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ABSTRACT. A series of uranyl thiocyanate and selenocyanate of the type [R4N]3[UO2(NCS)5] 

(R4 = nBu4, Me3Bz, Et3Bz), [Ph4P][UO2(NCS)3(NO3)] and [R4N]3[UO2(NCSe)5] (R4 = Me4, 
nPr4, 

Et3Bz) have been prepared and structurally characterized. The resulting non-covalent interactions 

have been examined and compared to other examples in the literature. The nature of these 

interactions is determined by the cation so that when the alkyl groups are small, 

chalcogenide…chalcogenide interactions are present, but this ‘switches off’ when R = nPr and 

charge assisted U=O…H—C and S(e)…H—C hydrogen bonding remain the dominant interaction. 

Increasing the size of the chain to nBu results in only S…H—C interactions. Spectroscopic 

implications of these chalcogenide interactions have been explored in the vibrational and 

photophysical properties of the series [R4N]3[UO2(NCS)5] (R4 =Me4, Et4, 
nPr4, 

nBu4, Me3Bz, 

Et3Bz), [R4N]3[UO2(NCSe)5] (R4 = Me4, 
nPr4, Et3Bz) and [Et4N]4[UO2(NCSe)5][NCSe]. The data 

suggest that U=O…H—C interactions are weak and do not perturb the uranyl moiety. While the 

chalcogenide interactions do not influence the photophysical properties, a coupling of the U=O 

and (NCS) or (NCSe) vibrational modes is observed in the 77K solid state emission spectra. A 

theoretical examination of representative examples of Se…Se, C—H…Se and C—H…O=U by 

molecular electrostatic potentials, NBO and AIM methodologies give a deeper understanding of 

these weak interactions.  C—H…Se are individually weak but C—H…O=U interactions are even 

weaker supporting the idea that the –yl oxo’s are weak Lewis bases. An Atoms in Molecules study 

suggest that the chalcogenide interaction is similar to lone pair… or fluorine…fluorine 

interactions. An oxidation of the NCS ligands to form [(UO2)(SO4)2(H2O)4].3H2O was also noted. 

KEYWORDS: Non-covalent interactions; uranyl chemistry; photoluminescence; AIM  
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Introduction 

An understanding of the plethora of non-covalent interactions is of importance, not just in 

structural chemistry but also materials and biological chemistry. While the hydrogen bond is the 

most well studied, over the past few years other non-conventional noncovalent interactions have 

garnered significant amount of attention, such as halogen bonding,1 pnictogen bonding,2 and even 

aerogen bonding.3 Chalcogenide bonding4 is a relatively recent addition to the toolbox of crystal 

engineering and follows the same type of bonding scheme as halogen bonding, namely a -hole.5 

This bonding scheme can be viewed comparably to hydrogen bonding as X—D…A, where X is 

any atom, D is the donor atom and A is the acceptor atom. The -hole is visualized as a region of 

positive electrostatic potential found on an empty * orbital and is dependent upon two parameters: 

the -hole becomes more positive (and hence stronger interactions) when (1) D is more polarizable 

and (2) when the X atom is more electron withdrawing. The majority of chalcogenide bonding 

features attractive interactions between S or Se and an electronegative N or O donor. 

Computational studies on Se…O or S…N interactions have recently been conducted and shown 

them to be dependent on the substituents on the selenium atom and the interactions described as a 

charge transfer from the N lone pair to the * Se—X orbital (Chart 1).4j,6 Synthetic molecular 

balances based on formamide and thioformamide units have confirmed this, and shown that 

chalcogenide…H—C interactions can also be described in this manner.4b The atomic polarizability 

increases down the group so that S = 19.3 a.u. and Se 25.4 a.u. (a.u. = atomic units); thus a stronger 

interaction should occur when descending the group.7 Moreover, as the atomic radius increases 

steric effects become less pronounced as the group is descended. These interactions can be 

comparable in strength to hydrogen and halogen bonding. For example, the computed interaction 

energy of FHS…NH3 is -8.4 kcal mol-1 compared to -11.3 kcal mol-1 for FHSe…NH3 and -10.3 kcal 
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mol-1 for the halogen bonded F—Cl…NH3.
5d Perhaps more illuminating is the low temperature 

structure of the F4S
…NEt4 adduct which displays an S—N bond length of 2.384(2) Å, typical for 

a dative covalent bond;8 theory supports this hypothesis9 and reports a binding energy of -14.4 kcal 

mol-1.  

Halogen interactions have been further delineated by the geometric parameters shown in Chart 1. 

0o|1-2|15o are classified as type I; 15o|1-2|30o are quasi-type I/type II and 30o|1-2| are 

type II.10 Type I are generally thought to be due to crystal packing, while Type II are stabilizing 

interactions. A recent examination of the Cambridge database showed that the majority of S…S 

interactions in sp2 hybridized sulfur are Type I (1  2).
11 It is also apparent that S…O interactions 

are prevalent in molecular recognition and host-guest interactions in biological systems.12 

However few examples of chalcogenide interactions exist where a metal ion is included.13 Indeed, 

even the more mature field of halogen bonding features limited examples, notably iodoform 

adducts of trans-[PtX2(NCNR2)2],
14 or in a uranyl organic framework based on halogen substituted 

isonicotinic acids.15 



 5 

 

Chart 1. Types of halogen and chalcogenide bonding.  
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The uranyl ion has a number of features that make it attractive for a study on non-covalent 

interactions. The coordination geometry is generally limited by the linear O=U=O (–yl) fragment 

so all coordination will be directed to the equatorial plane.16 Changing the equatorial ligands can 

influence the properties of the uranyl ion in catalytic applications17 or the formation of uranyl 

coordination polymers with great effect.18 Over the last few years the –yl moiety has been shown 

to act as a secondary directing influence in supramolecular assembly to form 3-dimensional 

structures. However, as the oxo groups are generally considered as poor Lewis bases these 

interactions have been somewhat neglected. Interactions with metal cations can elongate the U=O 

bond length to a degree that is noticeable crystallographically.19 Some evidence suggests that this 

weakening of the U=O bond is due to the increase in electron density around the uranyl cation and 

increase electrostatic repulsions within the U=O group.20 For weaker interactions, hydrogen 

bonding acceptor via C—H…O=U interactions,21 sometimes via charge assisted hydrogen 

bonding,22 can be used to recognize or separate the uranyl ion selectively from complex mixtures.23 

More recently, the uranyl ion as a halogen bond acceptor24 has been observed. Finally, additional 

supramolecular interactions utilizing the equatorial ligands as tectons have been utilized. For 

example, the elegant studies using uranyl thiocyanate to explore non-covalent bonding in 

halogenated pyridinium cations showed some evidence for S…S close contacts.25 In relation to this 

we recently reported close contacts between two selenium atoms in [Et4N]4[UO2(NCSe)5][NCSe] 

(dSe…Se = 3.427(1) Å).26 A series of [R4N]3[UO2(NCS)5] (R = Me, Et, nPr)27 have been structurally 

characterized as examples of species present in spent nuclear fuel reprocessing. Moreover, the 

uranyl thiocyanate ion has shown to have unusual thermochromic behavior in ionic liquids.28  

In this contribution we have extended our study of the coordination chemistry of the [NCSe]- 

pseudohalide as a tecton in uranyl coordination chemistry, of which there is only one other 
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example.29 We also compare the uranyl selenocyanate chemistry to that of uranyl thiocyanate  

compounds which we30 and others27 have reported, and explore the other non-covalent 

interactions, namely charge assisted C—H…O=U and C—H…S(e) hydrogen bonding interactions. 

To do this we have utilized X-ray crystallography, vibrational and photoluminescence 

spectroscopy and theoretical methods to further our understanding of these weak interactions. 

 

Results and Discussion 

Synthesis and Structural studies. 

The syntheses of all the compounds described herein are simple (Equations 1 and 2) and X-ray 

quality crystals grown for all. We will use the nomenclature RE, where R is the alkyl group of the 

ammonium cation and E is S or Se to distinguish these compounds. Thus we have a small library 

of compounds that we can compare structural parameters and packing motifs (i) within the NCS 

series, (ii) within the NCSe series and (iii) with the same cations. In one case we also obtained a 

small amount of a decomposition product presumably from [NCS]- oxidation and this has been 

structurally characterized. When the reaction of cyanates were examined, we consistently observed 

hydrolysis of the [NCO]- fragment and K4[UO2(CO3)3] the only product obtained. In contrast, the 

reaction of [NCTe]- with uranyl nitrate afforded immediate decomposition to a grey precipitate of 

presumably tellurium metal and, from the acetonitrile soluble fraction,  single crystals of 

[Et4N]2[UO2Cl4] were deposited. [NCTe]- chemistry is dominated by this decomposition.31 

[UO2(NO3)2].6H2O + 5 NaNCS + 3R4NCl  [R4N]3[UO2(NCS)5]  (1) 

[UO2(NO3)2].6H2O + 5 KNCSe + 3R4NCl  [R4N]3[UO2(NCSe)5]  (2) 
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(i) [R4N]3[UO2(NCS)5] series (R = Me, Et, nPr, nBu, Me3NBz, Et3NBz) 

The solid-state structures of MeS, EtS and nPrS have been previously described,27 but the focus of 

that work was not on the supramolecular structures, whereas nBuS, Me3NBzS and Et3NBzS are 

new. An example of the structure of Me3NBzS is shown in Figure 1, while selected metric 

parameters for the RS series are reported in Table 1; other structural data are collated in Figure S1-

S3 and Tables S1-S8. In all compounds the uranyl geometry is, as expected, pentagonal 

bipyramidal with a linear O=U=O moiety, and the U—N, N=C and C=S bond lengths are 

statistically identical. The only differences are in the orientation of how the [NCS]- ion coordinates 

to the uranium; in particular the U—N=C angle and the deviation of the S atoms out of the UN5 

plane, which diverges significantly.  
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Figure 1. Asymmetric unit of Me3NBzS with atomic displacement parameters shown at 50% 

probability. Hydrogen atoms omitted for clarity. 
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Table 1. Selected average bond lengths (Å) and angles (o) for the RS series. 

Compound U=O U—N N=C C=S O=U=O U—N=C S o.o.p (Å)a 

MeSb 1.770(4) 2.45(2) 1.15(2) 1.62(1) 179.7(1) 154.1(4) to 

176.2(4) 

S1 -0.343 

S2 +1.100 

S3 -0.910 

S4 +0.394 

S5 +0.181 

EtSb 1.763(6) 2.45(2) 1.16(1) 1.62(3) 177.4(3) 

178.3(4) 

155.3(7) to 

176.4(7) 

S1 +0.260 

S2 +0.072 

S3 -0.625 

S4 -1.042 

S5 -0.702 

nPrSb 1.749(4) 2.44(2) 1.14(1) 1.62(3) 178.9(3) 158.4(6) to 

179.6(8) 

S1 -0.286 

S2 -0.475 

S3 -0.683 

S4 +0.574 

S5 +0.103 

nBuS 1.769(10) 

1.759(9) 

2.45(1) 1.16(1) 1.63(1) 179.4(9) 168.6(2) to 

172.3(2) 

S1 -0.479 

S2 -0.364 

S2A -0.364 

S3A -0.474 

Me3NBz 1.778(3) 

1.774(3) 

2.45(1) 1.16(1) 1.62(1) 179.21(1

3) 

153.2(3) to 

167.2(3) 

S1 -0.797 

S2 -1.404 

S3 -0.087 

S4 -0.760 

S5 -0.708 
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Et3NBz 1.772(2) 

1.773(2) 

2.45(1) 1.16(1) 1.63(1) 179.4(9) 168.9(3) to 

172.6(3) 

S1 +0.466 

S2 +0.307 

S3 -0.219 

S4 -0.342 

S5 +0.296 

a distance out of the UN5 plane. 

b from Reference 27 

 

Apparent in the structures of MeS and EtS are S…S close contacts within the van der Waals radii 

for two S atoms (3.78 Å).32 In MeS these are Type I interactions (dS
…

S = 3.587 Å, 2-1 = 0o). In 

contrast, EtS forms chains along the crystallographic b-axis and the angles 1 and 2 suggest these 

are not crystal packing (Figure 2a), in accord with the conventional description for halogen 

bonding (Chart 1); we believe that this is applicable here as the interactions are both of a -hole 

type. The S…S distances and angles are: dS
…

S = 3.470 Å, 2-1 = 38.3o and dS
…

S = 3.591 Å, 2-1 

= 20.8o.  There are also S…H—C weak hydrogen bonds33 (dS
…

C = 3.540(8) to 3.895(7) Å) where 

the alkylammonium cation links two chains. It appears that the S…H—C interaction is responsible 

for the movement of the sulfur atom out of the UN5 plane. Also present are longer C—H…O=U 

hydrogen bonds (dO
…

C = 3.21 and 3.47 Å). As the size of the R group increases the close contacts 

between two S centers are no longer present, and in the nPr case, S…H—C interactions are prevalent 

(Figure 2b; dS
…

C = 3.74 – 3.84 Å) along with bifurcated hydrogen bonding to the uranyl ion (dO
…

C 

= 3.40 and 3.49 Å). We have prepared and structurally characterized nBuS and there are no S…S 

close contacts. Thus it appears that there is a steric effect of the cation in the nature of these non-

covalent interactions, whereby the conformationally non-rigid arms of the n-propyl chain are 

enough to ‘turn-off’ the S…S close contacts, while the S…H—C interactions dominate all 



 12 

structures. Support for this hypothesis comes from the structures of [Me3NBz]3[UO2(NCS)5] and 

[Et3NBz]3[UO2(NCS)5] where there are short contacts between two sulfur atoms, but the angles 

suggest a type I interaction, i.e. due simply to packing (Me3NBzS: dS
…

S = 3.350 Å, 2-1 = 0o; 

Et3NBzS: dS
…

S = 3.540 Å, 2-1 = 14.0o). However, these systems enable us to explore the C—

H...S interactions in more detail (Me3NBzS: dS
…

C = 3.690(3) to 3.824(3) Å; Et3NBzS: dS
…

C = 

3.711(4) to 3.849(5) Å). It has been reported from computational studies that the strength of this 

weak hydrogen bond is dependent upon the hybridization of the C—H donor and this decreases as 

hybridization increases,34 but in the structures of Me3NBzS and Et3NBzS there is no obvious 

correlation. From this description it is clear that the supramolecular structures are influenced subtly 

by the steric effects of the cation. 
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Figure 2. Supramolecular structure of (a) EtS highlighting the non-covalent S…S interactions 

(black lines) and (b) the S…H-C hydrogen bonding in nPrS (blue lines). Color code: U – pink; O – 

red; N- blue; C – grey; S – yellow; H – white. 

 

A further secondary interaction occurs between the C—H of the cation and the uranyl group. The 

–yl oxo is well known to act as a hydrogen bond acceptor.21,22 In all the examples in this series, 

except for nBuS, there are numerous short contacts with dC…O between 3.0-3.5 Å; Figure 3 shows 

a specific example. These hydrogen bonding interactions do not perturb the U=O bond lengths, as 
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all examples are essentially identical to that of BuS which does not feature any U=O…H—C close 

contacts, indicating that the hydrogen bonding interactions are very weak (vide infra).  

 

 

Figure 3. Supramolecular interactions in Me3NBzS: dashed red line U=O…H—C and dashed blue 

line S…H—C.  

 

During one attempt at the synthesis of [Ph4P]3[UO2(NCS)5] we obtained a few single crystals that 

were shown to be [Ph4P]2[UO2(NCS)3(NO3)] by single crystal X-ray diffraction. We were able to 

increase the yield using the correct stoichiometry, albeit as a polymorph, but have been unable to 
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crystallize the homoleptic thiocyanate complex with this cation. The structure of this compound is 

shown in Figure 4. The bond lengths are similar to the homoleptic series described above, with the 

exception that the U-N bond lengths are slightly shorter (2.412(8) and 2.402(11) Å). The U—O 

bond length (2.503(7) Å) is typical for a nitrate ion coordinated in a bidentate fashion. There are 

no S…S close contacts in this case and the dominant interactions are C—H…O hydrogen bonding 

to the nitrate ion (dC
…

O = 3.237(10) Å) and longer C—H…S (dC
…

S = 3.736(9) Å); the [NCS]- ion 

involved in this interaction is bent out of the UN5 plane (0.307 Å; C(1)-N(1)-U(1) = 166.2(7)o) in 

comparison to that [NCS]- ion that does not have close contacts which is in the plane (C(2)-N(2)-

U(1) = 180.0o), adding weight to our thesis that it is the weak hydrogen bonding that is responsible 

for the disruption in the U—NCS coordination environment. 
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Figure 4. Molecular structure of [Ph4P]2[UO2(NCS)3(NO3)] with atomic displacement parameters 

shown at 50% probability. Hydrogen atoms omitted for clarity. Symmetry unique atoms labelled 

only. 

 

In an attempted reaction of uranyl nitrate, sodium thiocyanate and Me3SnCl, we did not isolate the 

expected species, but instead structurally characterized [(UO2)2(SO4)2(H2O)4].3H2O. The 

mechanism of oxidation of the [NCS]- ion is not immediately apparent, but there is some literature 

precedent for oxidation of coordinated thiocyanate to sulfate.35 Nevertheless the structure is -

uranyl sulfate determined in 1978,36 and similar to the mineral Shumwayite,37 

[(UO2)2(SO4)2].5H2O. Our refinement is significantly better so we have included it herein but will 

not comment further. 

 

(ii) [R4N]3[UO2(NCSe)5] series (R = Me, Et, nPr, Et3NBz) 

The number of structurally characterized uranyl selenocyanate compounds numbers only two: we 

reported the structural characterization of [Et4N]4[UO2(NCSe)5][NCSe],26 and Walensky and co-

workers reported a tridentate salicylaldiminate uranyl complex of [NCSe]-.29 We have extended 

our initial study to include [Me4N]3[UO2(NCSe)5].H2O (MeSe), nPrSe and Et3NBzSe, all of which 

have been structurally characterized. The gross solid-state structures are the same as for the RS 

series, and an exemplar, nPrSe, is shown in Figure 5, while the other structures are in Figures S4-

S6. The pertinent metric parameters are collated in Table 2 and Tables S9-S14, and there are no 

significant differences in the series. 
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Table 2. Selected average bond lengths (Å) and angles (o) for the RSe series. 

Compound U=O U—N N=C C=Se O=U=O U—N=C Se o.o.pa 

MeSe 1.769(5) 

1.763(5) 

1.768(5) 

1.764(5) 

2.46(2) 1.15(3) 1.80(3) 179.0(3) 

178.7(3) 

162.0(6) 

to 

179.0(7) 

Se1 +0.609 

Se2 +0.710 

Se3 +0.114 

Se4 +0.227 

Se5A 

+1.552 

Se5B 

+1.879 

Se6 -1.145 

Se7 +0.135 

Se8 +0.249 

Se9 -0.073 

Se10 

+0.018 

EtSea 1.771(2) 2.46(1) 1.15(1) 1.79(1) 179.57(9) 171.0(2) 

to 

177.6(3) 

Se1 -0.164 

Se2 +0.482 

Se3 -0.258 

Se4 +0.496 

Se5 -0.481 

nPrSe 1.7632(19) 

1.7690(19) 

2.46(1) 1.15(1) 1.78(1) 179.48(10) 157.1(2) 

to 

173.8(2) 

Se1 +0.329 

Se2 -0.673 

Se3 -0.035 

Se4 -0.638 

Se5 -0.498 
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Et3NBzSe 1.765(5) 

1.756(5) 

2.45(2) 1.14(3) 1.79(3) 179.5(3) 167.3(7) 

to 

174.9(7) 

Se1 +0.232 

Se2 +0.499 

Se3 +0.203 

Se4 -0.158 

Se5 -0.267 

a distance out of the UN5 plane. 

 

 

Figure 5. Molecular structure of nPrSe with atomic displacement parameters shown at 50% 

probability. Hydrogen atoms omitted for clarity. 
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The supramolecular interactions in the RSe series are greater and more complex than the RS series; 

in particular Se…Se interactions closer than the sum of the van der Waals radii (3.64 Å)32 are 

preponderant, as expected if the bonding is via a -hole type mechanism. Se…H—C interactions38 

and U=O…H—C weak hydrogen bonds are also prevalent.  

The packing of MeSe is shown in Figure 6. There are a number of Se…Se distances which are all 

slightly longer than the van der Waals radii (dSe
…

Se = 3.671(2) - 3.755(3) Å), but theory shows that 

these are stabilizing interactions (vide infra). Interestingly Se(1)…Se(7), Se(4)…Se(8) and 

Se(3)…Se(9) form 1D sheets along the c-direction (Figure 6b), with C—H…Se weak hydrogen 

bonds (dC 
…

Se = 3.75 – 4.07 Å) linking the layers. C—H…O=U hydrogen bonding (dC 
…

O = 3.35 

and 3.57 Å) interactions are also present, along with hydrogen bonding from the free water to U=O 

(dO
…

O = 3.13 Å) and Se (dO
…

Se = 3.79 Å). The water presumably comes adventitiously from the 

recrystallization process; notably all other compounds were prepared and recrystallized in air so it 

may be that the small cation allows for the inclusion of water in this case. Irrespective of the source 

of the water, it clearly engages in hydrogen bonding to the preference of C—H...O=U hydrogen 

bonding and possibly chalcogenide bonding. 
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Figure 6. Packing of MeSe along the crystallographic a-axis. (a) A perspective view and (b) a 

view highlighting the Se…Se interactions (black lines). 

nPrSe shows no Se…Se interactions, probably due to the steric effect of the longer n-propyl arms 

that completely shield the uranyl complex, as illustrated in the space-filling structure (Figure 7). 

There are a plethora of Se…H—C (dC
…

Se = 3.64 to 4.00 Å) and C—H…O=U (dC
…

U = 3.175(3), 

3.271(3) and 3.387(3) Å) close contacts that link the uranyl ions in layers. As in the previous series, 

it appears that Se…H—C interactions bend Se out of the UN5 plane. 
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Figure 7. Space-filling view of nPrSe (orange – Se; blue – N, dark Grey – C; light gray – H; red – 

O; uranyl axis is parallel to the page). 

 

In Et3NBzSe (Figure 8) there are a number of Se…Se close contacts (dSe
…

Se = 3.565(2) Å, 2-1 = 

20.7o; dSe
…

Se = 3.665(2) Å, 2-1 = 66.1o). There are also multiple Se..H—C (dC
…

Se = 3.790(8) - 

3.913(8) Å) and U=O…H—C (dC
…

U = 3.310(9) - 3.59(1) Å) interactions present. 
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Figure 8. Supramolecular interactions in Et3NBzSe: (a) a view of the C—H…O and C—H…Se; 

(b) the packing along the crystallographic a-axis and (c) along the crystallographic b-axis 

highlighting the chalcogenide interactions (dashed black line Se…Se; dashed red line U=O…H—C 

and dashed blue line Se…H—C). 

 

(iii) Structural comparisons within the RS and RSe series – nPrS/nPrSe and Et3NBzS/Et3NBzSe. 

A summary of the types of interactions is shown in Table 3. We can directly compare structural 

parameters between two series with the same cation. For nPr, the obvious conclusion is that the 

(a) 
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chalcogenide…chalcogenide interactions are not present. Perhaps this is due to the non-rigid nature 

of the propyl arms which preferentially engage in S(e)…H—C and U=O…H—C interactions, 

implying that these are more favored over S(e)…S(e) interactions. The charge assisted hydrogen 

bonds to the uranyl ion are about the same length. Interestingly, the Et3NBz series shows that as 

the polarizability of the chalcogenide atom increases then Type II interactions become preferred, 

even though these are isostructural pairs. The charge assisted hydrogen bond distances do not 

significantly change, indicating that perhaps these weak interactions are purely electrostatic in 

origin. A similar trend is observed for the S(e)…H—C interactions. 

 

Table 3. Structural comparison of [UO2(NCE)5]
3- compounds. 

Compound S…S 

(% vdv) 

S…H—C 

 

O…H—C 

 

Compound Se…Se 

 

Se…H—C 

 

O…H—C 

 

MeS Type I 

(95) 

multiple multiple MeSe Type I 

(101) 

Type II 

(100) 

multiple multiple 

EtS Type II 

(92) 

multiple multiple EtSe Type II 

(94) 

multiple multiple 
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A useful method for comparing solid state structures is via the Hirschfeld surfaces.39 We have 

employed this method to examine the non-covalent interactions present in the RS and RSe series, 

along with selected other homoleptic uranyl thiocyanate complexes.28,40 A quantitative analysis is 

shown in Figure 9. The chalcogenide…chalcogenide interactions decrease as the R group increases 

in size, but those with the R3NBz group are type I for S and type II for Se. However it is clear that 

the S(e)…H—C interactions are the largest non-covalent interaction present but also decrease in 

the same order. 

nPrS no multiple multiple nPrSe no multiple multiple 

nBuS no one no -    

Me3BzNS Type I 

(88) 

multiple multiple -    

Et3BzNS Type I 

(94) 

multiple multiple Et3BzNSe Type II 

(98) 

multiple multiple 
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Figure 9. Quantitative Hirschfield analysis of RS and RSe series. (BumimS and C4mimS from 

references 28 and 40 respectively) 

 

Spectroscopic characterization. 

All the compounds discussed above have been characterized spectroscopically with the aim of 

observing if the structural perturbations are detectable. NMR spectroscopy is uninformative, while 

solid-state 77Se NMR spectroscopy does not show a clear trend (Figure S25).  

Vibrational Spectroscopy. The vibrational spectra of crushed single crystals clearly show the 

uranyl stretch and the N=C and C=S(e) bond stretches. In the series the bands attributable to these 

stretches do not change significantly (Table S15); the Raman active 1(U=O) symmetric stretching 

mode lies in a narrow range between 842 and 850 cm-1 while the IR active 3(U=O) asymmetric 
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stretching mode comes between 910 and 940 cm-1 (Figures S7-S8). For comparison, the 

[UO2(H2O)5]
2+ ion shows these bands at ca. 860-880 cm-1 and 930-960 cm-1 for the 1 and 3 modes 

respectively;41 the presence of the donor atoms in the equatorial plane cause a redshift, as expected. 

From the IR and Raman spectra the stretching force constant (k1) and the interaction force constant 

(k12) can be calculated, as k1 gives an indication of bond strength while k12 describes the interaction 

between the two –yl oxygen atoms.42 In our case any changes must be due to the difference in the 

hydrogen bonding, and we can benchmark our data to the unperturbed U=O bond of nBuS. The 

force constants do not change significantly from this value (nBuS, k1 = 6.92 mdyn/Å; range = 6.84 

– 7.06 mdyn/Å) and there is no correlation to the donor…acceptor bond distances (Table S15) so 

the hydrogen bonding does not influence these metrics, as observed by others.22 There is however 

a larger k1 and k12 associated with the NCSe ligands compared to the NCS analogues as shown for 

the nPrS/nPrSe (S: k1 = 6.91 mdyn/Å, k12 = -0.14 mdyn/Å; Se: k1 = 6.98 mdyn/Å, k12 = -0.14 

mdyn/Å) and Et3NBzS/Et3NBzSe (S: k1 = 6.78 mdyn/Å, k12 = -0.10 mdyn/Å; Se: k1 = 6.86 

mdyn/Å, k12 = -0.17 mdyn/Å) families. The structural information showed no significant changes 

in donor…acceptor bond lengths, so this could be a manifestation of the differing donor abilities of 

the coordinating ligands.20a  

Photoluminescence Spectroscopy. The photophysical properties of the uranyl ion have been well 

studied and the optical properties are due to a ligand-to-metal charge transfer (LMCT) transition 

involving promotion of an electron from bonding –yl oxygen orbitals (u, g, u and g) to non-

bonding uranium 5f and 5f orbitals, centered at ca. 420 nm. The characteristic green emission at 

ca. 520 nm arises from de-excitation of the 3u triplet excited state. Superimposed on the 

absorption and emission bands are bands arising from strong coupling of the ground state Raman 

active symmetric vibrational O=U=O (1) mode with the 3u electronic triplet excited state.43 
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There are some general trends that are apparent in the luminescence measurements, such as a 

correlation between the electron donating ability of the ligand and the E0-0 values; i.e. the more 

electron donating the ligand the lower the energy value of the emission.44 We recently showed for 

a series of [UO2X4]
2- ions (X = Cl, Br, I) that the emission maxima and lifetimes of the Oyl→U 

LMCT band are not particularly sensitive to variation of the halide.45 Recently the influence of the 

tecton in [UO2Cl4]
2- has been interrogated using luminescence spectroscopy46 and it may be that 

those ligands that have vibrational modes that can couple with the U=O vibrations to directly 

influence the luminescence properties. The emission and excitation spectra of RS and RSe have 

been recorded both in the solid state and in solution, where all non-covalent interactions break up 

and mononuclear species dominate.47 In the solution emission spectra (Figure S22 and Table S16) 

there are clear differences between the RS and RSe family and the [NCS]- ion is a more electron 

donating ligand than the [NCSe]- ion in this series and on par with the nitrate ion. The differences 

within each family are small and mainly due to the changes in the vibronic coupling, and is also 

observed in the room temperature solid state emission spectra (Figure S23). Given the poor 

resolution of these spectra, we investigated the low temperature (77 K) photoluminescent 

properties of all compounds and selected examples are shown in Figure 10 (Figure S24 shows the 

remainder, except for MeSe which did not show any resolution enhancement). Immediately 

apparent is the increase in resolution, to the point that additional weaker bands appear, and are 

labelled as set A and B. The weak bands of set B are separated from each other by a vibrational 

progression of ca. 850 cm-1 which is due to coupling to the 1(U=O) vibration, but the differences 

between set A and B are ca 490 cm-1. It is noteworthy that these additional bands were observed 

in the room temperature emission spectra of [UO2(NCS)5]
3- in ionic liquids and ascribed to changes 

in the coordination environment. However a close examination of the Raman spectra of the RS 
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compounds show a number of rather weak bands at 500 and 544 cm-1 due to the (NCS) mode,48 

so it appears that this can couple with the uranyl vibrational mode; the same pattern is observed in 

[Ph4P]2[UO2(NCS)3(NO3)] (Figure S24). Supporting this is the smaller and weaker coupling of ca. 

450 cm-1 in the RSe family which corresponds to the very weak (NCSe) vibrational bend at ca. 

430 cm-1 in the Raman spectra (Figues S9). The only other mode that could couple is the U—N 

bend but in An(IV) thiocyanates this comes at ca 200 cm-1.49 The differences between the RS and 

RSe families are not marked at low temperature. Finally we have measured the lifetimes of the 

emissions both in the solid state and solution (Table S16), and they vary substantially across the 

series so no definitive conclusions can be drawn. 
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Figure 10. Emission spectra of selected examples of RS and RSe at 77 K in the solid state (ex = 

340 nm). 
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In summary, the spectroscopic data show some small differences between the [NCS] and [NCSe] 

coordinated ions, but suggest that the C—H…O interactions are not sufficiently strong to perturb 

the electronic structure of the uranyl ion, while the consequences for chalcogenide interactions are 

not observable.  

 

DFT calculations. 

To deepen our understanding of the non-covalent interactions in these species, we turned to DFT 

calculations. Supramolecular calculations of energy would be dominated by charge-charge 

interactions, so instead we have used molecular electrostatic potential (MEP), Atoms-in-Molecules 

(AIM) and natural bond orbital (NBO) derived properties to characterize U=O…H—C, Se…H—C 

and chalcogenide interactions in molecules and dimers selected from the crystal structures reported 

herein. 

(i) Chalcogenide interactions. Se…Se interactions in [Et4N]4[UO2(NCSe)5][NCSe], where the 

Se…Se distances are substantially shorter than the van der Waals radii, lead us to hypothesize the 

presence of a -hole on Se.  Figure 11 shows the molecular electrostatic potential projected onto 

the 0.001 au isodensity surface for [UO2(NCS)5]
3- and [UO2(NCSe)5]

3-. The overall negative 

charge of each complex means that the MEP is negative across the entire surface, but the plots 

nevertheless show regions of relative electron depletion (i.e. a -hole) on both S and Se, with a 

more pronounced hole on Se (-0.231 au) than on S (-0.246 au). There are also small differences in 

the –yl oxygens and corroborates the differing electron donating ability of the ligands from the 

photoluminescence spectroscopy and force constants. 
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Figure 11. Molecular electrostatic potential projected onto the 0.001 au isodensity surface for 

[UO2(NCS)5]
3- (top) and [UO2(NCSe)5]

3- (bottom). 

 



 31 

We elected to do DFT calculations for dimers of [UO2(NCSe)5]
3- from MeSe and the complex of 

[UO2(NCSe)5]
3- with NCSe- extracted from EtSe, as these gave representative examples of the 

weak interactions present in the series. NBO analysis indicates that the major interactions between 

species are donation from a Se lone pair of the coordinated [NCSe]- to a * orbital on another 

[NCSe]- moiety (1.94 kcal/mol and 0.58 kcal/mol) in the dimers extracted from MeSe. In the dimer 

extracted from EtSe, donation from a Se lone pair of the coordinated [NCSe]- to the C=Se * 

orbital of free [NCSe]- (2.94 kcal/mol), along with donation from the free Se lone pair to the 

coordinated C=Se * orbital (2.20 kcal/mol). Figure 12 shows the orbitals involved in EtSe. The 

energies of the MeSe dimers are lower than that of EtS and in keeping with the longer Se…Se 

distances in the structures. Finally, the interaction energies of model compounds Me2Se…SeMe2 

(-2.82 kcal/mol) and Me2Se…Se(Me)CN (-4.62 kcal/mol)50 are comparable to our systems. 

The value of the electron density at the critical point, bcp, is often taken as a proxy for bond 

strength. Here the Se…Se contact exhibits a bond critical point with bcp = 0.009 au for both dimers, 

corroborating the NBO analysis that a weak but a stabilizing interaction is present. This is 

noteworthy as in MeSe the Se…Se contacts were slightly greater than the sum of the van der Waals 

radii. There are few reports of Se…E examples characterized via this methodology to compare, 

but XRSe…OH2 and XRSe…NH3 (R = H; Me; X = H, F, Me, CF3, Cl, OH, OMe, NH2, NHMe, 

CN) bcp range from 0.053-0.270 au for the Se…O/N interaction, or in F2C=Se…NX (X = CH; H3; 

HCH2; CLi; Me3; bcp = 0.0089-0.0197) and F2C=Se…XY (XY = BrCl, ClF and BrF; bcp = 0.0276-

0.0440).51 The optimized dimers of (X2C=S)2 range from bcp =  0.039 to 0.050 with the sum of 

the charge transfer 1.52 to 3.12 kcal/mol (X = H, NH2, OH, F, Cl).11 This data can be put into a 

broader context by comparing to other non-conventional bonding that has been reported. Whilst it 

is clear that substitution effects are important, these chalcogenide interactions are on par with the 
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weak fluorine bonding (e.g. bcp = 0.0073 for the interaction in H—F…F—F52), or halogen lone 

pair… interactions,53 and weaker than, for example, F—Br..I—F (bcp = 0.0320)54 as anticipated 

from the -hole mechanism of bonding which depends on the polarizability of the atom. 

 

 

Figure 12. Theoretical analysis of [Et4N]4[UO2(NCSe)5][NCSe] (a) NBO orbitals involved in the 

coordinated to free, (b) free to bound lone pair to * orbitals. 

 

(ii) weak hydrogen bonding. We have characterized dimers bound by Se…H—C and U=O…H—C 

hydrogen bonding, taken from MeSe and nPrSe, an AIM approach as this features interactions. A 

dimer taken from MeSe contains three C—H…O=U bond critical points with bcp = 0.007, 0.006 

& 0.005, while the H-bonds from nPrSe: 6 x C—H…Se = 0.008, 0.006, 0.005, 0.005, 0.004, 0.003. 

Thus, individual C—H…Se are individually weak but rather numerous, lending support to the 

hypothesis that these dominate in cases such as nPrSe with many such donors. C—H…O=U 

interactions seem even weaker on this basis, again supporting the observation noted above that the 

terminal O in uranyl are relatively weak Lewis bases. Intramolecular C—H…O=U hydrogen 
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bonding has recently been theoretically analyzed and in this case bcp = 0.002-0.0243 a.u., 

indicating that intramolecular hydrogen bonding is perhaps stronger than intermolecular hydrogen 

bonding, although geometric constraints may influence this.   

 

Conclusions 

A series of uranyl thiocyanate and selenocyanate compounds have been prepared and structurally 

characterized. The nature of the alkyl ammonium group dictates the non-covalent interactions 

observed in the solid state and chalcogenide, C—H…O=U and C—H…S(e) are observed. 

Chalcogenide interactions are observed in some of the structures and are more prevalent in the 

[NCSe] series than the [NCS], and in line with the increased polarizability of the Se which renders 

a more pronounced -hole on Se (-0.231 au from MESP) than on S (-0.246 au from MESP). The 

molecular orbitals responsible for this were identified and correspond with the known ideas of n 

to * charge transfer in these non-classical interactions, albeit in this example the non-bonded pair 

of electrons resides in a  orbital. Comparison with other weak -hole type bonds puts these 

chalcogenide interactions similar to interactions involving fluorine or, more commonly used in 

synthetic chemistry, lone pair… interactions.55 C—H…S(e) interactions are individually weak 

from an AIM analysis but numerous and accounts for their preponderance in the solid state 

structures. The vibrational data suggest that the charge assisted hydrogen bonding to the –yl 

oxygens does not influence the spectroscopic properties and DFT studies show that these 

interactions are the weakest of the three studied. Unusually, the coupling the (NCS) and 

(NCSe) vibrational modes to the uranyl mode manifests itself in the photophysical properties of 

these species in the solid state. Taken together these results show that collectively non-classical 
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interactions can have an important influence of the solid state structures, but are in these cases not 

observable by conventional spectroscopic techniques. Nonetheless, these add to the growing field 

of chalcogenide interactions in the coordination sphere of metals. 

 

Experimental Section 

Caution! Natural uranium was used during the course of the experimental work. As well as the 

radiological hazards, uranium is a toxic metal and care should be taken with all manipulations. 

Experiments using uranium materials were carried out using pre–set radiological safety 

precautions in accordance with the local rules of Trinity College Dublin. 

 

1H, 13C{1H}, 31P{1H} and 77Se{1H} spectra were recorded on a Bruker AV400 spectrometer 

operating at 400.23 MHz, 155.54 MHz, 161.98 MHz and 76.33 MHz respectively, and were 

referenced to the residual 1H and 13C resonances of the solvent used or external H3PO4 or Me2Se. 

Solid state 77Se NMR spectra were recorded on a Bruker 400 HD at 76.3 MHz.IR spectra were 

recorded on a Perkin Elmer Spectrum One spectrometer with attenuated total reflectance (ATR) 

accessory. Raman spectra were obtained using 785-nm excitation on a Renishaw 1000 micro-

Raman system. UV-vis measurements were made on a Perkin Elmer Lambda 1050 

spectrophotometer, using fused silica cells with a path length of 1 cm. Steady-state 

photoluminescence spectra were recorded on a Horiba-Jobin-Yvon Fluorolog-3 

spectrofluorimeter.  Luminescence lifetime data were recorded following 372-nm excitation, using 

time-correlated single-photon counting (a PCS900 plug-in PC card for fast photon counting). 

Lifetimes were obtained by tail fit on the data obtained, and the quality of fit was judged by 
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minimization of reduced chi-squared and residuals squared. X-ray crystallography data were 

measured on a Bruker Apex diffractometer at 100 K. The structure was solved by direct methods 

and refined by least squares method on F2 using the SHELXTL program package.56 Crystal data, 

details of data collections and refinement are given in Table S17. CCDC 1586895-1586903 

contains the supplementary crystallographic data for this paper. This data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Structural figures were prepared using VESTA57 or 

mercury. All other chemicals and solvents were obtained from commercial sources and used as 

received. 

 

DFT calculations were carried out using the meta-hybrid M06-2X58 DFT method Gaussian09,59 

without symmetry constraints. Monomer or dimer coordinates were extracted from relevant crystal 

structures, and where necessary C—H bond lengths normalized to values from neutron diffraction 

(1.082 Å), with all heavy atom positions frozen at crystalline values.  Scalar relativistic effects in 

uranium were included through use of effective core potentials as defined in Preuss et al’s 

ECP/basis set on U,60 while for lighter atoms 6-31+G(d,p) was used. Natural bond orbital (NBO) 

analysis was performed using Gaussian09; Atoms-in-Molecules (AIM) analysis used 

AIMAll.61  Topological analysis of the electronic density () is based upon those points where the 

gradient of the density, , vanishes. In this work we consider points where one curvature (in the 

inter-nuclear direction) is positive and two (perpendicular to the bond direction) are negative, 

termed (3, -1) or bond critical points. Properties evaluated at such points characterize the bonding 

interactions present. 

 

http://www.ccdc.cam.ac.uk/data_request/cif
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All solvents and reagents were obtained commercially and used as received. [R4N]3[UO2(NCS)5] 

(R = Me, Et, nPr) were synthesized via a slight modification of literature procedure, whereby the 

reactants were mixed in MeCN rather than H2O. 

 

Synthesis of uranyl thiocyanates 

To a solution of UO2(NO3)2 • 6H2O (0.30 g) in acetonitrile (30 cm3) were added Na[NCS] (5 

equivalents) and the appropriate cation (3 equivalents). The solution mixture was stirred at room 

temperature for 60 minutes. The resulting yellow solution was filtered and the solvent was reduced 

in volume. Crystals suitable for X-ray diffraction were obtained by vapor diffusion of iPr2O into 

MeCN solutions of the products and yellow crystals obtained after ca. 1 week. 

 

[nBu4N]3[UO2(NCS)5]. Yield: 57%, 0.44 g; 1H NMR (400 MHz, CD3CN):  1.00 ppm (t, 36H, JH-

H = 7.36 Hz, CH3),  1.38 ppm (m, 24H, JH-H = 7.43 Hz, CH2),  1.63 ppm (m, 24H, JH-H = 8.55 

Hz, CH2),  3.11 ppm (m, 24H, JH-H = 8.62 Hz, CH2); 
13C{1H} NMR (155 MHz, CD3CN):  12.89 

ppm (CH3),  19.39 ppm (CH2),  23.36 ppm (CH2),  58.33 ppm (CH2); IR (ATR, ν/cm-1): 2960 

(m), 2872 (w), 2052 (s, C=N), 1467 (m), 1380 (w), 1152 (w), 1108 (w), 1067 (w), 1026 (w), 919 

(s, U=O), 882 (m), 736 (m, C=S); Raman (ν/cm-1): 2099 and 2059 (C=N), 1456, 1324, 909, 850 

(U=O), 736 (C=S); UV-vis (, dm3 mol-1 cm-1): (298 K, MeCN, ∼10-5 M): 330 nm (4868), 284 nm 

(6240.5), 232 nm (17618). 

 

[Me3NBz]3[UO2(NCS)5]. Yield: 55%, 0.29 g; 1H NMR (400 MHz, CD3CN):  3.05 ppm (s, 27H, 

CH3),  4.43 ppm (s, 6H, CH2),  7.52 ppm (m, 6H, o-CH),  7.53 ppm (m, 3H, p-CH),  7.56 ppm 

(m, 6H, m-CH); 13C{1H} NMR (155 MHz, CD3CN):  52.4 ppm (CH3),  69.3 ppm (CH2),  127.6 
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ppm (ipso-C),  129.2 ppm (m-CH),  130.7 ppm (p-CH),  132.9 ppm (o-CH); IR (ATR, ν/cm-

1): 3420 (m), 3025 (w), 2030 (s, C=N), 1634 (w), 1581 (w), 1475 (m), 1408 (m), 1375 (m), 1211 

(m), 1076 (w), 1036 (w), 970 (m), 916 (s, U=O), 885 (m), 779 (m, C=S), 725 (s), 700 (s); Raman 

(ν/cm-1): 2090 and 2062 and 2048 and 2041 (C=N), 1065, 1584, 1471, 1446, 1216, 1184, 1157, 

1033, 1003, 845 (U=O), 823, 808 (C=S), 725, 621; UV-vis (, dm3 mol-1 cm-1), (298 K, MeCN, 

∼10-5 M): 342 nm (14461), 300 nm (17597). 

 

[Et3NBz]3[UO2(NCS)5]. Yield: 62%, 0.41 g; 1H NMR (400 MHz, CD3CN):  1.37 ppm (t, 27H, 

JH-H =  7.11 Hz, CH3),  3.18 ppm (q, 18H, JH-H = 7.18 Hz, CH2),  4.35 ppm (s, 6H, CH2),  7.51 

ppm (m, 3H, p-CH),  7.53 ppm (m, 6H, m-CH),  7.55 ppm (m, 6H, o-CH); 13C{1H} NMR (155 

MHz, CD3CN):  8.13 ppm (CH3),  53.5 ppm (CH2),  61.1 ppm (CH2),  128.1 ppm (ipso-C),  

130.2 ppm (m-CH),  131.5 ppm (p-CH),  133.4 ppm (o-CH); IR (ATR, ν/cm-1): 3437 (w), 2994 

(w), 2086 (m), 2042 (s, C=N), 1455 (m), 1399 (m), 1330 (w), 1214 (w), 1182 (w), 1150 (m), 1086 

(m), 1033 (m), 1005 (m), 910 (s, U=O), 788 (m) 752 (s, C=S), 693 (s); Raman (ν/cm-1): 2089 and 

2042 (C=N), 1005, 842 (U=O), 816 and 812 and 804 (C=S), 679; UV-vis (, dm3 mol-1 cm-1), (298 

K, MeCN, ∼10-5 M): 333 nm (4268) nm, 286 nm (5610), 230 nm (8503). 

 

[Ph4P]2[UO2(NCS)3(NO3)]. Yield: 51%, 0.36 g; 1H NMR (400 MHz, CD3CN):  7.71 ppm (m, 

8H, JH-H = 8.43 Hz, m-CH),  7.78 ppm (m, 8H, JH-H = 7.93 Hz, o-CH),  7.95 ppm (m, 4H, JH-H 

= 7.53 Hz, p-CH); 13C{1H} NMR (155 MHz, CD3CN):  118.4 ppm (d, 1JP–C = 89.60 Hz ipso-C), 

 130.3 ppm (d, 3JP–C = 12.8 Hz, m-CH),  134.7 ppm (d, 2JP–C = 10.3 Hz, o-CH),  135.4 ppm (d, 

4JP–C = 2.94 Hz, p-CH); 31P{1H} NMR (162 MHz, CD3CN):  22.7 ppm; IR (ATR, ν/cm-1): 3054 

(w), 2029 (s, N=C), 1584 (w), 1481 (w), 1433 (m), 1341 (w), 1312 (w), 1269 (w), 1189 (w), 1163 
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(w), 1104 (s), 1025 (w), 996 (m), 928 (s, U=O), 754 (m, C=S), 720 (s), 678 (s), 616 (w), 523 (s); 

Raman (ν/cm-1): 2079 and 2034 (C=N), 1586, 1575, 1187, 1165, 1111, 1095, 1037, 1001, 860 

(U=O), 826 and 819 (C=S), 677, 615, 278, 257, 244; UV-vis (, dm3 mol-1 cm-1), (298 K, MeCN, 

∼10-5 M): 330 nm (4727), 275 nm (11131), 232 (49865). 

 

 

Synthesis of uranyl selenocyanates 

To a solution of UO2(NO3)2 • 6H2O (0.30 g) in acetonitrile (30 cm3) were added KNCSe (5 

equivalents) and the appropriate cation (3 equivalents). The solution mixture was stirred at room 

temperature for 60 minutes in the dark. The resulting orange solution was filtered and the solvent 

was reduced in volume. Crystals suitable for X-ray diffraction were obtained by vapor diffusion 

of iPr2O into MeCN solutions of the products and yellow crystals obtained after ca. 1 week. 

 

[Me4N]3[UO2(NCSe)5].H2O. Yield: 39%, 0.20 g; 1H NMR (400 MHz, CD3CN):  3.14 ppm (s, 

12H, CH3),  2.25 ppm (s, 2H, H2O); 13C{1H} NMR (155 MHz, CD3CN):  54.9 ppm (CH3); 

77Se{1H} NMR (76 MHz, CD3CN):  -340.5 ppm (NCSe); IR (ATR, ν/cm-1): 3027 (w), 2956 (w), 

2060 and 2042 (s, C=N), 1738 (w), 1480(m), 1410 (w), 1365 (w), 944 (s), 920 (s, U=O), 632 (m, 

C=Se); Raman (ν/cm-1): 2071 and 2091 (C=N), 1460, 948, 848 (U=O), 753 (C=Se), 637, 564, 457, 

250; UV-vis (, dm3 mol-1 cm-1), (298 k, MeCN, ∼10-5 M): 329 nm (7311), 250 nm (25068). 

 

[nPr4N]3[UO2(NCSe)5]. Yield: 45%, 0.36 g; 1H NMR (400 MHz, CD3CN):  0.977 ppm (t, 36H, 

JH-H = 7.27 Hz, CH3),  1.69 ppm (m, 18H, JH-H = 9.27 Hz, CH2)  3.10 ppm (m, 18H, JH-H = 5.20 

Hz, CH2); 
13C{1H} NMR (155 MHz, CD3CN):  10.8 ppm (CH3),  16.0 ppm (CH2),  61.0 ppm 
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(CH2); 
77Se{1H} NMR (76 MHz, D-Acetone):  -305 ppm (NCSe); IR (ATR, ν/cm-1): 2968 (m), 

2937 (w), 2877 (w), 2094 (w), 2060 and 2046 (s, C=N), 1482 (m), 1455 (m), 1385 (m), 968 (m), 

926 (s, U=O), 842 (w), 756 (m, C=Se), 627 (m); Raman (ν/cm-1): 2100 and 2079 and 2065 (C=N), 

1459, 1316, 1140, 1110, 1037, 852 (U=O), 783, 757, 640 (C=Se), 557, 333, 313, 210; UV-vis (, 

dm3 mol-1 cm-1), (298 k, MeCN, ∼10-5 M): 330 nm (9696). 

 

[Et3NBz]3[UO2(NCSe)5]. Yield: 54%, 0.44 g; 1H NMR (400 MHz, D-Acetone):  1.55 ppm (t, 

27H, JH-H = 7.31 Hz, CH3),  3.47 ppm (q, 18H, JH-H = 7.33 Hz, CH2),  4.70 ppm (s, 6H, CH2),  

7.55 ppm (m, 3H, p-CH),  7.57 ppm (m, 6H, m-CH),  7.66 ppm (m, 6H, o-CH); 13C{1H} NMR 

(155 MHz, D-Acetone):  7.35 ppm (CH3),  52.7 ppm (CH2),  60.3 ppm (CH2),  128 ppm (ipso-

C),  129 ppm (m-CH),  131 ppm (p-CH),  133 ppm (o-CH); 77Se{1H} NMR (76 MHz, D- 

Acetone):  -342 ppm (NCSe); IR (ATR, ν/cm-1): 2984 (w), 2086 (w), 2047 (s, C=N), 1451 (m), 

1395 (m) 1210 (w), 1186 (w), 1154 (m), 1078 (w), 1030 (m), 969 (w), 920 (s, U=O), 831 (w), 806 

(w), 791 (m), 751 (s, C=Se), 701 (s); Raman (ν/cm-1): 2087 and 2056 and 2043 (C=N), 1604, 1460, 

1212, 1051, 1033, 1003, 842 (U=O), 677, 643, 624; UV-vis (, dm3 mol-1 cm-1), (298 k, MeCN, 

∼10-5 M): 329 nm (5383), 264 nm (8167), 248 nm (18259). 
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For ToC use only 

Chalcogenide bonding within the coordination sphere of the uranyl ion have been explored using 

X-ray crystallography, vibrational and photoluminescence spectroscopy. 



 56 

                                                                                                                                                             

 

 


