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Introduction
CD8+ T cells recognize short peptide fragments presented by MHC 
class I (MHC-I) molecules on the surface of nucleated cells (1–3). 
These peptide–MHC-I (pMHC-I) molecular arrays are scanned by 
clonotypically distributed αβ T cell receptors (TCRs) (4), which trigger 
T cell activation beyond a preset monomeric TCR/pMHC-I affinity 
threshold (5–8). This process enables the immune system to identify 
and eliminate infected and abnormal cells via targeted cytotoxicity, 
while remaining inert in the presence of healthy cells expressing 
a repertoire of unaltered self-derived peptides. Attenuated whole 
organisms, protein subunits, and/or peptides are typically used in 
vaccine formulations to prime immune responses against various 
cancers and dangerous pathogens. In the setting of infectious disease 

alone, prophylactic vaccines are thought to prevent approximately 9 
million deaths annually (9). However, effective prophylaxis is lacking 
for most human diseases, and the global economic burden of current 
operational vaccines is high, costing around $4 billion annually (10). 
In particular, the temperature-controlled supply chain for these sen-
sitive biological compounds can account for up to 80% of the total 
deployment cost (11). Environmental stability is therefore a strategic 
priority for current vaccine research and development.

Synthetic biology can be described as the design and refabrica-
tion of existing biological systems using nonnatural components. 
The vast majority of proteins in nature are constructed from L–
amino acids, which are highly susceptible to degradation by endog-
enous and environmental proteases. In contrast, D–amino acids 
are rarely found in nature and typically exist as point mutations in 
L-polypeptide chains, for example in prokaryotic cell walls, bacte-
rial antibiotics, certain animal proteins and venoms, and neuro-
regulators in the human brain (12–16). Although D–amino acids are 
mirror image stereoisomers of L–amino acids with identical chemi-
cal and physical properties, the corresponding proteins are intrinsi-
cally resistant to protease-mediated hydrolysis (13). Immunogens 
designed from these building blocks may therefore allow the pro-
duction of stable vaccines with enhanced bioavailability and in vivo 
efficacy. Additional benefits include the potential for therapeutic 
activity via oral ingestion.

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport 
logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the 
generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform 
based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist 
that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was 
highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. 
In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza 
virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, 
conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after 
oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine 
design and therapeutic delivery.
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ing of synthetic T cell agonists in vitro and in vivo using a disease- 
relevant target. Influenza A virus was selected as an expedient model 
for this purpose, because antigen-specific memory T cell popula-
tions are commonly present in adult humans, and pathogen chal-
lenge experiments are feasible in humanized mice. The blueprint for 
synthetic agonist design was the immunodominant HLA-A*0201–
restricted GILGFVFTL58–66 (GIL) peptide derived from the influenza 
matrix protein (M1). Based on previous reports of occasional cross-
recognition (reviewed in ref. 22), we initially examined the ability of 
a retroinversion of the GILGFVFTL epitope ltfvfglig (lower case type 
used to denote D–amino acids) to activate an archetypal TRBV19+ 
(24) HLA-A2–GILGFVFTL–specific CD8+ T cell clone (ALF3). In 
this particular setting, however, the retroinverted D peptide was not 
immunogenic (Supplemental Figure 1A; supplemental material avail-
able online with this article; https://doi.org/10.1172/JCI91512DS1). 

Large-scale T cell scanning studies using combinatorial pep-
tide libraries (CPLs) (17–19) and yeast-displayed pMHC librar-
ies (20) have shown that cross-reactivity is an inherent property 
of TCRs (reviewed in ref. 21). Accordingly, it may be feasible to 
generate nonnatural D–amino acid agonists that mimic their 
native counterparts (22, 23). In this study, we synthesized a nona-
mer CPL using only D–amino acid subunits to reverse engineer a 
fully synthetic agonist in the setting of a relevant human disease. 
The data validate what we believe to be a novel and systematic 
approach to the design of nonnatural immunogens that offers sub-
stantial advantages over current vaccine formulations.

Results
Identification of D–amino acid agonists via CPL screening. Our first task 
was to design a system that allowed robust and reproducible test-

Figure 1. An archetypal human CD8+ T cell 
clone exhibits broad but differing L– and D–
amino acid recognition profiles. Clonal ALF3 
CD8+ T cells were incubated with C1R-A2 target 
cells pulsed with CPL mixtures (100 μM) com-
prising nonamer L– or D–amino acids. MIP-1β 
release in the supernatants was quantified by 
ELISA. The amino acid residue in each position 
corresponding to the index GILGFVFTL peptide 
is depicted in green for the L-CPL screen and 
red for the D-CPL screen. Fixed amino acid 
positions (single letter code) along the peptide 
backbone are indicated. Error bars from 2 
replicates depict SEM.
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number of residues (19). Surprisingly, the L– and D–amino acid 
scans revealed very different recognition patterns across the 180 
peptide mixtures, indicating that D–amino acid agonists cannot be  
predicted from their known biological counterparts. These parallel 
scans also suggested that the ALF3 clone recognized at least as many 
D–amino acid agonists as L–amino acid agonists, further highlight-
ing the vast cross-reactive potential of αβ TCR surveillance. More-
over, the L–amino acid scan data were similar to those generated 
with other TRBV19+ GILGFVFTL-specific CD8 T cell clones, indi-
cating that T cells with different TCRs with similar antigen specifici-
ties generated related cross-reactivity profiles (data not shown).

Informed by these quantitative data, we designed and synthe-
sized 8 D–amino acid agonists for competitive testing in functional 
experiments. Dose-response titrations using MIP-1β production 
as a readout showed that gppqwnnpp (gpp) was the most potent 

These observations were not entirely surprising, given the paucity of 
examples of immunogenic D–amino acid retroinversion T cell ago-
nists described to date (22).

In subsequent experiments, we used CPL scanning to conduct 
a systematic search for nonnatural D–amino acid agonists capable 
of triggering HLA-A2–GILGFVFTL–specific CD8+ T cells. This 
approach has been employed successfully in the past to identify and 
augment L–amino acid ligands (18, 19, 25, 26). A novel D–amino 
acid nonamer CPL was synthesized and used in positional scanning 
format to screen the ALF3 clone (Figure 1), selected to represent a 
common bias toward TRBV19 gene usage within GILGFVFTL-
specific memory CD8+ T cell populations (24, 27, 28). Of note, the 
D–amino acid CPL was length-matched to the GILGFVFTL pep-
tide, given previous data showing that MHC-I–restricted TCRs 
are preprogrammed to engage bound ligands spanning a defined 

Figure 2. A fully synthetic agonist designed from CPL scan data is recognized by multiple influenza-specific clones and is highly resistant to human pro-
teases and gastric acid. (A) Clone ALF3 was incubated with C1R-A2 target cells pulsed with the indicated concentrations of D–amino acid candidate agonists 
predicted from the D–amino acid CPL scan (Figure 1). MIP-1β release in the supernatants was quantified by ELISA. Errors from 2 replicates depict SEM. (B) ALF3 
was incubated overnight with the indicated concentrations of GILGFVFTL and gppqwnnpp. Errors from 2 replicates depict SEM. (C) Chromium release cytotoxicity 
assay using ALF3 and CIR-A2 targets incubated with gppqwnnpp and GILGFVFTL peptides at the concentrations shown. Errors from 2 replicates depict SEM. (D) 
As in A but including GILGFVFTL with clones GD, SG11, and SG25. ALF3 was also included for comparison. Errors from 2 replicates depict SEM. (E) The GILGFVFTL 
or gppqwnnpp peptides were added to human serum or MilliQ water and sampled in triplicate at the indicated time points. Ion peak signals that identified each 
peptide were quantified using LCMS. Stability was calculated as the area percentage of each serum-treated or water-treated ion peak relative to the same ion 
peak at 0 minutes. (F) GILGFVFTL and gppqwnnpp were added to simulated gastric acid (NaCl, pepsin, and HCl; pH 1.2) and sampled in triplicate at the indicated 
time points. Ion peak signals that identified each agonist were quantified using LCMS. Stability was calculated as the area percentage of each gastric acid–treated 
ion peak relative to the same ion peak at 0 minutes. Recovery rates of gppqwnnpp in human serum and gastric acid were significantly higher compared with GILG-
FVFTL at all time points beyond 0 minutes (P < 0.00001). Errors from 3 replicates depict SEM. In some panels, error bars are smaller than the plot symbols.

Downloaded from http://www.jci.org on March 22, 2018.   https://doi.org/10.1172/JCI91512

https://www.jci.org
https://www.jci.org


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

4 jci.org

determining region of the TCRβ chain (CDR3β) (Supplemental 
Figure 1B). These data demonstrate the power of combinatorial 
screening as a means to identify novel agonists.

Protease and acid resistance of native versus synthetic ago-
nists. To elicit immune responses in vivo, antigenic structures 
must navigate host barriers associated with the route of entry, 
such as serum complement/proteases, gastric acid, and diges-
tive enzymes. It is pertinent to note in this regard that strings 
of D–amino acids are thought to be sterically incompatible 
with protease-induced hydrolysis (13). We therefore compared 
the stability of gppqwnnpp and GILGFVFTL in human serum 
and simulated gastric acid as potential indicators of long-term  
biostability and immunogenicity. GILGFVFTL was rapidly 
degraded in human serum, reaching almost undetectable lev-
els within 10 minutes (Figure 2E). In contrast, gppqwnnpp 

activator of ALF3 (Figure 2A). The gppqwnnpp sequence incor-
porated the dominant residue in terms of signal strength at each 
sub-library position. It is also notable that gppqwnnpp bears no 
resemblance to GILGFVFTL in terms of primary sequence, barring 
the N-terminal glycine residue for which there is no chiral counter-
part. Higher concentrations of gppqwnnpp peptide were required 
to induce activation of the ALF3 clone (Figure 2B) and target cell 
killing (Figure 2C) compared with the GILGFVFTL peptide. This 
reduced potency likely reflects decreased binding of D–amino 
acid peptides to MHC (see below). In further experiments, we 
demonstrated that the gppqwnnpp agonist could activate 4 clono-
typically distinct GILGFVFTL-specific CD8+ T cell clones derived 
from genetically unrelated individuals (Figure 2D). Each of these 
T cell clones expressed TRBV19 with a unique TCRα chain and 
varying degrees of residue similarity in the third complementarity- 

Figure 3. The synthetic agonist activates influenza virus matrix epitope-specific CD8+ T cells in the context of HLA-A2 and elicits polyfunctional out-
puts. (A) Chromium release cytotoxicity assay using the GILGFVFTL-specific CD8 T cell clone GD with CIR and CIR-A2 target cells. Effector/target cell ratio 
of 10:1. Peptide was added directly to the wells at 10–5 M and incubated for 5 hours. Errors from 3 replicates depict SEM. (B) ALF3 cells were seeded at 250 
cells per well for an IFN-γ ELISpot plate. Each condition used 10–4 M gppqwnnpp peptide with ALF3 alone (250 cells per well) or with CIR-WT (A2–), CIR-A2, 
CIR-A2/D227K/T228A (227/228), or CIR-A2/Q115E (QE). The CIRs were used at 100,000 cells per well. Errors from 3 replicates depict SEM. Unpaired, 1-tailed 
t test with P values displayed. (C) Clonal GD CD8+ T cells were incubated with C1R-A2 with the indicated concentrations of GILGFVFTL (left), gppqwnnpp 
(middle), or ELAGIGILTV (right). Five distinct effector functions (CD107a, IFN-γ, IL-2, MIP-1β, and TNF-α) were measured using flow cytometry. Bars depict 
the percentage of CD8+ T cells expressing each function. Pie charts showing function are displayed below each corresponding bar graph. The pie segments 
represent the fraction of CD8+ T cells expressing the number of functions indicated in the key.
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(29), we observed no upregulation of HLA-A2 in the presence 
of gppqwnnpp (Supplemental Figure 1C), with no improvement 
following the addition of exogenous β2-microglobulin (data not 
shown) (30). Given the limited dynamic range of this assay (29), 
we sought to confirm epitope recognition using an endogenous 
epitope presentation system (Figure 3 and refs. 31–33). The GIL-
GFVFTL-specific CD8 T cell clone GD killed gppqwnnpp-pulsed 
CIR cells transduced with HLA-A2 (C1R-A2), but did not kill WT 
C1R cells under the same conditions (Figure 3A). To minimize 
peptide cross-presentation among T cells, we next used enzyme-

remained largely intact after 1 hour in human serum. Simi-
lar disparities were observed in simulated gastric acid (Figure 
2F). These observations indicate that gppqwnnpp is likely to be  
highly stable in vivo, in contrast to GILGFVFTL.

Functional and priming characteristics of native versus syn-
thetic agonists. Next, we explored the lower functional sensitiv-
ity of gppqwnnpp relative to GILGFVFTL, hypothesizing that 
such  differences may reflect a lack of traditional HLA-A2 anchor 
residues in the D–amino acid sequence, thereby destabilizing 
the binary pMHC-I complex. Using a T2 peptide binding assay 

Figure 4. The synthetic agonist specifically expands memory T cells that recognize processed and presented influenza peptide. (A and B) PBMCs from  
2 HLA-A2+ healthy adults were incubated with GILGFVFTL (1 μM), gppqwnnpp (10 μM), retroinverted ltfvfglig (10 μM) peptides, or DMSO and cultured in 
vitro for 14 days (3 wells per condition, combined for staining). The cells were stained with HLA-A2–GILGFVFTL, –ALWGPDPAAA (preproinsulin, PPI),  
–CLGGLLTMV (EBV), and –NLVPMVATV (CMV) tetramers. The flow plots show GILGFVFTL tetramer-binding CD8+ T cells (numbers indicate percent 
frequency within the total CD8+ T cell population). Data are summarized graphically for all other culture conditions and tetramer specificities. (C and D) A 
third set of PBMCs was primed with GILGFVFTL or gppqwnnpp and stained with irrelevant (ALWGPDPAAA, PPI) and GILGFVFTL tetramers. (C) Adminis-
tration of DMSO alone, with no peptide, was also performed as a control. Each line was incubated overnight alone or with CIR-WT (A2-), CIR-A2, CIR-A2/
GAD65, or CIR-A2/M1, or with PHA (in duplicate). (D) Supernatants were harvested and activation quantified by MIP-1β ELISA. Associated flow plots can be 
found in Supplemental Figures 2 and 3. Errors from 2 replicates depict SEM.
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linked immunospot (ELISpot) assays with a limited number of T 
cells on a “carpet” of antigen-presenting cells, as used previously 
for examining the requirements for the presentation of pyrophos-
phate antigens to human Vγ9Vδ2 T cells (34). ELISpot with 250 
ALF3 and 100,000 CIR-A2 cells per well revealed good responses 
to gppqwnnpp peptide (Figure 3B). Conversely, a carpet of WT 
C1R cells lacking HLA-A2 did not activate clonal ALF3 in paral-
lel assays (Figure 3B). In addition, C1R-A2 targets with enhanced 
CD8 binding due to a Q115E mutation in the α2 domain of HLA-

A2 (33) were effective presenting cells for gppqwnnpp, whereas 
C1R-A2 targets with abrogated CD8 binding due to a compound 
D227K/T228A mutation in the α3 domain of HLA-A2 (31) did not 
enable gppqwnnpp to activate ALF3. These observations show 
that gppqwnnpp is restricted by HLA-A2 and elicits functional out-
puts that are dependent on the interaction between HLA-A2 and 
the CD8 glycoprotein.

Next, we used intracellular cytokine staining to examine the 
agonist-induced functional profile of the CD8+ T cell clone GD in 

Figure 5. The synthetic agonist expands memory T cells expressing archetypal TCRs. (A) Healthy adult HLA-A2+ PBMCs were incubated with GILGFVFTL 
(10 μM) or gppqwnnpp (500 μM) and cultured in vitro for 14 days. HLA-A2–GILGFVFTL tetramer-binding cells were quantified by flow cytometry. Numbers  
denote the percent frequency of antigen-specific cells in the total CD8+ population. The stain control (no tetramer) is shown top right. (B–D) Viable 
HLA-A2–GILGFVFTL tetramer-positive CD3+CD8+ cells were sorted at greater than 98% purity from lines primed with GILGFVFTL or gppqwnnpp, and all 
expressed TRB gene rearrangements were characterized using a template switch–anchored RT-PCR with Sanger sequencing. The number of unique clono-
types (3 donors, B), TRBV gene usage (C), and TRBJ gene usage (D) are shown for each of 3 genetically unrelated donors. Random sampling was performed 
to normalize the data across different conditions.
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response to gppqwnnpp and GILGFVFTL. Five different effector 
outputs (CD107a, IFN-γ, IL-2, MIP-1β, and TNF-α) were measured 
simultaneously by flow cytometry in response to 2 different concen-
trations of gppqwnnpp, GILGFVFTL, and irrelevant Melan A pep-
tide (sequence ELAGIGILTV) (Figure 3C). At 10–4 M, gppqwnnpp 
elicited multiple functions, with more than 80% of clonal GD cells 
expressing both MIP-1β and TNF-α. In line with the cytokine release 
and cytotoxicity data, however, a weaker profile was observed at 
10–5 M. This loss of sensitivity likely relates to the weak affinity of 
gppqwnnpp for HLA-A2. In contrast, the native GILGFVFTL pep-
tide elicited highly polyfunctional responses at 10–4 M and 10–5 M.

To extend these observations, we investigated the ability of 
gppqwnnpp to amplify GILGFVFTL-specific human memory T cells 
in vitro. Peripheral blood mononuclear cells (PBMCs) from healthy 
HLA-A2+ individuals were stimulated with either gppqwnnpp or 
GILGFVFTL for 14 days, and specific T cell expansions were quan-
tified by flow cytometry after staining with a fluorochrome-labeled 
tetrameric HLA-A2–GILGFVFTL complex (Figure 4). Remarkably, 
we found that gppqwnnpp expanded comparable (donor 305N, Fig-
ure 4A) or even larger populations of tetramer-binding CD8+ T cells 
compared with GILGFVFTL (donor 860Z, Figure 4B and donor 
225M, Figure 4C). Moreover, these effects occurred in the absence 
of bystander expansion (Figure 4, A and B and flow cytometry plots 
in Supplemental Figures 2 and 3). In addition, the T cell lines from 
donor 225M exhibited equivalent functional reactivity against  
C1R-A2 target cells expressing the full-length influenza A virus M1 
protein, but did not respond to C1R-A2 cells expressing the irrel-
evant protein glutamic acid decarboxylase (GAD65) (Figure 4D). 
These data show that gppqwnnpp can expand GILGFVFTL-specific 
memory CD8+ T cells capable of recognizing the endogenously  
processed L–amino acid index peptide in the context of HLA-A2.

T cell repertoire mobilization in response to native versus synthetic 
agonists. A detailed understanding of the elicited TCR repertoire 

is an important consideration in the rational design of prototypic T 
cell vaccines (4). We therefore examined the clonotypic composi-
tion of antigen-specific memory CD8+ T cell populations expanded 
by gppqwnnpp and GILGFVFTL (Figure 5A). Three donors with a 
similar level of priming for the gppqwnnpp and GILGFVFTL pep-
tides (Figure 5A for 2 of the donors) were used for clonotypic analysis 
of the T cell receptor repertoire. Using a fully quantitative template 
switch–anchored reverse transcription PCR (RT-PCR) in conjunction 
with Sanger sequencing (35), we found no significant difference in 
the number of clonotypes mobilized by these distinct peptides (Fig-
ure 5B). A strong bias toward the expansion of TRBV19+ clonotypes 
was observed in GILGFVFTL-stimulated cultures from donor 1 and 
donor 2 (Figure 5C), in line with previous studies of human naive and 
memory repertoires specific for this antigen (24, 27, 28). The cor-
responding gppqwnnpp-primed cultures displayed a similar gene  
bias, and overlapping TCRβ sequences across the 2 peptide  
conditions were detected within donors (Supplemental Table 1). 
Incongruously, the GILGFVFTL-stimulated culture from donor 
3 was dominated by TRBV7-2+ and TRBV9+ clonotypes, which is 
unusual in the context of earlier work (24, 27, 28). In the same donor, 
however, gppqwnnpp remodeled these clonotypic expansions  
toward a more archetypal repertoire dominated by TRBV19+ 
sequences incorporating classical motifs in the CDR3β chain (Sup-
plemental Table 1). Moreover, both gppqwnnpp and GILGFVFTL 
elicited public and near-public TRBV19+ clonotypes (Supplemental 
Table 1). We observed less-stringent TRBJ gene selection in these 
experiments (Figure 5D), again consistent with current knowledge 
(24, 27, 28). A bias toward TRBJ2-7+ clonotypes was nonetheless 
apparent in both agonist-primed cultures from donor 1 and donor 
2, and a preference for TRBJ2-5 gene usage in the GILGFVFTL-
primed culture from donor 3 was remodeled by gppqwnnpp  
toward a more conventional pattern, aligned with previous reports 
demonstrating frequent TRBV19/TRBJ2-7 gene rearrangements 
(24, 27, 28). The synthetic gppqwnnpp agonist therefore mobilizes 
antigen-specific CD8+ T cell repertoires that closely mimic those 
elicited by the native peptide.

Structural conformation of native versus synthetic agonists. To 
determine the molecular basis of agonist cross-recognition in this 
setting, we attempted to solve the binary structure of the HLA-
A2–gppqwnnpp complex. Although refolded protein yields were 
very low, presumably reflecting the weak affinity of gppqwnnpp 
for HLA-A2, we were able to generate small crystals. However, 
these crystals were not capable of diffracting to atomic resolution. 
We therefore modeled the HLA-A2–gppqwnnpp structure in silico 
(Figure 6, A and B), using the JM22–HLA-A2–GILGFVFTL ter-
nary complex as a guide (36). The model indicated that gppqwn-
npp could be presented by HLA-A2 in an overall conformation  
similar to that of GILGFVFTL. In particular, the D–amino acid  
residues Glu4, Trp5, Asp6, and Pro8 were solvent exposed,  
mimicking in 3 dimensions the main TCR contact residues iden-
tified in the JM22–HLA-A2–GILGFVFTL complex (Figure 6C 
and ref. 36). Thus, despite a lack of sequence homology between 
gppqwnnpp and GILGFVFTL, both antigens may look similar in 
terms of shape complementarity.

The synthetic agonist effectively primes T cell responses that can 
protect from lethal influenza challenge. To assess the biological rel-
evance of these observations, we tested the ability of gppqwnnpp 

Figure 6. Structural modeling indicates that the native and synthetic ago-
nists can form similar overall conformations. (A) Side view of the GILGFVFTL 
peptide (orange sticks) in the HLA-A2 binding cleft (gray cartoon). (B) Side 
view of the gppqwnnpp peptide (blue sticks) in the HLA-A2 binding cleft (gray 
cartoon). The structure was modeled in WinCoot using the JM22 TCR–HLA-
A2–GILGFVFTL ternary structure as a reference. (C) Superposition of the 
GILGFVFTL peptide (orange sticks) and the gppqwnnpp peptide (blue sticks) 
in the HLA-A2 binding cleft (gray cartoon). Arrows demonstrate the main TCR 
contact points based on the JM22 TCR–HLA-A2–GILGFVFTL complex. 
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Further oral administration experiments using HHD mice showed 
that gppqwnnpp and GILGFVFTL were similarly immunogenic 
(Supplemental Figure 5B). Collectively, these experiments demon-
strate that gppqwnnpp can prime protective immune responses in a 
humanized mouse model of influenza virus infection.

Discussion
We used synthetic CPL arrays to design a nonnatural D–amino acid 
mimic of an immunodominant peptide epitope from the in fluenza 
virus matrix protein. This prototype agonist, gppqwnnpp, stimu-
lated and expanded polyfunctional CD8+ T cells in vitro that 
cross-recognized the naturally presented L–amino acid epitope 
GILGFVFTL. Despite minimal sequence homology and nonclas-
sical anchoring to HLA-A2, gppqwnnpp mobilized clonotypic rep-
ertoires in culture similar to those elicited by GILGFVFTL, in line 
with a structural model indicating common antigenic features and 
shape complementarity. Moreover, gppqwnnpp effectively primed 
GILGFVFTL-specific responses in naive, humanized mice, confer-
ring protection from lethal influenza challenge. The stimulation of 
GILGFVFTL cross-reactive T cells by gppqwnnpp in 2 species that 
have very different TCR repertoires attests to how effectively HLA-
A2–gppqwnnpp must mimic the key structural features of HLA-
A2–GILGFVFTL. These findings validate an unbiased approach to 
the identification of synthetic ligands that could revolutionize the 
development of immunotherapies.

There is a clear strategic need to enhance the environmental and 
in vivo stability of T cell vaccines, both to minimize temperature-
controlled supply chain burdens and to maximize biological effica-
cy. Previous attempts to optimize peptide-based interventions have  
been limited to the L–amino acid universe. For example, specific 
residues at MHC anchor or TCR contact sites can be replaced to 
enhance T cell activation and functionality (6, 26, 38, 39). Akin to their  
parent epitopes, however, such altered peptide ligands are rap-
idly destroyed in vivo by extracellular proteases and other compo-
nents of various biofluids. In contrast, the D–amino acid peptide  
gppqwnnpp was vastly more stable than its natural counterpart 
in human serum and simulated gastric acid. Consistent with the  
latter finding, orally administered gppqwnnpp primed effector T 

to prime effective de novo responses from the naive T cell pool. We 
used transgenic HLA-A2 mice (HHD mice) for this purpose, based 
on earlier work in similar transgenic murine systems (37). Mice 
were injected on day 0 and day 14 with GILGFVFTL, gppqwnnpp,  
or an irrelevant HLA-A2–restricted L–amino acid peptide (ELA-
GIGILTV) in incomplete Freund’s adjuvant (IFA). Preliminary 
dosing experiments showed that gppqwnnpp was safe and non-
toxic (data not shown). One week after the second injection, 
cells were harvested from the spleen and peripheral lymph nodes 
(PLNs). Using direct ex vivo IFN-γ ELISpot analysis, we found that  
gppqwnnpp induced a GILGFVFTL-specific response in vivo, 
detectable most prominently in the PLNs (Figure 7A). No such 
response was observed with the ltfvfglig retroinversion of the  
GILGFVFTL L-peptide sequence (Figure 7B).

To elaborate on these data, we vaccinated mice using the same 
regimen and performed intranasal challenge experiments with influ-
enza A virus H1N1 strain A/Puerto Rico/8/34 (PR8). In accordance 
with local regulations, mice were euthanized if 20% or more of their 
initial body weight was lost, at which point the viral challenge was 
considered fatal. Female and male animals required 50 and 100 PFU, 
respectively, for 100% fatality (Supplemental Figure 4). On day 6  
after PR8 infection, mice vaccinated with the control ELAGIGILTV 
peptide began to succumb rapidly (Figure 8A). In contrast, mice  
vaccinated with either GILGFVFTL or gppqwnnpp fared signifi-
cantly better, with survival rates greater than 60% at day 8 (Figure 
8B). It is also notable that we observed a trend toward better out-
comes in the gppqwnnpp versus GILGFVFTL groups. This coun-
terintuitive observation may reflect the greater in vivo stability 
and half-life of the D–amino acid peptide.

To extend these findings, we assessed the immunogenic effects 
of orally administered gppqwnnpp, which is stable in simulated 
gastric acid (Figure 2F). Mice received 3 doses of nonadjuvanted 
gppqwnnpp (300 μg total) in sodium bicarbonate at weekly inter-
vals via oral gavage. One week after the final dose, cells were har-
vested from the mesenteric lymph nodes and tested for GILGFVFTL 
reactivity using IFN-γ ELISpot assays (Supplemental Figure 5A).  
Substantial GILGFVFTL-specific responses were detected in 
gppqwnnpp-vaccinated mice but not in mock-vaccinated controls. 

Figure 7. Vaccination of mice with the synthetic 
agonist elicits influenza-specific T cells. (A) HHD 
mice were primed (day 0) and boosted (day 14) 
via subcutaneous injection with 200 μl of a PBS 
preparation containing 100 μg GILGFVFTL (n = 4), 
gppqwnnpp (n = 4), or DMSO (Mock, n = 2) and 
100 μl of incomplete Freund’s adjuvant. Single-
cell suspensions were generated from spleens 
and peripheral lymph nodes (LNs) harvested on 
day 21, and GILGFVFTL-reactive cells were quanti-
fied in direct ex vivo IFN-γ ELISpot assays. Rep-
resentative ELISpot wells are shown under each 
bar with triplicates performed per condition. Data 
are shown for a single experiment repeated with 
similar results (n = 3). Background values in the 
absence of peptide were subtracted. (B) Using 
the same approach as in A, with gppqwnnpp  
(n = 2), ltfvfglig (retroinverted GILGFVFTL  
peptide, n = 2), or DMSO (Mock, n = 2). Errors 
from 3 replicates depict SD.
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both in vitro and in vivo (42–45, 47). D–amino acid agonists have 
also been explored in phase I/II clinical trials (48, 49). However, 
retroinverted D–amino acid peptides rarely mimic their parent anti-
gens, and random synthetic component insertions can modify the 
immunogenicity profile of an L–amino acid blueprint (22).

In the present study, we overcome these limitations by using 
nonnatural CPL mixtures to screen rapidly and systematically 
for novel synthetic epitopes with defined agonist properties. 
Importantly, this platform is flexible and potentially applicable 
to any target antigen. Moreover, advances in solid-phase peptide 
synthesis (SSPS) (50) and the development of bioreactors that 
exploit organisms with expanded genetic codes (51) may enable  
industrial-scale production of synthetic T cell immunogens. Fur-
ther effort is therefore warranted to translate the current proof- 
of-concept findings into real-world vaccine pipelines.

Methods
Human T cell clones and target cells. The CD8+ T cell clones ALF3, GD, 
SG11, and SG25 were maintained in RPMI medium supplemented with 
100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine, and 
10% heat-inactivated FCS (R10), together with 25 ng/ml IL-15 (Pepro-

cell responses in the gut-associated lymph nodes of humanized 
mice. It is notable in this regard that low-dose L–amino acid pep-
tides delivered via the oral route may desensitize T cells, poten-
tially enabling antigen-specific treatments for allergic and autoim-
mune conditions (reviewed in refs. 40, 41).

It is known that αβ TCRs can recognize many different peptides 
in the context of a single HLA molecule (18, 19, 21). This intrinsic 
degeneracy provides scope to construct novel ligands via the intro-
duction of nonnatural side chains and/or inter-residue covalent 
bonds along the parent L–amino acid peptide backbone. Synthetic 
agonists offer potential advantages over subunit vaccines in terms 
of bioavailability, pharmacokinetics, and innate stability. Previ-
ous studies of L–amino acid peptides incorporating synthetic point 
mutations (D–amino acids, β–amino acids, nonproteolytic amino 
acids and pseudo-peptides, peptoids, and psi bonds) were designed 
to improve protease resistance and ligand binding to the presenting 
MHC molecule (17, 42–45). Other studies have used a retroinverso 
approach in which the L–amino acid peptide sequence is reversed 
using mirror image stereoisomer D–amino acids (46). In most cas-
es, the modified peptides were more stable, both in the free state 
and bound to the relevant MHC molecule, and more immunogenic, 

Figure 8. Vaccination with the synthetic ago-
nist protects humanized mice against chal-
lenge with influenza A virus. (A) HHD mice 
were primed (day 0) and boosted (day 14) via 
subcutaneous injection with 200 μl of a 1:1 PBS 
and incomplete Freund’s adjuvant preparation 
containing 100 μg gppqwnnpp (red, n = 20), 
GILGFVFTL (black, n = 17), or ELAGIGILTV (blue, 
ELA, n = 17). A further group of mice remained 
unvaccinated (gray, n = 8). Mice were infected 
with PR8 on day 21 (females, 50 PFU; males, 
100 PFU; Supplemental Figure 5). Body weight 
was recorded daily after infection and mice 
were classified as nonsurvivors and eutha-
nized if their body weight fell by 20% or more 
(dotted line). By day 8, mice had either been 
euthanized (white circles) or gained weight and 
survived (red, black, gray, and blue circles). The 
number of mice euthanized on a given day is 
shown adjacent to the relevant data point. The 
number of mice that started to gain weight 
on a specific day is also shown. All mice that 
survived infection continued to gain weight for 
the duration of the assay and were euthanized 
on day 8. Error bars show SEM. (B) Survival 
graph for each group of mice based on the data 
in A. *P = 0.03; **P = 0.002 (unpaired 2-tailed 
t test). Data combined from 8 independent 
experiments.
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with T2 cells (5 × 105 per test) in R0 (as for R10 but lacking FCS) for 
14 to 16 hours at 26°C. After an additional 2 hours at 37°C, the cells 
were stained for HLA-A2 surface expression with the monoclonal 
antibody BB7.2 (BD Biosciences). In some experiments, exogenous 
β2-microglobulin (AbD Serotec) was added during the incubation 
period (up to 150 μg/ml). Duplicate samples for each condition were 
acquired using a FACSCantoII flow cytometer (BD Biosciences). Data 
were analyzed with FlowJo software (Tree Star Inc.).

pMHC-I tetramer staining. Soluble biotinylated pMHC-I mono-
mers were produced as described previously (55). Tetrameric pMHC-I 
reagents (tetramers) were constructed by the addition of phycoerythrin 
(PE)– or APC-conjugated streptavidin (Life Technologies, Thermo-
Fisher Scientific) at a pMHC-I/streptavidin molar ratio of 4:1. CD8+ T 
cell clones or bulk cultures (5 × 104) were incubated with PE- or APC-
labeled tetramer (25 μg/ml) for 15 minutes at 37°C (reviewed in ref. 
56) after staining with LIVE/DEAD Fixable Aqua (Life Technologies, 
ThermoFisher Scientific). Data were acquired using a FACSCantoII 
flow cytometer and analyzed with FlowJo software.

Intracellular cytokine staining. T cells were rested overnight at 1 × 106 
per ml in R2 (as for R10 with 2% FCS) and added to peptide-pulsed tar-
gets at an effector/target ratio of 1:2 in the presence of 5 μg/ml brefeldin 
A (Sigma-Aldrich), 0.35 μl/ml monensin (BD Biosciences), and 5 μl/ml 
αCD107a-FITC (clone H4A3, BD Biosciences). After 5 hours at 37°C, the 
cells were washed and stained with LIVE/DEAD Fixable Aqua followed 
by αCD3-PacificBlue (clone UCHT1, BioLegend), αCD8–APC-H7 (clone 
SK1, BD Biosciences), and αCD19-BV521 (clone HIB19, BioLegend). The 
cells were then fixed and permeabilized using a Cytofix/Cytoperm Kit 
(BD Biosciences) and stained intracellularly with αIFN-γ–PECy7 (clone 
4S.B3), αTNF-α–PerCPCy5.5 (clone MAb11), αIL-2–APC (clone MQ1-
17H12) (all from BioLegend), and αMIP-1β–PE (clone D21-1351, BD Bio-
sciences). Data were acquired using a FACSCantoII flow cytometer and 
analyzed with FlowJo software. Cell population gates were set using fluo-
rescence minus 1 staining controls as described previously (6).

Clonotype analysis. Viable tetramer-positive CD3+CD8+ cells were 
sorted at greater than 98% purity using a custom-modified FACSAria II 
flow cytometer (BD Biosciences). Molecular analysis of expressed TRB 
gene rearrangements was conducted using a template switch–anchored 
RT-PCR with Sanger sequencing technology as described previously (35).

Structural modeling. The structure of gppqwnnpp complexed with 
HLA-A2 was modeled in WinCoot (57) using the JM22 TCR–HLA-
A2–GILGFVFTL ternary structure as a reference (36). The model was 
regularized using REFMAC5 (CCP4 Program Suite) (58). Figures were 
made using the PyMol Molecular Graphics System (Schrodinger LLC).

Mice. HHD mice were donated by Immunocore Ltd. or purchased 
from the Weatherall Institute of Molecular Medicine at the Uni-
versity of Oxford (Oxford, United Kingdom). These mice express a 
hybrid HLA-A2 transgene comprising the human α1/α2 domains and 
β2-microglobulin fused with a murine α3 domain (H-2Db) (59, 60). 
The HHD background strain was either C57BL/6J (subcutaneous 
experiments) or albino C57BL/6J Tyrc–2J (oral experiments). Mice were 
housed throughout the study under specific pathogen–free conditions.

Immunization, organ harvest, and influenza infection. HHD 
mice were primed in the ventral inguinal area by injection with 200 
μl of a PBS preparation containing 100 μg peptide (GILGFVFTL,  
gppqwnnpp, or ELAGIGILTV) and 100 μl IFA (Sigma-Aldrich).  
The same preparation was used to boost on the contralateral side 14 
days later. Care was taken to ensure the formation of a raised area at 

Tech) and 200 IU/ml IL-2 (Proleukin). All T cell clones were generated 
in-house. C1R–HLA-A*0201 (C1R-A2) cells were generated in-house 
as described previously (31) and maintained in R10. C1R-A2 cells 
were also lentivirally transduced to express the M1 protein from PR8 
or human GAD65. The T lymphoblastoid hybrid cell line 0.174xCEM.
T2 (T2), purchased from ATCC (CRL-19920), was maintained in R10.

In vitro expansion of human T cells. PBMCs were isolated by stan-
dard density gradient centrifugation from locally sourced venous blood 
samples or buffy packs obtained from the Welsh Blood Service (Pon-
tyclun, United Kingdom). PBMCs were stimulated with various con-
centrations of peptide in R10. Progressively greater concentrations of 
IL-2 were added from day 2 to a maximum of 20 IU/ml by day 14. The 
cultures were then analyzed and sorted by flow cytometry.

Combinatorial peptide library scans. D–amino acid nonamer 
CPLs in positional scanning format (52) were manufactured at high 
purity using SPSS and HPLC (Pepscan Presto and GL Biochem). 
Prior to screening, CD8+ T cell clones were rested overnight in R2 
(as for R10 but with 2% FCS). Target cells (6 × 104 per well) were 
incubated in 96-well U-bottom plates with library mixtures (at 
100 μM) in duplicate for 2 hours at 37 °C. Clonal CD8+ T cells (3 × 
104 per well) were then added and the plates were incubated over-
night at 37 °C. Supernatants were harvested the following morning 
and assayed for MIP-1β by ELISA according to the manufacturer’s 
instructions (R&D Systems).

Protease and acid stability. Human serum from AB plasma (Sigma-
Aldrich) was centrifuged for 10 minutes at 20,000 RCF to remove 
the lipid component. Serum supernatant was diluted to 25% in water 
(Merck Milli-Q system) and incubated for 15 minutes at 37°C. Trip-
licate samples of native and synthetic peptides (>93% pure; GL Bio-
chem) were assayed simultaneously at a final concentration of 50 μg/
ml after 1:20 dilution with 25% serum. Control reactions were set up as 
single tests with peptides diluted to the same concentration in Milli-Q 
water. Assays were run at 37°C. Samples of each peptide solution (100 
μl) were removed at various time points and mixed with an equal vol-
ume of 15% aqueous trichloroacetic acid to precipitate serum proteins. 
Reactions were incubated for 40 minutes at 4°C and centrifuged for 5 
minutes at 14,000 RCF. Supernatant was then stored at –20°C before 
analysis by liquid chromatography–mass spectrometry (LCMS). Three 
distinct ion fragments were monitored for each peptide. Stability was 
calculated as the area percentage of each serum-treated ion peak rel-
ative to the same ion peak at 0 minutes. Simulated gastric acid was 
prepared by dissolving 20 mg NaCl and 16 mg porcine pepsin (Sigma-
Aldrich) in 70 μl concentrated HCl and diluting the solution to 10 ml 
with water (final pH 1.2). Mixtures were incubated for 15 minutes at 
37°C. Triplicate samples of native and synthetic peptides were assayed 
as described above with dilution in simulated gastric acid. Control 
reactions were set up as single tests with peptides diluted to the same 
concentration in simulated gastric acid without pepsin. Assays were 
run at 37°C. Samples of each peptide solution (100 μl) were removed 
at various time points and stored at –20°C before analysis by LCMS.

Cytotoxicity assays. 51Cr release assays were performed as 
described previously (53) using CIR or CIR-A2 cells as targets. Pep-
tides were added directly to the wells and were present for the dura-
tion of the assay. Assays were run for 5 hours at 37°C.

T2 peptide binding assay. T2 cells lack the transporter associated 
with antigen processing (54) and require exogenous peptide to bind 
and stabilize MHC-I. Peptides (100 μM or 1 mM) were incubated 

Downloaded from http://www.jci.org on March 22, 2018.   https://doi.org/10.1172/JCI91512

https://www.jci.org
https://www.jci.org


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

1 1jci.org

Author contributions
JJM and AKS conceived and planned the project. JJM, MPT, GD, 
ESJE, SAEG, SG, BL, MC, JM, KL, KKM, TSW, KT, YW, HSL, RJC, 
JMP, MA, AL, AA, AG, PJR, JR, DKC, and DAP designed and per-
formed experiments. JJM, MPT, SRB, DAP, and AKS drafted and 
critically revised the manuscript.

Acknowledgments
This study was made possible by a Biotechnology and Bio-
logical Sciences Research Council (BBSRC) Strategic Longer 
Larger Grant (BB/H001085/1) and further Sparking Impact 
funding from the BBSRC. Additional support was provided by 
the Cardiff Synthetic Biology Initiative through SynbiCITE, a 
Perpetual Research Grant (FR2013/0946), and the Medical 
Research Council (United Kingdom). JJM and MPT received 
personal funding from the National Institute of Social Care and 
Health Research (now Health and Care Research Wales). RJC 
and SG are supported by Australian Research Council Future 
Fellowships (FT100100476 and FF120100416). DAP and AKS 
are Wellcome Trust Senior Investigators. JJM is supported by 
the Australian National Health and Medical Research Council 
(NHMRC). JR is supported by an Australian Research Council 
Laureate Fellowship.

Address correspondence and reprint requests to: John J. Miles or 
Andrew K. Sewell, Division of Infection and Immunity, Henry  
Wellcome Building, Cardiff University School of Medicine, 
Cardiff CF14 4XN. Phone: 442920687055; Email: john.miles@
jcu.edu.au (JJM), sewellak@cardiff.ac.uk (AKS).

MPT’s present address is: Health Economics and Outcomes 
Research Ltd, Cardiff Gate Business Park, Cardiff, United Kingdom.

ESJE’s present address is: Department of Immunology and Pathol-
ogy, Central Clinical School, Monash University, Melbourne, Vic-
toria, Australia.

JM’s present address is: Mucosal Infection and Immunity Group, 
Imperial College London, London, United Kingdom.

KT’s present address is: Australian Institute of Tropical Health and 
Medicine, James Cook University, Cairns, Queensland, Australia.

JMP’s and DKC’s present address is: Immunocore Ltd, Milton Park 
Innovation Centre, Abingdon, United Kingdom.

AL’s present address is: Faculty of Health Sciences, Biomedical 
Sciences Building, University of Bristol, Bristol, United Kingdom.

the injection site, indicating that the vaccine was delivered subcutane-
ously rather than intraperitoneally. For experiments involving organ 
harvest, mice were euthanized 7 days after the last immunization, 
and the peripheral lymph nodes (inguinal, axial, brachial, and sub-
mandibular) were prepared as single-cell suspensions. For challenge 
experiments, mice were infected intranasally with influenza A virus 
strain PR8 obtained from the National Institute for Medical Research 
(London, United Kingdom). On the basis of dose optimization experi-
ments, male mice received 100 PFU and female mice received 50 
PFU PR8 in 50 μl sterile PBS under light anesthesia. Body weight was 
recorded daily after infection. Mice were classified as nonsurvivors 
and euthanized if their body weight fell by 20% or more. All other 
mice were euthanized 8 days after infection.

Mouse and human IFN-γ ELISpot. IFN-γ–producing cells were 
quantified using a mouse or human IFN-γ kit (MabTech). Briefly, 
ELISpot multiscreen filter plates (Millipore) were coated with capture 
antibody for 4 hours at 37°C, and then washed with PBS and blocked 
with R10 for 1 hour at room temperature. For mouse samples, 0.5 × 
105 or 2 × 105 cells were added per well in the presence of peptide at a 
final concentration of 10–5 M. For human samples, 250 clonal T cells 
and 100,000 CIR WT or HLA-A2–transgenic cells were used per well. 
Medium alone was used as a negative control, and phytohemaggluti-
nin (PHA) (1 μg/ml) was used as a positive control. Assays were incu-
bated overnight at 37°C, and the plates were developed per the manu-
facturer’s instructions (MabTech). Spot-forming units (SFUs) were 
counted using an AID ELISpot Reader v5 (AID Diagnostika GmbH).

Statistics. For the human protease and simulated gastric acid assays, 
data in percentages were square-root transformed for all assays. Statisti-
cal analyses were conducted using unpaired t tests (1 per time point) cor-
rected for multiple comparisons using the Holm-Sidak method (Alpha 
0.05; Prism 6, GraphPad Software). For the human ELISpot assay, we 
used the unpaired, 1-tailed t test (Excel, Microsoft). For the HHD influ-
enza survival curve, we used the unpaired, 2-tailed t test (Excel). P ≤ 
0.05 was considered significant. Clonotype composition was compared 
using the Mann-Whitney U test (Prism 6, GraphPad Software).

Study approval. In vivo experiments were performed under United 
Kingdom Home Office approved projects (licenses 30/2355, 30/2635 
and 30/3188) and conducted in compliance with the United Kingdom 
Home Office Guidance on the Operation of the Animals (Scientific 
Procedures) Act 1986. The use of human blood was approved by the 
School of Medicine Research Ethics Committee (Cardiff University 
School of Medicine, Cardiff, United Kingdom), project title: Compre-
hensive Analysis of T-cell Receptor Degeneracy and T-cell Crossreac-
tivity (reference 12/09). Blood was sourced from local donors and the 
Welsh Blood Service (Pontyclun, United Kingdom). All human blood 
was procured and handled in accordance with the guidelines of Cardiff 
University’s Human Tissue Act compliance team, to conform to the 
United Kingdom Human Tissue Act 2004.
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