
I 
 

 

 

Exploring Focal Adhesion 
Kinase (FAK) as a therapeutic 
target in triple negative breast 
cancer 

 

A thesis submitted in accordance with the 
conditions governing candidates for the degree 
of: 

Doctor of Philosophy 

 

 

Samuel Rhys Jones 

September 2017 

 

Breast Cancer Molecular Pharmacology Research group 
Cardiff University School of Pharmacy and Pharmaceutical 
Sciences 
Cardiff University 
Cardiff, Wales 

  



III 
 

Abstract 

Triple-negative breast cancer (TNBC) is an aggressive cancer subtype that displays poor 

prognosis due to a lack of targeted therapies and an early pattern of spread. Recent evidence 

also points to a correlation between cancer “stem-like” cells (CSCs) and the inherently 

aggressive traits of TNBC. As such, targeting signalling pathways which support metastasis 

and CSC populations may represent an important therapeutic strategy to treat these 

tumours and improve current patient outcomes. The non-receptor tyrosine kinase FAK (focal 

adhesion kinase) is known to influence cancer development and progression, with its 

upregulation common in several cancer types. Indeed, FAK can regulate various cellular 

processes associated with disease progression including, cell survival, migration and stem-

like behaviours. Therefore, we explored the influence of FAK in TNBC cells and the potential 

benefit of its targeting in this subtype. 

Whilst assessment of FAK expression and activity across a panel of breast cancer cell lines 

representing the major clinical subtypes revealed that FAK was not significantly augmented 

in MDA-MB-231 cells (model of TNBC) versus other models, MDA-MB-231 cells displayed a 

FAK-dependent migratory and invasive behaviour involving FAK-mediated activation of Akt 

and STAT3. These observations also extended to cell proliferation, with pharmacological or 

genetic FAK inhibition leading to perturbed cell cycle progression. Whilst FAK did not 

contribute to the maintenance of a CSC subpopulation, FAK was necessary for their anoikis 

resistance and mammosphere self-renewal, the latter regulated by FAK-dependent 

modulation of β-catenin through GSK3β and interaction between the FAK/Wnt signalling 

pathways. 

Using computational modelling, several novel FAK inhibitors that targeted FAK kinase-

independent scaffolding function were developed and screened to assess in vitro efficacy in 

TNBC cells. Of all 45 compounds, ‘compound 9’ showed significantly improved ability to 

reduce cell proliferation and migration versus the lead compound, chloropyramine. As 

expected, this agent had little effect of FAK phosphorylation but appeared to reduce focal-

adhesion targeting and subcellular distribution of FAK and significantly inhibited cell 

migration and growth. Our in vitro data support a case for FAK as a promising therapeutic 

target in TNBC with an ability to suppress both tumorigenic events and those associated with 

metastasis. Targeting FAK scaffolding function may represent a novel approach to developing 

FAK inhibitors that can circumvent resistance traditionally associated with kinase inhibitors. 
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1.1. Breast Cancer 

1.1.1. Incidence and mortality 

Breast cancer is one of the most common cancers worldwide, with an estimated 494,000 new 

cases diagnosed in Europe during 2015: approximately 55,000 of these were diagnosed in the 

UK (Cancer Research UK 2017). Amongst female patients, cancers of the breast are the most 

commonly diagnosed malignancies (Miller et al. 2016; Siegel et al. 2016). Despite this, a study 

by the National Cancer Institute revealed 89% of patients diagnosed in 2003 were still alive in 

2009 (Howlader et al. 2013). These results imply that current treatments are relatively 

successful, yet breast cancer still represents a major health burden in the developed world. This 

is because a significant portion of all cancer related deaths are linked to breast malignancies. In 

addition, current treatments frequently fail to cure cancers with a significant percentage of 

patients suffering from a relapse of the disease (Miller et al. 2016). Such patients generally suffer 

a poorer prognosis upon relapse, owing to an increased chance of metastatic disease compared 

to newly diagnosed patients (Siddiqi et al. 2009). Despite improvements in the 5-year survival 

rate, there is still a need for the development of novel therapeutics that significantly improve 

treatment of breast cancer patients with a view to one day completely curing the disease. 

1.1.2. Clinical subtypes 

Since the early 2000s, treatment of breast cancer patients has become increasingly tailored to 

the molecular make-up of tumour cells (Perou et al. 2000; The Cancer Genome Atlas Network 

2012). The use of such screening techniques has meant numerous subtypes of breast cancer 

have been identified, with different classifications focused on different cellular variations. For 

example, tumours can be classified by specific gene expression, glycoprotein composition and 

histological variations (The Cancer Genome Atlas Network 2012). Arguably the most important 

variation however, is the differences in hormone receptor status. 

The presence or absence of these receptors is a central characteristic used in determining 

prognosis and treatment of breast cancer patients. Using hormone receptor status and the 

human epidermal growth factor receptor (HER2), tumours can be classified into three broad, yet 

distinct clinical subtypes: oestrogen receptor positive (ER+), HER2+ and triple-negative tumours. 

The latter most subtype is primarily comprised of cancer cells with the molecular profile ER-, 

HER2- and progesterone receptor (PR) negative. Clinically, hormone receptor positive tumours 



17 
 

(i.e. ER+ or PR+) represent the largest proportion found in breast cancer patients (around 70%) 

(Mehta and Tripathy 2014). The other subtypes have a significantly lower prevalence in patients: 

HER2+ cancers represent around 15-20% (Mehta and Tripathy 2014) and triple-negative breast 

cancers (TNBCs) around 10% (Dent et al. 2007). 

1.1.2.1. Molecular stratification of breast cancer subtypes 

In this molecular age, advancements in genetic screening techniques have further unearthed the 

complex diversity exhibited by breast cancers, effectively redefining breast cancer taxonomy 

(Perou et al. 2000; Sørlie et al. 2001). Analysis of gene expression patterns has resulted in an 

expansion of the clinical breast cancer subtypes into 4 subcategories: luminal A; luminal B; HER2-

enriched (HER2+); and basal tumours.  

As they represent a subdivision of ER+ disease, the luminal A and luminal B classes exhibit several 

similarities, including expression of a number of genes present in cells of the mammary duct 

lumen such as GATA3 (Creighton 2012). However, multiple differences between these subtypes 

exist. For example, luminal B cells tend to be more aggressive versus those classified as luminal 

A, with patients exhibiting significantly worse prognosis (Sotiriou and Pusztai 2009). This is most 

likely resultant from increased expression of proliferation-associated genes, Ki67 and PCNA, 

along with increased frequency of abnormalities in several genes directly implicated in cancer 

progression, such as TP53, PTEN and PI3KCA, compared to luminal A cells (Creighton 2012). The 

HER2-enriched group represent tumours similar in gene expression patterns to ER-/PR-/HER2+ 

clinical subtype (Vallejos et al. 2010). Typically, this classification of breast cancer is characterised 

by presence of the HER2-receptor. Although typically this occurs as a result of gene amplification, 

some such tumours have aberrant HER2-levels resulting from non-amplified, single-copy 

overexpression  (Dai et al. 2014). As such, overexpression of genes within the HER2 amplicon, 

such as PGAP3 and Grb7, are also used to define this subtype of disease (Dai et al. 2014). Basal 

tumours exhibit expression of specific gene clusters characteristic of basal mammary cells, 

including laminin, β4-integrin and keratin 5/6/17. Clinically, this subtype is primarily comprised 

of triple-negative cells, although TNBC has more recently been proposed to be a distinct subclass 

of its own (discussed further later) (Brenton et al. 2005). In terms of gene expression, these 

tumours display a significantly higher rate of mutations in p53 (82%) versus the other 

classifications, possibly underpinning the noted prognosis of such cancers. In contrast to the 

other subtypes, the relevance of normal-like tumour expression profiles to clinical outcome is 



18 
 

poorly understood. This group display comparative gene expression profiles to non-epithelial 

and adipose tissue cells, whilst also showing lower expression of luminal-like genes (Perou et al. 

2000). 

As one would imagine, further stratification of breast tumours has enabled a more detailed 

examination of clinical outcome. As seen in figure 1.1, luminal A tumours have the greatest 

overall and relapse- free survival rates versus all other groups, whilst HER2+ and basal tumours 

have a significantly worse prognosis, likely owing to increased expression of genes associated 

with proliferation and metastasis (Brenton et al. 2005). In addition to its use as a prognostic tool, 

this expanded taxonomy has also resulted in the development of predictive models of relapse 

and therapeutic response (Weigelt et al. 2008; Parker et al. 2009). 

 

_____________________________________________________________________________________ 
Figure 1.1 – Prognosis of breast cancer patients based on molecular stratification of subtypes – Kaplan-
Meir curves showing differences in overall survival (A) and progression-free survival (RFS) (B) of patients 
between molecular subtypes. Patients exhibiting triple-negative disease displayed a significantly poorer 
overall survival, whilst triple-negative and HER2+ had significantly poorer progression-free survival versus 
other molecular subtypes (X. Wu et al. 2016). 

 

Genetic subdivisions of tumours in this manner marks a significant move forward towards a 

personalised-approach to cancer treatment, with patients being treated based on distinct 

tumour composition rather than broad classification. Some such technologies are currently in 

use although to a somewhat limited degree. For example, the Oncotype DX system has been 

utilised to predict 10-year recurrence risk in patients exhibiting ER+, node-negative tumours 
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following endocrine and/or chemotherapy (Dai et al. 2015). This assay is based on the expression 

of 21 genes, 16 cancer-related and 5 reference genes, although screens are available which 

utilise far more. In 2009, Parker et al outlined a classification system based on a 50-gene 

signature (named PAM50) which also displayed significant prognostic potential (Gnant et al. 

2014; Dowsett et al. 2013; Parker et al. 2009), as well as being readily adaptable to a clinical 

setting (Ades et al. 2014). 

1.1.3. Therapeutic strategies for breast cancer 

As noted, overall prognosis for breast cancer patients is relatively good, with average 5-year 

survival rates estimated at 89% (Howlader et al. 2013). This is largely resultant from the 

development of successful tailored therapeutic strategies. Indeed, the presence or absence of 

hormone receptors on tumour cells currently informs treatment regimens, enabling the most 

appropriate therapies to be utilised based on individual patient requirements.  Briefly, ER+ 

tumours are targeted using endocrine therapy whilst HER2+ patients typically receive 

antagonists against this receptor (Figueroa-Magalhães et al. 2014). In stark contrast to this, 

triple-negative tumours display lack of specific, targeted treatments, directly resulting from a 

lack of hormone receptor expression. Consequently, the treatment options in patients 

diagnosed with such tumours are limited are limited to adjuvant chemotherapy (Dent et al. 

2007). However, a number of groups are currently exploring alternative methods by which to 

treat TNBC patients (discussed later). 

1.1.3.1 Targeting ER in breast cancer therapy 

As noted, patients exhibiting ER+ tumours represent approximately 70% of all diagnosed breast 

cancer cases. Consequently, the movement to a malignant phenotype in these cells is proposed 

to be linked to aberrant ER signalling, likely due to increased stimulation with oestrogens. 

Indeed, ER have been shown to regulate several proteins closely linked to tumourigenesis 

(Carroll and Brown 2006). For example, stimulation with oestradiol (E2), causes phosphorylation 

and subsequent dimerization of ERs, which in turn can bind to oestrogen responsive elements 

(EREs) present in the promoter regions of oestrogen responsive genes and, following the 

recruitment of coactivators such as A1B1, thus modulate gene expression (Carroll and Brown 

2006). Moreover, ER has also been shown to interact with other transcription factors to drive 

tumourigenic gene expression. Such stimulated genes include IGF-IR, VEGF, c-myc and cyclin D1. 
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In addition to modulating transcription, membrane-associated ER can influence various 

signalling pathways, such as Pi3K and MAPK (Sun et al. 2001; Klinge et al. 2005), as well as 

stimulating growth factors including EGFR and IGF1-R (Levin and Pietras 2008) further promoting 

tumourigenesis. 

Given the role of ER in driving tumourigenic pathways, the primary strategy of therapeutic design 

for ER+ tumours hinges on preventing oestrogen binding, ER function or reducing oestrogen 

levels thus impairing disease progression, recurrence risk or death. As such, endocrine therapies 

have been labelled as the “gold standard” for treatment of ER+ tumours. Below are outlined the 

three main classifications of endocrine therapies, including their respective benefits and 

drawbacks. 

1.1.3.1.1. Selective oestrogen receptor modulators (SERMs) 

These compounds aim to inhibit the interaction between ERs and their stimulating oestrogens. 

The most well-known of these compounds is Tamoxifen which selectively binds to ERs, blocking 

stimulation by E2. This drug has been the cornerstone of ER+ tumour treatment, being in use for 

over 30 years and having a significant impact on patient outcome. For example, a study 

conducted by the EBCTCG (Early Breast Cancer Trialists’ Collaborative Group) found that patients 

treated with adjuvant Tamoxifen for 5 years exhibited significantly improved recurrence rates 

and mortality versus control patients over 15 years following initial diagnosis (Davies et al. 2011). 

Subsequent analysis revealed that sustaining Tamoxifen treatment up to 10 years further 

increases patient outcomes (Davies et al. 2013). However, use of this drug has a number of well 

documented side-effects which include an increased risk of deep vein thrombosis, pulmonary 

embolisms and endometrial cancer (Swerdlow and Jones 2005; Hernandez et al. 2009). The latter 

is most likely a result of Tamoxifen acting as a partial agonist of ER in endometrial tissues, thus 

stimulating growth pathways otherwise impaired in breast cells (Davies et al. 2011).  

 1.1.3.1.2. Selective oestrogen receptor degraders (SERDs) 

The primary role of these compounds is to trigger the degradation of ER, effectively reducing the 

amount available for stimulation and resultant regulation. Another well documented compound, 

Faslodex (Wakeling et al. 1991), is an example of this type of agent. Despite appearing to have 

similar efficacy versus Tamoxifen in the clinic, Faslodex causes a significant higher decrease in 

ER-driven gene transcription in breast cancer cells. This is likely due to a combination of higher 



21 
 

binding affinity for ER and targeting of cytoplasmic ER, not seen following Tamoxifen treatment 

(Howell 2006). Additionally, Faslodex appears to significantly reduce tumour PR levels in a dose-

dependent manner (Ciruelos et al. 2014). Furthermore, Faslodex is referred to as a “pure anti-

oestrogen” as it does not demonstrate the partial agonistic effects displayed by Tamoxifen 

(Howell et al. 2000). Unlike Tamoxifen however, this drug is rarely used as a first-line treatment 

and is more typically prescribed following development of resistance to other hormonal 

therapies (Ciruelos et al. 2014). Indeed, studies have shown Faslodex to be active in breast 

cancer patients previously treated with tamoxifen or aromatase inhibitors (Chia et al. 2008). 

1.1.3.1.3. Aromatase inhibitors (AIs) 

These compounds are designed to starve tumour cells of oestrogen by reducing levels of 

circulating oestrogen. This is achieved through binding to the aromatase enzyme responsible for 

oestrogen production thus impairing synthesis. These compounds fall into 2 classes: non-

steroidal AIs, such as anastrozole and letrozole, reversibly bind aromatase, whilst steroidal AIs, 

such as exemestane, exhibit non-reversible binding (Miller et al. 2008). Although this difference 

in mechanism of action may imply variations in efficacy between the two classes of AIs, very few 

head-to-head comparisons have been undertaken so data to support any improved efficacy is 

extremely limited. Regardless, all the mentioned AIs are approved for use in the UK, particularly 

in the treatment of early or late breast cancer in post-menopausal women (NICE UK). Moreover, 

these compounds are also approved as an extended treatment for Tamoxifen treated patients. 

Indeed, a study by Howell et al (2005) revealed use of anastrozole in patients significantly 

extended disease-free survival versus tamoxifen with patients exhibiting fewer gynaecological 

or vascular side-effects (although bone fractures and arthralgia was increased) (Howell et al. 

2005). These observations were subsequently expanded in 2010, where the 10-year analysis of 

this trial revealed the long-term efficacy of anastrozole over Tamoxifen for hormone-responsive 

tumours in post-menopausal women (Cuzick et al. 2010).  

1.1.3.2 Targeting HER2 in breast cancer therapy 

HER2 is an ErbB-family, receptor tyrosine kinase (RTK) frequently used in the clinical classification 

of breast cancer tumours, with around 20% of patients presenting amplified levels (Slamon et al. 

1987; Mehta and Tripathy 2014). This family of RTKs has been extensively studied and includes 

members such as HER3, HER4 and EGFR. Moreover, the stimulating ligands for these receptors 
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have been well documented and include epidermal growth factor (EGF), transforming growth 

factor alpha (TGFα) and heregulins (HRG) (Olayioye et al. 2000). Activation through ligand 

binding causes a conformational change in these receptors leading to homo/heterodimerisation, 

subsequently stimulating intrinsic phosphorylation of several residues to provide docking sites 

for downstream secondary messengers (e.g. PI3K, Src and Crk) and resultant activation of 

signalling pathways linked to proliferation, cell survival and migration (Schulze et al. 2005; Park 

et al. 2008). Consequently, these receptors have been well studied in cancer biology and their 

aberrant activity is strongly linked to tumour progression and overall patient prognosis. 

Although all members of this family have been implicated in cancer, overexpression of HER2 is 

of particular significance as this protein is used as a prognostic marker and utilised for targeted 

therapy. Interestingly, unlike its family members, HER2 lacks a functional ligand-binding domain 

but it represents the preferred heterodimer binding partner of all ErbB receptors (Graus-Porta 

et al. 1997; Park et al. 2008). This may be the underlying reason as to why this receptor stands 

out amongst its family as particularly important and why its overexpression is currently used to 

guide cancer treatment. Regardless, directly targeting the HER2 receptor is the primary method 

of treatment used in patients exhibiting the HER2+ class breast cancer. 

To that end, the HER2+ antagonist Trastuzumab (Herceptin, Genentech) was developed (Carter 

et al. 1992) and is currently the most widely employed drug used in the treatment of HER2+ 

breast cancer patients (Figueroa-Magalhães et al. 2014). Approved for use in the UK in 2006, this 

drug is a humanised murine monoclonal antibody that specifically targets HER2 and is believed 

to impair its function through several mechanisms of action. Primarily, Herceptin prevents the 

formation of HER2 homo- and heterodimers by disrupting their interaction, leading to 

dissociation and subsequent reduced stimulation of downstream signalling (Junttila et al. 2009). 

Given its specificity to HER2, homodimerization can be altered to a greater degree than 

heterodimerization, although the latter is still greatly impaired. It can also impair HER2/Src 

association preventing Src-mediated inhibition of PTEN, thus restoring suppression of PI3K/Akt 

survival pathways (Nagata et al. 2004). In addition to impairing downstream signalling, Herceptin 

has also been shown to reduce expression of several genes, particularly associated with 

angiogenesis in vivo (Izumi et al. 2002). This led to a significant decrease in tumour blood vessel 

number and size, as well as reduced tumour growth. Interestingly, Herceptin has been shown to 

act as an opsonin, facilitating the adaptive immune system in targeting tumours through a 
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process known as antibody-dependent cellular cytotoxicity (ADCC) (Collins et al. 2012). This was 

demonstrated by Gennari et al (2004) and Arnould et al (2006) who noted significantly increased 

lymphocyte and natural killer cell infiltration of tumours in patients treated with Herceptin 

(Gennari et al. 2004; Arnould et al. 2006). 

1.1.3. Triple-negative breast cancer 

As noted previously, TNBC are characterised by their absence of ER, PR and HER2 receptors and 

represent the primary constituents of the basal-like cancers (Brenton et al. 2005). Prevalence of 

this subtype is particularly high in African American women and displays increased diagnosis in 

younger patients (below 50-years of age) (Bramati et al. 2014). Interestingly, patients exhibiting 

BRCA-1 and -2 mutations, often attributed to hereditary cancer development, regularly develop 

triple-negative tumours (Badve et al. 2011). Although these mutations are not present in the 

majority of sporadic TNBCs, there is significant correlation in genetic profiles between BRCA1-

carrier tumours and those exhibited by TNBCs, likely resultant from irregular BRCA-1 signalling 

(Turner et al. 2004). The significance of this is discussed further later. Of all clinical subtypes, 

patients exhibiting triple-negative disease have a significantly poorer prognosis versus other 

subtypes, with many displaying very short disease-free periods prior to relapse (Banerjee et al. 

2006). Indeed, the risk of recurrence in these patients is highest in the first three years following 

therapy, with most deaths coming within 5 years (Tischkowitz et al. 2007; Dent et al. 2007). In 

addition, progression of triple-negative tumours is fairly rapid with much shorter median times 

observed between early metastatic disease and death than in other subtypes (Dent et al. 2007). 

Given their lack of hormone receptor presentation, TNBC lacks tailored treatments with current 

therapeutic regimens limited to chemotherapy. Typical response rates vary, with neoadjuvant 

administration of anthracycline alone, or in combination with taxane-based agents showing 

between 17 and 58% complete pathological response and platinum based chemotherapy 17%. 

(Sánchez-Muñoz et al. 2008; Liedtke et al. 2008). Coupled with their increased aggressive 

tendencies, this lack of therapeutic strategies is proposed as the primary reason for poorer 

patient outcome in this subtype. Almost seeming to contrast this observation, triple-negative 

tumours have been shown to respond significantly better to chemotherapy than other breast 

cancer subtypes, although patients exhibiting residual disease still have a very bleak outcome 

(Hudis and Gianni 2011). To that end, there has been a large drive to uncover druggable targets 

within TNBCs to develop new and effective therapeutics. For example, triple-negative tumours 
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have been shown to exhibit an increased frequency in EGFR overexpression versus all other 

subtypes (Gumuskaya et al. 2010; Liu et al. 2012). As a result, studies have been conducted 

exploring the efficacy of EGFR-antagonists as monotherapies or in combination with 

chemotherapy (Reeder-Hayes et al. 2010). However, this target has proven unfruitful, likely due 

to abnormalities in PTEN which can not only circumvent anti-EGFR treatment but are also 

particularly common in TNBC cells (Marty et al. 2008). 

To date, the most promising novel target in TNBC treatment has been poly ADP (adenosine 

diphosphate- ribose) polymerase (PARP). This protein plays a central role in mediating cellular 

responses to DNA damage, particularly single strand breaks. As previously noted, a number of 

triple-negative tumours exhibit some form of dysfunctional BRCA-1 signalling (Turner et al. 

2004). Given that BRCA-1 contributes to DNA-repair mechanisms, it stands to reason that 

targeting TNBCs with DNA damaging agents or further diminishing of DNA repair strategies could 

represent effective targeted therapies. Indeed, several PARP inhibitors have demonstrated 

potential as clinical agents in TNBCs. One such compound, Iniparib (also known as BSI-201) was 

previously identified as a potential compound for treatment of TNBCs in combination with 

chemotherapy. Randomised phase II clinical trials revealed that treatment with iniparib in 

combination with carboplatin and gemcitabine resulted in significantly improved overall 

response rate, survival and progression-free survival versus combination chemotherapy alone 

(O’Shaughnessy et al. 2009). This finding was subsequently validated in a subsequent survival 

analysis, which revealed median overall survival rate improved from 7.2 to 12.2 months 

following chemotherapy with an iniparib arm (O’Shaughnessy et al. 2011). However, this 

compound failed to reach pre-specified endpoints for overall or progression-free survival when 

combined with chemotherapy in a larger, randomised phase III clinical trial (Reeder-Hayes et al. 

2010). This may have resulted from the inclusion of patients within the study whose tumours 

were particularly unresponsive to PARP therapy. With that in mind, studies are being undertaken 

by many groups who are aiming to identify novel biomarkers within TNBCs to further stratify this 

subtype and identify patients with tumours particularly sensitive to such biological agents (Badve 

et al. 2011). To recapitulate, despite some early successes, EGFR and PARP targeting therapeutics 

have thus far shown limited efficacy in TNBC treatment. Consequently, new therapeutics are 

needed, either as monotherapy or to improve existing treatments, in TNBC for which prognosis 

is poor.  
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1.2. Focal Adhesion Kinase (FAK) 

1.2.1 FAK discovery and structure 

In the early 1990s, focal adhesion kinase (FAK) was identified as a 125kDa, non-receptor tyrosine 

kinase (non-RTK) that is ubiquitously expressed in human tissues (Schaller et al. 1992). FAK is 

conserved across species with mice, Xenopus and zebrafish sharing 97%, 90% and 79% sequence 

homology to human FAK respectively, reflecting the importance of FAK across diverse organisms 

(Schaller 2010). As noted, FAK is a member of the non-RTK family but, unlike the majority of non-

RTKs, FAK lacks both the Src homology (SH) 2 and SH3 domains (figure 1.2A) (Luo and Guan 

2010). Figure 1.2B shows the general structure of FAK, including key features and binding 

partners. Broadly, the structure of FAK can be broken into five regions, compartmentalised into 

three broad sections: The N-terminal FERM (band four point one, ezrin, radixin and moesin) 

domain; the central kinase domain; and the C-terminal domain. The roles of these domains have 

been characterised on several occasions, although the full function of all these elements remains 

to be elucidated. 
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_____________________________________________________________________________________ 
Figure 1.2 – Structural composition of non-receptor tyrosine kinases (non RTKs) and FAK – (A) A basic 
diagrammatic representation of the major non-RTK families showing key binding and regions of activity. 
Each family typically contains a tyrosine kinase domain and SH2 and SH3 regions. FAK and JAK family 
proteins tend to lack the latter of these domains. (image adapted from Voet and Voet 2004) (B) A basic 
outline of the structure of FAK, highlighting the key tyrosine phosphorylation sites (Y), the FERM domain, 
the FAT sequence, the kinase domain and linker region (LR). Also shown are the proline-rich regions 
(brown) and the location of the PxxP binding motif (circle in LR). Arrows indicate the locations of molecular 
binding sites upon activation of FAK. The molecules paxillin and talin are required for localisation to focal 
adhesions and thus can bind in the absence of activation. 
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1.2.2. FAK activity and signalling 

FAK is primarily located in sites of cell-matrix adhesion termed ‘focal adhesions’ (FAs) (the 

structure of which is summarised in figure 1.3) reflecting the role of FAK as a central regulator 

of integrin-mediated signalling (Schaller et al. 1992). In recent years, the combination of 

functional mutation studies and elucidation of the crystal structure of FAK has led to a fairly 

comprehensive model of integrin-induced FAK activation being developed (Zhao and Guan 

2011). This complex regulation is summarised briefly in figure 1.4. In brief, upon integrin binding, 

FAK undergoes a conformational change resulting in the autophosphorylation of FAKY397. The 

Y397 site has been postulated as the most important to FAK-kinase activity. This residue 

represents the major autophosphorylation of FAK, and its stimulation is required for 

conformational changes which result in Src binding and trans-autophosphorylation to fully active 

FAK. However, activation of FAK is not only initiated through engagement of integrins. Numerous 

extracellular stimuli can also cause such activation: for example it can be activated by a number 

of growth factors (such as platelet-derived and hepatocyte growth factors (Sieg et al. 2000; 

Matsumoto et al. 1994)) as well as cytokines and phospholipids (Schlaepfer et al. 2007; 

Seufferlein and Rozengurt 1994). Despite the different nature of the signals, it does appear that 

the same mechanism is employed to relieve the inhibition of FAK: the signal causes a 

conformational change alleviating the steric hindrance of Y397, Src binding site and kinase 

domain. 
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_____________________________________________________________________________________ 
Figure 1.3 – Basic structure of focal adhesions (FAs) including key signalling molecules – FAs represent 
sites of interaction between the extracellular matrix (ECM) and cells or order to influence cell signalling in 
response to environmental stimuli. Primarily, these signals are regulated through the binding of specific 
ECM components (such as fibronectin and collagen) to cell surface receptors known as integrins 
(heterodimeric protein comprised of an α and β-subunit). Integrins are only able to act in this manner 
following a conformational change which straightens the protein (Critchley and Gingras 2008). This 
switch is induced by binding of a protein to the cytoplasmic region of the β-subunit, for example talin. 
Subsequent conformational changes in integrins due to ECM binding stabilise FAs through talin-mediated 
binding of actin filaments. The resulting complex then recruits paxillin, FAK and Src-family kinases (SFKs) 
to allow initial actin polymerisation (Roca-cusachs et al. 2012). These molecules can then become 
activated and phosphorylated leading to a contraction in myosin, leading to the stretching of talin and the 
exposure of binding sites for vinculin. This vinculin binding is sufficient to cause cellular protrusions often 
noted in migrating cells (Hirata et al. 2014). Resulting nascent adhesions then undergo a phase of 
growth, which includes cycles of assembly and disassembly, before some evolve and become mature FAs, 
whilst others are permanently disassembled. 
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_______________________________________________________________________ 

Figure 1.4 – Structural alterations that activate FAK – Lobed regions of the FERM domain bind to the 
linker region (via F3) and the F596 residue of the kinase domain (via a hydrophobic pocket in the F2 lobe) 
in the absence of an activating signal. This sterically hinders target protein binding to the kinase domain 
and sequesters Y397 phosphorylation and SH3-domain protein binding (via PxxP motif). Activating 
proteins (orange star) bind to the FERM region and cause a conformational change releasing the 
sequestered regions. This leads to autophosphorylation of Y397 and also enables Src binding via its SH3 
domain to the Pxxp-motif. The SH2 domain of Src interacts with phosphorylated Y397 leading to removal 
of inhibitory phosphorylation at SrcY527 and activating phosphorylation of SrcY419. Activated Src 
subsequently phosphorylates remaining residues leading to maximal activation of FAK. (Image adapted 
from Lietha et al. 2007). 

 

1.2.2.1. FERM domain regulation of activity 

The FERM domain of FAK shows remarkable homology to a number of cytoskeletal proteins, for 

example the ezrin-radixin-moesin (ERM) and talin (Chishti et al. 1998), as well as several other 

tyrosine phosphatases (Girault et al. 1999). The FERM domain acts as the major negative 

regulator of FAK activity, with its displacement from the kinase region essential for FAK 

stimulation (X. L. Chen et al. 2012). Indeed, early studies revealed that truncation of the FAK 

FERM domain, which prevented interactions between the FERM and kinase domain, resulted in 

increased tyrosine phosphorylation and resultant FAK activity (Lim, Mikolon, et al. 2008). 

Moreover, FERM-negative FAK mutants display amplified kinase activity owing to increased Y397 

phosphorylation (Cooper et al. 2003). Taken together these studies highlight the importance of 

the FERM-domain in the negative-regulation of FAK.  

Additionally, the FERM-domain can directly influence FAK signalling through interactions with a 

number of secondary messengers, including PIP2 and various growth factor receptors, to enable 
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their activation by FAK (Cai et al. 2008; Chen and Chen 2006). Consequently, the FAK FERM 

domain can contribute to specific direction of FAK’s downstream signalling. 

Interestingly, the FERM domain of FAK has been shown to contain potential nuclear-export and 

nuclear-localisation signals (NES and NLS respectively) (Frame et al. 2010). This suggests that the 

FERM-domain, at least in part, can contribute to transduction of membrane signals to the cell 

nucleus (Frame et al. 2010). Indeed, Lim et al demonstrated that following a reduction in integrin 

signalling, the FERM domain of FAK can promote cell survival by providing a scaffold for 

p53/MDM2 interactions within the nucleus resulting in increased ubiquitination of p53 (Lim, 

Mikolon, et al. 2008). 

1.2.2.2. Central kinase domain 

The central kinase domain of FAK is the core region of catalytic activity and is required for 

stimulation of several downstream effector molecules. Importantly, this region contains the 

Y576 and Y577 phosphorylation residues. It has long been established that following FAK-

mediated activation, Src phosphorylates these sites leading to the full activation of FAK kinase 

function (Calalb et al. 1995). Indeed, impairing the phosphorylation of these residues is sufficient 

to cause a significant decrease in cell migration owing to a loss of FA disassembly (Hamadi et al. 

2005). Moreover, the stimulation of these residues can be achieved through additional 

molecules, such as the RET receptor, binding to the FERM domain and directly phosphorylating 

Y576 and Y577 (Plaza-Menacho et al. 2011). 

1.2.2.3. C-terminus FAT region 

The C-terminus of FAK is also central in the regulation of cellular FAK interactions and activity. 

This domain contains two proline-rich sites (figure 1.2B) which serve as binding domains for 

numerous SH3-containing molecules. Some of these are ASAP1 and p130cas (Liu et al. 2005). 

The binding of molecules to this region has been shown to facilitate subsequent binding of other 

proteins involved in specific signal cascades (for example see Kondo et al. 2000). Interestingly, 

very few studies have investigated targeting these proline-rich sites for therapeutic FAK 

inhibition in cancer or other disease states. The C-terminal domain also contains the focal 

adhesion targeting sequence (FAT sequence). This four-helix bundle is essential for localisation 

of FAK to focal adhesions (FAs), being demonstrated as both sufficient and necessary for FAK 

localisation (Hayashi et al. 2002a). 
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The C-terminal region of FAK is central in enabling multiple protein-protein interactions, for 

example through its two proline-rich domains. Such interactions are attributed to FAK’s kinase-

independent functions where its role is as a scaffold protein. Upon Y397 phosphorylation, FAK is 

able to bind a number of SH3 containing molecules without directly affecting their function. 

Instead, FAK activated Src acts to phosphorylate these proteins and subsequently lead to the 

initiation of signalling cascades. Some proteins regulated in this way are the GTPase regulator 

associated with FAK (Graf) (Hildebrand et al. 1996), which regulates actin dynamics through 

RhoA, and also endophilin A2 (Wu et al. 2005), involved in endocytosis. Taken together, this 

evidence suggests that FAK scaffolding is likely to play an important role in FAK-regulated cell 

behaviours. 

1.2.3. FAK family members 

FAK itself is a member of the FAK subfamily of non-receptor tyrosine kinases, which also includes 

Pyk2. Around the same time that FAK was identified, another structurally similar molecule was 

also identified. This molecule, Pyk2 (Proline-rich tyrosine kinase), has been found to be around 

45% identical to FAK, also sharing a very similar domain structure (figure 1.5) (London 1995). 

However, the relative importance of these two molecules differs significantly. For example, FAK 

is ubiquitously expressed and transgene studies have shown that it is essential to life. In contrast, 

Pyk2 is primarily expressed in haematopoietic cells and those of the central nervous system (Lev 

et al. 1995). Moreover, Pyk2 deficient mice survive and are fertile with only minor effects being 

noted (primarily abnormal morphology of macrophage cells) (Okigaki et al. 2003). The regulation 

of the molecules also differs significantly. FAK is activated through integrins and growth factor 

receptors present at FAs: Pyk2 is cytoplasmic and its activity initiated via chemokines and G 

protein-coupled receptors (Dikic et al. 1996). Despite these contrasts, the two molecules do not 

exist independently of each other. A number of studies have shown that Pyk2 has some 

compensatory function for the loss of FAK (for example see Fan and Guan 2011). Consequently, 

studies into FAK cannot overlook a potential compensation by Pyk2. 
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_____________________________________________________________________________________ 
Figure 1.5 – Structural comparison of FAK and Pyk2 – Basic outline of the structures of FAK and Pyk2 
highlighting the levels of homology within the previously noted 3 domains.  

 

1.2.4. Functional relevance of FAK signalling 

Its close link with integrin-mediated signalling led to the identification of FAK as a central 

regulator of FA turnover and cytoskeleton remodelling, processes central to cell migration. In 

support of this, multiple lines of evidence illuminate FAK protein as central in normal animal 

embryonic development. For example, FAK-null mouse embryos have been shown as 

embryonically lethal, primarily due to a loss of mesodermal cell movements during embryonic 

development resulting in perturbed cell localisation (Petridou et al. 2013; Furuta et al. 1995). 

However, FAK has also been shown to regulate numerous other cellular processes including: 

proliferation (Lim, Chen, et al. 2008), cell survival (Kurenova et al. 2004), migration (Owen et al. 

1999), invasion (Chan et al. 2009), as well as stem-cell like behaviours (Luo et al. 2013). An 

example of the pathways FAK regulates in these processes is shown in figure 1.6. Involvement 

in such processes has directly implicated FAK in pathogenesis of human disease processes: for 

example cardiovascular associated diseases such as cardiac hypertrophy (Vadali et al. 2007). Its 

role in multiple pathway regulation has also led to the identification of FAK as a central mediator 

of processes leading to the development and progression of cancer. As a result, FAK represents 

a major potential target for novel therapeutics that could result in swift and efficient treatment 

of tumours. 
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_______________________________________________________________________ 

Figure 1.6 – Regulation of signals by FAK – FAK can be activated by a number of signals from cell surface 
receptors. These do not only include integrins (INT) but also receptor tyrosine kinases (RTKs) and growth 
factor receptors (GFRs). These lead to induction of FAK activity and, upon association with Src, maximal 
activation. Fully stimulated FAK can then stimulate a number of different signalling cascades. Active FAK 
directly interacts with the death-inducing signalling complex (DISC) and inhibits its activity, therefore a 
loss of caspase-8 mediated apoptosis, so promoting cell survival (L.-H. Xu et al. 2000). Moreover, 
phosphorylation of FAK is essential in order to transmit VEGF-mediated angiogenic signals via integrin 
αvβ5 and VEGFR3 (Skobe et al. 2001; Eliceiri et al. 2002). Association of p130cas with FAK following 
induction leads to recruitment of Crk and its activation via Src. This protein can then activate DOCK180 
and subsequently Rac which results in cellular migration (Cho 2000). FAK is also involved in regulating 
cellular proliferation. Upon maximal activation, Y925 can bind Grb2 which subsequently activates the Ras-
MAPK-ERK signalling cascade resulting in upregulation of cyclin D (Zhao et al. 2001). This results in 
progression through the cell cycle and so cell division. It is important to note these are just some of the 
pathways that FAK regulates in each of the named processes: numerous others exist, for example FAK 
directly mediates the PI3K/Akt survival pathway, involved in anchorage-independent cell survival. 
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1.3. FAK and cancer 

Given the diversity of signalling programs that FAK is involved in, which control cellular 

behaviours such as movement, growth and survival, it is not surprising that FAK has been 

implicated as a key modulator of tumour cell functions promoting tumour development, survival 

and spread. As such, FAK has been directly implicated in the development and progression of a 

number of different cancers (Golubovskaya et al. 2009). Consequently, research into FAK’s role 

in cancer has seen a major drive in recent years. Given the complex regulation of FAK activity 

and the role of FAK as a signalling hub for numerous pathways, this implies tightly controlling 

FAK activity is essential to maintenance normal cellular behaviours. Indeed, aberrant activity can 

contribute to progression of cells to an aggressive, malignant phenotype. Numerous studies have 

highlighted oncogenic protein transformations that can induce atypical FAK activity, required for 

movement to a cancerous phenotype. For example, an early study by Akagi and colleagues 

(2002) showed that the presence of the oncogenic protein v-Crk induced constitutive 

phosphorylation of the FAKY397 residue leading to an increase in association between FAK and 

the p85 subunit of phosphoinositol-3-kinase (PI3K) (Akagi et al. 2002). This activation was 

essential in allowing v-Crk to aberrantly activate the PI3K/Akt pathway as FAK-null cells 

transformed with this oncoprotein did not exhibit constitutive Akt signalling (Akagi et al. 2002). 

This example also highlights how the activities of many oncogenic proteins hinge on unregulated 

FAK activity, being unable to induce phenotypic changes without FAK activity. 

Interestingly, aberrant stimulation of FAK by oncogenic proteins is not the only means that 

promote a malignant phenotype, as increased or direct loss of structural regulation within FAK 

have also been demonstrated to cause cancer. Recently, Fang et al (2014) identified a novel 

deletion within the FAT sequence in breast and thyroid cancer patients (Fang et al. 2014). The 

effects of this deletion mimicked the phenotype of constitutively phosphorylated FAK. This may 

result from a loss of steric hindrance of the Y397 site as the region containing the deletion was 

correlated with the binding sites of the protein talin and paxillin. Given the similarity in structure 

between the FERM domain and talin, the FAT sequence may no longer be able to interact with 

this region thus alleviating FERM-kinase domain binding. Coupling studies into FAK’s role in 

cancer, one could suggest numerous mechanisms by which FAK leads to such phenotypic 

changes (shown in figure 1.7). 
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_______________________________________________________________________ 
Figure 1.7 – Possible induction of cancer through FAK – Coupled with other malignant transformations, 
there are a number of possible mechanisms by which FAK contributes to a cancerous phenotype. A) An 
oncoprotein (e.g. v-Crk or mutant p53) causes a transformation in FAK resulting in it becoming unregulated 
(FAK*). This then contributes to a malignant phenotype, whilst also maintaining the activity of oncoprotein 
X so it can continue to affect FAK and aberrant signalling. B) An overexpression or oncogenic 
transformation of a RTK or GFR leads to constitutive stimulation of FAK activity and thus its associated 
pathways contributing to cancer development and progression. C) A genetic mutation to either regulatory 
sequences or the Fak gene results in overexpression or hyperactivity of the FAK protein. This then causes 
aberrant stimulation of FAK-associated signalling pathways influencing malignant transformation. This 
mechanism may also lead to a sequestering of tumour suppressor proteins (such as p53) further enhancing 
malignancy. 
 

1.3.1 FAK and tumour initiation – Proliferation and Survival 

In normal tissues, FAK has been shown to regulate integrin mediated cell cycle progression. One 

of the ways it does this is through interacting with the RAS-MAPK-ERK pathway. Upon maximal 

activation, phosphorylation of FAKY925 occurs which promotes the binding of the Grb2 protein 

(Schlaepfer et al. 1994). This subsequently activates ERK, which in turn causes transcriptional 

activation of cyclin D1 and, following binding to its corresponding cyclin-dependent kinase (CDK), 

initiates the events leading to progression from G1/S phase (Zhao et al. 2001). The activation of 
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FAK not only affects positive cell cycle regulators but also cell cycle inhibitors. For example, 

expression of the cip/kip family inhibitor p21 has been demonstrated to be downregulated in 

response to FAK activation (J.-H. Zhao et al. 1998). Normally this protein inhibits the interactions 

of cyclin-CDK complexes in response to DNA damage thus halting the cell cycle in G1: it also 

regulates cellular senescence (Gartel and Radhakrishnan 2005).  The downregulation of this 

protein thus means cells are free to progress in the cell cycle through what is seen as the major 

commitment step (i.e. once G1 to S-phase is accomplished the cell will undergo a complete cell 

cycle). Other pathways have also been implicated in FAK regulation of cellular proliferation 

including the JNK pathway (Oktay 1999). This evidence thus suggests that the loss of FAK 

regulation would lead to uncontrolled cell division and thus cancer. 

Indeed, this is the case as several groups have displayed direct evidence for FAK’s regulation of 

the cell cycle. Recently, a number of these groups have utilised genetically modified mice to 

observe such effects in vivo and compliment in vitro studies. One such study demonstrated that 

by specifically knocking-out FAK in tumour cells, the activity of several proliferation regulators 

including ERK, cyclin D1 and p130cas were significantly reduced leading to growth arrest of the 

tumour itself (M. Luo et al. 2009). Other groups have also highlighted the importance of specific 

pathways in FAK-mediated proliferation. In 2002, Aguirre and colleagues showed that FAK 

inhibition impaired the growth of Hep3 liver cells through downregulation of MAPK/ERK 

signalling, which could be rescued by an active MEK 1 mutant in FAK-negative mutant cells 

(Aguirre Ghiso 2002). The evidence presented by these groups not only demonstrates that FAK 

is central in regulating proliferation, but more importantly inhibition of this over-activity can lead 

to a disruption of tumourigenesis. As a result, targeting FAK with novel inhibitors could lead to 

an arrest of this early, tumourigenic event and thus prevent tumours becoming more developed 

and detrimental to the patient. This idea has not been explored in much detail, particularly in 

the TNBCs. As such, there is an opportunity with this project to observe whether inhibition of 

FAK activity in TNBCs leads to an alleviation of the malignant phenotype, possibly through the 

induction of senescence or arrest of the cell cycle. 

FAK may also promote tumour cell survival through inhibition of apoptotic processes. For 

example, Sonoda et al (2000) reported that FAK overexpression in HL-60 leukaemia cells induced 

Akt signalling resulting in inhibition of caspase-3-mediated apoptosis. Moreover, FAK was also 

able to promote activation of the NFkB, another molecular pathway implicated in pro-survival 
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functions, and inhibitory apoptotic proteins (IAPs) (Sonoda 2000). Numerous studies have also 

shown that through inhibition of FAK, this pro-survival signal can be overcome and thus enables 

normal apoptosis. In 2000, it was demonstrated (through inhibition with a dominant negative 

mutant) that the loss of FAK activity in breast cancer cells induces caspase-8 driven apoptosis (L.-

H. Xu et al. 2000). This particular paper, along with subsequent related studies (for example 

Kurenova et al. 2004), demonstrated a direct involvement of FAK in suppressing the activities of 

the death-inducing signalling complex (DISC). Moreover, this work showed directly that FAK 

inhibition led to selective destruction of malignant cells without adverse effects to normal cells. 

This highlights the potential of FAK as a novel therapeutic target as selective elimination of 

cancer cells without affecting healthy body cells is a key goal for effective cancer treatment. This 

is particularly relevant for TNBCs where chemotherapy represents the only real treatment option 

with the ensuing side-effects of targeting normal cells. 

1.3.2 FAK and metastatic processes – Migration and Invasion 

Undoubtedly, the most important processes in the establishment of advanced malignancies are 

those governing the migration of tumour cells and subsequent invasion of distal sites. Without 

the ability to do either process, metastasis cannot occur. Consequently, targeting the regulatory 

pathways mediating these activities is very desirable, especially in cancers that are prone to 

aggressive metastatic behaviours (including the TNBCs). More relevantly, FAK has been 

implicated in the mechanisms that regulate the complex cellular changes required for migration 

and invasion to occur. 

Numerous studies have demonstrated that FAK is a central regulator of cancer cell migration and 

thus metastasis. However, as for all other functions of FAK, migration does not rely on a single 

pathway but rather the manipulation of several signalling cascades involved in motility. Due to 

their importance in cancer and normal development, a number of these pathways have been 

studied in great detail. Probably the best example of this is the utilisation of p130cas by the 

FAK/Src complex. Inhibition of p130cas phosphorylation can be seen if FAK is unable to bind Src 

or p130cas (Cary 1998). Subsequently, p130cas fails to associate with SH2 containing proteins 

for example Crk, which remains inactive and fails to initiate DOCK180 and Rac activities, thus 

preventing migration (Cho 2000) Interestingly, this is an example of kinase-independent 

function, with FAK acting as a scaffold protein for the transmission of cell signals. The kinase 

function of FAK is also important in mediating the motility of cells. For example, FAK directly 
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modulates the phosphorylation of Grb7 when it is associated with PI3K (Shen et al. 2002). 

Consequently, both kinase-dependent and independent mechanisms are required for migration, 

thus the study of both is vital if successful FAK inhibitors are to be developed. 

The migration of tumour cells alone is not sufficient to induce a metastatic phenotype. Cells also 

need to be able to invade into tissues at distal sites. A number of studies has directly implicated 

FAK in various stages of this process. For example, FAK has a crucial role in coordinating 

invadopodia dynamics. FAK-null tumour cells develop extra invadopodia but their presence is 

not complimented by a reduction in FA adhesiveness (Chan et al. 2009). However, loss of any of 

such processes results in a significant reduction of invasive potential and, as such, reduced ability 

of cancer cells to metastasise. Importantly, this has been demonstrated in model TNBC cells 

where metastatic potential is significantly reduced when siRNA transfected cells are introduced 

into mouse mammary fat-pads (Benlimame, He, Jie, Xiao, Xu, Loignon, Schlaepfer and M. A. 

Alaoui-Jamali 2005). This result was attributed to a loss of invasive properties, implying FAK is 

crucial to tumour invasion and thus metastasis.  

It is important to note that FAK-mediated processes in migration and invasion are not mutually 

exclusive, often working in parallel. An excellent example of this is seen in studies investigating 

epithelial-to-mesenchymal transition (EMT). This process is essential to tumour cells if they are 

to successfully migrate and invade distal tissues. In short, EMT is the alteration of the typical 

ordered and tightly controlled organisation of cells to a system where cells are free to move with 

limited (if any) bonds to neighbouring cells. In normal epithelial cells, order is maintained 

through intercellular junctions, which contain the E-cadherins molecule. In cancer cells however, 

these adhesion molecules become internalised/lost/dysfunctional as a result of FAK/Src 

mediated disruption (Avizienyte and Frame 2005). This leads to cellular structures which can be 

manipulated without impedance from neighbouring cells and thus promote invasion and 

migration. Loss of maximal FAK activation by Src results in a failure of cancer cells to disrupt such 

cell contacts through E-cadherins (Avizienyte et al. 2002). All evidence in this section shows that 

FAK is essential for the main processes of metastasis. Consequently, targeting FAK in this context 

displays exceptional therapeutic potential as reducing metastatic disease will ultimately increase 

cancer patient prognosis. 
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1.3.3 FAK and the “cancer stem cell” hypothesis 

Since the early 1980s, cancers have been known to be extremely heterogeneous, with a number 

of different tumour cell types found within a single tumour (Heppner and Miller 1983). 

Subsequently, a large amount of research has focused on the differences between these cell 

types in an attempt to discover the roles of the different tumour cells in disease progression. 

Arguably, the most important and controversial ideas to arise from this research was the 

identification of a subpopulation of cells that displayed stem cell like characteristics, the aptly 

named cancer stem cells (CSCs) (Reya et al. 2001). Such stem-like properties included, the ability 

to self-renew, asymmetrically divide and survive anoikis; cellular functions that would be useful 

attributes for a cancer cell to help it survive and proliferate at distal sites thereby supporting 

metastatic development (figure 1.8A) (Clarke et al. 2006). In addition, it has been postulated 

that CSCs are responsible for the relapse of cancer as they display a remarkable ability to resist 

a range of therapies and so persist following treatment and lead to new tumour formation (often 

referred to as “minimal residual disease”) (figure 1.8B). For example, Guan et al (2003) showed 

that in acute myeloid leukaemia a small proportion of CSCs were in a state of quiescence and 

could consequently persist following chemotherapy (Guan et al. 2003). This is understandable 

given traditional chemotherapeutic agents target rapidly dividing cells. This idea has also been 

linked to increased resistance to the initial therapeutic strategy following relapse (Vermeulen et 

al. 2008). In this case, CSCs with a specific resistance are possibly being selected for and are 

subsequently passing resistance on to the remaining bulk cells of the tumour leading to an 

overall desensitisation of the cancer to treatment (figure 1.8B).  
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_______________________________________________________________________ 
Figure 1.8 – Contribution of CSCs to metastatic disease and cancer relapse – Cancer stem cells are 
hypothesised to be the basis of metastatic disease and cancer recurrence. (A) In order for cells to form 
complete tumours at distal sites, cells must undertake a variety of different processes. The ability to 
migrate and invade alone is not sufficient. Cells must also be able to survive anoikis, as well as divide to 
form complete heterogenous tumours whilst also self-renewing. Such phenotypes are fundamentally 
stem-like and thus selection of these cells during metastasis is the cause of distal tumours. (B) Upon 
treatment with a therapeutic agent (therapy X) a large number of cells will undergo cell death. Due to the 
increased resistance of CSCs, such cells persist following treatment. Due to their ability to form all other 
cells of the tumour and self-renew, these cells soon lead to the reestablishment of complete tumours. The 
resistant and aggressive characteristics of these cells can be subsequently passed on to daughter cells 
leading to an increased resistance of new tumours to therapy, along with increased propensity to migrate 
and cause metastatic disease. 
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As a result of these observations, it should be a therapeutic priority to remove the CSCs along 

with the bulk of the tumour to have the best chance of successfully treating patients: particularly 

in the context of preventing disease relapse and spread. This poses a particular problem in cancer 

patients exhibiting TNBCs. As previously mentioned, the current treatment for TNBC is very 

unspecific, with chemotherapy being the only therapeutic option for such patients. Moreover, 

research has highlighted that TNBC and other aggressive cell populations exhibit extremely high 

numbers of potential CSCs based on the cell surface marker profile CD24-/CD44+ when compared 

to less invasive subtypes, such as ER+ (Sheridan et al. 2006). Consequently, TNBC patients are 

likely to have increased odds of aggressive relapse compared with those undertaking more 

targeted treatments, possibly resulting from the sustained presence of the CSCs. Further 

research is thus needed into the mechanisms that regulate the CSCs present in TNBCs. 

Given the phenotype of CSCs, it is likely that FAK activity will be involved to some extent. In 

addition, CSCs typically display the ability to survive non-adherent conditions. Due to FAK’s role 

in mediating integrin signalling and cell death, it is possible that FAK may contribute to anoikis 

resistance in these cells. This has been shown previously. For example, loss of FAK function in 

anoikis resistant breast cancer cells resulted in a significant loss of cells growing in non-adherent 

culture (L.-H. Xu et al. 2000). All these factors imply that FAK may be central to the maintenance 

and activity of CSCs. Consequently, targeting FAK for therapeutic intervention may provide a 

means for complete tumour eradication by targeting both CSCs and the remaining cells of the 

tumours. This will result in significant improvements in patient prognosis resulting from reduced 

chance of relapse and metastatic disease. 

1.3.4 Chemotherapy and the influence of FAK 

Currently, treatment of TNBC patients is limited to chemotherapy, along with surgical excision 

of cancerous tissue. Despite an initial success, the benefits of such therapies are short lived with 

a high percentage of TNBC sufferers displaying relapse soon after. This is largely due to the 

nature of the chemotherapeutics as a general treatment whose effects are not limited to the 

tumour cells. Moreover, chemotherapies tend to cause very dramatic side-effects owing to the 

killing of healthy body cells. It is essential therefore, that new targeted therapies are developed 

to improve prognosis and quality of life. However, for a targeted therapy to be widely accepted 

it will need to be both more financially and therapeutically beneficial than existing treatment 

options. As such, many groups are focussing on ways to improve the efficacy of chemotherapy 
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regimens through increasing the sensitivity of tumour cells to chemotherapy agents (for a review 

in TNBCs see Bramati et al. 2014). Agents that can successfully target FAK may provide just such 

a solution. 

 1.4. Aims and Objectives 

TNBC is highly aggressive breast cancer subtype frequently associated with poor survival, 

therapeutic response and short disease-free periods before relapse. FAK has a significant role in 

promoting tumourigenesis, as well as metastatic cell behaviours such as migration, invasion and 

maintenance and function of CSCs. We hypothesise that FAK could drive TNBC cell proliferation 

whilst imparting a pro-metastatic phenotype and thus may represent a novel therapeutic target 

in such disease. 

To explore this hypothesis, the following objectives were set: 

 Explore the functional relevance of FAK activity, expression and sensitivity to inhibition 

across breast cancer subtypes to assess potential contributions to aggressive cell 

behaviour by basal FAK. 

 

 Investigate the role FAK plays in tumourigenic and metastatic-associated processes, 

including migration and invasion, in models of triple-negative disease through inhibition 

of kinase activity (using pharmacological inhibitor PF-271) and scaffold functions. 

 

 Assess the contributions of FAK to cancer “stem-like” cell behaviours in triple-negative 

cells, focussing on how inhibition alters such processes, particularly self-renewal. 

 

 Evaluate a panel of novel FAK inhibitors, primarily targeting the protein-protein 

interactions and focal adhesion targeting, in a model of TNBC cells. 
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2. Methodology 
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2.1. Materials and Reagents 

2.1.1. Key drugs and reagents used 

 PF-562,271 (PF271, purchased from Tocris Bioscience) was used to inhibit FAK activity 

throughout this project. This compound acts as a specific and potent suppressor of FAK 

and Pyk2 kinase activity, through ATP-competitive inhibition (Roberts et al. 2008). A 

stock of 5mM was prepared from dried reagent using DMSO and diluted as required. 

The structure of PF271 (N-Methyl-N-(3-{[2-(2-oxo-2,3-dihydro-1H-indol-5-

ylamino)trifluoromethyl-pyrimidin-4-ylamino]-methyl}-pyridin-2-yl)-

methanesulfonamide) is shown below (figure 2.1A). 

 

 Chloropyramine hydrochloride was also utilised as a FAK inhibitor, as well as being 

employed as a lead compound for modification to produce novel FAK inhibitors (chapter 

6). This drug was first identified as an antihistamine (Vaughan et al. 1949) but has more 

recently gathered momentum as an anticancer agent (Kurenova et al. 2009). It has been 

shown to impair FAK function by interfering with protein-protein interactions, 

particularly with VEGFR3, hence its classification as a scaffold-inhibitor. Figure 2.1B 

shows the structure of chloropyramine. 

 

_____________________________________________________________________________________ 
Figure 2.1 – Chemical structure of FAK inhibitors (A) PF271 and (B) Chloropyramine 
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 Recombinant human Wnt3a protein (Wnt3a-ligand, R&D Systems) was acquired as a 

lyophilised powder containing bovine serum albumin (BSA) as a carrier protein, which 

enhances stability and shelf-life of recombinant proteins. Product was reconstituted to 

in sterile PBS+1% BSA to give a stock of 200µg/ml. 

2.1.2. Other materials 

All other reagents and their respective suppliers used are compiled in table 2.1: 

Reagent Source 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Sigma Aldrich 

30% Acrylamide Sigma Aldrich 

50x B-27 Serum-free supplement Life Technologies Ltd 

5x siRNA buffer solution Thermo Scientific 

Aldefluor Detection Kit Stemcell Technologies 

Alexafluor fluorophores-488,594 Invitrogen 

Ammonium Persulphate (APS) Sigma Aldrich 

Aprotinin Sigma Aldrich 

Basement Membrane Matrix, Phenol-red free (Matrigel) VWR International Ltd UK 

BioRad Protein Assay Reagents A, B, S BioRad Laboratories Ltd 

Blue sensitive x-ray film Photon Imaging Systems 

Bovine Serum Albumin (BSA) Sigma Aldrich 

Bromophenol Blue BDH Chemicals 

Cell Culture Medium (RPMI 1640) Invitrogen 

Chemiluminescent reagents (ECL, DURA, Femto) Fisher Scientific UK 

Corning Costar Ultra-Low Attachment Plates (96-well) Fisher Scientific UK 

Corning Standard Transwell Inserts (6.5mm diameter, 8µm pore 
size) 

Fisher Scientific UK 

Crystal Violet Sigma Aldrich 

Dharmafect Transfection Reagent Thermo Scientific 

Dimethyl sulphoxide (DMSO) Sigma Aldrich 

Di-thiothreitol (DTT) Sigma Aldrich 

Fibronectin (from human plasma); 1mg/ml Sigma Aldrich 

FITC-conjugated Anti-CD24 AbCam 

FITC-conjugated Mouse IgG – Isotype Control AbCam  
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Foetal Calf Serum (FCS) Gibco UK 

Fungizone Invitrogen 

Glycerol Fisher Scientific UK 

Glycine Fisher Scientific UK 

Human EGF Sigma Aldrich 

Hydrocortisone Sigma Aldrich 

Insulin Sigma Aldrich 

Leupeptin Sigma Aldrich 

MEGM Lonza group Ltd 

Methanol Fisher Scientific UK 

Penicillin/Streptomycin Invitrogen 

Phenylarsine oxide Sigma Aldrich 

Phenylmethylsulphonyl fluoride (PMSF) Sigma Aldrich 

Ponceau S solution (0.1%w/v in 5% acetic acid) Sigma Aldrich 

Precision Blue Protein Marker BioRad Laboratories Ltd 

Propidium Iodide   

siRNA buffer (1x) Diluted in H20 Sigma Aldrich 

Sodium Azide Sigma Aldrich 

Sodium Dodecyl Sulphate (SDS) Sigma Aldrich 

Sodium Fluoride Sigma Aldrich 

Sodium Molybdate Sigma Aldrich 

Sodium Orthovanadate Sigma Aldrich 

Stripping Buffer Fisher Scientific UK 

Tetramethylethylenediamine (TEMED) Fisher Scientific UK 

TRITC-labelled actin phalloidin Sigma Aldrich 

Triton-X-100 Sigma Aldrich 

Trizma Base (TRIS) Fisher Scientific UK 

Tween-20 Sigma Aldrich 

Vectashield mounting medium (hard-set) containing DAPI Vectorlabs 

Wnt3a Ligand R&D systems 

Table 2.1 – Summary of all reagents used throughout this project 
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A complete summary of antibodies used for immune-based detection in this project are outlined 

in table 2.2, summarising host species, distributor and product codes: 

Target Protein Use Species Distributor Catalogue 
Number 

AktS473 Wb Rabbit Cell Signalling 4051 

AKT (total) Wb Rabbit Cell Signalling 9272 

β-actin* Wb Mouse Sigma Aldrich A5316 

Active, non-phospho, 
β-catenin 

Wb Rabbit Cell Signalling 8814 

β-cateninS33/S37/T41 Wb Rabbit Cell Signalling 9561 

CyclinD1T286 Wb Rabbit Cell Signalling 3300 

FAKY397 Wb/IF Rabbit Cell Signalling 3283 

FAK Y861 Wb/IF Rabbit Invitrogen 44-626-G 

FAKY925 Wb Rabbit Cell Signalling 3284 

FAK (total) Wb/IF Rabbit Cell Signalling 3285 

GAPDH* Wb Mouse SantaCruz SC-32233 

GSK3βS9 Wb Rabbit Cell Signalling 9336 

Phospho-MAPK42/44 Wb Rabbit Cell Signalling 9101 

MAPK42/44 (total) Wb Rabbit Cell Signalling 9102 

MTORS2448 Wb Rabbit Cell Signalling 2971 

PARP Wb Goat R&D Systems AF-600-NA 

PTEN (total) Wb Rabbit Cell Signalling 9552 

Pyk2Y402 Wb Rabbit Cell Signalling 3291 

Pyk2 (total) Wb Rabbit Cell Signalling 3292 

STAT3S727 Wb Rabbit Cell Signalling 9134 

STAT3Y705 Wb Rabbit Cell Signalling 9131 

Vinculin IF Mouse AbCam ab73412 

Anti-Rabbit IgG** Wb Goat Cell Signalling 7074 

Anti-Mouse IgG** Wb Sheep GE Healthcare NXA931 

Anti-Mouse IgG 
(Alexa-594)** 

IF Goat Invitrogen A-11032 

Anti-Rabbit IgG 
(Alexa-488)** 

IF Goat Invitrogen A-11008 

Table 2.2 – Summary of primary and secondary antibodies used in this project – A complete list of 
primary and secondary antibodies utilised throughout this body of work. For western blotting analysis, all 
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primary antibodies were diluted to 1:1000, except FAKY925 and Pyk2Y402 which required 1:500 for clarity. 
Additionally, GAPDH and β-actin were used as loading controls and used at a dilution of 1:15,000. For 
immunofluorescence, primary antibodies were used at a dilution of 1:100. Wb: western blotting; IF: 
immunofluorescence. *HRP-conjugated antibodies; **HRP-conjugated secondary antibodies for western 
blotting or secondary antibodies bound to fluorophore, located in brackets. 

 

2.2. Cell Culture 

The range of in vitro breast cancer cell models used throughout this project are summarised in 

table 2.3, outlining routine culture conditions and hormone receptor status. All cell lines were 

obtained from ATCC. 

Cell Line Hormone 
Receptors 

Clinical 
Subtype 

Source Tumour Type Culture 
Conditions 

MDA-MB-231 ER- PR- 
HER2- 

TNBC PE Pleural effusion from 
Breast 
adenocarcinoma 

RPMI + 5%FCS 
Dilution 1:10 

MCF-7 ER+ PR+ 
HER2- 

Luminal A PE Invasive ductal 
carcinoma  

RPMI + 5%FCS 
Dilution 1:8 

SkBr3 ER- PR- 
HER2+ 

HER2+ PE Pleural effusion from 
Breast 
adenocarcinoma 

RPMI + 
10%FCS 
Dilution 1:6 

MDA-MB-361 ER+ PR- 
HER2+ 

Luminal B P. Br Breast 
adenocarcinoma from 
brain metastatic site 

RPMI + 
10%FCS 
Dilution 1:6 

BT474 ER+ PR+ 
HER2+ 

Luminal B P. Br Invasive ductal 
carcinoma  

RPMI + 
10%FCS 
Dilution 1:6 

MDA-MB-468 ER- PR- 
HER2- 

TNBC PE Pleural effusion from 
Breast 
adenocarcinoma 

RPMI + 5%FCS 
Dilution 1:8 

Table 2.3 – Summary of breast cancer cell models used – Characterisation of breast cancer cell lines 
utilised in this work. Details of hormone receptor status adapted from (Neve et al. 2006). PE: pleural 
effusion; P. Br: Primary breast cancer. RPMI: Roswell park memorial institute medium including phenol-
red; FCS: Foetal calf serum. Standard culture medium was also supplemented with 10µg/ml streptomycin, 
10Units/ml penicillin and 2.5µg/ml fungizone. Dilution representative of seeding density during 
subculture. 
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All cell lines were maintained at 37oC in 5% CO2 and routinely sub-cultured when confluency 

reached 80-90%. This was achieved by incubating cells with trypsin/EDTA solution (0.05%/0.02% 

respectively in PBS) in a 37oC, 5% CO2 humidified incubator, until cells detached from the flasks 

before serum-containing media was added to neutralise the trypsin solution. This solution was 

centrifuged at 1,000RPM for 5-minutes to pellet cells, prior to discarding of supernatant and 

subsequent resuspension in fresh standard culture media. Resultant cells were sub-cultured into 

flasks at the appropriate density (outlined in table 2.3). All work was performed in sterile, 

laminar flow safety cabinets to prevent contamination of cultures. 

To perform stem-cell enrichment (mammosphere) assays, cells were cultured under non-

adherent conditions in complete mammosphere media. This was comprised of mammary-

epithelial growth media (MEBM) (Lonza), a solution optimised for serum-free, mammary 

epithelial cell growth supplemented with 5μg/mL Insulin, 1ng/mL Hydrocortisone, 20μg/mL 

Gentamycin (Sigma), 2% B27 serum-free supplement (Gibco) and 2ng/mL EGF. 

2.3. Optimisation of RNAi transfection 

We chose to utilise siRNA as a means of transiently suppressing protein expression in our cells. 

Consequently, we utilised various ON-TARGETplus systems (Thermoscientific) for FAK, Pyk2 and 

PTEN (details in table 2.4), as well as a non-targeted, scrambled control. The siRNA pool for all 

were obtained as a lyophilised reagent which was reconstituted to a concentration of 20µM in 

1x siRNA buffer (diluted from 5x stock in RNAse-free sterile water). All siRNA experiments 

contained the following controls: 

 Culture medium control – to provide a baseline (con) 

 Lipid-Only Controls – to affirm that transfection reaction, specifically the lipid, does not 

perturb cell function, these cells were treated with DHARMAfect transfection reagent 

only. 

 ON-TARGETplus non-targeting siRNA control – this is a scrambled siRNA which has no 

recognised mRNA binding targets and thus allows observation of non-specific effects 

resulting from siRNA delivery (NT siRNA). 
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siRNA Target FAK (PTK2) Pyk2 (PTK2B) PTEN Non-targeting 
control 

Product 
number 

L-003164-00-
0005 

L-003165-00-
0005 

L-003023-00-
0005 

D-001810-10-05 

mRNA 
Target 
sequences 

GGACAUUAUU 
GGCCACUGU 

GGAUCAUCAU 
GGAAUUGUA 

GAUCAGCAUA 
CACAAAUUA 

UGGUUUACAU 
GUCGACUAA 

UAGUACAGCU 
CUUGCAUAU 

UCAGUGACGU 
UUAUCAGAU 

GACUUAGACU 
UGACCUAUA 

UGGUUUACAU 
GUUGUGUGA 

GGGCAUCAUU 
CAGAAGAUA 

GAAGAUGUGG 
UCCUGAAUC 

GAUCUUGACC 
AAUGGCUAA 

UGGUUUACAU 
GUUUUCUGA 

GCGAUUAUAU 
GUUAGAGAU 

GAGGAAUGCU 
CGCUACCGA 

CGAUAGCAUU 
UGCAGUAUA 

UGGUUUACAU 
GUUUUCCUA 

Table 2.4 – Summary of targeted siRNAs used throughout this project – Outlined are details of the four 
siRNAs (FAK, Pyk2, PTEN and Non-targeting scramble control), including product numbers (GE Healthcare 
– Dharmacon). All siRNAs were composed of four potent mRNA targeting sequences which are also 
included. 

 

Prior to transfection, cells were grown to 50% confluency. At which time, 20µM stocks of 

appropriate siRNA were diluted in 1x siRNA buffer and serum-free RPMI as appropriate to 

achieve a final working concentration of 100nM. In parallel, DharmFECT1 reagent was diluted in 

serum-free RPMI in a separate tube. Following 5 minutes, both tubes were combined and 

incubated at room temperature for 20 minutes, enabling siRNA micelles to form. Resultant 

mixtures were placed in desired volume of RPMI+5% FCS and added to cell cultures. Cells were 

re-incubated at 37oC and 5% CO2 and a lysis performed at 24, 48 and 72 hours, after which siRNA 

containing media was replaced with complex-free standard culture medium. Cultures were 

subsequently lysed at 2, 4 and 6-days following incubation in order to evaluate recovery of 

protein levels post-siRNA. Lysis protocol is outlined in section 2.5.1.1. 
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2.4. Functional Cell Assays 

2.4.1. Cell proliferation assays 

2.4.1.1. MTT assay 

This is a colour-based assay which allows evaluation of proliferation based on conversion of 

water-soluble, yellow MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to 

purple formazan crystals by mitochondrial dehydrogenase enzymes only present in viable, 

actively-respiring cells. Formazan is subsequently solubilised and evaluated using 

spectrophotometry, with the optical density directly proportional to the number of viable cells. 

Cell cultures were redistributed into 96-well plates at a density of 1x106 cells/plate and allowed 

to settle for 24-hours prior to treatment with various agents, as required, before culturing for 

72-hours at 37oC and 5% CO2. Resulting cells were gently washed with sterile PBS and 140µl MTT 

solution (0.5mg/mL in sterile PBS) was added. Plates were re-incubated for 4-hours, after which 

MTT solution was removed and cells lysed overnight at 4oC in a buffer comprised of 100µl v/v 

Triton-X100 (Sigma Aldrich) in sterile PBS. Subsequently, plates were analysed in a 

spectrophotometer (540nm). Mean absorbance values were then calculated and data 

represented as a percentage of vehicle-only controls. 

2.4.1.2. Cell counting assay 

In order to detect more discrete changes in proliferation, a counting approach was employed 

utilising a Coulter counter. This form of electronic counting is based on a single-cell suspension 

flowing past a sensor located in a small channel between two electrodes, which emits a pulse 

every time a cell is detected. 

Cells were seeded into a 24-well plate (4.2x105 cells/mL) and, following 24-hours, had fresh 

media applied (±treatment) (Day 0). Plates were subsequently incubated at 37oC and 5% CO2 and 

typically counted every day for up to 7-days. Alternatively, siRNA treated cells were allowed to 

grow for 72-hours in the presence of desired siRNA (Day 0), before old media was replaced with 

fresh (±treatment) and cells re-incubated for 72-hours at 37oC and 5% CO2. At the chosen time-

points, medium was removed and cells subsequently treated with trypsin/EDTA (1mL/well) to 

lift cells. Following dispersion, cells were passed through a 25G needle three-times, to ensure a 

single-cell suspension, prior to being washed three times with 1mL of Isoton solution. During 
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each wash, the Isoton was kept in the syringe and the final 4mL mixture (1mL cells+3mL Isoton) 

was released into a counting cup containing 6mL Isoton. Counting was then performed on a 

Coulter Multisizer III, with a minimum of two counts taken per well. All experimental conditions 

were conducted in triplicate, three independent times and mean cell count was represented as 

a percentage of respective control. 

2.4.2. In vitro migration/invasion assays 

2.4.2.1. Wound healing Assay 

Given its simplicity, yet clear nature, wound healing assays were used in order to initially assess 

basal migration. Cells were grown in 24-well plates (seeded at 4.2x105cells/mL) until 80% 

confluent, at which time monolayers were “scratched” with a sterile pipette tip to create a 

wound. The media was subsequently aspirated and replaced with fresh (±treatment), as well as 

triplicate images taken at known points in each well (0-hours). Wounded cultures were 

incubated at 37oC and 5% CO2 for 18-hours, after which triplicate images were once again taken 

(24-hours). All experimental conditions were undertaken in duplicate and select wells were fixed 

in PFA and stained with 0.5% crystal violet to provide clear representative images of cell 

migration. 

2.4.2.2. Boyden Chamber Assay 

Migration 

To more robustly explore basal cell migration, a Boyden chamber assay was performed. Assays 

were performed in 24-well, transwell permeable support plates (Corning Lifesciences) containing 

inserts with a 6.5mm microporous membrane (8µm pore size), which were coated with 10µg/ml 

fibronectin (1µl:100µl in sterile PBS). Cells were seeded into serum-free RPMI (±treatments) at 

a density of 50,000cells/ml into the top portion of the inserts, whilst the lower chambers 

contained FCS containing RPMI as a chemoattractant. Plates were subsequently incubated for 

18-hours at 37oC and 5% CO2 to allow cell migration to the underside of the insert. Migratory 

cells were fixed with 3.7% PFA and stained with 0.5% crystal violet, whilst non-migratory cells on 

the topside of the membrane were removed using a cotton bud. Through light microscopy, 5 

images were captured from random fields of view, counted and resulting data were expressed 
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as mean cell counts per field of view. Experimental conditions were performed in duplicate and 

performed three times. 

Invasion 

A modified Boyden chamber assay was also adopted for analysis of cell invasion. Inserts were 

coated with 4mg/ml Matrigel (BD Biosciences), a substance that mimics the ECM forcing cells to 

actively invade through it, and allowed to set for 2-hours at 37oC, 5%CO2 in a 24-well transwell 

permeable support plate. Cells were diluted to a single-cell suspension of 500,000cells/ml in 

serum-free RPMI (±treatment) and seeded into Matrigel-containing inserts. RPMI+ 5%FCS was 

placed in the lower chamber as a chemoattractant, to encourage cell movement. Cultures were 

subsequently re-incubated at 37oC and 5%CO2 and for 72-hours, after which cell fixing was 

performed. This involved removal of Matrigel with a cotton bud, prior to incubation in 3.7% PFA 

for 15 minutes. Fixed membranes were subsequently washed, excised from the inserts using a 

scalpel blade and mounted onto glass slides using hard-set mounting medium containing DAPI. 

A coverslip was applied and media was allowed to harden overnight at 4oC in the dark. Cells were 

viewed using a fluorescence microscope (358/461nm) from which, 5 images representing unique 

fields of view were acquired at x20 magnification so as to view most of the cells. All experimental 

conditions were conducted in duplicate and in 3 independent assays. 

For both migration and invasion, FAK suppression through siRNA was achieved by incubation of 

cells with specific siRNA-complexes for 72-hours (as outlined in section 2.3), after which cells 

were collected, diluted and re-seeded into Boyden chamber inserts at the appropriate seeding 

density. 

2.4.3. In vitro mammosphere assays 

Cells were seeded in standard culture media into 35mm dishes (density of 100,000cells/dish) 

and incubated for 24-hours at 37oC and 5% CO2. Resulting cultures were re-incubated with fresh 

standard culture media (±treatments) for a further 24-hours. Alternatively, cells were cultured 

and treated with siRNA for 72 hours (as outlined in section 2.A). Cells were subsequently re-

seeded in triplicate into 96-well, ultra-low attachment plates (Corning Life Sciences) at a density 

of 5,000 cells/mL in complete mammosphere media and incubated at 37oC, 5% CO2 for 7-days, 

after which cultures were evaluated through light microscopy. These passage 1 spheres were 

counted and represented as the number of mammosphere-forming units (MFU) as a percentage 
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of total number of cells seeded. Additionally, 5 representative images were acquired per well 

and subsequently analyses using imageJ so as to calculate sphere volume; a demonstration of 

proliferative capacity under anoikis conditions. Sphere volume was calculated as follows: 

Mammosphere volume = (Sphere Width)2(Sphere length)(0.5) 

The mammospheres were then collected and centrifuged at 3,000RPM for 10-minutes to pellet 

for subsequent passaging. Pellets were incubated in trypsin/EDTA 37oC for 10-minutes before 

neutralising with complete standard culture media. Cell were once again pelleted by centrifuging 

at 3,000RPM for 10-minutes prior to resuspension in complete mammosphere media. The 

resulting solutions were vigorously pipetted and passed through a 25G needle to ensure a single 

cell suspension, before reseeding into ultra-low attachment plates (at a density of 5,000 

cells/mL). Spheres were then allowed to grow for seven days before being counted and 

photographed. 

2.5. Antibody-based detection 

2.5.1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

Blotting 

2.5.1.1. Cell lysis for protein extraction 

Cultured cells were placed on ice and washed 3 times in sterile PBS before lysis buffer was added. 

Fresh protease inhibitors (2mM sodium orthovanadate (NaVO4), 50mM sodium fluoride (NaF), 

1mM PMSF, 10mM sodium molybdate, 20µM phenylarsine, 10µg/ml leupeptin and 8µg/ml 

aproptin) were added to lysis bufferin order to improve yield by preventing protein degradation 

by various proteases. Moreover, this cocktail prevents dephosphorylation through inhibition of 

phosphatases, enabling phosphorylated residues to be detected. Dishes were subsequently 

scraped, harvested into Eppendorf tubes and maintained on ice for a further 5-minutes before 

centrifuging at 12,000RPM for 15-minutes at 4oC. The protein containing supernatant was then 

collected and either stored at -20oC until required or immediately analysed for protein content 

(section 2.4.1.2.). 
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2.5.1.2. Protein Quantification and sample preparation 

The protein concentration in the supernatant was assessed using a BioRad DC protein assay. This 

is a colourimetric assay which produces a distinct blue colour following reduction of a Folin agent 

in response to the reaction of copper tartrate with protein. Briefly, 5µl of protein lysate was 

added to 45µl lysis buffer, alongside a series of known concentration, BSA protein standards (0, 

0.25, 0.5, 0.75, 1, 1.45mg/mL) to create a standard curve. To both standards and test samples, 

BioRad reagent A (250µl; plus 20µL/mL BioRad reagent S) were added, followed by 2mL BioRad 

reagent B. Tubes were mixed gently and allowed to rest for 5-minutes, before being analysed on 

a spectrophotometer set to 750nm absorbance. BSA protein standard results were used to 

create a standard curve, from which protein concentration within each test samples could be 

calculated, subsequently allowing standardisation of protein concentrations from across lysates 

for their use in SDS-PAGE. 

The basis of SDS-PAGE is the separation of proteins based on size. As such, the acquired lysates 

were used to create samples which were capable of being distributed by an electrical current. 

To achieve this, the protein concentrations (calculated above) were added to appropriate 

volumes of 2x or 5x Laemmli sample loading buffer containing 24mg/mL DTT. This buffer 

contained the following reagents, each with a unique function enabling optimal separation of 

protein: TRIS which acts as a buffer ensuring maintenance of pH during electrophoresis; glycerol 

allows sample to remain at the base of wells in acrylamide gels, through increasing sample 

density; SDS creates a negative charge on proteins by coating them following denaturation, thus 

enabling separation by an electrical charge. Meanwhile, the freshly added DTT supports SDS-

coating by breaking disulphide bridges, thus deteriorating tertiary protein structures. To allow 

maximum denaturation and binding, prepared samples were boiled at 100oC for 5-minutes.  

2.5.1.3. SDS-PAGE 

Porous, polyacrylamide gels were prepared on which proteins would be separated. Initially, a 

resolving gel of between 8-12% (composition of which are summarised in table 2.5) was added 

between two 1.5mm glass plates, held in place by a gel stacking apparatus (BioRad Mini Protean 

3), and topped with dH2O to prevent air perturbing polymerisation and ensure a flat edge. Once 

gels were set, the water layer was discarded and replaced by a 5% Stacking gel solution (recipe 

in table 2.6), into which a 10/1-well comb was inserted, before being allowed to further 
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polymerise for approximately 20 minutes or until the gel was set. Prepared gels were 

subsequently transferred to a electrophoresis, running tank, covered with running buffer 

(192mM glycine, 25mM TRIS; 0.1%w/v SDS) and wells loaded with protein samples, as well as 

Precision Plus All Blue marker (BioRad). As shown in figure 2.1, this product created a visible 

standard of protein sizes enabling identification of proteins based of weight. Electrophoresis was 

then performed at 120V until desired spreading was observed. 

 

Final Gel % 
(Resolving) 

8% 10% 12% 

30% Bis-acrylamide 5.4ml 6.6ml 8ml 

dH20 9.2ml 8ml 6.6ml 

TRIS pH 8.8 5ml 5ml 5ml 

10% SDS 200µl 200µl 200µl 

10% APS 200µl 200µl 200µl 

TEMED 50µl 50µl 50µl 

Table 2.5 – Recipes for resolving gel 

Final Gel %  
(Stacking) 

5% 

30% Bis-acrylamide 
(5:1) 

1.67ml 

dH20 5.83ml 

TRIS pH 8.8 2.5ml 

10% SDS 100µl 

10% APS 50µl 

TEMED 25µl 

Table 2.6 – Recipe for stacking gel 
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Resulting gels were transferred to 45µm nitrocellulose membrane (GE Life-Sciences) by 

incubating with filter paper and sponges (illustrated in figure 2.2), before flooding the transfer 

apparatus with transfer buffer (0.25M TRIS base; 1.92M glycine; 20% methanol) and applying a 

constant voltage of 100V for 60-minutes. This enabled negatively charged proteins to be drawn 

onto the nitrocellulose membrane from gels. An ice block was also included to prevent 

overheating of the apparatus. Immediately after, membranes were rinsed with dH2O to remove 

any transfer buffer and stained with Ponceau S to allow the effectiveness of the previous steps 

to be observed. 

Figure 2.1 – Precision Plus Protein Blue Standard – Representative 
image of the blue marker as run on an 8% gel with protein weight in 
kDa denoted on right side. 
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_____________________________________________________________________________________ 
Figure 2.2 – Diagram of set up for wet transfer 

 

This stain was subsequently removed by washing in TBS Tween-20 (TBST) and blocked with 10% 

non-fat milk powder (marvel) in TBST. Post-blocking, membranes were once again washed in 

TBST before incubation overnight with desired primary antibodies at 4oC. The resulting 

membranes were washed in TBST, to remove unbound primary antibodies, and then incubated 

at room-temperature for 1-hour with horseradish-peroxidase (HRP)-conjugated secondary 

antibodies diluted 1:1000 in 2% Marvel-solution. A final wash was performed before 

chemiluminescent detection. This was achieved by treating membranes with a luminol-based 

chemiluminescence substrate which stimulated the enzymatic activity of HRP-bound secondary 

antibodies. Protein bands were subsequently visualised by exposing to blue-sensitive X-ray film, 

under dark conditions, and passing through an automated developer which consisted of fixative 

and developing solutions. 
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2.5.1.4. Densitometry 

Band intensity was measured using the AlphaDigiDoc software. These integrated intensity values 

were normalised to the housekeeping proteins GAPDH or β-actin, allowing correction for loading 

errors. Values were subsequently processed as outlined in the respective results sections. 

2.5.1.5. Stripping and re-probing blots 

Sometimes, it was necessary to examine membranes for a second protein using a different 

primary antibody. In cases where the sizes of the initial and second proteins were comparable, 

membranes were stripped to avoid perturbation of band intensity resulting from the initial 

analysis. This process entailed immersion of membranes to be stripped in Restore Plus Western 

Blot Stripping Buffer (Fisher) at room temperature for a maximum of 15-minutes. Resultant blots 

were washed in TBST, re-blocked in 10% Marvel solution and incubated with primary antibody 

against the protein of interest (as in section 2.4.1.3). 

2.5.2. Immunofluorescent staining 

Cells were seeded into 35mm dishes containing 0.13-0.17mm thick coverslips (density 

70,000cells/ml) and allowed to culture at 37OC, 5% CO2 until 60-70% confluent. To examine 

migrating cells, coverslips were coated with fibronectin (1:100 in sterile PBS) prior to seeding. 

Cells were then allowed to grow until 50% confluent, before being treated with serum-free RPMI 

for 24-hours and subsequently stimulated to migrate by incubating with RPMI+5% FCS for 1-hour 

at 37OC and 5% CO2. Following incubation, cells were washed in sterile PBS (three times) and 

fixed by submerging in 3.7% PFA (in dH2O) for 15 minutes. Fixed cells were permeabilised using 

Triton-X100 (0.2% in PBS) for 8-minutes and blocked for 40-minutes in 10% normal goat serum 

(in 1%BSA PBS) to minimise non-specific antibody binding. Primary antibody (1:100 dilution in 

1%BSA PBS) was subsequently added and left for 30-minutes. For dual-labelling with vinculin 

(diluted 1:200 in 1%BSA PBS), both primary antibodies were combined prior to addition. Stained 

cells were washed 3 times in PBS before application of specific fluorophore-bound secondary 

antibodies (Alexafluor-488, and Alexafluor-594 diluted 1:1000 in 1%BSA PBS). For detection of 

actin, FITC-conjugated phalloidin (diluted 1:2000 in 1%BSA PBS) was added along with secondary 

antibodies. Coverslips were then washed thoroughly in PBS and mounted onto glass slides using 

hard-set Vectashield mounting media containing DAPI (4’, 6-diamidino-2-phenylindole) to stain 

cell nuclei. Subsequent viewing was performed on a Leica DMIRE2 microscope at 63x 
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magnification and oil immersed. Typically, 5 images were acquired per coverslip for each 

fluorophore, as well as a merged image. Where changes in the number and size of FAs was 

evaluated, imageJ was used to count individual FAs and, following a fixed magnification (x3) of 

the images, measure FA area. The number of FAs was counted in 3 cells per image and 

represented as mean number of FAs per cell, while 10 random FAs were measured from across 

all cells in each image. 

2.5.3. Flow cytometry analysis 

Unless stated otherwise, all preparatory stages for FACS analysis were conducted on ice. 

2.5.3.1. Evaluation of cell cycle distribution 

Cells were cultured in 35mm dishes for 24 hours, before replacement with fresh standard culture 

media (±treatment) and subsequent incubation for 3 days. Resulting cultures were harvested 

washed and resuspended in 1mL of ice-cold PBS at a density of 1x106cells/mL. The resultant cell 

suspension was added drop-wise to 9mL of 70% ethanol (in PBS) and fixed overnight at -20oC. 

Fixed samples were stained with a Propidium iodide (PI) staining solution (4.5mL PBS; 0.1% 

Triton-X100; 100µL PI solution (1mg/mL); 10%v/v ribonuclease A (0.5mg/mL) at a concentration 

of 1x106cells per 500µl PI stain (if had fewer cells, adjusted volume accordingly) by incubating at 

40oC for 20 minutes. Stained cells were subsequently filtered through a nylon filter into FACS 

tubes to ensure a single cell suspension for analysis. The resulting solutions were analysed using 

FACS verse (BD Biosciences) and subsequent evaluation was performed using FlowJo software.  

2.5.3.2. Assessment of stem-like subpopulations 

2.5.3.2.1. CD44/CD24 analysis 

Cells were seeded into 35mm dishes at 70,000cells/ml and allowed to settle for 24-hours, at 

which point medium was changed for fresh (±treatment) and re-incubated for a further 24-

hours. Resulting cultures were harvested, washed with sterile PBS and resuspended in ice-cold 

sterile PBS (including 2%FCS and 1% sodium azide) at a density of 200,000cells/ml. The sodium 

azide and low temperature prevented the loss of fluorescence resulting from modulation and 

internalisation of cell surface antigens. Resultant solutions were incubated in the dark with 

primary antibodies on ice for 30-minutes, before being once again washed with ice-cold PBS and 

fixed by resuspending in 3.7% PFA in PBS. Cells were allowed to fix for 15 minutes at room 
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temperature and subsequently washed once with PBS containing 3% BSA. Secondary antibodies, 

where necessary, were then applied (diluted 1:1000 in 3%BSA PBS) and placed on ice for 30 

minutes under dark conditions. Final PBS washes were performed and cell suspensions 

resuspended in ice-cold PBS containing 3%BSA and 1% sodium azide. Subsequent analysis was 

undertaken using a FACS Verse (BD Biosciences), with resulting data being evaluated through 

used of Flowing Software. Along with test samples, a number of controls were also performed 

allowing reliable acquisition of data and accurate gating for distribution analysis (table 2.7). 

 

Condition Antibodies Present Reason 

Negative Control No primary or secondary 

antibodies 

Lack of any antibodies allows 

analysis of background and 

auto-fluorescence of cells. 

Primary Only CD44 primary only Enables any fluorescence 

caused by primary antibody 

to be seen and accounted for 

in analysis. 

Secondary Only Alexa647 secondary only Ensures specific binding of 

the secondary antibody to the 

designated primary antibody. 

Isotype Control Mouse IgG + Alexa647 

FITC-conjugated Mouse IgG 

Observe background binding 

of the isotype used by the 

antibody. Signal also used for 

drawing of quadrants. 

CD24 Only CD24-FITC conjugated only Allows optimisation of 

voltage and other factors 

used to detect CD24  

CD44 Only CD44 + Alexa647 Same as previous except with 

CD44 

Table 2.7 – Outline of control samples used in FACS experiments, the antibodies used in each system 
and the reason why the controls were used 



62 
 

2.5.3.2.2. ALDH analysis 

As a further means of evaluating CSC subpopulations, analysis of ALDH staining was undertaken. 

Prior to any cell treatments, the Aldefluor substrate needed to be activated. To do this, 

powdered substrate was incubated with DMSO at room temperature for 1-minute, before 

adding 2N HCl, mixing well and allowing to rest at room temperature for 25-minutes. It was vital 

to add DMSO prior to HCl, as the inverse causes the Aldefluor reagent to irreversibly inactivate. 

Aldefluor Assay buffer was added to the solution and maintained on ice during use: activated 

solution was aliquoted stored at -20OC for future use. 

Cells cultured (as in section 2.5.3.2.1) were resuspended in 1ml Aldefluor assay buffer and 

diluted to a density of 200,000cells/ml. After adjusting concentration, 1ml of cell suspension was 

placed into a tube labelled “control” and 1ml into tubes labelled “test” in triplicate; this was 

performed for all experimental conditions. 5µl of 1.5mM DEAB inhibitor (in 95% ethanol) was 

added to the control tubes, whilst activated Aldefluor substrate was added to each test sample 

(5µl/ml) and mixed. Immediately, 0.5ml of one “test” tube was added to DEAB control cells, 

resulting in a final DEAB concentration of 15µM. It is essential that the cell suspension+Aldefluor 

was added to control tubes immediately to maximise accuracy of this assay, given that the 

enzymatic reaction of ALDH to Aldefluor begins as soon as the two are introduced. All tubes were 

subsequently incubated for 45-minutes at 37OC, prior to centrifugation (300xg at 4OC for 5-

minutes) and resuspension of each pellet in ice-cold Aldefluor assay buffer. Resultant aliquots 

were placed on ice and immediately analysed using FACS Verse (BD Bioscience), with at least 

100,000 events being examined per sample. Throughout analysis it was essential to keep all 

samples on ice to minimise efflux of fluorescent products of ALDH activity on Aldefluor reagent. 

2.5.4. Immunocytochemistry (ICC) evaluation of Ki67 

To examine Ki67 status, cells were cultured for 24-hours in 35mm dishes, prior to addition of 

fresh FCS containing RPMI (±treatment). Cells were subsequently fixed to glass coverslips 

following 24, 48 or 72-hours using 3.7% PFA, washed 3 times with PBS and incubated with Ki67 

primary antibody at room temperature in a humidified staining chamber for 2-hours. The 

resultant stained coverslips were again washed in PBS before being treated with appropriate 

Dako Envision secondary antibody for 2-hours. Finally, cells were stained with 3,3’-

diaminobenzidine (DAB) for 5 minutes, counterstained with haematoxylin and mounted onto 
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glass slides. Subsequent visualisation was undertaken with a light microscope, where 10 images 

were taken from different fields of view and final counts represented as Ki67 positive cells as a 

percentage of total cell number. 

2.6. Statistical analysis of data 

All statistical analysis was performed using Graphpad Prism 5 software. To compare two sets of 

data, a student’s independent T-test was used. One-way analysis of variance (ANOVA) with 

Tukey’s multiple comparison tests (post-hoc) was utilised to compare data with more than two 

groups, while two-way ANOVA with Bonferroni (post-test) was used for comparing more than 

two groups with two independent variables. Data was considered significant when p≤0.05. 

Where appropriate, error bars are representative of SEM. 
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3. Results (I) 
 

Characterisation of FAK expression and activity in 
breast cancer subtypes 
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3.1. Introduction 

The advent of molecular approaches has enabled the in-depth exploration of solid tumours to 

reveal their molecular heterogeneity. Indeed, genetic profiling of multiple tumour types has 

revealed them to exist not as one, but as many different tumour subtypes. As such, it is becoming 

clear that to effectively treat tumours, future treatments will need to address this heterogenicity 

and targeted therapies that are tailored to an individuals’ tumour make up. It has been well 

established that there are 5 broad classes of breast cancer tumours based on molecular profiling: 

Luminal A, Luminal B, Normal-like, HER2+ and basal-like (Sørlie et al. 2001). These molecular 

subtypes comprise the three main types of breast cancer diagnosed, namely ER+, Her2+ or triple-

negative breast cancer (TNBC). The identification of disease subtype provides vital information 

pertaining to therapeutic options, disease progression and ultimately prognosis. Despite 

primarily comprising of basal-like cells, TNBCs have more recently been highlighted as a separate 

disease based on clinical progression and intrinsic biological characteristics. Many studies have 

shown that by comparison to other subtypes, triple-negative tumours have significantly poorer 

prognosis, owing to a more rapid disease progression and much shorter times from relapse to 

death (Bauer et al. 2007).  

FAK is essential to many cellular processes, particularly those that govern cell migration in both 

early development and in mature tissues. In the former case, studies have shown that FAK 

depletion is embryonically lethal, arising from impaired cellular distribution during 

embryogenesis (Petridou et al. 2013). Additionally, aberrant FAK expression and/or activity has 

been reported to be associated with the progression of solid tumours, including breast cancer, 

to a metastatic phenotype (Golubovskaya et al. 2014). Given that triple-negative breast cancers 

exhibit a high tendency for early disease progression and metastatic potential (Bauer et al. 2007) 

and that FAK promotes cellular migration, one hypothesis is that this intrinsic aggressive 

phenotype of TNBC is driven, at least in part, by FAK. 

FAK has one closely related family member, Pyk2, which has also been shown to contribute to 

cancer cell behaviours (Lipinski and Loftus 2010). Importantly, Pyk2 can provide some functional 

redundancy for FAK, enabling cells to sustain some FAK-driven processes through upregulation 

of Pyk2. For example, Pyk2 expression/activity is increased following FAK deletion in mice 

mammary-tumour cells and is sufficient to restore metastasis in vivo (Fan and Guan 2011). As 

such, Pyk2 may also play a role in TNBC cells. 
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3.1.1. Aims and Objectives 

The primary aims of this chapter were to characterise FAK and Pyk2 expression and activity 

across breast cancer subtypes to determine if there is a correlation between their 

expression/activity and the aggressiveness of the subtype, as well as to assess the efficacy of 

pharmacological inhibition of FAK on cellular behaviour. Consequently, the objectives of this 

chapter were as follows: 

 Explore the association of FAK and Pyk2 expression with prognosis using online gene 

sets. 

 

 Analyse FAK expression/activity and localisation across a panel of breast cancer cell lines 

reflective of the dominant clinical subtypes. 

 

 Characterise cell models of major clinical subtypes for their intrinsic proliferative and 

migratory capacity and correlate the expression/activity of FAK with these behaviours. 

 
 Investigate the impact of FAK inhibition on the proliferative and migratory capacity of 

these cell models.  
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3.2. Analysis of FAK expression with breast cancer patient outcome 

Studies have suggested overexpression of FAK in breast cancer is largely correlated with a highly 

aggressive phenotype (Lark et al. 2005). As such, we initially wished to explore the association 

FAK and outcome in different breast cancer subtypes using publicly-available, online Kaplan-

Meier analysis (www.kmplot.com) (for examples of use see Györffy et al., 2010 and Szász et al., 

2016). An unrestricted comparison (no limitations on tumour grade, lymph-node status or 

endocrine/chemotherapy treatments) of 3951 breast cancer patient samples, revealed a 

significant association between FAK expression and patient relapse-free survival (RFS) over 25 

years (n=3951; logrank P = 0.00059) (figure 3.1A). High FAK expression was also associated with 

a reduced distant metastasis-free survival (DMFS) (n=1746; logrank P = 0.0007) (figure 3.1B). 

When patients were broadly divided by clinical subtypes, no individual subtype showed a 

significant association between FAK levels and RFS (figure 3.1C-F), although there appeared to 

be a non-significant trend in TNBC patients for FAK expression and reduced RFS. To further 

stratify this data, evaluation of RFS in response to FAK expression and individual hormone 

receptor presence was conducted. Generally, the presence or absence of any one hormone 

receptor did not alter RFS regardless of FAK levels (figure 3.1G-L). However, high FAK in HER2- 

patients showed a more positive association versus all others (n=800; logrank P = 0.057). Subtype 

and hormone analysis was limited to RFS only due to very limited data for DMFS.  

To further these investigations, we utilised the database to assess the contributions of the FAK-

family member Pyk2 to patient prognosis. In complete contrast to FAK, high expression of Pyk2 

was associated with a significant improvement in RFS (n=3951; logrank P = 2.3x10-13) and, to a 

lesser degree, an improvement of DMFS (n=1746; logrank P = 0.012) (figure 3.2A and B). 

Moreover, when divided by clinical subtype, this effect was more prominent, especially in HER2+ 

(n=251; logrank P = 0.00029) and TNBC (n=255; logrank P = 0.044) patients (figure 3.2C-F). As 

with the FAK analysis, the relationship between Pyk2 expression and the presence/absence of 

hormone receptors was evaluated (figure 3.2G-L). High Pyk2 expression in patients absent for 

ER had very good RFS rates (n=801; logrank P = 2.6x10-6) whilst no significant trends were 

observed with any other hormone receptors and Pyk2.  
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Figure 3.1 – FAK expression has the potential to be used as a prognostic marker of breast cancer 
– Kaplan-Meier plots (http://www.kmplot.com) were used to assess Affymetrix microarray 
expression of FAK mRNA (ID: 208820_at) in tumour samples from breast cancer patients. Data was 
acquired from (A) all patients RFS (n=3951; p=0.00059), (B) all patients DMFS (n=1746; p=7x10-4), 
(C) triple-negative RFS (n=186; p=0.32), (D) luminal A RFS (n=1933; p=0.43), (E) luminal B RFS 
(n=1149; p=0.74), (F) HER2+ RFS (n=251; p=0.49), (G) ER-negative RFS (n=801; p=0.65), (H) ER-
positive RFS (n=2061; p=0.052), (I) HER2-negative RFS (n=800; p=0.057), (J) HER2-positive RFS 
(n=252; p=0.65), (K) PR-negative RFS (n=549; p=0.79) and (L) PR-positive RFS (n=589; p=0.62). All 
graphs show hazard ratio (with 95% confidence intervals) with data restricted as follows: grade 
(all), lymph node status (all), chemotherapy/endocrine therapies (all). 

69 

http://www.kmplot.com


 

 

Continued on next page 

70 



 

 

Figure 3.2 – Pyk2 shows great potential as a prognostic marker for breast cancer - Kaplan-Meier 

plots (http://www.kmplot.com) were used to assess Affymetrix microarray expression of Pyk2 

mRNA (ID: 203110_at) in tumour samples from breast cancer patients. Data was acquired from (A) 
all patients RFS (n=3951;p=2.3x10-13), (B) all patients DMFS (n=1746; p=0.012), (C) triple-negative 
RFS (n=255; p=0.044), (D) luminal A RFS (n=1933; p=0.001), (E) luminal B RFS (n=1149; p=1.8x10-5), 
(F) HER2+ RFS (n=251; p=0.00029), (G) ER-negative RFS (n=801; p=2.6x10-6), (H) ER-positive RFS 
(n=2061; p=0.67), (I) HER2-negative RFS (n=800; p=0.07), (J) HER2-positive RFS (n=252; p=0.63), (K) 
PR-negative RFS (n=549; p=0.21) and (L) PR-positive RFS (n=589; p=0.23). All graphs show hazard 
ratio (with 95% confidence intervals) with data restricted as follows: grade (all), lymph node status 
(all), chemotherapy/endocrine therapies (all).  
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3.3. Exploration of FAK and Pyk2 in breast cancer models 

We next wished to explore the expression and activity of FAK along with its related family 

member, Pyk2, in a panel of cell lines modelling the major clinical subtypes in order to determine 

whether there was an association between their expression and cellular characterisation of 

these cells such as proliferation and migration/invasion behaviour. 

Whilst levels of FAK showed some (non-significant) differences between all cell lines, the SkBR3 

cells consistently expressed a lower level of protein compared to other models (figure 3.3A and 

B, p<0.05 for FAK expression in SkBr3 cells versus all others). FAK activity at Y397 and Y861 was 

assessed using phospho-specific antibodies which revealed that all cell lines showed FAKY397 

phosphorylation, with highest activity observed in the HER2+ SkBr3 line (figure 3.3A and C). 

Similarly, phosphorylation at FAKY861 was detected in all models and again highest in SkBr3 cells 

(figure 3.3A and D). As the primary focus of this work was to explore FAK in TNBCs, all results 

were normalised to the levels observed in MDA-MB-231s (figure 3.3E). 

Investigations into Pyk2 revealed consistently low levels of total protein across all models but 

with significantly higher expression in SkBr3 cells (figure 3.4A and B). Pyk2Y402 activity was 

considerably more variable than that observed in FAK. All models showed phosphorylation with 

MDA-MB-361 cells having the highest, relative Y402 activity and SkBr3 cells the lowest (3.4A and 

C). Taken with our Kmplot data, we decided to focus the remainder of this chapter on FAK given 

that cellular levels are particularly low and that Pyk2 expression seemed to correlate with better 

clinical outcome. 
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Figure 3.3 – FAK expression and activity in breast cancer models – (A) Western blots showing the basal 
levels of phosphorylated FAKY397, FAKY861 and total FAK across the cell lines. Actin was used as a loading 
control. (B) Densitometry analysis of total FAK protein levels across cell lines showing a significantly lower 
level in SkBr3 cells. (C) FAKY397 phosphorylation levels calculated relative to total FAK expression. (D) 
Analysis of densitometry of FAKY861 relative to total FAK levels, showing SkBr3 has significantly higher 
activity than all other cell lines. (E) Summary graph displaying the intensity of each band obtained relative 
to the respective band in the MDA-MB-231 cell line. All values shown for densitometry are normalised 
against actin to account for loading error. Error bars represent SEM; n=3. *p=0.05; **p=0.01; ***p<0.001. 

  



74 
 

 

Figure 3.4 – Pyk2Y402 expression and activity in breast cancer models - (A) Western blot showing the levels 
of phosphorylated Pyk2Y402 and total Pyk2 across the cell lines. Actin also shown was used as a loading 
control. (B) Evaluation of total Pyk2 protein levels based on densitometry analysis shows significantly 
higher expression in SkBr3 cells versus all other examined lines. (C) Relative activity of Pyk2Y402 compared 
to respective total levels highlights significant variation in activity across cell lines. (D) Summary of all 
densitometry data, with all results normalised to their respective equivalent in MDA-MB-231 cells. All 
results in this densitometry are normalised to actin. Error bars represent SEM; n=3. *p=0.05; **p=0.01; 
***p<0.001. 
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3.4. Analysis of subcellular distribution of FAK in breast cancer cell models 

FAK regulates several cell behaviours through modulating signals present at sites of cell adhesion 

(Lee et al. 2015). Consequently, its localisation to these sites plays a crucial role in directing FAK-

dependent signalling cascades. As such, we sought to explore the subcellular distribution of total 

FAK protein, as well as active, phosphorylated FAK across the cell models to further evaluate 

how FAK correlates with aggressive cell behaviours. In general, total FAK protein displayed 

diffuse localisations through the whole cell but SkBr3 and MDA-MB-361 cells both exhibited 

defined points of expression on the cell periphery (figure 3.5). We also stained the cell lines with 

active FAKY397 to observe differences in the distribution of active FAK. However, these stains had 

such high amounts of background that the data was extremely difficult to interpret (appendix 

1). As such, we also stained with FAKY861 as a surrogate marker for active FAK (figure 3.6). Active 

FAK was strongly localised to the cell membranes in all cell lines, whilst MDA-MB-361 cells had 

particularly large regions of activity at points of actin. 
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Figure 3.5 – Examination of total FAK distribution throughout breast cancer cell lines – 
Representative images showing the subcellular distribution of total FAK protein (green), along with 
actin (red) and nuclear stain DAPI (blue) across breast cancer cell lines. Total FAK is distributed 
throughout cells, with SkBr3 and MDA-MB-361 cells showing distinct points of high FAK staining 
localised to the cell periphery. N=3. 
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Figure 3.6 – Examination of active FAKY861 localisation in different breast cancer cell models – 
Representative images showing the localisation of active FAKY861 (green) and actin (red), as well as 
the nucleus (DAPI – blue) in each of the cell models utilised so far. FAKY861 is primarily localised to 
the cell periphery with MDA-MB-361 cells exhibiting pronounced regions of activity at defined 
points of actin convergence. N=3. 
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3.5. Analysis of proliferative and migratory capacity of breast cancer cell models 

Part of our objectives for this chapter were to assess whether FAK expression or activity 

correlated with the proliferative or migratory characteristics of the cell lies being tested. Having 

assessed the expression and activity of FAK we therefore next determined the proliferative and 

migratory capacity of these cell lines. Cell counting experiments performed over a period of 7 

days revealed that the TNBC model proliferate significantly more than all other cell models over 

7-days (figure 3.7A). Normalisation of cell numbers to those seen in the MDA-MB-231 model 

also reveals the same trend (figure 3.7B). Unexpectedly, the HER2+ model (SkBr3) displayed the 

lowest growth rates despite being a typically aggressive disease subtype.  

A monolayer wounding assay was used to determine the intrinsic migratory nature of the cells. 

These data (figure 3.7C) revealed that the TNBC cell model (MDA-MB-231) displayed an 

extremely high propensity to migrate compared to other tested cell lines, with the wound being 

almost completely closed after a period of 24 hours. SkBr3 and MCF7 cells were both weakly 

migratory and BT474 cells did not migrate. Consequently, it was decided that all future migration 

assays would solely focus on the MDA-MB-231 cell migration. It is important to note however, 

that wound closure may also result from proliferation of cells into the wound and this may 

account for the observed wound closure in MDA-MB-231 cells. 
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Figure 3.7 - MDA-MB-231 are significantly more migratory than other cell lines – (A) Cell numbers 
following 7-day growth. MDA-MB-231 cells proliferate significantly more than all other cell lines. (B) 
Evaluation of 7-day cell counts across breast cancer models showing significantly higher proliferation in 
the TNBC models versus all others.  (C) Images show the amount of wound healing following 24-hours of 
a scratch being made through the cell cultures. MDA-MB-231 cells show almost complete wound closure 
following 24-hours, whilst MCF-7 and SkBr3 cells show limited closure. BT474s display no degree of 
closure. All error bars are representative of SEM; n=3. *p<0.05; **p<0.01; ***p<0.001. 
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Having explored levels of FAK and its distribution through the cell models, as well as their 

respective proliferative and migratory capacities, we next wished to correlate the FAK with 

intrinsic cell behaviours. Table 3.1 shows a summary of relative FAK expression/activity 

(normalised to MDA-MB-231 cells) and a summary of proliferation and migration as determined 

by the assays outlined previously. Briefly, MDA-MB-231 cells grow significantly faster and exhibit 

significantly greater migration versus all other models, although FAK is not significantly 

augmented in this cell line.  

 

Cell Line Total FAK FAKY397 FAKY861 Proliferation Basal Migration 

MDA-MB-231 1.00 1.00 1.00 ++++ ++++ 

MCF-7 0.92 0.95 1.50 ++ ++ 

SkBr3 0.41 1.46 2.94 + ++ 

MDA-MB-361 1.04 0.86 1.34 ++ + 

BT474 1.24 0.48 1.07 + N/A 

_____________________________________________________________________________________ 
Table 3.1 – Comparative summary of FAK expression/activity, proliferation and cell migration across cell 
lines 
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3.6. Breast cancer cell models exhibit differential sensitivity to the FAK inhibitor PF271 

We next wished to investigate whether these cell models had similar or differential sensitivity to 

the FAK inhibitor, PF562,271 (PF271) in terms of suppression of FAK activity. This compound is a 

small molecule, ATP-competitive inhibitor which effectively prevents FAK and Pyk2 

phosphorylation and subsequent kinase activity (Roberts et al. 2008). Each of the cell lines was 

treated with PF271, at the doses and times indicated in the figures then lysed and used for 

Western blotting to assess changes in FAK activity in response to the inhibitor. PF271 treatment 

resulted in a reduction in FAKY397 activity in all cell lines in a dose dependent manner. However, 

differential sensitivity was observed across the subtypes (figure 3.8A and B). In contrast, total 

protein levels of FAK were not significantly affected by PF271 (figure 3.8A and C). IC50 values for 

PF271 against FAKY397 were calculated for each cell line and compared to the data obtained for 

the TNBC cell model (figure 3.9). These data demonstrated that both luminal B (BT474 and MDA-

MB-361) and the TNBC models were the most sensitive to PF271 whilst MCF-7 cells were the 

least sensitive. 
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Figure 3.8 – PF271 inhibits FAK activity in breast cancer cell models - (A) Cells were treated with 

different concentrations of PF271 for 1-hour, lysed and subjected to SDS-PAGE and immunoblotting 

with FAK (total and Y397) antibodies. Blots show representative trends observed across replicates 

(n=3) (B) Densitometry analysis of all data showing the relative changes in FAKY397 activity over the 

dose-range explored, normalised to the vehicle-only control (0.0µM) for each respective cell line. 

(C) Total FAK protein levels shown across the dose range normalised to the vehicle-only control. All 

error bars represent SEM; n=3. 
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Figure 3.9 – PF271 IC50 values show significant variations between breast cancer cell lines – (A) 

Table summarising the calculated IC50 values and relative sensitivity of each cell line to PF271 in 

comparison to the triple-negative model, MDA-MB-231. (B) Graph displaying the relative 

sensitivities of each cell line to FAKY397 inhibition normalised to MDA-MB-231. Error bars represent 

SEM; n=3. *p=0.05; **p=0.01; ***p<0.001. 
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3.7. The effects of FAK inhibition on cellular proliferation 

Having demonstrated that FAK could be inhibited in each cell line by PF271, albeit with 

differential sensitivities, we next wished to determine whether FAKY397 contributed to the 

proliferation of these cell models given that activation of FAK can promote growth signalling in 

some tumour types (Lee et al. 2015). Cells were seeded into dishes either in the presence or 

absence of the inhibitor at various concentrations and allowed to grow for 7 days. These data 

revealed that apart from BT474 cells, PF271 can significantly inhibit proliferation at 

concentrations above 0.1µM (figure 3.10A). Responsive cell lines displayed very similar IC50 

values, except the MDA-MB-361 cells which were significantly less responsive to PF271-induced 

inhibition of proliferation (figure 3.10B and C). Interestingly, for all cell lines tested, the IC50 

values for PF271 against FAK activity were much lower than that for the suppression of cell 

growth (figure 3.10D).  

Although we have explored a range of models representing different clinical subtypes, our 

primary focus is on TNBC cells. Consequently, we expanded our analysis of MDA-MB-231 cells in 

order to determine the effects of longer-term (7-day) inhibition, thus allowing us to better 

observe the contribution of FAK to cell growth. Cells were grown for 24 hours in standard culture 

media before being subjected to PF271 treatments and daily cell counts performed for 7-days 

following incubation. Cell numbers were also counted following the 24-hour pre-treatment 

growth phase, hereafter known as the day 0 counts. Both the vehicle-only control and PF271 

cells exhibited log-phase growth, however the treated cells showed a significant decrease in 

growth rate (figure 3.11). These cells also continued proliferating up to 7-days whereas a drop 

was observed following day 5 in the vehicle-only control. 
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Figure 3.10 – Effects of PF271-mediated FAK inhibition on cell proliferation - (A) Relative 

suppression of proliferation in each cell line following 7 days across the range of PF271 

concentrations, normalised to cell numbers in vehicle-only control samples. (B) Table summarising 

the IC50 of PF271 on proliferation in each cell line, comparing the relative sensitivities of each 

subtype to MDA-MB-231. Given that MDA-MB-361 cells failed to reach 50% suppression in 

proliferation in the allotted 7-days, data was extrapolated to give perceived IC50 value. (C) 

Comparative analysis of IC50 for proliferation between cell lines normalised to triple-negative 

sensitivity, displaying the significant lack of response in MDA-MB-361 cells compared to other 

models. (D) Evaluation of FAKY397 activity and proliferation IC50 value across each cell line, 

highlighting the variation in sensitivity between activity and proliferation. All error bars represent 

SEM; n=4. *p=0.05; **p=0.01; ***p<0.001. 
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_____________________________________________________________________________________ 
Figure 3.11 – Treatment of MDA-MB-231 cells with PF271 causes a significant reduction in growth rate 
over 7-days – Growth Curve showing the change in cell numbers in the presence or absence of PF271 for 
7-days. Introduction of 1µM PF271 was sufficient to significantly reduce proliferation following 3-days and 
was sustained up to the final count at day 7. Error bars represent SEM; n=3. *p<0.05; **p<0.01; 
***p<0.001. 

 

3.8. The effects of FAK inhibition on TNBC migration and invasion 

We next wished to determine whether the migratory/invasive characteristics of the cell models 

were related to FAK activity by again employing the pharmacological FAK inhibitor, PF271. 

However, this was only performed on MDA-MB-231 cells since our data revealed that apart from 

TNBC cells, all the cell lines were weakly or non-migratory and so not an appropriate model to 

investigate the effects of FAK inhibition on basal migration. As noted previously, wound closure 

can reflect differences in proliferation rather than cell motility. As such, Boyden chamber 

migration assays were used to assess migration in a more robust manner. MDA-MB-231 cell 

migration was significantly reduced following inhibition of FAKY397 activity by 50% and further 

still with increased PF271 concentration (figure 3.12). Given that metastasis requires cell 

invasion in addition to migration, we also utilised Boyden chamber assays to explore the 

contributions of FAK to basal invasion of MDA-MB-231 cells. As with migration, PF271 could 

significantly attenuate cell invasion, with increased suppression at greater levels of FAK 

inhibition (figure 3.13). 
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_____________________________________________________________________________________
Figure 3.12 – Evaluation of MDA-MB-231 cell migration following treatment with PF271 – (A) 
Representative images of Boyden chamber assay following 18-hours migration prior to fixing and staining. 
Negative control (-ve control) represents cells migrating in absence of serum-containing medium in either 
chamber. (B) Analysis of cell migration in response to PF271 treatment revealed a significant decrease in 
motility following inhibition of FAK function. All error bars represent SEM; n=4. *p<0.05; **p<0.01; 
***p<0.001. 
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_____________________________________________________________________________________ 
Figure 3.13 – Analysis of changes in MDA-MB-231 cell invasion upon FAK inhibition - (A) Representative 
images of Boyden chambers following 72-hours invasion through Matrigel. (B) Evaluation of FAK’s 
contribution to basal MDA-MB-231 cell invasion showed significantly impaired invasive potential following 
PF271 inhibition of FAK activity. All error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001. 
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3.9 Discussion  

TNBCs represent a distinct subtype of basal-like disease characterised by a significantly increased 

propensity for early metastatic progression and short relapse free periods (Perou et al. 2000; 

Dent et al. 2007). Moreover, current therapeutic options are limited to chemotherapy due to 

the absence of targetable receptors (e.g. ER+ tumours can be therapeutically targeted by 

tamoxifen), thus target identification remains a priority in this clinical subtype (Bramati et al. 

2014). This chapter focused on the differences in FAK expression/activity between breast cancer 

cell models, in order to correlate this data with the intrinsic characteristics of cell lines. 

Initial observations of the clinically generated Kaplan-Meier plots (KM plots) revealed that 

generally FAK overexpression is highly correlated with a decrease in RFS and DMFS. This result 

reinforces the hypothesis that FAK represents a major therapeutic target in breast cancer, 

particularly in the context of TNBC where it may both act on cellular growth and disease 

progression. In terms of TNBC, KM plots revealed a negative relationship between FAK and RFS, 

although non-significant. However, this may be due to limits of this type of analysis. Due to the 

prevalence of each subtype, there are very large variations in the number of samples assessed 

in each experiment; with the triple-negative subtype exhibiting far fewer replicates than the 

other classifications (n=186 vs. n=1933 for luminal A). It could therefore be argued that if the 

sample sizes for TNBC were as large as others, the statistical analysis would become stronger 

and, likely statistically significant. Regardless, our data is in agreement with  earlier work by Lark 

et al (2005) who showed a significant association between FAK expression and poor prognostic 

markers such as high mitotic index and higher tumour grade (Lark et al. 2005). Moreover, 

Golubovskaya et al (2014) also showed that patients with high FAK-expressing tumours showed 

significantly worse overall and progression-free survival (Golubovskaya et al. 2014). 

Consequently, FAK represents an opportunity for targeting in TNBC. 

By contrast, exploration into Pyk2 revealed a correlation between high expression and improved 

RFS across breast cancer subtypes, particularly in the more aggressive forms of disease. This data 

appears to support observations made in prostate cancer by Stanzione et al (2001). They noted 

that Pyk2 has potential as a tumour-suppressor, as an inverse relationship between the 

expression of Pyk2 and degree of malignancy exists (Stanzione et al. 2001). However, this trend 

appears to be unique to prostate cancer progression and not reflective of typical behaviour in 

other solid tumours. For example, high Pyk2 expression in breast cancer has been shown to 
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potentiate TGF-β mediated EMT and subsequent metastasis, as well as being associated with 

high tumour grade and increased lymph node metastasis (Verma et al. 2015). These findings are 

in complete disagreement with our data, as they suggest Pyk2 expression is linked to disease 

progression and thus poorer RFS. However, the relationship between Pyk2 and FAK may account 

for our results. Previously, decreased FAK expression has been shown to directly correlate with 

increased Pyk2 levels in both embryonic fibroblasts (Sieg et al. 1998) and adult endothelial cells 

(Weis et al. 2008). Consequently, patients who exhibit high levels of Pyk2 could do so as a 

response to low levels of FAK. Although Pyk2 can compensate for a loss of FAK, it is not a 

complete substitution and thus reduced activity in several signalling pathways would be 

observed. For example, Wendt et al. (2013) showed that FAK is essential to TGF-β signalled EMT 

and, despite some compensation by Pyk2, selective inhibition of FAK causes reduced breast 

cancer cell invasion (Wendt et al. 2013). However, high Pyk2 levels do not always result from 

reduced FAK expression. Co-overexpression of FAK and Pyk2 has been shown in early stage and 

invasive HER2+ breast cancers (Behmoaram et al. 2008). Therefore, Pyk2 may be influencing 

prognosis by another means. Despite their similarities and relationship, FAK and Pyk2 do exhibit 

very different behaviours in cells. For example, Pyk2 induction results in cell cycle suppression 

through inhibition of the G1 to S-phase transition, whilst increasing FAK expression to similar 

levels accelerated this progression (Zhao et al. 2000). Additionally, FAK and Pyk2 vary in their 

regulation of apoptosis: FAK expression can protect cells from apoptosis (Lunn et al. 2007), whilst 

increased Pyk2 expression and activity is sufficient to induce cell death (Xiong and Parsons 1997; 

Wang et al. 2011). This inverse relationship in some functions could explain our findings as there 

could be a balance between FAK/Pyk2 mediating cell behaviours. Therefore, when Pyk2 levels 

exceed those of FAK, its signals override the typically more dominant FAK-linked signals 

providing some degree of protection for cancer patients. Whilst interesting, time did not allow 

the study of FAK/Pyk2 interplay further as the focus for this thesis was FAK, particularly in TNBC. 

FAK has previously been highlighted as a central mediator of cell migration and invasion, as well 

as contributing to cancer cell proliferation (Luo and Guan 2010). Consequently, it could be 

reasoned that FAK activity and expression would vary across cellular subtypes depending on the 

intrinsic behaviours of each cell line. Our data contradicts this idea as we show relative 

consistency in FAK expression between cell models. In addition, the most aggressive cell line, 

MDA-MB-231, does not show significantly augmented FAK activity as would be expected. 

However, SkBr3, the model of Her2+ disease, does exhibit significantly higher FAK activity, 
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particularly FAKY861. This data directly reflects the work done by Vadlamundi et al (2003) who 

noted a specific increase in phosphorylation of FAKY861 following the stimulation of the Her2 

signalling pathway (Vadlamudi et al. 2003). Taken together, our findings and the literature would 

suggest HER2 as a key mediator of FAK activity. However, the increase in FAKY861 activity seen in 

SkBr3 cells is not observed in other HER2-positive models explored (MDA-MB-361s). This may 

suggest that the presence of other hormone receptors (ER and PR) could have a sequestering 

effect on FAK activity. This is unlikely as several studies have highlighted positive relationships 

between such receptors and FAK (for examples see Planas-Silva et al. 2006). Alternatively, other 

proteins present in these cell models may be influencing FAK behaviour. Receptor tyrosine 

kinases (RTKs) may play a crucial role in this as such molecules have been shown to promote 

tumour progression through cooperation with integrins; the major upstream activator of FAK 

(Soung et al. 2010). Previous work by Subik et al (2010) has shown that one RTK in particular, 

epidermal growth-factor receptor (EGFR), is highly upregulated in SkBr3 cells especially if 

compared to the other models examined here (Subik et al. 2010).  Furthermore, interactions 

between EGFR and integrins have been shown to promote metastasis in a FAK-dependent 

manner (Leng et al. 2016). Consequently, it is likely that EGFR may contribute to FAK stimulation 

in SkBr3 cells and be more important than the presence of the HER2 receptor. However, more 

work would be needed to confirm this hypothesis. 

We also explored differences in Pyk2 activity/expression in order to assess its relationship with 

FAK in these cells and its possible contribution to cell behaviours. Expression and activity was 

very low, especially in comparison to FAK suggesting a limited role in modulating cell function. 

This result seemed to reflect previous reports which suggested Pyk2 has limited usage 

throughout adult tissues (Behmoaram et al. 2008), although some studies have proposed a role 

for Pyk2 in cancer cells. For example, Pyk2 has been shown to increase migration and EMT 

associated signals through mediation of EGF-signalling in breast cancer cells (Verma et al. 2015). 

However, the extent of Pyk2’s contribution to cancer remain largely unclear, except in terms of 

FAK compensation. We may be seeing some form of this here as SkBr3 cells which exhibit low 

levels of hyperactive FAK, also showed high Pyk2 expression with almost complete Pyk2Y402 

activity. Notably, relative Pyk2 activity was significantly lower than in the other models. This 

inverse relationship could suggest that in SkBr3 cells, Pyk2 is overexpressed to compensate for 

downregulated FAK, but high levels of FAK activation mean stimulation of Pyk2 is lower than in 

cells with less active FAK. This could also mean that although hyperactivation of FAK is sufficient 
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to modulate some signalling, high Pyk2 levels are required to compensate for loss of kinase-

independent scaffold function. Pyk2 does exhibit scaffold function and, given its binding partners 

overlap with those of FAK, could mediate kinase-independent functions in lieu of FAK (Lipinski 

and Loftus 2010). However, very few studies have examined the role of kinase-independent Pyk2 

in cancer cells and thus more work would be needed to explore its relationships to these 

functions in FAK. 

FAK primarily interacts with signalling cascades at the sites of focal adhesions, requiring a 

number of such proteins to become activated (Frame et al. 2010). Thus, it is not only expression 

and activation that regulates FAK function but also correct localisation (this is discussed further 

in chapter 6). As such, we went on to explore subcellular distribution of FAK across our cell 

models, to determine whether this had any correlation with cell behaviours. We reported that 

activated FAK is primarily localised to the cell periphery (as expected) and that total FAK is 

generally distributed throughout the cell. However, SkBr3 and MDA-MB-361 cells both showed 

increased localisation to the cell membrane. Given both these models express the HER2 receptor 

(Kao et al. 2009), it could be reasoned that the presence of this receptor increases peripheral 

FAK localisation to enhance HER2/FAK signalling. Although studies that directly examine the 

effect of HER2 activity on FAK localisation are limited, there is some evidence to support this 

hypothesis. Firstly, a seminal study by Sieg et al (2000) demonstrated that ErbB receptors 

(including HER2) can physically interact with FAK (Sieg et al. 2000), whilst Subsequent studies 

revealed strong co-localisation between FAK and HER2 in migrating cells (Benlimame, He, Jie, 

Xiao, Xu, Loignon, Schlaepfer and M. a Alaoui-Jamali 2005). Taken together, these studies could 

provide evidence for HER2 mediated recruitment of FAK to the cell membrane, although more 

studies would be needed to confirm if HER2 activation alone is sufficient for increased FAK 

localisation. 

Unfortunately, we were unable to view the distribution of FAKY397 due to high levels of 

background and non-specific cell staining. This is a limitation as it means we could only view 

active FAK using FAKY861 as a surrogate marker. Although, a strong substitute due to its 

correlation with FAKY397 activity (figure 3.3), it is not a perfect replacement as certain factors can 

increase the activity of this site and potentially create misinterpretations in our results. Indeed, 

we discussed previously the positive effects of HER2 on FAKY861 phosphorylation (Lazaro et al. 

2014). This could explain the more diffuse peripheral staining of active FAK in SkBr3 cells, due to 
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preferential stimulation and localisation with HER2. However, regardless of increased FAKY861 

activity in these cells, this marker still largely represents active FAK distribution and thus we 

concluded that the localisation of this antibody truly reflects active FAK. 

We subsequently went on to explore variations between the cell models in terms of basal 

proliferation and wound healing. Our results highlighted the aggressive nature of the MDA-MB-

231 model, with these cells exhibiting significantly greater proliferation and wound closure 

versus all other models. This closely reflects the clinical presentation of TNBC where patients 

often display larger tumours at the time of diagnosis, as well as proliferative capacity of these 

tumours, as characterised by mitotic index (Ho-Yen et al. 2012; Rakha et al. 2006). This is 

accompanied by a significantly higher chance of disease recurrence and increased metastasis, 

reflecting increased cell motility (Dai et al. 2015). To further underscore the aggressiveness of 

such cells, TNBC patients have also been noted to be at a more advanced stage of disease than 

other subtypes when diagnosed (Aysola et al. 2013). Consequently, these studies fully support 

our cell model as we see a similar reflection of characteristics versus other subtypes. 

More interesting was the correlation between these aggressive behaviours and FAK, where 

despite being highly proliferative and migratory, MDA-MB-231 cells did not show significantly 

augmented FAK activity or expression. This may infer that FAK has minimal contributions to 

breast cancer cell phenotypes linked to negative prognosis. Several studies directly contradict 

these findings as FAK activity and expression has been correlated with movement towards a 

metastatic phenotype. For example, Pylayeva et al (2009) showed a direct correlation between 

FAK expression in breast cancer and prognosis (Pylayeva et al. 2009). This also seems to 

contradict our KMplot data where RFS and DMFS was significantly worse in patients with 

increased FAK levels (figure 3.1). As discussed previously, this data in TNBC is lacking and thus 

may not reflect the true relationships between FAK and outcome. 

Although it can provide some basis for investigation, examining FAK versus traits in of itself is 

not sufficient to glean the relevance of FAK to breast cancer subtypes. Indeed, despite 

differences in levels and activity, FAK may be utilised to modulate signalling in a subtype-specific 

manner. As such, we went on to evaluate the sensitivities of different cell lines to a known FAK 

antagonist, PF271. It was hypothesised that cell lines with high FAK expression/activity would be 

particularly susceptible to targeting with such an inhibitor. The observed results contradict this 

hypothesis as SkBr3 cells which had very high levels of phosphorylated FAK, did not exhibit 
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increased sensitivity to PF271. This may be because these cells have such high levels of FAK 

activity that to get a significant suppression of activity would require a high dose of inhibitor. 

Additionally, MCF-7 cells exhibited a markedly low sensitivity to PF271 compared to all other cell 

lines. Unlike in SkBr3 cells, this observation could not have resulted from variations in FAK 

activity/expression. This insensitivity to PF271 may be accounted for by the high prevalence of 

insulin-like growth factor-1 receptor (IGF-1R) signalling in MCF-7 cells. Typically, luminal A and B 

tumours have increased levels of IGF-related signalling molecules (Farabaugh et al. 2015). 

Expanding on this, work by Mukohara et al (2009) previously showed that MCF-7 cells display 

significantly higher levels of IGF-1R and the signalling adaptor protein insulin receptor substrate 

1 (IRS-1) when compared to other models of breast cancer representing different clinical 

subtypes (Mukohara et al. 2009). Not only can FAK directly bind to and activate IGF-1R through 

its FERM domain (Watanabe et al. 2008; Zheng et al. 2009), but crosstalk exists between the two 

molecules, mediating function. Indeed, Taliaferro-Smith et al (2015) demonstrated that 

overexpression of IGF-1R resulted in a significant increase in FAK activity in TNBC cells (Taliaferro-

Smith et al. 2015). Moreover, pharmacological inhibition of FAK in IGF-1R overexpressing cells 

still alters cell function but to a lesser degree than in cells with normal expression (Taliaferro-

Smith et al. 2015). Additionally, IRS-1 can interact with and stimulate FAK via the Shb adaptor 

protein, whilst also providing a point of convergence for integrin and growth factor-mediated 

FAK activation (Welsh et al. 2002; Holmqvist et al. 2003). Taken together, these results suggest 

that cells with high IGF-1R signalling would be less susceptible to FAK inhibition and thus could 

account for the observed insensitivity of MCF-7 cells to PF271 treatment. 

Interestingly, there was a discrepancy in sensitivities to PF271 in terms of proliferation and FAK 

stimulation across all cell lines, where IC50 values for proliferation were consistently higher than 

those for FAK activity. This could thus infer that FAK is not the central driver of proliferation in 

breast cancer cells but rather a contributing factor. One would expect that if FAK was the primary 

mediator of proliferative signalling that activity and growth would be closely linked, with 

comparative sensitivities to inhibition. Although several studies implicate FAK as a contributory 

factor in proliferation (reviewed in Lee et al. 2015), to our knowledge no studies implicate FAK 

as the main driver of cell growth. Moreover, given FAK’s role as a signalling node for many 

pathways (Sulzmaier et al. 2014), it stands to reason that its role in cell growth would be 

contributory, as to be a purely proliferative signal would require FAK to mediate this trait only. 

Regardless of whether it is the primary factor, FAK inhibition can still significantly alter 
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proliferation across the cell lines, with sensitivity to PF271 still being very high, therefore we 

concluded that FAK is a relevant anti-proliferative target in breast cancer.  

Given our particular interest in TNBC cells, we went on to further evaluate the relevance of FAK 

to MDA-MB-231 cell proliferation and migration/invasion. Our results showed that FAK 

inhibition could significantly reduce growth-rate consistently over 7-days. This was not 

unexpected as we had already demonstrated that FAK contributes to the proliferation of these 

cells (figure 3.10), yet we were able to observe trends in growth over the time-course providing 

us more information on the relevance of FAK. Primarily, it allowed us to determine that the 7-

day counts obtained previously were not resultant from alleviated PF271 inhibition, possibly due 

to loss of efficacy, but rather continuous impedance of log-phase growth. We also showed that 

FAK significantly contributes to MDA-MB-231 cell migration and invasion and its inhibition 

causes significant attenuations in both behaviours. Both the proliferation and the 

migration/invasion studies closely reflect previous studies which have implicated FAK in both 

these phenotypes (Lee et al. 2015). Additionally, these experiments have enabled us to 

determine that FAK plays a key role in modulation of these behaviours specifically in TNBC cells. 

Consequently, further studies were undertaken to evaluate the role of FAK function in 

proliferation and migration in greater detail, exploring both the contributions of kinase 

dependent/independent functions and the mechanisms by which FAK governs such traits. 

3.9.1. Conclusions 

Taken together these results initially imply that levels of FAK expression and activity is not the 

basis for the aggressive tendencies observed in TNBC cells, nor is differential localisation. 

However, TNBC cells are more migratory and proliferative than other breast cancer subtypes, 

with FAK contributing to both cell traits. Moreover, the sensitivity of these cells to FAK inhibition 

provides some evidence for FAK as a therapeutic target in tumourigenic and progressive events. 

What is not clear is the degree to which triple-negative cells utilise FAK and how inhibited 

function leads to altered cell behaviours.  
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Mechanistic Exploration of FAK in TNBC 
proliferation and migration 
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4.1. Introduction 

In the previous chapter, we demonstrated that FAK inhibition by PF271 was able to suppress the 

proliferative and migratory capacity of TNBC cell models. We next wished to explore the 

contribution of FAK to each of these cell functions in greater depth. 

TNBC tumours display increased aggressive behaviour when compared to other breast cancer 

subtypes. Consequently such tumour cells tend to exhibit an increased proliferative capacity in 

vitro and patients exhibiting triple-negative disease have significantly larger tumours at time of 

presentation versus all other subtypes (Dent et al. 2007; Bauer et al. 2007; Kreike et al. 2007). 

Furthermore, cells within these tumours have demonstrated increased proliferative capabilities 

versus other subtypes (Elsawaf and Sinn 2011). Anecdotally, during our previous studies (chapter 

3) it was noted that TNBC cell models grew significantly faster in culture when compared to all 

other subtypes. This could suggest that therapeutics targeting cell growth pathways could have 

great potential against TNBCs, given their propensity for rapid cell proliferation.  

Moreover, the propensity of TNBC cells to migrate and invade infers an increased metastatic 

potential versus tumours cells of other subtypes. Interestingly however, the mechanisms that 

underpin this metastatic potential are poorly understood with many contributing factors that 

could potentially mediate these processes. FAK is one such candidate as it has previously been 

demonstrated to underpin several processes essential to cancer cell behaviours that would 

support metastasis as demonstrated in the previous chapter. As such, here we wished to explore 

possible mechanisms of action that underpin the role of FAK in modulation of TNBC cell 

migration, as well as how it influences proliferation. 

4.1.1. Aims and objectives 

The main focus for this section of this chapter is to explore the contribution of FAK to the 

proliferative and migratory capacity of TNBC cells and to evaluate the mechanisms by which FAK 

regulates such functions. To achieve this, the following objectives were set: 

 Assess the relative contributions of FAK to the proliferation and migration of MDA-MB-

231 cells and the mechanisms that underpin FAK-driven proliferation and migration. 
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 Evaluate downstream signalling pathways that may contribute to changes in cell 

behaviours following FAK inhibition. 

 
 Explore the role of FAK in a second model of TNBC (MDA-MB-468 cells). 
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4.2. Assessment of the contribution of FAK scaffold functions to proliferation 

In chapter 3, our data demonstrated that pharmacological inhibition of FAK kinase suppressed 

MDA-MB-231 cell growth (figure 3.11), however, FAK can also mediate downstream signals 

through kinase-independent, scaffolding mechanisms. To investigate the broader contribution 

of FAK, i.e. other than just phosphorylation-mediated events, an siRNA approach was employed 

to suppress FAK expression thus enabling the exploration of cellular events mediated by both 

the phosphorylation and scaffolding-functions of FAK. Thus, by comparing pharmacological FAK 

suppression with siRNA against FAK, we hypothesised that this would reveal the relative 

contribution that scaffolding plays versus catalytic activity.  

4.2.1. Optimisation of FAK siRNA 

It was necessary to first optimise the FAK siRNA protocol. As shown in figure 4.1, the levels of 

total and activated FAK significantly decreased with time and were not restored following 

removal of the siRNA. Neither the non-targeting siRNA (NT-siRNA) nor the lipid-only (LO) control 

had any significant effect on the total levels of FAK, thus the observed reductions were not a by-

product of transfection but specific to targeted siRNA. Although a modest increase in FAKY397 

levels was observed in NT and LO controls, a significant reduction was seen in FAK siRNA treated 

cells. From these experiments, it was decided that 72-hour FAK siRNA treatment was to be used 

in future experiments as this produced a significant and sustained suppression of FAK. 
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Figure 4.1 – Time-course optimisation of FAK siRNA – (A) Western blot showing the effects of FAK siRNA 
on Y397 activity and total FAK levels over time and the effects on each following the removal of treatment. 
Treatment denotes time-period in which cells were in the presence of siRNA complexes, whilst post-
treatment represents time-points of cell lysis following replacement of media with complex-free, standard 
culture medium. The effects of the control, non-transcribing siRNA (NT) and the lipid-only (LO) are also 
shown, along with actin as a loading control. Times for treatment are notated in hours (H) and post-
treatment in days (D). (B) Densitometry analysis of FAKY397 and total FAK as a percentage of the control 
cells. Error bars show SEM; n=3. 
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4.2.2. Effects of FAK depletion on MDA-MB-231 cell proliferation 

Having demonstrated that FAK protein levels can be effectively suppressed using siRNA, cell 

counting experiments were undertaken. As it was anticipated that introduction of siRNA may 

impact cell growth, cells were treated with FAK siRNA for 72-hours then growth recorded over 

the following 3 days. Proliferation was observed in all treatment groups over the 72-hour period 

although the rate of proliferation was significantly less in cells treated with FAK siRNA (figure 

4.2A and B). Given that siRNA will supress both kinase and scaffold functions, changes in 

proliferation were compared to kinase inhibition alone (PF271), so any additional suppression 

resulting from siRNA knockdown could be attributed to impaired FAK-scaffolding function. Both 

approaches resulted in comparable levels of cell growth suppression, whilst combination of the 

two also had no additional benefit (figure 4.2C). Given the lack of difference with the 

combination approach, we hypothesised that it was the kinase function of FAK that played the 

most significant part in growth regulation and thus future experiments focussed on 

pharmacological inhibition of FAK using PF271 in order to explore FAK-dependent growth 

regulatory mechanisms.  
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_____________________________________________________________________________________ 
Figure 4.2 – Proliferative response of MDA-MB-231 cells to FAK suppression through siRNA – (A) 72-hour 
cell counts following incubation with FAK siRNA or relative controls. Day 0 counts are representative of 
cell number immediately following withdrawal of cells from siRNA containing media. All cells continue to 
proliferate following siRNA withdrawal, although rate of cell number following 3-days is significantly 
reduced in cells incubated with FAK siRNA. (B) Analysis of the growth rates of siRNA treated cells, 
representing fold change in cell number between 0 and 3 days. FAK siRNA cells exhibit significant reduction 
compared to both controls. (C) Evaluation of fold-change in cell numbers in MDA-MB-231 cells grown in 
the presence of siRNA and/or PF271, showing comparable reductions between PF271 and FAK siRNA with 
no additional benefits from combining inhibitory agents. All error bars are representative of SEM; n=3.  
*p<0.05; **p<0.01; ***p<0.001. 
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4.3. Cell growth inhibition is accompanied by a decrease in proliferative marker Ki67 

Previous studies have highlighted FAK as a key mediator of both cell proliferation and cell 

survival. As such, we wished to explore whether PF271-mediated changes to MDA-MB-231 

growth was due to impaired proliferation. Consequently, an immunohistochemistry assay for 

Ki67 (a specific marker of cellular proliferation) was performed following PF271 treatment. FAK 

inhibition resulted in a significant decrease in Ki67 positive cells compared to controls (figure 

4.3A and B); interestingly, this change was noted across all time-points examined. Since FAK has 

also been implicated as a regulator of apoptosis (Lee et al. 2015), we also examined the effects 

of PF271 on PARP cleavage (figure 4.3C). However, no significant change in the active cleaved 

form of PARP was observed following FAK inhibition. 
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Figure 4.3 – Ki67 staining and western analysis of PARP cleavage in PF271 treated MDA-MB-231 

cells – (A) Representative image showing the results of staining MDA-MB-231 cells for Ki67 over 3-

days in the presence or absence of PF271. (B) Evaluation of Ki67 positive cells represented as a 

proportion of the total number of cells present on slides. FAK inhibition resulted in a significant 

reduction in proliferative marker Ki67 across all time-points. (C) Western blot showing changes in 

PARP and active cleaved PARP following 3-days with PF271. Actin was used as a loading control. 

Error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001.  
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4.4. PF271-inhibited proliferation results from perturbed cell cycle progression 

To gain further insight into how FAK regulates proliferation, we next explored whether PF271 

treatment induced changes in cell cycle (figure 4.4). PF271 treatment resulted in a significant 

reduction of the percentage of cells in G1 and an increase in S-phase when compared to controls. 

The proportion of cells in G2/M phase was not significantly different between the two 

conditions. 

 

_____________________________________________________________________________________ 
Figure 4.4 – Changes in cell cycle distribution in response to FAK inhibition – (A) Evaluation of how FAK 
inhibition alters the number of cells in G1, represented as a proportion of total number of cells. PF271 
treatment causes a significant reduction in G1 cell numbers compared to vehicle-only control. (B) 
Assessment of proportion of cells in S-phase showing a significant increase in the cells this phase of the 
cell cycle in response to FAK inhibition. (C) Relative proportion of cells in G2/M shows no significant change 
following treatment with PF271. Error bars represent SEM; n=3. *p<0.05; **p,0.01. 
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4.5. Inhibiting FAK kinase function significantly impairs downstream pathways associated with 
proliferation and cell cycle 

To further assess examine the mechanisms by which FAK regulates proliferation in this TNBC 

model, we began to explore the influences of FAK inhibition on downstream signalling pathways 

previously shown to regulate cell proliferation (reviewed in Lee et al. 2015). PF271 treatment 

resulted in a significant decrease in FAKY397 activity compared to the vehicle-only control (figure 

4.5A and Bi). This was accompanied by a significant decrease in phosphorylation of AktS473, 

MTORS2448 and GSK3βS9, as well as a significant increase in inhibitory Cyclin D1T286 

phosphorylation (figure 4.5ii, v and vi). In contrast, activity of ERK1/2T202/Y204, known to be 

directly influenced by FAK activity in proliferation (Ding et al. 2005), was unaltered by PF271 

inhibition at any time-point (figure 4.5iii and iv). No significant changes in the total levels of any 

protein were observed (figure 4.5C).  
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Figure 4.5 – Analysis of changes in phosphorylation and total protein levels over 3-days in the presence or absence of PF271 – (A) Western blot showing response of 

proteins to FAK-inhibition, measured at 1, 2 and 3-days following introduction of PF271. (B) Evaluation of relative activity of phosphorylated proteins (i) FAKY397; (ii) 

AktS473; (iii) Erk1T202/Y204; (iv) Erk2T185/Y187; (v) MTORS2448; (vi) GSK3βS9; (vii) Cyclin D1T286, showing significant decreases in active FAK, Akt, and MTOR in response to PF271 

versus vehicle-only controls. Results also show a significant decrease in inhibitory GSK3S9 and increased inhibition of cyclin D1 through increased phosphorylation of T286 

following FAK inhibition. (C) Assessment in changes in total protein levels of (i) FAK; (ii) Akt; (iii) Erk1; (iv) Erk2; (v) PTEN. No significant change is noted at any time-point 

across total proteins. All densitometry results are normalised to the respective actin loading control. Error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001.  
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4.6. Evaluation of FAK scaffold function in regulating TNBC migration and invasion 

We next wished to apply a similar approach to explore the role of FAK phosphorylation versus 

scaffolding function in regulating cellular migration and invasion. A wounding assay was used to 

visualise migratory changes following FAK siRNA treatment (figure 4.6A). Complete wound 

closure was seen with control an NT-siRNA treated cells after 24-hours treatment, whereas both 

pharmacological and FAK-siRNA treatments significantly inhibited wound closure. Consequently, 

cellular migration was further validated using in vitro Boyden chamber migration assays (figure 

4.6B). FAK siRNA again resulted in a significant reduction of cell migration compared to the NT-

siRNA controls (figure 4.6C). In order to assess the contribution of scaffold function to this 

process changes in migration following FAK-siRNA + PF271 treatment was evaluated. 

Pharmacological inhibition of FAK caused a significant decrease in migration in all siRNA treated 

cells (figure 4.6D). FAK siRNA was significantly less effective than PF271 treatment alone in its 

ability to impede migration, whilst combination of both was no better than sole pharmacological 

inhibition of kinase function.  
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_____________________________________________________________________________________ 
Figure 4.6 – Response of MDA-MB-231 cell migration to siRNA-mediated suppression of FAK – (A) 
Scratch wound analysis showing impaired wound healing following treatment with PF271 or suppression 
of FAK through siRNA. (B) Representative images of Boyden chamber assay following 18-hours migration 
prior to fixing and staining. (C) Evaluation of migratory capacity in cells transfected with FAK siRNA or 
respective controls. FAK suppression was caused a significant reduction in cell migration versus non-
transfected control, as well as NT and LO controls. Negative control cells exhibited significantly worse 
migration versus all other cells. (D) Assessment of migratory changes in response to siRNA alone or in 
combination with PF271. FAK inhibition through PF271 significantly reduced migration in all transfected 
cells. The combination of PF271 and FAK siRNA had no additional inhibitory effects when compared to 
PF271 alone but showed significantly impaired migration versus FAK siRNA alone. All error bars represent 
SEM; n=4. *p<0.05; **p<0.01; p<0.001. 
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We next investigated the effects of FAK siRNA on pharmacological inhibition of cellular invasion. 

FAK-siRNA inhibited cellular invasion versus control samples (figure 4.7A and B). Subsequent 

comparative analysis of siRNA and PF271-mediated kinase inhibition revealed that FAK 

knockdown was as effective at impairing invasion as inhibiting kinase activity (figure 4.7C). 

Moreover, combination treatment did not demonstrate any additional benefit over FAK-siRNA 

or PF271 treatment alone. All transfected controls showed decreased invasion in response to 

PF271. Due to time constraints, future analysis will focus solely on migration. 
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_____________________________________________________________________________________ 
Figure 4.7 – Assessment of TNBC cell invasion following FAK suppression through siRNA – (A) 
Representative images of Boyden chambers following 72-hours invasion through Matrigel. (B) Evaluation 
of TNBC cell invasion in response to transfection with FAK siRNA and respective controls. Knockdown of 
FAK caused a significant decrease in invasive capacity versus all control cells, to a level comparable to 
unstimulated, negative-control cells. Transfection of NT-siRNA or LO had no significant effect on invasion. 
(C) Assessment of the effects on invasion of siRNA suppression or PF271-kinase inhibition of FAK alone or 
in combination. Knockdown of total FAK was sufficient to cause impaired invasion versus all controls minus 
PF271. This level was comparable to the negative control. All PF271 treated cells showed significantly 
attenuated invasion versus the respective vehicle-only control, except those treated with FAK-targeted 
siRNA. No significant difference in invasion was noted between FAK suppressed cells and those treated 
with PF271 only. All error bars represent SEM; n=4. *p<0.05; **p<0.01; ***p<0.001.  

  



115 
 

4.7. Assessing the role of the FAK-family member Pyk2 in regulating migration 

The observation that inhibition of FAK kinase function was more effective at suppressing 

migration than siRNA-mediated knockdown was of particular interest, especially given that this 

method of inhibition inhibits both scaffolding and kinase function. This suggested that in FAK-

silenced cells, a form of compensation may be occurring. PF271 has previously been reported to 

effectively inhibit both FAK and its family member Pyk2 (Bagi et al. 2008). Moreover, previous 

reports have shown that activity of Pyk2 can provide significant compensation for FAK loss (Fan 

and Guan 2011). To explore whether Pyk2 compensated for FAK loss, we suppressed Pyk2 using 

siRNA and determined the effect on cellular behaviour. Pyk2 siRNA was optimised as for FAK. As 

shown in figure 4.8A and B a 24-hour incubation with Pyk2 siRNA was sufficient to almost 

completely ablate total levels of Pyk2. However, in contrast to FAK, Pyk2 was re-expressed 

relatively rapidly on the removal of siRNA. Importantly, targeted suppression of Pyk2 did not 

adversely affect the expression or activity of FAK (figure 4.8C). 
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Figure 4.8 – Optimisation of siRNA-mediated Pyk2 inhibition – (A) Western blot showing changes in the 
protein levels of activated and total Pyk2 and FAK over time when incubated with Pyk2 siRNA and following 
its removal. A non-targeted siRNA (NT) and lipid only (LO) transfection are also shown for control, along 
with actin as a loading control. Time course for treatment is in hours (H) and post-treatment in days (D). 
(B) Densitometry data acquired from analysis of Pyk2 blots. Targeted siRNA causes a significant loss of 
total and activated Pyk2 levels but recovery is achieved following removal from siRNA. (C) Evaluation of 
immunoblots probing for FAK activity and expression. No significant changes are observed. Both 
densitometry graphs are normalised to the blot acquired for actin. All error bars represent SEM; n=3. 
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Having optimised Pyk2 suppression, we next performed Boyden chamber assays in order to asses 

the relative contribution of FAK and Pyk2 in MDA-MB-231 cell migration. We began by using 

PF271 or PF878 as the FAK inhibitor. PF878 is a second generation FAK inhibitor which was 

designed to reduce drug-drug interactions sometimes displayed by PF271 (Lee et al. 2015). 

Importantly, it has been shown to have comparable FAK suppressing effects versus PF271 but a 

greater effect in suppressing Pyk2 activity. Treatment with both agents was sufficient to 

significantly reduce migration, with both inhibitors displaying comparative levels of suppression 

(figure 4.9A). However, western blot analysis revealed no significant difference in either FAK or 

Pyk2 between cells treated with each agent (figure 4.9B). Consequently, we analysed the relative 

contribution of Pyk2 to migration though introduction of FAK and Pyk2 siRNA alone or in 

combination. Suppression of FAK was once again sufficient to significantly inhibit migration 

(figure 4.9C). Unexpectedly, siRNA-mediated knockdown of Pyk2 significantly attenuated 

migration versus control cells comparative to levels observed when total FAK was suppressed. 

Interestingly, combination of FAK/Pyk2 siRNA was no better than using either siRNA alone. This 

suggests that Pyk2 is not compensating for a loss of FAK in migrating TNBC cells, rather it plays 

an equally important role in cell migration. As such, Pyk2 was not investigated further as the 

primary focus of this study was the role FAK itself plays in TNBC. 
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_____________________________________________________________________________________ 
Figure 4.9 – Effects of FAK and Pyk2 siRNA alone or in combination on TNBC cell migration – (A) 
Representative images of Boyden chambers stained with crystal violet following 18-hour migration. (B) 
Analysis of Boyden chamber migration assay. FAK and Pyk2 siRNA both cause a significant suppression of 
cell migration, comparable to unstimulated, negative control cells. Combination of FAK and Pyk2 siRNA 
had no additional effect when compared to sole use of either siRNA. All error bars represent SEM; n=3. 
*p<0.05; **p<0.01; ***p<0.001. 
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4.8. Evaluation of changes in cell morphology and FAK distribution in migrating cells following 

FAK inhibition  

We next wished to probe the mechanisms of action underlying FAK-mediated migration of MDA-

MB-231 cells. Initially, immunofluorescent staining was performed to observe changes in cell 

morphology and subcellular localisation of active/total FAK. As shown in appendix 1, detection 

of FAKY397 was particularly difficult due to high levels of background staining potentially masking 

any true changes in active FAK localisation. Therefore, as previously noted, FAKY861 was used as 

a surrogate marker for FAK activity given its need for FAKY397 to be activated (Lee et al. 2015), its 

correlation with FAKY397 (figure 3.3) and suppression following PF271 treatment. In the absence 

of serum stimulation cells were significantly less migratory in appearance, lacking polarisation 

and extension of filopodia-like protrusions (figure 4.10). Additionally, treatment with PF271 

caused a significant increase in FAKY861 intensity in both serum-starved and stimulated cells 

versus their respective vehicle-only control cells. It also seemed to increase the amount of active 

FAKY861 localised to cortical actin. By contrast, total FAK exhibited little change in localisation 

following PF271 treatment in both FCS-stimulated and unstimulated cells (figure 4.11). 

Consequently, further examination of the molecular dynamics of migrating cells would focus 

only on active FAK changes. When co-stained with vinculin (a marker of focal adhesions (FAs)), 

we observed that stimulated cells had significantly more FAs across the cell than unstimulated 

controls (figure 4.12). Indeed, quantification of FA dynamics showed a significant increase in 

total number and size of FAs following PF271 treatment compared to control cells (figure 4.13), 

which also correlated with increased localisation of active FAK to these sites. 
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Figure 4.10 – Examination of changes in active FAK and actin in response to PF271 in migrating 

cells – Serum-starved TNBC cells were either treated with either serum-free RPMI (serum-starved 

controls) or media including FCS, in addition to PF271. Inhibition of FAK causes increased intensity 

of active FAKY861 (green) on the cell periphery, suggesting increased localisation to distinct sites, 

whilst extension of actin (red) protrusions (white box) is also inhibited. Serum-stimulation resulted 

in increased FAK intensity and lamellipodia extension. Nuclei were stained with DAPI (blue). All 

images are representative; n=3. 
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Figure 4.11 – Examination of changes in total FAK and actin in response to PF271 in migrating 

cells – Serum-starved TNBC cells were either treated with either serum-free RPMI (serum-starved 

controls) or media including FCS, in addition to PF271. Inhibition of FAK had no significant effect on 

total FAK (green) distribution. As previously noted extension of actin (red) protrusions (white box) 

is perturbed by FAK inhibition. Serum-stimulation also had no effect on total FAK, whilst 

lamellipodia extension was increased. Nuclei were stained with DAPI (blue). All images are 

representative; n=3.  
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Figure 4.12 – Examination of changes in active FAK and vinculin in response to PF271 in migrating 

cells – Serum-starved TNBC cells were either treated with either serum-free RPMI (serum-starved 

controls) or media including FCS, in addition to PF271. As noted previously, inhibition of FAK kinase 

function causes increased intensity of active FAKY861 (green) on the cell periphery, more so than in 

serum-stimulated versus starved control cells. FCS treatment caused increased vinculin staining 

(red) versus starved controls. PF271 inhibition caused further increases in FA number and size and 

greater colocalization with FAK (yellow). Nuclei were stained with DAPI (blue). All images are 

representative; n=3. 
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Figure 4.13 – Examination of changes in FA dynamics in migrating cells following PF271 treatment 

– (A) The average number of FAs per cell was calculated by counting FAs on 3 cells in all 5 acquired 

images (n=15 technical replicates). Analysis revealed that serum stimulation was sufficient to 

significantly increase FA numbers. Moreover, inhibition of FAK in stimulated and unstimulated cells 

caused a significant increase in the number of FAs versus vehicle-only controls. This effect was 

greatest in cells that were both treated with PF271 and stimulated with FCS.  (B) Analysis of FA size   

showed that serum stimulation was not sufficient to alter FA size, whilst introduction of PF271 

caused a significant increase in both stimulated and unstimulated cells versus vehicle-only controls.  

All error bars represent SEM; n=3 independent experiments. *p<0.05; **p<0.01; ***p<0.001. 
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Previously, it has been shown that changes in FAs happen very quickly. As such, we wished to 

establish whether by using a 1-hour stimulation we were missing some changes in cell dynamics. 

As such we performed a time-course immunofluorescent stain over 1-hour with cells co-stained 

with either FAKY861 or total FAK and vinculin. This would enable us to see if we were missing both 

changes in FAK distribution and FA dynamics. Following serum stimulation, all cells exhibited 

significant increases in both vinculin and FAKY861 (figure 4.14). Moreover, 5-minute incubation 

was all it took to observe this significant change and it was sustained over the 1-hour time-course 

examined. In contrast, despite significant increases in FAs (as marked by vinculin stain), levels of 

total FAK were unaltered by serum-stimulation at any time-point versus the unstimulated 

control cells (figure 4.15). Consequently, it was determined that at 1-hour following serum 

introduction cells exhibited significant cellular changes and thus our previous findings are not 

invalidated by using too long a stimulation. 
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Figure 4.14 – Time-course immunofluorescent assessment of active FAK and focal adhesion 

dynamics – Serum-starved cells were treated with FCS-containing RPMI prior to fixing and staining 

at various time-points. Following 5-minutes, serum-stimulated cells exhibited significant increases 

in vinculin (red) and FAKY861 (green) staining which was sustained through the full 60-minute time-

course versus serum-starved controls. All images are representative; n=3. 
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Figure 4.15 - Time-course immunofluorescent assessment of total FAK and focal adhesion 

dynamics – Serum-starved cells were treated with FCS-containing RPMI prior to fixing and staining 

at various time-points. Following 5-minutes, serum-stimulated cells exhibited significant increases 

in vinculin (red) whilst total FAK (green) levels and localisation was unperturbed versus serum-

starved controls. All images are representative; n=3. 
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4.9. Evaluation of signalling changes following PF271-mediated FAK inhibition in migrating 

cells 

To further probe the mechanisms of action governing FAK-mediated migration, western blotting 

was performed on a range of unstimulated or FCS-stimulated cells. Serum stimulation resulted 

in increased FAKY397 activity which was blocked in the presence of PF271 (figure 4.16A and Bi). 

Similar results were also observed for AktS473 and GSK3βS9 (figure 4.16Bii and v). Although 

unaltered in proliferating cells (figure 4.5), ERK1/2 activity has been closely linked to FAK in 

regulating cell migration (Westhoff et al. 2004; Carragher et al. 2003). However, our results 

showed that levels of active (figure 4.16Biii and iv) and total Erk1/2 (figure 4.16Ciii and iv) were 

unaltered in response to serum or following FAK inhibition. Several studies have highlighted a 

key role for STAT3 in the promotion of cancer cell migration (Wei et al. 2013; Vultur et al. 2014). 

Moreover, previous work from our group has demonstrated a link between FAK and STAT3 in 

modulating migration of HER2+ breast cancer cells (Lazaro et al. 2014). Consequently, we wished 

to explore the relevance of this FAK/STAT3 signalling axis in the context of MDA-MB-231 cells. 

STAT3Y705 displayed no significant changes in response to serum stimulation and was unaltered 

by PF271 (figure 4.16Bvi). By contrast, STAT3S727 activity was significantly reduced following 

PF271 treatment, although FCS-stimulation had little effect (figure 4.16Bvii). 
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Figure 4.16 – Analysis of changes in phosphorylation and total protein levels over 3-days in the presence or absence of PF271 – (A) Western blot showing response of 

proteins to FAK-inhibition, in serum starved or stimulated cells grown on fibronectin. (B) Evaluation of relative activity of phosphorylated proteins (i) FAKY397; (ii) AktS473; 

(iii) Erk1T202/Y204; (iv) Erk2T185/Y187; (v) GSK3βS9; (vi) STAT3Y705; (vii) STAT3S727, showing significant decreases in active FAK, Akt, and STAT3S727 in response to PF271 versus 

vehicle-only controls. Results also show a significant decrease in inhibitory GSK3S9 and increased activity of FAKY397 in FCS-stimulated cells versus unstimulated controls. 

(C) Assessment in changes in total protein levels of (i) FAK; (ii) Akt; (iii) Erk1; (iv) Erk2. No significant change was noted in response to PF271 or stimulation with FCS. All 

densitometry results are normalised to the respective actin loading control. Error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001.  

Total Protein Levels 

(i) 

(iv) 

(ii) (iii) 

C 

Total FAK

U
nst

im
ula

te
d

S
tim

ula
te

d

0.0

0.5

1.0

1.5

2.0
Control

PF271

Treatment Conditions

R
e
la

ti
v
e
 A

c
ti

v
it

y

(%
 o

f 
u

n
s
ti

m
u

la
te

d
 v

e
h

ic
le

-o
n

ly
 c

o
n

tr
o

l)

Total Akt

U
nst

im
ula

te
d

S
tim

ula
te

d

0.0

0.5

1.0

1.5

2.0
Control

PF271

Treatment Conditions

R
e
la

ti
v
e
 A

c
ti

v
it

y

(%
 o

f 
u

n
s
ti

m
u

la
te

d
 v

e
h

ic
le

-o
n

ly
 c

o
n

tr
o

l)

Total Erk1

U
nst

im
ula

te
d

S
tim

ula
te

d

0.0

0.5

1.0

1.5

2.0
Control

PF271

Treatment Conditions

R
e
la

ti
v
e
 A

c
ti

v
it

y

(%
 o

f 
u

n
s
ti

m
u

la
te

d
 v

e
h

ic
le

-o
n

ly
 c

o
n

tr
o

l)

Total Erk2

U
nst

im
ula

te
d

S
tim

ula
te

d

0.0

0.5

1.0

1.5

2.0
Control

PF271

Treatment Conditions

R
e
la

ti
v
e
 A

c
ti

v
it

y

(%
 o

f 
u

n
s
ti

m
u

la
te

d
 v

e
h

ic
le

-o
n

ly
 c

o
n

tr
o

l)



135 
 

4.10. Validation of FAK-mediated regulation of proliferation and migration in a second model 
of TNBC 

One caveat to using cell models to study cancer biology is that observations may be cell-line 

specific. In light of this, we wished to validate our findings in the MDA-MB-231 cells by exploring 

FAK-regulated proliferative and migratory behaviour in a second model of TNBC, namely MDA-

MB-468 cells. We first examined how FAK activity/expression compared between these cells and 

MDA-MB-231s (figure 4.17A). Total FAK is significantly higher in MDA-MB-231 cells than MDA-

MB-468s, whilst relative activity is comparable between the two models. We went on to explore 

the sensitivity of these cells to PF271-mediated FAK inhibition. PF271 was able to induce a 

significant, dose-dependent decrease in FAKY397 activity whilst total protein levels showed no 

significant alteration (figure 4.17B-D), although when comparing IC50 data, MDA-MB-468 cells 

appeared less sensitive to PF271 versus MDA-MB-231 cells (figure 4.17E).  
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Figure 4.17 – Comparison of FAK expression/activity and PF271 FAK sensitivity in MDA-MB-231 

and MDA-MB-468 cells – (A) Western blot and subsequent densitometry of basal FAK expression 

and activity in MDA-MB-231 and MDA-MB-468 cells showing significantly varying levels of 

expression, whilst relative activity showed no difference. (B) Westerns blots revealing changes in 

phosphorylated proteins in response to a dose range of PF271. (C) Evaluation of the densitometry 

data from western blots plotted alongside the previously acquired data from MDA-MB-231 cells as 

a comparison of FAKY397 changes. (D) Western blots showing response of total protein levels across 

the PF271 does range. (E) Analysis of densitometry of total FAK level changes in response to PF271 

at different doses. No significant changes were observed at any dose. All error bars are 

representative of SEM; n=3. 
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In addition to evaluating pharmacological inhibition, we also wished to observe the contribution 

of scaffolding function. Therefore, we first had to perform a FAK siRNA optimisation in order to 

establish a robust protocol for total protein knockdown in MDA-MB-468 cells. As seen in figure 

4.18, FAK-siRNA resulted in significant decrease in FAK expression and subsequent Y397 activity 

following 72-hours, an effect sustained up to 6 days following removal of siRNA. 
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_____________________________________________________________________________________ 
Figure 4.18 – Time-course optimisation of FAK siRNA – (A) Western blot showing the effects of FAK siRNA 
on Y397 activity and total FAK levels over time and the effects on each following the removal of treatment. 
The effects of the control, non-transcribing siRNA (NT) and the lipid-only (LO) are also shown, along with 
actin as a loading control. Times for treatment are notated in hours (H) and post-treatment in days (D). 
(B) Densitometry analysis of FAKY397 and total FAK as a percentage of the control cells. Error bars show 
SEM; n=3. 
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Figure 4.19 – Changes in proliferation of MDA-MB-468 cells in response to PF271 and FAK siRNA 

– (A) Growth Curve showing the change in cell numbers in the presence or absence of PF271 for 7-

days, alongside MDA-MB-231 cells grown in tandem as an experimental control. Introduction of 

1µM PF271 was had no significant effect on MDA-MB-468 proliferation, whilst MDA-MB-231 cells 

exhibited significantly perturbed growth following 3-days and was sustained up to the final count 

at day 7. (B) Total cell numbers of MDA-MB-468 cells in response to suppression of FAK through 

siRNA. (D) Relative changes in cell growth in each treatment condition versus day 0 cell numbers. 

FAK siRNA has no significant effect of MDA-MB-468 growth rate when compared to all controls. 

Error bars representative of SEM; n=3 . *p<0.05; **p<0.01; ***p<0.001. 
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4.11. Inhibition or suppression of FAK has limited effects on MDA-MB-468 proliferation 

We next sought to explore the effects of FAK inhibition on cellular proliferation in MDA-

MB-468 cells and compare this with MDA-MB-231 cells. Using a concentration of 1µM 

PF271 that effectively reduced FAK activity in both cell lines, we observed that FAK inhibi-

tion in MDA-MB-231 cells resulted in a significant reduction in growth over 7-days, where-

as proliferation was unaffected in MDA-MB-468 cells (figure 4.19A). To confirm these data 

FAK was suppressed using siRNA in MDA468 cells prior to undertaking growth analysis as 

previously described. Again, suppression of FAK did not alter the growth rate of MDA-MB-

468 cells (figure 4.19B and C).  
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4.12. Levels of Ki67 are unaltered following FAK inhibition in MDA-MB-468 cells 

Previously we noted that changes in MDA-MB-231 cell proliferation were accompanied by 

alterations in levels of Ki67. Since MDA-MB-468 cells were not impaired in response to FAK 

inhibition, we wanted to further confirm this through immunohistochemical analysis of Ki67 

levels in PF271-treated MDA-MB-468 cells (figure 4.20). Whilst an increase in Ki67 positivity was 

observed over a three-day period, reflective of actively growing cells, this was not affected by 

PF271. 

  



 

Day 1 Day 2 Day 3 

Control 

PF271 

Figure 4.20– Ki67 staining on MDA-MB-468 cells over 3-days in the presence or absence of PF271 

– (A) Representative image showing the results of staining MDA-MB-468 cells for Ki67 over 3-days 

in the presence or absence of PF271. (B) Evaluation of Ki67 positive cells represented as a 

proportion of the total number of cells present on slides. FAK inhibition had no significant effect on 

proliferative marker Ki67 across all time-points. Error bars are representative of SEM; n=3.  
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4.13. FAK inhibition does not affect MDA-MB-468 cell migration 

We next investigated the effects of FAK inhibition on MDA-MB-468 migration using Boyden 

chamber assays. As shown in figure 4.21, MDA-MB-468 cells are capable of significant migration 

following 18-hours using FCS containing RPMI as a chemoattractant. However, the use of either 

0.5µM (calculated IC50 for FAKY397 inhibition) or 1µM PF271 had no significant effects on 

migration versus control cells. This suggests that inhibition of FAK-kinase function is not 

sufficient to alter migration in these cells.  

 
_____________________________________________________________________________________ 
Figure 4.21 – Analysis of migration in MDA-MB-468 cells following PF271 treatment – (A) Representative 
images of Boyden chamber assays following 18-hours migration, stained with crystal violet. (B) Evaluation 
of changes in migratory capacity following treatment with either 0.5µM or 1 µM PF271. Both 
concentrations could not significantly attenuate migration when compared to vehicle-only control cells. 
All cells exhibited significant migration versus negative control. All error bars represent SEM; n=4. 
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Given that catalytic functions of FAK seem to contribute very little to the migratory phenotype 

of these cells, we next wished to examine whether scaffolding function of FAK had a role in 

regulating migration. As such we performed Boyden chamber migration assays on cells in which 

FAK had been suppressed through targeted siRNA. In FAK-knockdown cells, migration was 

comparable to the controls (NT siRNA) (figure 4.22). Additionally, all treated cells were capable 

of migration when compared to unstimulated negative controls.  

 

 
_____________________________________________________________________________________ 
Figure 4.22 – Evaluation of MDA-MB-468 cell migration following siRNA-mediated suppression of FAK – 
(A) Representative images of Boyden chamber assays following 18-hours migration, fixed and stained with 
crystal violet. (B) Analysis of changes in migration in transfected cells revealed no significant alterations in 
migration in FAK-suppressed cells versus non-transfected cells and NT/LO controls. All cells showed 
significant migration comparative to unstimulated, negative controls. Error bars are representative of 
SEM; n=4. 
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 4.14. Exploration of FAK-regulated signalling pathways in MDA-MB-468 cells 

We have demonstrated that FAK inhibition or suppression has limited effects on the proliferation 

and migration of MDA-MB-468 cells. This is in stark contrast to our findings in MDA-MB-231 cells, 

in which FAK-kinase function seemed to play a key role in mediating both cell functions. 

Consequently, we wished to explore possible reasons underlying this observed difference. 

Previously, MDA-MB-468 cells have been reported as possessing a negative mutation in the PTEN 

gene, resulting in a PTEN-null phenotype (Stemke-Hale et al. 2008). PTEN is the central regulator 

of PI3K/Akt signalling and its activity is essential to negatively regulate this pathway (Wang and 

Jiang 2008). Given that our data revealed significant changes in Akt activity following FAK 

inhibition, in both migrating and proliferating cells, we hypothesised that the lack of PTEN in 

these cells is enabling sustained Akt activity, thus attenuating effects of FAK inhibition. As such, 

we wished to examine downstream pathway elements in these cells, comparing them to 

alterations we’d previously observed following FAK inhibition in MDA-MB-231 cells. We began 

by examining changes in proliferating cells, so western blotting was undertaken on MDA-MB-

468 cells, in the presence or absence of PF271 over 3-days. Across all time-points examined, 

treatment with 1µM PF271 significantly reduced FAKY397 activity (figure 4.23Bi). In contrast, no 

subsequent changes were seen in any of the downstream phosphorylation targets, previously 

shown to be altered by FAK-inhibition in MDA-MB-231 cells (figure 4.23Bii - vii). All total protein 

levels were unaffected by inhibiting FAK-kinase activity (figure 4.23C). Importantly, PTEN was 

not detectable in MDA-MB-468 cells whereas it was readily observed in the MDA-MB-231 model; 

anecdotally, AktS473 activity was readily detectable in MDA-MB-468 cells compared to MDA-MB-

231 cells, suggesting hyperactivity in the former. These observations led us to hypothesise that 

PTEN-mutant cells may alter response to FAK-inhibition through sustained activation of Akt and 

subsequent downstream targets. 
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Figure 4.23 – Analysis of protein changes over 3-days in the presence or absence of PF271 in MDA-MB-468 cells - A) Western blot showing response of proteins to FAK-

inhibition, measured at 1, 2 and 3-days following introduction of PF271. (B) Evaluation of relative activity of phosphorylated proteins (i) FAKY397; (ii) AktS473; (iii) Erk1T202/

Y204; (iv) Erk2T185/Y187; (v) MTORS2448; (vi) GSK3βS9; (vii) Cyclin D1T286, only showing changes in FAKY397 across all time-points and at day 3 in GSK3βS9. (C) Assessment in 

changes in total protein levels of (i) FAK; (ii) Akt; (iii) Erk1; (iv) Erk2. No significant change is noted at any time-point across total proteins. PTEN was undetectable at any 

timepoint regardless of PF271 treatment. All densitometry results are normalised to the respective actin loading control. Error bars represent SEM; n=3. *p<0.05; 

**p<0.01; ***p<0.001.  
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4.15. siRNA-mediated PTEN suppression in MDA-MB-231 cells 

4.15.1. PTEN-siRNA optimisation 

Our observations imply that in cells with PTEN-negative mutations, FAK inhibition may not be an 

effective strategy for perturbing proliferation and migration due to hyperactive Akt 

circumventing FAK-regulation of cellular processes. To explore this hypothesis further, we 

wished to evaluate whether increased Akt activity through reduced PTEN expression caused a 

reduced sensitivity to PF271 using a model of PTEN-negative MDA-MB-231 cells (figure 4.24B). 

We observed that PTEN suppression resulted in a significant increase in AktS473 activity without 

altering total Akt protein levels (figure 4.24C). Importantly, PTEN has previously been noted to 

alter the expression and subsequent activity of FAK (L.-L. Zhang et al. 2014). Consequently, 

changes in FAK expression and activity were also explored in this assay. No significant change in 

either total FAK or phosphorylated FAKY397 was exhibited in PTEN siRNA treated cells (figure 

4.24D).  
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_____________________________________________________________________________________ 
Figure 4.24 – Time-course optimisation of PTEN siRNA in MDA-MB-231 cells – (A) Western blot showing 
the effects of PTEN siRNA on PTEN, FAKY397 and AktS473, as well as total FAK and Akt levels over time and 
the effects on each following the removal of treatment. The effects of the control, non-transcribing siRNA 
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(NT) and the lipid-only (LO) are also shown, along with actin as a loading control. Times for treatment are 
notated in hours (H) and post-treatment in days (D). (B) Evaluation of densitometry performed on PTEN 
following siRNA treatment showed complete ablation of PTEN levels from 24-hours. (C) Assessment of 
AktS473 and Akt protein level densitometry showed a significantly increased activity but not total protein 
levels. (D) Densitometry analysis of FAKY397 and total FAK as a percentage of the control cells. No Significant 
effects were noted. All error bars show SEM; n=3. 

 

4.15.2. Functional assessment of PF271 in PTEN-suppressed MDA-MB-231 cells 

We next explored whether siRNA-mediated knockdown of PTEN, which augments AKT activity, 

was able to attenuate the response of MDA-MB-231 cells to PF271. PTEN siRNA alone had no 

significant effects on proliferation versus controls (figure 4.25) whilst sensitivity to PF271 was 

apparent for all samples including PTEN-siRNA cells.  

 

_____________________________________________________________________________________ 
Figure 4.25 – siRNA-mediated suppression of PTEN has no significant effect on the proliferative response 
of MDA-MB-231 cells treated with PF271 – (A) Mean cell counts after 3-days proliferation following 72-
hour treatment with respective siRNA in the presence or absence of PF271. 0-day counts are 
representative of the cell numbers immediately following withdrawal from siRNA containing media. 
Significant changes in cell numbers were noted in all treatment conditions when PF271 was introduced. 
SiRNA alone had no significant effect on proliferation. (B) Evaluation of the fold change in cell number, 
relative to the counts at day 0. Suppression of PTEN had no significant effect on proliferative rate when 
compared to siRNA controls. Error bars are representative of SEM; n=3. *p<0.05; **p<0.01; p<0.001.  
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We additionally explored the effects of PTEN suppression on FAK-mediated inhibition of MDA-

MB-231 cell migration, again to explore the hypothesis that augmented Akt activity would 

attenuate PF271 response. However, cells in which PTEN was suppressed exhibited no significant 

attenuation of migration following PF271 treatment, whilst all control cells are fully responsive 

showing significantly impaired migration versus the respective vehicle-only control cells (figure 

4.26). Cellular migration in PTEN siRNA vehicle-only controls and those treated with PF271 

exhibit migration comparative to non-transfected and NT siRNA cells. 

_____________________________________________________________________________________ 
Figure 4.26 – Analysis of the effects of combining siRNA-mediated PTEN suppression with PF271 FAK 
inhibition on the migration of MDA-MB-231 cells – (A) Representative images of siRNA transfected cells 
in Boyden chamber assays following 18-hours migration in the presence or absence of PF271. (B) 
Evaluation of the combinatorial effects of PTEN suppression and inhibition of FAK-kinase inhibition. All 
transfected cells migrate compared to negative control. PF271 treatment significantly augments migration 
in transfection controls, whilst PTEN knockdown cells exhibit no change in migration following FAK 
inhibition versus their respective vehicle-only control. All error bars represent SEM; n=3. *p<0.05; 
**p<0.01; ***p<0.001. 
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4.16. Exploration of signalling changes in PTEN-suppressed cells following PF271 treatment 

Having failed to demonstrate that PTEN suppression is sufficient to rescue proliferation in FAK 

inhibited cells, we wanted to explore changes in the downstream pathway elements previously 

highlighted as potential mediators of FAK-dependent proliferation. As expected, PTEN siRNA 

caused an almost complete loss of PTEN accompanied by a significant increase in active AktS473, 

so much so that separate blots needed to be acquired to assess the effects of PF271 on Akt 

activity in control cells (figure 4.27). Despite hyperactivation, AktS473 was still significantly 

inhibited in PTEN siRNA treated cells versus vehicle-only control, although activity was still 

significantly higher than in all siRNA controls. Inhibition of FAKY397 was observed in all transfected 

cells treated with PF271 (figure 4.27Bi). FAK inhibition also caused a significant reduction in 

GSK3βS9 and increased cyclin D1T286 activity (figure 4.27Biv and v). It is important to note that 

these molecules were inhibited to comparable levels in control, NT, LO and PTEN siRNA treated 

cells. Although some difference was noted, MTORS2448 activity was not significantly reduced in 

all cell types (figure 4.27Biii). Treatment with PF271 resulted in no significant alterations in total 

protein levels of FAK or Akt, regardless of transfection (figure 4.27Ci and ii). These results suggest 

FAK can still influence downstream targets regulating proliferation independent of Akt activity. 
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Figure 4.27 – Examination of downstream signalling changes in response to PF271 in PTEN siRNA cells – (A) Western blot showing the effects of PF271 on cells treated 

with PTEN siRNA and associated controls. (B) Evaluation of changes in phosphorylated protein levels of (i) FAKY397; (ii) AktS473; (iii) MTORS2448; (iv) GSK3βS9; (v) Cyclin D1T286, 

showing significant decreases in the activity of FAK, Akt and GSK3β in response to PF271. All treatment conditions show significantly increased Cyclin D1T286. PTEN siRNA 

rescues inhibitory effect of PF271 treatment on MTORS2448. (C) Densitometry analysis of total protein levels of (i) FAK; (ii) Akt; (iii) PTEN, following FAK inhibition. No total 

protein levels were attenuated by PF271 whilst PTEN siRNA completely ablated PTEN protein levels. Error bars are representative of SEM; n=3. *p<0.05; **p<0.01; 

***p<0.001.  
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Having examined how PTEN siRNA alters PF271-driven signalling changes in proliferating MDA-

MB-231 cells, we also wished to evaluate these changes in migrating cells. Again, PTEN siRNA 

almost completely ablated PTEN expression and was concomitant with increased AktS473 (figure 

4.28). However, AktS473 levels were significantly decreased by PF271 treatment, as were FAKY397, 

GSK3βS9 and STAT3S727 (figure 4.28Bi-v). AktS473 showed comparative activity between 

PF271+PTEN siRNA cells and vehicle-only, siRNA controls. Levels of MTORS2448 and STAT3Y705 

were unaffected (figure 4.28Biv and vi), with total FAK and Akt also showing no significant 

response regardless of siRNA (figure 4.28C). 
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Figure 4.28 – Exploration of signalling changes in migratory, PTEN siRNA cells in response to FAK inhibition – (A) Western blot showing the effects of PF271 on cells 

treated with PTEN siRNA and associated controls. (B) Evaluation of changes in phosphorylated protein levels of (i) FAKY397; (ii) AktS473; (iii) GSK3βS9; (iv) MTORS2448; (v) 

STAT3S727; (vi) STAT3Y705 showing significant decreases in the activity of FAK, Akt, GSK3β and STAT3S727 in response to PF271, whilst MTOR and STAT3Y705 were unaltered. 

(C) Densitometry analysis of total protein levels of (i) FAK; (ii) Akt, following FAK inhibition. No total protein levels were attenuated by PF271 whilst PTEN siRNA 

completely ablated PTEN protein levels. Error bars are representative of SEM; n=3. *p<0.05; **p<0.01; ***p<0.001. 
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4.17. Discussion 

In chapter three we demonstrated that FAK appeared to be a regulator of MDA-MB-231 cell 

proliferation and migration/invasion: in this chapter I sought to evaluate the degree to which 

FAK could mediate these behaviours and their subsequent mechanisms of action. We observed 

that inhibition or suppression of FAK induced a significant reduction in cell proliferation. 

Interestingly, FAK siRNA alone or in combination with PF271 did not cause any additional 

decrease versus the inhibitor alone, despite both kinase dependent and independent functions 

being attenuated. Consequently, we propose that FAK-mediated cell proliferation of MDA-MB-

231 cells is primarily driven by kinase activity with limited contribution from kinase-independent 

functions. This directly contradicts several studies which suggest that scaffolding function of FAK 

is essential for proliferation in some cell types. For example, Lim et al (2010) showed that unlike 

FAK-null mouse embryonic fibroblasts (MEFs), kinase-dead knock-in cells could still proliferate 

ex vivo, thus suggesting FAK catalytic activity is dispensable provided scaffolding function is 

intact (Lim et al. 2010). Moreover, kinase-dead endothelial cells display no impaired proliferation 

despite a significant decrease in VEGF-mediated vascular permeability (X. L. Chen et al. 2012). In 

contrast, FAK kinase function has been demonstrated to regulate breast cancer cell proliferation 

as introduction of kinase-dead FAK to FAK-deficient mammary tumour cells was not sufficient to 

rescue tumour growth in vivo, whist FAK-WT significantly restored tumourigenic potential 

(Pylayeva et al. 2009). This study aligns with our data suggesting kinase function is essential for 

proliferation. However, the noted mechanism is this study was attributed to a decrease in Src-

mediated phosphorylation of p130cas. Indeed, reintroduction of a FAK-mutant unable to bind 

p130cas also exhibited impaired tumourigenesis (Pylayeva et al. 2009). As FAK-p130cas 

interaction is kinase independent (Luo and Guan 2010), it suggests that these breast cancer cells 

utilise both kinase dependent and independent activity to mediate proliferation. Our data could 

reflect this as significant PF271-inhibition of kinase activity may be sufficient to reduce FAK-

dependent proliferation to its maximum level. The siRNA-mediated knockdown of FAK could 

mirror this effect through both inhibition of catalytic and scaffold function. Therefore, we 

suggest that FAK activity and scaffolding may function equally contribute to TNBC proliferation 

and the significant reduction in one of these behaviours is sufficient to reduce proliferation. 

Further experiments using scaffolding specific inhibition would be required to confirm or refute 

this hypothesis. 
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We hypothesised that changes in TNBC cell growth primarily resulted from impaired proliferative 

signalling and cell cycle progression. Indeed, our data showed a significant decrease in Ki67 

staining in FAK inhibited cells. As Ki67 is absent in cells no longer undergoing proliferation, this 

data suggests that inhibiting FAK-kinase function is sufficient to induce a movement of cells into 

a state of either quiescent or senescent cell cycle arrest (G0). A seminal study by Zhao and 

colleagues in 1998 highlighted FAK as a central mediator of cell cycle progression in response to 

integrin signalling (J.-H. Zhao et al. 1998). They noted that functional FAK-kinase activity is 

essential for controlling G1 to S-phase transition, with inhibition leading to decreased cell cycle 

progression through downregulation of cyclin D1 and an increase in the inhibitory protein p21 

(J.-H. Zhao et al. 1998). Subsequent studies have reinforced this role of FAK in mediating cell 

cycle in a variety of cells. For example, FAK-kinase function was shown to be key in the movement 

of glioblastoma cells from G1 to S-phase through upregulation of cyclin D1 and E, whilst 

simultaneously reducing expression of cell cycle inhibitory proteins (Ding et al. 2005). Moreover 

Serrels et al (2012) reported that squamous cell carcinoma cells grown in 3D culture exhibited a 

significant loss of proliferative capacity following FAK ablation, attributed to reduced cyclin D1 

expression and resultant blocking of G1/S transition (Serrels et al. 2012). Taken together, these 

studies seemed to support our data and substantiated our hypothesis that FAK contributes to 

MDA-MB-231 cell cycle progression, subsequently modulating proliferation. 

We thus sought to explore changes in the cell cycle and, although changes in distribution were 

noted, our data showed a significant decrease in the percentage of cells in G1 and an increase in 

S-phase proportions. This differs from previous findings and seems to undermine the idea of FAK 

as a G1/S-phase regulator in MDA-MB-231 cells. Conversely, we also noted a significant increase 

in inhibitory phosphorylation of cyclin D1 following PF271 intervention, suggesting some form 

of influence at the G1/S-phase transition by FAK. When combined, these findings may suggest 

FAK can influence both the G1/S-phase transition and the movement of cells from S-phase to G2.  

It has long been established that cyclin D1 is essential for the movement out of G1 and into S-

phase, with its phosphorylation at T286 resulting nuclear export and subsequent ubiquitin-

mediated proteolysis (Diehl et al. 1997). Consequently, the noted increase in cyclin D1T286 should 

reflect impaired G1/S transition and subsequent move into G0. This does support our Ki67 data 

but appears to contrast our flow cytometry results. However, propidium iodide detection of cell 

cycle distribution has limitations due to the nature of the stain. The assay works on the premise 
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that propidium iodide binds DNA in a stoichiometric manner: the dye binds proportionally 

depending on the amount DNA present. As such, cells in G1 and G0 are indistinguishable in this 

assay as both have equivalent DNA content. Consequently, it is unclear what proportion of cells 

in the G0/G1 section contribute to each of these distinct stages of the cell cycle. Apart from the 

Ki67 staining, confirming whether cells are in arrest would require further profiling of G0 

associated proteins.  

Nevertheless, if progression to S-phase were inhibited one would still expect an increase in the 

percentage of cells in G1. Our results showed an opposing significant decrease in G1 cell numbers 

and an increase in S-phase. As early as 1974, it was demonstrated that a restriction point (R-

point) exists within G1, after which cells are committed to entering a full mitotic cycle (Pardee 

1974). Consequently, if the number of cells leaving G1 is reduced, one would expect a decrease 

in both S-phase and G2/M. Yet, our results show an increase in S-phase with no associated 

increase in G2/M. Despite cells being committed to a mitotic cycle, the rate at which they move 

through the remainder of the cell cycle can be influenced by multiple factors, several of which 

are key to progression through S-phase. For example, during DNA replication (the primary event 

of S-phase) the recruitment of various replication factors to DNA can be inhibited thus causing 

S-phase delay. Consequently, if FAK activity influenced some of these recruiting factors it could 

slow progression and thus account for the increase in the proportion of cells in S-phase we 

observed. Indeed, FAK has been previously linked to at least one such factor, Cdk2. This cyclin-

dependent kinase has long been known to bind cyclin E, enabling G1/S transition, as well as cyclin 

A, required for movement through S-phase (Morgan 1997). Additionally, blocking the removal 

of inhibitory phosphorylation of Cdk2 prevents recruitment of DNA polymerase to replication 

origins through perturbed Cdc45 association (Falck et al. 2002). In support of this molecule as a 

medium of slowing S-phase in our cells, FAK has also been shown to directly regulate Cdk2 in 

hepatocytes, with inhibition of FAK-kinase function sufficient to reduce cell cycle progression 

through impaired Cdk2 expression (Flinder et al. 2013). Consequently, we propose that the 

inhibition of FAK’s catalytic function causes a decrease in normal cellular proliferation through 

cyclin D1 mediated induction of cell cycle arrest, in tandem with a significant S-phase delay. 

However, more work is needed to fully validate this model which explores molecular changes in 

S-phase in response to FAK inhibition. 
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Having demonstrated that FAK-inhibition can significantly alter cell cycle progression, we wished 

to analyse downstream signalling that may cause such alterations. Previously, the Ras-Erk 

pathway has been identified as a central downstream regulator of cell cycle machinery in 

response to FAK-dependent integrin signalling. This was first postulated in 1998 when 

introduction of the dominant-negative FRNK mutant was noted to cause a significant decrease 

in Erk activation, coupled with reduced cyclin D1 induction and an increase in p21 expression (a 

Cdk-specific inhibitory protein) (J. H. Zhao et al. 1998). Indeed, subsequent studies have also 

shown the importance of FAK-kinase function in this interaction with overexpression of kinase-

dead mutant FAK being sufficient to reduce proliferation, coupled with decreased Erk activation 

(Ding et al. 2005). This has since been shown to be a result of subsequent FAKY925 activation, as 

introduction of mutant FAKY925F caused a significant decrease in melanoma cell proliferation, 

resulting from decreased Grb2 recruitment and subsequent Ras-mediated activation of Erk 

(Kaneda et al. 2008). Our findings appear to rule this pathway out as the mechanism for FAK-

mediated MDA-MB-231 proliferation, as PF271 had no significant impact on either Erk1 or Erk2 

activity or expression at any time-point. Therefore, increased inhibitory phosphorylation of 

cyclin D1T286 must result from another FAK-linked signalling pathway. 

It has long been established that FAK interacts with PI3K, subsequently acting as an upstream 

regulator of the PI3K/Akt pathway (Lee et al. 2015). Additionally, it has been shown that FAK-

mediated regulation of this pathway has a vital role in certain cancer types. For example, FAK 

stabilised β-catenin through PI3K/Akt/GSK3β resulting in hyperproliferation of skin cancer cells 

in vivo (Samuel et al. 2011). In breast cancer, PI3K-dependent tumourigenesis has been shown 

to require FAK, inhibition of which results in reduced proliferation and tumour burden (Pylayeva 

et al. 2009). Consequently, we sought to investigate this pathway in our TNBC model. Our results 

are in concurrence with these studies as PF271 inhibition resulted in a significant reduction in 

active AktS473. Moreover, we also noted a significant reduction in GSK3βS9 activity. This residue is 

known to be inhibitory and its phosphorylation by Akt blocks downstream substrate activation 

(Dajani et al. 2001). Taken together this suggests that reduced FAK activity leads to decreased 

stimulation of AktS473 and alleviation of the resultant inhibitory phosphorylation of GSK3βS9. In 

further support of this mechanism of action, GSK3β has been shown to negatively regulate cyclin 

D1 by increasing phosphorylation of T286, leading to nuclear export and proteolytic degradation 

(Diehl et al. 1997), thus perturbing cell cycle progression and cellular proliferation. We showed 

such an increase cyclin D1T286 following PF271 treatment, thus implying FAK can contribute to 
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cyclin D1 stabilisation. Taken together, we propose that FAK-kinase activity stabilises cyclin D1 

through modulating Akt stimulation and resultant inhibition of GSK3β, leading to perturbed cell 

cycle progression and decreased proliferation of MDA-MB-231 cells.  

In addition to regulating GSk3β, Akt has been marked as a master regulator of cellular metabolic 

pathways associated with cell growth, with its interaction with MTOR closely linked to anabolic 

cell growth pathways, such as lipid synthesis (Deberardinis et al. 2008). Importantly, FAK has 

been shown to influence this pathway, enhancing proliferation and tumourigenesis of intestinal 

cells in Apc heterozygous mice (Ashton et al. 2010). As such we also examined changes in MTOR 

signalling in response to FAK-inhibition. As with AktS473, MTORS2448 activity was significantly 

reduced in response to PF271 treatment, inferring that FAK not only modulates cell cycle 

progression, but also metabolic growth through Akt in MDA-MB231 cells. Consequently, Akt may 

form an integral part of FAK-dependent cell proliferation by coordinating regulation of both 

proliferation and cell growth. The link between FAK and Akt is in concordance with numerous 

studies who all suggest FAK as a major upstream regulator of Akt signalling (discussed 

previously). However, the model proposed here suggests this FAK/Akt relationship could greatly 

impact proliferation unlike most studies which suggest the primary role of this pathways is 

regulation of cell survival (Sulzmaier et al. 2014).  

We subsequently went on to explore how FAK functions mediate cell migration. Notably, we 

observed that FAK siRNA was significantly less effective than PF271 in impairing MDA-MB-231 

cell migration. As siRNA suppression decreased kinase-dependent and independent functions, 

we hypothesised that FAK knockdown would be comparable, if not better than PF271 treatment 

owing to impaired kinase function, similar to that caused by pharmacological inhibition. 

Therefore, we hypothesised that in FAK siRNA cells, potential compensation was enabling partial 

sustaining of the migratory phenotype. Given PF271 has been shown to significantly impair FAK 

and its family member Pyk2 (Roberts et al. 2008), we further theorised that this dual inhibition 

was responsible for the improved attenuation of migration versus FAK knockdown. Pyk2, the 

only other member of the FAK-family of non-RTKs, has been shown to regulate its own distinct 

signalling pathways, whilst also sharing some functional overlap with FAK (Lipinski and Loftus 

2010). As such, it was previously proposed that Pyk2 activity may be able to compensate for a 

loss of functional FAK. Indeed, deletion of FAK stimulated expression of endogenous Pyk2, 

sufficient to compensate for lost FAK activity in embryonic fibroblasts and adult endothelial cells 
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(Sieg et al. 1998; Weis et al. 2008). More recently, Pyk2 activity has been demonstrated to 

compensate for a loss of FAK in breast cancer, with this activity essential to maintaining 

metastatic potential in vivo (Fan and Guan 2011). These reports seem to support our hypothesis; 

however, we did not observe a complete restoration of migration following FAK suppression as 

might be expected if Pyk2 could completely compensate for a loss of FAK. This could be due to 

limited compensation as, although Pyk2 has some redundancy with FAK, it is not a completely 

complimentary and thus reduced activity in several signalling pathways would be observed. For 

example, Wendt et al. (2013) showed that FAK is essential to TGF-β signalled EMT and, despite 

some compensation by Pyk2, selective inhibition of FAK causes reduced breast cancer cell 

invasion (Wendt et al. 2013).  

Taken together, this led us to hypothesise that Pyk2 activity was sustaining migration in FAK 

siRNA cells. Consequently, we explored migration in Pyk2 siRNA cells and observed that such 

suppression was comparable to FAK siRNA in inhibiting migration, whilst the combination had 

no additional benefit. This suggests that Pyk2 may be as important to MDA-MB-231 cell 

migration as FAK. Previous studies have shown that Pyk2 activity plays a major role in metastatic 

behaviours of breast carcinoma cells, with inhibition sufficient to significantly attenuate 

migration and invasion (Verma et al. 2015). Moreover, upregulation of Pyk2 caused a significant 

increase in both processes as well as significantly potentiating EMT through prolonged 

endosomal-derived receptor signalling (Verma et al. 2015). Our data seems to align with these 

findings and reinforces the relevance of Pyk2 as a molecule of interest within this model. 

However, our findings in this experiment contradict our initial hypothesis as combination of 

FAK/Pyk2 siRNA resulted in a comparable inhibition of migration versus either agent alone. 

Moreover, it appears to contradict the dogma that Pyk2 can compensate for loss of FAK as 

presented by the literature. This may not necessarily be the case here due to the strong anti-

migratory effects of both siRNAs because, if FAK and Pyk2 contribute to MDA-MB-231 cell 

migration through similar pathways, suppression of one may cause the maximum anti-migratory 

effects. As such, combination of both will have no additional effects as FAK or Pyk2-driven 

migration is impaired to the lowest levels these pathways will allow. To explore this further, 

experiments should be performed in which FAK and Pyk2 levels are suppressed significantly less 

(e.g. to 50%), this would allow additive effects on pathway inhibition to be observed when the 

dual knockdown is performed. Nevertheless, these experiments have shown that Pyk2 is not 

providing any compensation for the ablation of FAK in our experiments and thus something else 
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might be accounting for the difference in migratory reduction between knockdown and kinase-

inhibited cells. 

Despite FAK siRNA providing us with limited information on scaffold functions, combination of 

siRNA and kinase-inhibition does enable us to draw some conclusions regarding kinase-

independent functions of FAK in regulating migration. As with proliferation, PF271+FAK siRNA 

has no additional benefit when compared to kinase inhibition alone, suggesting that scaffold 

functions have a limited role in regulating MDA-MB-231 cell migration. However, several studies 

have directly implicated FAK scaffolding function in migration. For example, kinase-independent 

p130cas recruitment to FAK promotes lamellipodia formation through directing of guanine 

nucleotide exchange factor (GEF) signalling via Rac (McLean et al. 2005). Yet this pathway does 

require some contribution from kinase-function as p130cas binding to FAK is enhanced by Src-

mediated FAKY861 phosphorylation. In addition, embryonic cells and mouse embryonic fibroblasts 

with kinase-dead FAK can still migrate comparable to cells expressing WT FAK (Shen et al. 2005). 

Such roles for FAK scaffolding have also been shown in TNBC cells. In 2009, Sawhney and 

colleagues demonstrated that FAK regulates integrin-mediated ERK5 activation, independent of 

kinase-function, to modulate haptotactic motility and cell adhesion (Sawhney et al. 2009). 

Consequently, suggesting kinase-independent functions of FAK play little part in cell migration is 

presumptuous, yet our results do enable us to conclude that targeting kinase-dependent and 

independent functions in tandem has no additional benefit versus catalytic function alone. As 

with proliferation, we suggest that scaffolding does play a role in MDA-MB-231 cell migration, 

but kinase activity is essential for maximal motility. Further studies using scaffold-specific 

inhibition would need to be conducted to assess relative contributions by FAK protein-protein 

interactions on migration. 

In addition to migration, we utilised Boyden chamber assays to explore FAK in invasion. As noted 

in proliferation, FAK siRNA was as effective as PF271 kinase inhibition at preventing invasion, 

with no additional reduction observed in dually-treated cells. This again suggests that FAK 

scaffolding function has limited contribution to this phenotype in MDA-MB-231 cells, thus kinase 

function is the primary mediator of FAK-driven invasion. Whilst many studies acknowledge the 

importance of FAK catalytic activity to invasive signalling pathways, much fewer exist examining 

scaffold function. Although much fewer in number, these studies do highlight some key roles for 

FAK scaffolding in invasion and as such may contradict our findings. For example, it has been 
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demonstrated that cells with catalytically inactive FAK can sustain F-actin polymerisation, a key 

factor in invasion, through continued association with Arp2/3 and subsequent cooperation with 

N-WASP via the FAK-FERM domain (Serrels et al. 2007; Tang et al. 2013). In this context, FAK 

serves to direct the activity of ARP2/3 to cellular protrusions prior to FA maturation.  

FAK has previously been shown to contribute to a change in molecular profiles attributed to 

epithelial to mesenchymal transition (EMT) (Kim et al. 2010; Cicchini et al. 2008). Such programs 

underpin cell motility and invasion and thus contribute to aggressive tumour cell behaviours. 

Indeed, scaffolding functions of FAK have been shown to contribute to changes in EMT markers. 

One particular example of these markers are the matrix metalloproteinases (MMPs). These 

proteins are essential to tumour cell metastasis and invasion as they degrade ECM components 

thus enabling space for cell migration, whilst facilitating invasion of mobile cells (Page-McCaw et 

al. 2007). Consequently, changes in MMP status are clearly of vital importance to invasion and 

proteins which can cause such alterations must play a crucial role. Whilst FAK activity has been 

shown to increase expression of MMP9 and subsequent metastasis of breast cancer cells in vivo 

(S. Mitra et al. 2006), scaffolding function also plays a significant role in MMP regulation. For 

example, interaction of the FAK scaffold with endophilin A2 increases its phosphorylation, 

leading to alterations in MMPs (amongst other EMT markers) and direct modulation of breast 

tumour progression in vivo (Fan et al. 2013). These studies serve to highlight that FAK scaffolding 

function does contribute to cell invasion. As such, when taken together with our findings we 

cannot conclusively say that FAK scaffolding function is second to kinase activity in regulating 

invasion of TNBC. We can however state that inhibiting kinase function alone can reduce FAK-

mediated invasion to its maximal level. Therefore, we can conclude that FAK plays a significant 

role in invasion and whilst kinase function appears crucial to this process, scaffolding 

contributions are either of comparative or less importance. Specific targeting of FAK scaffolding 

function will be required to determine conclusively its relative importance versus catalytic 

function in TNBC cell invasion.  

Considering our findings, we went on to investigate potential mechanisms by which FAK 

regulates MDA-MB-231 cell migration. We began by exploring changes in cell morphology and 

subcellular distribution of FAK following inhibition through immunofluorescent microscopy. 

These results showed several changes that seemed to affect all steps of the migratory process. 

To successfully migrate in 2D culture, a few events need to occur. Initially cells must become 
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polarised to establish the direction of movement, subsequently enabling cells to undergo actin 

polymerisation at the leading edge, resulting in lamellipodia extension and attachment to the 

substratum. Finally, cells must be able to disassemble focal adhesions (FAs) at the trailing edge 

to allow cell contraction and movement towards the leading edge. The combination of these 

processes enables effective, directional cell migration all of which seem to be impaired in some 

way following FAK inhibition. 

Our results showed that cells appeared to lose their leading edge in response to FAK inhibition, 

as well as reduced filopodia-like protrusions which could represent impaired lamellipodia 

production. Together, these observations suggest that FAK-kinase inhibition disrupts 

polarization of cells in tandem with reducing leading cell dynamics, marked by reduced 

lamellipodia extension. Such changes are in coherence with several other studies which highlight 

FAK as a regulator of cell polarity. For example, Tomar and colleagues (2009) demonstrated that 

disruption of integrin-mediated FAK phosphorylation could perturb directional cell movement 

through failure to recruit p120RasGAP resulting in disrupted of transient decreases in RhoA 

activity (Tomar and Schlaepfer 2009). Interestingly, the coordinated actions of the Rho family of 

GTPases are essential to mediating cell polarity and several of these proteins, namely Rac, Rho 

and Cdc42, are well documented to be under the tight control of FAK (Nobes and Hall 1995; 

Nobes and Hall 1999). Further evidence of FAK’s role in polarity was demonstrated by Serrels et 

al (2011) who demonstrated that FAK is part of a “direction sensing” complex, comprised of FAK, 

RACK1 and PDE4D5, which signals to EPAC (a member of the GEF family) and G protein Rap1 to 

regulate cell polarisation of malignant keratinocytes (Serrels et al. 2011). Additionally, multiple 

studies have also highlighted a central role for FAK in lamellipodia formation. For instance, FAK-

bound p130cas enables Crk recruitment following activation, which redirects GEF activity 

towards Rac thus promoting lamellipodia extension (McLean et al. 2005). Interestingly, this 

mechanism relies on both scaffolding and kinase function as FAK/Src-mediated phosphorylation 

of FAKY861 significantly enhances p130cas activation. Our results align with this study as PF271-

kinase inhibition resulted in perturbed lamellipodia formation. Taken together we concluded 

that inhibition of FAK catalytic function could disturb leading edge dynamics impairing 

directional migration. 

We also showed that PF271 treatment caused a significant increase in the number of FAs and 

their size versus control cells. This implies that FAK is contributing to FA disassembly and its 
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inhibition is sufficient to reduce their turnover. Indeed, a significant amount of studies align with 

this finding which show normal FAK function is essential for FA turnover. For example, FAK-

kinase function is essential for recruitment of calpain-2, a protease which cleaves molecular 

components of FAs and FAK, in order to enable disassembly and turnover of FAs (Chan et al. 

2010). Again, FAK’s relationship with Rho family GTPases, specifically Rho, has been proposed to 

play a key role in FA disassembly at the trailing edge (Gupton and Waterman-storer 2006). 

Indeed, stimulation of FAK results in activation of RhoA and ROCK, causing increased cell 

contraction and turnover of FAs to enable cell movement towards the leading edge (Iwanicki et 

al. 2008). Taken with our data, we believe that FAK regulates FA turnover through its kinase 

activity, with its inhibition effectively preventing detachment of cells from the substratum (in 

this case fibronectin) thus resulting in impaired migration and the more pointed appearance of 

PF271 treated cells. However, it seems likely that the combination of perturbed leading and 

trailing edge dynamics is what causes the change in morphology and is not due to FAK changes 

at either pole. 

To further explore changes in cell motility programs, we used western blotting to explore 

signalling in migrating cells and found several alterations in response to PF271 treatment that 

reflected the observed changes in cellular morphology and subsequent migration. First, 

stimulating cells with FCS containing RPMI caused a significant increase in active FAKY397 versus 

serum-starved control cells, whilst PF271 treatment reduced activity, comparative to 

unstimulated controls. The latter of these groups represents the negative controls in our Boyden 

chamber assays which exhibit significantly lower propensity for migration than stimulated cells. 

Taken together this suggests that FCS stimulates migration through increased FAKY397 

phosphorylation and resultant kinase activity. In addition, immunofluorescent cells lacking 

stimulation exhibit poorer polarisation, lamellipodia extension and FA formation. This reinforces 

the importance of FAK in mediation of cell migration and strongly supports the several studies 

presented to this point. 

Along with FAK changes, we also observed significant impairment of AktS473 phosphorylation 

following PF271 treatment. This infers that decreased FAK catalytic function impairs Akt 

stimulation and subsequent signal transduction. As noted previously, FAK and Akt have long 

been known to interact through PI3K bound to active FAK. In terms of cell migration, PI3K/Akt  

has been shown to contribute to cell movement through enhancing remodelling of the actin 
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cytoskeleton (Qian et al. 2003). This study showed that expression of active PI3K increased 

activation of Akt and caused significant actin filament remodelling, stimulating cell migration. 

The converse is also true, whilst this phenotype can be rescued by expression of active Akt. 

Moreover, a loss-of-function study by Seo et al (2014) further highlighted the importance of 

PI3K/PTEN/Akt signalling in cell movement (Seo et al. 2014). After identifying multiple genes that 

contributed to cell motility, they determined that a significant portion of these impacted 

migration through modulation of PI3K/PTEN/Akt signalling thus emphasising the importance of 

this pathway as a convergence point for signals mediating cell motility. Such observations also 

extend to the migration and metastatic potential of cancer cells. For example, Elloul and 

collagues (2014) demonstrated that Akt can regulate breast cancer cell migration through 

phosphorylation of the adherens junction protein Afadin, causing its subcellular redistribution 

to the nucleus causing increased cell mobility (Elloul et al. 2014). As such, it is reasonable to 

conclude from our data that FAK-mediated Akt stimulation could be mediating cell migration.  

As with proliferating cells, PF271 treatment also alleviated inhibitory GSK3βS9 phosphorylation. 

Interestingly, GSK3β has been shown to regulate cell-matrix adhesion dynamics through 

modulation of paxillin and FAK (Sun et al. 2009) which seem to reflect both our western blotting 

and immunofluorescence analysis. As outlined, FAK inhibition seemed to impair FA turnover with 

increased numbers and sizes noted in PF271 treated cells. In 2005, Bianchi et al showed that 

GSK3β could phosphorylate FAK at S722, significantly impairing both its kinase activity and cell 

mobility (Bianchi et al. 2005), thus implying that active GSK3β could impair FA disassembly. 

Additionally, GSK3β has been implicated in FA formation. Indeed, Cai et al (2006) showed that 

GSK-dependent phosphorylation of paxillin was required for macrophage cell spreading (Cai et 

al. 2006). Taken together, these studies suggest a dual role for GSK3β in cell migration. As such, 

we concluded that PF271-mediated reduction in inhibitory GSK3βS9 phosphorylation may be 

contributing to decreased migration of MDA-MB-231 cells through simultaneously facilitating 

formation and impairing destruction of FAs. It is important to note that in HeLa cells, GSK3 

association with the cytoplasmic cAMP phosphodiesterase (PDE) prune has been shown as 

necessary for activation of FAK, postulated to be resultant from interaction of GSK3/prune with 

an unknown tyrosine kinase (Sun et al. 2009; Kobayashi et al. 2006). However, such an 

observation may not extend to TNBC cells as the role of this complex in FAK has been largely 

unexplored in other cancers. 
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FAK inhibition also lead to a significant reduction in STAT3S727 signalling within migratory cells. 

Typically, STAT3 exists as a monomer within cells but activation causes 

homo/heterodimerisation, which enables nuclear translocation where it can function as a 

transcription factor for specific genes, some of which are linked directly to cell migration (Snyder 

et al. 2008). The mechanism of STAT3 activation hinges on phosphorylation of Y705 to engage 

dimerization and nuclear localisation, where phosphorylation of S727 enables maximal function 

as a transcription factor (Banerjee and Resat 2016) , whilst possibly contributing to nuclear 

localisation (Sakaguchi et al. 2012). We did not note a significant change in STAT3Y705 implying 

that FAK does not alter translocation but rather transcriptional activity of STAT3 through 

reducing S727. In support of this, FAK is known to directly interact with STAT3 at FAs to modulate 

motility signalling (Silver et al. 2004). However, this group did not explore changes in STAT3 

phosphorylation, so we cannot be sure how FAK influences these activities, but we can speculate 

that given the relevance for STAT3Y705 for localisation it is likely that FAK would act with this site. 

This would contradict our findings as STAT3Y705 was not affected by PF271 treatment. 

Although we cannot rule out FAK modulating STAT3S727 in the cytoplasm, given the disparities 

surrounding S727 mechanisms of action in the literature, we hypothesise that these effects are 

mediated within the nucleus of MDA-MB-231 cells. To support this, FAK has been shown to have 

nuclear activity and directly regulate several nuclear proteins (Lim 2013). Given that FAK can 

directly interact with STAT3 (Lazaro et al. 2014; Silver et al. 2004) and the canonical view of 

STAT3S727 activity as primarily nuclear, it stands to reason that nuclear FAK could modulate STAT3 

activation and thus migration through decrease expression of a yet unknown, pro-migration 

gene. One such gene may be E-cadherin as this protein was observed to have STAT3-dependent 

expression in MCF10A cells (Leslie et al. 2010), as well as increased levels following FAK and 

STAT3 inhibition in HER2+ breast cancer cells (Lazaro et al. 2014). More studies would be needed 

to explore this idea, which may include immunoprecipitation of FAK and STAT3 in nuclear 

samples and examination of STAT3-mediated gene expression in response to FAK inhibition. 

Nevertheless, our data demonstrates that FAK inhibition in migrating cells can negatively alter 

STAT3S727 activity, suggesting a possible mechanism by which FAK mediates MDA-MB-231 cell 

motility. 

To validate our findings and expand on our proposed mechanisms, we next sought to examine 

FAK’s role in MDA-MB-468 TNBC cells. We initially saw that MDA-MB-231 and MDA-MB-468 cells 



169 
 

showed comparative relative FAK activity, but MDA-MB-231 cells had more total FAK protein 

and were significantly more sensitive to PF271 in terms of FAKY397 activity. Despite this difference 

in sensitivities, the chosen concentration of 1µM was sufficient to reduce FAK activity in both 

cell lines to a comparable and very low level. By contrast, this level of FAK-kinase inhibition had 

very different effects on proliferation and migration, with MDA-MB-468 cells largely unaffected 

by PF271 treatment. Such differences between these cell lines in response to FAK silencing has 

previously been noted (Pylayeva et al. 2009). This study noted that MDA-MB-231 cells exhibit 

reduced proliferation and growth arrest in response to repressed FAK expression, whilst MDA-

MB-468 cells only displayed inhibited proliferation. Importantly, whilst our observations in MDA-

MB-231 cells hold, this study contradicts the results obtained from MDA-MB-468 cells. 

Moreover, this study used shRNA to silence FAK thus removing both kinase-dependent and 

independent functions. If taken with our PF271 data, this could imply a more important role for 

scaffolding function in this cell model. However, our siRNA results contradict this idea as 

suppression of FAK in MDA-MB-468 cells is not sufficient to cause significant reductions in 

proliferation. 

We hypothesised that these differences were resultant from the inherent PTEN mutation in 

MDA-MB-468 cells. We initially confirmed that these cells indeed had no detectable levels of 

PTEN and detection of active AktS473 was elevated versus MDA-MB-231 cells. Our data further 

reinforced this idea as the effects of FAK inhibition on AktS473 activity in the absence of PTEN is 

negligible in both migrating and proliferating cells. Additionally, previously identified 

downstream elements of Akt signalling are largely unaltered by PF271 treatment. Therefore, we 

initially proposed that hyperactive Akt can circumvent FAK inhibition in TNBC cells and so sustain 

high levels of proliferation and migration. In terms of cell growth, there is some evidence in the 

literature which could support this. Previous studies have demonstrated a significant 

relationship between FAK and Akt in mediating anti-apoptotic survival signals. For example, 

Zheng et al (2013) showed that phosphorylation of FAK by protein tyrosine kinase 6 results in 

stimulation of anti-anoikis pathways, dependent on Akt activation (Zheng et al. 2013). 

Additionally, FAK inhibition can sensitise ovarian cancer cells to paclitaxel-induced cell death, 

through Akt-mediated dephosphorylation of Y-box-binding protein 1 (Kang et al. 2013). Taken 

together, this could suggest that in MDA-MB-468 cells, the PTEN-null phenotype and subsequent 

Akt hyperactivation may be enabling cell survival usually disrupted by FAK inhibition. However, 

our results in MDA-MB-231 cells contradict this idea as we demonstrated that cell number 
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changes were as a result of proliferative changes not increased apoptosis. Indeed, the lack of 

change in cell cycle, Ki67 and proliferative signals in MDA-MB-468 cells implies that FAK acts 

through Akt to regulate proliferation, as well as cell metabolism through Akt/MTOR signalling.  

Our hypothesis regarding PTEN/Akt-mediated rescue following FAK inhibition also coincides with 

the literature in terms of cell migration. For example, early studies showed that PTEN 

overexpression can significantly reduce cell migration through suppression of FAK activity 

(Tamura et al. 1998). Additionally, PTEN can attenuate the invasion and metastatic potential of 

gastric cancers through downregulation of FAK expression (L.-L. Zhang et al. 2014). These studies 

highlight a strong link between FAK/PTEN in regulating migration and indeed may suggest why 

MDA-MB-468 cells are less migratory than MDA-MB-231 cells. However, if PTEN suppression of 

FAK was underpinning reduced responsiveness to PF271, one would still expect to see some 

decrease in MDA-MB-468 cell migration following treatment, even if not comparable to the 

effects noted in MDA-MB-231 cells. However, PTEN reduction also causes a significant increase 

in Akt activity and thus may explain sustained migratory potential. Indeed, the previously 

highlighted studies both demonstrated that attenuation of FAK phosphorylation was correlated 

with inhibited Akt activity thus suggesting a link between the two molecules regulated through 

PTEN. In cancer cells, it has been demonstrated on several occasions that FAK can influence Akt 

signalling to modulate cell motility. For example, treatment with the chemopreventative agent 

4HPR causes significant mitigation of prostate cancer cell migration through via decreased 

FAK/Akt activity and subsequent increase in β-catenin degradation (Benelli et al. 2010). Similar 

results have also been noted in breast cancer cells with overexpression of microRNA-200 

(miRNA-200) in MDA-MB-231 cells causing a significant increase in cell migration resulting from 

a stimulation of VEGF-A and subsequent activation of  FAK/PI3K/Akt signalling (Choi et al. 2016). 

Taken together these studies seem to validate our hypothesis that FAK acts through Akt to 

stimulate migration, a process which can be perturbed by removal of endogenous PTEN activity. 

Although this hypothesis seems rational given the MDA-MB-468 data, the noted changes may 

result from some other fundamental difference between the two TNBC models, especially given 

that several such differences can exist between models of identical disease states. Therefore, 

we needed to explore the effects of PTEN suppression and resultant Akt activity in MDA-MB-231 

cells to validate our model of FAK-mediated proliferation and migration. Initial suppression 

studies revealed that PTEN siRNA had no significant effect on FAK. This provided an essential 
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validation that enabled subsequent FAK inhibitory studies to be undertaken but also seemed in 

contrast with some studies which suggest a direct role for PTEN in the regulation of FAK in cancer 

cells (e.g. the previously outlined studies by Zhang et al. 2014; Tamura et al. 1998). Our PTEN 

siRNA cells displayed no significant decrease in either expression or activity of FAK, inferring no 

regulatory role for PTEN in MDA-MB-231 cells.  

In contrast to our hypothesis, the PTEN suppression and associated increase in Akt activity was 

not sufficient to rescue proliferation in FAK inhibited cells. This also contradicts the observations 

in MDA-MB-468 cells, where hyperactive Akt appeared to alleviate the proliferative changes in 

response to PF271. This would suggest that some other protein differentially expressed or 

activated between MDA-MB-468 and MDA-MB-231 cells may contribute to FAK-dependent 

proliferation. For example, both MDA-MB-468 and 231 cells have been reported to have high 

levels of EGFR expression, but are significantly higher in MDA-MB-468 cells (Subik et al. 2010; 

Kao et al. 2009; Konecny et al. 2006). In 2001, Mariotti et al showed that in keratinocytes, EGFR 

is able to combine with β4 integrins and cause a significant amplification of their activity via Fyn 

kinase (Mariotti et al. 2001). Given this pathways role in regulating proliferation, it stands to 

reason that cells with higher EGFR can more readily utilise this relationship to sustain 

propagation. More importantly, as this relationship does not require the canonical regulation of 

integrin signals via FAK, this integrin β4-EGFR pathway could sustain MDA-MB-468 proliferation 

in FAK inhibited cells. Subsequently, this may highlight a potential issue with targeting FAK-

kinase activity in high EGFR expressing cells. Although more studies would be needed to confirm 

at what point this became an issue (given that MDA-MB-231 cells also have high EGFR but are 

FAK sensitive), it serves to emphasise the relevance of patient stratification with regards to an 

effective therapeutic regime for cancer treatment. 

To further explore the role of Akt in FAK-mediated proliferation, we evaluated downstream 

signalling changes in PTEN supressed cells in response to PF271 following 3-days. As seen 

previously, AktS473 activation is significantly higher in PTEN treated cells than all controls. 

Interestingly, inhibition of FAK is still sufficient to induce a decrease in AktS473, although activity 

remains significantly higher than in cells with normal PTEN expression. However, downstream 

inhibition of GSK3βS9 and subsequent increase in inhibitory cyclin D1T286 are unchanged in PTEN 

suppressed cells treated with PF271, suggesting that FAK can mediate these signals independent 

of Akt. A potential mechanism could be through p130cas. This protein is one of the major targets 
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for FAK activity, with its activity linked to several signalling pathways (Lee et al. 2015). Indeed, a 

seminal study by Oktay et al (1999) showed that FAK-dependent stimulation of p130cas 

promoted activation of JNK and c-Jun, leading to increased cell proliferation (Oktay et al. 1999). 

Further studies in genetically engineered mice revealed that mammary-specific deletion of FAK 

caused a significant decrease in proliferation, dependent on reduced p130cas (Pylayeva et al. 

2009). As such, p130cas could be enabling sustained cyclinD1 inhibition in hyperactive Akt cells 

treated with PF271, thus maintaining suppression of proliferation. Further experiments would 

be needed to directly assess how FAK inhibition alters p130cas and JNK activity in “normal” and 

PTEN-suppressed MDA-MB-231 cells. 

In contrast to proliferation, PTEN suppression and resultant Akt hyperactivity was capable of 

rescuing migration following FAK inhibition. Moreover, when signalling in these cells is examined 

PF271 still causes some effect on AktS473, GSK3βS9 and STAT3S727 activity but levels in inhibited 

cells are comparable to vehicle-only control cells without PTEN knockdown. This suggests that 

FAK requires Akt and downstream signals to mediate its effects on migration. Interestingly, given 

the theorised role of Akt activity in mediating FAK-driven cell migration, one would expect that 

hyperactivation of Akt would lead to an increase in cell motility versus cells without increased 

activity. However, we noted that PTEN knockdown cells have comparable migration to all siRNA 

control cells. This seems to contradict several studies which links aberrant PTEN expression and 

activity to increased migratory potential. For example, Dong et al (2013) showed that 

angiotensin II could induce vascular smooth muscle migration through reducing expression and 

activity of PTEN (Dong et al. 2013). Additionally, negative regulation of PTEN through TGF-β1 

activation of SMAD and ERK1/2 significantly increased motility of type II endometrial cancer cells 

(Xiong et al. 2016). These studies would suggest that hyperactivation of Akt through PTEN loss 

would be sufficient to increase migration. Interestingly, both these studies noted an increase in 

FAK activity following loss of PTEN, suggesting FAK as the underlying driver of migration via Akt. 

In our studies, this was not seen and suggests that for hyperactive Akt to increase motility, cells 

also require tandem increases in FAK function and subsequent stimulation of downstream Akt. 

This could account for the observed differences between previous studies and the results 

presented here. Additionally, it could be argued that increased Akt alone is not sufficient to drive 

migration as several other signalling pathways utilise Akt as a central modulator of cell function 

(Mayer and Arteaga 2016) and thus its activity is being directed towards regulation of other 

behaviours. Rather you need recruitment of Akt to FAK-bound PI3K in order to direct signalling 
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towards migration. It would be interesting to explore both Akt localisation through 

immunofluorescence and changes in molecular interactions through immunoprecipitation in 

PTEN siRNA cells to better clarify how FAK/Akt signalling can drive cell motility.  

4.17.1. Conclusions 

The data in this chapter shows that inhibition of FAK-kinase activity can significantly alter TNBC 

cell proliferation through mediation of signalling proteins linked to cell cycle. Moreover, these 

changes are independent of either the Akt or Erk signalling pathways. Additionally, we have 

demonstrated that FAK is a key driver of MDA-MB-231 cell migration, through perturbation of 

focal adhesion turnover and resultant disruption of normal cytoskeletal dynamics. This seems to 

be dependent on activation of Akt-signalling and possibly STAT3. Taken together, our data 

suggests that FAK could represent a major therapeutic target for the inhibition of cellular 

proliferation and migration in TNBC cells and thus is a valid target for prospective drug design. 
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5. Results (III) 
 

Mechanistic evaluation of FAK in TNBC Cancer Stem 
Cells (CSCs) 
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5.1 Introduction 

Tumour heterogeneity is a well-documented phenomenon and one that has been linked with 

therapeutic failure. At the broadest level, tumours are comprised of cells from the epithelia, 

stroma and immune system. However, each of these “types” can exhibit a further level of 

heterogeneity giving rise to cellular subtypes. It has been postulated that within cancer cell 

subtypes exists a hierarchal system whereby a single cell has the potential to divide and 

differentiate to give rise to the variety of cell types observed within the tumour (Huntly and 

Gilliand 2005). This is the so-called “cancer-stem cell (CSC) hypothesis”. In contrast to the 

traditional view of tumour development, the CSC hypothesis suggests that this rare cell 

population has the capacity to self-renew endlessly, whilst being able to create all other cell 

types present within a tumour. These cells have thus been labelled as key drivers of metastatic 

potential as they have the potential to form complete tumours following extravasation into distal 

tissues. Several lines of evidence exist that support this hypothesis in solid cancers, including 

breast cancer. For example, Al-Hajj et al (2003) identified a subpopulation of human breast 

carcinoma cells which could initiate tumour growth and development following implantation 

into mice (Al-Hajj et al. 2003). These cells were identified as being immunoreactive for CD44 or 

had little/no CD24 presentation, a profile now utilised as marker of CSCs. Moreover, enrichment 

of CD44+/CD24low/- cells demonstrated an 10 to 50-fold increase in tumour forming capacity 

versus the total cell population further providing validation of a stem-like population of cells 

within breast cancers (Al-Hajj et al. 2003). This profile of cell surface markers was also used to 

identify mammary somatic stem-cells capable of re-forming mammary glands following 

introduction of a single Lin-/CD29High/CD24+ cell in vivo (Shackleton et al. 2006). Moreover, CSCs 

have been suggested to be responsible for disease recurrence due to CSCs being intrinsically 

more resistant to a range of cancer therapeutics versus other tumour cells. As such, therapies 

that fail to target these cells could allow retention of CSCs within patients and facilitate disease 

recurrence. Indeed, treatment with conventional chemotherapies has been shown to enrich the 

CSC subpopulation, whilst causing increased metastasis and bestowing chemo-resistance to the 

initial therapeutic agent (Carrasco et al. 2014). Taken together, these traits have led to CSCs 

being earmarked as the key drivers of disease progression and resultant patient outcome. In this 

section, we have defined CSCs as cells which have the potential to survive and proliferate under 

anoikis conditions and self-renew. 
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Given the propensity of TNBCs towards metastatic disease and short, disease-free periods prior 

to relapse (Dai et al. 2015), it may be that this breast cancer subtype might exhibit increased 

numbers of stem-like cancer cells. Indeed, reports have identified a subpopulation of cells with 

CSC-like characteristics; self-renewal, non-adherent survival and increased chemo-resistance, in 

in vitro cell cultures (French et al. 2015). Moreover, such cells have been isolated from TNBC 

patient tumours and subsequently reintroduced in vivo where they establish new, fully-diverse 

tumours, reflective of triple-negative disease (Kolev et al. 2017). 

Intriguingly, FAK has been shown to contribute to stem-like characteristics of cells, for example, 

through facilitating anchorage independent growth (Sulzmaier et al. 2014). The influence of FAK 

on such traits has led to its direct implication in the maintenance and regulation of CSCs. For 

example, through supressing FAK in mammary epithelial cells, Luo and colleagues (2009) 

significantly reduced tumourigenesis in vivo, consistent with inhibition of a CSC subpopulation 

demonstrating reduced numbers, self-renewal and sphere formation in vitro (M. Luo et al. 2009).  

5.1.1. Aims and Objectives 

Given the role of FAK in stem-like cell behaviours and the fact that TNBCs may harbour such a 

subpopulation, here we wished to ask the question whether the MDA-MB-231 cell line has a 

CSC-like subpopulation and whether these cells are sensitive to FAK inhibition. As such, we set 

out the following objectives for this chapter: 

 Identify whether a CSC subpopulation exists within MDA-MB-231 cells and explore the 

responses of these cells to FAK inhibition. 

 

 Analyse the contribution of FAK to stem-like characteristics including, anoikis-resistance 

and self-renewal. 

 
 Evaluate signalling changes that could result in perturbed stem-like phenotypes. 
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5.2. Evaluation of FAK contribution to maintenance of the CSC subpopulation 

The first element of this work was to explore whether a subpopulation of cells with CSC-like 

characteristics existed within the MDA-MB-231 parental line. Consequently, we used flow 

cytometry to probe for the expression of the cell surface markers CD44 and CD24. As noted 

previously, the relative presence or absence of these markers (as CD44+/CD24low/-) is indicative 

of a cell population with enhanced tumour initiating and stem-like capabilities (Al-Hajj et al. 

2003). Initially, this analysis required the establishment of true negative cells in order to set up 

quadrants for population analysis. Briefly, cells were incubated with isotype controls and 

appropriate secondary antibody. These negative controls will not stain positive for markers, 

whilst containing the isotypes found in antibodies under experimental conditions thus providing 

the best representation of background fluorescence to allow quadrants to be placed on 

subsequent data (figure 5.1A). Flow cytometry analysis revealed that MDA-MB-231 cells 

exhibited a high number of cells with a CD44+/CD24low/- phenotype; MCF-7 cells (used as a 

comparative control) had significantly fewer cells with stem-like molecular profile (figure 5.1B). 

To investigate whether the existence of this subpopulation of cells was FAK-dependent, we 

treated the parental cells with the FAK inhibitor for 24hrs before performing FACS analysis. 

Inhibition of FAK kinase function caused no significant change in stem-like cell proportions in 

either MDA-MB-231 or MCF-7 cells (figure 5.1C and D). 
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Figure 5.1 – Flow cytometry analysis of CSC composition of breast cancer cell models in response 

to FAK inhibition – (A) Representative scatter plots of isotype controls used to determine 

quadrants. Such controls will not recognise CD44/24 and thus points represent background 

fluorescence which were subsequently utilised for drawing of quadrants. (B) Evaluation of CD44 

(alexa 647) and CD24 (FITC) presentation on MDA-MB-231 and MCF-7 cells shows both cell models 

contain a stem-like subpopulation (red box), whilst MDA-MB-231 cells have significantly higher 

potential CSCs than MCF-7s. (C) Exploration of the effects of FAK inhibition on CD44 and CD24 

presentation in MDA-MB-231 cells shows no significant changes following PF271 treatment. (D) 

Assessment of changes in CD44 and CD24 in response to PF271 treatment in MCF-7 cells had no 

signifcant effect on stem-like subpopulation of cells. Numbers included in red boxes represent 

mean percentage of cells in this population quadrant; n=3. 
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Given the extremely high number of stem-like cells defined by a CD44+/CD24low/- presentation, 

we decided to attempt to validate our findings using an alternative marker of CSCs, ALDH 

(Ginestier et al. 2007). Breast cancer cells positive for expression of ALDH represent CSCs, 

enriched populations of which are capable of forming tumours following transplantation into 

NOD-SCID mice (Ginestier et al. 2007). We first needed to determine the gating for ALDH positive 

cells (figure 5.2A). In brief, a proportion of cells were treated with a specific inhibitor of ALDH, 

diethylaminobenzaldehyde (DEAB), which prevents the conversion of AldefluorTM reagent into 

the detectable substrate. From these cells, background fluorescence can be determined and 

appropriate gating applied. Following gating, our results showed that MDA-MB-231 cells exhibit 

a small number of ALDH+ cells (figure 5.2B). Again, inhibition of FAK activity through PF271 had 

no significant effect on the proportion of cells represented in this subpopulation (figure 5.2C and 

D). 
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_____________________________________________________________________________________ 
Figure 5.2 – Analysis of ALDH CSC marker by flowcytometry in cells treated with PF271 – (A) 
Representative scatter plots of cells treated with DEAB, a specific inhibitor of ALDH function. These plots 
of ALDH1 (Alexa 488) versus side-scatter (SSC) show levels of background fluorescence within cell 
populations, subsequently gated (blue polygon) to enable observation of true ALDH+ cells. (B) 
Representative scatter plots for ALDH1 versus SSC with gates encompassing ALDH+ cells as determined 
through used of a negative-control. (C) Evaluation of the number of cells in each condition that exhibited 
ALDH-positive staining. Inhibition of FAK had no significant effects on the number of positively expressing 
cells. (D) Analysis of ALDH-positive cells represented as a percentage of the total cell population analysed, 
showing no significant attenuation of stem-like cells following PF271 treatment. All error bars represent 
SEM; n=3. 
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5.3. Functional assessment of the role of FAK in stem-like characteristics 

To examine the functional contribution of FAK to the CSC phenotype, a mammosphere assay was 

performed. The number of spheres present (represented as mammosphere forming units 

(MFU)) allows changes in anoikis resistance to be observed, along with the number of cells 

capable of forming new tumours. Inhibition of FAK resulted in a significant decrease in passage 

1 MFUs, coupled with a significant decrease in mammosphere volume (figure 5.3A-C). Given that 

we defined a mammosphere as being larger than 50µm, the change in size following PF271 

treatment may be masking changes in the number of MFUs. As such, we also assessed 

mammosphere-forming potential with spheroids defined primarily by morphology, with a low 

minimum size requirement (>20µm). These data revealed no significant attenuation in the 

number of MFUs in FAK inhibited cells (figure 5.3D).  

A limitation to measuring the initial mammosphere forming capability was that this only 

determines anoikis survival and non-adherent proliferation. However, subsequent passages of 

mammospheres better represent stem-like characteristics as they permit assessment of anoikis 

resistance, proliferation and self-renewal capability. Consequently, this assay was extended and 

mammospheres passaged further and the number of spheres counted (figure 5.3E). When self-

renewal was assessed (passage 2 MFU numbers relative to passage 1 counts), PF271 caused a 

significant decrease in self-renewal factor (SRF) versus vehicle-only controls, regardless of the 

size used to determine mammospheres (figure 5.3F). 
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 Figure 5.3 – Functional assessment of FAK contribution to stem-like traits of CSCs through PF271 

inhibition – (A) Representative images of mammospheres showing clear decrease in tumour 

volume in response to FAK inhibition. (B) Evaluation of the number of mammospheres 

(represented as mammosphere-forming units (MFUs)) >50µm at passage 1 in response to PF271 

inhibition of FAK kinase activity. Reduction of FAK activity caused a significant decrease in 

mammosphere forming capability. (C) Assessment of mammosphere volume in response to PF271 

treatment showed that FAK inhibition can cause a significant reduction in size versus vehicle-only 

control. (D) Investigation of changes in MFUs in passage 1 defined by spheroid structures >20µm 

showed no significant changes in mammosphere-forming capacity in response to FAK inhibition. (E) 

Probing changes in mammosphere forming capabilities following seeding into a second passage in 

response to FAK inhibition. PF271 treatment resulted in a significant decrease in the number of 

passage 2 MFUs. (F) Self-renewal capacity assessment in response to FAK inhibition by representing 

passage 2 MFU numbers as a proportion of those observed in passage 1. Self-renewal is 

significantly impaired by PF271 treatment. All error bars represent SEM; n=5. *p<0.05; **p<0.01; 

***p<0.001.  
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To further explore whether mammosphere formation was FAK-dependent, FAK was suppressed 

through siRNA and the assay repeated. FAK suppression caused a significant decrease in the 

number of mammospheres detected that were >50µm in diameter and also the overall 

mammosphere volume (figure 5.4A-C). Again, as size was affected we also assessed MFUs at a 

much lower minimum size (figure 5.4D). FAK siRNA had no significant effect on mammosphere-

forming potential in this assessment. As with pharmacological FAK inhibition, the number of 

MFU at passage 2 was significantly reduced in FAK siRNA cells, accompanied by a significant 

decrease in SRF, irrespective of the definition of mammospheres (figure 5.4E and F). 
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 Figure 5.4 – Functional assessment of FAK contribution to stem-like traits of CSCs through siRNA 

suppression – (A) Representative images of mammospheres showing clear decrease in tumour 

volume in response to FAK repression. (B) Evaluation of the number of mammospheres 

(represented as mammosphere-forming units (MFUs)) >50µm at passage 1 in response to FAK 

siRNA. Suppression caused a significant decrease in mammosphere forming capability. (C) 

Assessment of mammosphere volume in response to siRNA treatment showed that decreasing 

total FAK levels can cause a significant reduction in size versus non-transfected and NT controls. (D) 

Investigation of changes in MFUs in passage 1 defined by spheroid structures >20µm showed no 

significant changes in mammosphere-forming capacity in response to FAK siRNA. (E) Probing 

changes in mammosphere forming capabilities following seeding into a second passage in response 

to FAK suppression. Targeted FAK siRNA resulted in a significant decrease in the number of passage 

2 MFUs versus controls. (F) Self-renewal capacity assessment in response to FAK siRNA by 

representing passage 2 MFU numbers as a proportion of those observed in passage 1. Self-renewal 

is significantly impaired in FAK siRNA cells. All error bars represent SEM; n=5. *p<0.05; **p<0.01; 

***p<0.001  
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Given that CSCs comprise a very small proportion of the total cell population, the effects of 

treatment in heterogeneous, adherent culture may impair targeting of the stem-like 

subpopulation. To address this potential issue, cells were treated in adherent and/or anoikis 

culture, allowing assessment of the most effective way to targeting FAK function in MDA-MB-

231 CSCs. As seen in figure 5.5A, PF271 was sufficient to cause a significant loss of MFUs 

regardless of when treatment was administered. This effect was not significantly amplified in 

cells treated under anoikis conditions or following dual administration of PF271. Self-renewal 

was also significantly impaired in all conditions, where alterations in time of treatment had no 

significant impact on decreasing SRF (figure 5.5B). 

 

_____________________________________________________________________________________ 
Figure 5.5 – Evaluation of changes in MFU and self-renewal in response to PF271 administered before 
and/or after seeding into anoikis conditions – (A) Evaluation of the changes in passage 1 MFUs, as a 
percentage of total cells seeded, in response to PF271 treatment administered to adherent cultures prior 
to seeding into anoikis conditions (pre-treatment), whilst suspended in non-adherent culture (post-
treatment) or at both time-points (combination). FAK could significantly impair MFUs, whilst time of 
inhibitor administration caused no significant changes in response. (B) Exploration of self-renewal of MDA-
MB-231 mammospheres treated with PF271 at varying time-points. Inhibition of FAK catalytic function 
significantly attenuated SRF, not affected by conditions of treatment. All error bars represent SEM; n=3. 
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5.4. Analysis of CSC signalling changes in response to FAK inhibition 

Given that our data suggested a role for FAK in CSC self-renewal, we investigated potential 

mechanisms of action underpinning this process at a cell signalling level. Western blot analysis 

was performed on mammospheres ±PF271 in an enriched stem cell population. It has long been 

established that β-catenin plays an integral role is sustaining stem-cell self-renewal, whilst GSK3β 

can modulate this through phosphorylation of β-catenin which leads to its degradation (Yost et 

al. 1996). Previous studies have highlighted a role for FAK activity in stabilising β-catenin to 

regulate stem-like characteristics, although the mechanism behind this is unclear (Kleinschmidt 

and Schlaepfer 2017). Given our previous observation that FAK influences Akt signalling in MDA-

MB-231 cell migration, we hypothesised that Akt-mediated inhibition of GSK3β could be 

underlying FAK-dependent stabilisation of β-catenin to regulate MDA-MB-231 mammosphere 

self-renewal. In the mammosphere cultures we observed that FAKY397 and AktS473 activity was 

significantly reduced by PF271 treatment (figure 5.6Bi and ii), whilst total protein levels were 

unaltered (figure 5.6Ci and ii). In addition, decreased FAK kinase activity was accompanied by a 

loss of GSK3βS9 and an associated increase in ubiquitinoylation-targeted β-cateninS33/37/T41 (figure 

5.6Biii and iv). In tandem, levels of active β-catenin significantly decreased in mammospheres 

treated with PF271 (figure 5.6Bv). 
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Figure 5.6 – Evaluation of signalling pathways in mammospheres treated following FAK kinase inhibition (A) Western blot showing response of proteins to FAK-

inhibition in mammospheres grown under anoikis conditions. (B) Evaluation of relative activity of phosphorylated proteins (i) FAKY397; (ii) AktS473; (iii) GSK3βS9; (iv) β-

cateninS33/37/T41. Phosphorylated FAK, Akt and GSK3β displayed a significant decrease following PF271 treatment versus vehicle-only control, whilst β-cateninS33/37/T41 levels 

significantly increased. (C) Assessment in changes in total protein levels of (i) FAK; (ii) Akt and (iii) Active (non-phospho) β-catenin. No significant change was noted for 

total FAK or Akt following FAK inhibition, whilst active β-catenin decreased significantly. All densitometry results are normalised to the respective GAPDH loading control. 

Error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001.  
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5.5. Exploration of the FAK/Wnt relationship in CSC self-renewal 

Self-renewal in normal breast cancer stem cells has been shown to be directly influenced by the 

activity of Wnt signalling (Lee et al. 2014). Moreover, evidence exists for a FAK-Wnt signalling 

crosstalk in embryonic development, as well as in a cancer context (Roarty and Rosen 2010; 

Fonar et al. 2011). Indeed, FAK inhibits Wnt3a signalling and stimulates Wnt5-dependent β-

catenin stabilisation leading to deregulated growth in haematopoietic cells which is then thought 

to contribute to AML development (Despeaux et al. 2012). In line with this, our data also suggests 

a role for FAK in modulation of β-catenin activity which may affect its stability and potential 

contribution to MDA-MB-231 mammosphere self-renewal. Consequently, we wished to explore 

whether Wnt3a contributes to FAK-dependent stabilisation of β-catenin to sustain self-renewal 

in MDA-MB-231 stem-like cells. As such, we investigated whether stimulation of mammospheres 

with Wnt3a could rescue self-renewal in PF271 treated cells. In passage 1 and 2, treatment with 

the FAK inhibitor caused a significant decrease in the numbers of MFUs >50µM as previously 

observed (figure 5.7A and B). Moreover, the addition of Wnt3A caused no significant recovery 

of passage 1 mammosphere-forming capacity in PF271 treated cells regardless of dose 

administered. In contrast, the numbers of passage 2 MFU were significantly increased when 

stimulated with Wnt3A in a dose dependent manner (figure 5.7B), a result reflected by a 

significant recovery in SRF following Wnt3a treatment in FAK inhibited mammospheres (figure 

5.7C). 
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_____________________________________________________________________________________ 
Figure 5.7 – Analysis of the effects of Wnt3a on mammosphere forming potential and self-renewal in 
FAK inhibited cells – (A) Passage one counts of MFUs as a percentage of total cells seeded showed a 
significant decrease in mammosphere-forming capacity in PF271 cells versus vehicle only controls. 
Addition of Wnt3a at any of the described doses had no additional or opposing effects of MFUs. (B) 
Analysis of passage 2 MFU numbers showed a significant reduction in spheres formed following PF271 
treatment. Addition of Wnt3a could restore mammosphere-forming potential in FAK inhibited spheres in 
a dose-dependent manner. (C) Evaluation of SRF showed that PF271 attenuation of self-renewal could be 
rescued by Wnt3a stimulation in a dose dependent manner. All error bars represent SEM; n=3. *p<0.05; 
**p<0.01; ***p<0.001. 
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5.6. Discussion 

CSCs represent a significant obstacle to therapeutic intervention and disease progression. As 

such, the identification of novel therapeutic targets in this subpopulation of cells is essential to 

maximise treatment efficiency and minimise the risk of disease recurrence. To this end, we 

began by demonstrating that MDA-MB-231 cells exhibited a subpopulation of CSC-like cells 

defined by the CD44+/CD24low/- cell surface markers. Interestingly the number of cells positive 

for this event was extremely high suggesting that most cells in this TNBC model are CSC-like. 

Given the proposed role for CSCs in driving metastatic events, this could explain the aggressive 

nature of MDA-MB-231 cells. However, if TNBC tumours, such as those from which the MDA-

MB-231 cell model is derived, had this many CSCs, one would image such patients would be 

extremely unresponsive to traditional chemotherapies due to the inherent chemo-resistant 

nature of such cells. In practice, a large number of patients diagnosed with TNBC actually display 

very good responses to chemotherapeutic intervention thus undermining this idea (Bramati et 

al. 2014). Moreover, our subsequent exploration into CSCs revealed that when ALDH1 is used as 

a marker, the number of stem-like cells is significantly lower versus CD44+/CD24low/- cells, with a 

correlation between the numbers ALDH1+ cells and those exhibiting mammosphere-forming 

potential. These data bring into question the validity of using CD44+/CD24low/- based 

identification criteria as a reflection of CSC subpopulations.  

Others have shown similar results when exploring CSC markers in breast cancer cell lines. For 

example, Sheridan et al (2006) showed a very similar proportion of CD44+/CD24low/- cells in the 

MDA-MB-231 model (reported at 85%) to those presented here (Sheridan et al. 2006), whilst 

Charafe-Jauffret et al. (2009) similarly demonstrated that MDA-MB-231 cells have very low 

numbers of ALDH+ cells. These studies agree with our data thus validating the results presented 

here as genuine reflections of marker presentation and not due to experimental error. 

Moreover, it highlights a limitation of this study, namely how to define CSCs by surface marker 

presentation. In general, this is an issue seen throughout CSC research, largely due to variations 

in individual protein expression which may result in the identification of false CSCs. This is seen 

here as MDA-MB-231 cells have been shown to express very high levels of CD44 (Ricardo et al. 

2011), which has resulted in an extremely high number of “CSCs” being identified. Such cell-

specific variations in “CSC marker” expression has led to much debate around the universality of 

such profiles, leading to increased identification of new markers and thus repeated refinement 
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of the CSC population profiles. As such, the question remains open as to how many markers 

would be required to truly define CSC populations universally. On an individual basis however, 

the use of limited marker profiles can be utilised. In MDA-MB-231 cells for example, ALDH+ cells 

do reflect a stem-like population given the proportions of these cells closely mirror those 

observed in mammosphere assays (as presented here) and the increased metastatic potential of 

this subpopulation (Croker et al. 2009). 

We went on to investigate whether FAK was an important player for the presence for CSCs in 

the parental cell population. Our data suggested that FAK activity was not key to the number of 

CSCs detected. This appears to be contradictory to other studies that suggest that FAK is required 

for sustained proliferation of stem cells, both normally and in the cancer-context. In patient-

derived xenograft models of mesothelioma, treatment with the FAK inhibitor VS-4718 

eliminated CSCs that were enriched by cisplatin and pemetrexed chemotherapy treatment 

(Shapiro et al. 2014). The same holds true in breast cancer, where mammary-epithelial specific 

ablation of FAK in MMTV-PyMT mice considerably reduced progenitor and CSC subpopulations 

in primary tumours (M. Luo et al. 2009). Although differing to our observations, neither of these 

studies explored TNBC and, given the intrinsic differences between subtypes, may not reflect the 

behaviours of cells reflected by our model. Moreover, as both studies were conducted in vivo, 

decreases in the CSC-subpopulation may be an indirect result of FAK inhibition/removal. Given 

these models have the full influence of biology, i.e. they have a tumour microenvironment and 

immune system, these auxiliary cells may be influencing CSC numbers through increased 

targeting of this subpopulation following FAK suppression.  

We went on to observe that MDA-MB-231 cells have the capacity to form anoikis-resistant 

spheroids in the CSC-enriching mammospheres assays. This came as no surprise as it has been 

well established that these cells have stem-like subpopulations which lead to formation of 

mammospheres. When mammospheres were defined by volume (as proposed by Shaw et al. 

2012) we saw that FAK suppression or inhibition could significantly attenuate mammosphere-

formation. This is in concordance with others who have highlighted a role for FAK in 

mammosphere formation. For example, Williams and colleagues (2015) demonstrated that 

repression or inhibition of FAK kinase function perturbs capability of breast cancer cells in vitro 

to form mammospheres over 60µm in volume (Williams et al. 2015). However, we also noted 

that inhibiting FAK activity also impaired mammosphere volume, an observation that may be 
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reflective of a decreased ability for non-adherent proliferation. As such, defining 

mammospheres by a minimum acceptable size may not truly reflect the number of MFUs and 

their changes in response to target inhibition. Consequently, we repeated these experiments 

defining mammospheres primarily by morphology, although a low minimum size limit was used. 

Our results demonstrated that inhibition of FAK does not perturb the number of MFUs at passage 

one suggesting that FAK activity does not contribute to the establishment of anoikis-resistant 

spheroids that arise from CSCs but, in contrast to Williams et al. 2015, rather impairs their 

subsequent proliferation. 

In the study by Williams and colleagues (2015) they used the SUM225 cell line as their 

established model of breast cancer. This model is defined as epithelial-like whereas our MDA-

MB-231 cells are more mesenchymal in nature (Grigoriadis et al. 2012). This difference is 

important as it has been proposed that FAK contributes differently to CSCs based on their genetic 

signatures. Luo et al (2013) explored the relative contribution of FAK kinase function to 

stem/progenitor cell functions through use of a kinase-dead (KD) mutant knock-in (Luo et al. 

2013). These experiments revealed that luminal-like progenitor cells rely on FAK kinase function 

for proliferation, whereas mammary stem-cell like cells (MaSC) were supported by kinase-

independent activities. Consistent with this, using a breast cancer cell model which reflected 

luminal-progenitor or MaSCs, they showed that FAK kinase function is essential to proliferation 

and mammosphere forming potential of luminal-like cancer cells but not those reflective of 

MaSCs. Given that MDA-MB-231 fall into the latter category, this work infers that FAK kinase 

function would be dispensable for spheroid formation and proliferation in this model. Although 

reflective of our work in terms of mammosphere formation, this study seems to contradict our 

observation that FAK-kinase inhibition perturbs non-adherent proliferation of MDA-MB-231 

mammospheres.  

As FAK has a well-established role in mediating integrin-driven attachment signals (Desgrosellier 

and David 2015), it stands to reason that it would be involved in anoikis response. Indeed, 

inhibition of FAK results in apoptosis when cells are grown in anchorage independent conditions. 

For example, in acute lymphoblastic leukaemia, precursor B-cells lacking functional Ikaros, a 

transcription factor that negatively-regulates non-adherent proliferation, exhibit a restoration 

of anoikis following FAK inhibition (Joshi et al. 2015). The inverse is also true where stimulation 

of FAK activity can enable cells to survive conditions of anoikis. Indeed, stimulation of FAK by 
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upstream protein tyrosine kinase 6 (PTK6) enables anoikis survival in breast cancer cells (Zheng 

et al. 2013). Consequently, although more experiments are needed for confirmation, FAK may 

provide a means by which MDA-MB-231 cells can survive and propagate under non-adherent 

conditions. 

Having established that FAK contributes to initial mammosphere forming potential and anoikis 

proliferation of MDA-MB-231 cells, we next wished to explore the contribution of FAK to self-

renewal of CSCs. As such initial spheroids were passaged into subsequent assays to observe self-

renewal capacity alongside non-adherent cell survival and proliferation. Following this 

procedure, we observed a significant reduction in passage 2 MFUs derived from kinase inhibited 

or FAK suppressed cells versus passage 1 numbers, as well as significantly smaller 

mammospheres. This was regardless of whether mammospheres were defined by size or 

morphology. These data infer that self-renewal capabilities are significantly attenuated by a loss 

of normal FAK function. Our data aligns with several others who have also demonstrated a role 

for FAK in mediation of self-renewal. For example, ablation of FAK in mammary epithelial cells 

of MMTV-PyMT mice caused a significant reduction in self-renewal of the CSC subpopulation 

when grown in vitro (M. Luo et al. 2009). Moreover, progenitor/CSCs from these mice displayed 

significantly impaired tumourigenicity, coupled with impaired ability to sustain these 

subpopulations within tumours, further highlighting both impaired self-renewal and the 

potential for targeting FAK as a means of reducing breast cancer CSCs (M. Luo et al. 2009). 

Interestingly, the previously highlighted study by Luo et al (2013) suggested that inhibition of 

catalytic function had no effect on the mammosphere-forming capabilities of MDA-MB-231 cells 

(Luo et al. 2013). This observation also held true in MaSCs and was expanded to show that self-

renewal was also unimpaired by loss of FAK kinase activity. From this, one might assume that 

FAK kinase inhibition may not be sufficient to impair self-renewal in MDA-MB-231 cells given 

their similarity to MaSCs, a result in contrast to our data. However, the cancer model studies did 

not explore self-renewal, unlike the examination of progenitor and MaSC subpopulations. Thus, 

it may be that MaSC-like cancer cells actually do exhibit impaired self-renewal following kinase 

inhibition, unlike their non-tumourigenic counterparts, especially as cancer cells exhibit multiple 

differences versus comparative healthy cells. 

We wished next to examine the mechanisms of action that underpinned the stem-like 

characteristics of MDA-MB-231 cells. Specifically, we chose to focus on evaluating potential 



196 
 

mechanisms by which FAK controls self-renewal, given that FAK appeared to modulate CSC self-

renewal more-so than mammosphere forming ability. Consequently, we explored changes in 

downstream signalling events that have been previously linked to the self-renewal of normal and 

cancer stem-like cells. In chapter 4, we demonstrated that FAK contributed to cell migration 

through modulating AktS473 activity. Again here, we demonstrated that FAK inhibition decreases 

AKTS473 activity. Due to its position in the hierarchy of several signalling pathways, Akt activity in 

response to reduced FAKY397 activity could justifiably mediate downstream signals which lead to 

impaired MDA-MB-231 CSC self-renewal. Indeed, Akt has been shown to contribute to self-

renewal in several cell types. For example, neural stem-cells are unable to self-renew in Pi3K/Akt 

inhibited cells (Le Belle et al. 2011). Furthermore, in breast cancer cells, IGF-1R driven self-

renewal relies on activation of Pi3K/Akt/mTOR pathway, the inhibition of which can significantly 

attenuate stem-like subpopulations, consistent with decreased self-renewal (Chang et al. 2013). 

These studies support our results, reinforcing the hypothesis that FAK acts through Akt to 

modulate self-renewal of MDA-MB-231 CSCs. 

Although it may play some role, the activity of Akt in of itself cannot directly regulate self-

renewal, thus we sought to explore downstream signals which can. As seen in migrating cells, 

PF271 decrease of Akt was accompanied by a significant alleviation of inhibitory phosphorylated 

GSK3βS9. Moreover, this was associated with a decrease in active, non-phosphorylated β-catenin 

and a concomitant increase in inhibitory phosphorylation of β-cateninS33/37/T41. The effects of 

GSK3β on β-catenin activity are well documented, with active GSK3β causing destabilisation and 

degradation of β-catenin through phosphorylation of S33/37 and T41 (Yost et al. 1996). It has 

long been established that β-catenin is a central protein in the regulation of stem-like cell traits. 

For example, He et al (2004) demonstrated that intestinal stem-cell self-renewal is negatively 

influenced by downregulating Wnt/ β-catenin signalling (He et al. 2004). Additionally, this paper 

highlighted a link between Akt and activity of β-catenin further supporting the data presented 

here. Importantly, previous studies have highlighted an axis by which FAK can regulate β-catenin 

through Akt. For example, in periodontal ligament cells, mechanical load-induced β-catenin 

activation was significantly impaired following pharmacological inhibition of FAK, dependent on 

suppression of Akt (Premaraj et al. 2013). Furthermore, administration of anticancer agent 

excisanin A could significantly reduce invasion and MMP production in MDA-MB-231 or SkBr3 

cells, resulting from a downregulation of β-catenin due to decreased activity of FAK and Akt, as 

well as an increase in active GSK3β (Qin et al. 2013). Taken together with our data, we 
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hypothesise that FAK regulates MDA-MB-231 CSC self-renewal by stabilising β-catenin through 

Akt-dependent suppression of GSK3β. Moreover, these data highlight the therapeutic relevance 

of targeting FAK for attenuation of CSC self-renewal. 

Our data demonstrated that FAK can contribute to the stability of β-catenin in MDA-MB-231 

mammospheres, possibly contributing to self-renewal. To assess this potential mechanism 

further, we stimulated mammospheres with Wnt3a to explore its contribution to FAK-

dependent stabilisation of β-catenin. Indeed, Wnt3a treatment could rescue self-renewal in FAK-

inhibited mammospheres, indicating a possible contribution of Wnt-signalling downstream of 

FAK in MDA-MB-231 CSCs. This in agreement with several studies that demonstrate a significant 

contribution of Wnt signalling to stem-like traits of breast cells, including CSCs. For example, 

dynamic changes in Wnt/β-catenin signalling governs cell fate in mammary epithelial cells, 

particularly through mediation of stem and progenitor cells (van Amerongen et al. 2012). 

Moreover, Lamb and colleagues (2013) demonstrated increased activation of Wnt signalling in 

breast CSCs versus normal stem-like cells, whist impairing such signals led to a preferential 

decrease of patient-derived metastatic breast CSCs compared to normal cells (Lamb et al. 2013). 

Together these clearly showed the relevance of Wnt signalling in CSCs. Moreover, this paper 

demonstrated that tumours that are basal-like in nature (of which TNBCs are primarily) have 

increased levels of the Wnt receptors LRP5 and LRP6 inferring a greater potential for utilisation 

of these signalling pathways (Lamb et al. 2013). Taken together these studies support a role for 

Wnt signalling in MDA-MB-231 breast CSCs. Specifically in terms of self-renewal, PF271 inhibition 

of DCIS-derived or SUM225 (Her2+ model) mammosphere cultures caused a significant 

reduction in SRF which could be rescued through stimulation of Wnt3a (Williams et al. 2015). 

Further luciferase reporter studies demonstrated Wnt activity is specifically increased in PF271 

treated cells following Wnt3a stimulation. Although not in a model of TNBC, these results directly 

mirror our findings and lend credence to our hypothesis that Wnt3a contributes to FAK-driven 

self-renewal, through β-catenin stabilisation in MDA-MB-231 CSCs. In further support of our 

proposed mechanism of action, this paper also demonstrated that in vivo xenograft models of 

DCIS exhibited reduced active β-catenin in response to impaired FAK stimulation (Williams et al. 

2015). This was comparable to what we observed in PF271 treated mammospheres. 

However, one limitation to the studies undertaken here is that due to time-constraints we did 

not explore the influence Wnt3a stimulation of mammospheres had on FAK-linked signalling. 
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Our data suggested that Wnt3 acts downstream of FAK, as it can rescue self-renewal in inhibited 

cells, but Wnt may be restoring the phenotype through some other means. For example, 

stimulation with Wnt3a could be acting on FAK to restore activity and thus circumvent inhibition. 

Indeed, studies have shown that active Wnt signalling can influence FAK activity (Pandur et al. 

2002). This scenario is unlikely however, as if FAK activity was increased in the presence of 

Wnt3a, initial mammosphere-forming capacity would also be restored, given that this trait is also 

reduced by PF271 treatment. Interestingly, FAK has been shown to regulate Wnt3a production 

and subsequent activity of the Wnt pathway (Fonar et al. 2011). Consequently, FAK may play a 

dual role in stabilising β-catenin thorough influencing GSK3β-mediated degradation and directly 

influencing Wnt-dependent activation. 

5.6.1. Conclusions  

Within this chapter we have demonstrated that FAK plays an essential role in the mediation of 

stem cell-like traits in MDA-MB-231 cells, particularly self-renewal. This hinged on FAK’s ability 

to regulate Akt activity and subsequent modulation of GSK3β and β-catenin to sustain 

symmetrical cell division. Moreover, we showed that Wnt3a likely acts downstream of FAK, likely 

through influencing the activity of β-catenin, to contribute to MDA-MB-231 CSC self-renewal. 

This chapter also highlighted the relevance of FAK as a therapeutic target in TNBC cells, 

particularly in the function of a stem-like subpopulation, hypothesised to mediate aggressive 

behaviours and disease relapse. 
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6. Results (IV) 
 

Development and screening of novel FAK inhibitors 
for TNBC 
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6.1. Introduction 

Our data so far suggests that FAK plays a central role in the maintenance of the TNBC phenotype 

in terms of its ability to contribute to proliferation and metastatic-supporting characteristics 

(migration and invasion). Moreover, FAK appears to support a “stem-like” phenotype in these 

cells. Consequently, targeted inhibition of FAK may represent an effective therapeutic strategy 

for this breast cancer subtype. Indeed, several FAK inhibitors have been developed and have 

moved into various stages of clinical assessment. It is important to recognise however, the 

majority of FAK inhibitors available are ATP-competitive kinase inhibitors. A caveat to using small 

molecule FAK inhibitors of FAK kinase activity is that there is potential for non-specific inhibition 

of alternative kinases with associated toxicities (Hartmann et al. 2009) limiting their clinical 

application. Moreover, FAK is known to regulate numerous cellular functions, independent of 

kinase activity (Lim, Chen, et al. 2008; Luo et al. 2013); the use of kinase-inhibitors will show 

limited actions against these behaviours. A potential strategy in developing novel FAK inhibitors 

that target alternative parts of the molecule may prove useful in inhibiting the scaffolding 

function of FAK; such inhibitors may prove to be useful agents in the future in place of, or 

alongside, inhibitors of FAK kinase activity. This may be of particular significance in diseases such 

as TNBCs where targeted therapies are currently limited and target identification for new agents 

is yet to create effective clinical agents. Taking these points into consideration, a drug discovery 

project was initiated in order to design and screen novel inhibitors that target alternative regions 

of FAK as potential agents for TNBC treatment. 

6.1.1. Chloropyramine as a potential starting point for novel FAK-compound development 

FAK has several regions outside the traditional kinase sites that may be suitable for therapeutic 

targeting, including sites situated near functional residues of activity (e.g. Y577 and Y861). 

Evaluation of the structures present within FAK (through Research Collaboratory for Structural 

Bioinformatics (RCSB) Protein Data Bank), reveals a very promising structural pocket for drug 

targeting within the FAT-region, around tyrosine residue 925 (figure 6.1). Interestingly, a 

previous study has identified a compound (chloropyramine) that targets FAK protein-protein 

interactions in very close proximity to this region of interest (Gogate et al. 2014). 

Chloropyramine (structure shown in figure 6.1B) was synthesised in 1949 as a first-generation 

antihistamine (Vaughan et al. 1949) and is commonly prescribed as such in Eastern European 

countries under the brand name Suprastin. Additionally, close structural derivatives of 
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chloropyramine are approved for use in the USA for a range of health complaints including pre-

menstrual cramps (available over the counter as Midol®), rhinitis and asthma (Wilton et al. 

2016). In cancer biology, chloropyramine has been shown to disrupt the physical interaction 

between FAK and VEGFR-3 whilst reducing the phosphorylation of both molecules (Kurenova et 

al. 2009). This resulted in a significant suppression of tumour cell growth in vitro and in vivo 

across a range of cancer cell types, also being able to act synergistically with a traditional 

chemotherapeutic agent (doxorubicin) (Kurenova et al. 2009). In addition, in 2011 the US FDA 

approved a grant for further study into its use as a therapeutic in pancreatic cancer (Wilton et 

al. 2016). This compound therefore provides a good lead compound for further investigation 

into novel FAK inhibitors for triple-negative breast cancer, as it exhibits good anti-cancer 

properties whilst exhibiting a structure shown to be metabolically stable and has already 

received FDA approval as a therapeutic treatment. 

 

 
_____________________________________________________________________________________ 
Figure 6.1 – The FAT-region of FAK contains a promising region for drug targeting – (A) Surface 
representation of the FAT-region of FAK (grey) with druggable pocket highlighted orange containing a 
chloropyramine analogue (adapted from (Gogate et al. 2014)). (B) Linear structure of potential starting 
compound chloropyramine. 
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6.1.2. Outline of design processes used for development of novel FAK inhibitors in TNBC 

In order to design new therapeutic agents as efficiently as possible, it was decided that two 

separate approaches of rational drug design would be used. The first collection of inhibitors 

(herein know as batch 1) were derived using virtual-screening of numerous structures from a 

database of known compounds (SPECS library) that had a strong degree of fit within the 

aforementioned pocket in the FAK-FAT sequence. Briefly, analysis was conducted using a 

“computational funnel” which selects molecules from a virtual library based on increasingly 

stringent criteria to yield a manageable number of potential, top performing agents. This 

approach (summarised is figure 6.2A) began with a total of 210,103 potential compounds and 

was reduced through the highlighted process to a final group of 25 compounds. These 

compounds were subsequently purchased and tested in vitro. The second approach involved 

lead compound optimisation based on the structure of chloropyramine. Essentially, the central 

structure of chloropyramine was maintained and its functional groups (highlighted in figure 

6.2B) altered to improve its binding affinity for FAK and hopefully its ability to alter normal triple-

negative cell behaviours. These compounds were then synthesised in-house by Dr Sahar Kandil 

of the Medicinal Chemistry department. 
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_____________________________________________________________________________________ 
Figure 6.2 – Summary of the two approaches used to generate novel FAK inhibitors targeting protein-
protein interactions – (A) Initial screening of compounds targeting the FAT-domain pocket revealed 
210,103 potential compounds that could target this site. These compounds were then sequentially filtered 
through increasing stringent virtual screens to yield a manageable number of compounds to be 
synthesised and tested. HTVS, high-throughput virtual screening; SPVS, standard-precision virtual 
screening; XPVS, extra-precision virtual screening. (B) – The linear structure of chloropyramine showing 
the 3 functional regions (red boxes) that were altered in an attempt to optimise this compound as a FAK 
inhibitor in TNBC cells. 

6.1.3. Aims and Objectives 

This chapter aimed to explore the potential of these novel compounds in inhibition of FAK-

mediated cell behaviours in TNBC cells. It also began to examine mechanisms by which potential 

agents alter FAK-function thus supporting lead compound identification to support subsequent 

development. To do this, the following objectives were evaluated: 

 Assess novel compounds for their capacity to inhibit normal TNBC proliferation through 

a series of MTT assays. 

 

 Evaluate the efficacy of the new agents in suppressing the highly-migratory phenotype 

of MDA-MB-231 cells. 

 

 Explore how select compounds alter FAK expression/activity, as well as cellular 

localisation.  
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6.2. Screening of novel anti-FAK agents against MDA-MB-231 cell proliferation 

Having demonstrated that FAK can contribute to TNBC proliferation (chapter 3.7), we first 

wished to determine whether the newly synthesised compounds could adversely affect cell 

proliferation in MDA-MB-231 cells. To achieve this, MTT assays were performed following 72-

hour incubation with 3 doses of each compound, along with chloropyramine and PF271 as a 

comparative control. The first batch of compounds (designed through virtual screening) 

contained several compounds that could significantly reduce cell number at one or more 

concentrations when compared to the vehicle only controls (figure 6.3A). As expected, PF271 

significantly suppressed cellular proliferation in the triple negative cells, whilst the effects of 

chloropyramine were negligible. In contrast, no compounds in batch 2 were sufficient to reduce 

cell numbers even at the highest concentration (figure 6.3B). PF271 once again displayed 

significant changes in proliferation. 
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Figure 6.3 – Analysis of proliferation changes in response to novel inhibitor treatment – (A) Relative changes in cell proliferation following 72-hours incubation with 

batch 1 novel inhibitors at different concentrations, normalised to vehicle-only control. Red boxes highlight top 4 anti-proliferative compounds for subsequent analysis. 

(B) Proliferation changes caused by batch 2 compounds compared to vehicle-only control. All error bars represent SEM; n=3. Red dashed line marks level of proliferation 

by vehicle-only control. 
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Having identified the top 4 compounds capable of suppressing proliferation, further MTT assays 

were performed using a wider dose range over the same treatment time (figure 6.4). Very 

limited response was noted across the novel compounds, especially at lower dose-ranges. 

However, compound 9 displayed a significant ability to inhibit TNBC proliferation, which was 

comparative to the effects seen in PF271 treated cells. Chloropyramine again showed negligible 

effects. 

 

_____________________________________________________________________________________ 
Figure 6.4 – Dose response of the top 4 proliferation inhibiting compounds – MTT analysis on the top 4 
proliferation inhibiting compounds following 72-hour incubation with each compound normalised to 
vehicle-only control cells. All bars represent SEM; n=3. 

 
  



208 
 

6.3. Several batch 1 compounds can significantly inhibit wound healing capability in triple-

negative cells 

In addition to examining the novel compounds for anti-proliferative capabilities, their potential 

to inhibit migration was also assessed. This was to allow for the identification of compounds that 

could be utilised as inhibitors in one or both capacities, broadening the selection criteria for 

“successful” compounds. The batch 1 agents showed several compounds capable of significantly 

reducing migration linked to wound healing (figure 6.5A), including the base compound 

chloropyramine, previously shown to have limited effects on TNBC proliferation. PF271 once 

again significantly reduced migration as in earlier experiments. Interestingly, compound 9 

(previously identified as a very promising anti-proliferative agent) showed not only a significant 

ability to inhibit migration but suppression was comparable to that caused by PF271-mediated 

inhibition (no significant difference was observed between these compounds). In contrast to 

batch 1, the second batch of compounds exhibited no significant ability to reduce wound healing, 

while PF271 and chloropyramine caused significant reductions in migratory ability (figure 6.5B).  
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Figure 6.5 – Analysis of differences in wound healing in response to novel inhibitor treatment – (A) Relative changes in cell migration, represented as percentage of 

wound closure, following 24-hour incubation with batch 1 novel inhibitors, normalised to vehicle-only control. Red boxes highlight top 4 anti-migratory compounds., 

while blue arrows represent the previously identified top anti-proliferative agents. (B) Wound healing changes caused by batch 2 compounds compared to vehicle-only 

control. All error bars represent SEM; n=3. Red dashed line marks level of proliferation by vehicle-only control. *p<0.05; **p<0.01; ***p<0.001. 
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6.4. Compound 9 inhibits TNBC cell proliferation and migration 

So far, compound 9 has shown potential as an inhibitor for the suppression of multiple 

phenotypes within a TNBC cell model. To further explore the relevance of this compound as a 

new lead for a novel FAK inhibitor, more robust analyses were performed to support the 

previous findings and give a better comparison to PF271. As previously shown, proliferation was 

significantly suppressed versus vehicle-only control by compound 9 following 72-hours 

incubation (figure 6.6A). Prior to this time point, no significant change in proliferation was 

observed. Additionally, this perturbation in proliferation was sustained until 5 days post-

treatment, after which point cell death from over-confluency became a factor. When the efficacy 

of compound 9 as an anti-proliferative agent is compared to that of PF271, it was seen to be less 

effective as an inhibitory agent, especially in later stage sustained inhibition. Inhibition of FAK 

through PF271 was sufficient for long-term reductions in proliferative capacity. 

Compound 9 has also shown potential as an antimigratory agent for triple-negative breast cancer 

cells. Consequently, Boyden chamber assays were performed to allow for an in-depth 

assessment of the efficacy of compound 9 to alter cell migration in comparison to the existing 

inhibitor PF271. When compared to the vehicle only control, compound 9 and PF271 exhibited 

significant suppression of MDA-MB-231 cell migration (figure 6.6B and C). In contrast to the 

observations in section 6.3 (figure 6.5A), the more robust analysis undertaken here reveals that 

PF271 is significantly better at inhibiting migration than compound 9. 
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_____________________________________________________________________________________ 
Figure 6.6 – Compound 9 significantly augments TNBC cellular proliferation and migration – (A) Relative 
rate of MDA-MB-231 cell proliferation over 7-days in the presence of compound 9 or PF271 (1µM), 
normalised to cell numbers in the vehicle-only control. (B) Resulting images of Boyden chambers stained 
with crystal violet following 18-hours serum-stimulated migration in the presence of compound 9 and 
PF271 (1µM). Negative (-ve) control shows cell migration without serum stimulation. (C) Quantification of 
Boyden chamber assays, showing average number of cells present following 18-hour migration. Data 
shows average number of cells/membrane from duplicate wells across 3 separate replicates All error bars 
represent SEM; n=3. *p=0.05; **p=0.01; ***p<0.001. 
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6.5. Compound 9 does not alter the activity and expression of FAK and associated kinases 

Given that compound 9 is supposed to inhibit protein-protein interactions, we wanted to explore 

if this compound had any additional effects on FAK activity/expression. Moreover, as we had 

previously identified Akt as a key downstream target of FAK in our models of TNBC, thus it was 

decided that the expression/activity of Akt would also be assessed in response to compound 9 

treatment. Western blots were performed on cells treated with chloropyramine, PF271 and 

compound 9 for 1-hour. Compared to vehicle-only treated cells, all compounds caused no 

significant changes in total protein levels of FAK or Akt inferring that expression is unaltered 

(figure 6.7). Additionally, no change in activity of FAKY397 or AktS473 when exposed to 

chloropyramine or compound 9, whilst PF271 treatment was sufficient to cause a significant 

decrease in phosphorylation. As compound 9 targets the FAT-sequence of FAK, the activity of 

FAKY925 (located in this region) was also evaluated. Whilst PF271 significantly augmented activity 

at this site, compound 9 and chloropyramine had no effect. 
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Figure 6.7 –The effects of compound 9 on FAK and Akt expression and activity – (A) Western blots showing changes in FAKY397, FAKY925 and total FAK levels in response to 

1µM chloropyramine (CP), PF271 and compound 9 (C9). Actin was used as a loading control. (B) Analysis of FAKY397 activity calculated relative to vehicle-only control, 

showing significant reductions in PF271 treated cells. (C) FAKY861 activity normalised to vehicle-only control cells with only PF271 showing significant changes in 

phosphorylation. (D) Densitometry analysis of total FAK protein levels with no changes observed following treatment with any compound. (E) Western blots assessing 

changes in activity of AktS473 and total Akt levels. (F) Evaluation of changes in AktS473 relative to activity in vehicle-only control cells. PF271 was the only compound to 

cause a significant decrease in phosphorylation. (G) Densitometry analysis of total Akt levels with no treatment causing any significant effect. All error bars are 

representative of SEM; n=3. *p<0.05; **p<0.01; ***p<0.001.  
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6.6. Treatment with compound 9 causes changes in cellular morphology and cellular 

localisation of active FAK 

Previously, it has been demonstrated that normal function of the FAK FAT-domain is essential 

for correct targeting to FAs, inhibition of which results in perturbed activation by integrins and 

associated signalling proteins (Lee et al. 2015). Given that compound 9 targets this region it 

stands to reason that it may alter localisation of active FAK despite not influencing 

phosphorylation. As such, immunofluorescence was performed to examine subcellular 

localisation of FAK in response to treatment with 1µM of each compound. As noted previously, 

PF271 causes a perturbation in the “normal” polarisation of the cells: the cells treated with the 

inhibitor become more pointed and lose the typical leading edge characterised by lamellipodia 

extension during migration. This observation also holds true in compound 9 treated cells, 

although to a lesser degree (figure 6.8). These changes in actin were also accompanied by 

alterations in the distribution of active FAKY861. PF271 treatment resulted in an increase in 

discrete FAKY861 localisation to the cell periphery, particularly along cortical actin. Regions of FAK 

activity are also larger, as seen by increased intensity of the observed fluorescent FAKY861 signal.  

Compound 9 also caused an increase in FAKY861 at the cell periphery, although reduced when 

compared to the PF271 treated cells. Moreover, compound 9 caused an increase in diffuse 

cytoplasmic FAKY861 than either vehicle-only or PF271 cells.  
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Figure 6.8 – Examination of changes in active FAK and actin in response to PF271 and compound 9 – MDA-MB-231 cells were treated with either PF271 or compound 9. 

Inhibition of FAK by either agent caused an increase in intensity of active FAKY861 (green) on the cell periphery versus vehicle-only controls, whilst compound 9 treated 

cells had less active FAK than PF271 but a more diffuse cytoplasmic localisation. Extensions of actin (red) protrusions was reduced by both agents but to a greater extent 

in PF271-treated cells. Nuclei were stained with DAPI (blue). All images are representative; n=3. 
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To further explore the ability of compound 9 to perturb normal subcellular localisation of active 

FAK, a co-stain with vinculin was performed, enabling the relationship between FAK and focal 

adhesions to be explored (figure 6.9). Control cells exhibited relatively few focal adhesions, 

whilst considerably more were seen in PF271 and compound 9 inhibited cells (figure 6.10A). 

However, despite an increase in numbers of FAs, compound 9 did not cause any changes in the 

size of these structures (figure 6.10B). Both compound 9 and PF271 had an impact on FAKY861 

localisation. PF271 caused a substantial increase in FAKY861 activity on cell periphery, coupled 

with a significant increase in colocalization with focal adhesions suggesting impaired turnover at 

these sites. Compound 9 also caused an increase in peripheral FAKY861 localisation when 

compared to control cells. However, this was accompanied by an increase in the number of FAs 

in these cells and subsequent colocalization of FAKY861 and vinculin. Again, the amount of active 

FAK localised to the cytoplasm was higher than in vehicle-only and PF271 treated cells.  
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Figure 6.9 – Examination of changes in active FAK and FA-marker vinculin in response to PF271 or compound 9 treatment – Cells were treated with either PF271 or 

compound 9. As previously observed, both agents increased the levels of active FAKY861 (green) on the cell periphery versus vehicle-only controls. Compound 9  exhibited 

an increase in cytoplasmic localisation of active FAK compared to PF271. Number of FAs, as represented by vinculin (red) were increased following PF271 or compound 9 

treatment, though only PF271 caused an increase in FA size. Nuclei were stained with DAPI (blue).  All images are representative; n=3. 
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Figure 6.10 – Analysis of focal adhesion changes in response to PF271 and compound 9 – (A) Analysis of changes in the numbers of FA in response to PF271 or 

compound 9 showed a significant increase following treatment with either agent, whilst no significant difference was observed between PF271 and compound 9. (B) 

Evaluation of the size of FAs revealed that PF271 treatment significantly increases FA size versus both vehicle-only control and compound 9. No significant size change 

was noted between compound 9 and control cells. All error bars represent SEM; n=3. *p<0.05; **p<0.01; ***p<0.001. 
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The localisation of total FAK was also examined to see if changes in active FAK localisation 

coincided with overall changes in FAK distribution (figure 6.11). As previously described, total 

FAK displayed a very diffuse localisation throughout the whole cell. Very little changes were 

observed following either treatment, although some increase in perinuclear staining was 

observable in the compound 9 or PF271 cells. 
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Figure 6.11 – Examination of changes in total FAK and actin in response to PF271 and compound 9 – MDA-MB-231 cells were treated with either PF271 or compound 9. 

Total FAK (green) is unaffected when treated with either agent, with cells exhibiting a diffuse signal throughout the cytoplasm. Both inhibitors caused a loss of protruding 

actin (red), which was more pronounced in PF271 treated cells. Nuclei were stained with DAPI (blue). All images are representative; n=3. 
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6.7. Discussion 

In this chapter, we have explored a panel of novel FAK inhibitors, believed to target protein-

protein interactions rather than kinase activity, to assess their validity as lead compounds in 

TNBC cells for subsequent development. From this we have determined that one compound, 

compound 9, can effectively inhibit proliferation and migration of a TNBC cell model, although 

with less potency than the well-established PF271 inhibitor. Further studies on this compound 

have been undertaken by Cyprotex to explore metabolic stability in vitro across a range of breast 

cancer subtypes. The results showed that this compound is metabolically stable and further 

enhances the potential of compound 9 as a FAK-scaffold inhibitor. 

Scaffolding functions of FAK have been shown in numerous studies to be vital to normal cell 

function. Consequently, interference with such relationships could have a dramatic effect on 

“normal” cancer cell physiology. This has been shown on several occasions with a study by Fan 

et al (2013) providing a particularly fascinating  example where the role of the FAK-scaffold in 

Src phosphorylation of endophilin A2 was explored (Fan et al. 2013). FAK directly binds 

endophilin A2 through its Pro-rich domain, enabling Src-mediated phosphorylation to occur 

promoting the epithelial-mesenchymal transition (EMT) and mammary CSC self-renewal. In a 

mouse, mammary tumour model of human breast cancer containing a P878/881A knock-in 

mutation, the FAK-endophilin A2 complex was significantly disrupted and resulted in a 

subsequent decrease in phosphorylation of endophilin A2. This was accompanied by a significant 

lessening of mammary tumour growth and EMT. Additionally, perturbation of this interaction 

appears specific to tumour cells as normal mammary gland development was unaffected. This 

may suggest that targeting scaffold function may be specific to tumour cells. An earlier study by 

Xu et al (2000) also noted a similar result (L. H. Xu et al. 2000). They showed that FRNK (FAK-

related non-kinase) transduction in breast cancer cells was sufficient to degrade and 

dephosphorylate FAK and induce cell apoptosis. However, introduction of FRNK into normal 

mammary epithelia without altering adhesion or viability of the cells (although FAK 

dephosphorylation was noted). As an aside, FRNK represents a recombinant form of the FAK C-

terminal, which acts as a dominant negative form of FAK through displacement of FAK at FAs 

(Richardson et al. 1997). When overexpressed in cells, FRNK results in a significant decrease in 

FAK phosphorylation and resulting cell processes including cell cycle progression (J. H. Zhao et 

al. 1998) and migration (Gilmore and Romer 1996). Together, these studies further highlight the 
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benefits of targeting FAK-scaffold function as cellular requirements for such processes appear 

distinct between tumour and normal cells resulting in increased target specificity.  

Despite the potential targeting FAK-scaffold function possesses, current inhibitors against such 

interactions are limited. This may be due to concerns regarding the efficacy of such inhibitors to 

cause significant, beneficial changes in patients either alone, or in tandem with other agents. 

One such issue concerns the specific nature of targeting protein-protein interactions, with 

regards to whether the sites of interaction are a feasible size for antagonist targeting. In addition, 

concerns have also been raised about whether targeting these sites is sufficient to induce a cell-

wide effect owing to potential compensation by another cell complex. Despite these concerns 

however, several inhibitors are available that target protein-protein interactions. As outlined in 

section 6.1, chloropyramine is a FAK inhibitor that has been shown to have potent effects on the 

FAK-VEGFR3, resulting in strong perturbation of “normal” tumour cell traits (Kurenova et al. 

2009). Moreover, a group of inhibitors known as Roslins exist which also target protein-protein 

interactions of FAK. Previously, FAK has been shown to directly interact with p53 through binding 

in its N-terminal FERM domain (Golubovskaya et al. 2005). Indeed, inhibition of this complex 

removes FAK-mediated suppression of p53 activity, restoring downstream signals, such as p21, 

BAX and MDM2, as well as reinstating p53-mediated apoptosis (Golubovskaya et al. 2005; Lim, 

Chen, et al. 2008). Roslins (specifically R2) were designed to target this interaction in tumour 

cells (Golubovskaya, Ho, et al. 2013). Treatment with this compound not only decreased cancer 

cell viability and clonogenicity in vitro, but was also sufficient to cause significant reduction in 

tumour growth in vivo. It also caused an increase in p53 transcription and increased expression 

of genes containing  p53-responsive promoter elements (Golubovskaya, Ho, et al. 2013). Taken 

together, these compounds show that pharmacological inhibition of FAK scaffolding is possible 

and further highlights the potential of therapeutically targeting such interactions. Our data 

reinforces this idea and further validates FAK-complex formation as a viable target for 

therapeutic intervention in the context of TNBC. 

Indeed, we demonstrated that several novel scaffold-targeting agents were capable of 

suppressing migration and proliferation in MDA-MB-231 cells, whilst the initial compound, 

chloropyramine, was particularly poor as an anti-proliferative agent in this cell line. In contrast, 

previous studies have noted that chloropyramine is capable of suppressing proliferation in 

several cancer cell models (Sulzmaier et al. 2014). Although this seems contradictory to our 
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findings, work by Kurenova and colleagues (2009) does provide justification for this discrepancy. 

This study explored the efficacy of chloropyramine in reducing cell viability across a range of 

breast cancer cell models and noted that MDA-MB-231 cells had an IC50 value of around 20µM, 

far lower than that used here (Kurenova et al. 2009). A further study by Gogate et al (2014) also 

showed that this model requires a high concentration of chloropyramine for statistically 

significant results (Gogate et al. 2014). Taken together, these studies may suggest that our 

experimental methods were flawed, given we used a maximum concentration of 5µM for all 

compounds tested. This is not the case however, as our objective was to identify novel agents 

which showed comparable or improved effects versus PF271, which we showed to be effective 

at 1µM. Indeed, this approach allowed us to identify several compounds which had significant 

anti-proliferative effects in vitro.  

The most promising novel agent was compound 9, which showed significantly improved anti-

proliferative activity versus chloropyramine in MDA-MB-231 cells. In order to understand this 

increased efficacy, a number of docking simulations using Glide SP in Maestro (Glide, Version 

9.5, Schrödinger, LLC, New York, NY. http://www.schrodinger.com) were performed by Dr. Sahar 

Kandil (Department of Medicinal Chemistry, Cardiff School of Pharmacy and Pharmaceutical 

Sciences). These analyses revealed that compound 9 contained a number of structural features 

which allowed enhanced interactions with residues within the target pocket compared with 

those displayed by chloropyramine. However, although initial MTT assays revealed comparative 

decreases in cell numbers between compound 9 and the kinase-inhibitor PF271, latter cell 

counting experiments revealed that PF271 was better at impairing MDA-MB-231 cell 

proliferation, possibly implying that inhibiting kinase activity is a more effective way of targeting 

proliferation than impairing scaffold functions. This also seems to support our previous findings 

that FAK siRNA had limited benefits against proliferation when combined with PF271 (chapter 

4), further suggesting a limited contribution by FAK scaffolding versus kinase activity. However, 

the purpose of these experiments was to identify compounds that could be used as a basis for 

further development of novel inhibitors of FAK scaffolding functions. As such, this compound has 

not been optimised in the same manner as PF271 and may exhibit increased effectiveness on 

subsequent modification. Combined with its anti-migratory properties, we concluded that 

compound 9 is a promising lead candidate for future development as an anti-cancer agent in 

TNBC cells.  
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Despite having limited influence on proliferation, we did show that chloropyramine could 

effectively reduce cell migration comparable to that observed in PF271 treated cells. We believe 

this to be a novel finding, largely due to most previous studies focusing on cell viability rather 

than anti-migratory effects. However, there is evidence to suggest that chloropyramine, and 

similarly functioning scaffold inhibitors, could function effectively as anti-migratory agents. As 

noted previously, the proposed mechanism of action of chloropyramine in cancer cells is through 

disruption of the FAK-VEGFR3 interaction, leading to reduced activity of both proteins (Kurenova 

et al. 2009). Given the role of FAK in cell migration it is clear that reduction in its activity would 

reduce cell motility (Lee et al. 2015), whilst the VEGF-family receptors have also been shown to 

promote metastasis in vivo (Smith et al. 2010; He et al. 2005). Moreover, interaction between 

active VEGF-receptors and FAK contributes to disease spread, with selective FAK-KD being 

sufficient to reduce metastatic burden (Jean et al. 2014). Although the exact mechanism 

underlying FAK-VEGFR driven metastasis in unclear, these experiments imply it is likely due to 

increased vascular permeability and tumour cell extravasation rather than through promotion 

of cell motility, especially given that FAK-KD results in significantly reduced transmigration across 

endothelial cell barriers in vivo (Jean et al. 2014). However, further studies have hinted that the 

relationship between FAK and VEGFRs can directly impair migration. For example, Bhattacharya 

and colleagues (2016) showed that depletion of stimulating VEGF significantly attenuated both 

migration and invasion of colorectal cancer cells in vitro, whilst also reducing phosphorylation of 

FAK (Bhattacharya et al. 2016). Taken together these studies provide justification for 

chloropyramine disrupting FAK-VEGFR interactions leading to reduced migration. Given that the 

region on FAK with which chloropyramine interacts has binding partners beyond VEGFR3, it is 

also possible that the noted anti-migratory effects could be due to perturbed interaction with a 

yet unidentified downstream molecule. Nevertheless, we surmised that chloropyramine alone 

may prove to be a useful anti-migratory compound in TNBC cells, although further experiments 

are needed to confirm the mechanism of action and to explore whether this observation extends 

to other models of triple-negative disease. 

As previously highlighted, FAK activity is essential for the disassembly of focal adhesions and 

inhibition of this process results in perturbed migration owing to failure of cells to detach from 

ECM. Our data once again supports this as PF271, a potent FAK-kinase inhibitor, caused cells to 

have a greater number of focal adhesions and an increase in their respective size. Moreover, it 

was markedly more difficult to find cells positive for FAs in the vehicle-only control than those 
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treated with either inhibitor. However, compound 9 treatment caused an increase in FA numbers 

without effecting size. It also increased diffuse cytoplasmic activity of FAK. This suggests that this 

inhibitor is influencing cell behaviours through altering correct FAK localisation, effectively 

sequestering active FAK in the cytoplasm. This result is in concordance with several other who 

show that failure of FAK to localise to FA significantly alters FAK’s ability to modulate migration 

and growth. Indeed, early studies by Shen et al (1999) showed that interference of FAK targeting 

to FAs through mutation of the C-terminal FAT-domain was sufficient to significantly impair cell 

adhesion-dependent FAK activity and stimulation of downstream targets (Shen and Schaller 

1999). Subsequent studies utilising FRNK (FAK-related non-kinase) have further highlighted the 

essential nature of correct FAK localisation. Additionally, this localisation has been shown to play 

a key role in cancer cells with aberrant targeting linked to reduced invasion in lung 

adenocarcinoma cells (Hauck et al. 2001) and impaired angiogenesis in breast cancers (S. K. Mitra 

et al. 2006). As such, if compound 9 is inhibiting FAK localisation it is warranted this could be 

leading to the noted results on proliferation and migration. 

Compound 9 could possibly be exerting this effect through disruption of the interaction between 

the FAT-domain of FAK and the adaptor protein paxillin. Although not explored here, it has long 

been established that paxillin plays a central role in FA dynamics (Turner 2000), largely due to 

interactions with FAK (Shen and Schaller 1999; Bertolucci et al. 2005). Indeed, Scheswohl et al 

(2008) showed that paxillin contains two FAK-binding sites, both of which are essential for 

activation of FAK and subsequent downstream signalling (Scheswohl et al. 2008). This interaction 

is not only essential for FAK function but also localisation to FA. Mutations in FAK that prevent 

FAK-paxillin binding led to complete loss of FAK targeting to FA, along with subsequent 

reductions in adhesion, migration and invasion (Deramaudt et al. 2014). Importantly, the paxillin 

binding domain of FAK is within the FAT-domain, near the proposed binding region of compound 

9 (Deramaudt et al. 2014). Consequently, it could be reasoned that the use of this compound 

leads to impaired FA targeting through disruption of normal FAK-paxillin interactions, thus 

causing the observed effects on migration and proliferation. 

Interestingly, our results also showed an increase in the number of focal adhesions without 

altering size. This could suggest that compound 9 causes a disruption in the processes governing 

FA turnover and growth. During initiation, integrin receptors on the cell surface cluster in 

response to ECM ligand binding. These initial clusters are subsequently stabilized by talin-
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mediated linking of the actin cytoskeleton and integrin-ECM bonds (reviewed in Critchley and 

Gingras 2008). Resulting integrin-talin-actin complexes recruit paxillin, FAK and Src-family 

kinases, providing a basis for initial actin polymerisation (Roca-cusachs et al. 2012). Following a 

cascade of kinase activation and phosphorylation events of these early FA molecules, contraction 

of myosin II occurs leading to talin-stretching revealing binding sites for vinculin; the recruitment 

of which is sufficient to promote cellular protrusions associated with cell motility (Hirata et al. 

2014). FA then go through a growth phase, which includes ephemeral transitions between 

assembly and disassembly before a fraction evolve and become mature. The sequential 

recruitment and activation of proteins means that as FA assembly progresses, distinct molecular 

profiles are present. Vinculin levels reach their highest at the end of this nascent-phase, prior to 

FA growth and evolution (Zimerman et al. 2004). Subsequently, high levels of vinculin are noted 

in later nascent adhesions, following activation of FAK. As a result, our data appears to suggest 

that nascent FA formation is uninhibited by compound 9 treatment. However, treatment may 

be causing impaired turnover and growth through weakened interactions between FAK and 

another FA-associated protein.  

Integrin clustering is essential to the growth of FAs. As such interactions between FAK and a 

known influencer of clustering could be being altered by compound 9. Talin may represent one 

such protein as it has been linked to grouping of active integrins (Shattil et al. 2010). Additionally, 

studies have shown direct interactions between talin and FAK (Zhang et al. 2008; Frame et al. 

2010), with the site of interaction seen to reside within the c-terminal FAT sequence of FAK, 

particularly close to the predicted binding site of compound 9 (Chen et al. 1995; Lawson et al. 

2012). Indeed, mutations within residues associated with talin-FAK binding prevents subsequent 

talin recruitment resulting in a reduction in talin-mediated reinforcement of FAs (Lawson et al. 

2012). It is important to note that alternative mechanisms for localisation of talin to FAs exist 

(Franco et al. 2006; Wang et al. 2010) and its subsequent interaction with FAK is not essential 

for FAK targeting to FAs (Lawson et al. 2012). Consistent with this, our results still show active 

FAK localisation to nascent FAs, although in greater numbers. However, Lawson et al (2012) 

noted that cells in which talin-FAK binding was prevented, cells showed  both increased numbers 

and size of FAs (Lawson et al. 2012), a result not dissimilar from PF271-mediated inhibition of 

FAK. This suggests that FAK-talin interactions are essential for FA turnover, an observation in 

contrast to our findings as we saw increased numbers without an increase in size. This does not 

mean however that compound 9 does not inhibit FAK-talin interaction. The outlined study by 
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Lawson et al (2012) completely removed the ability of FAK and talin to interact whereas our 

compound may impair the binding enough to slow rather than completely stop FAK-talin-

mediated FA disassembly. Furthermore, this level of inhibition could prevent focal adhesion 

growth in treated cells through inhibiting FAK mediated recruitment of talin and subsequent 

clustering of active FAs. The association between FAK and paxillin may also be contributing to 

the observed results. Previously, Wu et al (2016) proposed a mechanism of sequential kinase 

activation at FAs and suggested the time between initial assembly and subsequent activation of 

FAK could be a major determinant in the fate of nascent FAs (Y. Wu et al. 2016). They noted that 

mature FAs demonstrated nearly concurrent FA assembly and FAK kinase activity, whilst FAs with 

a much greater time between these two events tended to be disassembled (Y. Wu et al. 2016). 

Consequently, it could be suggested that slowing FAK recruitment to early assembling FAs could 

result in an increased likelihood of turnover. As such, if the interaction between FAK and paxillin 

(essential for FAK localisation) was inhibited, the recruitment of FAK to FAs could be slowed 

sufficiently to induce disassembly. Taken together, compound 9 may be impairing turnover 

through reduced interaction and recruitment of talin, creating more focal adhesions, whilst 

sufficiently slowing FAK targeting to FAs so that once active, they’re targeted for disassembly. 

This mechanism is currently very hypothetical as our work on compound 9 is in the very early 

stages of study and several association experiments are needed to explore changes, if any, in 

interactions between FAK and other FA-linked proteins. 

6.7.1. Conclusions 

Taken together our results show the potential of compound 9 as a novel inhibitor of TNBC cell 

proliferation and migration through altering FA-targeting and protein-protein interactions. Given 

the evidence that FAK-scaffold inhibitors have many therapeutic benefits over their traditional 

kinase-targeting equivalents, the subsequent development of compound 9 to a refined 

pharmacological inhibitor could provide a means by which sustainable FAK inhibition may be 

achieved through alternating between readily available kinase inhibitors and the much rarer 

scaffold inhibitors. Our results also reinforce the concept of scaffold inhibitors as viable options 

for subsequent research and development, overcoming some of the stigma associated with such 

agents. 
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7.1. TNBC 

Of all patients diagnosed with breast cancer, around 10-15% display triple-negative disease (Dai 

et al. 2015). Despite good initial responses to chemotherapy, a significant number of these 

patients rapidly relapse following therapy and develop metastatic disease (Bramati et al. 2014). 

The need for better treatments that specifically target TNBC tumours is clear and offers the 

opportunity to prevent or at least delay TNBC progression. 

7.2. Relevance of FAK as a therapeutic target in cancer 

In recent years, FAK has been identified as a potential target for therapeutic intervention in a 

host of cancers (Lee et al. 2015). This is largely due to a combination of its overexpression being 

correlated with disease progression and its ability to modulate several aggressive characteristics 

of malignant cancer cells (Schaller 2010). FAK has also been shown to contribute to initial events 

of tumourigenesis, as well as cancer cell metabolism (Zhang and Hochwald 2014). In breast 

cancer, increased FAK activity is observed in metastatic lesions and correlates with the 

progression of both ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) (Lark 

et al. 2005; Lightfoot et al. 2004). FAK may therefore play a significant role in TNBC, given their 

aggressive behaviour. Although we did not observe that TNBC cancer cells have the greatest 

levels of FAK protein or activity versus other breast cancer subtypes, FAK was clearly a key factor 

regulating the proliferative and migratory capacity of TNBC cells along with contributing to 

maintenance of a cancer stem cell-like phenotype. The inference is that FAK may therefore 

represent a promising candidate for therapeutic intervention in TNBC, where targeted therapies 

are currently lacking (Bramati et al. 2014). 

There are a number of potential benefits to therapeutically targeting FAK, not only in TNBCs but 

in a range of cancers. Arguably the most significant of these is that FAK acts a signalling hub for 

numerous upstream pathway elements, as well as influencing several phenotypic traits 

(Sulzmaier et al. 2014). Consequently, therapeutic targeting of FAK will alter a range of cell 

behaviours rather than altering growth or migration alone. Indeed, we demonstrated in this 

work that PF271 inhibition of FAK could significantly attenuate proliferation, as well as cell 

motility. Additionally, other groups have reported similar multi-potencies of FAK inhibition. For 

example, in ovarian cancer cells pharmacological suppression of FAK activity resulted in impaired 

growth and tumour volume, along with reduced migration and endothelial tube formation, 
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indicative of angiogenesis (Stone et al. 2014). More importantly, targeting signal-junction 

proteins can overcome the functional redundancy of input signals by simultaneously inhibiting 

several pathways regulating a single cell behaviour. This reduces the risk of developing resistance 

by limiting the effects of compensatory mechanisms employed by cancer cells to circumvent 

inhibition.  

Despite being a major signalling hub, FAK is not completely immune to functional redundancy 

and a major challenge for FAK therapeutics is to establish the extent of Pyk2 compensation in 

specific tumour types. We showed in chapter 4 that Pyk2 does not seem to compensate for FAK 

inhibition in MDA-MB-231 migration, rather its suppression is as effective as FAK in modulating 

cell motility. Meanwhile, other studies have demonstrated a very pronounced role of Pyk2 in 

compensating loss-of-FAK activity (Fan and Guan 2011), with others showing a more prominent 

role for Pyk2 in certain cancer subtypes (Lipinski and Loftus 2010). This discrepancy suggests a 

tumour/subtype specific role of Pyk2 alone or in relation to FAK. As such, further research is 

needed to identify specific tumour types in which FAK activity is strongly compensated by Pyk2 

to identify patients that will be FAK-sensitive with limited functional redundancy from Pyk2. In 

patients where compensation is an issue, the use of dual-specificity inhibitors, such as PF271, 

could be utilised effectively and thus the importance of such compounds cannot be overlooked 

when designing new FAK inhibitors. Investigation into FAK-Pyk2 relationships will inevitably lead 

to the identification of tumours which may benefit from Pyk2 therapeutics without the need for 

targeting FAK. Despite these limitations, FAK remains a promising target for therapeutic 

targeting, especially given its diverse range of signalling effects and its potential to mediate 

various cancer cell behaviours. 

Additionally, the broad signal regulation of FAK could have the added downfall of increased 

toxicity by impairing a range of signalling pathways in other, non-cancerous cells. However, 

targeting of FAK has several factors which suggest this is not the case. Indeed, systemic 

administration of PF271 or conditional knockout of FAK in vivo has limited effects on healthy 

tissues and overall physiology of the mice (Stokes et al. 2011a; Fan and Guan 2011). Given that 

FAK activity is most prominent during embryogenesis, evidenced by embryonic lethality of FAK-

null mice (Cai et al. 2008), it could be suggested that FAK actually plays a very limited role in 

adult tissues and thus off-target effects arising through FAK inhibition might be minimal. Indeed, 

FAK conditional knock-out in adult mice tissues had very limited effects on normal physiology 
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(Sulzmaier et al. 2014). Moreover, FAK inhibitors in phase-I clinical trials are typically associated 

with good side-effect profiles. For example, Phase-I trials of PF271 (used in this thesis) showed 

very limited adverse effects, with the most common complaint being nausea (42% grade 1; 18% 

grade 2), although low-grade GI issues (vomiting and diarrhoea), headaches and fatigue were 

also reported (Infante et al. 2012). No grade 4 or 5 treatment-related toxicities were reported 

and the only grade 3 events reported were fatigue (3 of 33 patients) and headaches (3 of 33 

patients) occurring at the recommended Phase-II dose. Cancer cells may also have increased 

susceptibility to FAK inhibition versus normal cells as FAK is commonly upregulated in malignant 

cells contrasted with their healthy counterparts (Lee et al. 2015). Although our data showed that 

FAK expression/activity is not significantly augmented in MDA-MB-231 cells versus other breast 

cancer subtypes, studies have shown its upregulation in TNBC cells versus normal mammary 

tissue. Consequently, this suggests that anti-FAK drugs could have a strong therapeutic index 

and be utilised for various cancer types, not limited to TNBCs. 

7.2.1. Targeting FAK as a strategy to reduce tumour metastasis 

In recent years, advances in surgery, radio- and chemotherapy have led to significant 

improvements in disease management, even leading to complete curing (Miller et al. 2016). 

However, the mortality rate for patients with metastatic disease remains high, with metastasis 

representing the primary cause of cancer patient death (Wells et al. 2013). As such, limiting 

cancer spread represents a major goal for therapeutic intervention. Some effort has been made 

to target the mechanisms underlying metastatic disease, particularly through targeting of MMPs. 

However, these inhibitors have so far been limited in their clinical efficacy, likely due to poor 

drug delivery strategies and the vast array of MMPs that participate in metastasis limiting single-

target efficacy (Zucker and Cao 2009).  

7.2.1.1. FAK as an anti-migratory target 

One of the central cellular processes underlying metastasis is that of tumour cell migration (Wells 

et al. 2013). As such, agents which can suppress this behaviour may have benefit in preventing 

or suppressing cancer spread. To target this type of cellular behaviour, several approaches have 

been taken with respect to selecting an appropriate target, each with its own benefits and 

disadvantages. These include: design of agents versus migration-linked proteins that are 

overexpressed or hyperactivated in specific cancers (e.g. MMPs); targeting motility signals that 
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are common across several cancer types (e.g. tenascin-C); or impedance of signalling node 

proteins common to several processes regulating migration (such as those linking contractility 

to adhesion to polarity). 

However, there are several limitations that apply to targeting metastasis. First, by their very 

nature anti-migratory therapies may not be effective monotherapies for reducing tumour 

burden, unless they contain a cytotoxic component. As such they must be utilised in combination 

with surgery and/or regiments that kill tumour cells. In addition, long-term inhibition of cell 

behaviours can be difficult to achieve, as one may need to sustain almost complete suppression 

to achieve the desired therapeutic effect. Indeed, partial inhibition may prove 

counterproductive, with some cancer cells displaying adverse consequences for incomplete 

reduction in activity. For example, breast and prostate cancer cells have been shown to have 

increased invasiveness upon incomplete myosin light chain kinase (MLCK) inhibition, whereas 

full impairment causes significantly reduced motility and dissemination (Kharait et al. 2007). 

MLCK is a cellular kinase which phosphorylates the regulatory light chain of myosin-II, to induce 

actomyosin contraction and the mechanical forces required for directional cell migration (Chen 

et al. 2014). Another significant limitation to anti-metastatic compounds is that at time of 

diagnosis, tumour cells may have already spread (Cristofanilli et al. 2004), even if disseminated 

cells exist is a state of quiescence and are yet to form secondary lesions (Taylor et al. 2013). 

Although, in such cases it seems that targeting metastasis may be futile, anti-metastatic 

compounds still have some merit in preventing further disease spread, given that secondary 

tumours (or dormant metastatic cells) can also disseminate to distal tissues (Wells et al. 2013). 

In this thesis, we have demonstrated a potential role for FAK in driving MDA-MB-231 migration 

and thus highlighted its therapeutic potential as an anti-metastatic target in TNBC. One of the 

biggest advantages for targeting FAK is that it meets all three of the outlined means of targeting 

cell migration described above, most importantly functioning as a migratory signalling node. As 

shown in chapter 4, FAK contributes to several migration-associated traits of MDA-MB-231 cells. 

This is in agreement with many others that imply FAK regulates cell motility through mediating 

several distinct processes that enable migration, as well as effecting expression of genes which 

contribute to metastatic cell behaviours. For example, Taliaferro-Smith et al. (2015) 

demonstrated that specific inhibition of FAK caused a significant downregulation of EMT-

markers, whilst directly impairing migration and invasion. Consequently, anti-FAK agents may 
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have the potential to overcome functional redundancy through increasing the amount of 

signalling changes for compensation. In addition, FAK plays a key role in linking mechanical and 

molecular signalling (e.g. from actin contractility to adherence signalling) to coordinate cell 

motility. Given that proteins which can coordinate such signals are less common than those that 

regulate molecular signals alone, mean the loss of FAK is even more difficult to overcome. 

However, one may postulate that targeting signalling hubs that control migratory responses may 

be fraught with the same problems as targeting signalling nodes common to many cell 

behaviours, primarily off-target toxicity. Contradictorily, affecting migration in this way does not 

have the same problems, largely because induced tumour cell migration is not comparative to 

routine haptotaxis of healthy cells, although it is somewhat reflective of motility observed in 

migration-driven wound healing (Wells 1999). FAK as a target can also circumvent this issue due 

to its patterns of expression/activity in normal versus malignant tissue which ultimately 

improves its therapeutic index. Taken with our data, these factors all support the use of FAK as 

an anti-motility treatment in TNBC and other cancers. 

7.2.1.2. FAK as an anti-CSC target 

Despite improvements in cancer therapies over the past few decades, many malignant cells 

remain resistant to chemo- and radiotherapies resulting in reduced efficacy to anti-cancer 

agents. This lack of sensitivity also means that such regimens can be toxic to healthy cells whilst 

leaving CSCs intact (Chen et al. 2013). Given their inherent resistance to traditional therapeutics, 

CSCs have been implicated as a major cause of disease recurrence (Carrasco et al. 2014). 

Additionally, these cells have been demonstrated as key drivers of metastasis (Chen et al. 2013) 

it is essential that anti-cancer treatments can effectively eliminate CSCs to maximise patient 

outcomes. As such, much effort has been put into unearthing the traits of CSCs and several 

therapeutic strategies have been employed, with varying degrees of success. Broadly, the 

approaches utilised so far fall into four categories: targeting cell surface markers; targeting signal 

cascades; targeting efflux transporters; targeting the CSC microenvironment niche.  

As noted previously, CSCs differentially express cell surface markers compared with “normal” 

stem cells, as well as non-stem-like cells (de Beca et al. 2012). Therefore, marker-targeting 

provides a means by which to reduce side effects, whilst simultaneously enhancing effectiveness 

of a compound versus CSCs. As is common practice, the attachment of such targeting ligands or 

antibodies to therapeutic agents has been utilised to enhance efficacy of various treatments. For 
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example, conjugation of an anti-CD44 antibody (CSC marker) with a gold nano-rod resulted in a 

successful targeting of MCF-7 CSCs (Alkilany et al. 2012). Subsequent irradiation with near 

infrared light resulted in a localised increase in temperature and specific photo-ablation of CD44+ 

cancer cells. Despite the reported efficacy of this approach, a major issue still surrounds utilising 

cell surface markers for anti-CSC strategies. Primarily, the lack of a universal definition of CSC 

markers, as well as the possibility that such markers may evolve and change during disease 

progression. 

In addition to unique cell surface markers, CSCs also display several alterations in signalling 

cascades of which, due to modern molecular biology techniques, several have been identified 

while more are still being uncovered. Strategies that target such pathways are particularly 

interesting as they can suppress specific stem-like traits of these cells with a number of groups 

reporting promising results when such an approach is taken. Particularly, focus has centred 

around altering the balance between pro- and anti-apoptotic signals as a means of killing CSCs. 

In 2011, Piggott and colleagues demonstrated that suppression of c-FLIP, long known to be an 

inhibitor of the death inducing signalling complex (DISC) and thus extrinsic apoptosis, could 

selectively sensitise breast CSCs to the cytotoxic agent TRAIL in vitro and in vivo (Piggott et al. 

2011). Subsequent studies further illustrated that cytoplasmic localisation of c-FLIP underpinned 

TRAIL-resistance, while nuclear activity was associated with increased Wnt-signalling and 

increase stemness (French et al. 2015). These studies not only highlight that CSCs exhibit altered 

signal pathways versus the bulk tumour cells, but also that these pathways can be effectively 

targeted to specifically eliminate the stem population. They may also suggest that such proteins 

can act as biomarkers to inform of disease progression and likely response to therapy. 

The inherent chemoresistance of CSCs has previously been suggested to be as a direct result of 

drug efflux, mediated by ATP-driven cellular pumps (Broxterman et al. 2009). Indeed, studies 

have shown that ATP-binding cassette (ABC) transporters, which can actively remove small 

molecules from cells, appear to be highly expressed in CSCs thus implying their participation in 

multi-drug resistance (MDR) (Chen et al. 2013). Consequently, the activity of these pumps has 

gained significant attention recently and numerous methods have been developed by which the 

effects of such pumps can be minimalized, with several pharmacological agents against ABC 

transporters currently available (Ritchie et al. 2011). For example, in clinical trials, MS-209 can 

overcome drug resistance in breast cancer, amongst other solid tumours, through inhibiting 
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activity of both the P-gp and MRP1 ABC transporters (Saeki et al. 2007). Additionally, 

downregulation of ABC transporters has also been explored as a therapeutic strategy. Indeed, a 

study by Sims-Mourtada and colleagues demonstrated that inhibition of Hedgehog signalling 

through cyclopamine significantly reduced expression of MDR1 and ABCG2 resulting in improved 

response to treatment (Sims-Mourtada et al. 2007). This latter study is of particular significance 

to CSCs, given the importance of Hedgehog signalling to these cells (Takebe et al. 2015). 

However, research thus far has been focussed on improving chemotherapeutic response in 

general, with very few studying such approaches specifically on CSCs. Nevertheless, we believe 

that ABC transporters as therapeutic targets have great potential in CSCs, with a view to 

improving therapeutic sensitivity and overall patient outcome. 

It is known that although CSCs are inherently chemoresistant, the microenvironment 

surrounding tumours can create an ideal niche in which CSC can be nursed and protected from 

drug-induced killing (Korkaya et al. 2011). For example, evidence has been presented showing 

that accessory stromal cells in bone marrow and secondary organs promote malignant B-cell 

growth and drug resistance through stromal-induced activation of anti-apoptotic signals (Burger 

and Peled 2009). By antagonising the target receptors of these signals, leukaemic cells can be 

sensitised to cytotoxic agents. In addition to microenvironment cells, vascularisation of tumours 

has also been linked to CSC survival. Indeed, inhibition of the well-known pro-angiogenic factor 

VEGF perturbs vascularisation leading to a significant decrease in glioblastoma CSCs in vivo 

(Burkhardt et al. 2012; Calabrese et al. 2007). However, the exact mechanism by which reduced 

angiogenesis results in a disruption of the CSC niche is not well understood and could possibly 

be due to impaired function of non-malignant cells within the tumour microenvironment.  

In this project, we explored the role of FAK in maintenance of a CSC population in TNBC cells, 

along with examining whether FAK could contribute to stem-like cell behaviours, particularly 

self-renewal. In chapter 5 we demonstrated that although FAK does not appear essential to 

maintain a stem-like subpopulation, it plays a central role in anoikis survival and propagation, as 

well as self-renewal of TNBC CSCs. This means that FAK inhibition could be utilised to inhibit 

specific CSC traits and may even represent a potential marker of this subpopulation. Although 

more experiments would be required to explore this hypothesis, the fact that high FAK 

expression is correlated with disease progression (Lee et al. 2015) could infer increased stemness 

of such tumours. Moreover, given that FAK activity is associated with metastasis and reduced 



236 
 

relapse-free survival (de Heer et al. 2008) also seems to reinforce this hypothesis as these 

characteristics of disease are closely tied to CSCs. Despite the importance of FAK to stem-like 

behaviours and correlations with CSC-associated disease states, some evidence appears to 

suggest that active FAK may not be indicative of stemness. In 2005, Baumann and colleagues 

showed that FAK and Src activity could be stabilised by the cell surface marker CD24 in breast 

cancer, even suggesting that CD24+ cells drove disease progression (Baumann et al. 2005). Given 

that lack of CD24 presentation is a well cited marker of CSCs, this may suggest that FAK activity 

would be lessened in the stem-like subpopulation. However, FAK is clearly important to CSC 

functions, as evidenced by our work amongst others, so suggesting its role in stem-like cells is 

independent of CD24 stabilisation and therefore could still represent a marker of CSCs. 

Even if FAK does not represent a hallmark protein in CSCs, therapeutically targeting it still has 

merit in targeting these cells. Although we are not unique in noting this, our demonstration of 

FAK as an essential mediator of MDA-MB-231 self-renewal is noteworthy as very few studies 

highlight FAK as key to this behaviour. Targeting FAK to impede CSC functions also has the added 

benefit of not only directly targeting the stem-like subpopulation but also microenvironment 

cells comprising the CSC niche. Although not studies here, numerous studies have linked FAK to 

the biology of tumour-associated stromal cells and angiogenesis. For example, FAK activity is 

known to directly contribute to the immune response effector cells, tumour-associated 

macrophages (TAMs) (Sulzmaier et al. 2014). Infiltration of such cells into tumours has been 

shown to drive of cancer-related inflammation and disease progression, with inhibition of FAK 

directly disrupting infiltration leading to decreased pancreatic and breast tumour volumes in vivo 

(Stokes et al. 2011b; Wendt and Schiemann 2009). Beyond immune cells, FAK has also been 

shown to regulate cancer-associated fibroblasts (CAFs). Indeed, fibroblast activation by lysyl 

oxidase-like 2 (LOXL2) has been shown to be FAK-dependent in a model of breast carcinoma 

(Barker et al. 2013). Comparative to TAMs, inhibition of FAK decreases CAF activity and tumour-

association resulting in reduced tumour size (Stokes et al. 2011b). FAK has also been shown to 

contribute to angiogenesis through interaction with VEGF in breast cancer (S. K. Mitra et al. 

2006). Suppression of this interaction decreases vascular permeability and leads to a 

perturbation of the tumour microenvironment. Taken together these studies not only show that 

FAK can directly influence stromal cell behaviours which may nurse and protect CSCs, but that 

its targeting can provide an effective means by which to inhibit stroma-driven cancer 

progression. However, very few studies have directly explored how FAK-driven behaviours of the 
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microenvironment contribute to CSCs. Nevertheless, the combined effects of tumour cell and 

stromal FAK inhibition could provide an effective means by which to sensitise CSCs to cytotoxic 

agents, while impeding stem-like cell traits that could lead to metastasis. 

Given the evidence presented in this thesis, FAK could be used as a target for the development 

of novel anti-metastatic compounds. If such agents are developed, arguably the biggest obstacle 

they will face is in the designing of clinical trials because they are not inherently designed for the 

testing of anti-metastatic drugs but tend to focus on changes in tumour size as the measurable 

outcome. Consequently, this raises the question of how one would measure the success of 

therapeutic agents targeting migration. This could be overcome through use of overall-survival 

or progression-free survival as endpoints in early stage trials, although this may be inefficient 

due to difficulties in sufficient patient recruitment. Alternatively, one could limit research on 

these compounds to particularly invasive or rapidly progressing cancer types, such as 

glioblastoma. Given their aggressive nature this could allow more short-term observations of 

clinical efficacy though the associated increase in proliferation could pose issues, as well as issues 

with metastasis at time of diagnosis. FAK inhibitors may be able to avoid this issue, given that 

we, amongst others, have demonstrated that FAK also influences tumour growth and survival 

(Golubovskaya 2014). Could scientists and regulatory agencies work to overcome these 

obstacles, we postulate that subsequent trial recruitment could be improved owing to the low 

toxicity of such compounds and that they could be given in tandem with therapeutic regimens 

already approved for cancer treatments. The necessity for this advancement is underscored by 

the fact that several trials are currently underway, focussed on motility-targeting agents 

(clincaltrials.gov). For example, phase-I trials are currently ongoing investigating the safety 

profiles and subsequent determination of the recommended phase-II dose of Foxy-5, a 

formylated 6 amino acid peptide fragment which impairs epithelial cancer cell migration through 

mimicking Wnt5a (clinical trial: NCT01589900) (Sebio et al. 2014). Although such studies are 

interventional, the specific effects on migration are limited, with progression-free survival the 

only indicator of reduced migratory potential. In order for such trials to progress, issues such as 

those previously described must be addressed so less potential compounds are disregarded due 

to poor or limited trial design. 
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7.2.2. Clinical challenges of FAK inhibition 

FAK appears to be a promising target not only for TNBC but for a wide-range of solid 

malignancies. However, like all novel anti-cancer targets, FAK has a number of clinical challenges 

moving forward to maximise its therapeutic efficacy. One of the biggest issues surrounds 

identification of tumour types, and even individual patients, that will exhibit sensitivity to FAK 

inhibitors. Interestingly, our data (chapter 4) revealed that hyperactivation of Akt can rescue 

migration in FAK inhibited MDA-MB-231 cells. Such modulation of target efficacy by levels of a 

compensatory protein is not unique to FAK but is often seen in novel therapeutics and potential 

targets. For example, Buzzai and colleagues showed that the presence of function p53 in colon 

cancer cells could mitigate the inhibitory effects of metformin (Buzzai et al. 2007). However, 

such challenges have resulted in progression towards “personalised medicine” where patients 

are treated based on molecular profiles of tumours rather than the broader classifications 

currently used (Jackson and Chester 2015). Although being used to limited degree, this process 

is in its infancy and, due to its precise nature, will require significantly more investigation to 

extrapolate its use to a large-scale. In order to progress FAK as a therapeutic target under the 

umbrella of personalised medicine will most likely require the identification of biomarkers 

predictive of response which may include FAK expression/activity itself or surrogate. Indeed, a 

recent study by Davis et al (2017) strongly indicated FAK expression as a marker of disease 

progression in colorectal cancer patients and, given variations in FAK levels between early and 

advanced disease, suggested a therapeutic window for effective FAK (Davis et al. 2017). A further 

example of such work is that conducted by Shah and colleagues in 2014, who explored the 

relevance of the protein merlin as a biomarker for therapeutic response to FAK inhibition in 

ovarian cancer cells (Shah et al. 2014). This group noted that low expression of merlin resulted 

in increased sensitivity to pharmacological FAK inhibition, a finding also noted in mesothelioma 

(Shapiro et al. 2014). Taken together, this could suggest merlin as a promising marker for 

stratification of patients likely to be highly responsive to FAK inhibition. Further identification 

and correlation of such markers with treatment response and prognosis should enable more 

accurate design of clinical trials, as well as recognition of cancer patients who would benefit from 

anti-FAK agents. 
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7.3. Therapeutic strategies for anti-cancer targeting of FAK 

7.3.1. Current FAK-targeting therapeutics 

As shown so far, FAK activity forms an integral part of a multitude of cell signalling pathways, 

many of which are aberrant in cancer cells. Coupled with the highlighted correlations between 

FAK expression and cancer cell progression, it stands to reason that FAK has recently been 

emerging as a highly lucrative therapeutic agent in several cancer types. Table 7.1 below 

contains a brief summary of current FAK targeting compounds and their relative progression in 

clinical and preclinical development. 

 

Name Alternative 
Names 

Target Type Trial Details References 

PF-573,228 PF-228 FAK Kinase-I • Preclinical efficacy in 
a range of cancer 
cells, particularly in 
lung, breast and 
prostate 

 

(Howe et al. 
2016) 
(Slack-Davis et 
al. 2007) 

TAE226 NVP-226 FAK 
Pyk2 
IGF1-R 

Kinase-I • Preclinical efficacy 
shown in lung, 
oesophageal, breast 
and glioma cells 

(Otani et al. 
2015) 
(Wang et al. 
2008) 
(Vita M. 
Golubovskaya 
et al. 2008) 
(Shi et al. 2007) 
 

NVP-TAC544 
 

FAK Kinase-I • Preclinical studies 
only 

(Weis et al. 
2008) 
 

GSK2256098 
 

FAK Kinase-I • Phase I clinical trials 
in advanced solid 
tumours, melanoma 
and mesothelioma 

• Preclinical efficacy 
also shown in 
glioblastoma and 
pancreatic ductal 
adenocarcinoma 

(Soria et al. 
2016) 
(J. Zhang et al. 
2014) 
(S. Chen et al. 
2012) 

VS-4718 PND-1186 FAK 
Pyk2 

Kinase-I • Ongoing Phase I 
trials in patients 
exhibiting non-

(Churchman et 
al. 2016) 
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haematological 
malignancies 

• Preclinical effects 
noted in several 
cancer types 
including pancreatic, 
breast, lung, 
leukaemia and 
ovarian 

(Jiang et al. 
2016) 
(Tancioni et al. 
2014) 
(Tanjoni et al. 
2010) 
(Walsh et al. 
2010) 

VS-6062 PF-562,271 
PF-271 

FAK 
Pyk2 

Kinase-I • Completed Phase I 
clinical trials in 
prostatic, pancreatic 
and head and neck 
neoplasms 

• Preclinical responses 
noted in lung, breast, 
ovarian, skin, 
pancreatic and colon 
cancers 

(Howe et al. 
2016) 
(Tancioni et al. 
2015) 
(Stone et al. 
2014) 
(Infante et al. 
2012) 
(Serrels et al. 
2012) 
(Stokes et al. 
2011a) 
(Roberts et al. 
2008) 

VS-6063 PF-04554878  
PF-878 
Defactinib 

FAK 
Pyk2 

Kinase-I • Ongoing Phase I/Ib 
for patients with 
advanced ovarian 
cancer 

• Completed Phase II 
trials in lung cancer 
(non-small cell 
carcinoma and 
mesothiloma) 

• Completed Phase I 
clinical trials in non-
haematological 
malignancies  

• Preclinical efficacy 
shown in breast, 
ovarian and thyroid 
cancers. 

(Xu et al. 2017) 
(Shimizu et al. 
2016) 
(Gerber et al. 
2015) 
(Kindler et al. 
2015) 
(Kang et al. 
2013) 

Y15 Compound 14 N/A Other • Preclinical studies 
undertaken in 
breast, thyroid, 
colon, pancreatic, 
melanoma, 
glioblastoma and 
lung cancer 

(O’Brien et al. 
2014) 
(Golubovskaya, 
Huang, et al. 
2013) 
(Heffler et al. 
2013) 
(Vita M 
Golubovskaya 
et al. 2008) 
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C4 Chloropyramine 
hydrochloride 

N/A Scaffolding • Preclinical studies in 
breast  

(Burgess et al. 
2016) 
(Kurenova et 
al. 2009) 

R2 Roslins N/A Scaffolding • Preclinical studies 
limited to colon 
cancer 

(Golubovskaya, 
Ho, et al. 2013) 

Y11 
 

FAK Scaffolding • Limited preclinical 
studies in breast and 
colon cancer 

(Golubovskaya 
et al. 2012) 

_____________________________________________________________________________ 
Table 7.1 – Examples and details of current FAK targeted inhibitors in cancer – Several FAK targeting 
compounds are currently in various stages of development as novel cancer therapeutics. Most are ATP-
competitive kinase inhibitors (Kinase-I), although some are being used targeting scaffolding function 
(scaffolding) or through alternative mechanisms (Y15 is an allosteric FAK inhibitor shown to have some 
effects on altering normal scaffolding behaviours). 

 

Primarily, these agents target the kinase activity of FAK, particularly through preventing FAKY397 

autophosphorylation. Given its position in the hierarchy of FAK activation and its importance for 

enabling full activation (Lee et al. 2015) its justifiable that this site has been the primary focus 

for therapeutic targeting. Indeed, as demonstrated throughout this thesis, the use of PF271 can 

significantly reduce FAKY397 activity and subsequently impair MDA-MB-231 cell proliferation, 

migration/invasion and stem-like phenotypes. Moreover, the amount of clinically successful 

FAK-inhibitors that utilise this approach (table 7.1) reinforces the relevance of targeting FAK 

catalytic function. However, limiting exploration to perturbing the enzymatic activity of FAK may 

prove problematic, as this narrow-view of novel compound design appears to have two major 

flaws: development of resistance and incomplete FAK inhibition. As such, although already being 

undertaken to a limited degree, alternative means of targeting FAK-function for therapeutic 

intervention need to be explored. 

7.3.2. Strategies for targeting FAK 

7.3.2.1 Targeting scaffolding function and kinase activity 

As noted previously, FAK exhibits several kinase-independent functions in which various regions 

of the FAK protein act as a molecular scaffold for secondary messenger activation (Sulzmaier et 

al. 2014). Consequently, limiting the design of anti-FAK agents to kinase functions alone may be 

missing some of these regions and thus restricting the efficacy of potential inhibitors. However, 
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some effort has been made to target FAK-scaffolding function (as shown in table 7.1), although 

this is to a limited degree. Moreover, as outlined in chapter 6, we sought to design and 

synthesise a series of novel FAK inhibitors that would target FAK scaffold functions in a model of 

TNBC. Although studies into the mechanism of action of these inhibitors were limited due to 

time available, our screening approaches did identify one compound (compound 9) which 

showed potential to inhibit proliferation and migration of MDA-MB-231 cells, independent of 

inhibiting kinase function. 

Given that we designed our compounds to target the pocket surrounding FAKY925, we 

hypothesised that our compounds may also influence activity of this site. Although this was not 

noted for compound 9, it is interesting to speculate as to what effects inhibiting activity at 

alternate residues could have on FAK function. FAK contains a number of amino acids which can 

be phosphorylated and subsequently interact with specific secondary messengers to influence 

behaviour (Lee et al. 2015). For example, phosphorylation of FAKY295 is essential to enable FAK 

interaction with Grb2 to mediate proliferation and angiogenesis through MAPK stimulation 

(Schlaepfer et al. 1994). One could therefore hypothesise that specific impairment of FAKY925 

activation may have a profound effect on certain cell behaviours and thus may provide an 

effective strategy by which to target specific signalling pathways and cell traits through FAK 

inhibition. However, the number of proteins which interact with FAK, it seems likely that 

inhibiting one phosphorylation site’s activity could be ineffective due to compensation by other 

residues. One caveat to this would be if the pathway was the dominant, FAK-dependent driver 

of a specific behaviour such as migration. As FAK is utilised to various degrees in different 

tumours and subtypes of cancer, such an approach would require extensive research across 

various cancers to determine specific residue functions and their effectiveness as therapeutic 

targets. This may be why the primary focus of FAK-therapeutics has been to target FAKY397, given 

its importance to FAK activation and function (Lee et al. 2015). 

Although it could be assumed that FAKY397 is a more promising site than other phosphorylation 

sites, FAK also contains 2 phosphorylation sites that may be as essential to FAK function as 

FAKY397, thus making them of particular interest for therapeutic targeting. The FAKY576/577 residues 

are located within the activation loop of FAK’s kinase domain and importantly, phosphorylation 

of both is required for full catalytic activity of FAK (Calalb et al. 1995). This is postulated to result 

from stabilisation of the subdomain loop in an active conformation allowing protein substrate 
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binding and subsequent stimulation. Consequently, one would hypothesise that preventing the 

activation of these residues could have serious implications on the formation of FAK-dependent 

signalling pathways, especially those dependent on catalytic function. Indeed, mutation of these 

amino acids to phenylalanine, thus removing the capacity for phosphorylation, causes a 

significant preclusion of kinase activity (70% of wild-type if either is impaired, increased to 50% 

if double mutants) (Calalb et al. 1995). Although studies exploring the effects of impairing 

FAKY576/577 phosphorylation are extremely limited, these residues have been shown as important 

to cancer progression. For example, tumours have been shown to exhibit increased levels of 

FAKY576/577 activity versus normal tissues, whilst paired analysis revealed a further significant 

increase in bone metastatic legions (Conti et al. 2014). This study highlights the potential 

contribution of FAKY576/577 to tumour cell metastasis. However, these data are largely correlative 

and may not truly represent functionality, although they do provide a basis for further 

investigation into the functional role FAKY576/577. Interestingly, FAKY576/577 also contributes to the 

structural regulation of FAK. Indeed, phosphorylation of these residues is sufficient to impair 

FERM-domain docking and resultant FAK inhibition (Lee et al. 2015). As such, therapeutic 

targeting of FAKY576/577 may exhibit the added benefit of sustaining inactive FAK, providing such 

a compound did not physically prevent FERM-kinase interaction. Taken together, this 

demonstrates the significant potential of FAKY576/577 as a target for inhibition and justifies further 

exploration into its functions and therapeutic potential. 

7.3.3 Alternative targeting strategies for targeting FAK 

7.3.3.1. Impairing the FAK FERM-domain 

Although many of its binding partners are known, lack of information demonstrating the relative 

significance of these partners as mediators of FAK-dependent cell behaviours means targeting 

kinase functions of any active residue may not be the best approach to target FAK (Siesser and 

Hanks 2006). However, the intrinsic regulation of FAK could well prove promising as an 

alternative therapeutic strategy. As previously noted, the FERM-domain of FAK is one of the most 

important regulators of FAK activity FERM normally holds FAK in an inactive conformation where 

Y397 phosphorylation is inhibited. Upon integrin/growth factor receptor binding, a change in the 

structural conformation of FERM occurs, alleviating intrinsic inhibition of Y397 leading to full FAK 

activity (Lietha et al. 2007). Given the wealth of structural information on the autoinhibitory 

FERM-kinase interaction (Frame et al. 2010), it may be possible to design allosteric inhibitors 
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which stabilise this interface, thus precluding FAKY397 autophosphorylation. In addition to 

increased suppression of FAK activity, such agents could also prove more effective than the 

widely-used ATP-competitive inhibitors given the specific nature of the area being targeted. To 

a limited degree, one such compound was developed by Golubovskaya and colleagues. Their 

agent, compound 14, was targeted to the FAKY397 site, but also hit surrounding regions within the 

FERM-domain that interact with this residue thus sustaining autoinhibition (Vita M 

Golubovskaya et al. 2008).  

Prevention of protein-protein interactions between the FERM-domain of FAK and the various 

activating signals may also provide a novel means of targeting FAK activity. If the link between 

the two proteins could be impaired, that would prevent FERM displacement and thus maintain 

FAK in its inactive conformation. Given the role of the FERM domain in directing FAK signalling 

from specific activator proteins, one could argue that this approach may enable more precise 

targeting of FAK-dependent signalling pathways and thus the development of more specific 

inhibitors. One of the biggest obstacles that faces this approach is the identification of the FERM 

binding partners as, despite some being well characterised, the identification of such kinase-

displacing signals remains incomplete (Sulzmaier et al. 2014). Coupled with the notorious 

difficulties associated with targeting protein-protein interactions, targeting FAK in this way may 

seem ambitious at best. However, aptamer-based screening technologies may be capable of 

revealing specific and effective FERM-activator complexes (Frame et al. 2010). For example, the 

use of biosensors, real-time imaging and aptamer-based molecular screening could illuminate 

the FAK FERM-domain interactome, as well as the location and timing of such FAK stimulation. 

Despite being in its infancy, studies (such as those presented here) indicate that targeting FAK 

through FERM-domain perturbation is feasible and has potential as a novel therapeutic strategy. 

7.3.3.2. Targeting the FAT-region and subcellular localisation 

In addition to the FERM-domain, the C-terminus FAT-region has also been demonstrated to 

contribute to the structural regulation of FAK activity and thus may also represent a potential 

target for drug design. This region contains a four-helix bundle, H1/H4 and H2/H3 on opposite 

sides of FAK, which form the primary binding site for the LD-motif of paxillin (Bertolucci et al. 

2005). Of particular interest, within H1 is located the Y925 residue which, when phosphorylated, 

binds to Grb2 (Schlaepfer et al. 1994). Interestingly, the structural conformation of this region 

seems to hide this amino acid making it unavailable for phosphorylation and subsequent Grb2 
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interaction (Hayashi et al. 2002b). As a result, it was postulated that the FAT-domain must 

undergo some form of conformational change to allow activation of this site. Indeed, several 

studies have demonstrated that activation of FAK increases tension in the hinge region between 

H1 and H2, enabling the establishment of an open conformation that exposes FAKY925 (Arold et 

al. 2002). However, it was only recently that the biological relevance of this transition was 

uncovered. Kadaré et al. 2015 compared the biological characteristics of cells containing wild-

type FAK with FAK mutants which had improved or hindered H1 opening (Kadaré et al. 2015). 

They showed that “closed FAT” mutant cells (i.e. cells which contained FAK protein with impaired 

FAT-opening) exhibited significantly impeded FAK function associated with decreased FAKY925 

phosphorylation, paxillin binding and focal adhesion turnover. In converse was noted with “open 

FAT” mutants, with the additional observation of enhanced phosphorylation of Y861. Despite 

not exploring changes in cell behaviours of FAK mutants, this study hints at the potential benefits 

for impairing FAT-domain opening. As a side-note, we had postulated maybe compound 9 

(chapter 6) could be altering conformational dynamics but the lack changes in Y925 

phosphorylation seemed to disprove this hypothesis. Nevertheless, if a closed conformation 

could be sustained pharmacologically it could prove effective as a means of targeting FAK. Most 

likely, such an inhibitor would either need to prevent tension in the hinge region (possibly 

through allosteric inhibition) or enhance interaction between H1 and H2 helices to prevent 

opening. Additionally, it is unknown whether specific FAT-region binding partners modulate H1 

opening in cells, although if some were characterised this would open a new avenue for 

pharmacological inhibition. 

In addition to altering FAK functionality, the above study also showed that changes in FAT-region 

conformation also impacted localisation of FAK to FAs (Kadaré et al. 2015). This observation was 

also reflected in our work, where compound 9 appeared to impair subcellular distribution of 

active FAK (chapter 6). As a result, these studies imply a potential therapeutic benefit of 

perturbed localisation of FAK. Previously, we discussed the relevance of the FAT-domain to this 

process but other forms of FAK targeting exist that may be feasible foci for development of novel 

anti-FAK agents. For example, FAK contains at least one nuclear localisation sequence (NLS) and 

two nuclear export sequences (NES), suggesting that FAK can be readily undergo nucleo-

cytoplasmic shuttling (Golubovskaya 2014). Several studies have shown that FAK plays an active 

role in the nucleus of a number of cancers. Indeed, nuclear FAK can directly enhance cell survival 

through enhancing p53 degradation (Lim, Chen, et al. 2008). In addition, the traditional view of 
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FAK in gene expression involves the stimulation of downstream signalling cascades, however 

nuclear FAK, in coordination with an ever-expanding library of binding partners, can directly 

modulate gene expression (Lim et al. 2012; S.-W. Luo et al. 2009; Arold et al. 2002). Interestingly, 

such interactions are mostly driven by the FERM-domain (Lim 2013), although the FAT-region 

has also been implicated in some cell types. For example, in response to mechanical stress in 

cardiomyocytes, FAK’s FAT-region directly complexes with the transcription factor MEF2 to 

increase gene transcription (Cardoso et al. 2016). In terms of cancer biology, increased nuclear 

localisation of FAK has been implicated in disease progression of several cancers, such as 

squamous cell carcinoma where nuclear FAK activity is significantly higher than non-cancerous 

keratinocytes (Serrels et al. 2015). Interestingly, localisation of FAK to the nucleolus also 

contributes to breast cancer biology through protection of the CSC marker nucleostemin from 

degradation (Tancioni et al. 2015). 

Given the importance of both membrane and nuclear localisation of FAK, if we could disrupt the 

processes governing both we may be able to inhibit FAK function. This could be achieved in a 

number of ways. First, given the involvement of the FERM and FAT domains in FAK targeting, 

disrupting the activity at these sites (as described previously) may impact both nuclear and 

membrane FAK function, effectively preventing interaction with activating stimuli at either site. 

This approach has the added benefit that if localisation is unaffected, protein-protein 

interactions linked to FAK function at either the cell membrane or nucleus could be impaired, 

mimicking the effects of perturbed localisation. Alternatively, directly targeting the NES or NLS 

sequences may provide a means by which to perturb active FAK distribution. Pharmacologically, 

this could entail masking these regions to prevent their interactions with shuttle proteins. 

Despite the potential of such an approach, very limited studies have actually explored 

localisation as a means of preventing FAK activity. We explored it to a certain degree in chapter 

6, although compound 9 was not specifically designed to alter FAK localisation. Significantly more 

work is needed, particularly on the role of FAK in the nucleus, if targeting subcellular distribution 

is to be considered as a therapeutic approach for anti-cancer FAK inhibitors. 

7.3.4. FAK inhibitors in combination treatment strategies 

So far, we have discussed the use of FAK as a target for monotherapy which is important given 

the role of FAK as a key component of a wide-ranging signalling network: this approach could hit 

several pathways and cell behaviours simultaneously. However, a further use of FAK inhibitors 
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might be in the context of combination treatment to circumvent the acquisition of resistance 

frequently observed when certain targeted agents, such as RTK-inhibitors or endocrine 

therapies, are used (De Marchi et al. 2016; Corcoran and O’Driscoll 2015). This hypothesis is 

supported in breast and colon cancer cells, where combination of a dominant-negative FAK 

mutant with AG-1478 or PP2 (EGFR and Src inhibitor respectively) was sufficient to increase 

apoptosis and cell detachment in breast and colon cancer cells (Golubovskaya et al. 2003; 

Golubovskaya et al. 2002). This observation also holds true upon dual-pharmacological 

inhibition. In fact, dual targeting of FAK and Src shows increased effectiveness versus single agent 

treatment alone (Bolós et al. 2010). This is not only limited to ATP-competitive inhibitors of FAK, 

as the allosteric inhibitor Y15 in combination with PP2 significantly decreased the viability of 

colon cancer cells (Heffler et al. 2013). Such benefits are also noted when FAK is inhibited along 

with upstream receptors. For example, the antiangiogenic sunitinib (SU11248) blocks, amongst 

other angiogenesis-linked receptors, VEGF and in combination with PF271 effectively reduced 

hepatocellular carcinoma growth in vivo, likely through increased suppression of blood vessel 

formation (Bagi et al. 2009). Indeed, work from within our lab has highlighted the benefits of 

combining FAK inhibition with endocrine therapies in HER2+ breast cancer. Although endocrine-

resistant cells exhibited little change in proliferation when treated with FAK inhibitor PF228 or 

tamoxifen alone, combination treatment restored tamoxifen sensitivity in previously resistant 

cells (Hiscox et al. 2011). Further work also demonstrated that a FAK inhibitor alondside 

trastuzumab was significantly better at impairing proliferation and migration versus either agent 

alone (Lazaro et al. 2014) These studies highlight the potential of combining FAK inhibitors with 

those that target other molecular signals. 

Alternative signalling inhibition is not the only means by which to target tumours. Agents that 

can improve responsiveness of cancer cells to standard chemotherapeutics are also desirable, 

especially in tumours lacking targeted therapies such as TNBC. Increased sensitivity of these cells 

can also serve to alleviate some of the unpleasant side-effects associated with traditional 

chemotherapy due to a reduction in doses required for effective tumour cell killing. FAK 

inhibitors have also been utilised in this context. For example, combination of docetaxel and the 

FAK inhibitor TAE-226 significantly prolonged the survival of ovarian tumour-bearing mice, 

postulated to result from decreased tumour growth and increased apoptosis of associated 

endothelial cells (Halder et al. 2007). In vitro this inhibitor has also been shown to significantly 

improve radiosensitivity of head and neck cancer cells (Hehlgans et al. 2009). Again, this 
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observation extends to FAK-scaffold inhibitors. Combination of chloropyramine with doxorubicin 

effectively inhibited in vivo breast tumour growth and angiogenesis, whilst the FAK inhibitor also 

sensitized tumours to doxorubicin in subcutaneous xenograft models of breast cancer (Kurenova 

et al. 2009). The lucrative potential of this approach is underscored by the fact that Phase I 

clinical trials are currently being undertaken by Verastem exploring the potential of VS6063 

(PF878) in combination with paclitaxel in advanced ovarian cancer (Xu et al. 2017). 

Consequently, it may be worth considering the use of FAK as a combination treatment, with 

either chemotherapy or alternative signalling inhibitors, as opposed to a monotherapy. 

7.4. General study limitations and considerations 

In this study we present data that suggests that FAK is a key player in the aggressive phenotype 

of TNBC cells and that targeting FAK may represent a beneficial therapeutic strategy. It is worth 

noting that further elements could be considerations for future research in this area: 

 To date, all work undertaken has been conducted in 2D in vitro studies. Although highly 

beneficial to understanding cancer biology, these models are not the best representation of 

overall tumour biology as they lack protein which comprise the tumour micro-environment, 

such as stromal cells or the ECM. The presence of such elements may alter drug interactions 

overall behaviours of cancer cells. Indeed, it has been demonstrated that tumour cells grown 

in 3D cultures do show increased reductions in migration and growth following FAK 

inhibition versus cells treated in 2D-adherent culture (Tanjoni et al. 2010). Although this 

study was not conducted on a model of TNBC cells, it serves to highlight that observations 

in 2D culture must be substantiated in 3D/in vivo models to best reflect true biology. 

 

 The primary focus of this study was the role of FAK in the TNBC model MDA-MB-231. 

Although a second cell line was used, MDA-MB-468, this model did not validate observations 

of FAK function in MDA-MB-231 cells. Our data suggested that this resulted from hyperactive 

Akt in MDA-MB-468 cells. The use of another or multiple models of TNBC need to be used 

to better reflect how FAK influences the behaviours of this breast cancer subtype as a whole 

and not only in a specific cell model. 

 
 In addition to exploring FAK kinase function we also began to explore the role of scaffolding 

in MDA-MB-231 cells. To achieve this, we used FAK siRNA to suppress total protein levels 



249 
 

and compared changes in cell behaviour to targeted kinase inhibition to gain some insight 

into kinase-independent functions. However, this approach meant we lost both kinase 

dependent and independent functions. Although this may have hinted at a role of scaffolding 

to TNBC cell biology, the relative contributions could not be specifically addressed. In the 

absence of specific and truly effective scaffold inhibitors, future experiments should adopt a 

mutational approach where key regions of secondary messenger binding are no longer able 

to interact with other proteins. 

 
 Expanding the work undertaken here into in vivo models would be highly beneficial to 

confirm the relevance of our findings to complete tumour biology. This is particularly 

important in terms of CSC behaviours because, although we have used a robust in vitro 

model of stem-like traits, the gold standard is to test tumour initiating capacities through 

tail-vein injection and monitor subsequent tumour establishment. Such mouse studies 

would also enable the expansion of this work to understand FAK’s role in cell behaviours 

unique to in vivo systems, including hypoxia and angiogenesis. Although in its infancy, future 

experiments on compound 9 will require the use of mouse models in order to establish a 

range of factors, for example in vivo efficacy, toxicity and pharmacokinetics profiles. 

7.5 Final Conclusions 

The data in this thesis provides additional evidence for the role of FAK in aggressive triple-

negative breast cancers where it acts to control migration and proliferation. Moreover, our data 

also highlights a little-reported role of FAK as a mediator of cancer stem-like cell behaviour, 

particularly their ability to self-renew through FAK-mediated modulation of β-catenin. These 

data suggest that FAK may represent an important therapeutic target in breast cancer, 

particularly in the context of TNBC. To this end we have also undertaken preliminary drug 

discovery work to develop a FAK inhibitor that impairs FAK scaffolding function and have 

identified a novel compound which is has been taken forward for further development. 
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8. Appendix 
 

  



MDA-MB-231 

Appendix 1– Examination of FAKY397 in MDA-MB-231 cells – MDA-MB-231 cells were stained for 

active FAKY397 (green), along with DAPI (blue) to show cell nuclei. FAKY397 stain exhibited significant 

non-specific, background staining making results difficult to interpret. As such, FAKY861 was used as 

a surrogate marker for active FAK in future immunofluorescent assays.  
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