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Abstract: Photonic microwave generation based on period-one dynamics of an optically 

injected VCSEL has been study experimentally. The results have shown that the frequency of 

the generated microwave signal can be broadly tunable through the adjustment of the 

injection power and the frequency detuning. Strong optical injection power and higher 

frequency detuning are favorable for obtaining a high frequency microwave signal. These 

results are similar to those found in systems based on distributed feedback lasers and quantum 

dot lasers. The variation of the microwave power at the fundamental frequency and the 

second-harmonic distortion have also been characterized. 
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1. Introduction 

Photonic generation of high-frequency microwave signals has gained much attention over the 

past decade [1–6]. One of the main motivations behind these studies is their potential 

application in radio-over-fiber (RoF) system. Compared with conventional circuitry based 

microwave generation, photonic microwave generation in RoF offers several advantages, 

such as, low cost, high speed, longer transmission distance, low power consumption and less 

system integration complexity [7,8]. Many photonic microwave generation techniques have 

been proposed, which includes direct modulation, optical heterodyne technique, external 

modulation, mode-locked semiconductor lasers, optoelectronic oscillator (OEO) and period 

one (P1) [9]. Among these techniques, photonic microwave generation based on P1 

oscillation dynamic has gained much more attention in the recent studies due to the many 

advantages of this approach, such as: a nearly single sideband (SSB) spectrum, which 

minimizes the power penalty [3], low cost due to all-optical components configuration [10] 

and widely tunable oscillation frequency far from its original relaxation resonance frequency 

[3,11–13]. P1 oscillation is obtained when a stable locked laser experiences a Hopf 

bifurcation, which generates two dominant frequencies: one is generated from the optical 

injection while the other one is emitted near the cavity resonance frequency [14]. The 

frequency of photonic microwave generation based on P1 can be broadly tunable by changing 

the injection power or frequency detuning. The generated frequency can far exceed the 

relaxation oscillation frequency of the injected semiconductor laser. Photonic microwave 

generation based on P1 oscillation has been investigated extensively in conventional single 

mode distributed feedback (DFB) laser [14,15]. The results show that 100 GHz with tuning 

range of tens of gigahertz photonic microwave signal can be achieved using P1 oscillation in 

DFB lasers [16]. Recently, a tunable photonic microwave with continuous tuning of the 

frequency up to 20 GHz has also been achieved experimentally in a quantum dot (QD) laser 

based on P1 oscillation [17]. 

To the best of our knowledge, there is no commercial available QD laser lasing around 

1.55 µm and the wavelength region near 1.55 μm is the most popular for fiber communication 

systems due to its lowest optical attenuation. The DFB laser constitutes the majority cost of 

microwave generation based on P1 oscillation scheme, and the cost of a single-mode vertical-
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cavity surface-emitting laser (VCSEL) is about one tenth of the price of a DFB laser. 

VCSELs also have many impressive characteristics, such as, low threshold current, low 

power consumption, circular beam profile, single-longitudinal mode operation, ease of 

fabrication and longevity. VCSELs subject to optical injection share many similar nonlinear 

dynamics as those in DFB lasers. The use of off-the-shelf VCSELs therefore offers a method 

to achieve low-cost and low power consumption of photonic microwave generation. In recent 

years, photonic microwave generation using VCSEL has drawn a great deal of attention [18–

23]. More than 20 GHz photonic microwave signal has been obtained using dual-beam 

orthogonal optical injected in a single-transverse-mode VCSEL [23], however, no significant 

reduction of the linewidth is achieved by using double injection because the linewidth is 

mainly determined by the phase fluctuations of the two master lasers. An invited paper [9] has 

reported that photonic microwave generation based on P1 oscillation has many advantages 

compared with the other proposed techniques, including simple electronics, tunability and 

single sideband. Two channel photonic microwave generation based on P1 of two 

orthogonally polarized modes in a VCSEL subjected to an elliptically polarized optical 

injection has also been numerically simulated and analyzed [24]. 30GHz microwave signal 

have also been observed in parallel-polarized optical injection in VCSEL with the injection 

wavelength close to the suppressed polarized mode [25]. The generated microwave frequency 

in [25] is dependent on the frequency different between the dominant mode and the 

suppression orthogonal mode. The frequency difference between the dominant mode and the 

suppression orthogonal mode is induced by anisotropies of the VCSEL materials, which is 

difficult to control during device fabrication. As such the photonic microwave generation 

using this method provide less feasibility of selection of the microwave frequency. In this 

paper, we have experimentally investigated the photonic microwave signal generation using 

low-cost off-the-shelf single mode VCSELs based on similar physical mechanism reported in 

DFB laser [14,15] in order to achieve the low cost and low power consumption of tunable 

photonic microwave generation. To the best our knowledge, no experimental confirmation of 

photonic microwave signal generation in VCSEL based on this scheme has been reported. 

The effect of the injection power and frequency detuning on the frequency of photonic 

microwave signal has been investigated. More than 15 GHz (due to limitation of the 

measured instruments) with tunability of more than 10 GHz photonic microwave signal has 

been demonstrated. 

The remainder of this paper is organized as follows. The experimental setup is described 

in Section 2, followed by the experimental results in section 3. In section 4, we summarize the 

results obtained. 

2. Experimental setup 

 

Fig. 1. The experimental setup. ML: Master laser, SL: Slave laser, PC: polarization controller, 
Atten: digital attenuator Cir: Optical circulator. ISO: optical isolator, 3dB: 2 by 2 3dB fiber 

coupler, Dec: photodetector, RF: radio frequency spectrum analyzer. FPI: Fabry-Perot 

interferometer. 

Figure 1 shows the schematic experimental setup. It is all fiber setup. A commercial single-

mode VCSEL (Raycan RC33xxx1F pigtail) was used as slave laser (SL). The VCSEL was 

driven by extra-low noise current and the temperature was control at 21.0 °C. At this 

temperature, the threshold current of the VCSEL was 1.3mA and its lasing wavelength was 
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1529.92nm at the bias current of 5mA. A tunable laser (TUNICS-BT 1550) with maximum 

output power of 10 mW and linewidths of 1 MHz was used as the master laser (ML). The 

output of the ML travelled through a polarization controller (PC), a digital fiber attenuator 

and an optical circulator, and injected into the slave laser. The polarization controller was 

used to control the polarization of the injection beam to be parallel to the slave laser’s 

polarization direction; the attenuator was in place to adjust the injection power. The total 

output of the SL was split to two detection paths. One path was detected by 12GHz 

bandwidth photo-detectors (New Focus 1554-B) and recorded by a 30GHz RF spectrum 

analyzer (Anritsu MS 2667C); another path was sent to a Fabry-Perot interferometer (FPI). 

The output beam from the FPI was detected by a detector and sent to an oscilloscope 

(Tektronix TDS7404) for monitoring the optical spectra of the SL. The finesse of the FPI is 

150 and the free spectrum range of the FPI was set at 19.9 GHz, so the resolution of the FPI 

was 0.133GHz. In this experiment, no polarization-resolved VCSEL’s output was measured. 

3. Experimental results 

The VCSEL used in the experiment was a single transverse mode laser lasing at one linear 

polarization (X-polarization) near the threshold current. When the bias current was increased 

to 3.1 mA, the polarization switched to its orthogonal polarization (Y-polarization). Further 

increases in the bias current to 6.7 mA, see the polarization switch back to X-polarization and 

remained in this polarization until the bias current reached 9.3 mA. The frequency of X-

polarization is about 5.1 GHz higher than that of Y-polarization at the polarization switching 

current. In the experiment, the bias current was fixed at 8.5 mA, unless stated elsewhere. The 

injection power was varied from 0.0007 mW to 1.86 mW and the frequency detuning was 

varied from 14.37GHz to + 13.32GHz. The injection power was measure at port 2 of the 

optical circulator and the output power of the free running VCSEL was found to be 1.70mW. 

The actual injection powers in the VCSEL were smaller than the measurement due to 

coupling loss. However, the quantity analysis on the effect of the injection power on the 

frequency of the generated photonic microwave is out of the scope of this paper. Therefore 

only the relative analysis was provided. The frequency detuning was calculated as 
ML SLf f , 

where 
MLf  and 

SLf  are the frequencies of the ML and SL, respectively. The change of the 

frequency detuning is achieved by tuning the frequency of the ML. The VCSEL was operated 

at P1 dynamics for most of setting parameters. 

3.1 Fundamental microwave frequency 

Figure 2 presents the RF spectra of the VCSEL at several injection conditions under P1 

oscillation. Figure 2(a) shows the spectrum of the VCSEL subject to optical injection with 

injection power of 0.37 mW and the frequency detuning of 2.9 GHz. The grey curve is the 

noise curve. It is very clear that the noise floor of the spectrum increases sharply at 8 GHz 

and above. This is because the RF spectrum analyzer uses different harmonic orders of the 

mixer for different frequency ranges. For the 0–8.1 GHz frequency range, the first harmonic 

order of the mixer has been used; for 8.0–15.3 GHz frequency range, the second harmonic 

order of the mixer has been used. As a result, the noise level is increased for the frequency of 

8.00 GHz. The output spectrum of the VCSEL in Fig. 2(a) indicates that the VCSEL is in P1 

oscillation state with a fundamental frequency 
0f  of 5.87 GHz. The optical spectrum of P1 

oscillation in optical injection VCSEL contains a regenerative component at injection 

frequency fi and sidebands equally separated by the fundamental frequency of photonic 

microwave f0 [9]. The beating between the regenerated mode and the second strongest 

sideband induces the second harmonic at 
02 f , which has also been observed with power 

suppression of 20 dB in comparison with that at the fundamental frequency. Under the same 

frequency detuning, increasing the injection power to 0.74mW, see the generated microwave 
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frequency increase to 7.22 GHz, as shown in Fig. 2(b), which demonstrates that the injection 

power affects the fundamental frequency of the generated photonic microwave. 

 

Fig. 2. The power spectra of the VCSEL output at injections frequency detuning and injection 

power of (a) (2.9 GHz, 0.37mW), (b) (29. GHz, 0.74 mW), (c) (4.1 GHz, 0.28 mW), (d) 

(8.17 GHz, 0.28 mW). 

To observe the effect of frequency detuning on the fundamental frequency, we fix the 

injection power and varied the frequency detuning. Figures 2(c)-2(d) show the power spectra 

of the VCSEL with injection power of 0.28 mW and the frequency detuning of + 4.1 GHz and 

8.17 GHz, respectively. In Fig. 2(c), 8.26 GHz of the fundamental frequency has been 

observed. At this operating parameters, we believe the second harmonic appeared at around 

16.5 GHz, however, due to the detector bandwidth limitation, this second harmonic peak 

cannot be detected. Increasing the frequency detuning to 8.17 GHz, as shown in Fig. 2(d), the 

fundamental frequency increased to 10.74 GHz, which also indicate the fundamental 

frequency related to the frequency detuning in this P1 region. 

The generated microwave fundamental frequency, 
0f , variation as a function of frequency 

detuning under two different injection power is plotted in Fig. 3(a). The gap between the data 

lines are mostly injection locking (IL) with small P2 and chaos oscillation region. The 

VCSEL operated above Hopf bifurcation boundary for the curves at the right side of the gap 

and below saddle-node bifurcation boundary for the curves at the left side of the gap. When 

the injection power is small (black lines, injection power of 0.093mW), the frequency shift 

rate of 
0f  is higher in the negative frequency detuning. Increasing the injection power to 

0.558mW, causes the injection locking to shift to a more negative frequency detuning region. 

The results also show that the frequency shift rate for the injection power of 0.558 mW is 

lower than that for the injection power of 0.093 mW for the detuning frequencies above the 

Hopf bifurcation boundary. 

Figure 3(b) displays the fundamental frequency 
0f  as a function of the injection power 

with four fixed frequency detunings. The results show that the frequencies 
0f  increase 

monotonically with the increasing injection power. For lower injection powers (<0.5 mW), 

the frequency shift rates are varied for the different frequency detuning. The frequency shift 

                                                                                               Vol. 25, No. 17 | 21 Aug 2017 | OPTICS EXPRESS 19867



rates decreases with increasing frequency detuning. For the higher injection powers (>0.5 

mW), the frequency shift rates are approximately constant for all detuning frequencies. This 

result is similar to that reported in DFB laser based configurations [3]. 

 

Fig. 3. Generated microwave frequency as function of (a) frequency detuning and (b) injection 

power. 

The same physical mechanism in [3] can be used to explain the results observed in our 

VCSEL based system. Since the fundamental microwave frequency is the result of the 

frequency beating between the injection beam and the carrier frequency. When the VCSEL is 

subjected to optical injection, the carrier frequency experiences a red shift due to the increase 

of the refractive index and the pulling effect. The competition between the red-shifting and 

pulling effect induces the frequency shift rate change under different injection power and 

detuning frequency conditions. 

A map of the generated microwave frequency for various detuning frequencies and 

injection powers is presented in Fig. 4, the two rainbow colored denote areas that exhibit 

period one dynamics. Injection locking, period-two and chaotic regions are embedded within 

the large grey area, which is not our focus in this paper. In the upper right corner of the black 

color areas, the oscillation frequencies are found to be outside of the measurement range of 

the instrumentation. The results in Fig. 4 indicate that the frequency detuning and the 

injection power greatly affect the frequency of photonic microwave. The frequency of 

photonic microwave signal increases with the increase of injection power, the frequency 

detuning above the Hopf bifurcation boundary and the absolute frequency detuning below the 

saddle node bifurcation boundary. The continuous tuning of the frequency from 4GHz to up 

to 15GHz due to the instruments limitation has been obtained. 
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Fig. 4. Mapping of the fundamental frequency. 

3.2 Microwave power 

 

Fig. 5. Mapping of the fundamental microwave frequency power. 

The optical frequency components are converted into microwave signals at the photo-

detector. To utilize photonics generated microwave in RoF applications, it is important to 

understand how the power of the generated microwave varies with injection power and 

frequency detuning. As shown in Figs. 2(a)-2(b), the fundamental frequency 
0f  and the 

second harmonic 
02 f  can be observed at same time, the power at 

0f  and 
02 f  are denoted 

0fP  and 2 0fP , respectively. Figure 5 maps the power 0fP  at the fundamental frequency with 

the same injection conditions as those in Fig. 4. Similarly to Fig. 4, top right black area is out 

of our instrument detection range, the grey area is mainly the injection locking region and 

small P2 and Chaos regions. From the mapping, we can observe that the microwave power 

stays around 25dBm consistently over the whole frequency detuning range with P1 

dynamics when injection power is below 0.2mW. Above injection powers of 0.2mW, the 

microwave 0fP  increases to a power of around 20 dBm except in two areas (indicated with 

red color). The power in these two areas is approximate 4dB higher than in the adjacent 
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regions. These two areas have not been observed in DFB lasers [3] or quantum dot lasers 

[17]. The exactly physical mechanism is still not clear. This observation will be verified in the 

future studies and checked to see if it is specific to VCSELs. 

In this study, we also characterize the second harmonic distortion (SHD) in the RF spectra 

of the generated microwave. The SHD is defined as the ratio of the second harmonic power 

2 0fP  to the power at the fundamental frequency 
0fP  [17]. The SHD of the optically injected 

VCSEL is presented in Fig. 6. The frequency detuning range in this measurement is from 6 

GHz to 4 GHz, which is smaller than those measurements for the microwave frequency. The 

reason is that the second harmonic peak is out of the detection range of the detector for the 

higher frequency detuning. Figure 6(a) shows that the SHD fluctuates around 27 dB for the 

injection power of 0.093 mW. No trend with the frequency detuning can be concluded. 

However, the SHD shows a tendency to decrease with the increasing frequency detuning 

within the measurement range for the injection powers of 0.279 mW and 0.465mW. These 

results have some similarity with the results in quantum dot laser [17], where the SHD is less 

sensitive to frequency detuning for low injection power. For intermedium injection powers, 

the maximum SHD was observed in the intermediate frequency detuning range in QD laser 

[17], however, this phenomenon has not been seen in our experiment. Figure 6(b) shows the 

SHD as a function of the injection power with three different detuning frequencies. The 

results show that the SHDs changes irregularly with the increasing injection power. No 

simple trend is observed. The weaker dependence of the SHD on the injection power seen in 

our experiment is similar to that reported in QD laser [17]. Lower amplitude fluctuations were 

observed at the most negative detuning frequency among these three detuning frequencies. 

The optical spectra of the VCSEL output have not been recorded, so we cannot describe the 

SSB characteristics of the generated photonic microwave. This will be studied in the future 

work. 

 

Fig. 6. Second harmonic distortion as a function of (a) the frequency detuning, (b) the injection 

power. 

4. Conclusion 

Photonic microwave generation based on P1 dynamics of a VCSEL subject to parallel 

injection has been studied experimentally. Continuous tuning of the microwave frequency 

from 4GHz to up to an instrumentation limited 15GHz was observed. Further increases the 

microwave frequency are possible by increasing the injection power or the frequency 

detuning. It has demonstrated that the frequency of the generated microwave increases with 

increasing frequency detuning above the Hopf bifurcation boundary and increasing injection 

power. The frequency detuning has little influence on the power of the generated microwave 
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except two small areas. On the other hand, the SHD decreases with increasing frequency 

detuning for higher injection power. The injection power has some effect on the power of the 

generated microwave signal, however, it has very limited effect on the SHD. This study 

underlines the potential of using low-cost off-the-shelf VCSELs to realize widely tunable 

photonic microwave oscillators based on period one oscillation. 
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