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ABSTRACT Modeling topological properties of the spatial relationship between objects, known as the
topological relationship, represent a fundamental research problem in many domains including artifi-
cial intelligence and geographical information science. Real-world data are generally finite and exhibit
uncertainty. Therefore, when attempting to model topological relationships from such data, it is useful
to do so in a manner which is both stable and facilitates statistical inferences. Current models of the
topological relationships do not exhibit either of these properties. We propose a novel model of topological
relationships between objects in the Euclidean plane, which encodes topological information regarding
connected components and holes. Specifically, a representation of the persistent homology, known as a
persistence scale space, is used. This representation forms a Banach space that is stable and, as a consequence
of the fact that it obeys the strong law of large numbers and the central limit theorem, facilitates statistical
inferences. The utility of this model is demonstrated through a number of experiments.

INDEX TERMS Spatial relationships, topology, stable, statistical inference.

I. INTRODUCTION
There are many real world scenarios where one is required to
model the spatial relationship between objects [1]. A meteo-
rologist may wish to model the spatial relationship between
different environmental variables toward understaning cli-
mate change [2]. A city planner may wish to model the spatial
relationship between noise pollution produced by heavy traf-
fic and residential areas. Models of spatial relationships have
also been employed when designing intelligent robotic sys-
tems [3]. There exist manymodels of spatial relationships and
thesemodels typically focus exclusively onmodellingmetric,
order or topological properties of the relationship in ques-
tion [4]. Metric properties of a spatial relationship relate to
things such as distance, size and orientation. Order properties
of a spatial relationship relate to things such as the partial and
total order of objects as described by prepositions such as in
front of, behind, above, and below [5]. Finally, topological
properties of a spatial relationship relate to things which are
invariant under continuous transformations of the ambient
space such as a homotopy. An indicator of whether or not
two objects intersect is an example of a topological property.
In this article we use the term topological relationship when
referring to the topological properties of a given spatial rela-
tionship.

Real world data are generally finite and exhibit uncertainty.
Therefore, when attempting to model topological relation-
ships from such data it is useful to do so in a manner which is
both stable and facilitates statistical inferences. Informally,
a model is stable if a small change in the input data pro-
duces at most a small change in the resulting model [6]; a
formal definition of Lipschitz stability, which is a type of
stability, is provided in Appendix VI-A. Given the pres-
ence of data uncertainty, model stability is necessary for
robustness. Statistics is an effective paradigm for making
inferences given data regarding phenomena which cannot
be directly observed. A model which facilitates statistical
inferences with respect to topological relationships is useful
in many contexts. For example, consider a sensor network
with a small number of sensors where each is constantly
moving and capable of detecting the presence or absence
of different objects whose locations remain constant over
time. Given the small size of such a network, at a given
time, object locations and in turn topological relationships
cannot be precisely modelled from sensor measurements.
A solution to this problem would be to perform a statistical
inference whereby the topological relationships in question
are modelled at n distinct time steps, where each of these n
models is considered to be an independent sample from the
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sampling distribution of the model, and the expected value of
these models is approximated. Such an approximation could
be made using the sample mean if the model in question
exhibited the statistical property of the strong law of large
numbers where by the sample mean approaches the expected
value as the number of samples increases. Current models of
the topological relationships are not stable and do not exhibit
those statistical properties necessary for performing many
useful statistical inferences. Proposing a model of topological
relationships which overcomes these limitations represents
the theme of this article.

In this article we consider the problem of modelling topo-
logical relationships between objects in the ambient spaceR2

given a finite set of points S in that space and the ability to
detect the presence or absence of different objects at each
of these points. The finite size of S results in uncertainty
with respect to object locations and the degree of this uncer-
tainty is a function of the size of S. This is equivalent to
the sensor network problem discussed above where S cor-
responds to the set of sensors. We propose a novel model
of topological relationships between objects which encodes
topological information regarding connected components and
holes. Specifically, a representation of the persistent homol-
ogy, known as a persistence scale space, is used. This model
forms aBanach spacewhich is stable whereby a small change
in the set S, as measured by the Hausdorff distance, pro-
duces at most a small change in the resulting model. This
model also exhibits the following statistical properties which
facilitate statistical inferences. It exhibits the strong law of
large numbers described above. It also exhibits the central
limit theorem whereby the distribution of the sample mean
converges to a normal distribution centred at the expected
value as the number of samples increases.

The layout of this article is as follows. In section II we
review important works on modelling topological relation-
ships. In section III the proposed model of topological rela-
tionships is presented. In section IV the accuracy and utility of
this model is demonstrated through a number of experiments.
Finally in section V conclusions from this work and possible
future research directions are discussed.

II. RELATED WORKS
There exist many models of topological relationships with
two of the most cited by a significant margin being the
Intersection Model (IM) [7] and the Region Connection
Calculus (RCC) [8]. These models assume object locations
are known precisely and these are modelled as subsets of R2.
In the IM, a number of subsets of the ambient space are
considered where each is a binary set relation of object
interiors, boundaries and exteriors. For example, one sub-
set considered is the intersection of object interiors. Having
determined these subsets the spatial relationship in question
is modelled by evaluating whether or not these subsets equal
the null set or their dimension. The success of the IM can
be attributed in part to the fact that it models important
topological features in a simple and interpretable manner.

In fact, many instances of the model correspond to spatial
relationships which can be described using the natural lan-
guage terms such as contains or disjoint; here a natural lan-
guage term is an English language description which does
not refer to binary set relations and mathematical topology
concepts. For example, if the intersection of the interiors
and boundaries of two objects is the null set the spatial
relationship in question can be described using the natural
language term disjoint. The IM is described in greater detail
in Appendix VI-A where we also prove this model to be
unstable. The RCCmodels topological relationships between
objects as one of five or eight topological relationships such
as disconnected (DC) and externally connected (EC). The IM
and RCC models are in some sense equivalent; after account-
ing for physical constraints, there are exactly eight feasible
instances of the IM and these correspond to the five or eight
RCC topological relationships [9]. In their original form, both
the RCC and IM assume the objects in question equal single
connected components. A number of generalisations of the
IM and RCC have been proposed which consider objects
equalling one or more connected components [10].

As stated previously, when attempting to model topolog-
ical relationships from data which exhibits uncertainty it is
important to do so in a manner which is both stable and
facilitates statistical inferences. Worboys [11] defined the
following five factors which cause uncertainty in spatial data.
Incompleteness due to lack of information; Inconsistency
arising from conflicts in information; Vagueness resulting
from objects not having crisp or sharp boundaries; Impreci-
sion resulting from limits in the resolution at which measure-
ments are made or stored; Errors which are a consequence
of deviation from true values. If a spatial relationship is
represented using natural language terms this may also result
in uncertainty; for example, if a spatial relationship is repre-
sented using the terms near or far there is uncertainty with
respect to the distance between the objects in question [12].
These latter terms correspond to vague qualifications of the
topological relationship of disjoint.

Many models of topological relationships have been pro-
posed which model uncertainty. Generally this is achieved by
generalising the IM or RCC models in some way. For exam-
ple [13]–[15] generalise these models using fuzzy set theory
to offer robustness to vagueness. A number of generalisations
of the IM and RCC have been proposed which model spatial
uncertainty with respect to object locations. Tøssebro and
Nygård [16] proposed a probabilistic model where a prob-
ability distribution is defined over the true location of each
object. Clementini and Felice [17], [18], and Clementini [19]
proposed to model objects using broad boundaries where
an object boundary is represented by a region corresponding
to all its possible locations. Bejaoui et al. [20] proposed to
model each object using two components; one correspond-
ing to the minimal and one corresponding to the maximal
possible extent of the object. In each of these works the
authors generalised the IM to model topological relation-
ships between objects modelled in the manner in question.
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FIGURE 1. Objects A and B are illustrated in (a) using the colours red and blue respectively. For a set S containing 6,000 points, the subset of the set of
points contained in object B are illustrated in (b). The subsets of the points S contained in the intersection and union of A and B are illustrated
in (c) and (d) respectively.

Cohn and Gotts [21] proposed a similar ‘egg-yolk’ model
for objects and generalised the RCC model [8] to model
topological relationships between objects modelled in this
manner.

Although the models described above model spatial uncer-
tainty with respect to object locations, they are not necessarily
stable and do not consider the problem of performing statisti-
cal inferences. This does not mean that these models could
not potentially be generalised to perform such inferences.
For example, the metric refinements proposed by [22] could
be used to measure the degree to which a property of a
topological relationship exists.

A number of generalisations of the IM and RCC have been
proposed which model topological relationships between
objects whose locations, and in turn topological relationships,
change as a function of time [23]–[25]. We do not consider
this aspect of modelling topological relationships.

III. MODEL OF TOPOLOGICAL RELATIONSHIPS
In this article we consider the following instance of the prob-
lem of modelling topological relationships. We assume the
existence of two objects A and B in the ambient space R2

for which we wish to model the corresponding topological
relationship. Furthermore, we assume the maximum of the
length and width of the axis aligned minimum bounding box
containing both objects is equal to 10. The spatial locations
of the objects is unknown and cannot be directly observed.
Instead we assume a finite set S of points contained in the
bounding box is known. Furthermore, we assume the ability
to detect the presence or absence of the objects A and B at
each of those points and, in turn, determine those subsets
of S contained in A and B. This corresponds to performing
rejection sampling of finite sets of points contained in A
and B. Rejection sampling is a commonly used method for
drawing samples from one space given the ability to draw
samples from another [26]. To illustrate, consider the objects
A and B illustrated in Figure 1(a) which form a running exam-
ple in this article. For a given set S of size 6, 000, the subset
of S contained in the object B of Figure 1(a) is illustrated
in Figure 1(b). The finite size of the set S results in uncertainty
with respect to the locations of A and B. The degree of such
uncertainty varies as a function of the size of S. If the size
of S is small the size of the subsets contained in A and B is
also small and there is in turn a greater degree of uncertainty

with respect to the locations of these objects. On the other
hand, if the size of S is larger these object locations can
be more precisely determined. Given this uncertainty, when
attempting to model topological relationships from such data
it is important to do so in a manner which is both stable and
facilitates statistical inferences.

In this article we propose a model of topological rela-
tionships which goes some way toward achieving the above
goal. The construction of the proposed model consists of the
following three steps. In the first step a number of subsets of
the set S are considered where each is a binary set relation
of the objects A and B. This step is similar to the IM model
although the subsets considered equal a finite number of
points as opposed to subsets of R2 which contain an infi-
nite number of points. Unlike the IM model, the proposed
model does not model the spatial relationship by evaluat-
ing whether or not these subsets equal the null set or their
dimension. Instead, in the second step of the proposed model,
the persistent homology of each subset is computed to give a
corresponding persistence diagram. This is a representation
which describes the topology of the subset in terms of the
number of k dimensional holes it contains plus the range
of scales across which these holes persist (note that a zero
dimensional hole corresponds to a path connected compo-
nent). In the third step, this information is in turn mapped
to a function space representation known as a persistence
scale space which forms a Banach space that is stable, obeys
the strong law of large numbers and the central limit theo-
rem. These properties are a consequence of the fact that this
representation exploits the insight that those k dimensional
holes which do not persist over a large range of scales are
not statistically significant and can be considered topolog-
ical noise. Fasy et al. [27] presents a formal definition of
statistical significance in the context of persistence diagrams.
Given these properties, the proposed model represents a more
suitable platform for performing statistical inferences than
existing models of topological relationships. Each of these
steps is described in turn in the following three subsections.

A. SUBSETS
Whenmodelling the topological relationship between objects
A andBwe do not wish tomodel global topological properties
such as the number of k dimensional holes both objects
contain. Instead, we wish to model topological properties
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of the spatial relationship in question. Toward this goal,
we propose to model the topological properties of subsets
of the set S where each subset is a binary set relation of the
objects in question. This corresponds to sampling from the
subsets in question by performing rejection sampling. For
example the intersection and union of those points contained
in the objects of Figure 1(a) are illustrated in Figure 1(c) and
Figure 1(d) respectively. The consideration of such subsets
is motivated by the insight that the topological properties
of these subsets model distinct topological properties of the
spatial relationship in question. For example, if that sub-
set corresponding to the binary set relation of intersection
contains zero connected components, the spatial relationship
in question may be described using the natural language term
disjoint.

The specific subsets to consider depend on the topological
properties one wishes to model and in turn the problem one
wishes to solve. For example, if one wishes to perform a
general clustering of topological relationships, a reasonable
solutionwould be to consider a large number of subsets which
capture a variety of topological properties and subsequently
perform a clustering based on these properties. On the other
hand, if one wishes to determine if a given topological rela-
tionship equals that corresponding to the natural language
term intersect, a reasonable solution would be to consider
the single subset corresponding to the binary set relation of
intersection and determine whether or not this subset contains
zero 0 dimensional holes. Similarly, if one wishes to deter-
mine if a given topological relationship equals that corre-
sponding to the natural language term contains, a reasonable
solution would be to consider the single subset corresponding
to the binary set relation of exclusive or and determine
whether or not this subset contains one 0 dimensional hole
and one 1 dimensional hole. Determining necessary and suf-
ficient conditions for instances of the proposed model to
correspond to various natural language terms is beyond the
scope of this work.

B. PERSISTENCE DIAGRAM
In this step the persistent homology of each subset is com-
puted to give a corresponding set of persistence diagrams.
This section only briefly introduces the concept of persistent
homology and its computation. More technical details are
contained in Appendix VI-B.

Each persistence diagram is a representation which
describes the topology of the subset in terms of the number
of k dimensional holes it contains plus the range of scales
across which these holes persist. In this context scale corre-
sponds to the radius of a set of balls centred at each point
in the subset. As one increases the value of this radius holes
may both appear and disappear. More formally, a persistence
diagram for k dimensional holes is a multiset of points (i, j)
in the space {(i, j) ∈ R2, i ≤ j} where a point (i, j)
indicates that a k dimensional hole appeared at scale i and
disappeared at scale j. The disappearance of a k dimensional
hole may be the consequence of its size becoming zero or it

merging with another k dimensional hole. The persistence
of the k dimensional hole in question is the value j − i. If a
k dimensional hole appears at scale i but does not disappear,
it is represented in the persistence diagram by a point (i, u)
where u is a upper bound on the scale at which k dimensional
holes may disappear. Since we assume the maximum of the
length and width of the axis aligned minimum bounding box
containing both objects is equal to 10, we set the value of u
equal to 7.6 for all k dimensional holes. This is a valid upper
bound given the fact that the objects in question are scaled
to be contained in a specified bounding box and a union of
balls centered at the points is considered (see Appendix VI-B
for details). It is important to note that some authors omit
from persistence diagrams those points corresponding to
k dimensional holes which do not disappear [28]. In the
context of the current problem, it is important not to omit such
points because doing so would remove the ability to differen-
tiate between a number of important cases. This includes dif-
ferentiating between a subset containing zero 0 dimensional
holes and a subset containing one 0 dimensional holes.

The persistent homology computation is performed in two
steps. In the first step the subset in question is represented
using a combinatorial representation known as a filtration.
The persistence diagrams are subsequently computed as a
function of this filtration. The technical details of this com-
putation are provided in Appendix VI-B. Since we assume
the ambient space is R2 it is only necessary to consider 0
and 1 dimensional holes where a 0 dimensional hole corre-
sponds to a path connected component. That is, for each sub-
set specified in section III-A two corresponding persistence
diagrams are computed; one for 0 dimensional holes and one
for 1 dimensional holes.

The persistence diagram corresponding to the
0 dimensional holes of that subset in Figure 1(c) is illustrated
in Figure 2(a). In this diagram the x-axis represents the
scale at which 0 dimensional holes appear while the y-axis
represents the scale at which 0 dimensional holes disappear.
Each point in the persistence diagram is represented by a
red point above the diagonal which is in turn represented
by a blue line. Note that points lying closer to the diagonal
have lower persistence. This persistence diagram contains
two points where the corresponding persistence values are
relatively large. All other points in this persistence diagram
lie close to the diagonal and therefore their corresponding
persistence values are relatively small (note that, there are
multiple points in this category but they all have similar
coordinates and therefore appear to be a single point in the
figure). These two significant points correspond to the two
clusters in Figure 1(c). Note that, the point at location (0,1)
disappears when the cluster it corresponds to disappears when
it merges with the other cluster following increase in the scale
value. Similarly, the persistence diagram corresponding to the
1 dimensional holes of that subset in Figure 1(d) is illustrated
in Figure 2(b). This persistence diagram contains one point
where the corresponding persistence value is relatively large.
This point corresponds to the single large hole in Figure 1(d).
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FIGURE 2. The persistence diagram corresponding to the 0 dimensional holes (connected components) of that subset in Figure 1(c) is illustrated in (a).
The persistence diagram corresponding to the 1 dimensional holes of that subset in Figure 1(d) is illustrated in (b). The function space representations of
the persistence diagrams in (a) and (b) are illustrated in (c) and (d) respectively. In these figures the x-axis represents the scale at which k dimensional
holes appear while the y-axis represents the scale at which k dimensional holes disappear.

It is important to consider the persistence of k dimensional
holes for two reasons. Firstly, the number of k dimensional
holes and their persistence encodes important topological
information regarding the subset in question and in turn the
topological relationship in question. Consider the persistence
diagram in Figure 2(a) corresponding to the 0 dimensional
holes of that subset in Figure 1(c). This persistence diagram
contains two points where their persistence values are rela-
tively large. This is clearly important information regarding
the topological relationship in question. It is important here
to recall that the IM model only encodes if subsets equal the
null set or their dimension. Secondly, the persistence diagram
representation is stable whereby a small change in a given
subset, as measured by the Hausdorff distance, produces at
most a small change in the resulting persistence diagram,
as measured by the bottleneck distance [6], [29].

C. FUNCTION SPACE REPRESENTATION
As stated in the introduction of this article, the goal of
this research is the development of a model of topological
relationships which is both stable and facilitates statistical
inferences. The bottleneck and Wasserstein distance func-
tions may be used to compute the distance between two
persistence diagrams [30]. Both these distance functions are
stable with respect to the locations of objects. However they
do not provide a way of computing a mean persistence dia-
gram. We therefore convert each persistence diagram into
an alternative function space representation which facilitates
this. Note that a function space is a space where the objects
in that space are functions [31].

LetD be the space of persistence diagrams. Let p = (b, d)
denote a point in a persistence diagram F ∈ D and p =
(d, b) denote its mirror image across the diagonal [32], [33].
Furthermore, let� be the space {x = (x1, x2) ∈ R2, x2 ≥ x1}.
In this work we employ the map 8σ : D → L2(�) defined
in Equation 1. Here L2(�) is a Banach Space consisting of
real-valued functions on � [31]; that is, a vector space of
real-valued functions on � which is equipped with a norm.
The norm in question is the L2-norm which is denoted ‖.‖2.

Conceptually this map places a Gaussian function at each
point in the corresponding persistence diagram while sup-
pressing those Gaussian functions which lie closer to the
diagonal. The scale of the Gaussian functions in question is
equal to the parameter σ which we set equal to the value 0.3.
Figures 2(c) and 2(d) illustrate the result of applying the
map in Equation 1 to those persistence diagrams illustrated
in Figures 2(a) and 2(b) respectively.
Although the persistence diagrams in Figures 2(a) and 2(b)

encode the same information as the function space represen-
tations of Figures 2(c) and 2(d) respectively, they are different
types of mathematical objects. A persistence diagram is a
multiset of points while a function space representation is a
function.

8σ (F) : �→ R, x 7→
1

4πσ

∑
p∈F

e−
‖x−p‖2

4σ − e−
‖x−p‖2

4σ (1)

The map in Equation 1 was originally proposed
by [32], [33]. The authors proved that the function space
produced by this map facilitates statistical inferences. Specif-
ically they proved the following three facts. This space is
stable whereby a small change in the set S as measured
by the Hausdorff distance produces at most a small change
in the resulting model. It obeys the strong law of large
numbers; that is, a sample mean converges almost surely
to the expected value. Furthermore, this convergence obeys
the central limit theorem; a reader unfamiliar with concepts
relating to probability in a Banach space may consult [34] for
details.

IV. EXPERIMENTS
In this section we present four experiments which demon-
strate the accuracy of the proposed model of topological
relationships and its ability to facilitate a number of important
statistical inferences. In a first experiment we demonstrate the
accuracy of the proposed model. In a second experiment we
demonstrate the model can correctly infer a topological rela-
tionship given a set of samples from the sampling distribution
of the model. In a third experiment we demonstrate the model
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FIGURE 3. For the set of points illustrated in (a), the corresponding persistence diagrams for 0
and 1 dimensional holes are illustrated in (b) and (c) respectively.

FIGURE 4. For the set of points illustrated in (a), the corresponding persistence diagrams for 0 and 1 dimensional holes are illustrated
in (b) and (c) respectively.

can perform a statistical test with the null hypothesis that
two topological relationships are equal against the alternative
hypothesis that they are different. In a final experiment we
demonstrate the model can perform the data mining tasks of
clustering and retrieval of similar topological relationships.
These four experiments are described in turn in the following
four subsections.

A. MODEL ACCURACY
This section demonstrates the accuracy of the proposedmodel
with respect to representing the topology of a given set of
points. This is achieved by considering sets of points for
which accurate ground truth persistence diagrams can be
inferred and comparing the persistence diagram computed by
the proposed model to this ground truth.

Consider the set of points illustrated in Figure 3(a) which
equals 1, 000 points uniformly sampled on a circle centred
at the point (1, 1) with radius equal to 1. The correspond-
ing persistence diagrams for 0 and 1 dimensional holes are
illustrated in Figures 3(b) and 3(c) respectively. The persis-
tence diagram for 0 dimensional holes accurately contains a
single significant point at the location (0, 7.6) corresponding
to the single significant connected component which never
disappears. Here a point is determined significant if it does
not lie close to the diagonal and, in turn, its persistence value
is not close to zero. Note that, 7.6 is the value of an upper
bound described in Section III-B. The persistence diagram for
1 dimensional holes accurately contains a single significant

point at the location (0, 1). The value of 1 in the second
coordinate of this point accurately indicates that the hole
formed by the circle disappears when the radius of the union
of balls centred at the points is greater than or equal to the
value 1.

Next, consider the set of points illustrated in Figure 4(a)
which equals 2, 000 points uniformly sampled on two cir-
cles centred at the points (1, 1) and (5, 1) with radius
equal to 1. The corresponding persistence diagrams for
0 and 1 dimensional holes are illustrated in Figures 4(b)
and 4(c) respectively. The persistence diagram for 0 dimens-
ional holes accurately contains two significant points at the
locations (0, 1) and (0, 7.6) corresponding to the two signif-
icant connected components. The value of 1 in the second
coordinate of the point (0, 1) accurately indicates that the
two connected components merge when the radius of balls
centred at the points is greater than or equal to the value
1. The persistence diagram for 1 dimensional holes accu-
rately contains two significant points at the location (0, 1)
corresponding to the two significant 1 dimensional holes of
radius 1.

B. INFERRING EXPECTED VALUE
Consider the situation where one is attempting to model a
topological relationship given a set of samples from the sam-
pling distribution of the model. In this situation a reasonable
solution is to approximate the expected value of the model
from the samples. In the proposed model samples from the
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FIGURE 5. Two function space representations are displayed in (a) and (b). The mean of these is displayed in (c).
In these figures the x-axis represents the scale at which k dimensional holes appear while the y-axis represents
the scale at which k dimensional holes disappear.

FIGURE 6. The function space representations of three samples drawn from a topological relationship are illustrated in (a)-(c). The function space
representation of the mean of ten such samples is illustrated in (d). In these figures the x-axis represents the scale at which 1 dimensional holes appear
while the y-axis represents the scale at which 1 dimensional holes disappear.

sampling distribution correspond to function space represen-
tations. Owing to the fact that the proposed model obeys
the strong law of large numbers, the mean of such samples
converges to its expected value. To illustrate this concept
of a mean consider the two function space representations
displayed in Figures 5(a) and 5(b). Note that both share a
single peak in the same location. The mean of these function
space representations is displayed in Figures 5(c). In this the
height of the shared peak is maintained while the heights of
the other peaks are suppressed.

To demonstrate that the proposed model facilitates the
above inference of estimating the expected value consider
again the topological relationship illustrated in Figure 1(a).
For this relationship 10 independent sets {S1, . . . , S10} of
points were sampled from the ambient space where each set
contains 5, 000 points.

For each Si the persistence diagram Fi corresponding
to the 1-homology group of the union of points contained
in each object was computed. The mapping of Equation 1 was
in turn applied to each Fi to give the corresponding function
space representations (8σ (F1), . . . , 8σ (F10)). Figures 6(a),
6(b) and 6(c) illustrate three of these representations.

The function space representations (8σ (F1), . . . , 8σ (F10))
correspond to samples from the sampling distribution of
the model. Computing the mean of these samples reduces

to applying the map of Equation 1 to the union of points
in the persistence diagrams {F1, . . . ,F10} and normalizing;
that is, 1

108σ (F1 ∪ · · · ∪ F10). The result of this mapping is
illustrated in Figure 6(d). Owing to the fact that the proposed
model obeys the strong law of large numbers, this mapping
converges to its expected value. Figure 6(d) implies that there
exists a single one dimensional hole where the corresponding
persistence value is relatively large. Examining the original
topological relationship in Figure 1(a) demonstrates this to
be correct; that is, the union of both objects contains a single
large hole.

C. TWO-SAMPLE HYPOTHESIS TEST
Given the fact that our model forms a Banach space,
the norm in this space induces a metric. This metric may
be used to measure the distance between samples from the
sampling distributions of different topological relationships.
Reference [35] proposed a method for computing the dis-
tance between two instances of the IM model. However this
distance function returns integers in the interval [0, 8] and
therefore only provides a very coarse measure of distance.

Given the distance between two samples from the sampling
distributions of two distinct topological relationships, one
can perform a statistical test with the null hypothesis that
the topological relationships are equal against the alternative
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hypothesis that they are different. This is known as the
two-sample problem [34], [36]. There exist many contexts
for which it is necessary to perform such a statistical test.
For example, given two distinct meteorological phenomena
such as two hurricanes, a meteorologist may want to perform
a hypothesis test to determine if the topological relationship
between the spatial extent of the hurricane and that of some
other potentially related environmental phenomenon was the
same in both cases.

FIGURE 7. A statistical test may be used to determine if the topological
relationships illustrated are equal given a sample from each topological
relationship.

In order to demonstrate such a statistical test we considered
the topological relationships in Figures 7(a) and 7(b) and
employed the bootstrap hypothesis test [37]. These topologi-
cal relationships are different in the sense that the union of the
objects in Figure 7(a) forms a single connected component
with a single 1 dimensional hole while the union of the objects
in Figure 7(b) forms a single connected component with
zero 1 dimensional holes. Note that the IM model does not
distinguish between these topological relationships.

Let Sa and Sb be single samples from the sampling distribu-
tions of the topological relationships in Figures 7(a) and 7(b)
respectively where the cardinality of both sets is n. For
Sa and Sb we computed the function space representations
of their corresponding 1-homology groups. Recall that, the
1-homology group encodes the number of 1 dimensional
holes present plus their persistence values. This particular
homology group is appropriate for distinguishing between
the topological relationships in question but may not be
appropriate in other contexts. Using the metric induced by
the norm of the function space representation, the distance
between the function space representations in question was
computed. Toward determining if this distance could be used
to accept the null hypothesis (i.e. that the relationships are
equal) we computed the bootstrap distribution under the null
hypothesis [37]. That is, we sampled with replacement two
sets S1a and S2b from Sa and computed the distance between
the corresponding function space representations. This step
was repeated 1000 times to form the bootstrap distribution.
The null hypothesis was then rejected with p-value equal to
the number of distances in the bootstrap distribution greater
than the distance between Sa and Sb.
This hypothesis test was repeated for varying values of n;

that is, the cardinality of Sa and Sb. For n equal to 500,
1000, 2000 and 4000, the null hypothesis was rejected with a
p-value of 0.21, 0.03, 0.01 and 0.00 respectively. This result

demonstrates that, given sufficient points in the ambient
space, the proposed topological relation may be used to
test the hypothesis that two topological relationships are
equal.

D. DATA MINING
Given that the proposed model allows distances between
different topological relationships to be computed, one can
use this model to perform a number of data mining tasks.
In this section we describe how the proposed model may be
used to perform clustering and retrieval of similar topological
relationships. There are many contexts where performing
such tasks would be useful. For example, consider a pair
of environmental variables measured daily over an entire
year. Toward summarisation, a meteorologist may be inter-
ested in detecting clusters of topological relationships which
occurred daily between these variables. These clusters could
in turn be used to explain broad weather conditions which
occurred during the year in question.

Toward performing clustering and retrieval we generated
200 sets S corresponding to distinct topological relationships
using the following approach. First a pair of simple polygons
corresponding to A and B as defined in section III were ran-
domly generated using the 2-optMovesmethod of [38]. These
polygons each contained between four and ten points and
were initially centred at the coordinates (0, 0). The location of
the polygon B was translated by adding a constant to the sec-
ond coordinate of each of its points. Figure 8 displays four
pairs of polygons generated using this approach. For each of
these pairs of polygons, a corresponding set S was generated
by uniformly sampling 6000 points from the bounding box
containing A and B.

For each of the sets S generated the topological relation-
ship in question was modelled using the proposed model.
Specifically, we considered the binary set relations of union
(A ∪ B), intersection (A ∩ B), symmetric difference or exclu-
sive or ((A \ B) ∪ (B \ A)) and both relative complements
((A \ B) and (B \ A)). Next, for each of these five subsets we
computed the function space representations of their corre-
sponding 0- and 1-homology groups. This gave ten individual
function space representations for each topological relation-
ship where each describes a different aspect of the topological
relationship in question. To combine these spaces into a
single space we formed the direct sum of the spaces with
the direct sum norm [39]. Using this norm we computed the
pair-wise distances between the 200 topological relationships
and performed clustering using the k-medoids algorithm [40].
This algorithm is an iterative method which takes as input a
single parameter k corresponding to the number of clusters
and returns the cluster centres found. Here a cluster centre
corresponds to a single representative, i.e. a pair of objects,
of an entire cluster.

Figure 8 displays the pairs of polygons correspond-
ing to the cluster centres found when the k-medoids
algorithm was run with parameter k equal to 4. We can
understand why our model determined those topological
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FIGURE 8. Four pairs of simple polygons A and B generated using the method described in section IV-D are displayed. These pairs correspond to the 4
cluster centres found using the k-medoids algorithm.

FIGURE 9. The persistence diagrams corresponding to the connected components (0 dimensional holes) of the
intersection subsets of the pairs of polygons in Figure 8(a) and 8(b) are illustrated in (a) and (b) respectively. The persistence diagrams corresponding to
the 1 dimensional holes of the union subsets of the pairs of polygons in Figure 8(c) and 8(d) are illustrated in Figure (c) and (d) respectively. In these
figures the x-axis represents the scale at which k dimensional holes appear while the y-axis represents the scale at which k dimensional holes disappear.

relationships to be significantly different and in turn belong-
ing to different clusters by examining the corresponding
persistence diagrams. The persistence diagrams correspond-
ing to the connected components (i.e. the 0 dimensional
holes) of the intersection subsets of the pairs of polygons
in Figure 8(a) and 8(b) are illustrated in Figure 9(a) and 9(b)
respectively. These persistence diagrams respectively contain
one and zero points where the corresponding persistence
values are relatively large. This is because the intersection of
the pairs of polygons in Figure 8(a) and Figure 8(b) contain
one and zero connected components respectively.

The persistence diagrams corresponding to the 1 dimens-
ional holes of the union subsets of the pairs of polygons
in Figure 8(c) and 8(d) are illustrated in Figure 9(c) and 9(d)
respectively. These persistence diagrams respectively contain
one and zero points where the corresponding persistence
values are relatively large. This is because the union of the
pairs of polygons in Figure 8(c) and Figure 8(d) contain
one and zero holes respectively. Note that the hole in the
union of the pair of polygons in Figure 8(c) appears once the
scale of the radius of balls centred at each point is increased
slightly.

The topological relationship in Figure 8(a) could be
described as partial overlap. That in Figure 8(b) could be

described as disjoint. That in Figure 8(c) could be described
as partial overlap with the formation of a one dimensional
hole. Finally the topological relationship in Figure 8(d) could
be described as partial overlap with each object splitting the
other into two connected components.

Using the pair-wise distances between the 200 topolog-
ical relationships described above, we performed retrieval
of similar topological relationships as follows. For a given
query topological relationship, that topological relation-
ship with the smallest distance to the query was retrieved.
The top row of Figure 10 displays four query topologi-
cal relationships while the bottom row displays the corre-
sponding retrieved topological relationships. It is evident
that in each case the query and retrieved topological rela-
tionships are similar. The query and retrieved topologi-
cal relationships in Figures 10(a) and 10(e) respectively
could both be described as partial overlap. The query and
retrieved topological relationships in Figures 10(b) and 10(f)
respectively could both be described as partial overlap
with each object splitting the other into two connected
components. The query and retrieved topological relation-
ships in Figures 10(c) and 10(g) respectively could both be
described as disjoint. The query and retrieved topological
relationships in Figures 10(d) and 10(h) respectively could
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FIGURE 10. For each of the query topological relationships displayed in (a), (b), (c) and (d), the corresponding retrieved topological relationship is
displayed in (e), (f), (g) and (h) respectively.

both be described as partial overlap with the formation of a
one dimensional hole.

V. CONCLUSIONS
This article proposes a novel model of topological relation-
ships which is stable and exhibits a number of properties
which facilitate statistical inferences. Existing models of
topological relationships are not stable and do not consider
the problem of performing statistical inferences. However,
it must be noted that these models could potentially be gen-
eralised.

The proposed model formulates the problem of modelling
topological relationships in terms of algebraic topology. This
represents a novel formulation of the problem and conse-
quently it presents many opportunities for further research
and development. In the experiments section of this article
we only consider objects corresponding to simple polygons.
Without any adjustments to the model it can be applied to
more general polygons such as polygons with multiple com-
ponents and polygonswith holes.With a slight generalisation,
the model could also be applied to objects corresponding
to lines and points. In this work we assume the ambient
space to be a subset of R2. However the model proposed
generalises to higher dimensional real coordinate spaces and
more abstract spaces which can be embedded in Rn.

The proposed model currently does not have any means
of generating natural language descriptions of topological
relationships in an automated manner. The current model
outputs the topological relationships between pairs of objects
in the form of persistence diagrams and function space repre-
sentations that record the degree of significance of connected

components and holes. A challenge for future work is to
develop automated approaches to natural language summari-
sation of the characteristics of the relationships such as the
type (e.g. containment or overlap) and degree of applicability
of a relationship [41].

Although in this article we have only applied the pro-
posed model to synthetic data it could also be applied
to real world data such as that from sensor networks.
In future work the authors hope to pursue research on such
applications.

VI. APPENDIX
A. INTERSECTION MODEL
This section describes the Intersection Model (IM) by [7]
and presents some analysis of this model. The IM assumes
the existence of two objects A and B in the ambient
space R2 for which we wish to model the corresponding
topological relationship. Furthermore, this model assumes
object locations are known precisely and these are mod-
elled as subsets of R2. A number of subsets of the ambient
space are considered where each is a binary set rela-
tion of object interiors, boundaries and exteriors. The sub-
sets in question are defined in Equation 2 where Ao,
Ae and ∂A equal the interior, exterior and boundary of
the set A respectively. Given the above subsets, the spa-
tial relationship in question is modelled by evaluating
whether or not these subsets equal the null set or their dimen-
sion. Egenhofer [7] presented an in-depth analysis of which
instances of this model correspond to natural language terms.
In this section we consider the version of the IM which
evaluates whether or not these subsets equal the null set.
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We refer to these Boolean valued functions as the features
of the IM.

Ao ∩ Bo (2a)

Ao ∩ ∂B (2b)

Ao ∩ Be (2c)

∂A ∩ Bo (2d)

∂A ∩ ∂B (2e)

∂A ∩ Be (2f)

Ae ∩ Bo (2g)

Ae ∩ ∂B (2h)

Ae ∩ Be (2i)

Let (X , dX ) and (Y , dY ) be metric spaces where X and Y
are sets while dX and dY aremetrics on these sets respectively.
A function f : X → Y is Lipschitz stable with constant
K if for all x1 and x2 in X the inequality of Equation 3 is
satisfied [6]. Broadly speaking, a function is Lipschitz stable
if a small change in the function input produces a small
change in the function output.

dY (f (x1), f (x2)) ≤ KdX (x1, x2) (3)

We now set about proving the IM is not Lipschitz stable.
Let X be the space of 2-tuples of subsets of R2. Let dX be the
metric on X defined in Equation 4. Each of the terms being
subtracted on the right side of this equality is a non-negative
real valued function and, given this, it is straight forward to
prove that dX is a metric.

dX ((A1,B1), (A2,B2))

= | inf
a∈Ao1,b∈B

o
1

‖a− b‖2 − inf
a∈Ao2,b∈B

o
2

‖a− b‖2| (4)

Let Y be the space of Boolean values and let f be the
mapping from X to Y defined in Equation 5. Note that,
infa∈Ao,b∈Bo‖a−b‖2 = 0 if and only if Ao∩Bo 6= ∅. Further-
more, infa∈Ao,b∈Bo‖a − b‖2 > 0 if and only if Ao ∩ Bo = ∅.
Let dY be the discrete metric on Y defined in Equation 6.
The mapping f in Equation 5 is Lipschitz stable if there
exists a real constant K which satisfies the inequality defined
in Equation 7 for all (A1,B1), (A2,B2) in X .

f : (A,B) → Ao ∩ Bo 6= ∅ (5)

dY (f ((A1,B1)), f ((A2,B2)))

=

{
0, if f ((A1,B1)) = f ((A2,B2))
1, otherwise

(6)

dY (f ((A1,B1)), f ((A2,B2))) ≤ KdX ((A1,B1), (A2,B2)) (7)

Theorem 1: The mapping f in Equation 5 is not Lipschitz
stable.

Proof: We prove this theorem using proof by contradic-
tion. Assume there exists a real constant K which satisfies
the inequality defined in Equation 7 for all (A1,B1), (A2,B2)
in X . Let (A1,B1) be two sets such that (Ao1 ∩ Bo1 6= ∅)
and in turn that infa∈Ao1,b∈Bo1‖a − b‖2 = 0. Let (A2,B2)
be two sets such that (Ao2 ∩ Bo2 = ∅) and in turn that

infa∈Ao2,b∈Bo2‖a−b‖2 > 0. In this case Equation 7 can be writ-
ten as Equation 8a where the expressions on the left and right
sides of this inequality follow from evaluating Equations 6
and 4 respectively. Equation 8a is simplified in Equations 8b
and 8c where the first simplification follows from the fact that
the term infa∈Ao2,b∈Bo2‖a− b‖2 is bounded below by 0.

1 ≤ K |(0− inf
a∈Ao2,b∈B

o
2

‖a− b‖2| (8a)

1 ≤ K inf
a∈Ao2,b∈B

o
2

‖a− b‖2 (8b)

1
K
≤ inf

a∈Ao2,b∈B
o
2

‖a− b‖2 (8c)

Equation 8c gives a lower bound for the term on the right
side of this inequality. One can construct an example where
this term lies in the open interval (0, 1/K ) which in turn
implies that Ao2∩B

o
2 = ∅. This contradicts the assumption that

there exists a real constant K which satisfies the inequality
defined in Equation 7 for all (A1,B1), (A2,B2) in X .
Corollary 1: The Intersection Model (IM) is not Lipschitz

stable.
Proof: The mapping f in Equation 5 is one of the fea-

tures of the IM. This mapping was proven to not be Lipschitz
stable in Theorem 1. Therefore, the IM is not Lipschitz stable.

B. PERSISTENT HOMOLOGY
For a given subset considered in section III-A the correspond-
ing persistent homology computation in performed in two
steps. In the first step the subset in question is represented
using a combinatorial representation known as a filtration.
The persistence diagrams are subsequently computed as a
function of this filtration.We now describe each of these steps
in turn in the following subsections.

1) FILTRATION
Let X be a given subset considered in section III-A for which
we wish to compute the persistent homology. Let ‖ · ‖ denote
the Euclidean norm and for each x ∈ X let Br (x) = {y ∈
Rn
|‖x − y‖ < r} for r ≥ 0; that is, a closed ball of

radius r centred at x. The r-neighbourhood Xr , as defined
by Equation 9, represents an intuitive means of representing
the subset X . However this corresponds to an abstract math-
ematical representation of a continuous object upon which
computation is difficult. Therefore, one generally instead uses
a combinatorial representation known as a simplicial complex
upon which computations may be performed.

Xr =
m⋃
i=1

Br (xi) (9)

An (abstract) simplicial complex K is a finite collection
of sets such that for each σ ∈ K all subsets of σ are also
contained in K. Each element σ ∈ K is called a simplex or
k-simplex where |σ | = k + 1 and is referred to as the dimen-
sion of the simplex. The faces of a simplex σ correspond to all
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simplices τ where τ ⊂ σ . There exists a number of different
simplicial complexes which may be used to represent a set of
points [30]. For the purposes of this work we use a specific
simplicial complex which is known has an alpha complex and
is now described.

For x ∈ X let Vx be the Voronoi cell of x; that is, Vx =
{y ∈ Rn

|‖y − x‖ ≤ ‖y − z‖, z ∈ X}. Furthermore, let
Rx(r) be the intersection of each Voronoi cell with a ball
centred at the point in question; that is, Rx(r) = Br (x) ∩ Vx .
The alpha complex is isomorphic to the nerve of this cover
and is defined by Equation 10. It is homotopy equivalent
to the r-neighbourhood Xr where homotopy equivalence is
an equivalence relation on the class of topological spaces
(see [42, Ch. 7]).

Alpha(r) = {σ ⊆ X |
⋂
y∈σ

Ry(r) 6= ∅} (10)

The parameter r in Equation 10 may be varied to give
alpha complexes of different scales and in turn a 1-parameter
family of nested alpha complexes. However only finitely
many of these are distinct and are described by the sequence
in Equation 11 which is called a filtration [30].

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kl (11)

2) PERSISTENT HOMOLOGY
Let K be a simplicial complex. The formal sum c defined by
Equation 12 is called a k-chain where each σi ∈ K is a k-
simplex and each λi is an element of a given field. For the
purposes of this work we consider the field Z2 [43].

c =
∑

λiσi (12)

The vector space of all k-chains is denoted Ck (K).
The boundary of a k-simplex σ = [v1, . . . , vk+1] is a sum of
its (k − 1)-dimensional faces and is defined by Equation 13
where v̂i indicates the deletion of vi from the sequence.
The boundary of a k-chain is obtained by extending this map
linearly.

∂kσ =

k+1∑
i=1

[v1, . . . , v̂i, . . . , vk+1] (13)

A k-chain c is a k-boundary if there exists some k + 1-
chain d such that c = ∂d and a k-cycle if ∂c = 0.
The set of all k-boundaries and k-cycles are denoted byBk (K)
and Zk (K) respectively. The fact that ∂k+1∂k = 0 implies that
Bk (K) ⊆ Zk (K). The quotient group Hk (K) = Zk (K)/Bk (K)
is the k-homology group of K. Intuitively an element of the
k-homology group corresponds to a k-dimensional hole inK.
That is, an element of the 0-homology group corresponds to
a path connected component in K while an element of the
1-homology group corresponds to a one dimensional hole
in K. The rank of Hk (K) is called the k-th Betti number and
is denoted βk (K).

For a given filtration, for every i ≤ j there exists an
inclusionmap fromKi toKj and in turn an induced homomor-
phism from Hk (Ki) to Hk (Kj) for each dimension k . When

moving fromKi toKi+1 the corresponding homology groups
may change in the following two ways. A homology group
element appears at Ki+1 if it exists in Hk (Ki+1) but does not
exist in Hk (Ki); that is βk (Ki+1) = βk (Ki)+ 1. A homology
group element disappears at Ki+1 if it exists in Hk (Ki) but
does not exist in Hk (Ki+1); that is βk (Ki+1) = βk (Ki) −
1. If an element of a homology group never disappears,
we assign its disappearance to be at Ku where u is an upper
bound. In most abstract mathematical publications a value
of∞ is used instead of an upper bound. However in terms of
algorithm implementation it is not feasibly to consider such
a value.

If a homology group element appears at Ki and disappears
at Kj we represent it as a point (i, j) in the space {(i, j) ∈
R2, i ≤ j} with corresponding persistence value of j − i.
The magnitude of a persistence value is important because
homology group elements which persist over a larger range
in a given filtration are considered to be of greater signifi-
cance. In the context of this work the range in question is
over the scale parameter r in the Alpha complex. The multiset
of points corresponding to a k-homology group is called
a persistence diagram. In this work the method described
in [44] was used to compute all persistence diagrams.
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