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ABSTRACT

Minute-long gravitational-wave (GW) transients are currently a little-explored
regime, mainly due to a lack of robust models. As searches for long-duration
GW transients must rely on minimal assumptions about the signal proper-

ties, they are also sensitive to GWs emitted from unpredicted sources. The detection
of such sources offers exciting and strong potential for new science.

Because of the large parameter space covered, all-sky long-duration transient
searches require model-independant processing and fast analysis techniques. For
my PhD thesis, I integrated a set of fast cross-correlation routines in the spherical
harmonic domain (SphRad) [50] into X-pipeline [95], a targeted GW search pipeline
commonly used to search for GW counterparts of short and long duration GRBs &
core-collapse supernovae.

Spherical harmonic decomposition allows for the sky position dependancy of the
coherent analysis to be isolated from the data [40] and cached for re-use, saving
both time and processing units. Moreover, the spherical harmonic approach offers a
fundamentally different view of the data, allowing for new possibilities for rejecting
non-Gaussian background noise that could be mistaken for a GW signal.

The combined search pipeline, X-SphRad, underwent a thorough internal review
within the LIGO collaboration, which I led. The pipeline good functioning was
assessed by rigorous tests including comparing a test data set with a standard sky
grid-based analysis.

I have developed a novel pixel clustering method that does not depend on the
amplitude of potential signals. By using an edge detection algorithm, I quantify each
pixel in the spectrogram by its similarity with its neighbours then extract features
of sharply changing intensity (or ‘edge’). The method has shown promising results
in preliminary tests. A simplified version of the algorithm was implemented in
X-SphRad and large-scale testings are currently being processed.
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INTRODUCTION TO GENERAL RELATIVITY

Gravitational Waves (GWs) are direct consequences of Einstein’s General Theory

of Relativity (GR) [52], introduced in 1916. The existence of GWs was indirectly

confirmed 60 years later by Hulse & Taylor with the binary pulsar PSR1913+16 [65].

Direct detection of GWs is a challenging task. As their amplitudes when passing

through Earth-based detectors are smaller than the size of a proton [35], major

scientific innovations had to take place before having the technical capability of

picking up GWs. The initial Laser Interferometer for Gravitational wave Observatory

(iLIGO) detectors described in [44] underwent regular upgrades over the last two

decades with ever increasing sensitivity. However, no GW was detected during the

first six iLIGO science runs which included joint observation time with the French-

Italian Virgo detector. Large-scale improvements to the LIGO detector lowered the

noise floor in the target frequency band by a factor of 10, at which stage the detectors

were renamed Advanced LIGO (aLIGO) [12].
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In 2015, nearly a hundred years after their original prediction, aLIGO recorded

the first GW signal [13]. Originating from a binary black hole (BBH) system, the

signal’s detection made history by opening a new window in astronomy with the

first:

1. detection of a black hole (BH),

2. detection of a binary black hole system,

3. detection of a binary black hole merger.

Since then, LIGO recorded 3 such events indicating that there is a population of

heavy black holes that can form in nature, with binary black-hole systems forming

and merging within the age of the universe at a detectable rate [13, 14].

Cosmological models not predicting heavy BHs or low BBH merger rates are al-

ready starting to be constrained. Future observations of different systems will bring

incredible insights to the universe, the rules of nature in the strong gravitational

field regime, and the inner physics of nature’s most energetic events that cannot be

observed in the electromagnetic spectrum.

The next few years will mark the emergence of GW astronomy as a field.

This document aims at giving an overview of the current status of the gravita-

tional physics field, with a particular focus on searches targeting GW signals lasting

between 10 and 1000s, with minimal assumptions about the characteristics of the

signals.

After having introduced necessary materials about the generation of GWs and the

LIGO detectors, we will describe the X-SPhRad All-sky Long-duration GW transient
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1.1. EINSTEIN’S EQUATIONS

search carried out on the first aLIGO run (O1). Moreover, we will suggest alternative

approaches to improve the search sensitivity.

This chapter aims to give a brief introduction to Einstein’s General Relativity

theory and give working key concepts used in this work. It is adapted from [72,

86, 56], and more rigorous approaches can be found in most textbooks, for example

[61, 77].

1.1 Einstein’s Equations

General relativity describes spacetime as a four-dimensional manifold, globally

non-Euclidean and locally Minkowskian. This property allows the manifold to be

completely described using the familiar Euclidean spaces.

Spacetime geometry is defined by the Einstein tensor Gµ∫ and is determined

by the distribution of mass-energy Tµ∫, the stress-energy tensor, representing the

amounts of energy, momentum, pressure, and stress in the space. We see that

(1.1) Gµ∫ = Rµ∫°
1
2

gµ∫R = 8ºG
c4 Tµ∫,

where gµ∫ is the metric, Rµ∫ is the Ricci’s tensor and R is the Ricci scalar. These

quantities are all discussed in detail below. G is the Newton’s gravitational constant

and c is the speed of light.

1.1.1 The Metric

The metric gµ∫ gives the notion of distance on the manifold, such as:
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(1.2) ds2 = gÆØdxÆdxØ,

where ds is an infinitesimal distance expressed in the Cartesian coordinate

system (t, x, y, z). As the distance between a points A and B is the same as the

distance between B and A , we impose the metric to be symmetric with respect to its

indices, for example gxy = gyx .

In cases where gÆØ is diagonal with elements 1, the metric is said to be flat and

unambiguously described as an Euclidean space. We can verify that the definition of

distance satisfies Pythagoras’ theorem, which is simply the 2-dimensional case in

Euclidean geometry,

(1.3) ds2 = dx2 +d y2 =
2X

Æ,Ø
gÆØdlÆdlØ,

but only if gÆØ is a two-dimensional tensor of the form:

(1.4) gÆØ =

0

B@
1 0

0 1

1

CA

The manifold described by the metric has a notion of smoothness (e.g. a cube with

edges and corners is different than a sphere) and a notion of angles and distances

(e.g. a sphere with constant curvature is different than an ellipsoid) that can be used

to describe the geometry and curvature of the universe.

To introduce the notion of true causality (e.g. that past events affect the present),

we allow the metric gÆØ to be negative by having one dimension with a sign opposite

to the others, e.g.
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(1.5) gÆØ = ¥ÆØ =

2

666666664

°1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

777777775

We can then make the distinction between points separated in time (time-like,

if ds2 is negative) and points separated in space (space-like, if ds2 is positive), or

moving at the speed of light (null, if ds2 = 0).

1.1.2 Ricci Curvature Tensor

The Ricci curvature tensor RÆØ defines the deviation of the curved spacetime from

the flat Euclidean space in terms of volume. To construct it, we start by taking the

Riemman curvature tensor Rµ
∫µæ , measuring the differences between the curvature

of our manifold and the traditional Euclidean space [74]:

(1.6) R(u,v)w =rurvw°rvruw =r[u,v]w.

If there are no differences between the curvature of the manifold and the classic

Euclidean space, the Riemmann tensor vanishes everywhere (e.g Rµ
∫µæ = 0) and the

manifold itself is Euclidean (e.g. flat). To extract information about the change in

volume of a region of space, we sum R∫æ over all possible index values of its indices,

also named ‘contracting’ in literature, and multiply it by the inverse metric:

(1.7)
X

gµ∫g∫Ω = ±
µ
Ω =

8
>><

>>:

1, if ∫= Ω,

0, if ∫ 6= Ω.,
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from which we can build the Ricci tensor:

(1.8) R∫æ :=
X

Rµ
∫µæ.

1.1.3 Stress-Energy

We relate matter to the geometry of our manifold with the stress-energy tensor Tµ∫,

representing the amounts of energy, momentum, pressure, and stress in the space,

i.e.

(1.9) Tµ∫ =

0

BBBBBBBB@

u Ωx Ω y Ωz

Ωx Pxx æxy æxz

Ω y æyx Pyy æyz

Ωz æzx Ωzy Pzz

1

CCCCCCCCA

where u is the energy density, Ω are momentum densities, P are pressures, æ

are shear stresses, and the component Tµ∫ shows how much momentum in the µ

direction flows in the ∫ direction through a given point in spacetime.

1.2 Gravitational Waves

Following the definition of the flat space (Eq. 1.5), we can then imagine a “small”

perturbation hÆØ as a deviation from the curvature tensor gÆØ from the Minkowski

metric ¥. Explicitly:

(1.10) gÆØ = ¥ÆØ+hÆØ.
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Substituting gÆØ in Eq. 1.10 yields the expression for the linearised Ricci tensor:

(1.11) Rµ∫ =
1
2

(hÆµ,∫Æ+hÆµ,∫Æ°hÆµ,∫Æ°hÆµ,∫Æ).

It is convenient to define the trace-reversed perturbation hµ∫ such as

(1.12) h̄µ∫ = hµ∫°
1
2

h¥µ∫.

Evaluating Eq. 1.12 shows that

h̄ = ¥µ∫h̄µ∫ = ¥µ∫hµ∫°
1
2

h¥µ∫¥µ∫ = h°2h =°h,

(1.13)

which gives this notation the name of ‘trace-reversed perturbation’.

By switching to a Lorenz gauge, it can be shown that Eq 1.2 reduces to 6 compo-

nents such that

(1.14) ⇤h̄µ∫ =
16ºG

c4 Tµ∫,

where ⇤= gµ∫ @
@xµ

@
@x∫ .

In a vacuum, the stress-energy tensor Tµ∫ vanishes and

(1.15) ⇤h̄µ∫ = 0
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for which a plane monochromatic wave propagating in z with speed c is a solution

:

(1.16) h̄µ∫ = Aµ∫ei∑(ct°z),

with ∑= 2º
∏

= 2º f
c

and f is the frequency of the gravitational perturbation.

The tensor Aµ∫ is symmetric and defined by the wave amplitude.

Following a transerve-traceless gauge transformation on the symmetric tensor

Aµ∫ , Eq. 1.5 reduces to two independent non-zero components h£ and h+ :

(1.17) Aµ∫ =

0

BBBBBBBB@

0 0 0 0

0 h+ h£ 0

0 h£ °h+ 0

0 0 0 0

1

CCCCCCCCA

and the gravitational wave can be plus-polarised (if h£ = 0), cross-polarised (if

h+ = 0), circularly polarised (h+ = ±ih) or elliptically polarised (in all the other

cases).

1.2.1 Properties of Gravitational Waves

Akin to electromagnetic radiation, GWs carry energy and momentum (both angular

and linear) from the radiation source at the speed of light c and have two independent

polarisations (plus and cross). The GW amplitude is characterised by the single

dimensionless quantity, h, indicating a fractional change in length of the object that

the GW passes through.

Gravitational waves are produced by a non-uniform acceleration of mass. For

slowly moving sources (v << c) in weak gravitational field, we have
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(1.18) h̄i j = 2G
rc4

Z

V
Ω(xix j ° 1

3
±i j r2)d3x,

where Ω is the density of the volume d3x at position xi, V is the volume of the source

and the integral is evaluated at the “retarded time” (t° r
c ). Eq 1.18 is known as the

quadrupole formula for gravitational radiation.

The luminosity of a GW can be approximated by

(1.19) LGW ª c5

G
(
RSch

R
)2(

∫

c
)6,

and shows that BBH mergers, which have dimension of the order of the Schwarzschild

radius RSch, are the most luminous GW sources.

GW amplitudes fall at a rate linearly proportional to the distance they travelled,

i.e.

(1.20) h ª G
c4
¥Ekin

r
,

where ¥measures the asymmetry of the source (and thus the time-varying quadrupole

moment) and Ekin is the kinetic energy of the fraction of the source producing GWs.

The effect of a gravitational wave (Figure 1.1) is akin to a stretching and squeez-

ing effect, offset by 45 deg.

1.3 LIGO Detectors

This section gives a brief summary of the basic principles of the aLIGO detectors

and their main noise sources. A general overview can be found in [92] and more

9
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Figure 1.1: Illustration of the effect of a GW passing along the z direction through
a ring of particles on the xy plane. The wave’s plus polarisation h+ and cross
polarisation h£ cause an alternating squeezing and stretching of the test masses,
offset by 45 degrees. Illustration taken from [27]

details are available in [13]. The Advanced LIGO detectors are four kilometre-long

Michelson-type interferometers, where a light beam is split into two perpendicular

arms then reflected back and re-combined (Figure 1.2).

The detectors act as a transducer converting GW perturbations into a measurable

differential displacement along the arms, proportional to the gravitational wave

strain amplitude. As Michelson interferometers do not have a good directional

sensitivity to GWs, the strain amplitude is largest for sources with an orbital plane

parallel to the detector’s plane and located straight above or below. The antenna

pattern covers approximately half the sky. The light travel time between the two

identical detectors in Livingston, LA, US and Hanford, WA, US is 10 ms. Two pairs

of test masses free from displacement noises act as coordinate reference points.

The instruments are calibrated by applying a known force from a laser to the

10
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Figure 1.2: Simplified illustration of one of the LIGO detectors. A laser beam is
split into two components, then travels to mirrors in perpendicular arms. In cases
where the two arms are exactly the same length, the re-combined laser will have
destructive interference at the photodetector, and therefore cancel out.

test mass [70] and tracking the effect on an auxiliary optical readout. The system is

also used to physically move the mirrors in the same way typical GWs would in a

process of ‘hardware injections’. Hardware injections provide critical information on

the detection process, allowing consistency checks on the recovery and parameter

estimation.

The test masses are suspended by a multi-stage pendulum mounted on actively

controlled seismic isolation platforms. The system is built inside ultra-high vacuum

chambers. However, classical noise sources are currently not limiting the detector

11



CHAPTER 1. INTRODUCTION TO GENERAL RELATIVITY

sensitivity due to the presence of other technical noise sources. [13]

1.3.1 Noise Sources

Figure 1.3 shows the limiting noises as functions of frequency, normalised by the

interferometer response.

Figure 1.3: Sensitivity of the iLIGO detectors. The quantum noise is the limiting
factor at frequencies > 100 Hz. The detector is limited by the other degrees of
freedom below 100 Hz, which includes instrumental cross couplings. The strong line
features are caused by instruments and calibration lines. Taken from [13]

The detector sensitivity above 100 Hz is limited by photon shot noise, originating

from quantum effects.

Radiation pressure noise arises from the photons hitting and transferring their

momenta to the mirrors. The quantum radiation pressure noise follows 1
mf 2 , where

m is the mass of the mirror and f is the frequency, which is most important at lower
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frequencies. Heavier mirrors also help to contain the radiation pressure noise under

a frequency threshold.

Counting the photons generated by the laser carries a statistical uncertainty

of
p

N following a Poisson distribution, where N is the number of photons hitting

the mirrors at any instant. [92] shows that the shot noise hshot in GW amplitude

spectral density is

(1.21) hshot =
1
L

s
c~∏l

4ºPin
,

where L is the length of the interferometer arms, ~ is the reduced Plank constant,

∏l is the laser wavelength and Pin is the laser power.

The shot noise can be minimised in three ways; by increasing the length, L, of the

arm and the laser power, Pin, and by lowering the laser wavelength, ∏l . Increasing

the length of the arms by physically building longer structures is impractical for

many reasons. Instead, the LIGO detectors contain optical resonators reflecting the

laser back-and-forth along the arm while optimising the effective antenna length,

effectively increasing the length of the arm by a factor of ª 300. Ever increasing the

laser power is similarly unrealistic. Instead, the interferometer is held near a dark

fringe and most of the light is reflected back to the laser source by a partially trans-

missive mirror at the input, leading to an effective power gain of ª 40x. Together,

both techniques increase the 20W laser power to an effective 100 kW circulating in

each arm.

At frequencies below 100 Hz, the detector at design sensitivity is mainly lim-

ited by thermal noise arising due to brownian motion. Thermal noise cannot be

completely removed, but by improving the mirror quality Q, its amplitude can be
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concentrated in narrow frequency bands around the resonance frequencies !0 of the

optic- and suspension- vibrational modes

On top of the physical noise, the detectors exhibit non-stationarity manifested

as variations in the level and shape of these sensitivity curves over time [12], see

Figure 1.4. The non-Gaussian noise transients are caused by complex interactions

between instruments and their environment, and can mimic genuine signals when

random noise fluctuations manifest simultaneously yet independently in each detec-

tor. Transient noise is one of the main factors limiting the sensitivity of gravitational

wave searches. This is discussed in detail in Chapter 3.

1.4 Astrophysical Sources of Long-Duration GW

Transients

The recent GW detections directly confirm that GWs could be emitted from binary

black hole systems, and could peak in the LIGO frequency sensitivity band during

the merging phase. BBH systems are part of a subset of GW sources that are

predictable and accurately modelled. GW waveform simulations of such systems

can be generated by varying the most sensitive parameters like system orientation,

eccentricity, individual masses or spins. By comparing the detector output with

many iterations of different modelled systems, BBHs can be detected more reliably

than unmodelled systems. GWs emitted by such systems are also short-lived inside

the LIGO sensitivity band.

In contrast, astrophysical events that could potentially generate minute-long

GW emissions are not as well understood and cannot be modelled accurately, hence
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Figure 1.4: : Spectral variance of the advanced LIGO detectors during ª1 hour
around GW150914 for the Livingston detector (L1). The sensitivity of the detector
typically fluctuates by a factor of 5, with the more noisy frequency bands exhibiting
variance of few order of magnitude (see the 500 Hz band for example.)

.

speculations have to be made to allow for numerical solutions. However, Burst-type

models are routinely used to characterise the efficiency of burst searches as even

inaccurate model signals used in this context have properties consistent with GW

emissions such as duration, energy profile or frequency evolution that can be used to

give insights into search pipelines.

Astrophysical sources of long GW transients are often associated with complex

dynamics and hydrodynamic instabilities in the context of core collapse supernovae
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and long gamma-ray bursts (GRBs) [81, 99].

Turbulences in the accretion disk of a black hole could lead to GW emissions [101].

Through strong magnetic fields, the accretion disk around a Kerr black hole forms

clumps of matter that are then separated by GW emission spinning down the black

hole [102]. GWs emitted following this model have anti-chirp like characteristics,

with exact form depending on parameters such as the mass of the black hole, its

spin and the fraction of the accretion disk that forms clumps. As the strong coupling

and the amplitude of the associated GW emission are described as optimistic [91],

GWs from realistic accretion disk instabilities will likely diverge from the model

by several orders of magnitude in amplitude and have a wider bandwidth. [103]

indicates a detectability of the model to ª 100 Mpc with aLIGO design sensitivity.

As long-duration GRBs have an estimated rate of about 300 Gpc°3Yr°1 [84], such

GW signals could be observed within a few years.

Magnetic deformation of fast spinning neutron stars could generate GW emis-

sions with anti-chirp behaviour [57]. The exact form depends on the spin frequency

of the neutron star and its magnetic ellipticity. Newborn spinning neutron stars

in unstable configurations could also give rise to non-axisymmetric deformations

producing minute-long GWs [85]. Due to their weaker amplitude, such GW signals

could be detected with aLIGO sensitivity only if originating from our galaxy.
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2
GRAVITATIONAL WAVE DETECTION BY SPHERICAL

RADIOMETRY

2.1 Introduction

Previous gravitational-wave searches with the LIGO detectors have targeted tran-

sient signals with durations less than a few seconds [7, 9], and persistent signals

with durations up to hour-long and more [8, 10]. This leaves the regime of transient

GW signals with durations of 10-1000 seconds relatively unexplored [1, 56, 50].

Searches that are used to detect recent GW events ([13, 14, 26]) make use of

pre-computed banks of simulated signals 1 following the better-understood GW

signatures of these astrophysical events [66]. They then compare the observed data

from the LIGO detectors with the models to find potential matches (for example,

[15]). The technique is extremely sensitive to signals matching the computed model

1We note that short duration transient GW search pipelines also saw the events

17



CHAPTER 2. GRAVITATIONAL WAVE DETECTION BY SPHERICAL
RADIOMETRY

templates, but virtually insensitive to GW events that cannot be confidently modelled

[62], or are simply not part of the pre-computed banks.

In contrast, the physics behind potential sources of minute-long GWs is not well

understood, and as such no accurate GW emission models are available. Searches for

unmodelled GW transients need to use alternative methods to look more generally

for a localised excess of power [30], and must rely on minimal assumptions about

the signal. Therefore, they need to use techniques that are not specific to any GW

model but encompass all possible signals as generally as possible [20]. They are thus

overall less sensitive to modelled GW signals than modelled searches but have a

larger reach with broader potential for unexpected discoveries.

Both modelled and unmodelled GW searches operate on either of two bases;

when the source is known (from an electromagnetic (EM) counterpart such as GRBs

[2] or supernova (SN) [16]), the time and sky position of the event are used to

specifically target the GW signal. This gives a relatively small parameter space

to analyse, so targeted searches from EM counterparts provide good sensitivity

and offer a promising future to detection success. When the target it not known

a-priori (i.e. without an EM counterpart), searches must look over all-sky and

observe continuously, resulting in a much larger parameter space and increased

computational cost.

The search pipeline described in this chapter specifically targets unmodelled

gravitational-wave bursts with durations in the 10-1000 second range over all-sky,

motivated by the strong potential for GW detection in this regime [98]. Using a

novel approach based on spherical radiometry, the pipeline is competitively fast and

introduces a powerful new signal consistency measure well suited for rejection of

background noise [51].
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In this chapter, we introduce the formalism needed to take the detector data

streams from time domain to Fourier, then into the spherical harmonic domain. We

derive quantities to infer the likelihood of a GW signal in the data and introduce

principles behind background rejection. We then introduce the working pipeline,

X-SphRad, and detail the analysis steps and the detection procedure.

2.2 Gravitational Wave Analysis

The most straightforward approach to GW analysis with a network of detectors is

to generate a list of candidate events in each detector, then flag events happening

simultaneously with overlapping properties in all detectors [30, 96]. The properties

of GW candidates can then be extrapolated by a weighted average of the individual

properties in each detector. This method is fast but sensitive to glitches that are

simultaneous in individual detectors [9].

Another method is to combine the data from the individual detectors prior to

generating the list of candidate events [39, 60] , then measure the similarity between

detectors in the network in individual frequency- and time- regions. Glitches are

rejected by a measure of coherence [95].The detectors are naturally weighted by their

relative sensitivity which simplify further computations, but the procedure is slower

as the data needs to be correlated first. As GWs travel at the speed of light, the

difference in time of the detection of an event in the detectors allows for triangulation

of the source in the sky. The proper correlation of two or more GW detectors depends

on measuring the time difference, and thus the relative sky position of the emitting

source(s). The estimated sky position is also used to enable the identification of a

GW, and subsequent rejection of background noise.
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To account for sky position of the GW sources and compute the correct correlation,

typical all-sky GW searches map a grid of points in the sky and analyse the data

coherently as coming from each point. Because there are as many coherent combi-

nations as there are resolvable positions on the sky for the network, the method is

computationally costly.

The pipeline described in this chapter drastically lowers the computational time

of all-sky searches by removing the sky position dependency from the correlation of

the detector outputs in the spherical harmonic domain [40]. The spherical radiometry

approach takes advantage of the fact that sky maps in gravitational-wave searches

show strong correlations over large angular scales in a pattern determined by the

network geometry [50]. Computing sky maps indirectly through their spherical

harmonics minimises the redundant calculations.

The pipeline is based on X-PIPELINE [95]; a MATLAB-based package that con-

tains a suite of pre- and post-processing techniques that can be applied on event

triggers that are output by the novel Spherical Radiometer (SphRad) engine, devel-

oped by [50]. X-PIPELINE is standard in the field and widely used by the community

in SN searches [58], GRB searches [21], fast radio-burst triggered searches [17], and

is being used for the all-sky O1 search [22]. X-SphRad underwent internal review

within the LIGO collaboration.

2.3 Formalism

This section is adapted from [95] and [50].

For a GW with components h+,h£ coming from a direction ≠ and detected by a

detector Æ with antenna response FÆ(≠), the data output is be the linear combination:
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(2.1) dÆ(t+±tÆ(≠))= F+
Æ (≠)h+(t)+F£

Æ (≠)h£(t)+nÆ(t+±tÆ(≠)),

where nÆ is the noise contribution to the output and ±tÆ(≠) is the time delay due

to the speed of GW propagation between an arbitrary reference.

For convenience, we can introduce the nose-weighted quantities in Fourier space,

i.e.

(2.2) ed = edwÆ[k]=
edÆ[k]

q
N
2 SÆ[k]

,

(2.3) en = enwÆ[k]= enÆ[k]
q

N
2 SÆ[k]

,

(2.4) F = eF+,£
wÆ (≠,k)=

eF+,£
Æ (≠)

q
N
2 SÆ[k]

,

where we have used

(2.5) x(t)! ex(F)¥ 1
p

2º

Z
dte°2ºi f tx(t)dt.

To simplify the notation, we can rewrite Eq. 2.1 in the frequency domain:

(2.6) ed = F eh+ en.

We can now introduce the probability P(ed|eh) of obtaining the whitened data ed in

a single time-frequency pixel in the presence of a GW h from known sky direction:
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(2.7) P(ed|eh)= 1
(2º)D/2 e°

1
2 |ed°F eh|2.

The likelihood ratio L is then the probability of obtaining the whitened data

under the null hypothesis, where we treat an unknown GW h as a free parameter to

be fit to the data. We find that the value ĥ that maximises L is

(2.8)
@L
@h

bh=hmax= 0) hmax = (FTF)°1FT d,

or the Moore-Penrose pseudo-inverse [69].

With,

(2.9) L = P(e
d|eh)

P(e
d|e0)

=
1

(2º)D/2 e[°1
2 |ed°F

e
h|2]

1
(2º)D/2 e[°1

2 |ed|2]
= e[

1
2
|ed|2° 1

2
|ed°F

e
h|2].

Substituting this into Eq. 2.8 gives the max or “standard likelihood”

(2.10)

ESL = 2lnL(ehmax)= |ed|2 ° |ed° eF Çhmax|2 = 2edF Çhmax ° |F ehmax|2 = 2edF(FTF)°1FT d,

where F(FTF)°1FT acts as a projection of the data. For the case of 2 non-aligned

detectors, it can be shown that the max-like solution (Eq. 2.8) is equal to the total

energy in the data, or

(2.11) E

tot

=
X

k

|ed|2,

and is uniquely a sum of the autocorrelation terms.
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However for more general cases in a network of 3+ detectors, Eq. 2.8 contains

both auto- and cross- correlation terms and thus need to be computed over the whole

sky. These computations can be fast and efficient if we move into the spherical

harmonic domain.

We can write the auto- and cross- correlation terms ªi j from the instruments i

and j at positions ~ri and ~r j and their output data streams gi and g j delayed by the

sky position bs, over an interval T centred at time t

(2.12) ªi j (bs)=
Zt+T/2

t°T/2
gi(t0 °~ri · bs) g j(t0 °~r j · bs) dt0.

The geometric delay is a linear transformation. We can separate out the delay T in

data streams due to a source with a sky position as :

(2.13) ~g(bs)= T(~r ·~s) ·~g

and then rewrite Eq. 2.12 as :

(2.14) ª12 (bs)=
1
N
~gt

1 ·T
T(~r1 · bs) · ~g2 ·T(~r2 · bs),

where the matrix T(~r·~s) holds the delays in the time-series due to the sky position.

Parseval’s theorem allows us to relate the power in different domains; i.e. the total

energy for all times in the time domain is equal to the total energy for all frequencies

in the frequency domain:

(2.15)
N°1X

n=0
|x[n]|2 =

K°1X

k=0
|x[k]|2

23



CHAPTER 2. GRAVITATIONAL WAVE DETECTION BY SPHERICAL
RADIOMETRY

Then Eq. 2.14 can be written in its discrete form as

(2.16) ª12 (bs)=
1
N

n°1X

j=0
g1 [J; bs] g2 [J; bs] .

Since Eq. 2.16 is a function of position bs on the sphere, it can be approximated by

a sum over spherical harmonics Y(lm)bs up to some order lmax and Eq. 2.16 can be

approximated by

(2.17) ªi j [q](lm) = 1
N

lmaxX

l=o

lX

m=l

X

q

"

g̃ i[q] g̃ j
§[q]

µ
1
N

T̃q(~ri · bs)T̃§
q (~r j · bs)

∂(lm)#

Ylm(bs),

where l and m are the indices of the spherical harmonic Y l
m,andk is the Fourier

transform of T that applies the appropriate time delay for sky position bs. The Fourier

Transform makes the convolution g ·T a simple multiplication in the frequency

domain. Each frequency bin q contains information about the time, frequency and

direction decomposition of the detector output. Dependency to sky location T is

isolated and we can Fourier transform the data without relationship to the sky

position. The details of the time-frequency analysis in X-SphRad are discussed in

Section 2.4.3. Here, we note that we use the following ad-hoc statistic for selecting

candidate events in the time-frequency map. For example, the spectrogram for a

network of two detectors would be constructed as each pixels having a value of:

(2.18) N = ª(lm)
1,2 +ª(lm)

1,1 +ª(lm)
2,2 .
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2.4 Pipeline Workflow

The spherical radiometry routines are integrated into X-PIPELINE, which handles

the pre- and post-processing of data. The pre-processing step consists of gathering

data and segmenting it into more manageable, shorter chunks, as well as pre-

conditioning the data with a whitening filter. The X-SphRad core does the spherical

harmonic (SH) decomposition and generates time-frequency maps, computes statis-

tics about pixel energies then identifies clusters of interest. The post-processing step

optimises cuts and reports sensitivity and events of interest (Fig. 2.1). The pipeline

is set up to analyse a network of 2 or 3 detectors over all-sky. It is also analysing at

all-time, so we are interested in all abnormal events in the analysed time.

2.4.1 Data Pre-Conditioning

The first set of tasks for the pipeline is to list the data available and segment it

into more manageable smaller-duration blocks, then whiten the block and Fourier

transform it.

Figure 2.18 shows that X-SphRad measures the coherence between detectors, and

thus needs coincident data for all the detectors in the network. In cases where one or

more datastreams are not fully available during the time block, the block is entirely

skipped. We do not have a measure of the coherence and therefore the data segment

must be skipped, even for only one instant of single detector downtime. Even a

minimal loss of detector uptime can significantly impact the analysis if happening

at intervals around the block length.

A zero-phase linear predictor filter whitens the data and estimates the power

spectrum to remove standing “power lines" due to instrumental interference [4]
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Figure 2.1: Workflow of the X-SphRad pipeline. X-pipeline is used for the pre- and
post- processing, while the spherical radiometer SphRad is use as core detection
engine.
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without inducing the nonzero phase response of classic linear predictor error filters

[43]. We use a 2 second filter time, and discard 8 seconds at each end of the block

length, and so consecutive data blocks are overlapped by multiples of 16 seconds

to ensure no signals are missed. This step also minimises data loss due to single

detector uptime loss. The filter estimates the power spectrum and essentially

normalises energies at each frequency over the block time. During the process, the

data is also resampled and band-passed with minimal phase shifting. The whitening

is done in the frequency domain, then transformed back in the time domain.

The optimal duration of the block depends on the targeted events and should

thus be chosen carefully. Short duration blocks are individually quicker to process,

although Matlab startup times and in/out reading reduces the amount of time saved.

However, each block needs to be large enough so that events of interest are fully

contained within a block, yet longer blocks risk the power spectrum estimation (from

the whitening filter) to be contaminated by the non-stationary detector noise. For

example, supernovae may emit sub-second GW signals [80] making the optimal

block length for such observations a few orders of magnitude smaller than for target

signals lasting for several minutes. To mitigate the power spectrum estimation error

and maximise event recovery, the current pipeline is set up to join up to two blocks

together in the later steps. We note that the rotation of the Earth has a negligible

effect on searches, as the rotation of about 0.25 deg/min is contained within the

pipeline resolution of about 3 degrees.

Finally, the data is Fourier transformed into the frequency domain. As the

detector is discretely sampled, it is convenient to use discrete notation. The Fourier

transform x[k] of the time series x[ j] for N data points can be written as
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(2.19) ex[k]=
N°1X

j=0
x[ j]e

°i2º jk
N .

The resolution in time-frequency is limited by the following parameter used for

dt and df. Bound by uncertainty principle [79], short time-duration fast Fourier

transform (FFT) will lose resolution in frequency domain, while longer time-duration

FFT gain resolution in frequency :

(2.20) 1= ±t£± f .

As always when using FFT, the overlap needs to be set appropriately to compen-

sate for the taper window used to prevent power leakage [37]. The time-frequency

resolution should be adapted to the target signals to extract the maximum amount

of information and reduce noise corruption.

2.4.2 Sky Position Dependancy

The delay matrix is constructed for each detector-pair baseline in the frequency and

spherical harmonic domains to offset the time series according to the sky location

(Eq. 2.17). The input time series corresponding to a pair of detectors are transformed

to the frequency domain to give g§
i [q] and g§

j [q], then multiplied together at each

frequency bin q. Each bin is multiplied by the harmonic coefficients in the corre-

sponding frequency bin of the delay matrix, and yields the harmonic coefficients for

the angular distribution of cross power for that frequency bin. Summing across bins

generates the baseline direction-dependent integrated cross-power in the form of a

single vector of coefficients of its expansion in spherical harmonics [50].
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2.4.3 Time-Frequency Maps

The pipeline then generates a spectrogram, or time-frequency map (TFmap), from

the spherical harmonic expansion using FFT (Eq. 2.19). For current long-duration

GW burst searches, the time-frequency transformation of the data is a crucial step.

It is justified, as target GW signals appear as thin tracks of extra power on a TFmap,

and hence it is band limited and localised. Separating GW candidates is thus more

straightforward, as they can be physically located in different time-frequency regions

of the TFmap [43].

The chosen time-frequency resolution determines the aspect ratio of pixels on

the TFmap with the relationship ±t± f = 1. Longer time integration produces good

resolution in the frequency domain but poor resolution in the time domain, while

shorter time integration inversely yield poor frequency resolution. Due to the nature

of the Fourier transform, each pixel on the time-frequency map indiscriminately

accumulates background noise and potential signals within the space ±t£± f . The

time-frequency resolution should then be selected to allow for minimum noise pollu-

tion in both the time and frequency domains. The time-frequency resolution used in

the FFT needs to be optimised for maximum signal-to-noise ratio (SNR) of target

events within each time-frequency bin and so depends on the target signal properties.

The value of each pixel P on the time-frequency map is then a sum along the

spherical harmonic coefficients c representing the energy in a time-frequency bin

dt£d f , where

(2.21) Pt, f =
dX

i, j=0
ª(lm)

i j =
lmaxX

l=0

m=lX

m=°l
(clm)2.

In practice however, tests done in [50] showed that the computational cost of
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the full cross- and auto- correlations of data streams with sky & frequency depen-

dant weight factors (Eq 2.10) is significantly more expensive, with an increase in

processing time proportional to the length of the block being analysed.

The cross-correlation variation over the sky is mostly due to changes in time-

delay between detectors due to sky position, and so the correlation is approximately

constant on a ring in the sky of constant delay (Figure 2.2). We choose the coordinate

system so that the inter-detector baseline is along the bz axis, and so the rings of

constant delay correspond to the m = 0 mode in the spherical harmonic domain. By

doing so, we can get an approximate cross-correlation by ignoring the m > 0 modes

and computing the m = 0 only mode for each detector pair [50]. Figure 2.3 compares

time-frequency maps generated with the full and reduced harmonic. It shows no

difference visually.

Figure 2.2: Skymap of a network of 3 detectors. Each pair of detectors produce a ring
of constant delay where the crossing of the rings is the most probable sky location of
the signal.Taken from [50]

To accelerate the time-frequency map generation, both the sky & frequency
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Figure 2.3: Comparison of time-frequency map using the full (Eq. 2.17 ) (left) and
reduced (Eq. 2.18) statistic (right). The two agree well, as no difference is visible
between features of both maps. Taken from [50]

weights are initially discarded. The higher order modes m > 0 are also discarded,

as they were shown to contain relatively little power compared to the mode m = 0,

and subsequently have little impact on the final pixel value output. The resulting

time-frequency map is visually identical to one generated by the full Eq. 2.10, but

discards all the spatial information gathered from the spherical harmonic expansion

as the step is equivalent to averaging over the whole sky.

2.5 Clustering

Typical all-sky analyses identify candidate GW events by searching for an excess

of power [30] on a time-frequency map. The process is generally referred to as

clustering [96].

X-SphRad flag potential GW candidates by dividing the time-frequency map in

10 time-regions of equal time-frequency area. For each region, a core threshold

identifies pixel ‘seeds’, from which branches grow in all possible directions up to

reaching a pixel with value lower than the halo threshold. The selected pixels are
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then clustered together on the condition that they share either an edge or a corner

in the TF plane (‘next-nearest-neighbours clustering’) [31].

The branches found via this method are then ranked by total energy, and the top

x are classified as candidate events and selected for further investigation. The double

thresholds are robust against slow gaussian-like noise variations in data, but very

loud and/or wide-band glitches that cover large time-frequency areas can saturate

the clustering algorithm and cause weaker potential GW signals to be ranked lower

than the top x louder clusters due to the limit of the number of brightest pixels that

are selected for consideration.

Coherent statistics of interest (Eq. 2.17) are then computed using the full (l,m)

decomposition for the x clusters with the largest summed values of correlated power

P (Eq. 2.18).

2.5.1 Background Estimation

To measure the significance of candidate GW events and differentiate between noise

and signal, the pipeline estimates the background using the time-shifted version of

the data itself by using the implementation of the time slide technique, generally

adopted in searches for GWs [9, 105]. The data stream from one arbitrarily chosen

detector in a network is shifted by non-physical time offsets and analysed as real

data, as previously described. The time offsets need to be at least larger than the

time taken by a GW to travel from one detector to the other to avoid introducing a

correlation that could be attributed to the sky position of the GW source.

Because they originate from non-physical realisation of the data, all GW candi-

dates generated can be safely treated as noise fluctuations, and are used to estimate
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the non-stationary background noise over the data period. When a full background

estimation is needed, for example to detect a GW with a confidence level above 5

sigma, the background analysis is by far the most computationally intensive opera-

tion in the whole pipeline and the reason why a key emphasis is put on the speed of

X-SphRad.

2.5.2 Software Injections

Simulated signals are commonly used to measure the sensitivity of burst pipelines,

giving the distance at which a pipeline can reliably detect a simulated signal drawn

from an isotropic distribution of sky locations and orientations. The efficiency at

a given distance is defined by the fraction of signals at that distance passing all

background rejection cuts, and with a ranking statistic equal to or larger than a

value corresponding to the given false alarm rate estimated from the background

noise.

The model signals are added to the individual detector independently in the time

domain, and evenly spaced time over the analysed data period. The amplitude of the

simulated signals is multiplied by a factor corresponding to a distance between the

GW source and the LIGO detector logarithmically spaced between 100 kpc to 1000

Mpc for astrophysical models. The distance is meaningless for ad-hoc models, but a

similar factor was chosen to modify the amplitude of the GW. The source location

(¡,µ) on the sky and orientation relative to the earth are drawn from the isotropical

distributions:

• cos(µ) uniform on [°1,1]

• ¡ uniform on [0,2º)
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• cos(∂) uniform on [°1,1]

• √ uniform on [0,º)

2.5.3 Coherent Cuts and Tuning

Working in the spherical harmonic domain offers an interesting byproduct; as GWs

are by definition coherent and so have a preferred direction in the sky, their energy is

spread over all harmonic coefficients. By contrast, glitches are not necessarily coher-

ent between detectors and so do not have preferred direction in the sky. Therefore,

their energies are mainly concentrated in the lowest order mode l = 0. We define the

incoherent energy Ish as the power contained in the l = 0 mode and the coherent

energy Esh as the sum of the power contained in all the higher order mode l > 0.

We then construct the statistic

(2.22) °=
Plmax

l=1
Pl

m=°l |clm|
|c00|

,

where c00 is the energy average over all sky (or Ish) and the numerator is the

sky energy (or Esh). Thus the ratio of Esh
Ish is a good indicator for rejecting artificial

noise [51]. We can thus make a linear cut on the ratio as

(2.23) Esh ∏ ∑Ish,

where ∑ is a constant selected during the automated tuning procedure.

However, low energy events have shown a tendency to get corrupted by random

noise fluctuations and have slightly more power in the coherent energy Esh than

in the incoherent energy Ish. For this reason, we apply an additional coherent cut,
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Figure 2.4: Sky map energy Esh versus incoherent energy Ish for simulated data
(black) and injections of various amplitudes (coloured). The coloured crosses on top
of the background are due to the post-processing misselecting background triggers
as injected signals. Taken from [50]

alpha cut, constructed to remove low energy glitches. The form of the cut was chosen

empirically, and was shown to be good at removing low energy glitches [97];

(2.24) r = 2|Esh ° Ish|
(Esh + Ish)0.8 +1∏ threshold,

where the threshold is determined during the automated tuning procedure.

The sensitivity of the pipeline is measured by the distance at which it can

confidently detect a set of test GW waveforms. Such waveforms are modelled approx-

imately, hence they do not suffice in the case of a modelled search but are acceptable

for characterisation of unmodelled searches. For a test waveform to be detected, or

‘recovered’, we require at least a few pixels of the event to have a significance larger

than the significance of loudest background noise.

There is a trade-off in tuning the thresholds for searches; a lower threshold means

accepting more background noise, whereas higher thresholds allow the possibility

of rejecting potential signals in the data. The pipeline empirically tests a set of
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values for each threshold on our statistic Z and outputs the threshold that yields

the maximised amount of signal recovery on average versus accepting background

noise events generated in the background estimation step.
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O1 LONG-DURATION BURST SEARCH

3.1 Overview

We apply the X-SphRad pipeline to the first advanced LIGO (aLIGO) science run

in the context of an all-sky search for unmodelled transient GWs of long duration.

We present the results of the search using the LIGO Hanford - Livingston second

generation detector network spanning from September 2015 to January 2016. The

parameter space considered by the search covers frequencies from 24 Hz to 1000 Hz,

with target gravitational wave transients lasting from a few seconds up to ª 1000 s.

This search is characterised by making minimal assumptions about the signal.

Basic hypotheses following the physical properties of GWs made in Chapter 1 (e.g.,

that GWs have two polarisations that propagate at the speed of light), intrinsic

parameters such as waveform or extrinsic parameters such as time of occurrence

or propagation direction have not been targeted specifically. This is in contrast to
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searches for compact binary coalescence that manage to be less sensitive to random

noise fluctuations by targeting specific waveform morphologies (see for example

[100] and [87]).

The search reports a few low-significance candidate events that are consistent

with background noise. As a consequence, no significant events were observed and

we use the loudest event procedure in order to set upper limits on the rate of long

duration GW transient signals at 90% confidence.

We start by describing the data set and the data selection process, then expose

data quality issues. We show examples of non-stationary background noise present

in the data and detail steps taken to minimise their impact on the search. We

then detail X-SphRad’s handling of the search parameters and the candidate event

selection building on Chapter 2. We detail a procedure for estimating the search

background due to the coincidence of non-stationary noise in the detectors, using non-

physical time shifts. We also determine the sensitivity of the search with a isotropic

distribution of simulated GW bursts, both astrophysically motivated and ad-hoc.

Finally, we report the upper limits from the search and compare our sensitivity to the

other long duration pipelines used in aLIGO and show X-SphRad to be competitive.

3.2 Observing Run 1

The data were taken from the first aLIGO Observing run (henceforth referred to as

O1), which took place from September 12, 2015 to January 19, 2016. The O1 run

consisted of 130 days open for joint data collection between the two-detector network

at Hanford, WA (H1) and Livingston, LA (L1) with the highest sensitivity to date

[13]. The O1 run has been marked by the first direct detection of the gravitational
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wave events GW150914 [13], followed by GW151226 [14] and the candidate event

LVT151012 [18].

3.2.1 Analysed Science Segments

The LIGO detectors need to achieve a cavity lock state 1 to be sensitive to a GW.

A multitude of factors hinder the detector’s ability to reach or maintain this state,

reducing the actual observing time for which data can be processed and interpreted

with confidence. In this text, we follow the adopted convention and use the term

science mode to refer to periods of time when a detector is gathering data with

scientific intent. Over the course of the O1 period, H1 observed in science mode 62%

of the time, while L1 observed 55% of the time (Figure 3.1).

The difference in science mode operation between the two detectors is explained

in part by the difference in geographical location, and thus naturally occurring

weather events. For example, the principal causes for lost science mode time in H1

are locking issues, accounting for 18%, and environmental disturbances, accounting

for less than 10%. In contrast, the main causes at L1 are environmental, accounting

for nearly 20%, and locking issues, accounting for 16%. At both sites, the deliberate

downtime for maintenance work accounts for less than 5% of the run [93].

The total time over which both detectors were coincidentally in science mode is

49 days. As these periods are not continuous, they will be referred to as coincident

science segments to avoid confusion with the O1 run total observing time. Table

3.1 shows the O1 live times. The final duration of the data analysed by X-SphRad

totals 49.1 days, or 38% of the time period covering O1. We note that the total time

processed by X-SphRad is smaller than the coincident network time, as the pipeline
1In the cavity lock state, the length of the LIGO arms is kept precisely constant [13]
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Figure 3.1: Representation of aLIGO observing time during O1 for both the H1
and L1 detectors, as well as coincident observing time from September 12, 2015 to
January 19, 2016. H1 observed in science mode during 78.8 days (62% duty cycle)
and L1 during 67.2 days (55% duty cycle). The total network duty cycle for science
mode is 40%. The pictured segments do not take into account subsequent data
quality vetoes. See also Table 3.1. Generated with [76]

require a minimum segment length of 512s of continuous coincident science mode

data for processing (Section 2.4.1).

3.2.2 Sensitivity

The first advanced LIGO run has shown an amplitude sensitivity increase by a factor

of approximately 3 or 4 compared to initial LIGO runs [4]. Figure 3.2 and Figure 3.3

show representative noise amplitude spectra for H1 and L1 during O1. The strong

narrowband features in the spectra are caused by resonances in the instruments

such as the violin modes of the suspension wires, the roll and bounce modes of the

suspensions, the AC power line and its harmonics, and the calibration lines [13].

To put the instrumental sensitivity in an astrophysical context, the angle-
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Table 3.1: Breakdown of dataset total duration and science mode time after applying
data quality requirements and coincidence. The time processed by X-SphRad is
slightly less than the H1-L1 coincident time due to the pipeline requiring a minimum
of 512 s of continuous data for analysis.

O1 period 129.7 days
H1 science mode 78.8 days
H1 (science - CAT1) 76.8 days
L1 science mode 67.2 days
L1 (science - CAT1) 65.8 days
H1-L1 coincident time 51.3 days
X-Sphrad processed time 49.1 days

Figure 3.2: Representative noise amplitude spectrum during the O1 period for
H1 (red), with aLIGO ideal sensitivity for O1 configuration and 25W laser power
superimposed (black). The solid traces represent the median sensitivity and the
shaded regions indicate the 5th and 95th percentile over the analysis period. The
narrowband features in the spectra are due to known mechanical resonances, mains
power harmonics, and injected signals used for calibration [12]. Non-stationarity in
the detector noise manifests as variations in the level and shape of these sensitivity
curves over time. The grey curve represents the design noise budget for aLIGO
during O1. Snapshot taken from November 12, 2015. Generated with [76]
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Figure 3.3: Representative noise amplitude spectrum during the O1 period for L1
(green), with aLIGO ideal sensitivity for O1 configuration and 25W laser power
superimposed (black). The solid traces represent the median sensitivity and the
shaded regions indicate the 5th and 95th percentile over the analysis period. The
narrowband features in the spectra are due to known mechanical resonances, mains
power harmonics, and injected signals used for calibration [12]. Non-stationarity in
the detector noise manifests as variations in the level and shape of these sensitivity
curves over time. The grey curve represents the design noise budget for aLIGO
during O1. Snapshot taken from November 12, 2015. Generated with [76]

averaged binary neutron star inspiral detection range is the standard astrophysical

figure of merit [54]. It is of prime importance in templated-based searches as it

characterises the distance to which a typical well-modelled GW signal coming from a

binary neutron-star merger can be detected with confidence [55] for a single detector.

Figure 3.4 shows this range for both detectors over O1. The two detectors average

a distance of about 75 Mpc. H1 was consistently more sensitive than L1, with an

angle averaged binary neutron star inspiral range around ª 70-80 Mpc compared to

ª 60-75 Mpc at L1, indicating comparatively more noise at L1 in the ª 20 Hz - 300

Hz band.
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Figure 3.4: Average detection range for binary neutron star mergers using template-
based filtering during O1, at H1 and L1. H1 is consistently more sensitive than L1,
with a detectable range around 10 Mpc higher.

In the 24 - 1000 Hz band targeted by the search, the calibration uncertainty is

less than 19% in amplitude and 10 degrees in phase [25].

3.2.3 Glitches

The detectors are affected by transient non-stationary noise events known as

“glitches” that can mimic genuine signals, but have distinct instrumental (or lo-

cal) environmental origins. Due to the high likelihood of random noise fluctuations

manifesting simultaneously yet independently in each detector, many glitches are

observed in coincidence and can have properties similar to real gravitational waves

like large bandwidth, long duration or time-dependant frequency evolution. During

the O1 period, nearly 200,000 glitches were recorded by X-SphRad above SNR of ª

3-4.
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Glitches with common characteristics are classified in families [107]. X-SphRad is

naturally robust against millisecond-long families due to the chosen time-frequency

resolution (Section 2.4.3), but is particularly sensitive to second-long glitches regard-

less of the coherence as the statistic (Eq. 2.10) includes auto-correlation terms. Even

though incoherent glitches are eliminated in post-processing by the application of

the coherent consistency tests (Eq. 2.23 and 2.24), they have a serious negative

impact on the pipeline.

A good example is the wandering line glitch (Fig. 3.5), a long-lived narrow-band

glitch wandering around ª 630 Hz in H1. It is present in the data for the first half

of O1, until it was associated with the beat frequency between two oscillators [83].

Preliminary tests on the O1 data showed that while the coherent cuts removed most

of these glitches, they were so numerous that the small fraction that survived the

cuts were the loudest surviving background events and were reducing the pipeline

sensitivity drastically. We applied a frequency-band notching from 590 Hz to 640

Hz over the whole O1 period to remove most of the wandering line glitches from

the analysis. Moreover, simultaneous noise perturbations manifested by the other

detector can make some fragments of the wandering line appear as coherent power

and effectively make the noise-generated trigger peak frequency wander around the

line. We note that a better approach to wandering line-like glitches is under testing

to avoid taking such a drastic measure in future analyses.

Because X-SphRad only generates a fixed number of triggers per analysis block,

loud glitches can saturate the clustering and effectively raise the threshold for

clustering selection on time-frequency maps (Figure 3.6). When in the vicinity

of such glitches, any signal of realistic amplitude present in the block time will

remain unclustered and be effectively removed from the analysis. Depending on the
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Figure 3.5: Time-frequency map showing the wandering line glitch at ª 620 Hz. The
associated pixels are the loudest connected pixels in the block time. Noisy pixels of
comparable amplitude around the wandering line have a tendency to get clustered
together and corrupt neighbouring frequencies. A frequency notch between 590 Hz
and 640 Hz was applied to remove the effect of this glitch family.

power and frequency variations over time, a single glitch can be split into multiple

triggers, each preventing other areas of interest to be followed-up. We suggest a new

clustering method in Chapter 4 to increase robustness against this effect.

Another negative impact of glitches is that they can affect the reconstruction of

event property if appearing in the same time-frequency space as candidate events.

In such cases, the glitch can be clustered with the candidate event and corrupt

the reconstruction of event properties such as energy, amplitude or time-frequency

properties (Figure 3.7).
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Figure 3.6: Time-frequency map illustrating the effect of glitches on cluster selec-
tion.The time-frequency map contains 3 particularly loud glitches at 200 s, 260 s and
360 s as well as a simulated signal from 150 s to 250 s in the 700-900 Hz band. The
red lines indicate the bounding boxes of the triggers followed up by X-SphRad. All
30 of the selected triggers are part of the glitches, despite the simulated signal being
loud enough to be visible by eye in the data. The white band at ª500 Hz is caused
by the imperfect whitening of the instrumental violin modes. White grid lines were
added to the figure.
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Figure 3.7: Time-frequency map showing the effect of glitches on candidate event
reconstruction. Two glitches at 20 s and 260 s, as well as multiple brief broadband
glitches at 50 s, 100 s and 400 s (below 100 Hz) are present in the data. There is also
a downward-chirping simulated signal from 350 s to 410 s. The red lines indicate the
bounding boxes of the triggers followed up by X-SphRad. The short glitch at 400 s
gets clustered with the simulated signal, resulting in an overestimation of the signal
bandwidth and corruption of the estimated energies.
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3.2.4 Data Quality

Periods of poor data quality are identified by examining data from environmental

and instrumental auxiliary monitoring channels. We remove these from the analysis

times corresponding to such known data quality issues, as defined in [23]. The vetoes

applied in this context are divided into categories, depending on the severity of the

data quality problem.

CAT1 vetoes are identified when the detectors are not producing data that can

be trusted; high noise in the detectors can contaminate an analysis by biasing the

power spectrum density estimate of the whitening filter. This data is not analysed

and totals to 2.0 days in H1 and 1.4 days in L1.

CAT2 vetoes flag transient excesses of noise in auxiliary channels where there is

an understood physical correlation between the auxiliary channels and the detector

output. Those short periods are identified using Hveto [67]. CAT2 vetoes account for

2.2 days in H1 and 3.9 days in L1.

CAT4 vetoes register times when simulated GW signals (‘hardware injections’)

are added to the control feedback loop of one or more optical components to simulate

the effect of a GW signal on the detector They account for minimal time loss, with

only 0.1 days in each detector individually.

For completeness, we note that there also exist CAT3 vetoes which identify times

where there is a known statistical correlation with the GW channel but the physical

connection to auxiliary channels is not understood. These are commonly used when

setting upper limits from short-duration GW burst searches [23], but we do not use

CAT3 vetoes in this search.

X-SphRad requires 512s of continuous coincident science mode for processing. To
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avoid removing an entire 512s block for a veto of only few seconds of total “deadtime”,

data corresponding to CAT2/4 times are analysed as normal, but any trigger event

found in the GW channel at vetoed times is automatically discarded from the analysis

in the post-processing step.

3.2.5 Additional Vetoes

Historically, the data quality vetoes are based on comparing noise transients in

auxiliary channels to events reported by short-duration GW burst searches [21]

and are thus optimised for searches targeting short duration signals. However, we

also consider additional vetoes generated specifically for long duration searches,

based on a few channels that were found to be reliable indicators for suboptimal

data acquisition in regard to long duration searches. Specifically, a short-duration

wide-band glitch of high power was found to be linked to the RF45 modulation [32] 2

and have been adopted by all the long-duration burst searches in O1. These account

for a total dead time of 0.47% of the O1 run in H1 and 1.0% in L1. Table 3.2 shows

the list of veto channels.

3.3 Search Parameters

We searched the most sensitive aLIGO frequency band, from 24 Hz up to 1000 Hz.

We divided each analysis segment into data blocks of 512s to maximise the recovery

of longer signals and avoid edge effects: we found that increasing the block time,

2The burst CAT2 short duration vetoes are also effective against RF45 glitches, but have a much
larger deadtime (ª 2%) that was negatively affecting the O1 long-duration Zebragard search.
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Channel name
H1:ASC-REFL_A_RF45_I_PIT_OUT_DQ_veto
H1:IMC-IM4_TRANS_PIT_OUT_DQ_veto
H1:ODC-IMC_WFS_DOF3_YAW_HIGH
H1:LSC-POP_A_RF9_Q_ERR_DQ_veto
H1:SUS-SRM_M1_DAMP_V_IN1_DQ_veto

Table 3.2: Channel names and corresponding deadtime for additional vetoes applied
specifically in the long-duration O1 searches. The additional vetoes were suggested
by the STAMP-AS team [46]. The burst CAT2 short duration vetoes are also effective
against RF45 glitches, but have a much larger deadtime (ª 2%) that was negatively
affecting the O1 long-duration Zebragard search. Source: private email conversation.

from 256s in previous X-pipeline analyses ([3] for example), reduced the tendency

for our target signals to be split between blocks.

We operated in the time-frequency (TF) domain by constructing TF pixel maps

(TFmaps) using a 1 s £ 1 Hz Fourier transform with 50% overlap. The resolu-

tion, equal in time and frequency, was empirically found to be good for recovering

long-duration signals. As best-guess long-duration models tend to exhibit both

monochromatic-like and chirp-like features, an unbiased resolution equal in time

and frequency is appropriate for maximum feature visibility. We used a maximum

spherical harmonic order lmax = 60, which was found to be a good trade-off between

spherical domain resolution and computational time [50]; see Figure 3.8.

3.4 Clustering

Candidate events are identified as groups or clusters of loud pixels in the time-

frequency map. The seed and branch thresholds as defined in Section 2.5 were

chosen to be identical to the 5% loudest pixels. The pixels on the time-frequency map

with the 95% lowest values were discarded.
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Figure 3.8: Time used to generate the delay matrix and to process 64 seconds of data,
as a function of spherical harmonic number lmax. X-SphRad has a fast processing
time but a significantly longer startup time. The dominant cost is the background
analysis using internal timeslides. Each 512 s background job processes 165 circular
timeslides (see Section 3.5 for details). With the chosen parameters lmax = 60, the
estimated startup time is approximately 1 minute, compared to about 200 minutes
for processing the internal timeslides. The startup time does not significantly affect
the total computational cost. Taken from [50]
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Long-duration model signals added to the data showed a tendency to be frac-

tured into multiple triggers (Figure 3.9) by various features in the time-frequency

map, such as power lines, suspension violin modes, or by the whitening filter over-

whitening a frequency band following a loud glitch. In such cases, the clustering

procedure returns the injected GW event as several separate triggers, each contain-

ing only a fraction of the SNR of the whole signal. Moreover, as only a small subset

of pixels are available for energy estimations, the resulting fragments are more

susceptible to noise perturbations and being removed during the post-processing by

the cuts (Section 2.5.3) . The recovery of the full waveform is therefore dependent

on a suitable clustering mechanism of the resulting waveform fragments. We imple-

mented an additional super clustering step to combine these triggers and reconstruct

the whole signal.

The super clustering takes the list of triggers reported by X-SphRad, and se-

lects those whose bounding boxes overlap to within 5 sec and 8 Hz. They are then

combined into a single trigger with a resulting bounding box defined by the small-

est time-frequency rectangle containing the bounding boxes of all the constituent

triggers. A chain of several triggers may be combined into a single trigger in this

way. Moreover, the likelihoods assigned to the combined trigger are weighted sums

of the likelihoods of the constituent triggers, with weights chosen empirically to

penalise broadband long-duration glitches. The weighting factor favours triggers

which occupy only a small fraction of their time-frequency box (i.e. a curve) and

discriminates against glitch-like triggers as they tend to have a large number of loud
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Figure 3.9: Example of long duration signal being fractured into multiple sub-
triggers. The signal is split into 8 distinct clusters, each containing only a fraction
of the signal total SNR, and will therefore have sub-optimal energy and parameter
estimations. The simulated signal is also segmented around 120 Hz due to the effect
of the whitening filter.

pixels constrained in a relatively smaller time-frequency volume. 3. The weight

(3.1) Æ(2det) =
¢T £¢ f

log(Esl)£P2

is applied to all triggers’ background, foreground and simulation trigger likelihoods

before clustering; here ¢T is the trigger’s duration, ¢ f is its bandwidth, Esl is the

standard likelihood as defined in Eq. 2.10 and P its number of constituting pixels.

The weighting factor overall increases the pipeline sensitivity by 40%-120% for

astrophysical waveforms (Figure 3.10).
3See Chapter 4 for a discussion of improvements in smart clustering and glitch rejection
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Figure 3.10: Effect of the smart clustering on the 50 % distance efficiency recovery
for the astrophysical ADI waveforms. The smart clustering increases the recovery
distance by a factor of 2 for Adi-D to 3 for Adi-B.

During the clustering step, we also apply the frequency notching discussed

earlier by discarding any trigger with peak frequency between 590 Hz and 640 Hz

to circumvent the effect of the wandering line glitches. Moreover, any trigger that

is made up of less than 5 pixels is discarded to avoid super-clustering fragmented

wide-band long-duration blip-like glitches.

3.5 Background Estimation Procedure

To measure the significance of candidate GW events and differentiate between

noise and signal, we estimate the background using the data itself. By using the

implementation of the timeslide technique generally adopted in searches for GW

transients [9], the data stream from one arbitrarily chosen detector in a network
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is shifted by a non-physical time offset and analysed as normal. To prevent the

resulting data to be related to a physical source location, the time offset must be

at least longer than the light travel time between the detectors. In this search, we

applied an offset (or external lags) of +/- 1,2,3 £ 496 seconds to the L1 data-stream,

corresponding to multiples of the 512 s block with 8 seconds discarded at each end

to account for the whitening filter corruption. X-SphRad also relies on time offsets

applied to the data stream within an invocation (or circular shifts) in each block, and

re-use the computationally expensive delay matrix. The circular shifts were done in

3 s steps, giving a total of 165 different shift in each 512 s block. It is important to

note that we are implicitly making the assumption that no GW candidate is present

in the dataset. In such cases, the events have been removed from the background

trials to allow for astrophysical interpretation [13].

The total number of 825 processed timeslides is smaller than expected from

6£165= 990 internal and external slides because the coincident livetime in time lags

usually isn’t exactly equal to the coincident livetime at zero-lag. As a consequence,

the number of data blocks available is typically not exactly a whole number multiple

of the number of on-source data blocks. The pipeline set-up procedure rounds down

the number of background blocks to be exactly a whole-number multiple of the

on-source data blocks. For O1 the number of blocks produced with the 6 external

lags was slightly less than 6 times that of the on-source blocks, so the number of

external-lagged blocks was rounded down to 5 times the number of on-source blocks.

We also remind the reader of Section 2.5.1 which states that the background

trials are randomly split into two equal groups: one is used to tune the background

rejection cuts, the other is used for estimating the False Alarm Rate (FAR) or False

Alarm Probability (FAP) of on-source events.
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The pipeline automatically tunes the coherent background rejection thresholds

on the group used to construct optimal cuts, and maximise the recovery of simu-

lated signals while minimising the amount of significant background events. The

automatic procedure selected a value of 2.5 as the optimal veto threshold for the

alpha cut, and 1.45 as the optimal value for the fixed coherent ratio threshold. A

more detailed explanation of the automatic optimal tuning cut procedure as used in

X-SphRad can be found in [95].

Figure 3.11 shows the distribution of trigger significance for both foreground

and background, before and after applying coherent cuts. The clear correlation

between the off-source and on-source distributions before cuts can be attributed

to the fact that X-SphRad clustering algorithm triggers on both the auto- and the

cross-correlation terms; loud single-detector glitches in the data appear as triggers in

all the 165 circular slides. Only the 6 external lags may differ in what loud glitches

they report, as those loud glitches fall into or outside of time-shifted coincidence

segments. The fluctuations between the on-source and off-source distributions

should be interpreted in terms of having at best a few independent trials. This is

particularly evident for the very loudest glitches around significance 108, where the

on- and off-source distributions change in lock-step due to individual loud glitches. As

an example, the blue curve (pre-vetoing background) ends at a rate that corresponds

to 4 events; i.e., the loudest pre-vetoing event showed up in 4 of the 6 external lags.

However, we stress that the pre-veto distribution is not used by X-SphRad and only

the distribution after cuts is used to identify potential GW events.

On condition that the time shifts are non-physical and independent, the post-cut

triggers generated by this method should behave like independent realisations of

the background and allow for statistically valid estimation of noise. We test by
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Figure 3.11: Histogram of trigger rate versus significance threshold, including
triggers from all upper-limit background jobs and triggers from all on-source jobs,
before and after all vetoes & background rejection cuts. There is a clear correlation
between the off-source and on-source distributions before cuts, as discussed in the
text.

comparing to the Skellam distribution test as applied in the O1 black hole binary

search[19]; assuming each time lag is an independent trial, the number of triggers

per lag should follow a Poisson distribution with the same mean µ. It can then

be shown that the difference in the number of triggers in two consecutive trials,

Ni+1 °Ni, should follow a Skellam distribution with mean 0 and variance 2µ. As

seen from Figure 3.12, the measured distribution of Ni+1 °Ni closely follows the

Skellam distribution. We conclude that the post-veto distribution is fit to be used to
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rank GW candidates.

Figure 3.12: Skellam test for the off-source triggers surviving all cuts comparing
the empirical distribution of Ni+1 ° Ni to the Skellam prediction. The empirical
distribution of the background triggers after cuts in blue is consistent with the
Skellam distribution in yellow.

3.5.1 Properties of Background Triggers

Because the selection statistic includes both the cross- and auto- correlation terms

(Eq. 2.18), glitches do not require they be coherent to generate a trigger 4. As a

consequence, single-detector glitches can be coherent with relatively quieter glitches
4Figure 3.5 is a clear example of the case of a single detector glitch appearing in the coherent

search.
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- or even with Gaussian background noise fluctuations - in the other detector, and

generate a trigger.

Background triggers tend to have very little correlation between detectors. As

a consequence, their coherent energies tend to be approximately equal to their

incoherent energies. Large fractional excesses of coherent power are only seen in the

lower energy events (Figure 3.13).

Figure 3.13: Background and foreground candidate events Esh/Ish energy plane.
Low energy candidate events ( < 10) tend to have larger sky map energy Esh than
incoherent Ish energy. This observation motivates the alpha cut (Eq. 2.24).

The distribution of background triggers is not uniform in the frequency space

(Figure 3.14); most of the background triggers pre-veto lie between 24 Hz and 300

Hz, with only a marginal fraction having peak frequencies above 600 Hz. This

observation indicates that low-frequency noise fluctuations are more frequent than

their high-frequency counterparts and are thus more likely be chosen as follow-up

potential triggers in the clustering phase.
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Figure 3.14: Distribution of background triggers before cuts, after the linear and
alpha cut as well as final distribution after all cuts vs peak frequency. Most triggers
are below 300 Hz before cuts. The linear cut does not seem to discriminate based
on the frequency, as the distribution post linear cut follows the original distribution.
The alpha cut exhibits a frequency-biased selection effect with most of the surviving
triggers located above 600 Hz. The final distribution after all cuts follows the alpha
cut distribution, indicating the cut to be the most restrictive overall.

However, the linear cut kills mainly high energy events (> 200), and does not seem

to discriminate against frequency, with the pre- and post-cut distributions agreeing

reasonably well. Overall, the fixed coherent ratio threshold is the most restrictive

and has a bias for high frequency triggers. After applying the cuts, the vast majority

of the surviving background triggers have a peak frequency higher than 600 Hz. The

alpha cut is aimed at low energy events (<200) which seems to favour high-frequency

events. Further investigation on the energy ratio of background triggers before cuts

(Figure 3.15) shows that the vast majority of low frequency triggers tend to have a

low alpha ratio.

The correlation between background trigger properties before all cuts (Figure
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Figure 3.15: Alpha ratio (Eq. 2.24) vs peak frequency for background candidates.
The vast majority of low frequency triggers tend to have a low alpha ratio and are
thus more likely to be rejected by the alpha cut.

3.16) exposes several relationships. As expected, the number of pixels in a trigger

is correlated with its duration and bandwidth, but also has a high correlation with

the trigger peak frequency. As the trigger bandwidths and durations increase as a

function of peak frequency, this indicates that longer and wider glitches are more

frequent at higher frequencies. The high correlation between the number of pixels

and the energies is expected, as the sky map energy and incoherent energy are

computed from the same number of pixels in the trigger.

After all cuts (Figure 3.17) however, shorter candidate events are more likely

to exhibit high sky map energy Esh and incoherent energy Ish. As expected, the

bandwidth is still correlated with the number of pixels.

In total 5443 background events passed the cuts and were thus recognised by

the pipeline as being consistent with a GW signal. As they were generated using
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Figure 3.16: Correlation matrix between properties of background triggers before
all cuts. The number of pixels is correlated with the duration and bandwidth,
themselves correlated with the trigger peak frequency. The effect of the weighting
factor during the clustering phase are seen with the relatively high correlation
between number of pixels, bandwidth and duration with the sky map energy Esh
and incoherent energy Ish.
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Figure 3.17: Correlation matrix between properties of background triggers after
all cuts. The number of pixels is correlated with the duration and bandwidth,
themselves correlated with the trigger peak frequency. The effect of the weighting
factor during the clustering phase are seen with the relatively high correlation
between number of pixels, bandwidth and duration with the circ energy and circ inc.
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Table 3.3: Top 5 loudest surviving triggers in background.

GPS for H1 Significance Peak Freq. (Hz) Bandwidth nPixels Isky Ratio
1130833954.0 12.66 657.5 14.0 167 5.14 2.46
1132079497.0 10.80 527.5 18.0 27 4.03 2.67
1130812224.5 10.70 650.0 13.0 128 4.13 2.59
1127064560.0 9.02 927.0 15.0 20 1.85 4.86
1126931309.0 8.71 732.0 17.0 21 2.23 3.90

non-physical time shifts, all the triggers can be safely regarded as non-GW signals

and representative of the noise background over the course of the O1 period. Table

3.3 shows the 5 most significant background candidate events that passed the fixed

and alpha cuts.

Out of the surviving background triggers, the loudest and most significant is

shown as seen by X-SphRad in Figure 3.18 with a zoom-in on the trigger in Figure

3.19. The trigger originated from the wandering line at ª 630 Hz, clustered together

with a short glitch at 325 s. The resulting peak frequency moved slightly out of the

vetoed frequency region from ª 590 Hz to ª 640 Hz. The trigger is clearly not due to

a GW.

3.6 On-Source Triggers

The analysis reports 9 potential triggers that could correspond with GW signals. The

triggers passed both the coherent threshold and the alpha cut. However, the ranking

statistics assigned to the events are relatively low and the triggers are consistent

with background noise (Figures 3.20 and 3.11).

Foreground triggers are spread throughout the O1 period, with a slight concentra-

tion over the last few months of the run that can be attributed to randomness. Table
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Figure 3.18: Loudest background event surviving cuts. The ª 630 Hz wandering line at H1
was clustered with a short glitch at 325 s. The resulting cluster peak frequency is slightly
above that of the frequency notch applied in the clustering phase. See 3.19 for a zoomed in
version.
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Figure 3.19: Zoomed version of Figure 3.18. A coherent set of pixels from 645 Hz to 655
Hz at 325 s is clustered with the wandering line, increasing the central frequency above the
upper cutoff frequency of the notch. The red line is the bounding box of the candidate as
seen by X-SphRad.

3.4 shows recovered parameters for the surviving foreground triggers. Excitations

in auxiliary channels such as IMC, SUS, and PEM were observed in coincidence

with all triggers reported. Figure 3.21 shows the time-frequency maps of calibrated

data for the H1 and L1 detectors around the time of the loudest on-source trigger.

As there is no clear sign of the event in the single-detector data due to the low

SNR spread over second-scale duration, further investigations in the time-frequency

domain were not possible. We conclude that we find no evidence for a long-duration
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Figure 3.20: Surviving background (black) and foreground (red) triggers during the
O1 period, after coherent cuts are applied. The triggers are ranked by significance.
Foreground triggers are spread throughout the O1 period, with a slight concentration
over the last few months of the run. All foreground triggers are consistent with the
background.

gravitational-wave transient during the first advanced LIGO observing run.

Albeit present in the data, the gravitational wave events GW150914 [13] &

GW151226 [14] and the candidate event [18] were not recovered by X-SphRad.

Due to search time-frequency resolution constraining the duration uncertainty to 1

second, short-duration waveforms can only be recovered if their coherent energies

are louder than the noise fluctuations within 1 second at each frequency bin. In such

situations, the resulting pixel-cluster is required to have a energy statistic amongst

the top 30 clusters to be selected for follow-up. After that, the smart-clustering step
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(a) Time-frequency map of the loudest sur-
viving foreground candidate in H1. No par-
ticular feature is visible, as expected from
the low SNR, and low number of pixels. The
trigger is located around 902 Hz in the cen-
tre of the spectrogram.

(b) Time-frequency map of the loudest sur-
viving foreground in L1. The trigger is lo-
cated around 902 Hz in the centre of the
spectrogram.

Figure 3.21: Loudest surviving on-source event

Peak GPS time (s) Significance FAP peak Freq (Hz) Duration (s) Pixels Approx SNR
1129749676 4.4 0.43 902 4.0 17 5
1135855931 2.8 0.97 806 2.5 14 4
1134913112 2.7 0.98 842 2.5 13 4
1128421168 2.2 1.00 695 2.5 15 3
1136863671 1.7 1.00 972 2.0 16 2
1135534408 1.6 1.00 753 3.0 14 3
1136392610 1.6 1.00 940 3.0 15 2
1132887849 1.2 1.00 731 1.5 15 2
1133764269 0.9 1.00 663 1.5 19 2

Table 3.4: Surviving foreground candidate events. All were consistent with the
background.

discards clusters formed by 5 pixels or less, making the recovery of short duration

events of reasonable amplitude by the pipeline unlikely.
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3.7 Search Sensitivity

Simulated signals are used to tune the background rejection cuts for optimal sen-

sitivity. However, they are also commonly used to measure the efficiency of burst

searches, giving the distance at which a pipeline can reliably detect a simulated

signal drawn from an isotropic distribution of sky locations and orientations. The

efficiency at a given distance is defined by the fraction of signals at that distance

passing all background rejection cuts, and with a ranking statistic equal to or larger

than a value corresponding to the given FAR estimated from the background noise.

We injected 16 types of simulated signals covering the target parameter space

(Figure 3.22), with a slight concentration in the more sensitive 30 - 300 Hz band.

Each waveform was injected ª800 times at randomly chosen times over the run

period, each with 26 amplitude factors, corresponding to distance, logarithmically

spaced from 100 kpc to 1000 Mpc. The source location (¡,µ) on the sky and orientation

relative to the earth were distributed isotropically as follows :

• cos(µ) uniform on [°1,1]

• ¡ uniform on [0,2º)

• cos(∂) uniform on [°1,1]

• √ uniform on [0,º)

The simulated signals can be divided into 2 categories, astrophysically motivated

and ad-hoc, each further subdivided by families sharing common properties. See

Tables 3.5 and 3.7. Additional detection efficiency figures for each waveforms are

available in Appendix A.
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Figure 3.22: Illustration of the parameter space covered by the full set of simulated
signals used during the O1 analysis. Each shaded rectangle represents the duration
and frequency range of one of the 16 waveform types simulated. The whole frequency
space is covered with a slight concentration at lower frequencies in aLIGO’s most
sensitive band.

3.7.1 Astrophysical Models

The astrophysically motivated waveform generation mechanisms have been dis-

cussed in detail in Chapter 1. They include the Accretion Disk Instabilities (ADI)

family and the magnetar family. They are typical, order-of-magnitude approxima-

tion waveforms unsuitable for match-filtering searches. Table 3.5 summarises the

time-frequency properties of the waveforms used in this search.

Figure 3.23 compares the 50% and 90% efficiency distance for the astrophysical

waveforms. Overall, X-SphRad is more sensitive to the waveforms of the ADI family

to a distance that is more than an order of magnitude larger that the distance

for the magnetar family. Aside from the nominal amplitude definition, differences
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Waveform Duration (s) Start Freq. (Hz) End Freq. (Hz)
Adi-A 39 135 166
Adi-B 9 110 209
Adi-C 236 130 251
Adi-D 142 119 173
Adi-E 76 111 260
Magnetar-F 400 579 950
Magnetar-G 400 405 490

Table 3.5: Time-frequency properties for astrophysical waveforms. The ADI family
covers the lower end of the targeted frequency space with ªminute long signals,
while the magnetar family covers the middle and higher end with longer duration.
Individual TFmaps of each waveform can be found in Appendix B.

between waveforms can be explained by considering their individual energies spread

in varying volumes in the time-frequency space.

To estimate the detectability of the waveforms, we can construct an optimal SNR

as the SNR needed to recover 50% of the waveforms with face-on orientation in a

single aLIGO detector in noise estimated from aLIGO design sensitivity, weighted

by a factor of 3 to match current aLIGO sensitivity and assuming a perfect match-

filtering search. Table 3.6 shows that the optimal SNR grows with duration and

bandwidth, because the waveform energy is spread over a longer period in the

time-frequency space where noise accumulates.

Following [29], we can construct a more adapted figure of merit representing

the detectability of the waveforms that takes into consideration the time-frequency

spread. By creating a time-frequency volume

V = ±t± f

where ±t is the waveform duration and ± f is the waveform bandwidth, [29] predict

that detectability in Gaussian noise should vary with the volume weighted SNR as
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Figure 3.23: Comparison of 50% efficiency and 90% sensitivity distances of X-SphRad
during O1 for astrophysical waveforms. Differences between ADI waveforms can
be explained by the spread of power in longer durations and wider bandwidths.
The differences between the ADI family and the magnetar family are due to the
magnetar lower intrinsic amplitudes.

(3.2) Detectabil ity= SNR
V 1/4 .

where V is the volume in the time-frequency plane. We use this measure to rank

the inherent detectability of the waveforms while taking into account the respective

energy spread. Table 3.6 shows that all astrophysical waveforms are within ± 15% of

each other, indicating that the performance of X-SphRad is approximately consistent

across the astrophysical waveforms tested.

The recovered parameters for the ADI waveforms are consistent with the injected

parameters (see for example, Figures 3.25 and 3.26). The bandwidth is overestimated

at short distances then underestimated onward. As the ADI waveforms start with

high amplitude then chirp down with lower energy (Figure 3.24), the clustering
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Table 3.6: Detectability of the astrophysical waveforms. The optimal SNR is the
SNR needed to recover 50% of the waveforms in a single aLIGO detector in noise
estimated from aLIGO design sensitivity, weighted by a factor of 3 to match current
aLIGO sensitivity. For this estimation, the waveforms were generated assuming
face-on orientation. Taken from [29]

Waveform Dist 50% (Mpc) Optimal SNR Detectability Statistic 3.2
Adi-A 12.3 314 118
Adi-B 32.4 418 143
Adi-C 15.4 915 132
Adi-D 6.1 636 140
Adi-E 16.6 687 133
Magnetar-F 0.3 1012 140
Magnetar-G 0.3 1641 158

algorithm needs a few loud pixels from waveforms to start up. Once the waveform is

loud enough to be detected by the clustering algorithm, the effect of Fourier leakage

can be seen and the bandwidth is overestimated. The effect is expected as the

higher injection scales are extremely loud, with SNR > 1000 which saturates the

whitening filter. The duration recovery shows a similar effect, mitigated by the

relative constant spread of energy over time of the family.

The effect of the Fourier leakage on the time-frequency map is visible in Figure

3.27 where the amount of mean pixels recovered grows with closer distances. Such

distances are unrealistically close for an astrophysical event, thus the Fourier

leakage does not impact the search.

The magnetar (Figure 3.28) waveforms exhibits a slow ramp up of power in both

time and frequency. Combined with its quieter definition amplitude, the pipeline

does not fully recover the waveform in duration (Figure 3.30) nor in bandwidth

(Figure 3.29).
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Figure 3.24: Energy spread of ADI-E in time and frequency. The waveform energy
over time is slowly decreasing, while the spread of energy in frequency shows an
inverse chirp with power concentrated towards the end of the waveform. This is due
to the monochromatic-like behaviour of the waveform at the end of its lifetime.

3.7.2 Ad-hoc Models

Ad-hoc models are intended to cover the parameter space with easily understood

waveforms and test the overall pipeline search capabilities. They are not generated

from a putative analytic expansion of astrophysicaly motivated waveforms. All

ad-hoc waveforms have 1 second, half-Hann taper windows applied to the start and

end and are sampled at 4096 Hz. Because they are all normalised to an amplitude of

10°20 Hz°0.5, ad-hoc waveforms are useful for understanding the pipeline capabilities

in a neutral context, as similar sensitivities are expected from waveforms with

similar properties like peak frequency, bandwidth and duration [11].
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Figure 3.25: Recovered bandwidth for ADI-E: evolution of mean recovered bandwidth
per distance from source. The shaded region corresponds to 1-sigma standard
deviation. The dashed line shows the exact bandwidth of the waveform model.
The waveform bandwidth is likely to be recovered accurately starting from 9 Mpc.
The effects of Fourier leakage are observed up to 5 Mpc and artificially inflate
the bandwidth recovery by saturating adjacent pixels, subsequently they are all
clustered together.

3.7.2.1 Simple Models

The monochromatic, linear and quadratic waveforms are described by

(3.3) x = A sin(2º f (t)t).

Table 3.7 summarises the individual waveform properties:

Monochromatic waveforms like Mono-A (figure 3.32) and Mono-C (figure 3.33) are

signals oscillating at a single frequency that does not change over time. As expected

due to the data-cleaning process specifically targeting monochromatic-like signals,

the pipeline is not well suited to detect signals with time-independent frequency.
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Figure 3.26: Recovered duration for ADI-E: evolution of mean recovered duration per
distance from source. The shaded region corresponds to 1-sigma standard deviation.
The dashed line shows the exact duration of the waveform model. The waveform
duration is accurately measured from 5 Mpc onward.

Figure 3.27: Mean number of pixels per trigger for each injection scale for ADI-E.
The shaded region corresponds to a 1-sigma standard deviation.
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Figure 3.28: Energy spread of Magnetar-F in time and frequency. The waveform
energy is decreasing over time with maximum at the beginning of the waveform.
The spread of energy in the frequency domain is relatively constant, with a faster
decrease towards the end of the waveform.

Waveform Duration (s) Start Freq. (Hz) End Freq. (Hz) Optimal SNR*
Mono-A 150 90 90 341
Mono-C 250 405 405 418
Line-A 150 50 200 915
Line-B 100 900 700 636
Quad-A 30 50 200 687
Quad-B 70 500 600 687

Table 3.7: Properties of interest for simple ad-hoc waveforms.
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Figure 3.29: Recovered bandwidth for Magnetar-F: evolution of mean recovered
bandwidth per distance from source. The shaded region corresponds to a 1-sigma
standard deviation. The dashed line shows the exact bandwidth of the waveform
model. The waveform bandwidth is never fully recovered and falls exponentially
after 1 Mpc.

In cases where monochromatic-like waveforms do not cover the full 512 s block

time, the remaining time-frequency bins will be over-whitened (see for example

Figures 3.32 and 3.33) 5 and will appear as pixels of lower brightness. The over-

whitening of a particular frequency band effectively raises the threshold for subse-

quent pixels in the said band to be selected in the clustering step.

Line-A (Figure 3.34) and Line-B are signals whose frequencies increase or de-

crease linearly over time. Because of their linear increase in energy over time and

frequency (Figure 3.35), they can be used to characterise the effect of the whitening

filter and the efficiency of the clustering algorithm at low amplitude. However, the

5We note that this over-whitening effect extends to all waveforms with a monochromatic com-
ponent. The late-time portion of the ADI family waveforms, for example, are affected as well. See
Chapter 4 for improvements suggestions in the next observing run.
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Figure 3.30: Recovered duration for Magnetar-F: evolution of mean recovered dura-
tion per distance from source. The shaded region corresponds to 1-sigma standard
deviation. The dashed line shows the exact duration of the waveform model. The
waveform duration is never fully recovered and fall exponentially after 1 Mpc

Figure 3.31: Effective distance for the simple ad-hoc waveforms during the O1 period
at a FAR of 1 in ª 50 years.
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Figure 3.32: Low amplitude software injection of MONO-A waveform. The waveform
is visible at ª 90 Hz, from 0 to 150s. The effect of the zero-phase linear predictor
error filter is visible from 150 s onward, where a clear line of less-than-average
power is present at the same frequency. The effect of the filter has been enhanced
using a gaussian average window over 51 seconds.

smart clustering step discards the useful information when combining bounding

boxes neighbour clusters.

Because of its higher frequency and the frequency bias of the alpha cut, Line-B

is recovered nearly twice the distance, or half the amplitude, than Line-A at 0.7 Mpc.

No breaking of the waveform occurs, indicating that lower frequency triggers are

more likely to be broken up into segments.

Quad-A (Figure 3.36) and Quad-B (Figure 3.37) are more likely to be successfully

recovered than the simple ad-hoc models due to their chirping properties - the smart
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Figure 3.33: High amplitude software injection of MONO-C waveform. The waveform
can be seen at 405 Hz, between 150 to 400 s. The effect of the zero-phase linear
predictor error filters are seen up to 150 s and after 400 s onward, where a clear line
of less-than-average power is present at the same frequency.The effect of the filter
has been enhanced using a gaussian average window over 11 seconds

clustering is favouring a small number of pixels in a large time-frequency bounding

box. Similarly to the waveforms discussed so far, X-SphRad is more sensitive to

Quad-B due of the efficiency bias toward high-frequency. The bias is slightly offset

by the longer duration of the Quad-b waveforms compared to Quad-A waveforms.

3.7.2.2 Gaussian Family

The sine-Gaussian waveforms are simple unipolar monochromatic signals described

by eq. 3.4 multiplied by a Gaussian envelope.

(3.4) h = e°t2/ø2
.
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Figure 3.34: High amplitude software injection of Line-A waveform. Potential GW
candidates selected by the pipeline are denoted by a black rectangle corresponding
to the event bouding box. The waveform can be seen at ª 50Hz to 200 Hz, from 60 to
300 s. Despite the high amplitude of the injection, the pipeline split the waveform at
80 s, and clusters glitches (at 90 and 200s). The wandering line glitch at 630 Hz is
also selected as potential GW candidate, as well as a wide-band glitch at 340s.

As they are similar to the Mono family, they are penalised by the whitening

filter in the same way. Figure 3.38 shows the effect of the whitening filter; at lower

amplitudes the whitening filter effectively removes the sine-Gaussian (top), and

corrupts the frequency bin they vibrate at for following trigger events in the block at

higher amplitude (bottom). For more moderate amplitudes, only the central part of

sine-Gaussian is recovered as the start and end of the waveform is comparatively

weaker than the central part (middle).

The White Noise Burst (WNB) waveforms are white noise band-passed signals
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Figure 3.35: Energy spread of Line-B in time and frequency. The waveform energy
over time is relatively constant, with a hann window taper at the beginning and end.
The spread of energy in the frequency domain shows an inverse chirp with power
concentrated in the end-life of the waveform.

with a Gaussian time envelope. As they closely resemble typical instrumental

glitches like the blip glitch (Figure 3.39), the WNB waveforms are useful to under-

stand the impact of long wide-band glitches in the trigger selection process. A high

and medium amplitude WNB are split into several follow-up candidate events. The

effect is more pronounced at medium amplitude, where the WNB is split into more

than 20 follow-up events out of the 30 per time-frequency map.
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Figure 3.36: High amplitude software injection of the Quad-A waveform. The
waveform can be seen starting from 330 s to 360 s, with the bounding boxes selected
by the pipeline in red. A loud line glitch is visible at ª10 Hz.

3.8 Upper Limits and Pipeline Comparison

This section is adapted from [22]. The search reports a few low-significance can-

didate events that are consistent with background noise. As a consequence, no

significant events were observed and we use the loudest event procedure [38] in

order to set upper limits on the rate of long duration GW transient signals at 90%

confidence following Poisson’ statistics, updating those set in [23]. The uncertainty

from calibration errors is folded in the calculation.

For a Poisson distribution and an observing time T = 49 days, the number of
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Figure 3.37: High amplitude software injection of the Quad-B waveform. The
waveform can be seen starting from 30 s to 90 s, with the bounding boxes selected by
the pipeline in red. A loud line glitch is visible at ª10 Hz.

expected event is

(3.5) nevents = e0∏§T

where e0 is the efficiency at a particular distance.

The probability of seeing n GW events is

(3.6) p(n|e0∏§T)= (e0∏§T)n

n!
e°e0∏§T

and so the probability of seeing 0 event is

(3.7) p(0|e0∏§T)= e°e0∏§T
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Figure 3.38: Comparison of the whitening filter effect on a sine-Gaussian waveform.
The overly loud signal (top) will corrupt the filter and downweight the values of the
other pixels in the frequency bins. For moderate amplitude, the start and end of the
waveform are discarded due to the Gaussian envelope (mid). At lower amplitude
(bottom) the whitening filter effectively removes the sine-Gaussian.

with thus a probability of observing an event of

(3.8) p(not 0|e0∏§T)= 1° e°e0∏§T

Setting a 90% confidence limit threshold gives p = 0.1 which leads to

(3.9) p(not 0|e0∏§T)= 1° e°e0∏90%§T

We then have

(3.10)
1

10
= e°e0∏§T )∏90% = 2.3

°e0 §T
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Figure 3.39: Comparison of the recovery of a WNB waveform. The overly loud signal
(top) resembles a loud wide-band glitch, which corrupts the filter and downweights
the values of the other pixels in the covered frequency bins. For moderate amplitude
(mid), the waveform has the same time-frequency properties as blip glitches . Even
at lower amplitude (bottom), the clustering algorithm follows broken fragments of
the waveform.
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Table 3.8: 90% confidence upper-limits for the astrophysical waveforms.

Waveform 90% confidence limit (Mpc^3)
ADI-A 0.0021
ADI-B 0.0001
ADI-C 0.0014
ADI-D 0.0226
ADI-E 0.0007
Magnetar F 11.766
Magnetar G 99.982

Table 3.8 reports the 90% confidence limit threshold.
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4
ENHANCEMENT TO LONG-DURATION BURST

SEARCHES

4.1 Introduction

Unmodelled searches typically look for an excess of power in a spectrogram to flag

GW candidate events [30]. Clustering algorithms assign [63] pixels into groups that

are further tested against consistency cuts and vetoes to determine the likelihood of

the presence of a signal. Most of the X-pipeline processing time is spent gathering

data, correlating it and generating a time-frequency map. A comparatively small

fraction is spent localising and analysing GW candidate clusters. The clustering

phase is relatively unexplored and unoptimised, for example LIGO dcc search with

the term ’clustering’ returns only a handful of relevant results (referencing notably

[42, 45, 5]). However, it is the one of the principal factors limiting the X-SphRad O1

search sensitivity.
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In all search pipelines, there is a trade-off between sensitivity and computational

time. Analyses need to be sensitive and have a non-zero potential for detection,

while providing results in a timely manner. For searches such as the one presented

in Chapter 3 the background estimation is by far the most computationally costly

procedure, with ª50 years of data to be analysed in a few months. Adding a few

extra seconds to any steps of the pipeline has repercussion that can be counted in

days of extra analysis time. In this context, the value of any increase in amount

of time spent finding events of interest on the time-frequency map depends on the

resulting increase in sensitivity [24].

As seen in the previous chapter, glitches significantly hinder the sensitivity

of long-duration GW transient searches including X-SphRad. As the number of

follow-up candidate events on a time-frequency map is limited, X-SphRad ranks

then selects top priority clusters based on their sky energy. This naturally favours

loudest events on the time-frequency map. As loud glitches typically occur at least

once during a 512s interval, most if not all of the follow-up triggers selected by the

pipeline thus originate from transient noise. When looking for an excess power for

minute-long signals, relatively low amplitude signals would be missed.

We propose a novel method for GW clustering on time-frequency maps that uses

properties beyond the amplitude of the potential signal. By using an edge detection

algorithm, we quantify each pixel in the time-frequency map by similarity with its

local neighbours and extract features of sharply changing intensity (or ’edge’). We

test the method on a subset of injections from O1 and find that we detect quiet events

consistently better than currently implementeded algorithm, with an increase in

observable volume by nearly an order of magnitude. The method assumes only that

the potential signal is represented by at least few pixels on a time-frequency map
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with higher amplitudes than its local neighbours in the time-frequency plane.

4.2 Clustering the time-frequency map

The simplest form of clustering algorithms can be applied like an excess power

search, and generate clusters based only on the pixel values. The algorithm first

selects a threshold value, and discards all pixels in the time-frequency map with

lower values. The pixels sharing a side or corner are kept and flagged as a single

cluster. The method is fast, simple to implement and work well in environments

with low-noise and high SNR signals. To make it more robust, the algorithm can

also apply a second lower threshold (sometimes called ”core or halo clustering”), and

treat the first threshold as seed from which branches grow up to reaching a pixel

with a value lower than that of the second threshold. This is appropriate for events

where at least one pixel of the cluster has high amplitude, and some of the values of

the cluster pixels are below the initial threshold. Branches can also be allowed to

”jump” (or ”leapfrog”) a certain distance and continue growing as normal.

In environments with non-Gaussian non-stationary noise of high amplitude, and

target signals with low SNR such as in the case of the LIGO detectors, the method

are not necessarily optimal. The first threshold will discard interesting events if set

too high, and will aggregate important quantity of noise if set too low. The second

threshold allows for weaker features to be extracted, but is similarly easily corrupted

and can still miss pixels with significant signal energy. Adding a jump distance is not

necessarily optimal neither, as it can similarly lead to over-selection and event data

corruption. The clustering algorithm described in section 2.6 tries to mitigate the

effects of the non-stationary background noise by dividing the parameter-space into
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regions with individual thresholds, but still lose signals due to glitches in individual

regions (Figure 4.1). Pixels available for event reconstruction after thresholding are

limited and sparse.

Figure 4.1: Comparative time-frequency maps showing the effect of clustering in
X-SphRad, with and without region-based thresholding. A simulated signal of
moderate amplitude from 260s to 430s. (top) unclustered time-frequency map. (2nd)
Pixels surviving loudest percentile threshold. (3rd) Pixels surviving the region-based
threshold. (bottom) Logical XOR between the two methods. Adding regions shows
only a marginal difference in pixel selection.
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4.2. CLUSTERING THE TIME-FREQUENCY MAP

Other long-duration GW searches ([71, 46]) have developed alternative solutions

to extract information from noisy environments. They generate masks of the desired

shape, and maximise the integrated power along the mask. For example, coherent

WaveBurst (cWB) [71] select GW candidate events by performing a convolution

with a kernel shape boosting chirp-up or chirp-down. However, the kernel biases

against waveforms that are not chirp up or chirp down by construction. It also

loses the potential to discover the most interesting GW events that are not expected.

STAMP lonetrack [46] generates series of Bezier curves under the assumptions

that GW emissions appear as curvy tracks on the time-frequency map, which is

computationally intensive. Both are looking for general excess of power in the data.

In excess power clustering algorithm the critical assumption is that the candidate

GW event will be represented on the time-frequency map by at least one pixel of

power higher than or comparable to a high percentage of the background. This is

most often not the case for long-duration analyses with block time in the minute

range, as the LIGO detectors exhibit frequent non-stationary noise fluctuations

of high amplitude. In this light, we argue that excess power clustering methods

are not the best suited method for minute-long GW transient searches. For long

duration signals, by definition the signal energy will be spread out over many pixels,

so looking for individual very-high amplitude pixels is unlikely to be the optimal

strategy.

We can define an optimal algorithm in the context of long-duration GW clustering

as having the following ideal properties. The perfect clustering should not be

hypersensitive to glitches, but should nonetheless not be oblivious to them and

it should flag them as they exhibit behaviours similar to real signals. The distinction

between GW event and GW candidate should be left to follow-up steps. The perfect
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clustering method should be truly unmodelled and not target specific time-frequency

properties of current best approximate waveforms. it should be fast and efficient

enough to run several-sigma background in reasonable time and increase the pipeline

sensitivity.

With the proposed method, we are making the assumptions that long duration

GWs resemble tracks in the time-frequency space, based on long duration signal

models looking like lines (or tracks) on the time-frequency map. However, broadband

long duration GW signals would have their power spread over more pixels and

be inherently less detectable. The assumption is thus minimal. Finding such

tracks is an important part of the field of computer vision and algorithms are used

extensively in radiology ( see [73, 59, 48] for example). The same techniques are

used for image enhancement and artistic effect in image processing [106]. Image

processing techniques applied in this context allow for efficient algorithms that have

the advantages of being local, adaptive, and fast.

4.3 Edge detection

Edge detection is a common problem in image analysis [104]. Edges are often used

to bound objects [89] and have applications in image segmentation [90], feature

extractions [53, 28] and object identification [88, 78, 68]. The technique is also used

to enhance image features [82]. The most common algorithms of edge detection are

Sobel [49], Canny [41], and Laplacian [64]. Edges are considered as high frequency

features so techniques are akin to high-pass filtering of the time-frequency map and

are essentially a convolution of a kernel with the original input, so intrinsically local

within the chosen kernel size.
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The Sobel filter is a convolution with a kernel approximating the directional first

derivative. For example, a 3£3 kernel is

(4.1) Sobel : Convolve with Gx =

2

666664

+1 0 °1

+2 0 °2

+1 0 °1

3

777775
.

capturing the gradient changes in the x direction. The kernel can be rotated by 90

deg to target the y direction then addition in quadrature for overall power. Due

to the weights assigned in the kernel, the method only finds edges in a specified

direction. The simple convolution can be computed quickly but the method is very

sensitive to noise fluctuations. Other kernels are available that are more isotropic

and larger [36]

The Canny filter [41] is an enhancement to the Sobel filter, building up on it with

several extra steps. The first step is the blurring of the initial image to minimise

the noise fluctuations before convolving on a Sobel kernel (or alternative kernel)

in the x,y and the two diagonal directions. To compute the final value for each

pixel, the four derivatives are added in quadrature. The principle behind the initial

blurring is that the noise is a high frequency component of the image, so the image

is low-pass filtered. However, sharp edges are also high frequency components, and

so the blurring kernel size needs to be carefully chosen to balance noise reduction

to edge detection sensitivity. As edges are widened by the blurring, the pixels that

are not local maximum are discarded to thin the edges. A pair of threshold are

used to identify edges, and weak edges that do not touch strong edges are discarded.

The operation has a few more steps than Sobel, and is thus computationally more

intensive. Enhancements to the technique [47] speed up the computation, but the
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method is best suited for mid-SNR environment. The double thresholds discard most

of the edges caused by spread noise, but can distort target signals by flagging noise

physically connected (Figure 4.2).

Figure 4.2: Effect of the Canny algorithm on a time-frequency map. (left) Original
time-frequency map (right) Canny filtered. The canny-filtered time-frequency map
does not recover fully the high-amplitude 630 Hz wandering line glitch, and clusters
it with additional surrounding noise. Other features like the short-lived broadband
glitch at the centre of the map are lost in the accumulation of noise.

Other edge detection methods such as the Laplacian use a second-order derivative

of the intensity instead [64]. This way, it is not the change of gradient that is

estimated, but the rate at which the gradient changes with zero-crossings indicating

local maxima in the gradient. The laplacian operator in two dimension is

(4.2) O f = @2 f
@x2 + @2 f

@y2

which can be approximated on a discrete grid by a convolution of the kernels of the
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form

(4.3)

2

666664

0 °1 0

°1 4 °1

0 °1 0

3

777775
,or

2

666664

°1 °1 °1

°1 8 °1

°1 °1 °1

3

777775
.

Second-derivatives are very sensitive to noise however, and an initial blurring

pre-processing step is needed for the method to be effective in noisy environments,

as with Canny’s . The convolution operation is associative, so the computation can

be sped up by convolving the Gaussian filter and Laplacian filter together, then

convolve the result with the data input, requiring only one pass through the data.

The most interesting difference between the Laplacian and Canny’s is the evalu-

ation of the rate of change in gradient, instead of the gradient itself. Using similar

techniques for GW detection on time-frequency map allows to threshold on the rate

of change with respect to the local background, instead of pure signal-to-noise ratio.

While loud glitches are limited in time-frequency and exhibit high rate of gradient

change compared to the background. Our target GW signals are more localised as

thin lines in time-frequency regions. We can reduce the sensitivity to noise by extend-

ing the kernel size, and sporadic pixel of noise excess will be averaged together with

the potential signals. However, the method allows only for control of the upper-limit

of the low-pass filter from the initial blurring step.

4.4 Difference of Gaussians

The Laplacian can be approximated by a difference of Gaussians (DoG) [75]. By

convolving a Gaussian kernel of size m with the input, then subtracting a convolu-

tion with a second Gaussian kernel of size n > m, the difference between the two
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approximates well the laplacian and effectively acts as a band-pass filter. The Gaus-

sian kernel sizes control the bandwidth, as the substraction of one convolution with

the other will only preserve the spatial information within the range of frequencies

preserved in the two blurred images [33]. Effectively, increasing the larger radius

n lowers the threshold for recognising the edges and increasing the smaller radius

m will thicken them [34]. The resulting filter is isotropic, so the algorithm is fast

as it need only one pass in the data. It can even be speed up by approximating a

Gaussian with successive box blurring with uniform boxes, see Figure 4.3 [94].

Figure 4.5 shows the effect of the DoG on a standard time-frequency map con-

taining a relatively loud simulated signal. Increasing the size of the larger kernel

n translates in a loss of details and generally larger ”blobs” of overall low gradient.

Increasing the size of the smaller kernel m effectively clusters more pixels around

areas with high rate of gradient change. Selecting more pixels around areas of inter-

est could potentially be useful for background rejection techniques. The Laplacian is

best approximated [33] with the ratio

(4.4)
m
n

= 1.6.

4.5 Preliminary results

The current implementation of the DoG and its attached cluster selection routines is

done in Python. Several of the steps described below were only taken to empirically

produce thresholded time-frequency map, on which cluster could easily be located

using native python functions. These are not necessarily desirable in X-SphRad.
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Figure 4.3: Histogram of values of a noise map after Gaussian blur and after box
blur. The distribution of map values is essentially the same with both method.
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Figure 4.4: Difference of Gaussians on pixel weights, illustrated with value of 2 and
4 sigmas. The resulting weighting factors are commonly referred to as ’Mexican hat’
and are used to enhance edges in image processing.

First, the we load a time-frequency map generated by X-SphRad containing

simulated signals. The map is rescaled by dividing by the minimum value in the

map, then we take the logarithm of all the values. The logarithm step gives more

details when observing the DoG algorithm visually and prevent overly loud glitches

from saturating the colour bar on plots. The bands 0-60 Hz and 900-1000 Hz are

reset to be equal to the minimum map value. Coherent noise in those frequencies

has high amplitude and is relatively constant, which generates long and sharp edges

that were consistently flagged as potential GW candidates. We applying the DoG

with parameters m = 7,n = 11 (close to the 1.6 ratio to approximate the Laplacian)

on a time-frequency map, then discard all pixels with negative value. We apply
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Figure 4.5: Effect of the DoG on a time-frequency map generated from data from
the LIGO O1 period, with different kernel sizes and an added simulated signal. The
differences due to kernel sizes are apparent in the excess of noise in the bottom
and top 40 Hz of the time-frequency maps, and on the simulated signal. top-left)
m=2,n=7 top-right) m=2,n=12 bottom-left) m=5,n7 bottom-right) m=2,n=3. All time-
frequency maps were thresholded by removing pixels with value lower than zero.
For production mode, we recommend parameters with a ratio following Eq. 4.4
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a Gaussian blurring with kernel size 3£3 to connect blobs that might have been

split by the whitening filter or by noise, then threshold on the median value of the

DoG map plus 2 standard deviations. We repeat the blurring thinning process with

a second harder threshold of DoG map plus 5 standard deviations to have clear

definition in the resulting cluster. We then find isolated islands of pixels and flag

them. We rank all triggers formed of at least 10 pixels by their original sky statistic,

weighted by their value on the DoG map. To compare fairly between the DoG and

the clustering used by X-SphRad, we keep only the top 30 clusters with the largest

weighted values. To be able to compare between the two methods, we generate a

loud injection guaranteed to be detected and select pixels that are clearly from the

simulation using the DoG. We then compare them to the pixels returned by the DoG

and X-SphRad or moderately loud injections of the same signal.

We generated a set of ª80 injections for the ADI models D and E, using the

same random distribution parameters and distance scales as per the O1 analysis.

To be flagged as recovered, a cluster needs to overlap with at least 1 pixel of the

simulated signal and have a sum weighted amplitude amongst the top 30 clusters of

the time-frequency map. To allow the characterisation of the differences between

the two methods, no further consistency cuts or thresholds were applied to the

clusters including the loudest background event criterion used by X-SphRad. The

full comparison including background rejection would require a complete analysis of

the data (including background) with the DoG procedure, which is not feasible until

the algorithm is implemented in X-SphRad.

Figure 4.7 and Figure 4.6 report the increase in candidate selection sensitivity

for ADI-D and ADI-E. At low distances both methods recover almost all injections

and the same number of pixels. A small fraction of the injections are not recovered.

102



4.5. PRELIMINARY RESULTS

Transient errors during the computations to generate the time-frequency maps by

X-SphRad prevented the full number of simulation to be produced. We note that

the set of simulations added to the data at any given scale is not guaranteed to be

exactly the same, which explains small fluctuations at minimum and maximum

recovery rate. This also bias the % median recovery per scale, as the missing

simulation is considered ’not recovered’. At distance ª 100 Mpc, the fraction of

recovered injections by the DoG method is consistently more sensitive than the

current clustering implementation in X-SphRad with an increase by a factor of ª 2

in efficiency, which potentially increase the detectable volume by nearly an order

of magnitude. Moreover, the median amount of pixel recovered for each simulation

is also doubled by the DoG. Recovering more pixels of candidate GW events make

them more likely to pass the glitch rejection thresholds and cuts (See discussion on

the correlation matrix in Chapter 3).

The levelling off of the recovery rate at the furthest distances is due to glitch

background. As discussed in previous chapters, loud glitches are common and tend to

overlap with simulated signals on the time-frequency map. The resulting candidate

event is thus falsely treated as recovered. Difference between the baseline of the two

models is explained by the longer duration of the ADI-D waveform, and the higher

likelihood of a glitch happening at the same time.

The method is promising and shows great potential. Full assessment of the

power of the method requires applying the same treatment to background candidate

events. Efforts are underway to assess the impact of the different candidate event

selection on the background rejection cuts & thresholds by implementing the method

in X-SphRad.
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Figure 4.6: Comparison of the current X-SphRad clustering with the DoG for the
ADI-E waveform. The DoG method was consistently more sensitive than the current
clustering implementation in X-SphRad at distance above 500 Mpc. The DoG
recovers about twice as many pixels per candidate event as X-SphRad at the same
distance. More information as discussed in text.
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Figure 4.7: Comparison of the current X-SphRad clustering with the DoG for the
ADI-D waveform. The DoG method was consistently more sensitive than the current
clustering implementation in X-SphRad at distance above 100 Mpc. The DoG
recovers about twice as many pixels per candidate event as X-SphRad at the same
distance. More information as discussed in text.
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CONCLUSION

Searches for long-duration GWs typically scan all the available data for signals
arriving at any time from any direction on the sky. Because of the large
parameter space covered, searches require model-independant processing

and fast analysis techniques. For my PhD thesis, I integrated a set of fast cross-
correlation routines in the spherical harmonic domain (SphRad) [50] into X-pipeline
[95], a targeted GW search pipeline commonly used to search for GW counterparts
of short and long duration GRBs & core-collapse supernovae.

Transient GW searches perform a coherent analysis on a linear combination of
the detector output, weighted by the detector antenna response and noise spectrum.
As the combination is chosen to maximise the Signal-to-Noise Ratio of a GW with
given polarisation, it naturally depends on the source sky location. Current all-sky
searches deal with sky location uncertainty by mapping a grid of points on the sky,
and evaluating key statistics iteratively over the whole grid. The overall search
speed thus depends approximately linearly on the number of points on the sky
necessary to yield the desired accuracy.

Spherical harmonic decomposition used in this context allows for the sky position
dependancy of the coherent analysis to be isolated from the data [40] and cached
for re-use, saving both time and processing units. Moreover, the spherical harmonic
approach offers a fundamentally different view of the data, allowing for new possibil-
ities for rejecting non-Gaussian background noise that could be mistaken for a GW
signal. For example, the ratio of energy in the lowest harmonic mode (l = 0) to the
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sum of the energies in the higher order modes (l > 0) is a powerful discriminator to
discard instrumental noise transients.

The combined search pipeline, X-SphRad, underwent a thorough internal review
within the LIGO collaboration, which I led. The pipeline good functioning was
assessed by rigorous tests including comparing a test data set with a standard
sky grid-based analysis, adding and recovering signals with calibration-line-like
properties, and thorough follow-up investigations of noise artefacts and potential
GW candidates. X-SphRad analysed the data taken during the first advanced LIGO
observing run (O1) from September 2015 to January 2016. An observational results
paper is in the final state of review by the LIGO-Virgo Collaboration [22].

By carefully actuating on the detector test masses, it is possible to add simulated
GW signals to the LIGO data strain which allows us to characterise calibration
uncertainties, unbiased analysis sensitivities and online-search responses with
collaboration-wide impact. This is a key step in validation of candidate GW signals
[6].

My current research focus is on innovation in time-frequency analysis. Current
events-of-interest in searches for unmodelled GW bursts are flagged by selecting
clusters of pixels on high-resolution spectrograms. Due to the presence of non-
stationary non-Gaussian noise in the detectors, strong thresholding on the intensity
is used to select seed-pixels from which clusters will grow. The thresholding method
is efficient at discarding instrumental artefacts but requires that at least few pixels
of a putative GW signal are louder than the set threshold, which can significantly
limit the sensitivity of the search in non-stationary data.

We searched the data from the first advanced LIGO observing run for long-
duration gravitational wave transients. We report a set of candidate events that
passed the coherence and consistency tests. All candidates are consistent with the
background and we report no long-duration gravitational wave detection. We thus
set the 90% confidence limit on 6 astrophysically motivated signal templates.

I have developed a novel pixel clustering method that does not depend on the
amplitude of potential signals. By using an edge detection algorithm, I quantify
each pixel in the spectrogram by its similarity with its neighbours then extract
features of sharply changing intensity (or ‘edge’). By ranking clusters of pixels by
their ‘edginess’ instead of energy, the method assumes only that a potential signal
need to be louder than the noise at a particular time/frequency bin and its close
neighbours. The method has shown promising results in preliminary tests with
a potential increase in observable volume by about a factor of 10. A simplified
version of the algorithm was implemented in X-SphRad and large-scale testings are
currently being processed.

Future work on X-SphRad will focus on reducing the latency of the analysis with
end goal to allow for long-duration GW event reporting within the order of minutes.
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Figure 6.1: ADI-A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit



Figure 6.2: ADI-B:Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.3: ADI-C:Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit

112



Figure 6.4: ADI-D:Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.5: ADI-E:Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.6: Magnetar F: Fraction of injections recovered with significance greater
than loudest event in (dummy) on-source. Black dots are sampled values, red and
yellow dot is respectively the 90% and 50% efficiecy obtained from interpolation.
Green dots mark sampled valued with 0<efficiency<5%. Blue curve show the effi-
ciency when DQ flags are not applied to injections. We obtain the 90% upper limit
from fit
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Figure 6.7: Magnetar G: Fraction of injections recovered with significance greater
than loudest event in (dummy) on-source. Black dots are sampled values, red and
yellow dot is respectively the 90% and 50% efficiecy obtained from interpolation.
Green dots mark sampled valued with 0<efficiency<5%. Blue curve show the effi-
ciency when DQ flags are not applied to injections. We obtain the 90% upper limit
from fit
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Figure 6.8: Quad-A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.9: Quad-B: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.10: SG A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.11: SG C: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.12: WNB A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.13: WNB B:Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.14: LINE A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit

123



CHAPTER 6. APPENDIX A

Figure 6.15: Line B: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.16: Mono A: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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Figure 6.17: Mono C: Fraction of injections recovered with significance greater than
loudest event in (dummy) on-source. Black dots are sampled values, red and yellow
dot is respectively the 90% and 50% efficiecy obtained from interpolation. Green dots
mark sampled valued with 0<efficiency<5%. Blue curve show the efficiency when
DQ flags are not applied to injections. We obtain the 90% upper limit from fit
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