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A B S T R A C T  
 
Hierarchically micro-mesostructured Pt/K-Al-SiO2 catalysts with regular nanorod (Pt/KA-NRS) and spherical nanoflower-like 

(Pt/KA-SNFS) morphologies were prepared. The existence of Al atoms generates Brønsted acid sites and reduces silanol 

groups over the supports, promoting the dispersion of Pt nanoparticles and stability of catalysts. Potassium atoms balance the 

negative charge of supports and enhance O2 mobility. The Pt/KA-NRS catalysts exhibit unexceptionable low temperature 

activity, CO2 selectivity, and stability for MEK oxidation. Amongst, 0.27 wt.% Pt/KA-NRS completely converts MEK at just 

170 °C (activation energy as low as 37.22 kJ·% mol
−1

), more than 100 °C lower than other typical Pt/Pd supported catalysts 

reported in the literature. Diacetyl and 2,3-butandiol are the main intermediates during MEK activation, which convert into 

H2O and CO2 through aldehydes and acids. The excellent catalytic activity of Pt/KA-NRS is ascribed to their regular 

morphology, high Pt
0
 content and dispersion, excellent MEK adsorption capacity and superior O2/CO2 desorption capability 

under low temperature.  
 
 
 
 
1. Introduction 

 
Volatile organic compounds (VOCs) are one of the major con-tributors to 

air pollution, and harmful to human health and the en-vironment due to the 

formation of photochemical smog, secondary aerosols and potential toxicity 

including carcinogenicity [1]. The most common VOCs are halogenated 

compounds, such as aldehydes, alco-hols, ketones and aromatic compounds, 

which can be divided into outdoor sources and indoor sources [2,3]. Methyl-

ethyl-ketone (MEK) is typical of oxygenated VOCs due to their widely use as 

a solvent in many large-scale processes such as printing and manufacturing 

[4]. Complete catalytic oxidation is a promising way to dispose VOCs, 

especially with low concentration (< 0.5 vol.%), into CO2 and water [5]. 

However, this reaction should to proceed at low temperatures for the 

consideration of safety, energy saving, low cost and reduced environmental 

impact [6]. The development of highly efficient and promising catalysts for 
 

 

 

 

 

abatement of VOCs at low temperatures continues to attract consider-able 

attention. Generally, there are three major types of catalysts de-veloped for 

VOC oxidation; supported noble metal catalysts, transition metal oxides, and 

a combination of these [7,8]. Among these examples, the noble metal based 

catalysts are preferred because of their high specific activity, resistance to 

deactivation and ability to be regenerated [9]. Among the supported noble 

metals, platinum, gold, palladium, and silver have been extensively studied 

for VOC oxidation.  
The catalytic performance of supported noble metal catalysts strongly 

depends on the preparation method, type of precursor, metal morphology, 

particle size, and nature of the support, all of which im-pact the deposition 

and particle dispersion of active elements so as to impact the properties of 

catalysts. For example, the hierarchical nature of the porous network provides 

a larger surface area for better disper-sion of the deposited active phase and 

off ers the possibility to obtain a smaller active phase [10,11]. Therefore, lots 

of hierarchically 
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structured pure silica materials have been widely used as supports for noble 

metal-based catalysts [10]. However, pure silica materials have an electrically 

neutral framework and consequently lack acid sites, which impede 

development as a support for highly eff ective catalysts. The acid sites of 

catalyst are relevant to metal dispersion and adsorp-tion/desorption of 

reactants and CO2 [12]. It is expected that the ad-dition of aluminum yields 

so-called structural hydroxyls which can serve as Brønsted acid sites through 

tetrahedral coordination to four silicon atoms via oxygen bridges. Chen et al. 

increased the Al loading in a Beta zeolite framework which significantly 

improves the activity for the catalytic removal of toluene [13]. 

 

The morphology and crystal plane of the support also have sig-nificant 

eff ects on catalytic activity of supported noble metal catalysts. Huang et al. 

confirmed that the activity of Ru/CeO2 catalysts for chlorobenzene oxidation 

is greatly aff ected by ceria morphology and crystal plane [14]. Additionally, 

the presence of potassium atoms in catalysts has a positive impact on their 

oxidation performance. Li et al. proposed that a well-dispersed Pd species was 

formed in the case of a Pd-K/TiO2 catalyst due to a stabilizing eff ect by alkali 

metal cations, which facilitated the activation of chemisorbed oxygen [15]. 

The pro-motion eff ect of alkali-metal on the activity Pt/TiO2 in formaldehyde 

deep oxidation was further proposed by Zhang and co-workers [16]. 

 

The potential application of Pt and Pd supported catalysts for oxi-dation 

of MEK has been hindered with high noble metal loading, in-ferior MEK 

activation capability, low CO2 selectivity and production of hazardous by-

products [17–19]. Arzamendi et al. revealed that the temperature for complete 

oxidation of MEK was as high as 370 °C over 1.0 wt.% Pd/Al2O3 catalyst 

[17]. Gil et al. fabricated a 2.3 wt.% Pt/Al-pillared clay (BAsap) catalyst for 

catalytic combustion of MEK, while the high Pt content led to poorly 

dispersed metallic platinum, resulted in an inferior oxidation performance 

with 90% of MEK (600 ppm) converted at 265 °C [18]. Guillemot et al. stated 

that complete CO2 selectivity for MEK incineration over a 1.0 wt.% Pt/NaX 

catalyst did not occur and reaction byproducts were probably formed [19]. In 

our previous work, we also revealed that a great number of unfavorable 

reaction by-products during MEK destruction were formed [20,21]. In 

addition, the irregular microstructure of these supports may have un-

anticipated impacts on the homogeneity of the active sites and the long-term 

stability of catalysts. Therefore, the development of novel sup-ported noble 

metal catalysts with monodispersed noble metal active sites located on regular 

supports for efficient MEK destruction at low temperature is of great interest 

to researchers. 

 

In this work, nanorod silica (NRS) supports with large specific surface 

area, enhanced micropore volume, and uniform pore structure were creatively 

synthesized by a hydrothermal and dual-surfactant strategy. The synthesized 

materials were then aluminated and doped with K to obtain K-(Al) nanorod 

silica (KA-NRS), over which mono-dispersed Pt nanoparticles with an 

average diameter of ca. 2.4 nm were deposited. We found that the Pt/KA-

NRS catalysts possess outstanding MEK oxidation performance. Amongst, 

0.27 wt.% Pt/KA-NRS can completely destruct 800 ppm of MEK at just 170 

°C with a CO2 se-lectivity higher than 90%, which is the best result regarding 

MEK cat-alytic oxidation to our knowledge. Furthermore, we investigated the 

MEK destruction routes and activation mechanism by in situ DRIFTS and 

DFT studies. We propose that the Pt/KA-NRS catalyst should be a promising 

candidate for VOC efficient catalytic elimination. 

 

 

2. Experimental 

 

2.1. Catalyst preparation 

 

The spherical nanoflower-like silica (SNFS) and nanorod silica (NRS) 

were synthesized according to the previous work (Text S1, Supplementary 

Material), and the formation mechanisms of SNFS and NRS can be found in 

Fig. S1 and S2 . The recovered silica materials were aluminated through the 

grafting method with anhydrous AlCl3 and then 

 

 

ion exchanged with an aqueous solution of 2 M KCl, which are referred to 

KA-SNFS and KA-NRS. Polyvinylpyrrolidone (PVP) capped Pt nano-

particles were synthesized and supported on KA-SNFS and KA-NRS by the 

ethylene glycol reduction method and colloid impregnation method (see 

Supplementary Material). The final catalysts were denoted as Xwt.  
% Pt/KA-NRS and Xwt.% Pt/KA-SNFS (X represents the actual content of Pt 

measured by ICP-OES). The Pt/MCM-41 and Pt/γ-Al2O3 samples were 

further prepared by wetness impregnation (WI) method (see Supplementary 

Material). 

 

2.2. Catalyst characterizations 

 

The synthesized samples were systematically characterized by X-ray 

diff raction (XRD), low-temperature N2 adsorption-desorption, in-ductively 

coupled plasma optical emission spectrometry (ICP-OES), hydrogen and 

oxygen titration (HOT), field emission scanning electron microscopy (FE-

SEM), high resolution transmission electron micro-scopy (HR-TEM), high-

angle annular dark-field imaging in the scanning transmission electron 

microscopy (HAADF-STEM), hydrogen tempera-ture-programmed reduction 

(H2-TPR), oxygen temperature-pro-grammed desorption (O2-TPD), MEK 

temperature-programmed deso-rption (MEK-TPD), CO2 temperature-

programmed desorption (CO2-TPD), FT-IR spectroscopy for NH3 adsorption 

(NH3-IR), FT-IR spectro-scopy for CO adsorption, Fourier transform infrared 

spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-

visible spec-troscopy adsorption spectra (UV–vis), Raman spectra (Raman), 

electron spin resonance spectra (ESR), temperature programmed surface reac-

tion (TPSR), in situ DRIFTS and DFT studies. The detailed methods for each 

technique are described in the Supplementary Material. 

 

 

2.3. Catalytic activity 

 

The catalytic performance for MEK oxidation was performed in a 

continuous-flow fixed-bed reactor, consisting of a steel tube (6 mm, i.d.) at 

atmospheric pressure. In each test, 0.3 g of the catalyst (40–60 mesh) was 

placed into the tube reactor. Prior to testing, the catalysts were pretreated at 

200 °C with N2 for 1 h. The MEK feed (800 ppm) was generated by using a 

N2 bubbler in thermostatic bath at 35 °C and mixing with air (79% N2 + 21% 

O2). The total flow rate was kept at 212 mL%·min−1 (space velocity of 42600 

mL%·g−1·h−1). The concentrations of MEK, CO and CO2 were measured by 

an online gas chromatography (GC-9890B; Shanghai Linghua Co., China) 

equipped with a flame io-nization detector (FID) and HT-Wax column in 30 

m × 0.32 mm (ID) × 0.5 μm. The conversion of MEK (XMEK) was calculated 

as Eq. (1), 

XMEK (%) = [MEK ]in −[MEK]out × 100% 

[MEK]in  (1)  

where [MEK]in and [MEK]out represent the MEK concentrations in the inlet 

and outlet gas, respectively. 

CO2 selectivity (SCO2) was calculated as Eq. (2), 

S
CO2 (%) = 

[CO2 ]out × 100% 

4 × [MEK ]in × XMEK   (2)  

where [CO2]out is the CO2 concentrations in the outlet gas.  
Stability test was carried out at 220 °C for 10 h after a heating processing 

for MEK combustion, followed by a cooling processing. Recycle experiment 

was carried out at the same conditions as activity evaluation. After the MEK 

oxidation finished at 190 °C, the catalyst was left in the reactor and the 

heating was suspended. When reactor was cool down to room temperature, 

another oxidation cycle was started by repeating the same heating procedure. 

The recycle experiment was carried out for three cycles. For consideration of 

the water vapor’s eff ect on the catalytic activity, the on-stream MEK 

oxidation experiments were carried out in the presence and absence of 3 

vol.% and 1 vol.% water vapor, which were introduced by automatic sample 

injector through pretreatment processor at 100 °C. 

 
 



 
 

 

The reaction rate (rMEK, mol ·gPt
−1 ·s−1) was calculated as Eq. (3), 

rMEK = 
X

MEK 
⋅V

MEK 

(3) 
W

cat
⋅w%

Pt  
where Wcat represents the catalyst weight (g), w % Pt is the content of Pt in 

catalyst (%), VMEK is the MEK gas flow rate (mol ·s−1).  
When the conversion of MEK is < 15%, a dependence of the reac-tion 

rate (rMEK) on the products of CO2 and H2O may be ignored, and the 

empirical kinetic expression of the reaction rate equation of MEK oxidation 
can be described as Eq. (4), 

rMEK = A exp( − 

E
a 

)P 
α 

P
β 

(4) 

 

 RT  MEK O2 

Taking the natural logarithm of Eq (4), Eq. (5) can be obtained.  

ln r = ln A + α ln PMEK + β ln PO2 − Ea /(RT) (5) 
 

The components of the reactant feed gas undergo minor changes during 

the kinetics data testing, and the conversion of MEK is < 15%. Therefore, 

lnA, αlnPMEK and β ln PO2 can be supposed to be approxi-mately constant, 

and Eq. (5) can be simplified to Eq. (6), 

ln r = − 

E
a 

+ C 
(6) RT    

The activation energy (Ea) can be obtained from the slope of the resulting 

linear plot of ln r versus 1/T. 

The turnover frequency based on the Pt nanoparticles (TOFPt, s
−1) was 

calculated as Eq. (7), 

TOFPt = 
X

MEK 
⋅
 
V

MEK
⋅N

A 

(7) 
W

cat
⋅w

 
%

Pt 
⋅D

Pt  
where NA is the Avogadro constant, DPt represents the dispersion of Pt 
nanoparticles on catalysts (%). 

 
3. Results 

 
3.1. Structural characteristics 

 
3.1.1. XRD  

According to small-angle XRD (Fig. 1A), a relatively sharp peak at 1.6–

3.0° along with other two weak peaks at 4.2° and 4.8° for NRS are ascribed to 

the (100), (110) and (200) reflections of materials with 2D-hexagonal (p6 

mm) symmetry, confirming the highly ordered mesos-tructured of NRS [22], 

in consistent with N2 sorption results (Fig. S3). However, the pattern of KA-

NRS only displays a basal diff raction peak of lower intensity and poorly 

discernible higher order peaks, corre-sponding to a less ordered mesoporous 

structure, which indicates that the aluminated grafting method aff ects the 

original mesotructure of the synthesized catalysts [23], in line with the BET 

analysis (Table 1). Additionally, no small-angle diff raction peaks were 

observed over SNFS and KA-SNFS, suggesting that these samples possess an 

irregular pore structure [23]. Wide-angle XRD (Fig. 1B) shows that all 

catalysts ex-hibit a diff raction peak at 2θ = 23°, which can be ascribed to the 

amorphous silica. Three diff raction peaks at 2θ = 39.7°, 46.3° and 67.5° 

observed in diff raction patterns of 0.39 wt.% Pt/KA-NRS and 0.45 wt.% 

Pt/KA-SNFS are assigned to the (111), (200) and (220) planes of me-tallic Pt, 

respectively [24]. These peaks become weaker and broader with decreasing Pt 

content due to the low loading and improved dis-persion [10]. As shown in 

Table 1, the dispersion of Pt nanoparticles over 0.39 wt.% Pt/KA-NRS 

sample is 45.3%, which increases to 74.9% over 0.01 wt.% Pt/KA-NRS. The 

characteristic peak of Al2O3 at 2θ = 44.6° ascribing to the process of 

alumination [25] can be observed in all catalysts except 0.14 wt.% Pt/MCM-

41. 

 

 

3.1.2. FE-SEM and HR-TEM  
Fig. 2 shows the FE-SEM and HR-TEM images of typical samples. From 

Fig. 2A and B, the KA-SNFS support presents uniform particle size 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. (A) Small-angle XRD patterns of (a) NRS, (b) KA-NRS, (c) SNFS and (d) KA-SNFS;  
(B) Wide-angle XRD patterns of (a) 0.39 wt.% Pt/KA-NRS, (b) 0.45 wt.% Pt/KA-SNFS, (c)  
0.27 wt.% Pt/KA-NRS, (d) 0.1 wt.% Pt/KA-NRS, (e) 0.07 wt.% Pt/KA-SNFS, (f) 0.04 wt.% 

Pt/KA-NRS, (g) 0.01 wt.% Pt/KA-NRS and (h) 0.14 wt.% Pt/MCM-41. 

 
and a flower-like spherical morphology with wrinkled radial structure ranging 

from 150 to 410 nm. The thickness of the radial wrinkled “petal” structure is 

ca. 10 nm. From Fig. 2C and D, the KA-NRS support takes on the shape of 

irregular curving nano-rod, the length and width ranging from 800 nm to 1.9 

um and 100 nm to 250 nm, respectively. The HR-TEM image of KA-SNFS 

support (Fig. 2E) shows a great number of hierarchical pores distributed on 

the nano-flowers with a dandelion-like shape, including worm-like 

mesopores, micropores and cone-shaped macropores, formed by overlapping 

areas in the wrinkled radial structure. The HR-TEM image of KA-NRS 

support (Fig. 2F) shows that the curving nano-rod silica is rough and hold the 

comparable lengths.  
From Fig. 2G, NRS possesses a surface lattice spacing of 2.063 nm for 

the (100) crystal planes, which confirmed by the small-angle XRD (Fig. 1A). 

From Fig. 2H and I, the average size of Pt nanoparticles over 0.45 wt.% 

Pt/KA-SNFS and 0.39 wt.% Pt/KA-NRS are found to be  
4.5 ± 2 nm and 2.6 ± 0.7 nm, respectively, indicating an uniform distribution 

of Pt particles with a very narrow range over the catalysts. The Pt 

nanoparticles on 0.39 wt.% Pt/KA-NRS are highly dispersed. However, the Pt 

nanoparticles aggregate to some extent when sup-ported on KA-SNFS. The 

larger particle size leads to low dispersion of Pt nanoparticles over 0.45 wt.% 

Pt/KA-SNFS (5.4%) compared with 0.39 wt.% Pt/KA-NRS (54.3%) (Table 

1), which can be ascribed to the large specific surface area and micropore 

volume and uniform pore structure of NRS supports. Fig. 2J and K show three 

diff erent lattice planes with spacing of 0.1202, 0.072, and 0.0937 nm, which 

separately correspond to the (111), (220) and (200) planes of metallic Pt, 

 
 



     

Table 1       
Textural property of all synthesized catalysts.      
       

Sample Pt content
a
 (wt.%) Dispersion

b
 (%) SBET

c
 (m

2
 ·g

−1
) Vpore

d
 (cm

3
 ·g

−1
) Vmicro

e
 (cm

3
 ·g

−1
) dpore

f
 (nm) 

       

NRS / / 942.4 0.73 0.38 3.5 

SNFS / / 199.1 0.89 0.09 19.3 

0.39 wt.% Pt/KA-NRS 0.50 (0.39) 45.3 596.6 0.52 0.26 3.8 

0.27 wt.% Pt/KA-NRS 0.30 (0.27) 67.0 650.8 0.64 0.27 4.9 

0.1 wt.% Pt/KA-NRS 0.10 (0.10) 69.0 662.8 0.56 0.27 3.8 

0.04 wt.% Pt/KA-NRS 0.05 (0.04) 64.7 561.7 0.56 0.25 4.3 

0.01 wt.% Pt/KA-NRS 0.01 (0.01) 74.9 627.5 0.54 0.26 4.2 

0.45 wt.% Pt/KA-SNFS 0.50 (0.45) 5.4 139.9 0.56 0.07 14.8 

0.07 wt.% Pt/KA-SNFS 0.10 (0.07) 22.2 117.8 0.43 0.06 13.1 

0.14 wt.% Pt/MCM-41 0.50 (0.14) 23.6 1138.8 1.16 0.49 3.4 

0.15 wt.% Pt/γ-Al2O3 0.50 (0.15) 29.1 327.2 0.47 0.14 4.6   
a Nominal Pt content and actual Pt content (in the parenthesis) detected by ICP-OES.

 
 

b Dispersion of Pt estimated by HOT.
  

c Specific surface area obtained at P/P0 = 0.05-0.30.
  

d Total pore volume estimated at P/P0 = 0.99.
  

e Micropore volume estimated from the t-plot method.
  

f BJH pore diameter calculated from the desorption branch.
 

 
indicating the formation of active sites with well-defined crystallinity. 

Furthermore, the EDS mapping images of O, Al, Pt elements over 0.39 wt.% 

Pt/KA-NRS sample are shown in Fig. 2L–N. A uniform dis-tribution of O, Al 

and Pt in the particle region and the related peaks can be seen clearly, 

confirming the homogeneous Pt nanoparticles dis-tribution over the surface of 

KA-NRS support. The STEM-EDX and HAADF-STEM (insert) further 

confirmed that Pt nanoparticles are homogeneously dispersed over the surface 

of KA-NRS support (Fig. 2O). In addition, the Pt content measured by EDX 

(0.48 wt.%) is similar to the results obtained by ICP-OES (Table 1). 

 

 

3.1.3. Dispersion and content of active sites  
From Table 1, the actual content of Pt measured by ICP-OES is si-milar 

to the theoretical preparatory content when supported on KA-NRS and KA-

SNFS demonstrating that the ethylene glycol reduction and colloid 

impregnation methods are efficient for preparing supported noble metal 

catalysts. On the contrary, it is inefficient for MCM-41 and γ-Al2O3 to 

support noble metals through wetness impregnation (WI). Furthermore, it is 

difficult to control the particle size and active sites for the conventional 

wetness impregnation method. In this work, the dis-persion of Pt 

nanoparticles characterized by hydrogen and oxygen ti-tration (HOT) shows 

that the Pt dispersion decreases with an increasing of Pt content and 

determined by the property of support as well (Table 1). The dispersion of Pt 

nanoparticles over 0.39 wt.% Pt/KA-NRS sample is 45.3%, which rises up to 

74.9% over 0.01 wt.% Pt/KA-NRS. The Pt nanoparticles are nearly 

monodisperse over the 0.01 wt.% Pt/ KA-NRS catalyst. For the 0.14 wt.% 

Pt/MCM-41 catalyst, the Pt dis-persion is 23.6%, which consistent with the 

previously reported results (Wang et al. [26]. prepared 0.45 wt.% Pt/ZSM-22 

with 31.48% dis-persion and Zhu et al. [10]. synthesized 1.0 wt.% Pt/SBA-15 

with 24.6% by the wetness impregnation method). The basis of results at-

tribute to the acid sites of the support and preparation method. 

 

 

3.2. Textural properties 

 

3.2.1. FT-IR and ESR  
Fig. 3A shows the FT-IR results of all synthesized catalysts. All samples 

exhibit a broad and intensive absorption peak at around 3447 cm−1, which is 

attributed to the stretching and bending vibrations of surface hydroxyls and/or 

adsorbed water molecules. The surface hydroxyls also give rise to a band of 

δ(Si-OH) and v(Si-OH) at 1642 cm−1 [27]. Compared with Pt/MCM-41, the 

peak of δ(Si-OH) and v(Si-OH) over Pt/KA-NRS and Pt/KA-SNFS samples 

are strengthened obviously, ascribed to the addition of Al atoms. A sharp 

peak at 574 cm−1 can be assigned to the vibration mode of AlO6, which 

 
indicates that the Al atom has been incorporated into the framework of the 

silica. The peak at 800 cm−1 in all spectra is ascribed to the typical symmetric 

stretching vibration of the O-Si-O bond of mesoporous silica, and the peak at 

458 cm−1 can be ascribed to symmetric bending vi-brations of tetrahedral Si-

O of silica [28].  
The electron spin resonance (ESR) spectroscopy, measured at 293 K was 

used to study the conduction electron spin resonance (CESR) of small 

platinum particles. This method was successfully applied to pla-tinum loaded 

on silica, zeolites or alumina. From Fig. 3B, the spectrum signal at g = 2.141 

mT detected in all samples are the defect centers induced in the aluminosilica 

framework, which are potential sites for adsorbed oxygen and incorporated 

metallic Pt atoms [29]. Further-more, a similarly broad ESR signal at g = 

2.239 mT corresponds to the spectrum of metallic Pt for 0.39 wt.% Pt/KA-

NRS and 0.45 wt.% Pt/KA-SNFS catalysts [30], which is faint over 0.27 

wt.% Pt/KA-NRS sample attributing to the low content and higher dispersion 

(67%) of Pt na-noparticles. The Pt signal can be attributed to nano-crystalline 

Pt with a particle size of ca. 2.7 nm, in good agreement with the results of 

HR-TEM (Fig. 2I) [31]. From the same g tensor it can be concluded that the 

Pt atom coordination is comparable in these two samples. 

 

 

3.2.2. UV–vis and raman  
The ultraviolet-visible spectroscopy (UV–vis) can give information for 

metals of very small primary particle size (< 4 nm), and low con-tent (< 1 

wt.%) [32], where the XRD method is unsuccessful. From Fig. 3C, for KA-

NRS and KA-SFNS support, the band at around 241.8 nm was assigned to Al-

O charge-transfer transition of four-coordinated framework, which refers to 

structures with highly ordered octahedral symmetry and stabilized in the 

framework of silica [33]. This band shifts toward high energy of 257.2 nm 

after loading Pt nanoparticles due to Al-O-Pt [34]. For 0.39 wt.% Pt/KA-

NRS, 0.1 wt.% Pt/KA-NRS, 0.45 wt.% Pt/KA-SFNS and 0.07 wt.% Pt/KA-

SFNS, the presence of the band centered at 294.7 nm is the characteristic 

absorbance of Pt par-ticles for metal-support interaction [35]. According to 

previous reports, the absorption band in the 400–500 nm range corresponds to 

Pt4+ [36], whereas that in the 600–800 nm range to Pt2+ [37], but neither of 

them were detected in this work, which indicates that the Pt nanoparticles 

exist in metallic Pt0 over samples. 

 

Fig. 3D depicts Raman shift spectra for as-prepared samples in the range 

300–1200 cm−1. Compared with 0.45 wt.% Pt/KA-SFNS and 0.39 wt.% 

Pt/KA-NRS catalysts, oxidized 0.45 wt.% Pt/KA-SFNS, oxi-dized 0.39 wt.% 

Pt/KA-NRS and 0.14 wt.% Pt/MCM-41 samples display the signals at 689 

cm−1, which can be ascribed to Pt-O vibration [38]. However, this single is 

not detected in the case of 0.45 wt.% Pt/KA-SFNS and 0.39 wt.% Pt/KA-

NRS catalysts, indicating that the active 

 
 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. FE-SEM images of (A,B) KA-SNFS and (C,D) KA-NRS; HR-TEM images of (E) KA-SNFS, (F,G) KA-NRS, (H) 0.45 wt.% Pt/KA-SNFS and (I-K) 0.39 wt.% Pt/KA-NRS; EDS mapping 

images of (L-N) 0.39 wt.% Pt/KA-NRS; STEM-EDX and HADDF-STEM (insert) images of (O) 0.39 wt.% Pt/KA-NRS. 

 
 
 
 

 
 



  

 
Fig. 3. (A) FT-IR spectra of (a) 0.39 wt.% Pt/KA-NRS, (b) 0.27 

wt.% Pt/KA-NRS, (c) 0.1 wt.% Pt/KA-NRS, (d) 0.04 wt.% 

Pt/KA-NRS, (e) 0.01 wt.% Pt/KA-NRS, (f) 0.45 wt.% Pt/KA-

SNFS, (g) 0.07 wt.% Pt/KA-SNFS and (h) 0.14 wt.% Pt/MCM-

41; (B) ESR spectra of 0.27 wt.% Pt/KA-NRS, 0.39 wt.% Pt/ KA-

NRS and 0.45 wt.% Pt/KA-SNFS; (C) UV–vis absorption spectra 

of (a) KA-NRS, (b) KA-SNFS, (c) 0.39 wt.% Pt/KA-NRS, (d) 0.1 

wt.% Pt/KA-NRS, (e) 0.45 wt.% Pt/KA-SNFS and  
(f) 0.07 wt.% Pt/KA-SNFS; (D) Raman shift spectra of (a) 0.45 

wt.% Pt/KA-SFNS, (b) 0.39 wt.% Pt/KA-NRS, (c) oxi-dized 0.45 

wt.% Pt/KA-SFNS, (d) oxidized 0.39 wt.% Pt/KA-NRS and (e) 

0.14 wt.% Pt/MCM-41. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
sites over 0.45 wt.% Pt/KA-SFNS and 0.39 wt.% Pt/KA-NRS catalysts are 

metallic Pt nanoparticles, which are in line with UV–vis (Fig. 3C). The Pt0 

active sites are more beneficial for MEK combustion than Pt2+ and Pt4+. In 

this work, the metallic Pt nanoparticles are produced through ethylene glycol 

reduction and H2 reduction methods. 

 
3.2.3. XPS  

X-ray photoelectron spectra (XPS) measurements were carried out  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
to identify the state of O, Pt, Al, and K elements on the catalysts surface (Fig. 

4). The peaks of binding energies and molar ratios of K 2p, Pt 4f and Al 2p 

are summarized in Table S2. Full spectrum diagrams of XPS spectra are 

shown in Fig. 4A. The peaks of C 1 s and O 1 s are explicit, however, the 

signal of K 2p, Pt 4f and Al 2p cannot be seen clearly in the full spectrum. 

Fig. 4B illustrates the deconvoluted O 1s XPS spectra of the samples. 

Importantly, it is remarkable to note that no single lattice oxygen was 

detected, which indicates that Pt nanoparticles exist in their 

 
Fig. 4. XPS spectra of (a) 0.45 wt.% Pt/KA-SNFS, (b) 0.07 wt.  

% Pt/KA-SNFS, (c) 0.39 wt.% Pt/KA-NRS, (d) 0.27 wt.% Pt/ 

KA-NRS, (e) 0.1 wt.% Pt/KA-NRS and (f) 0.01 wt.% Pt/KA-

NRS: (A) survey spectra, (B) O 1s, (C) K 2p and (D) Pt 4f + Al 

2p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
metallic form. Considering that O1 s signals may originate from dif-ferent 

oxygen environments, O 1s spectra were deconvoluted into three peaks 

according to previous work [39]. Three divided peaks of 0.45 wt.  
% Pt/KA-SNFS at about 533.6 eV, 532.8 eV and 532.1 eV are respec-tively 

assigned to binding energies of oxygen associated to Si-OH (si-lanol group), 

Si-O-Si and KAlO (aluminate anion compensated by po-tassium cation), and 

of 0.39 wt.% Pt/KA-NRS at about 533.5 eV, 532.9 eV and 532.2 eV, 

respectively. The peak of Si-OH is mainly as-cribed to the surface hydroxyl 

and absorbed water present. The peaks shift towards high binding energy with 

decreasing of Pt content. Fig. 4C shows the K 2p XPS spectra of samples. K 

elements were doped by an ion-exchanged method, which promote the 

catalytic activity of noble metal based catalysts [12]. K addition leads to the 

formation of a well-dispersed Pt species that facilitate the activation of 

surface OH groups and chemisorbed oxygen [40]. The fitting analysis of these 

spectra re-veals that they are formed by two diff erent forms of potassium. 

The main peak at the binding energy range of 294.1-294.5 eV is K 2p3/2 

corresponding to K+, which is assigned to the KAlO (aluminate anion 

compensated by potassium cation) and to surface K [41]. Otherwise, the small 

shoulder peak at the binding energy range 296.8-297.3 eV is ascribed to K0 

(K 2p1/2) through coordination with Pt0 [42]. The molar ratio of K 2p3/2/K 

2p1/2 on the surface of 0.37 wt.% Pt/KA-NRS and 0.45 wt.% Pt/KA-SNFS 

are approximately 2.75 and 2.95, respectively (Table S2), which represents 

the ratio of K+/K0. The low ratio of K 2p3/ 2/K 2p1/2 indicates that more K 

atoms exist as K0 coordinated with Pt0. Furthermore, the ratio of K 2p3/2/K 

2p1/2 increases with the decreasing of Pt content, ascribed to the reduction of 

K0 content (coordinating with Pt0). It further demonstrates that Pt 

nanoparticles were coordinated with K0. As shown in Fig. 4D, since the Al 2p 

peak strongly overlaps with Pt 4f peak of the active phase in the range of 81–
66 eV, it is ne-cessary to separate the Al 2p peak from these spectra. The 

decomposi-tion of the spectra to individual components of Al 2p at binding 

energy of 75.1-75.5 eV for active samples in the present study [43]. The de-

convoluted peak area of Al 2p for Pt/KA-SNFS samples is larger than that 

from the Pt/KA-NRS samples and signifies a higher relative content of Al 

over the catalysts. Al atoms are incorporated with silanol groups, therefore, 

the higher Al content means a lower silanol population, which impacts the 

adsorption of MEK and the stability of catalysts. The XPS profiles for Pt are 

divided into two strong peaks. The peak com-ponent with binding energy 

around 71.2-71.5 eV is Pt 4f7/2 (represents Pt0 connected with K), and around 

74.4-74.8 eV is Pt 4f5/2 (represents 

 

 

Pt0 on the surface of support alone) [44]. Both of these two peaks are 

assigned to the Pt0 state [45]. No peak of Pt2+ and Pt4+ is found in  
spectra, indicating Pt nanoparticles exist as metallic Pt, which is also 

confirmed by O 1s (Fig. 4B). The peak of Pt 4f7/2 becomes insignificant with 

decreasing of Pt content. The ratio of Pt 4f7/2/Pt 4f5/2 is ap-proximately 1.83, 

1.23, and 0.84 for 0.37 wt.% Pt/KA-NRS, 0.37 wt.% Pt/KA-NRS, and 0.45 

wt.% Pt/KA-SNFS, respectively, and the sequence for all samples is: 0.37 

wt.% Pt/KA-NRS (1.83) > 0.37 wt.% Pt/KA-NRS (1.23) > 0.45 wt.% Pt/KA-

SNFS (0.84) > 0.10 wt.% Pt/KA-NRS (0.33) > 0.07 wt.% Pt/KA-SNFS (0.12) 

> 0.01 wt.% Pt/KA-NRS  
(0.02). A higher ratio of Pt 4f7/2/Pt 4f5/2 represents more metallic Pt 

nanoparticles connecting with K atoms to form Pt0, which are active sites for 

catalytic oxidation reaction. Therefore, H2 reduction for cata-lysts is desirable 

for enhancing the catalytic activity; which is consistent with results reported 
previously [13]. 

 

3.3. FT-IR spectra for NH3 and CO adsorption 

 
3.3.1. FT-IR spectra for NH3 adsorption  

The acidity of support, fresh and used catalysts is evaluated via NH3-IR 

(Fig. 5A). There are no characteristic peaks of NH3 adsorption for NRS 
support. For fresh 0.27 wt.% Pt/KA-NRS catalyst, the bands in the range of 

1298–1431 cm−1 could be attributed to the asymmetric and symmetric 

bending vibrations of NH4+ species on the Brønsted acidic sites [46]. 

Meanwhile, the incorporation of Al species would be likely to 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. (A) FT-IR spectra for NH3 adsoprtion of catalysts; (B) FT-IR spectra for CO ad-

soprtion of catalysts. 

 
generate Brønsted acids and enhance the total acidity of the sample. 

Compared with fresh catalyst, the intensity of characteristic peak be-come 

weak for used 0.27 wt.% Pt/KA-NRS, ascribed to the adsorption of MEK 

over catalysts and provide proton for producing intermediate products. 

Furthermore, compared with the traditional wetness im-pregnation method, 

ethylene glycol reduction and colloid impregnation methods are able to 

control particle size and prevent sintering of Pt nanoparticles, which are 

important for improving active sites dispersion [47]. The dispersion of noble 

metal over catalysts has a significant ef-fect on catalytic activity [12], that is, 

higher dispersion intends to create more active sites and promote the catalytic 

efficiency. In this work, the 0.27 wt.% Pt/KA-NRS catalyst possess 

outstanding catalytic activity for MEK combustion with a dispersion of 

67.0%. The dispersion of active sites achieve 74.9% over 0.01 wt.% Pt/KA-

NRS catalyst. Highly dispersed active sites maintain considerable activity 

even with low content of Pt nanoparticles. 

 
 
 
3.3.2. FT-IR spectra for CO adsorption  

A large proportion of metallic Pt0 is an important factor for VOC 

combustion. The Pt0 active sites are more beneficial for MEK combus-tion 

than Pt2+ and Pt4+ [13]. In this work, the metallic Pt nanoparticles are 

produced through ethylene glycol reduction and H2 reduction methods, which 

has been confirmed by wide-angle XRD (Fig. 1B), UV–vis (Fig. 3C), Raman 

(Fig. 3D), XPS (Fig. 4) and H2-TPR (Fig. S4A). In this work, CO was used as 

a probe molecule to investigate the active sites on the catalysts due to the 
utility of CO in FT-IR spectroscopy, which can provide information related to 

the active sites of an adsorbed species and to the chemical environment of Pt 
nanoparticles [48]. 

 
 



 
 

 
When CO adsorbs on Pt active sites, the electrons are partially trans-ferred 

from a d−orbital of the metal to the anti-bonding CO molecular orbital. This 

electron-transfer strengthens the Pt-C bond and weakens the CeO bond. The 

strengthening of the PteCO bond is reflected in the increasing of the 

vibrational frequencies for the PteC bond [49].  
As shown in Fig. 5B, for 0.39 wt.% Pt/KA-NRS and 0.45 wt.% Pt/ KA-

SNFS, the band appears at 2090 cm−1 is assigned to linear CO ab-sorbed on 

diff erent terrace and step sites of metallic platinum crystal-lites (Pt0) [50]. 

This band is the characteristic peak of CO absorbed on Pt (111) planes based 

on its shape and intensity [51], which verifies that the Pt (111) planes are 

dominating exposed planes for mono-dispersed Pt active sites in this work, 

and make a significant con-tribution to MEK combustion. The results are 

confirmed by wide-angle XRD (Fig. 1B). In contrast, two wide peaks emerge 

into 0.14 wt.% Pt/ MCM-41 sample for CO adsorption. The band at 2090 

cm−1 is the linear CO absorbed on Pt0, however, the band at around 2076 

cm−1, which is assigned to bridge-type CO adsorbed on large platinum 

crystallites or correspond to adsorption on oxidized Pt2+/Pt4+ atoms [52]. 

 

FT-IR characterization by the means of CO probe technique is sen-sitive 

to the particle size and metal support interactions, since it is af-fected by the 

electronic properties of Pt surface atoms. According to the peaks of FT-IR for 

CO adsorption on 0.39 wt.% Pt/KA-NRS, 0.45 wt.% Pt/KA-SNFS and 0.14 

wt.% Pt/MCM-41samples, the particle size of Pt nanoparticles can be 

indentified as ca. 2, 3 and 10 nm, respectively, according to the position and 

shape of the characteristic peak of CO adsorption [53], which are 

corresponding to the results of HR-TEM (Fig. 2H and I). Furthermore, the 

band width of the FT-IR peak for 0.39 wt.% Pt/KA-NRS and 0.45 wt.% 

Pt/KA-SNFS was narrower than that for 0.14 wt.% Pt/MCM-41, implying 

that uniform, small Pt parti-cles were likely formed over the 0.39 wt.% 

Pt/KA-NRS and 0.45 wt.% Pt/KA-SNFS samples [48]. Compared with 

traditional Pt/MCM-41cat-alyst, a larger proportion of metallic Pt and highly 

dispersed Pt with smaller particle size contribute to efficient combustion of 

MEK for Pt/ KA-NRS and Pt/KA-SNFS samples. 

 

 

3.4. Catalytic performance 

 

3.4.1. MEK oxidation activity  
The catalytic behaviors of MEK oxidation were studied, as shown in Fig. 

6. In addition, the specific reaction data (temperatures at which 5%, 50% and 

90% conversion of MEK, reaction rate, apparent activa-tion energy and 

turnover frequency) of all synthesized catalysts were also calculated and 

listed in Table 2. The factors of Mears criterion (NM) and the Weisz-Prater 

criterion (NW-P) were calculated and evaluated at T100, T50, and T10 (the 

temperature at which the corresponding MEK conversion was achieved) to 

estimate the influence of external and in-ternal diffusion eff ects on the 

reaction rates [54]. The calculated values at T100, T50, and T10 show that NM 

< 0.15 and NW–P < 0.3 for all the catalysts, indicating that both the external 

and the internal diffusion eff ects on the catalytic performance can be ignored 

[54]. We consider that operation under MEK-lean conditions, with a thin 

catalyst bed, large specific surface area, uniform pore structures and well-

propor-tioned particle sizes, the eff ect of heat transfer can also be ignored. 

 

Fig. 6A shows the catalytic activity of MEK combustion over syn-

thesized catalysts. The KA-NRS and KA-SNFS support show negligible 

activity even at 300 °C, which indicates that the addition of Pt evidently 

improves the catalytic performance at low temperature. The 0.39 wt.% 

Pt/KA-NRS and 0.45 wt.% Pt/KA-SNFS respectively gives 100% and 92% 

conversions of MEK at 190 °C, while for 0.14 wt.% Pt/MCM-41 and 0.15 

wt.% Pt/γ-Al2O3, only achieve ca. 20% and 17% respectively under this 

temperature. Therefore, supported Pt nanoparticles on KA-NRS and KA-

SNFS are more efficient compared to the conventional MCM-41 and γ-Al2O3 

supports. In order to investigate the eff ect of Pt content, 0.1 wt.% Pt/KA-NRS 

and 0.07 wt.% Pt/KA-SNFS were also prepared. As the results shown in Fig. 

6A, 0.1 wt.% Pt/KA-NRS (T90 of 208 °C) is modestly more active than 0.07 

wt.% Pt/KA-SNFS (T90 of 

 

 
216 °C). Above results indicate that the Pt/KA-NRS catalyst is the pre-ferable 

catalyst to Pt/KA-SNFS regardless of Pt content, which can be explained by 

the diff erence in the textural and structural properties of these catalysts. In 

comparison with KA-SNFS, KA-NRS possesses a larger specific surface area 

and micropore volume and uniform pore structure. Besides, the Pt 

nanoparticles on KA-NRS are nearly monodisperse, which off ers more active 

sites. Monodisperse Pt nanoparticles sup-ported on KA-NRS show 

outstanding catalytic activity in MEK catalytic oxidation at low temperature. 

 
Fig. 6B shows the oxidation of MEK over Pt/KA-NRS catalysts with 

diff erent Pt loadings, and the activity of various samples decrease in the 

sequence of 0.27 wt.% Pt/KA-NRS > 0.29 wt.% Pt/KA-NRS > 0.1 wt.  
% Pt/KA-NRS > 0.01 wt.% Pt/KA-NRS > 0.04 wt.% Pt/KA-NRS. The 0.27 

wt.% Pt/KA-NRS catalyst possesses the highest activity with 5%, 50%, and 

90% of MEK converted at only 95 °C, 144 °C, and 163 °C, respectively. The 

catalytic activity not only associates with Pt content, but also correlates to 

surface area of supports and dispersion of active sites. The 0.27 wt.% Pt/KA-

NRS catalyst holds the high dispersion of active sites (67.0%) and larger 

specific surface area of support (650 m2/ g) than 0.39 wt.% Pt/KA-NRS 

(45.3% of dispersion and 596 m2/g of specific surface area), which leads to a 

superior activity although the lower Pt content of 0.27 wt.% Pt/KA-NRS 

catalyst compared to 0.39 wt.  
% Pt/KA-NRS. As shown in Table S1, the 0.27 wt.% Pt/KA-NRS catalyst 

achieves more than 100 °C temperature reduction compared to some typical 

catalysts (Pd/Al2O3, Pt/BAsap, and Pd/ZSM-5) with superior performances 

for MEK oxidation even under much higher GHSV.  

High CO2 selectivity represents an important parameter for catalytic 

oxidation of VOCs. Accordingly, CO2 selectivity of three most active 

catalysts (0.27 wt.% Pt/KA-NRS, 0.39 wt.% Pt/KA-NRS, and 0.45 wt.% 

Pt/KA-SNFS) were further studied, as shown in Fig. 6C. The CO2 se-lectivity 

of these catalysts are in order of 0.27 wt.% Pt/KA-NRS (190 °C of 100%) > 

0.39 wt.% Pt/KA-NRS (212 °C of 100%) > 0.45 wt.% Pt/ KA-SNFS (220 °C 

of 100%), which is in accordance with that of the MEK conversion results in 

Fig. 6A and B. Typically, the CO2 selectivity of 0.27 wt.% Pt/KA-NRS 

catalyst is as high as 96% at 150 °C and reaches 100% at 190 °C, which is 

much higher than that of 0.45 wt.% Pt/KA-SNFS (68% at 150 °C and 91% at 

190 °C) although it shows very high activity for MEK oxidation. These 

results further demonstrate that a 0.27 wt.% Pt/KA-NRS catalyst is a very 

powerful and promising catalyst for complete oxidation of MEK. However, 

there is an abnormal region (Fig. 6C) for all the studied catalysts with respect 

to the CO2 selectivity (the value presents a parabola shape with the increasing 

of tempera-ture) in diff erent temperature ranges (149–160 °C for 0.27 wt.% 

Pt/KA-NRS, 159–169 °C for 0.39 wt.% Pt/KA-NRS, and 170–199 °C for 

0.45 wt.  
% Pt/KA-SNFS), and the reason for this phenomenon will be discussed in the 

following part. 

 
3.4.2. Stability and eff ect of water vapor  

The stability is an important property for supported noble metal catalysts. 

As shown in Fig. 6D, insignificant loss in catalytic activity was observed for 

active catalysts (0.27 wt.% Pt/KA-NRS, 0.39 wt.% Pt/KA-NRS, and 0.45 

wt.% Pt/KA-SNFS) at 220 °C for 10 h of on-stream re-action at a GHSV of 

42,600 mL ·g−1 ·h−1 between heating and cooling processes, demonstrating 

that these samples possess excellent stability in the complete oxidation of 

MEK. Fig. 6E shows the circulation of heating and cooling process for MEK 

combustion over 0.27 wt.% Pt/KA-NRS. The performance of MEK 

combustion is stable during three times circulation, which illustrates that the 

heating and cooling processes have a negligible impact on 0.27 wt.% Pt/KA-

NRS catalyst.  
As moisture is one of the reaction products, it is important to evaluate its 

eff ect on catalytic behavior, particularly in terms of stabi-lity. Fig. 6F 

illustrates the influence of water vapor on the catalytic performance when 

introducing 3 vol.% and 1 vol.% water vapor into the feed stream at 180 °C. It 

is found that only about ca. 4.5% and 10.3% loss in MEK conversion for 0.27 

wt.% Pt/KA-NRS and 0.39 wt.% Pt/KA-NRS catalyst when 3 vol.% water 

vapor was introduced, while the 

 
 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. (A) Catalytic activities for MEK combustion over diff erent catalysts; (B) Catalytic activities for MEK combustion over KA-NRS with diff erent Pt content; (C) CO2 selectivity of samples for 

MEK catalytic oxidation; (D) Stability test of active samples for MEK catalytic oxidation; (E) Circulation of heating and cooling process for MEK combustion; (F) Eff ect of 3 vol. % and 1 vol.% 

water vapor on MEK combustion at 180 °C. 

 
values were ca. 16.2% and 14.5% for the 0.45 wt.% Pt/KA-SNFS and 0.14 

wt.% Pt/MCM-41 sample, respectively. The temporary lose of ac-tivity 

indicates that the eff ect of water vapor in this reaction system is negative 

which may be due to the competitive adsorption of H2O, MEK and O2 on the 

catalyst. The less reduce of MEK conversion demonstrates that 0.27 wt.% 

Pt/KA-NRS and 0.39 wt.% Pt/KA-NRS catalysts has better ability to resist 

the eff ect of water vapor than 0.14 wt.% Pt/MCM-41 and 0.45 wt.% Pt/KA-

SNFS. When water vapor was cut off , the conversion of MEK restored to the 

original values for 0.27 wt.% Pt/KA-NRS, 0.39 wt.% Pt/KA-NRS, 0.45 wt.% 

Pt/KA-SNFS and 0.14 wt.% Pt/ MCM-41 catalysts within 15, 30, 60 and 75 

min, respectively, and kept 

 
at 180 °C in the next 90 min. The recovery time for 0.14 wt.% Pt/MCM-41 is 

longest among all three samples, which are 45 min and 15 min longer than 

0.39 wt.% Pt/KA-NRS and 0.45 wt.% Pt/KA-SNFS. Besides, it is difficult to 

maintain a stable level and the activity declines gra-dually after cutting off  the 

water vapor. It verifies that the 3 vol.% water vapor has a significant negative 

eff ect on the traditional 0.14 wt.% Pt/ MCM-41catalyst. Subsequently, 1 

vol.% water vapor was introduced into reaction, and the lose in activity 

decreases to 2.1%, 5.6%, 10.6% and 6.8% for the 0.27 wt.% Pt/KA-NRS, 

0.39 wt.% Pt/KA-NRS, 0.45 wt.  
% Pt/KA-SNFS, and 0.14 wt.% Pt/MCM-41 catalysts, respectively, which 

can be respectively recovered in 15, 30, 30, and 45 min when the 

 
 



      

Table 2       
Catalytic activities of all catalysts.       
       

Sample T5
a
 (°C) T50

a
 (°C) T90

a
 (°C) rv

b
 (mmol ·gPt

−1
 ·s

−1
) TOFPt

c
 × 10

2
 (s

−1
) Ea

d
 (kJ ·mol

−1
) 

       

0.39 wt.% Pt/KA-NRS 104 154 172 5.22 2.39 48.41 

0.27 wt.% Pt/KA-NRS 95 144 163 11.56 3.34 37.22 

0.1 wt.% Pt/KA-NRS 123 181 208 8.14 2.29 39.67 

0.04 wt.% Pt/KA-NRS 155 203 238 8.97 2.70 40.85 

0.01 wt.% Pt/KA-NRS 146 195 227 5.72 14.93 47.63 

0.45 wt.% Pt/KA-SNFS 111 168 192 4.41 9.97 53.41 

0.07 wt.% Pt/KA-SNFS 128 184 216 10.63 10.19 41.96 

0.14 wt.% Pt/MCM-41 140 218 263 2.71 1.81 55.92 

0.15 wt.% Pt/γ-Al2O3 163 232 276 2.14 1.46 56.83   
a Temperatures at which 5%, 50% and 90% conversion of MEK.

 
 

b
 Reaction rate of MEK molecules transformed per surface area per unit time of various catalysts at 110 °C. 

c Turnover frequency based on the dispersion of Pt obtained at 110 °C.
  

d Apparent activation energy obtained from Arrhenius plot.
 

 
water vapor is removed.  

The impact of MEK combustion decreases when reducing water vapor 

concentration. There are three main reasons for the superior stability of 

Pt/KA-NRS and Pt/KA-SNFS catalysts than traditional Pt/ MCM-41. Firstly, 

the addition of K not only balances the negative charge of support, but also 

enhances the interaction between active sites and support; Secondly, the 

particle size of Pt nanoparticles over Pt/KA-NRS and Pt/KA-SNFS are small 

(2.6 nm of Pt/KA-NRS and 4.3 nm of Pt/KA-SNFS) and well-dispersed 

(keeping long distance be-tween two active sites), which eff ectively 

prevented the aggregation of Pt nanoparticles during thermal treatment. 

Finally, Al atoms were in-corporated into the silica framework by 

coordinating with silanol groups, resulting in fewer silanol groups and, 

therefore, were more resistant to hydrolysis under steaming conditions [13]. 

The superior stability of Pt/KA-NRS also confirmed by XPS spectra (Pt 4f + 

Al 2p) and XRD pattern of the fresh and used 0.27 wt.% Pt/KA-NRS (Fig. 

S5). 

 

 
3.4.3. Reaction rate, turnover frequency and apparent activation energy  

It is insufficient to judge the catalytic activity of diff erent catalysts just by 

comparing the light-off  curve and CO2 selectivity although these parameters 

are very important for catalyst evaluation and selection. Comparatively, the 

turnover frequency (Fig. S6), reaction rate and ap-parent activation energy 

(Fig. 7) are much more persuasive to clarify the intrinsic activity of a catalyst. 

We compared the performance of supported noble metal catalysts using the 

MEK consumption rate per gram of catalyst (based on Pt). As shown in Fig. 

7A, 0.27 wt.% Pt/KA-NRS shows the highest reaction rate (11.56 mmol 

·gPt
−1 ·s−1 at 110 °C) for MEK oxidation, two times higher than over 0.39 

wt.% Pt/KA-NRS (5.22 mmol ·gPt
−1 ·s−1 at 110 °C). The reaction rate of the 

active cata-lysts for catalyzing of MEK are ranked as: 0.27 wt.% Pt/KA-NRS 

> 0.39 wt.% Pt/KA-NRS > 0.45 wt.% Pt/KA-SNFS > 0.14 wt.% Pt/ MCM–

41 > 0.15 wt.% Pt/γ-Al2O3, in consistent with that of the cata-lytic activity. 

 
 

The apparent activation energy (Ea) was introduced to compare the low-

temperature activity of our samples, as the catalyst with the lower Ea value 

would facilitate MEK oxidation more readily. Notably, the apparent 

activation energy is usually determined at a conversion of 5–10%. Since a 

low concentration (800 ppm) of MEK was adopted in the present study, the 

heat generated due to the combustion of MEK at a conversion of 15% would 

be small and insignificant temperature gra-dients would exist in the catalyst 

bed, although MEK oxidation is highly exothermic. That is to say, the thermal 

eff ect is insignificant in the present study. By proper treating the data in Fig. 

6A and B, the Ar-rhenius plots could be drawn and Ea values could be 

evaluated for each sample, as presented in Fig. 7B and Table 2. 0.27 wt.% 

Pt/KA-NRS (37.2 kJ ·mol−1) < 0.39 wt.% Pt/KA-NRS (48.4 kJ ·mol−1) < 

0.45 wt. 

% Pt/KA-SNF (53.4 kJ ·mol−1) < 0.14 wt.% Pt/MCM-41 

(55.9 kJ ·mol−1) < 0.15 wt.% Pt/γ-Al2O3    (56.8 kJ ·mol−1).   The 

0.27 wt.% Pt/KA-NRS samples showed lowest Ea (37.2 kJ ·mol−1), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (A) Reaction rates of some active samples; (B) Arrhenius plots of some active samples 

for MEK catalytic oxidation. 
 

 

implying that MEK oxidation could proceed more readily. 

 

 

4. Discussion 

 

Nanorod silica (NRS) with high specific area and large pore volume was 

fabricated as a potential support. Pure silicate materials have an electrically 

neutral framework and consequently no Brønsted acid sites. When aluminum 

is incorporated into silicate framework, it is expected that the aluminum 

adopts tetrahedral coordination to four silicon atoms via oxygen bridges and 

yields so-called structural hydroxyls which serve as the Brønsted acid sites. 

The Brønsted acid sites can significantly promote Pt particle dispersion due to 

their electrophilic character [55], 
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Fig. 8. (A) The relation between catalytic activity and O2-TPD/CO2-TPD; (B) The 

relation between catalytic activity and specific surface area/particle size of Pt; (C) The 

relation between catalytic activity and molar ratio of Pt 4f7/2/Pt 4f5/2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and play an important role during MEK combustion. It promotes the 

adsorption of MEK over catalysts (Fig. S7 and Fig. S8) and provide proton 

for producing intermediate products. 

For  MEK  oxidation  on  supported  Pt  catalysts,  a  number  of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
parameters, such as the particle size of active sites, specific surface area, 

adsorption capacity of O2 and CO2, are thought to aff ect the catalytic 

performance. As shown in Fig. 8A, the O2 and CO2 desorption cap-abilities 

(Fig. S4B and Fig. S9) correlate positively to the MEK 

 
 



 
 

 
combustion activity for 0.39 wt.% Pt/KA-NRS, 0.45 wt.% Pt/KA-SNFS and 

0.14 wt.% Pt/MCM-41 samples. The T90 of these samples for MEK 

combustion increase with the decreasing of O2 and CO2 desorption 

temperatures. The addition of K promotes surface oxygen mobility, which 

desorbs and provides enough oxygen for catalytic oxidation. The desorption 

of CO2 which is the main product of the reaction and is directly promoted, 

releasing catalytic centers and the efficiency of MEK adsorption is improved, 

accelerating the catalytic reaction. From Fig. 8B, the specific surface areas do 

not correlate to the performance of MEK combustion. For instance, the 0.14 

wt.% Pt/MCM-41 sample possesses a higher surface area than 0.39 wt.% 

Pt/KA-NRS and 0.45 wt.  
% Pt/KA-SNFS, but has the lowest activity. Nevertheless, the positive 

relationship between the average particle size of Pt nanoparticles and T90 can 

be observed (Fig. 8B). In this work, monodispered Pt nano-particles with 

small particle sizes is preferred, for example, the 0.39 wt.  
% Pt/KA-NRS catalyst with an average 2.6 nm Pt nanoparticles is more 

active than 0.45 wt.% Pt/KA-SNFS with 4.5 nm Pt nanoparticles. Fur-

thermore, Fig. 8C illustrates the relationship between catalytic activity and 

molar ratio of Pt 4f7/2/Pt 4f5/2 (Table S2). In this work, the peak component 

with binding energy around 71.2–71.5 eV of Pt 4f7/2 and around 74.4–74.8 

eV of Pt 4f5/2 were divided in XPS Pt 4f spectra, all of them is the 

characteristic peak of metallic Pt0. However, the formation state of Pt 

nanoparticles in these two peaks is diff erent. The first state is that Pt0 is 

coordinated with K atoms, attributing to the peak position of Pt 4f7/2. Another 

state is that Pt0 attached on the surface of support alone, which is ascribed to 

the peak position of Pt 4f5/2. A higher ratio of Pt 4f7/2/Pt 4f5/2 represents a 

greater density of metallic Pt nano-particles connecting with K atoms. 

Metallic Pt0 nanoparticles that co-ordinate to K atoms are considered to be the 

preferred active sites ra-ther than those on the surface of the support. K atoms 
in catalysts can balance the negative charge of the support and anchor Pt 

nanoparticles, which improves the interface between active sites and support. 

It in-dicates that the large proportion of metallic Pt0 is in favor of MEK 

oxidation at lower temperatures, which is in line with the previous report [13]. 
 

The mechanism and reaction routes in MEK catalytic oxidation were 

explored with in situ DRIFTS experiment and DFT studies (Fig. S10), 

whereby, relative concentrations of MEK and products were detected by on-

line MS (Fig. S11) and TPSR (Fig. S12). From Fig. 6C, the decrease in MEK 

concentration and increase in CO2 concentration, as well as no CO formation 

(not shown), are seen as a function of reaction temperature for all the 

catalysts. The implication is that CO2 is the main product of MEK catalytic 

oxidation in our work.  

From Fig. 9A, the negative peak at 3755 cm−1 and the positive peak at 

3734 cm−1 observed at wavelengths between 3500 and 4000 cm−1 are 

ascribed to acid sites on catalyst and surface hydroxyl groups, re-spectively 
[56]. The surface hydroxyl groups can be assigned to 2-bu-tanol and 2,3-

butandiol. MEK molecules are absorbed on the acid sites of catalysts at the 

beginning of the reaction and consequently oxidized by Pt0 upon increasing 

temperatures. Therefore, we consider the vi-bration of greater exposed acid 

sites to be strengthened. Additionally, a broad and strong peak at 3262 cm−1 

is attributed to the stretching vi-bration of adsorbed water, which is mainly 

due to the combustion of MEK [56]. The peaks at 2372 cm−1 and 2310 cm−1 

are assigned to the stretching vibration of CO2, which is the main product of 

during MEK catalytic oxidation [57]. These peaks show a tendency to 

gradually increase as the reaction temperature approaches 200 °C, which 

coin-cides with the CO2 selectivity (Fig. 6C). Three peaks at 2991 cm−1, 

2949 cm−1 and 2888 cm−1 are detected and ascribed to the bending vibration 

and stretching vibration of CeH [58]. Two peaks at 1588 cm−1 and 1435 

cm−1 are detected and attributed to the stretching vibration of CeC [59]. The 

presence of ν(CeH) and ν(CeC) bands may be ascribed to the adsorbed 

residual hydrocarbon fragments, derived from MEK decomposition. The peak 

detected at 1716 cm−1 corresponds to diacetyl which is assigned to C]O 

normally [60]. The peak at 1352 cm−1 is assigned to the vibration of eCH3 of 

acetaldehyde and 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. In situ DRIFTS spectra of (A) 0.39 wt.% Pt/KA-NRS and (B) 0.45 wt.% Pt/KA-SNFS 

catalysts for MEK catalytic oxidation as a function of temperature in flowing MEK + N2 + O2 

from 100 to 200 °C. 

 

aceticacid [59]. Moreover, the peaks at 1477 cm−1 and 1267 cm−1 are clearly 

observed at high temperature, which corresponds to formic acid and 

formaldehyde [22].  
According to Fig. 9B, similarly for the 0.45 wt.% Pt/KA-SNFS sample, 

the negative peak at 3750 cm−1 and the positive peak at 3262 cm−1 observed 

at wavelengths between 3000 and 4000 cm−1 are ascribed to acid sites of 

catalyst and surface adsorbed water, respec-tively. The peaks at 2995 cm−1, 

2951 cm−1 and 2889 cm−1 are as-cribed to ν(CeH), and the peaks at 1591 

cm−1 and 1444 cm−1 are at-tributed to ν(CeC). The peak of C]O vibration 

from diacetyl is detected at 1716 cm−1. However, the peak detected at 2256 

cm−1 can be assigned to the vibration of CO [24]. The intensity of this 

vibration gradually increases at low temperature and disappears when the 

tem-perature above 160 °C. It can be concluded that CO is formed at low 

temperature, which leads to a lower CO2 selectivity on 0.45 wt.% Pt/ KA-

SNFS.  
Based on the above structural and composition analyses of the ob-tained 

Pt/KA-NRS catalyst as well as the observed catalysis in MEK oxidation, the 

potential mechanism for MEK combustion over 0.27 wt. 

% Pt/KA-NRS are proposed in Fig. 10. The MEK molecules are firstly 

adsorbed on the Brønsted acidic sites of the catalyst surface. The 

monodispersed metallic Pt nanoprrticles connected with K are active sites for 

MEK combustion. Accordingly, two reaction routes are pro-posed, which are 

slight diff erent from the previous report. Along with the participation of 

surface adsorbed oxygen and the Brønsted acidic sites, MEK transforms into 

2,3-butandiol and diacetyl through 2-bu-tanol and acetoin as intermediate 

products. The 2,3-butandiol as an intermediate is oxidatively cleaved to form 

acetaldehyde and diacetyl cleaved to form acetaldehyde and acetic acid. 

Acetaldehyde and acetic 

 
 



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

acid are considered the primary C2 scission product of MEK, which further 

convert into formaldehyde and formic acid with the help of the Brønsted acid 

sites before completely oxidized to CO2 and H2O. 

 
5. Conclusions 

 

In this work, hierarchically micro-mesostructured K-Al-SiO2 sup-ports 

with regular nanorod (KA-NRS) and spherical nanoflower-like (KA-SNFS) 

morphologies were prepared. Monodispersed Pt nano-particles were 

supported on KA-NRS and KA-SNFS through the ethylene glycol reduction 

and colloid impregnation methods. The addition of Al atoms produces 

Brønsted acid sites and reduces silanol groups over supports, promoting the 

dispersion of Pt nanoparticles and the stability of the catalysts. The Pt/KA-

NRS catalysts exhibit unexceptionable low temperature activity, CO2 

selectivity and stability for MEK oxidation. The excellent catalytic activity of 

Pt/KA-NRS for MEK oxidation can be ascribed to the regular morphology of 

the support and high dispersion of Pt nanoparticles. Furthermore, the average 

particle size of Pt nano-particles, O2 and CO2 desorption temperatures have 

positive correlation to the activity for MEK combustion. In situ DRIFTS and 

DFT results reveal that diacetyl and 2,3-butandiol are the main intermediates 

during MEK activation, which convert into H2O and CO2 through al-dehydes 

and acids. It can be reasonably anticipated that the Pt/KA-NRS catalyst 

system should be a promising candidate for low-temperature catalytic 

oxidation of VOCs. 
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