,757	Verbal Memory Domain	

Variance Explained (Heritability of Verbal Learning and Memory
 Forest pict of individual heritability estimates included in meta-analysis, and meta-analysis, and meta-analysis, and meta-analysis, and meta-analysis, and meta-analysis, and meta-analysis and meta-analysis and meta-analysis and meta-analysis and meta-analysis and meta-analysis and meta-analysis. Pedgrees. The subject number of the overall domain estimate (bid itabil) is the sum of subject numbers across all independent cohorts in the pict (plain fort), some of which are also included in the meta-analysis and (CVLT Trias 1-5 Sum was obtained from the RAVLT for Husbed et al., 2009 and from the BACS List Learning for Hill et al., 2013. Abbreviators RACS = Brief Assessment of Cognition in Schlizophrenic, CNLT = Celifornia Verbal Learning Test.

Reference	Cohort	N	Measure
Johnson, 2007b	MISTRA	252	CAB Associative Memory
Steves, 2013	HATS	488	CANTAB Paired Associates Lea
Sleves, 2013	HATS	488	CANTAB Pattern Recognition M
Finkel, 2000a	SATSA.	584	CAP Names & Faces DR
Finkel, 2000a	A8T8A	584	CAP Names & Faces IR
Swagerman, 2016	NTR	1,632	CNB Penn Face Memory DR Ac
Swagerman, 2016	NTR	1,632	CNB Penn Face Memory IR Acc
Swagerman, 2016	NTR	1,632	CNB VOLT DR Accuracy
Swagerman, 2016	NTR	1,632	CNB VOLT IR Acouracy
Johnson, 2007b	MISTRA	252	HFSC Picture Memory DR
Johnson, 2007b	MISTRA	262	HF8C Picture Memory IR
Finkel, 2004	SATSA.	1,280	Thurstone Picture Memory
Read, 2006	STR	1,038	Thurstone Picture Memory
Mota-estimate	2 Studies	2,316	Thurstone Picture Nemory
Hall, 1996	UPTS	220	WMS Visual Reproduction DR
Kremen, 2014	VETBA.	1,228	WMS Visual Reproduction DR
Meta-estimate	2 Studies	1,448	WMS Visual Reproduction DR
Finkel, 1998a	MTSADA.	682	WMS Visual Reproduction IR.
Kremen, 2014	VETSA.	1,228	WMS Visual Reproduction IR
Mota-estimate	2 Studies	1,910	WMS Visual Reproduction IR
Meta-estimate	8 Studies	6,354	Non-Verbal Memory Domain

B. Non-Psychiatric Families

Reference Glahn, 2013 Measure CNS Penn Pace Memory DR. CNS Penn Pace Memory IR Digit Symbol Recall WAIS Digit Symbol Recall Non-Verbal Memory Doreain Cohort GOBS GOBS N 1,129 1,269 ٠ Knowles, 2014 Knowles, 2014 Glahn, 2013 . GOBS 1,269 . GOBS 1,129 • Meta-estimate f Studies 10 20 30 40 50 80 70 80 90 100 % Variance Explained (Heritability)

ō

C. Schizophrenia Families

Supplementary Figure 8 – Heritability of Non-Verbal Learning and Memory
Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Non-Verbal Learning and Memory
Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Non-Verbal Learning and Memory
Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Non-Verbal Learning and Memory
Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Non-Verbal Learning and Memory
Forest plot of the sup of subject numbers across all independent cohorts in the plot (plain ford), some of which are also included in the meta-analysis estimates the plot (plain ford), some of which are also included in the meta-analysis estimates and the plot (plain ford), some of which are also included in the meta-analysis estimates and the plot (plain ford), some of which are also included in the meta-analysis estimates and the sup of subject numbers across all independent ford).

MCM). Abbreviations: CAB = Comprehensive Ability Battery; CANTAB = Cambridge Neuropsychological Test Automated Battery; CAP = Colorado Adoption Project; CNB = Computerized Neurocognitive Battery; DR = Deleved Recall; IR = Immediate Recall; HFSC = Heweil Family Study of Cognition; VOLT = Visual Object Learning Test.

uckaimaa, 2014 anizoon, 20014 ahnaon, 2001b ahnaon, 2001b	VETSA VETSA MISTRA MISTRA MISTRA	454 1,222 252 252	APOT Verbal ability APOT Vocabulary CAS Inductive Reasoning	
shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2007b shnaon, 2016 inkel, 2008b wal, 2008 wal, 2008 wal, 2008	MISTRA MISTRA MISTRA	252		
ihrson, 2907b ihrson, 2007b ihrson, 2007b ihrson, 2007b ihrson, 2007b asgerman, 2016 nied, 2008a eest, 2008 eest, 2008 bia-estimate suchard, 1980b	MISTRA			
hinson, 2007b hinson, 2007b hinson, 2007b hinson, 2007b asgerman, 2018 nicel, 2008 cell, 2008 do-estimate suchard, 1980b	MISTNA			
itneon, 2007b shneon, 2007b shneon, 2007b wagerman, 2018 rikel, 2008b eval, 2008 tela-estimate ouchard, 1980b			CAB Proverbs	
hnaon, 2007b Innson, 2007b eagerman, 2016 Inkel, 2009e eest, 2009 eest, 2009		252	CAB Speed of Closure	The second se
shrison, 2007b exgerman, 2016 inkel, 2000a exal, 2006 leta-estimate ouchard, 1990b	WHO THAT	252	CAB Spelling	
wagerman, 2016 inkel, 2000a wwi, 2000 leta-estimate ouchard, 1990b	MISTRA	252	GAB Vocabulary	
inkel, 2000a eval, 2006 leta-estimate ouchard, 1990b	MISTRA	252	CAB Word Fluency	
inkel, 2000a eval, 2006 leta-estimate ouchard, 1990b	NTR	1.632	CNS Penn Verbal Reasoning Accuracy	
eest, 2006 leta-estimate ouchard, 1990b	SATSA	584	DSB Synotems	
leta-estimate ouchard, 1990b	ate	1,140	D38 Synutrees	
ouchard, 1990b	2 Studies	1,730	DSB Synonyms	
oucharo, 19900	MISTRA	340	ETS Things	
	MISTRA		ETa Inngs	
		252	ETS Word Beginnings & Endings	
stneon, 2005	MISTRA	158	HFSC Pedigrees	
eubauer, 2000	GOBAT	600	LPS Closure	•
eubauer, 2000	GOSAT	000	LPS Vocabulary1	
eubauer, 2000	GOBAT	600	LPS Vocabulary2	
eubauer, 2000	GOSAT	600	LPS Word Flaency	
ratko, 2010	UOZC	296	MFBT Vocabulary	
pramel, 2015	TEDS	9,542	MILHII Vocabulary Scale	
shrson, 2005	MISTRA	158	MISTRA Reading Comprehension	
inneon, 2005	MISTRA	156	MISTRA Speling	
	TwinsUK	556	NART Reading	
nger, 2006			revers modeling	
oaver, 2013	NLGAH	4,174	Peebedy Notire Vecebulary Test	
kubrilei, 2008	ITR	186	Phonemic Fluency	· · · · · · · · · · · · · · · · · · ·
wan, 2002	NHLBI	316	Phonemic Fluency	
oekstra, 2009	NTR	558	Phonemic Fluency	
e, 2012a	OATS	430	Phonemic Fluency	
ratiko, 2010	UOZC	296	Phonemic Fluency	
sit. 1996	UPTS	220	Phonemic Fluency	
ote-estimate	6 Studies	2.005	Phonemic Plasney	
phrson 2007b	MISTRA	252	PMA Vocabulary	
	MAPE	780	QCST Create & Present	
anwright, 2005b			ULST CRIME & Present	
kubilei, 2008	ITR	180	Semantic Fluency	
cGue, 2001	LEADT	806	Semantic Fluency	
oekstra, 2009	NTR	550	Semantic Fluency	
asilopoulos, 2012a	VETBA.	1,238	Semantic Fluency	
beig-rentfreigte	4 Bischen	3,798	Permantis Plannsy	
arnell, 2015	MAPS	900	Sentence Comprehension	
phreson. 2006	MISTRA	158	Slasson Wortt Recognition	
lubilei, 2008	ITR	156	Token Test	
riedman, 2008	CLTS	1,164	WAIS Comprehension	•
shnaph. 2007b	MISTRA	252	WAIS Comprehension	
	NTR			
ijsdijk, 2002		388	WAIS Comprehension	•
ambe, 1984	OTSN	160	WAIS Comprehension	
lota-estimate	4 Studies	1,964	WAIS Comprehension	
riedman, 2008	CLTS	1,164	WAIS Information	
ainwright, 2004	MAPS.	1.000	WAIS Information	
shnapri, 2007b	MISTRA	252	WAIS Information	
rikel, 1995b	MTSADA	382	WAIS Information	
judijk, 2002	NTR	380	WAIS Information	
ambs, 1984	OTSN	160	WONS information	
nket, 2004	SATSA	1,295	WAIS information	
eta-estimate	7 Studies	4.625	WAIS Information	
riedman, 2008	CLTS	1,164	WAIS Similarities	•
meson, 2007b	MISTRA	252	WAIS Similarities	
jsdijk, 2002	NTR	386	WAIS Similarities	
ambs, 1984	OTBN	160	WAIS Similarities	
eta-estimate	4 Studies	1,964	WAIS Similarities	
iedman, 2008	CLTB	1.164	WAIS Verbal Comprehension Index	
osthuma 2003	NTR	844	WWIS Verbal Comprehension Index	
anto, 1984	OTSN	160	WAIS Verbal Comprehension Index	•
ota-estimate	3 Studies	2,168		•
			WAIS Verbal Comprehension Index	
iedman, 2008	CLTB	1,164	WAIS Vocabulary	•
ainwright, 2004	MAPS	1,000	WAIS Vocabelary	
ihrson. 2007b	MISTRA	252	WAIS Vocabulary WAIS Vocabulary	
38,2006	MOAFTS	190	WARS Vocabulary	
in den Berg, 2004	NTR	632	WAIS Vacabulary	
ambs, 1984	OTSN	160	WAIS Vocabelary	
sl. 1995	UPTS	220	WARS Vacabelary	
silopoulos, 2012a	VETSA	1,238	WAIS Vocabelary	
eta-estimate	8 Studies	4.055	WAIS Vocabulary	
		684		
nkel, 2000e	SATSA		WIT-III Analogies	•
remen, 2005	VETR	992	WRAT Reading	
ohnson, 2005	MISTRA	158	WRMT Word Identification	
leta-estimate	27 Studies	24,530	Verbal Ability Domain	the second se
				0 10 20 30 40 50 60 70 80 90

.

B. Non-Psychiatric Families

Reference	Cohort	N	Measure
Luciano, 2010	SFHS	6,118	Mill Hill Vocabulary Scale
Knowles, 2014	GOBS	1,269	Phonemic Fluency
Chen, 2009	COMMD	157	Semantic + Phonemic Fluency
Greenwood, 2011	CVCR	253	Semantic + Phonemic Fluency
Luciano, 2010	8FH8	6,118	Semantic + Phonemic Fluency
Mota-estimate	3 Studies	6,528	Semantic + Phonemic Fluency
Sleegers, 2007	ERF	780	Semantic Fluency
Knowles, 2014	OOBS	1,260	Semantic Fluency
Moto-estimate	2 Studies	2,049	Semantic Fluency
Greenwood, 2011	CVCR	253	WAIS Similarities
Glahn, 2013	GOBS	1,129	WAIS Vocabulary
Meta-estimate	5 Studies	8,530	Verbal Ability Domain

C. Schizophrenia Families

Reference	Cohort	N	Measure
Bartisch, 2010	NAMI	83	Boston Naming Test
Wiener, 2013	PAARTNERS	1,606	CNB Penn Verbal Reasoning Accuracy
Bertisch, 2010	NAMI	85	Peabody Picture Vocabulary Test
Glahn, 2007	GOBS / CVCR	269	Phonemic Fluency
Bertisch, 2010	NAMI	84	Phonemic Fluency
Mota-estimate	2 Studies	353	Phonemic Fluency
Hil, 2013	B-SNIP	971	Semantic + Phonemic Fluency
Chen. 2009	COMP	121	Semantic + Phonemic Fluency
Meta-estimate	2 Studies	1,092	Semantic + Phonemic Fluency
Glahn, 2007	GOBS / CVCR	269	Semantic Fluency
Aukes, 2008	UMCU	180	Semantic Fluency
Meta-estimate	2 Studies	449	Semantic Fluency
HII, 2013	B-SNP	971	Token Test
Bartisch, 2010	NAMI	85	WAIS Information
Bertisch, 2010	NAMI	85	WAIS Similarities
Tuulio-H., 2002	NPHIF	263	WAIS Similarities
Mota-estimate	2 Studies	348	WAIS Similarities
Glahn, 2014	GOBS	1,606	WAIS Vocabulary
Bantoch, 2010	DOME	00	WHIG Vocabelary
Tuulio-H., 2002	NPHIF	264	WAIS Vocabelary
Meta-estimate	3 Studies	1,955	WAIS Vocabulary
HII, 2013	B-SNIP	971	WRAT Reading
Bartisch, 2010	NAMI	85	WRAT Reading
Meta-estimate	2 Studies	1,056	WRAT Reading
Bertisch, 2010	NAMI	86	WRAT Spelling
Meta-estimate	8 Studies	5,102	Verbal Ability Domain

Svariance Explained (Heritability)
 Supplementary Figure 3 – Heritability of Verbal Ability
 Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Verbal Ability based on (A) Non-Psychiatric
 Twins, (B) Non-Psychiatric Families, and (C) Schizophrenia Families/Pedgrees. The subject number of the overall domain estimate (biold lialic) is the
 sum of subject numbers across all independent cohorts in the plot (plain for Net), some of which are elso included in the meta-assimate for one or more
 individual neuropsychological tests (locid fort). For plotting purposes, the cohort name was truncated for Glahn et al. (0008 / CVCR / MCM).
 Abbrevisions: CAB = Comprehensive Ability Battery; CDB = Computeriate Battery; CBB = Durenan-Baide Battery; ETS = Educational
 Testing Service; LPS = Leistungsprüfsystem; NART = National Adult Reading Test; WRAT = Wide Range Achievement Test.

Reference	Cohort	N	Measure	-	1
anizzon, 2014	VETBA.	1,222	AFQT Box Folding		
oksimaa, 2014	VETSA	454	AFOT Spatial Processing	the second se	
uokaimaa, 2014	VETBA.	454	APOT Tool+Mechanical Reasoning		-
kubiles, 2008	ITR	186	BVRT Copying Drawings		-
ohraon, 2007b	MISTRA	252	CAB Flexibility of Closure		_
offeson, 2007b	MISTRA	252	CAB Mechanical Ability	-	-
lahneon, 2007b	MISTRA	252	CAB Spatial Ability		
wageman, 2016	NTR	1,632	CNB JOLO Accuracy		
Swagarman, 2016	NTR	1.632	CNS Penn Matrix Reasoning Accuracy		-
inkel, 2005a	SATSA	584			-
	MISTRA	252	DSB Figure Logic		
kahnaph, 2007b			ETS Card Rotations		-
Finkel, 2000a	BATSA	584	ETS Card Rotations		•
Bratiko, 2010	UOZC	298	ETS Card Rotations	- 2.	-
Mota-estimate	3 Studies	1,134	ETB Card Rotations		
Johnson, 2007b	MISTRA	252	ETS Cube Comparisons		-
Friedman, 2008	CLTS	1,164	ETS Hidden Patterns		
kitneon, 2007b	MISTRA	252	ETS Hidden Patterns		-
Nota-estimate	2 Studies	1,416	ETS Hidden Patterns		100
Inteson 2007h	MISTRA	262	FTR Paper Febring		
aratko, 2010	UOZC	298	ETS Surface Development		
Auskeimaa, 2010	FighTwin12	716	HESC Mental Rotation		
Supuki, 2011	KTP	638	HFBC Mental Rotation	-	
	MISTRA				
kitneen, 2007b		252	HESC Mental Rotation		
Aota-estimate	3 Studies	1,606	HFSC Mental Rotation		1.1
tall, 1996	UPTS	220	JOLO Acouracy	10000	•
leubauer, 2000	GOSAT	600	LPS Embedded Figures Test		
Nairwright, 2004	MAPS	1,000	MAB Spatial		
kihinson, 2007b	MISTRA	252	Minnesola Paper Form Board		-
hanizzon, 2014	VETSA	1,222	Thurstone Hidden Figures Test		
Friedman, 2008	CLTS	1,184	WAIS Block Design		
Johnson, 2007b	MISTRA	252	WAIS Block Design		
inkel, 1995b	MTSADA	382	WAIS Block Design		
lijschik, 2002	NTR	388	WAIS Block Design		
ambs, 1984	OTSN	160	WAIS Block Design		
Final, 2004	BATBA	1,280	WA'S Block Design		
	STR	1,250	WARS Block Design		
Read, 2006					-
4al, 1996	UPTS	220	WAIS Block Design		
Meta-estimate	8 Studies	5,056	WAIS Block Design		
Vasilopoulos, 2012a	VETSA	1,238	WAIS Matrix Reasoning		-
Friedman, 2008	CLTS	1,164	WAIS Object Assembly		
Nainwright, 2004	MAPS	1,000	WAIS Object Assembly		-
IOT/1607, 290/15	MISTRA	252	WARS Object Assembly	-	
tipelijk, 2002	NTR	388	WAIS Object Assembly	1000	-
ambs, 1984	OTSN	160	WAIS Object Assembly		1
Aota-estimate	5 Studies	2,964	WAIS Object Assembly		
riedman, 2008	CLTS	1,164	WAIS Perceptual Organization Index		
osthuma, 2003	NTR	844	WAIS Perceptual Organization Index		
lantos, 1984	OTSN	160	WAIS Perceptual Organization Index		
Acta-estimate	3 Studies	2,166	WAIS Perceptual Organization Index		
riedman, 2008	CLTS	2,166	WAIS Perceptual Organization Index WAIS Picture Attangement		
				•	
kihrson, 2007b	MISTRA	252	WAIS Picture Arrangement		-
Rijscija, 2002	NTR	200	WAIS Picture Anangement		
Tarrelas, 1984	OTSN	100	WAG Picture Assergement		
Nota-estimate	4 Studies	1,964	WAIS Picture Arrangement		•
Friedman, 2008	CLTS	1,164	WAIS Picture Completion	•	
Johnson, 2007b	MISTRA	252	WAIS Picture Completion		-
Bjorlijk, 2002	NTR	388	WAIS Picture Completion		-
	OTBN	160	WAIS Picture Completion		199
Tambs, 1984				100	
Tambs, 1984 Mota-estimate	4 Studies	1,964	WAIS Picture Completion		
	4 Studies 15 Studies	1,964	WAIS Picture Completion Visuospatial Ability Domain		

% Variance Explained (Heritability)

B. Non-Psychiatric Families

Reference	Cohort	N	Measure
Smalley, 1989	UCLA	73	ETS Card Rotations
Smalley, 1989	UCLA	73	ETS Cube Comparisons
Smalley, 1989	UCLA	73	ETS Hidden Patterns
Smalley, 1980	UCLA	73	HFSC Mental Rotation
Smalley, 1080	UCLA	73	LPS Embedded Figures Test
Chen, 2009	CONMD	157	WAIS Matrix Reasoning
Glahn, 2013	GOBS	1,129	WAIS Matrix Reasoning
Meta-estimate	2 Studies	1,286	WAIS Matrix Reasoning
Meta-estimate	2 Studies	1,359	Visuospatial Ability Domain

C. Schizophrenia Families

Reference	Cohort	N	Measure
Greenwood, 2013	CO38	837	CNB JOLO Accuracy
Wiener, 2013	PAARTNERS	1,606	CNB JOLO Accuracy
Gur. 2007	PMFS	419	CNB JOLO Accuracy
Meta-estimate	a-estimate 3 Studies		CNB JOLO Accuracy
Bartisch, 2010	NAMI	69	WAIS Block Design
Tualio-H. 2002	NPHIF	245	WAIS Block Design
Mota-estimate	2 Studies	314	WAIS Block Design
Chen, 2009	COMMD	121	WAIS Matrix Reasoning
Glahn, 2014	GOBS	1,606	WAIS Matrix Reasoning
Berlisch, 2010	NAMI	86	WAIS Matrix Reasoning
Mota-estimate	3 Studies	1,813	WAIS Matrix Reasoning
Meta-estimate	7 Studies	Visuospatial Ability Domain	

Supplementary Figure 10 – Heritability of Visuospatial Ability
Forest pict of individual heritability estimates included in meta-analysis, and meta-analysis analysis and analysis analysis and analysis and analysis analysis and analysis analysis analysis and analysis analys

Reference	Cohort	N	Measure	
Swagerman, 2016	NTR	1,632	CNB PCET Acouracy	_
Posthuma, 2002b	NTR	472	Flanker % Errors Congruent Stimuli	
Friedman, 2008	CLTS	1,154	Go-No-Go Stop Signal (No Go) RT	
Hansell, 2015	MAPS	900	Latin Square task	
Neubauer, 2000	GOSAT	600	LPS Reasoning	
Hansell, 2015	MAPS	900	N-term task	-
Kremen, 2009	VETR	690	Tower of Landon 1 Efficiency	
Cremen, 2009	VETR	690	Tower of Landon 1 RT	
Vernen, 2009	VETR	690	Tower of London 2 Efficiency	
Cramen, 2009	VETR	690	Tower of London 2 Number Attempts	
Kremen, 2009	VETR	690	Tower of London 2 Planning Time	
Gemen, 2009	VETR	690	Tower of London 2 RT	
Anokhin, 2003	MTR	166	WCST Failure to Maintain Set	
Sodinez, 2012	CLTS	792	WCST Non-perseverative Errors	-
Godinez, 2012	CLTS	792	WCST Perseverative Errors	-
Anokhin, 2003	MTR	166	WCST Perseverative Errors	
Weta-estimate	2 Studies	958	WCST Perseverative Errors	
Anokhin, 2003	MTR	166	WCST Perseverative Errors %	
Anokhin, 2003	MTR	166	WCST Perseverative Responses	
Hall, 1996	UPTS	220	WCST Perseverative Responses	
Nota-estimate	2 Studies	386	WCST Perseverative Responses	- T
Anokhin, 2003	MTR	166	WCST Perseverative Responses %	
Anokhin, 2003	MTR	166	WCST Total Errors	
Anokhin, 2003	MTR	166	WCST Total Errors %	
Godinez, 2012	CLTS	792	WCST Trials to 1st Category	
Anokhin, 2003	MTR	166	WCST Trials to 1st Category	
Weta-estimate	2 Studies	958	WCST Trials to 1st Category	
Neta-estimate	7 Studies	4,513	Executive Function Domain	

B. Non-Psychiatric Families

Reference	Cohort	N	Measure	
Knowles, 2014	GOBS	1,269	CNS PCET Acouracy	
Salimberti, 2013	INSPE.	58	IGT Advantageous Deck Selection	
Chen, 2009	CONMD	157	WCST Perseverative Errors	
Galimberti, 2013	INSPE.	58	WCST Perseverative Errors %	
Meta-estimate	2 Studies	1,484	Executive Function Domain	

C. Schizophrenia Families

Reference	Cohort	N	Measure	
Sreenwood, 2013	CO38	888	CNB PCET Acouracy	
Allener, 2013	PAARTNERS	1,606	CNB PCET Acouracy	
Gur, 2007	PMFS	409	CNB PCET Acouracy	•
Nota-estimate	3 Studies	2,903	CNB PCET Accuracy	
3lahn, 2014	GOBS	1,606	CNB PCET Categories Achieved	•
48,2013	B-SNP	971	Tower of Landon	
Husted, 2009	CAMH	81	WCST Categories Completed	
in. 2013	MPSS / TSLS	2,300	WCST Categories Completed	
Veta-estimate	2 Studies	2,381	WCST Categories Completed	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lin, 2013	MPSS / TSLS	2,300	WCST Conceptual Level Responses	
in. 2013	MPS8/TSL8	2,300	WCST Failure to Maintain Set	
in, 2013	MPSS / TSLS	2,300	WCST Learning to Learn	
in, 2013	MP88 / T8L8	2,300	WCST Non-perseverative Errors	
lusted, 2009	CAMH	81	WCST Perseverative Errors	
Chen, 2009	CONMD	121	WCST Perseverative Errors	
.in, 2013	MPSS / TSLS	2,300	WCST Perseverative Errors	
Vota-estimate	3 Studies	2,502	WCST Perseverative Errors	
in. 2013	MPSS / TSLS	2,300	WCST Perseverative Responses	
in, 2013	MPSS / TSLS	2,300	WCST Total Errors	
in. 2013	MPSS / TSLS	2,300	WCST Trials to 1st Category	
Meta-estimate	8 Studies	7,982	Executive Function Domain	
				0 10 20 30 40 50 60 70 80 90 1
				% Variance Explained (Heritability)

Supplementary Figure 11 – Heritability of Executive Function
 Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Executive Functioning based on (A) NonPsychiatric Twins, (B) Non-Psychiatric Families, and (C) Schizophrenia Families/Pedgrees. The subject number of the overall domain estimates (bid)
 Italic) is the sum of subject numbers across all independent cohrds in the pid (pident for the numbers across all independent cohrds in the pid (pident for the numbers across all independent cohrds in the pid (pident for the numbers across all independent cohrds in the pid (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across all independent cohrds in the pide (pident for the numbers across) (pident for the number across) (pident for the numbers across) (pident for the number across) (pident for the number for the number across) (pident for the number across) (

Reference	Cohort	N	Measure											
Swagerman, 2016	NTR	1,632	CNS Finger Tapping			-	-	-						
Swagerman, 2016	NTR	1,632	CNB Mouse Practice Task Accuracy # RT					-	•					
Hall, 1996	UPTS .	220	Grooved Pegboard Time Dominant Hand						-					
Meta-estimate	2 Studies	1,852	Motor Skills Domain	1		-	-	-	-					
				_	_	_	_	_	_	_	_	_	_	_
				ō	10	20	30	40	50	60	70	80	90	100
						% Va	rianc	e Ex	plain	ed (H	erita	bility	5	

C. Schizophrenia Families

Supplementary Figure 12 - Heritability of Motor Skills

Forest plot of individual heritability estimates included in meta-analysis, and meta-estimate of heritability for Motor Skills based on (A) Non-Peye Twins, (B) Non-Peychiatric Families, and (C) Schizophrenia Families/Pedignees. The subject number of the overall domain estimate (bold Italic) sum of subject numbers across all independent cohorts in the plot (plain font), some of which are also included in the meta-astimate for one or individual numeerschederbalt table (held from the plot (plain font), some of which are also included in the meta-astimate for one or individual numeerschederbalt table (held from the plot (plain font), some of which are also included in the meta-astimate for one or individual numeerschederbalt table (held from the plot (plain font), some of which are also included in the meta-astimate for one or individual numeerschederbalt table (held from the plot (plain font)). individual neuropsychological tests (bold font). <u>Abbreviations</u>: CNB = Computerized Neurocognitive Battery; P = Percentile; RT = Reaction Time.

A. Non-Psychiatric Twins

Reference	Cohort	N	Measure											
Swagerman, 2016	NTR	1,632	CNS Age Differentiation Accuracy				-							
Swagerman, 2016	NTR	1,632	CNB Emotion Intensity Discrimination Acc		-	<u> </u>	_							
Swagerman, 2016	NTR	1,632	CNB Emotion Recognition Accuracy		1	1	-							
Meta-estimate	1 Studies	1,632	Social Cognition Domain			•								
				ō	10	20	30	40	50	60	70	80	90	100
				~							Inrital			10

B. Non-Psychiatric Families

Reference	Cohort	N	Measure											
Knowles, 2014	GOBS	1,260	CNB Emotion Recognition Accuracy	-		-		-						
Mota-estimate	1 Studies	1,269	Social Cognition Domain											
				4	-	-	-	-	-	-	-	-	-	100
				0	10	20	30	40	50	60	70	80	90	100
						% Va	riane	e Exp	plain	od (H	lariitai	bility	5	

C. Schizophrenia Families

Reference	Cohort	N	Neasure	
Gur, 2007	PMPS	377	CNS Emotion Intensity Discrimination Acc	
Greenwood, 2013	CO38	896	CNB Emotion Recognition Accuracy	
Glahn, 2014	GOBS	1,606	CNB Emotion Recognition Accuracy	
Meta-estimate	2 Studies	2,502	CNB Emotion Recognition Accuracy	
Meta-estimate	2 Studies	2,879	Social Cognition Domain	
				0 10 20 30 40 50 80 70 80 90 10

Supplementary Figure 13 – Heritability of Social Cognition

Promet pict of individual heritative stimulates included in meta-analysis, and meta-analysis and meta-analysis and the subject number of the overall domain estimate (bid Psychiatric Terins; (B) Non-Psychiatric Families; and (c) Schizophrania Families/Pedigrees. The subject number of the overall domain estimate (bid italic) is the sum of subject numbers across all independent cohorts in the pict (plain font), some of which are also included in the meta-estimate for one or more individual neuropsychiatric dollar to the subject number of the overall domain estimate for one or more individual neuropsychic dollar bid. Abbreviations: CNB = Computerized Neurocognitive Battery

Supplementary References

Abdel-Rahim AR, Nagoshi CT and Vandenberg SG. Twin resemblances in cognitive abilities in an Egyptian sample. Behav Genet. 1990;20:33-43.

% Variance Explained (Heritability)

Alfimova M and Uvarova L. Cognitive peculiarities in relatives of schizophrenic and schizoaffective patients: Heritability and resting EEG-correlates. Int J Psychophysiol. 2003;49:201-216.

Ando J, Ono Y and Wright MJ. Genetic structure of spatial and verbal working memory. Behav Genet. 2001;31:615-624. Andreou P, Neale BM, Chen W, et al. Reaction time performance in ADHD: Improvement under fast-incentive condition and familial effects. Psychol Med. 2007;37:1703-1715.

Anokhin AP, Golosheykin S, Grant JD and Heath AC. Developmental and genetic influences on prefrontal function in adolescents: a longitudinal twin study of WCST performance. Neurosci Lett. 2010;472:119-122.

Anokhin AP, Heath AC and Ralano A. Genetic influences on frontal brain function: WCST performance in twins. Neuroreport. 2003;14:1975-1978.

Antila M, Partonen T, Kieseppa T, et al. Cognitive functioning of bipolar I patients and relatives from families with or without schizophrenia or schizoaffective disorder. *J Affect Disord*. 2009;116:70-79.

Antila M, Tuulio-Henriksson A, Kieseppa T, et al. Heritability of cognitive functions in families with bipolar disorder. *Am J Med Genet B Neuropsychiatr Genet.* 2007;144B:802-808.

Arden R, Trzaskowski M, Garfield V and Plomin R. Genes influence young children's human figure drawings and their association with intelligence a decade later. *Psychol Sci.* 2014:1-8. Asarnow RF and Betts IQ (1982). Apple program for the Span of Apprehension.

Asbury K, Wachs TD and Plomin R. Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. *Intelligence*. 2005;33:643-661.

Aukes MF, Alizadeh BZ, Sitskoorn MM, Kemner C, Ophoff RA and Kahn RS. Genetic overlap among intelligence and other candidate endophenotypes for schizophrenia. *Biol Psychiatry*. 2009;65:527-534.

Aukes MF, Alizadeh BZ, Sitskoorn MM, et al. Finding suitable phenotypes for genetic studies of schizophrenia: heritability and segregation analysis. *Biol Psychiatry*. 2008;64:128-136.

Austin SV and Hemsley DR. Genetic influences on measures of selective attention and speed: A twin study. *Behav Genet.* 1980;10:309-315. Baker LA, Vernon PA and Ho H-Z. The genetic correlation between intelligence and speed of information processing. *Behav Genet.* 1991;21:351-367.

Bartels M, Rietveld MJ, van Baal GC and Boomsma DI. Heritability of educational achievement in 12-year-olds and the overlap with cognitive ability. *Twin Res.* 2002;5:544-553.

Bartfai Å, Pedersen NL, Asarnow RF and Schalling D. Genetic factors for the span of apprehension test: A study of normal twins. *Psychiatry Res.* 1991;38:115-124.

Bayley N (1969). Manual for the Bayley scales of infant development. New York, NY, The Psychological Corporation. Beaver KM, Schwartz JA, Connolly EJ, Nedelec JL, Said Al-Ghamdi M and Nezar Kobeisy A. The genetic and environmental architecture to the stability of IQ: Results from two independent samples of kinship pairs. *Intelligence*. 2013;41:428-438. Bennett B, Fulker DW and DeFries JC. Familial resemblance for general cognitive ability in the Hawaii Family Study of Cognition. *Behav Genet*. 1985;15:401-406.

Benton AL and Hamsher Kd (1989). Multilingual Aphasia Examination. Iowa City, IA, AJA Associates. Benton AL, Hamsher Kd, Varney NR and Spreen O (1983). Contributions to neuropsychological assessment: A clinical manual. New York, NY, Oxfor University Press. Benyamin B, Wilson V, Whalley LJ, Visscher PM and Deary IJ. Large, consistent estimates of the heritability of cognitive ability in two entire populations of 11-year-old twins from Scottish mental surveys of 1932 and 1947. *Behav Genet.* 2005;35:525-534.

Bertisch H, Li D, Hoptman MJ and DeLisi LE. Heritability estimates for cognitive factors and brain white matter integrity as markers of schizophrenia. *Am J Med Genet B Neuropsychiatr Genet.* 2010;153B:885-894.

Betjemann RS, Phinney Johnson E, Barnard H, et al. Genetic covariation between brain volumes and IQ, reading performance, and processing speed. *Behav Genet.* 2010;40:135-145.

Bishop DV and Hayiou-Thomas ME. Heritability of specific language impairment depends on diagnostic criteria. *Genes Brain Behav.* 2008;7:365-372. Bishop EG, Cherny SS, Corley R, Plomin R, DeFries JC and Hewitt JK. Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. *Intelligence.* 2003;31:31 49.

Bleichrodt N, Drenth PJD, Zaal JN and Resing WCM (1984). Revisie Amsterdamse Kinder Intelligentie Test [Revised Amsterdam Child Intelligence Test]. Lisse, The Netherlands, Swets & Zeitlinger B.V. .

Blokland GAM, McMahon KL, Hoffman J, et al. Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. *Biol Psychol.* 2008;79:70-79.

Blokland GAM, McMahon KL, Thompson PM, Martin NG, de Zubicaray GI and Wright MJ. Heritability of working memory brain activation. J Neurosci. 2011;31:10882-10890.

Blokland GAM, Mosing MA, Verweij KJH and Medland SE (2013). Twin Studies and Behavior Genetics. The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis. T. D. Little. New York, NY, Oxford University Press.

Bohlken MM, Brouwer RM, Mandl RC, et al. Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. *Hum Brain Mapp.* 2014;35:2632-2642.

Borkowski JG, Benton AL and Spreen O. Word fluency and brain damage. Neuropsychologia. 1967;5:135-140.

Bouchard Jr. TJ. Do environmental similarities explain the similarity in intelligence of identical twins reared apart? *Intelligence*. 1983;7:175-184.

Bouchard TJ, Segal NL and Lykken DT. Genetic and environmental influences on special mental abilities in a sample of twins reared apart. Acta Genet Med Gemellol Twin Res. 1990;39:193-206.

Bratko D. Twin study of verbal and spatial abilities. Pers Indiv Diff. 1996;21:621-624.

Bratko D, Butkovic A and Chamorro-Premuzic T. The genetics of general knowledge: A twin study from Croatia. *Pers Indiv Diff.* 2010;48:403-407.

Brooks A, Fulker DW and DeFries JC. Reading performance and general cognitive ability: A multivariate genetic analysis of twin data. *Pers Indiv Diff.* 1990;11:141-146.

Brouwer RM, Hedman AM, van Haren NE, et al. Heritability of brain volume change and its relation to intelligence. *Neuroimage*. 2014a;100:676-683.

Brouwer RM, van Soelen IL, Swagerman SC, et al. Genetic associations between intelligence and cortical thickness emerge at the start of puberty. *Hum Brain Mapp.* 2014b;35:3760-3773.

Byrne B, Coventry WL, Olson RK, et al. A behaviour-genetic analysis of orthographic learning, spelling and decoding. J Res Read. 2008;31:8-21.

Byrne B, Coventry WL, Olson RK, et al. Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. *J Neurolinguistics.* 2009;22:219-236.

Byrne B, Coventry WL, Olson RK, et al. 'Teacher effects' in early literacy development: Evidence from a study of twins. J Educ Psychol. 2010;102:32-42.

Byrne B, Delaland C, Fielding-Barnsley R, et al. Longitudinal twin study of early reading development in three countries: Preliminary results. *Ann Dyslexia*. 2002;52:49-73.

Byrne B, Olson RK, Samuelsson S, et al. Genetic and environmental influences on early literacy. *J Res Read.* 2006;29:33-49. Byrne B, Wadsworth S, Boehme K, et al. Multivariate genetic analysis of learning and early reading development. *Sci Stud Read.* 2013;17:224-242.

Byrne B, Wadsworth S, Corley R, et al. Longitudinal twin study of early literacy development: Preschool and kindergarten phases. *Sci Stud Read.* 2005;9:219-235.

Calkins ME, Tepper P, Gur RC, et al. Project among African-Americans to explore risks for schizophrenia (PAARTNERS): Evidence for impairment and heritability of neurocognitive functioning in families of schizophrenia patients. *Am J Psychiatry.* 2010;167:459-472.

Calvin CM, Deary IJ, Webbink D, et al. Multivariate genetic analyses of cognition and academic achievement from two population samples of 174,000 and 166,000 school children. *Behav Genet.* 2012;42:699-710.

Campana A, Macciardi F, Gambini O and Scarone S. The Wisconsin Card Sorting Test (WCST) performance in normal subjects: A twin study. *Neuropsychobiology*. 1996;34:14-17.

Cannon TD, Huttunen MO, Lonnqvist J, et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet. 2000;67:369-382.

Cardon LR, Fulker DW, DeFries JC and Plomin R. Multivariate genetic analysis of specific cognitive abilities in the Colorado Adoption Project at age 7. *Intelligence*. 1992;16:383-400.

Carmelli D, Reed T and DeCarli C. A bivariate genetic analysis of cerebral white matter hyperintensities and cognitive performance in elderly male twins. *Neurobiol Aging.* 2002a;23:413-420.

Carmelli D, Swan GE, DeCarli C and Reed T. Quantitative genetic modeling of regional brain volumes and cognitive performance in older male twins. *Biol Psychol.* 2002b;61:139-155.

Chen LS, Rice TK, Thompson PA, Barch DM and Csernansky JG. Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. *Schizophr Res.* 2009;111:159-166.

Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH and Hwu HG. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. *Am J Psychiatry*. 1998;155:1214-1220.

Cherny SS, Cardon LR, Fulker DW and DeFries JC. Differential heritability across levels of cognitive ability. *Behav Genet.* 1992;22:153-162.

Cheung CH, Fazier-Wood AC, Asherson P, Rijsdijk F and Kuntsi J. Shared cognitive impairments and aetiology in ADHD symptoms and reading difficulties. *PLoS One.* 2014;9:e98590.

Cheung CHM, Wood AC, Paloyelis Y, et al. Aetiology for the covariation between combined type ADHD and reading difficulties in a family study: The role of IQ. *J Child Psychol Psychiatry*. 2012;53:864-873.

Chipuer HM, Rovine MJ and Plomin R. LISREL modeling: Genetic and environmental influences on IQ revisited. *Intelligence*. 1990;14:11-29.

Chou L-N, Kuo P-H, Lin CCH and Chen WJ. Genetic and environmental influences on the Wisconsin Card Sorting Test performance in healthy adolescents: A twin/sibling study. *Behav Genet.* 2010;40:22-30.

Chow BW, Ho CS, Wong SW, Waye MM and Bishop DV. Genetic and environmental influences on Chinese language and reading abilities. *PLoS One.* 2011;6:e16640.

Chow BW, Ho CS, Wong SW, Waye MM and Bishop DV. Generalist genes and cognitive abilities in Chinese twins. *Dev Sci.* 2013;16:260-268.

Coventry WL, Byrne B, Olson RK, Corley R and Samuelsson S. Dynamic and static assessment of phonological awareness in preschool: A behaviorgenetic study. *J Learn Disabil.* 2011;44:322-329.

Cox AJ, Hugenschmidt CE, Raffield LM, et al. Heritability and genetic association analysis of cognition in the Diabetes Heart Study. *Neurobiol Aging*. 2014;35:1958 e1953-1958 e1912.

Crosbie J, Arnold P, Paterson A, et al. Response inhibition and ADHD traits: Correlates and heritability in a community sample. *J Abnorm Child Psychol.* 2013;41:497-507.

Dale PS, Harlaar N, Hayiou-Thomas ME and Plomin R. The etiology of diverse receptive language skills at 12 years. J Speech Lang Hear Res. 2010;53:982-992.

Darst BF, Koscik RL, Hermann BP, et al. Heritability of cognitive traits among siblings with a parental history of Alzheimer's disease. J Alzheimers Dis. 2015;45:1149-1155.

Davis CJ, Gayan J, Knopik VS, et al. Etiology of reading difficulties and rapid naming: The Colorado Twin Study of Reading Disability. *Behav Genet.* 2001;31:625-635.

Davis OS, Band G, Pirinen M, et al. The correlation between reading and mathematics ability at age twelve has a substantial genetic component. *Nat Commun.* 2014;5:4204.

Davis OS, Haworth CM and Plomin R. Dramatic increase in heritability of cognitive development from early to middle childhood: An 8-year longitudinal study of 8,700 pairs of twins. *Psychol Sci.* 2009;20:1301-1308.

Davis OS, Kovas Y, Harlaar N, et al. Generalist genes and the Internet generation: etiology of learning abilities by web testing at age 10. *Genes Brain*

Behav. 2008;7:455-462.

DeFries JC, Plomin R, Vandenberg SG and Kuse AR. Parent-offspring resemblance for cognitive abilities in the Colorado Adoption Project: Biological, adoptive, and control parents, and one-year-old children. *Intelligence*. 1981;5:145-277. DeFries JC, Vandenberg SG, McClearn GE, et al. Near identity of cognitive structure in two ethnic groups. *Science*. 1974;183:338-339.

Delis DC, Kramer JH, Kaplan E and Holdnack J. Reliability and validity of the Delis-Kaplan Executive Function System: An update. *J Int Neuropsychol Soc.* 2004;10:301-303.

Delis DC, Kramer JH, Kaplan E and Ober BA (1987). The California Verbal Learning Test. San Antonio, TX, Psychological Corporation.

Delis DC, Kramer JH, Kaplan E and Ober BA (2000). California Verbal Learning Test: Second Edition. San Antonio, TX, Psychological Corporation.

DeThorne LS, Petrill SA, Hart SA, et al. Genetic effects on children's conversational language use. J Speech Lang Hear Res. 2008;51:423-435.

DeThorne LS, Petrill SA, Hayiou-Thomas ME and Plomin R. Low expressive vocabulary: Higher heritability as a function of more severe cases. J Speech Lang Hear Res. 2005;48:792-804.

Detterman DK. CAT: Computerized abilities test for research and teaching. *MicroPsych Network*. 1990;4:51-62. Detterman DK, Thompson LA and Plomin R. Differences in heritability across groups differing in ability. *Behav Genet*. 1990;20:369-384.

Docherty AR, Hagler DJ, Jr., Panizzon MS, et al. Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability? *Neuroimage*. 2014;106C:154-160.

Doty RL, Petersen I, Mensah N and Christensen K. Genetic and environmental influences on odor identification ability in the very old. *Psychol Aging*. 2011;26:864-871.

Doyle AE, Ferreira MA, Sklar PB, et al. Multivariate genomewide linkage scan of neurocognitive traits and ADHD symptoms: Suggestive linkage to 3q13. *Am J Med Genet B Neuropsychiatr Genet.* 2008;147B:1399-1411.

Dureman I, Kebbon L and E. O (1971). Manual till DS-Batteriet [Manual of the DS-Battery]. Stockholm, Psykologi Foriaget. Dureman I and Salde H (1959). Psykometriska och experimentalpsykologiska metoder for klinisk tillampning [Psychometric and experimental methods for clinical application]. Stockholm, Sweden, Almqvist & Wiksell.

Edmonds CJ, Isaacs EB, Visscher PM, et al. Inspection time and cognitive abilities in twins aged 7 to 17 years: Age-related changes, heritability and genetic covariance. Intelligence. 2008;36:210-225.

Ekstrom R, French J, Harman H and Dermen D (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ, Educational Testing Service. Eley TC, Bishop DV, Dale PS, et al. Genetic and environmental origins of verbal and performance components of cognitive delay in 2-year-olds. Dev Psychol. 1999;35:1122-1131.

Emde RN, Plomin R, Robinson J, et al. Temperament, emotion, and cognition at fourteen months: The MacArthur Longitudinal Twin Study. Child Dev. 1992;63:1437-1455.

Engle RF (1983). Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics. Handbook of Econometrics II. M. D. Intriligator and Z. Griliches, Elsevier: 796-801.

Engvik H, Hjerkin O and Seim S (1978). Manual for WAIS, Norwegian Version. Oslo, Norway, Norwegian Psychological Association. Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. Harlow, Essex, UK, Longmans Green

Fan J, Wu Y, Fossella JA and Posner MI. Assessing the heritability of attentional networks. BMC Neurosci. 2001;2:14. Fears SC, Service SK, Kremeyer B, et al. Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry. 2014;71:375-387.

Fenson L, Pethick S, Renda C, Cox JL, Dale PS and Reznick JS. Short-form versions of the MacArthur Communicative Development Inventories. ApplPsycholinguist. 2000;21:95-116.

Finkel D and McGue M. The origins of individual differences in memory among the elderly: A behavior genetic analysis. Psychol Aging. 1993;8:527-537.

Finkel D and McGue M. Age differences in the nature and origin of individual differences in memory: A behavior genetic analysis. Int J Aging Hum Dev. 1998a;47:217-239.

Finkel D and McGue M. Genetic and environmental influences on intraindividual variability in reaction time. Exp Aging Res. 2007:33:13-35.

Finkel D, Pedersen N and McGue M. Genetic influences on memory performance in adulthood: Comparison of Minnesota and Swedish twin data. Psychol Aging. 1995a;10:437-446.

Finkel D and Pedersen NL. Contribution of age, genes, and environment to the relationship between perceptual speed and cognitive ability. Psychol Aging. 2000a;15:56-64.

Finkel D and Pedersen NL. Processing speed and longitudinal trajectories of change for cognitive abilities: The Swedish Adoption/Twin Study of Aging. Aging Neuropsychol Cogn. 2004;11:325-345.

Finkel D and Pedersen NL. Genetic and environmental contributions to the associations between intraindividual variability in reaction time and cognitive function. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2014;21:746-764.

Finkel D, Pedersen NL, Berg S and Johansson B. Quantitative genetic analysis of biobehavioral markers of aging in Swedish studies of adult twins. J Aging Health. 2000b;12:47-68.

Finkel D, Pedersen NL and Harris JR. Genetic mediation of the association among motor and perceptual speed and adult cognitive abilities. Aging Neuropsychol Cogn. 2000c;7:141-155.

Finkel D, Pedersen NL, McClearn GE, Plomin R and Berg S. Cross-sequential analysis of genetic influences on cognitive ability in the Swedish Adoption/Twin Study of Aging. Aging Neuropsychol Cogn. 1996;3:84-99. Finkel D, Pedersen NL, McGue M and McClearn GE. Heritability of cognitive abilities in adult twins: Comparison of Minnesota

and Swedish data. Behav Genet. 1995b;25:421-431.

Finkel D, Pedersen NL, Plomin R and McClearn GE. Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: The Swedish Adoption/Twin Study of Aging. Dev Psychol. 1998b;34:1400-1413.

Finkel D, Reynolds CA, Berg S and Pedersen NL. Surprising lack of sex differences in normal cognitive aging in twins. Int J Aging Hum Dev. 2006;62:335-357.

Finkel D, Reynolds CA, McArdle JJ, Hamagami F and Pedersen NL. Genetic variance in processing speed drives variation in aging of spatial and memory abilities. Dev Psychol. 2009;45:820-834.

Finkel D, Revnolds CA, McArdle JJ and Pedersen NL. The longitudinal relationship between processing speed and cognitive ability: Genetic and environmental influences. Behav Genet. 2005;35:535-549.

Fletcher JM, Marks AD, Hine DW and Coventry WL. Heritability of preferred thinking styles and a genetic link to working memory capacity. Twin Res Hum Genet. 2014;17:526-534.

Foch TT and Plomin R. Specific cognitive abilities in 5- to 12-year-old twins. *Behav Genet.* 1980;10:507-520. Folstein MF, Folstein SE and McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189-198.

Folstein MF, Robins LN and Helzer JE. The Mini-Mental State Examination. Arch Gen Psychiatry. 1983;40:812.

Fortuny L, Romo D, Heaton RK and Pardee R (2001). Manual de normas y procedimientos para la bateria neuropsicologica en espanol. Lisse, The Netherlands, Swets & Zeitlinger. Fowler T, Zammit S, Owen MJ and Rasmussen F. A population-based study of shared genetic variation between premorbid IQ and psychosis among male twin pairs and sibling pairs from Sweden. Arch Gen Psychiatry. 2012;69:460-466.

Francks C, Fisher SE, Marlow AJ, et al. Familial and Genetic Effects on Motor Coordination, Laterality, and Reading-Related Cognition. Am J Psychiatry. 2003;160:1970-1977.

Frazier-Wood AC, Bralten J, Arias-Vasquez A, et al. Neuropsychological intra-individual variability explains unique genetic variance of ADHD and shows suggestive linkage to chromosomes 12, 13, and 17. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:131-140.

Friedman NP, Miyake A, Corley RP, Young SE, DeFries JC and Hewitt JK. Not all executive functions are related to intelligence. Psychol Sci. 2006;17:172-179.

Friedman NP, Miyake A, Robinson JL and Hewitt JK. Developmental trajectories in toddlers' self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Dev Psychol. 2011;47:1410-1430.

Friedman NP, Miyake A, Young SE, Defries JC, Corley RP and Hewitt JK. Individual differences in executive functions are almost entirely genetic in origin. J Exp Psychol Gen. 2008;137:201-225.

Galimberti E, Fadda E, Cavallini MC, Martoni RM, Erzegovesi S and Bellodi L. Executive functioning in anorexia nervosa patients and their unaffected relatives. Psychiatry Res. 2013;208:238-244.

Gayan J and Olson RK. Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Dev Neuropsychol. 2001;20:483-507.

Gayan J and Olson RK. Genetic and environmental influences on individual differences in printed word recognition. J Exp Child Psychol. 2003;84:97-123.

Giubilei F, Medda E, Fagnani C, et al. Heritability of neurocognitive functioning in the elderly: Evidence from an Italian twin study. *Age Ageing.* 2008;37:640-646.

Glahn DC, Almasy L, Barguil M, et al. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. *Arch Gen Psychiatry*. 2010;67:168-177.

Glahn DC, Almasy L, Blangero J, et al. Adjudicating neurocognitive endophenotypes for schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:242-249.

Glahn DC, Gur RC, Ragland JD, Censits DM and Gur RE. Reliability, performance characteristics, construct validity, and an initial clinical application of a visual object learning test (VOLT). *Neuropsychology*. 1997;11:602-612.

Glahn DC, Kent JW, Jr., Sprooten E, et al. Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging. *Proc Natl Acad Sci U S A.* 2013;110:19006-19011.

Glahn DC, Therman S, Manninen M, et al. Spatial working memory as an endophenotype for schizophrenia. *Biol Psychiatry*. 2003;53:624-626.

Glahn DC, Williams JT, McKay DR, et al. Discovering schizophrenia endophenotypes in randomly ascertained pedigrees. *Biol Psychiatry.* 2014. Godinez DA, Friedman NP, Rhee SH, Miyake A and Hewitt JK. Phenotypic and genetic analyses of the Wisconsin Card Sort. *Behav Genet.* 2012;42:209-220.

Goldberg X, Alemany S, Rosa A, et al. Substantial genetic link between IQ and working memory: Implications for molecular genetic studies on schizophrenia. The European twin study of schizophrenia (EUTwinsS). *Am J Med Genet B Neuropsychiatr Genet.* 2013;162B:413-418.

Goldberg XL, Alemany S, Vilahur N, et al. Neurocognitive domains impaired in schizophrenia and its estimated heritabilities in healthy individuals: An EUTWINSS network based study. *Schizophr Res.* 2010:287-288.

Golden CJ and Freshwater SM (1978). The Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. Wood Dale, IL, Stoelting. Good RH, Kaminski RA, Laimon D and Johnson D (1992). Advances in assessment for the primary prevention of early academic problems (summary). Eugene, OR, University of Oregon.

Grant MD, Kremen WS, Jacobson KC, et al. Does parental education have a moderating effect on the genetic and environmental influences of general cognitive ability in early adulthood? *Behav Genet.* 2010;40:438–446.

Greenwood TA, Beeri MS, Schmeidler J, et al. Heritability of cognitive functions in families of successful cognitive aging probands from the Central Valley of Costa Rica. *J Alzheimers Dis.* 2011;27:897-907.

Greenwood TA, Braff DL, Light GA, et al. Initial heritability analyses of endophenotypic measures for schizophrenia: The Consortium on the Genetics of Schizophrenia. *Arch Gen Psychiatry*. 2007;64:1242-1250.

Greenwood TA, Swerdlow NR, Gur RE, et al. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. *Am J Psychiatry*. 2013;170:521-532.

Greven CU, Kovas Y, Willcutt EG, Petrill SA and Plomin R. Evidence for shared genetic risk between ADHD symptoms and reduced mathematics ability: A twin study. *J Child Psychol Psychiatry*. 2014;55:39-48.

Grigorenko EL, LaBuda MC and Carter AS. Similarity in general cognitive ability, creativity, and cognitive style in a sample of adolescent Russian twins. Acta Genet Med Gemellol (Roma). 1992;41:65-72.

Groot AS, de Sonneville LM, Stins JF and Boomsma DI. Familial influences on sustained attention and inhibition in preschoolers. *J Child Psychol Psychiatry*. 2004;45:306-314.

Grove WM, Lebow BS, Clementz BA, Cerri A, Medus C and Iacono WG. Familial prevalence and coaggregation of schizotypy indicators: A multitrait family study. *J Abnorm Psychol.* 1991;100:115-121.

Gur RC, Jaggi JL, Ragland JD, et al. Effects of memory processing on regional brain activation: Cerebral blood flow in normal subjects. Int J Neurosci. 1993;72:31-44.

Gur RC, Ragland JD, Moberg PJ, et al. Computerized neurocognitive scanning: I. Methodology and validation in healthy people. *Neuropsychopharmacology*. 2001;25:766-776.

Gur RE, Nimgaonkar VL, Almasy L, et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. *Am J Psychiatry*. 2007;164:813-819.

Guttman R. Genetic analysis of analytical spatial ability: Raven's Progressive Matrices. *Behav Genet.* 1974;4:273-284. Hall JK (1996). Individual differences in specific cognitive abilities as measured by neuropsychological tests: A twin study. Doctor of Philosophy Ph.D. Thesis, University of Pittsburgh. Hansell NK, Halford GS, Andrews G, et al. Genetic basis of a cognitive complexity metric. *PLoS One.* 2015;10:e0123886.

Hansell NK, Wright MJ, Geffen GM, Geffen LB, Smith GA and Martin NG. Genetic influence on ERP slow wave measures of working memory. *Behav Genet.* 2001;31:603-614.

Hansel NK, Wright MJ, Luciano M, Geffen GM, Geffen LB and Martin NG. Genetic covariation between event-related potential (ERP) and behavioural non-ERP measures of working-memory, processing speed, and IQ. *Behav Genet.* 2005;35:695-706. Harlaar N, Cutting LE, Deater-Deckard K, et al. Predicting individual differences in reading comprehension: A twin study. *Ann Dyslexia.* 2010;60:265-288.

Harlaar N, Dale PS and Plomin R. From learning to read to reading to learn: Substantial and stable genetic influence. *Child Dev.* 2007;78:116-131.

Harlaar N, Hayiou-Thomas ME and Plomin R. Reading and general cognitive ability: A multivariate analysis of 7-year-old twins. *Sci Stud Read.* 2005;9:197-218.

Hart SA, Logan JA, Soden-Hensler B, Kershaw S, Taylor J and Schatschneider C. Exploring how nature and nurture affect the development of reading: An analysis of the Florida Twin Project on reading. *Dev Psychol.* 2013a;49:1971-1981.

Hart SA, Petrill SA, Deater-Deckard K and Thompson LA. SES and CHAOS as environmental mediators of cognitive ability: A longitudinal genetic analysis. *Intelligence*. 2007;35:233-242.

Hart SA, Petrill SA, DeThorne LS, et al. Environmental influences on the longitudinal covariance of expressive vocabulary: Measuring the home literacy environment in a genetically sensitive design. *J Child Psychol Psychiatry*. 2009;50:911-919. Hart SA, Petrill SA and Dush CM. Genetic influences on language, reading, and mathematics skills in a national sample: An analysis using the National Longitudinal Survey of Youth. *Lang Speech Hear Serv Sch*. 2010;41:118-128.

Hart SA, Soden B, Johnson W, Schatschneider C and Taylor J. Expanding the environment: Gene x school-level SES interaction on reading comprehension. *J Child Psychol Psychiatry*. 2013b;54:1047-1055.

Haworth CM, Kovas Y, Harlaar N, et al. Generalist genes and learning disabilities: A multivariate genetic analysis of low performance in reading, mathematics, language and general cognitive ability in a sample of 8000 12-year-old twins. *J Child Psychol Psychiatry*. 2009a;50:1318-1325.

Haworth CM, Wright MJ, Luciano M, et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. *Mol Psychiatry*. 2010;15:1112-1120.

Haworth CMA, Wright MJ, Martin NW, et al. A twin study of the genetics of high cognitive ability selected from 11,000 twin pairs in six studies from four countries. *Behav Genet.* 2009b;39:359-370.

Hayakawa K, Shimizu T, Ohba Y and Tomioka S. Risk factors for cognitive aging in adult twins. Acta Genet Med Gemellol (Roma). 1992;41:187-195.

Hayiou-Thomas ME, Dale PS and Plomin R. The etiology of variation in language skills changes with development: A longitudinal twin study of language from 2 to 12 years. *Dev Sci.* 2012;15:233-249.

Hayiou-Thomas ME, Dale PS and Plomin R. Language impairment from 4 to 12 years: Prediction and etiology. J Speech Lang Hear Res. 2014;57:850-864.

Hayiou-Thomas ME, Harlaar N, Dale PS and Plomin R. Genetic and environmental mediation of the prediction from preschool language and nonverbal ability to 7-year reading. *J Res Read.* 2006a;29:50-74.

Hayiou-Thomas ME, Harlaar N, Dale PS and Plomin R. Preschool speech language skills, and reading at 7, 9, and 10 years: Etiology of the relationship. *J Speech Lang Hear Res.* 2010;53:311-332.

Hayiou-Thomas ME, Kovas Y, Harlaar N, Plomin R, Bishop DVM and Dale PS. Common aetiology for diverse language skills in 4 1/2-year-old twins. *J Child Lang.* 2006b;33:339-368.

Heaton RK (2000). WCST-64: Computer Version for Windows-Research Edition. Odessa, FL, Psychological Assessment Resources, Inc. Heaton RK, Chelune G, Taley JL, Kay GG and Curtiss G (1993). Wisconsin Card Sorting Test Manual: Revised and Expanded. Odessa, FL, Psychological Assessment Resources.

Heinrichs RW and Zakzanis KK. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. *Neuropsychology*. 1998;12:426-445.

Heiser P, Heinzel-Gutenbrunner M, Frey J, et al. Twin study on heritability of activity, attention, and impulsivity as assessed by objective measures. *J Atten Disord*. 2006;9:575-581.

Hervey AS, Greenfield K and Gualtieri CT. Heritability in cognitive performance: Evidence using computer-based testing. J Genet Psychol. 2012;173:112-118.

Hill SK, Reilly JL, Keefe RS, et al. Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. *Am J Psychiatry*. 2013;170:1275-1284. Ho CS, Chow BW, Wong SW, Waye MM and Bishop DV. The genetic and environmental foundation of the simple view of reading in Chinese. *PLoS One*. 2012;7:e47872.

Ho H-Z, Baker LA and Decker SN. Covariation between intelligence and speed of cognitive processing: Genetic and environmental influences. *Behav Genet.* 1988;18:247-261.

Hoekstra RA, Bartels M and Boomsma DI. Longitudinal genetic study of verbal and nonverbal IQ from early childhood to young adulthood. *Learn Individ Differ.* 2007;17:97-114.

Hoekstra RA, Bartels M, van Leeuwen M and Boomsma DI. Genetic architecture of verbal abilities in children and adolescents. *Dev Sci.* 2009;12:1041-1053.

Hohnen B and Stevenson J. The structure of genetic influences on general cognitive, language, phonological, and reading abilities. *Dev Psychol*.1999;35:590-603.

Holmes J, Hever T, Hewitt L, et al. A pilot twin study of psychological measures of Attention Deficit Hyperactivity Disorder. *Behav Genet.* 2002;32:389-395.

Horn W (1962). Leistungsprufsystem. Gottingen, Hogrefe.Husted JA, Lim S, Chow EW, Greenwood C and Bassett AS. Heritability of neurocognitive traits in familial schizophrenia. *Am J Med Genet B Neuropsychiatr Genet*. 2009;150B:845-853. Jackson DN (1984). Multidimensional Aptitude Battery Manual. Port Huron, MI, Research Psychologists Press.

Jacobs N, Rijsdijk F, Derom C, et al. Child psychopathology and lower cognitive ability: A general population twin study of the causes of association. *Mol Psychiatry*. 2002;7:368-374.

Jacobs N, Van Gestel S, Derom C, et al. Heritability estimates of intelligence in twins: Effect of chorion type. *Behav Genet.* 2001;31:209-217.

Jastak S and Wilkinson GS (1984). Wide Range Achievement Test (revised). Wilmington, DE, Jastak Associates.

Jensen AR and Marisi DQ. A note on the heritability of memory span. Behav Genet. 1979;9:379-387.

Johnson B, Santana V, Schupf N, et al. The heritability of abstract reasoning in Caribbean Latinos with familial Alzheimer disease. *Dement Geriatr Cogn Disord*. 2007a;24:411-417.

Johnson W, Bouchard Jr. TJ, McGue M, et al. Genetic and environmental influences on the Verbal-Perceptual-Image Rotation (VPR) model of the structure of mental abilities in the Minnesota study of twins reared apart. *Intelligence*. 2007b;35:542-562. Johnson W, Bouchard TJ, Jr., Segal NL and Samuels J. General intelligence and reading performance in adults: Is the genetic factor structure the same as for children? *Pers Indiv Diff*. 2005;38:1413-1428.

Johnson W, Deary IJ, McGue M and Christensen K. Genetic and environmental links between cognitive and physical functions in old age. *J Gerontol B Psychol Sci Soc Sci.* 2009;64:65-72. Kalasūnienė L, Goštautas A and Sinkus A. Heredity of cognitive functions and personality in twins. *Medicina (Kaunas).* 2013;49:321-328.

Kaminski RA and Good RH. Toward a technology for assessing basic early literacy skills. School Psychol Rev. 1996;25:181-198.

Kaminski RA and Good RH (1998). Assessing early literacy skills in a problem-solving model: Dynamic indicators of basic early literacy skills. Advanced applications of curriculum-based measurement. The Guilford school practitioner series. M. R. Shinn. New York, NY, Guilford Press.

Kanakam N, Raoult C, Collier D and Treasure J. Set shifting and central coherence as neurocognitive endophenotypes in eating disorders: A preliminary investigation in twins. *World J Biol Psychiatry*. 2013;14:464-475.

Karlsgodt KH, Kochunov P, Winkler AM, et al. A multimodal assessment of the genetic control over working memory. J Neurosci. 2010;30:8197-8202.

Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP and Coughenour L. The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity,

and comparison with a standard neurocognitive battery. *Schizophr Res.* 2004;68:283-297. Keefe RS, Harvey PD, Goldberg TE, et al. Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). *Schizophr Res.* 2008;102:108-115.

Keller MC, Garver-Apgar CE, Wright MJ, et al. The genetic correlation between height and IQ: Shared genes or assortative mating? *PLoS Genet.* 2013;9:e1003451.

Kent J and Plomin R. Testing specific cognitive abilities by telephone and mail. Intelligence. 1987;11:391-400.

Kieseppa T, Tuulio-Henriksson A, Haukka J, et al. Memory and verbal learning functions in twins with bipolar-I disorder, and the role of informationprocessing speed. Psychol Med. 2005;35:205-215.

Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55:352-358. Kirkpatrick RM, Legrand LN, lacono WG and McGue M. A twin and adoption study of reading achievement: Exploration of shared-environmental and gene-environment-interaction effects. Learn Individ Differ. 2011;21:368-375.

Kirkpatrick RM, McGue M and Iacono WG. Shared-environmental contributions to high cognitive ability. Behav Genet. 2009;39:406-416.

Kirkpatrick RM, McGue M and Iacono WG. Replication of a gene-environment interaction via multimodel inference: Additivegenetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status. Behav Genet. 2015;45:200-214.

Knopik VS, Alarcon M and DeFries JC. Comorbidity of mathematics and reading deficits: Evidence for a genetic etiology. Behav Genet. 1997;27:447-453.

Knopik VS, Alarcon M and DeFries JC. Common and specific gender influences on individual differences in reading performance: A twin study. Pers Indiv Diff. 1998a;25:269-277.

Knopik VS and DeFries JC. A twin study of gender-influenced individual differences in general cognitive ability. Intelligence. 1998b;26:81-89.

Knopik VS and DeFries JC. Etiology of covariation between reading and mathematics performance: A twin study. Twin Res. 1999;2:226-234

Knopik VS, Smith SD, Cardon L, et al. Differential genetic etiology of reading component processes as a function of IQ. Behav Genet. 2002:32:181-198.

Kirkpatrick RM, McGue M and Iacono WG. Replication of a gene-environment interaction via multimodel inference: Additivegenetic variance in adolescents' general cognitive ability increases with family-of-origin socioeconomic status. Behav Genet. 2015:45:200-214

Knopik VS, Alarcon M and DeFries JC. Comorbidity of mathematics and reading deficits: Evidence for a genetic etiology. Behav Genet. 1997;27:447-

453. Knopik VS, Alarcon M and DeFries JC. Common and specific gender influences on individual differences in reading performance: A twin study. Pers Indiv Diff. 1998a;25:269-277.

Knopik VS and DeFries JC. A twin study of gender-influenced individual differences in general cognitive ability. Intelligence. 1998b;26:81-89.

Knopik VS and DeFries JC. Etiology of covariation between reading and mathematics performance: A twin study. Twin Res. 1999;2:226-234.

Knopik VS, Smith SD, Cardon L, et al. Differential genetic etiology of reading component processes as a function of IQ. Behav Genet. 2002;32:181-198.

Knowles EE. Carless MA, de Almeida MA, et al. Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:84-95. Kochunov P, Thompson PM, Winkler A, et al. The common genetic influence over processing speed and white matter microstructure: Evidence from the Old Order Amish and Human Connectome Projects. Neuroimage. 2016;125:189-197.

Koenen KC, Caspi A, Moffitt TE, Rijsdijk F and Taylor A. Genetic influences on the overlap between low IQ and antisocial behavior in young children. J Abnorm Psychol. 2006;115:787-797.

Koeppen-Schomerus G, Eley TC, Wolke D, Gringras P and Plomin R. The interaction of prematurity with genetic and environmental influences on cognitive development in twins. J Pediatr. 2000;137:527-533.

Koeppen-Schomerus G, Spinath FM and Plomin R. Twins and non-twin siblings: Different estimates of shared environmental influence in early childhood. Twin Res. 2003;6:97-105.

Kohler CG, Turner TH, Bilker WB, et al. Facial emotion recognition in schizophrenia: Intensity effects and error pattern. Am J Psychiatry. 2003;160:1768-1774.

Kovas Y, Hayiou-Thomas ME, Oliver B, Dale PS, Bishop DVM and Plomin R. Genetic influences in different aspects of language development: The etiology of language skills in 4.5-year-old twins. Child Dev. 2005;76:632-651. Kremen WS, Eisen SA, Tsuang MT and Lyons MJ. Is the Wisconsin Card Sorting Test a useful neurocognitive

endophenotype? Am J Med Genet B Neuropsychiatr Genet. 2007a;144B:403-406.

Kremen WS, Jacobsen KC, Xian H, et al. Genetics of verbal working memory processes: a twin study of middle-aged men. Neuropsychology. 2007b;21:569-580.

Kremen WS, Jacobson KC, Panizzon MS, et al. Factor structure of planning and problem-solving: A behavioral genetic analysis of the Tower of London task in middle-aged twins. Behav Genet. 2009;39:133-144.

Kremen WS, Jacobson KC, Xian H, et al. Heritability of word recognition in middle-aged men varies as a function of parental education. Behav Genet. 2005;35:417-433.

Kremen WS, Koenen KC, Boake C, et al. Pretrauma cognitive ability and risk for posttraumatic stress disorder: A twin study. Arch Gen Psychiatry. 2007c;64:361-368.

Kremen WS, Lyons MJ, Boake C, et al. A discordant twin study of premorbid cognitive ability in schizophrenia. J Clin Exp Neuropsychol. 2006;28:208-224

Kremen WS, Mai T, Panizzon MS, et al. A twin study of spatial and non-spatial delayed response performance in middle age. Brain Cogn. 2011a;76:43-51.

Kremen WS, Panizzon MS, Franz CE, et al. Genetic complexity of episodic memory: A twin approach to studies of aging. Psychol Aging. 2014;29:404- 417.

Kremen WS, Panizzon MS, Xian H, et al. Genetic architecture of context processing in late middle age: More than one underlying mechanism. Psychol Aging. 2011b;26:852-863.

Kuntsi J, Andreou P, Ma J, Borger NA and van der Meere JJ. Testing assumptions for endophenotype studies in ADHD: Reliability and validity of tasks in a general population sample. BMC Psychiatry. 2005;5:40.

Kuntsi J, Rogers H, Swinard G, et al. Reaction time, inhibition, working memory and 'delay aversion' performance: Genetic influences and their interpretation. Psychol Med. 2006;36:1613-1624.

Kuntsi J, Wood AC, Rijsdijk F, et al. Separation of cognitive impairments in attention-deficit/hyperactivity disorder into 2 familial factors. Arch Gen Psychiatry. 2010;67:1159-1167.

Kurtz MM, Ragland JD, Moberg PJ and Gur RC. The Penn Conditional Exclusion Test: A new measure of executive-function with alternate forms of repeat administration. Arch Clin Neuropsychol. 2004;19:191-201.

LaBuda MC, DeFries JC and Fulker DW. Genetic and environmental covariance structures among WISC-R subtests: A twin study. Intelligence. 1987;11:233-244.

Latvala A, Tuulio-Henriksson A, Dick DM, et al. Genetic origins of the association between verbal ability and alcohol dependence symptoms in young adulthood. *Psychol Med.* 2011;41:641-651.

Lee JH, Flaquer A, Stern Y, Tycko B and Mayeux R. Genetic influences on memory performance in familial Alzheimer disease. *Neurology.* 2004;62:414- 421.

Lee T, Mosing MA, Henry JD, et al. Genetic influences on four measures of executive functions and their covariation with general cognitive ability: The Older Australian Twins Study. *Behav Genet.* 2012a;42:528-538.

Lee T, Mosing MA, Henry JD, et al. Genetic influences on five measures of processing speed and their covariation with general cognitive ability in the elderly: The Older Australian Twins Study. *Behav Genet.* 2012b;42:96-106.

Lessov-Schlaggar CN, Swan GE, Reed T, Wolf PA and Carmelli D. Longitudinal genetic analysis of executive function in elderly men. *Neurobiol Aging*. 2007;28:1759-1768.

Light JG, DeFries JC and Olson RK. Multivariate behavioral genetic analysis of achievement and cognitive measures in reading-disabled and control twin pairs. *Hum Biol.* 1998;70:215-237.

Lin SH, Liu CM, Hwang TJ, et al. Performance on the Wisconsin Card Sorting Test in families of schizophrenia patients with different familial loadings. *Schizophr Bull.* 2013;39:537-546.

Logan JA, Hart SA, Cutting L, Deater-Deckard K, Schatschneider C and Petrill S. Reading development in young children: Genetic and environmental influences. *Child Dev.* 2013;84:2131-2144.

Luciano M, Batty GD, McGilchrist M, et al. Shared genetic aetiology between cognitive ability and cardiovascular disease risk factors: Generation Scotland's Scottish family health study. *Intelligence*. 2010;38:304-313.

Luciano M, Posthuma D, Wright MJ, et al. Perceptual speed does not cause intelligence, and intelligence does not cause perceptual speed. *Biol Psychol.* 2005;70:1-8.

Luciano M, Smith GA, Wright MJ, Geffen GM, Geffen LB and Martin NG. On the heritability of inspection time and its covariance with IQ: A twin study. *Intelligence*. 2001a;29:443-457.

Luciano M, Wainwright MA, Wright MJ and Martin NG. The heritability of conscientiousness facets and their relationship to IQ and academic achievement. *Pers Indiv Diff.* 2006;40:1189-1199.

Luciano M, Wright MJ, Geffen GM, et al. A genetic two-factor model of the covariation among a subset of Multidimensional Aptitude Battery and Wechsler Adult Intelligence Scale-Revised subtests. *Intelligence*. 2003;31:589-605.

Luciano M, Wright MJ, Geffen GM, Geffen LB, Smith GA and Martin NG. A genetic investigation of the covariation among inspection time, choice reaction time, and IQ subtest scores. *Behav Genet.* 2004;34:41-50.

Luciano M, Wright MJ, Smith GA, Geffen GM, Geffen LB and Martin NG. Genetic covariance among measures of information processing speed, working memory, and IQ. *Behav Genet.* 2001b;31:581-592.

Luo D, Petrill SA and Thompson LA. An exploration of genetic g: Hierarchical factor analysis of cognitive data from the Western Reserve Twin Project. *Intelligence*. 1994;18:335-347.

Luo D, Thompson LA and Detterman DK. Phenotypic and behavioral genetic covariation between elemental cognitive components and scholastic measures. *Behav Genet.* 2003;33:221-246.

Lyons MJ, York TP, Franz CE, et al. Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. *Psychol Sci.* 2009;20:1146-1152.

Malykh SB, Iskoldsky NV and Gindina ED. Genetic analysis of IQ in young adulthood: A Russian twin study. *Pers Indiv Diff.* 2005;38:1475-1485.

Marlow AJ, Fisher SE, Richardson AJ, et al. Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. *Behav Genet.* 2001;31:219-230.

Martin NW, Hansell NK, Wainwright MA, et al. Genetic covariation between the Author Recognition Test and reading and verbal abilities: What can we learn from the analysis of high performance? *Behav Genet.* 2009;39:417-426.

Matteini AM, Fallin MD, Kammerer CM, et al. Heritability estimates of endophenotypes of long and health life: The Long Life Family Study. J Gerontol A Biol Sci Med Sci. 2010;65:1375-1379.

McArdle JJ. Latent variable growth within behavior genetic models. Behav Genet. 1986;16:163-200.

McArdle JJ. Latent curve analyses of longitudinal twin data using a mixed-effects biometric approach. *Twin Res Hum Genet.* 2006;9:343-359.

McArdle JJ and Plassman BL. A biometric latent curve analysis of memory decline in older men of the NAS-NRC Twin Registry. Behav Genet.2009; 39:472-495.

McCarthy D (1972). McCarthy scales of children's abilities. New York, NY, The Psychological Corporation.

McClearn GÈ, Johansson B, Berg S, et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. *Science*. 1997;276:1560-1563.

McGee MG. Intrafamilial correlations with heritability estimates for spatial ability in a Minnesota sample. *Behav Genet.* 1978;8:77-80.

McGue M and Christensen K. The heritability of cognitive functioning in very old adults: Evidence from Danish twins aged 75 years and older. *Psychol Aging*. 2001;16:272-280.

McGue M and Christensen K. The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. *Exp Aging Res.* 2002;28:435-451.

McGue M and Christensen K. Social activity and healthy aging: A study of aging Danish twins. *Twin Res Hum Genet.* 2007;10:255-265.

McGue M and Christensen K. Growing old but not growing apart: Twin similarity in the latter half of the lifespan. *Behav Genet*. 2013;43:1-12.

Mendoza Quinones R, Cabral Calderin Y, Dominguez M, et al. Heritability of Trail Making Test performance in multiplex schizophrenia families:

Implications for the search for an endophenotype. Eur Arch Psychiatry Clin Neurosci. 2009;259:475-481.

Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV and Seidman LJ. Neurocognition in first-episode schizophrenia: A meta-analytic review. *Neuropsychology*. 2009;23:315-336.

Molenaar D, van der Sluis S, Boomsma DI and Dolan CV. Detecting specific genotype by environment interactions using marginal maximum likelihood estimation in the classical twin design. *Behav Genet.* 2012;42:483-499.

Molenaar D, van der Sluis S, Boomsma DI, et al. Genotype by environment interactions in cognitive ability: A survey of 14 studies from four countries covering four age groups. *Behav Genet.* 2013;43:208-219.

Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. *Neurology*. 1989;39:1159-1165.

Mosing MA, Mellanby J, Martin NG and Wright MJ. Genetic and environmental influences on analogical and categorical verbal and spatial reasoning in 12-year old twins. *Behav Genet.* 2012;42:722-731.

Mosing MA. Pedersen NL, Madison G and Ullen F. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence. PLoS One. 2014;9:e113874.

Myles-Worsley M and Coon H. Genetic and developmental factors in spontaneous selective attention: A study of normal twins. Psychiatry Res. 1997;71:163-174.

Nagoshi CT, Phillips K and Johnson RC. Between- versus within-family factor analyses of cognitive abilities. Intelligence. 1987:11:305-316.

Nandagopal K, Roring RW, Ericsson KA and Taylor J. Strategies may mediate heritable aspects of memory performance: A twin study. Cogn Behav Neurol. 2010;23:224-230.

Neubauer AC, Spinath FM, Riemann R, Angleiter A and Borkenau P. Genetic and environmental influences on two measures of speed of information processing and their relation to psychometric intelligence: Evidence from the German Observational Study of Adult Twins. Intelligence. 2000;28:267-289.

Nuechterlein KH and Asarnow RF (1999). Degraded Stimulus Continuous Performance Test (DS-CPT): Program for IBM-Compatible Microcomputers. Los Angeles, CA.Nuechterlein KH, Parasuraman R and Jiang Q. Visual sustained attention: Image degradation produces rapid sensitivity decrement over time. Science. 1983;220:327-329.

Oliver B, Dale PS, Saudino K, Petrill SA, Pike A and Plomin R. The validity of a parent-based assessment of cognitive abilities in three-year olds. Early Child Dev Care. 2002;172:337-348.

Olson RK, Keenan JM, Byrne B, et al. Genetic and environmental influences on vocabulary and reading development. Sci Stud Read. 2007;20:51-75.

Owens SF, Picchioni MM, Ettinger U, et al. Prefrontal deviations in function but not volume are putative endophenotypes for schizophrenia. Brain. 2012;135:2231-2244.

Owens SF, Picchioni MM, Rijsdijk FV, et al. Genetic overlap between episodic memory deficits and schizophrenia: Results from the Maudsley Twin Study. Psychol Med. 2011a;41:521-532.

Owens SF, Rijsdijk F, Picchioni MM, et al. Genetic overlap between schizophrenia and selective components of executive function. Schizophr Res. 2011b;127:181-187.

Pal S, Shyam R and Singh R. Genetic analysis of general intelligence 'g': A twin study. Pers Indiv Diff. 1997;22:779-780. Panizzon MS, Lyons MJ, Jacobson KC, et al. Genetic architecture of learning and delayed recall: A twin study of episodic memory. Neuropsychology. 2011;25:488-498.

Panizzon MS, Neale MC, Docherty AR, et al. Genetic and environmental architecture of changes in episodic memory from middle to late middle age. Psychol Aging. 2015.

Panizzon MS, Vuoksimaa E, Spoon KM, et al. Genetic and environmental influences on general cognitive ability: Is g a valid latent construct? Intelligence. 2014;43:65-76.

Pardo PJ, Knesevich MA, Vogler GP, et al. Genetic and state variables of neurocognitive dysfunction in schizophrenia: A twin study. Schizophr Bull. 2000;26:459-477.

Pedersen NL, McClearn GE, Plomin R and Friberg L. Separated fraternal twins: Resemblance for cognitive abilities. Behav Genet. 1985;15:407-419.

Pedersen NL, Plomin R, Nesselroade JR and McClearn GE. A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychol Sci. 1992;3:346-353.

Pedersen NL, Reynolds CA and Gatz M. Sources of covariation among Mini-Mental State Examination scores, education, and cognitive abilities. J Gerontol B-Psychol. 1996;51B:55-63.

Peskin VA, Ordonez A, Mackin RS, et al. Neuropsychological and dimensional behavioral trait profiles in Costa Rican ADHD sib pairs: Potential intermediate phenotypes for genetic studies. Am J Med Genet B Neuropsychiatr Genet. 2015;168B:247 257. Peterson RL, Pennington BF, Samuelsson S, Byrne B and Olson RK. Shared etiology of phonological memory and vocabulary deficits in school-age children. J Speech Lang Hear Res. 2013;56:1249-1259.

Petrill SA and Deater-Deckard K. The heritability of general cognitive ability: A within-family adoption design. Intelligence. 2004.32.403-409

Petrill SA, Deater-Deckard K, Thompson LA, Dethorne LS and Schatschneider C. Reading skills in early readers: Genetic and shared environmental influences. J Learn Disabil. 2006a;39:48-55.

Petrill SA, Johansson B, Pedersen NL, et al. Low cognitive functioning in nondemented 80+-year-old twins is not heritable. Intelligence. 2001;29:75-83.

Petrill SA, Luo D, Thompson LA and Detterman DK. The independent prediction of general intelligence by elementary cognitive tasks: Genetic and environmental influences. Behav Genet. 1996;26:135-147.

Petrill SA, Saudino K, Cherny SS, et al. Exploring the genetic and environmental etiology of high general cognitive ability in fourteen- to thirty-six-monthold twins. Child Dev. 1998;69:68-74.

Petrill SA, Saudino K, Cherny SS, et al. Exploring the genetic etiology of low general cognitive ability from 14 to 36 months. Dev Psychol. 1997;33:544-548.

Petrill SA and Thompson LA. The phenotypic and genetic relationships among measures of cognitive ability, temperament, and scholastic achievement. Behav Genet. 1993;23:511-518.

Petrill SA, Thompson LA, Deater-Deckard K, Dethorne LS and Schatschneider C. Genetic and environmental effects of serial naming and phonological awareness on early reading outcomes. J Educ Psychol. 2006b;98:112-121.

Petrill SA, Thompson LA and Detterman DK. The genetic and environmental variance underlying elementary cognitive tasks. Behav Genet. 1995;25:199-209.

Pincombe JL, Luciano M, Martin NG and Wright MJ. Heritability of NEO PI-R extraversion facets and their relationship with IQ. Twin Res Hum Genet. 2007;10:462-469.

Pineda DA, Lopera F, Puerta IC, et al. Potential cognitive endophenotypes in multigenerational families: Segregating ADHD from a genetic isolate. Atten Defic Hyperact Disord. 2011;3:291-299.

Pinel P and Dehaene S. Genetic and environmental contributions to brain activation during calculation. Neuroimage. 2013;81:306-316.

Plassman BL, Welsh KA, Helms M, Brandt J, Page WF and Breitner JC. Intelligence and education as predictors of cognitive state in late life: A 50-year follow-up. Neurology. 1995;45:1446-1450.

Plomin R, Emde RN, Braungart JM, et al. Genetic change and continuity from fourteen to twenty months: The MacArthur Longitudinal Twin Study. Child Dev. 1993;64:1354-1376.

Plomin R, Pedersen NL, Lichtenstein P and McClearn GE. Variability and stability in cognitive abilities are largely genetic later in life. Behav Genet. 1994;24:207-215.

Polderman TJC, Gosso MF, Posthuma D, et al. A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurol Belg. 2006a;106:191-207.

Polderman TJC, Stins JF, Posthuma D, Gosso MF, Verhulst FC and Boomsma DI. The phenotypic and genotypic relation between working memory speed and capacity. *Intelligence*. 2006b;34:549-560.

Posthuma D, Baare WF, Hulshoff Pol HE, Kahn RS, Boomsma DI and de Geus EJC. Genetic correlations between brain volumes and the WAIS-III dimensions of Verbal Comprehension, Working Memory, Perceptual Organization, and Processing Speed. *Twin Res.* 2003;6:131-139.

Posthuma D, de Geus EJ and Boomsma DI. Perceptual speed and IQ are associated through common genetic factors. *Behav Genet.* 2001a;31:593-602.

Posthuma D, de Geus EJC, Baare WFC, Hulshoff Pol HE, Kahn RS and Boomsma DI. The association between brain volume and intelligence is of genetic origin. *Nat Neurosci.* 2002a;5:83-84.

Posthuma D, Mulder EJ, Boomsma DI and de Geus EJ. Genetic analysis of IQ, processing speed and stimulus-response incongruency effects. *Biol Psychol.* 2002b;61:157-182.

Posthuma D, Neale MC, Boomsma DI and de Geus EJC. Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. *Behav Genet.* 2001b;31:567-579.

Price TS, Dale PS and Plomin R. A longitudinal genetic analysis of low verbal and nonverbal cognitive abilities in early childhood. *Twin Res.* 2004;7:139-148.

Price TS, Eley TC, Dale PS, Stevenson J, Saudino K and Plomin R. Genetic and environmental covariation between verbal and nonverbal cognitive development in infancy. *Child Dev.* 2000;71:948-959.

Raven J, Raven JC and Court JH (1977). Manual for Raven's Progressive Matrices and Vocabulary Scales. London, UK, H. K. Lewis.

Raven JC (1938). Progressive matrices: A perceptual test of intelligence. Individual Form. Oxford, UK, Oxford Psychologists Press Ltd.

Raven JC (1947). Coloured Progressive Matrices Sets A, Ab, B. Oxford, UK, Oxford Psychologists Press Ltd.

Raven JC (1965). Advanced Progressive Matrices Sets I and II. Oxford, UK, Oxford Psychologists Press Ltd.

Raven JC (1994). Advanced Progressive Matrices Sets I and II. Oxford, UK, Oxford Psychologists Press Ltd.

Raven JC (1996). Progressive matrices: A perceptual test of intelligence. Individual Form. Oxford, UK, Oxford Psychologists Press Ltd.

Read S, Pedersen NL, Gatz M, et al. Sex differences after all those years? Heritability of cognitive abilities in old age. *J Gerontol B-Psychol.* 2006;61B:137-143.

Reitan R. Validity of the trail making test as indicator of organic brain damage. Percept Mot Skills. 1958;8.

Reynolds CA, Finkel D, Gatz M and Pedersen NL. Sources of influence on rate of cognitive change over time in Swedish twins: An application of latent growth models. *Exp Aging Res.* 2002;28:407-433.

Reynolds CA, Finkel D, McArdle JJ, Gatz M, Berg S and Pedersen NL. Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. *Dev Psychol.* 2005;41:3-16.

Reynolds CA, Fiske A, Fratiglioni L, Pedersen NL and Gatz M. Heritability of an age-dependent categorical phenotype: Cognitive dysfunction. *Twin Res Hum Genet.* 2006;9:17-23.

Rietveld MJH, Dolan CV, van Baal GCM and Boomsma DI. A twin study of differentiation of cognitive abilities in childhood. Behav Genet. 2003;33:367-381.

Rietveld MJH, van Baal GCM, Dolan CV and Boomsma DI. Genetic factor analyses of specific cognitive abilities in 5-year-old Dutch children. *Behav Genet.* 2000;30:29-40.

Rijsdijk FV, Vernon PA and Boomsma DI. The genetic basis of the relation between speed-of-information-processing and IQ. Behav Brain Res. 1998;95:77-84.

Rijsdijk FV, Vernon PA and Boomsma DI. Application of hierarchical genetic models to Raven and WAIS subtests: A Dutch twin study. *Behav Genet*. 2002;32:199-210.

Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L and Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. *Dementia*. 1994;5:266-281.

Rodgers JL and Rowe DC. IQ similarity in twins, siblings, half-siblings, cousins, and random pairs. *Intelligence*. 1987;11:199 206.

Rommel AS, Rijsdijk F, Greven CU, Asherson P and Kuntsi J. A longitudinal twin study of the direction of effects between ADHD symptoms and IQ. *PLoS One.* 2015;10:e0124357.

Rommelse NNJ, Altink ME, Martin NC, et al. Neuropsychological measures probably facilitate heritability research of ADHD. *Arch Clin Neuropsychol.* 2008;23:579-591.

Rose RJ, Miller JZ and Fulker DW. Twin-family studies of perceptual speed ability. II. Parameter Estimation. *Behav Genet.* 1981;11:565-575.

Rowe DC, Jacobson KC and Van den Oord EJ. Genetic and environmental influences on vocabulary IQ: Parental education level as moderator. *Child Dev.* 1999a;70:1151-1162.

Rowe DC, Vesterdal WJ and Rodgers JL. Herrnstein's Syllogism: Genetic and shared environmental influences on IQ, education, and income. *Intelligence*. 1999b;26:405-423.

Rushton JP, Bons TA, Vernon PA and Cvorovic J. Genetic and environmental contributions to population group differences on the Raven's Progressive Matrices estimated from twins reared together and apart. *Proc Biol Sci.* 2007;274:1773-1777. Sabb FW, Hellemann G, Lau D, et al. High-throughput cognitive assessment using BrainTest.org: Examining cognitive control in a family cohort. *Brain and Behavior.* 2013;3:552–561.

Sachdev PS, Brodaty H, Reppermund S, et al. The Sydney Memory and Ageing Study (MAS): Methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70-90 years. *Int Psychogeriatr.* 2010;22:1248-1264.

Sachdev PS, Lee T, Lammel A, et al. Cognitive functioning in older twins: The Older Australian Twins Study. Australas J Ageing. 2011;30 Suppl 2:17-23.

Samuelsson S, Byrne B, Olson RK, et al. Response to early literacy instruction in the United States, Australia, and Scandinavia: A behavioral-genetic analysis. *Learn Individ Differ.* 2008;18:289-295.

Samuelsson S, Byrne B, Quain P, et al. Environmental and genetic influences on prereading skills in Australia, Scandinavia, and the United States. *J Educ Psychol.* 2005;97:705-722.

Saudino KJ, Dale PS, Oliver B, Petrill SA, Richardson V and Rutter M. The validity of parent-based assessment of the cognitive abilities of two-yearolds. *Br J Devel Psychol.* 1998;16:349-363.

Saudino KJ, Plomin R, Pedersen NL and McClearn GE. The etiology of high and low cognitive ability during the second half of the life span. *Intelligence*. 1994;19:359-371.

Schachar RJ, Forget-Dubois N, Dionne G, Boivin M and Robaey P. Heritability of response inhibition in children. J Int Neuropsychol Soc. 2011;17:238-247.

Scourfield J, Neilson M, Lewis G and McGuffin P. Heritability of social cognitive skills in children and adolescents. Br J Psychiatry. 1999;175:559-564.

Segal NL. Monozygotic and dizygotic twins: A comparative analysis of mental ability profiles. *Child Dev.* 1985;56:1051-1058. Seidman LJ, Hellemann G, Nuechterlein KH, et al. Factor structure and heritability of endophenotypes in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS-1). *Schizophr Res.* 2015;163:73-79. Shikishima C, Hiraishi K, Yamagata S, et al. Is g an entity? A Japanese twin study using syllogisms and intelligence test.

Intelligence. 2009;37:256-267.

Silventoinen K, Iacono WG, Krueger R and McGue M. Genetic and environmental contributions to the association between anthropometric measures and IQ: A study of Minnesota twins at age 11 and 17. *Behav Genet.* 2012;42:393-401.

Silventoinen K, Posthuma D, van Beijsterveldt T, Bartels M and Boomsma DI. Genetic contributions to the association between height and intelligence: Evidence from Dutch twin data from childhood to middle age. *Genes Brain Behav.* 2006;5:585-595. Simons CJ, Jacobs N, Jolles J, van Os J and Krabbendam L. Subclinical psychotic experiences and cognitive functioning as a bivariate phenotype for genetic studies in the general population. *Schizophr Res.* 2007;92:24-31.

Singer JJ, MacGregor AJ, Cherkas LF and Spector TD. Genetic influences on cognitive function using the Cambridge Neuropsychological Test Automated Battery. *Intelligence*. 2006;34:421-428.

Sleegers K, de Koning I, Aulchenko YS, et al. Cerebrovascular risk factors do not contribute to genetic variance of cognitive function: The ERF study. *Neurobiol Aging.* 2007;28:735-741.

Smalley SL, Thompson AL, Spence MA, Judd WJ and Sparkes RS. Genetic influences on spatial ability: Transmission in an extended kindred. *Behav Genet.* 1989;19:229-240.

Smith P, Fernandes C and Strand S (2001). Cognitive Abilities Test Third Edition: technical manual. London, UK, GL Assessment. Soden-Hensler B, Taylor J and Schatschneider C. Evidence for common etiological influences on early literacy skills in kindergarten. *Sci Stud Read.* 2012;16:457-474.

Spinath FM, Harlaar N, Ronald A and Plomin R. Substantial genetic influence on mild mental impairment in early childhood. Am J Ment Retard. 2004;109:34-43.

Spinath FM, Ronald A, Harlaar N, Price TS and Plomin R. Phenotypic g early in life: On the etiology of general cognitive ability in a large population sample of twin children aged 2–4 years. *Intelligence*. 2003;31:195-210.

Steves CJ, Jackson SH and Spector TD. Cognitive change in older women using a computerised battery: A longitudinal quantitative genetic twin study. *Behav Genet.* 2013;43:468-479.

Stinissen J, Willems PJ, Coetsier P and Hulsman WLL (1970). Manual for the Dutch Translated and Adapted Version of The Wechsler Adult Intelligence Scale (WAIS). Lisse, The Netherlands, Swets & Zeitlinger. Stins JF, de Sonneville LM, Groot AS, Polderman TC, van Baal CG and Boomsma DI. Heritability of selective attention and working memory in preschoolers. *Behav Genet.* 2005;35:407-416.

Stins JF, van Baal GC, Polderman TJ, Verhulst FC and Boomsma DI. Heritability of Stroop and flanker performance in 12-year old children. *BMC Neurosci.* 2004;5:49.

Sundet JM, Tambs K, Magnus P and Berg K. On the question of secular trends in the heritability of intelligence test scores: A study of Norwegian twins. *Intelligence*. 1988;12:47-59.

Suzuki K, Shikishima C and Ando J. Genetic and environmental sex differences in mental rotation ability: A Japanese twin study. *Twin Res Hum Genet.* 2011;14:437-443.

Svedberg P, Gatz M and Pedersen NL. Genetic and environmental mediation of the associations between self-rated health and cognitive abilities. *Exp Aging Res.* 2009;35:178-201.

Swagerman SC, de Geus EJ, Kan KJ, et al. The Computerized Neurocognitive Battery: Validation, aging effects, and heritability across cognitive domains. *Neuropsychology*. 2016;30:53-64.

Swan GE and Carmelli D. Evidence for genetic mediation of executive control: A study of aging male twins. *J Gerontol B Psychol Sci Soc Sci.* 2002;57:P133-143.

Swan GE, Carmelli D, Reed T, Harshfield GA, Fabsitz RR and Eslinger PJ. Heritability of cognitive performance in aging twins. The National Heart, Lung, and Blood Institute Twin Study. *Arch Neurol.* 1990;47:259-262.

Swan GE, LaRue A, Carmelli D, Reed TE and Fabsitz RR. Decline in cognitive performance in aging twins. Heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. *Arch Neurol.* 1992;49:476-481. Swan GE, Reed T, Jack LM, et al. Differential genetic influence for components of memory in aging adult twins. *Arch Neurol.* 1999;56:1127-1132.

Tambs K, Sundet JM and Magnus P. Heritability analysis of the WAIS subtests: A study of twins. *Intelligence*. 1984;8:283-293. Taylor J. Heritability of Wisconsin Card Sorting Test (WCST) and Stroop Color-Word Test performance in normal individuals: Implications for the search for endophenotypes. *Twin Res Hum Genet*. 2007;10:829-834.

Taylor J and Schatschneider C. Genetic influence on literacy constructs in kindergarten and first grade: Evidence from a diverse twin sample. *Behav Genet.* 2010;40:591-602.

Teng EL and Chui HC. The modified Mini-Mental State (3MS) examination. *J Clin Psychiatry*. 1987;48:314-318. Terman LM and Merill MA (1973). Stanford-Binet Intelligence Scale: 1972 Norms Edition. Boston, MA, Houghton-Mifflin. Thapar A, Petrill SA and Thompson LA. The heritability of memory in the Western Reserve Twin Project. *Behav Genet*. 1994;24:155-160.

Thompson LA, Detterman DK and Plomin R. Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. *Psychol Sci.* 1991;2:158-165.

Thompson LA, Detterman DK and Plomin R. Differences in heritability across groups differing in ability, revisited. *Behav Genet.* 1993;23:331-336.

Thorndike RL, Hagen EP and Sattler JM (1986). The Stanford-Binet Intelligence Scale: Fourth edition. Technical manual. Chicago, IL, Riverside. Thurstone LL (1938). Primary Mental Abilities. Chicago, IL, University of Chicago Press.

Tiffin J (1968). Purdue Pegboard Test. Chicago, IL, Scientific Research Associates. Tosto MG, Hanscombe KB, Haworth CM, et al. Why do spatial abilities predict mathematical performance? *Dev Sci.* 2014a;17:462-470.

Tosto MG, Petrill SA, Halberda J, et al. Why do we differ in number sense? Evidence from a genetically sensitive investigation. *Intelligence.* 2014b;43:35-46.

Toulopoulou T, Goldberg TE, Mesa IR, et al. Impaired intellect and memory: A missing link between genetic risk and schizophrenia? *Arch Gen Psychiatry*. 2010;67:905-913.

Toulopoulou T, Picchioni M, Rijsdijk F, et al. Substantial genetic overlap between neurocognition and schizophrenia: Genetic modeling in twin samples. *Arch Gen Psychiatry*. 2007;64:1348-1355.

Toulopoulou T, van Haren N, Zhang X, et al. Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. *Mol Psychiatry*. 2015;20:1386-1396.

Tucker-Drob EM and Harden KP. Early childhood cognitive development and parental cognitive stimulation: Evidence for reciprocal gene-environment transactions. *Dev Sci.* 2012;15:250-259.

Tucker-Drob EM, Reynolds CA, Finkel D and Pedersen NL. Shared and unique genetic and environmental influences on agingrelated changes in multiple cognitive abilities. *Dev Psychol.* 2014;50:152-166.

Tucker-Drob EM, Rhemtulla M, Harden KP, Turkheimer E and Fask D. Emergence of a Gene x socioeconomic status interaction on infant mental ability between 10 months and 2 years. *Psychol Sci.* 2011;22:125-133.

Turkheimer E, Haley A, Waldron M, D'Onofrio B and Gottesman, II. Socioeconomic status modifies heritability of IQ in young children. *Psychol Sci.* 2003;14:623-628.

Tuulio-Henriksson A, Haukka J, Partonen T, et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. *Am J Med Genet.* 2002;114:483-490.

Uhlaner JE (1952). Development of the armed forces qualification test and predecessor army screening tests. PRB report, 1946–1950. Washington, DC, Department of the Army.

van den Berg SM, Posthuma D and Boomsma DI. A longitudinal genetic study of vocabulary knowledge in adults. *Twin Res.* 2004;7:284-291.

van Leeuwen M, Peper JS, van den Berg SM, et al. A genetic analysis of brain volumes and IQ in children. *Intelligence.* 2009a;37:181-191.

van Leeuwen M, van den Berg SM and Boomsma DI. A twin-family study of general IQ. *Learn Individ Differ*. 2008;18:76-88. van Leeuwen M, van den Berg SM, Hoekstra RA and Boomsma DI. The genetic and environmental structure of verbal and visuospatial memory in young adults and children. *Neuropsychology*. 2009b;23:792-802.

van Leeuwen M, van den Berg SM, Peper JS, Hulshoff Pol HE and Boomsma DI. Genetic covariance structure of reading, intelligence and memory in children. *Behav Genet.* 2009c;39:245-254.

van Soelen IL, Brouwer RM, van Leeuwen M, Kahn RS, Hulshoff Pol HE and Boomsma DI. Heritability of verbal and performance intelligence in a pediatric longitudinal sample. *Twin Res Hum Genet.* 2011;14:119-128.

van Soelen ILC, van den Berg SM, Dekker PH, et al. Individual differences in dynamic measures of verbal learning abilities in young twin pairs and their older siblings. *Learn Individ Differ.* 2009;19:440-444.

Vasilopoulos T, Franz CE, Panizzon MS, et al. Genetic architecture of the Delis-Kaplan executive function system Trail Making Test: Evidence for Smalley SL, Thompson AL, Spence MA, Judd WJ and Sparkes RS. Genetic influences on spatial ability: Transmission in an extended kindred. *Behav*

Genet. 1989;19:229-240.

Smith P, Fernandes C and Strand S (2001). Cognitive Abilities Test Third Edition: technical manual. London, UK, GL Assessment. Soden-Hensler B, Taylor J and Schatschneider C. Evidence for common etiological influences on early literacy skills in kindergarten. *Sci Stud Read.* 2012;16:457-474.

Spinath FM, Harlaar N, Ronald A and Plomin R. Substantial genetic influence on mild mental impairment in early childhood. Am J Ment Retard. 2004;109:34-43.

Spinath FM, Ronald A, Harlaar N, Price TS and Plomin R. Phenotypic g early in life: On the etiology of general cognitive ability in a large population sample of twin children aged 2–4 years. *Intelligence*. 2003;31:195-210.

Steves CJ, Jackson SH and Spector TD. Cognitive change in older women using a computerised battery: A longitudinal quantitative genetic twin study. *Behav Genet.* 2013;43:468-479.

Stinissen J, Willems PJ, Coetsier P and Hulsman WLL (1970). Manual for the Dutch Translated and Adapted Version of The Wechsler Adult Intelligence Scale (WAIS). Lisse, The Netherlands, Swets & Zeitlinger.

Stins JF, de Sonneville LM, Groot AS, Polderman TC, van Baal CG and Boomsma DI. Heritability of selective attention and working memory in preschoolers. *Behav Genet.* 2005;35:407-416.

Stins JF, van Baal GC, Polderman TJ, Verhulst FC and Boomsma DI. Heritability of Stroop and flanker performance in 12-year old children. *BMC Neurosci.* 2004;5:49.

Sundet JM, Tambs K, Magnus P and Berg K. On the question of secular trends in the heritability of intelligence test scores: A study of Norwegian twins. *Intelligence*. 1988;12:47-59.

Suzuki K, Shikishima C and Ando J. Genetic and environmental sex differences in mental rotation ability: A Japanese twin study. *Twin Res Hum Genet.* 2011;14:437-443.

Svedberg P, Gatz M and Pedersen NL. Genetic and environmental mediation of the associations between self-rated health and cognitive abilities. *Exp Aging Res.* 2009;35:178-201.

Swagerman SC, de Geus EJ, Kan KJ, et al. The Computerized Neurocognitive Battery: Validation, aging effects, and heritability across cognitive domains. *Neuropsychology*. 2016;30:53-64.

Swan GE and Carmelli D. Evidence for genetic mediation of executive control: A study of aging male twins. *J Gerontol B Psychol Sci Soc Sci.* 2002;57:P133-143.

Swan GE, Carmelli D, Reed T, Harshfield GA, Fabsitz RR and Eslinger PJ. Heritability of cognitive performance in aging twins. The National Heart, Lung, and Blood Institute Twin Study. *Arch Neurol.* 1990;47:259-262.

Swan GE, LaRue A, Carmelli D, Reed TE and Fabsitz RR. Decline in cognitive performance in aging twins. Heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. *Arch Neurol.* 1992;49:476-481. Swan GE, Reed T, Jack LM, et al. Differential genetic influence for components of memory in aging adult twins. *Arch Neurol.* 1999;56:1127-1132.

Tambs K, Sundet JM and Magnus P. Heritability analysis of the WAIS subtests: A study of twins. *Intelligence*. 1984;8:283-293. Taylor J. Heritability of Wisconsin Card Sorting Test (WCST) and Stroop Color-Word Test performance in normal individuals: Implications for the search for endophenotypes. *Twin Res Hum Genet*. 2007;10:829-834.

Taylor J and Schatschneider C. Genetic influence on literacy constructs in kindergarten and first grade: Evidence from a diverse twin sample. *Behav Genet.* 2010;40:591-602.

Teng EL and Chui HC. The modified Mini-Mental State (3MS) examination. *J Clin Psychiatry*. 1987;48:314-318. Terman LM and Merill MA (1973). Stanford-Binet Intelligence Scale: 1972 Norms Edition. Boston, MA, Houghton-Mifflin. Thapar A, Petrill SA and Thompson LA. The heritability of memory in the Western Reserve Twin Project. *Behav Genet*. 1994;24:155-160.

Thompson LA, Detterman DK and Plomin R. Associations between cognitive abilities and scholastic achievement: Genetic overlap but environmental differences. *Psychol Sci.* 1991;2:158-165.

Thompson LA, Detterman DK and Plomin R. Differences in heritability across groups differing in ability, revisited. *Behav Genet.* 1993;23:331-336.

Thorndike RL, Hagen EP and Sattler JM (1986). The Stanford-Binet Intelligence Scale: Fourth edition. Technical manual. Chicago, IL, Riverside.

Thurstone LL (1938). Primary Mental Abilities. Chicago, IL, University of Chicago Press. Tiffin J (1968). Purdue Pegboard Test. Chicago, IL, Scientific Research Associates.

Tosto MG, Hanscombe KB, Haworth CM, et al. Why do spatial abilities predict mathematical performance? *Dev Sci.* 2014a:17:462-470.

Tosto MG, Petrill SA, Halberda J, et al. Why do we differ in number sense? Evidence from a genetically sensitive investigation. *Intelligence*. 2014b;43:35-46.

Toulopoulou T, Goldberg TE, Mesa IR, et al. Impaired intellect and memory: A missing link between genetic risk and schizophrenia? Arch Gen Psychiatry. 2010;67:905-913.

Toulopoulou T, Picchioni M, Rijsdijk F, et al. Substantial genetic overlap between neurocognition and schizophrenia: Genetic modeling in twin samples. *Arch Gen Psychiatry*. 2007;64:1348-1355.

Toulopoulou T, van Haren N, Zhang X, et al. Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. *Mol Psychiatry*. 2015;20:1386-1396.

Tucker-Drob EM and Harden KP. Early childhood cognitive development and parental cognitive stimulation: Evidence for reciprocal gene-environment transactions. *Dev Sci.* 2012;15:250-259.

Tucker-Drob EM, Reynolds CA, Finkel D and Pedersen NL. Shared and unique genetic and environmental influences on aging related changes in multiple cognitive abilities. *Dev Psychol.* 2014;50:152-166.

Tucker-Drob EM, Rhemtulla M, Harden KP, Turkheimer E and Fask D. Emergence of a Gene x socioeconomic status interaction on infant mental ability between 10 months and 2 years. *Psychol Sci.* 2011;22:125-133.

Turkheimer E, Haley A, Waldron M, D'Onofrio B and Gottesman, II. Socioeconomic status modifies heritability of IQ in young children. *Psychol Sci.* 2003;14:623-628.

Tuulio-Henriksson A, Haukka J, Partonen T, et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. *Am J Med Genet.* 2002;114:483-490.

Uhlaner JE (1952). Development of the armed forces qualification test and predecessor army screening tests. PRB report, 1946–1950. Washington, DC, Department of the Army.

van den Berg SM, Posthuma D and Boomsma DI. A longitudinal genetic study of vocabulary knowledge in adults. *Twin Res.* 2004;7:284-291.

van Leeuwen M, Peper JS, van den Berg SM, et al. A genetic analysis of brain volumes and IQ in children. *Intelligence.* 2009a;37:181-191.

van Leeuwen M, van den Berg SM and Boomsma DI. A twin-family study of general IQ. *Learn Individ Differ*. 2008;18:76-88. van Leeuwen M, van den Berg SM, Hoekstra RA and Boomsma DI. The genetic and environmental structure of verbal and visuospatial memory in young adults and children. *Neuropsychology*. 2009b;23:792-802.

van Leeuwen M, van den Berg SM, Peper JS, Hulshoff Pol HE and Boomsma DI. Genetic covariance structure of reading, intelligence and memory in children. *Behav Genet.* 2009c;39:245-254.

van Soelen IL, Brouwer RM, van Leeuwen M, Kahn RS, Hulshoff Pol HE and Boomsma DI. Heritability of verbal and performance intelligence in a pediatric longitudinal sample. *Twin Res Hum Genet*. 2011;14:119-128.

van Soelen ILC, van den Berg SM, Dekker PH, et al. Individual differences in dynamic measures of verbal learning abilities in young twin pairs and their older siblings. *Learn Individ Differ*. 2009;19:440-444.

Vasilopoulos T, Franz CE, Panizzon MS, et al. Genetic architecture of the Delis-Kaplan executive function system Trail Making Test: Evidence for relation to response inhibition across adolescence. *J Abnorm Psychol.* 2009;118:117-130.