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Abstract

This thesis presents the extension of the lattice Boltzmann method (LBM) to

the solution of the Fokker-Planck equation with the FENE force law, on a single

lattice for the use of modelling the flows of polymeric liquids. First implemen-

tation and the basic theory of the LBM is discussed including the derivation

of the equilibrium function as a discretisation of the Maxwell-Boltzmann dis-

tribution function using Gauss-Hermite quadrature and the recovery of the

Navier-Stokes equations from the LBE by use of multiscale analysis. A review

of the extension of the LBM to multiphase flow is presented including colour

models, pseudo-potential models and free energy models. Numerical results

for a colour model have been given. Current viscoelastic lattice Boltzmann

methods are discussed including results validating the approach by Onishi et

al. [75] in the cases of simple shear flow and start up shear flow. A LBM for

the Fokker-Planck equation with the FENE force law is developed based on a

new Gauss quadrature rule that has been derived. The validity of this method

is confirmed for small We by comparison with results by Ammar [2] and Singh

et al. [96] where it gives good agreement. A LBM for the Fokker-Planck equa-

tion is then coupled with a macroscopic solver for the solvent velocity to solve

start-up plane Couette flow. This approach is validated by comparison with

results by Leonenko and Phillips [60].
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Chapter 1

Introduction

The lattice Boltzmann method (LBM) is an algorithm for simulating the flows

of fluids. Conventional numerical schemes, such as finite difference, finite el-

ements and finite volumes, rely on discretising macroscopic continuum equa-

tions. However, the LBM is a discrete kinetic theory approach that features a

mescoscale description of the microstructure of the fluid.

The most commonly used macroscopic continuum equations used in fluid

dynamics are the Navier-Stokes equations

ρ
Du

Dt
= −∇P + η∇2u + ρb, (1.0.1)

∇ · u = 0. (1.0.2)

where u is the macroscopic fluid velocity, ρ is the fluid density, P is the fluid

pressure, η is the dynamic viscosity, b is body force (e.g. gravity) and the

material derivative is given by

D

Dt
=

∂

∂t
+ u · ∇. (1.0.3)

1.0.1 Finite Difference methods

In finite difference methods, differential equations are approximated with dif-

ference equations, in which finite differences approximate the derivatives. For

example, first we need to define a grid of points in the domain D = [a, b]×[c, d].

We choose step sizes ∆x = b−a
N

and ∆y = d−c
M

in the x and y directions, re-

1
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spectively (where N and M are integers) and a time step size ∆t. We draw a

set of horizontal and vertical lines across D, and get a set of intersection points

(xi, yj, tn), or simply (i, j, n), where xi = a+ i∆x, i = 0, . . . , N, yj = a+ j∆y,

j = 0, . . . ,M, and tn = n∆t. Then using first order forward difference for time

discretisation, first order backwards difference for first order space derivative

and second order central difference for second order space derivative, the com-

ponent of the momentum equation in the x-direction is given by

un+1
ij − unij

∆t
+ unij

unij − uni−1,j

∆x
+ vnij

unij − uni−1,j

∆y

= −1

ρ

pni+1,j − pni−1,j

2∆x
+ η

(
uni+1,j − 2unij + uni−1,j

∆x2
+
uni,j+1 − 2unij + uni,j−1

∆y2

)
where unij is the velocity in the x direction at the point (i, j, n). Finite differ-

ence methods have a few drawbacks. For hyperbolic systems, the differential

equations do not hold at discontinuities, whereas the integral conservation laws

do and in practice finite difference methods require structured meshes making

simulating the flow around complex geometries (such as flow through porous

media) very difficult to implement.

1.0.2 Finite Volume methods

Finite volume methods are similar to finite difference methods in that values

are calculated at discrete points on a meshed geometry. The basis of the fi-

nite volume method is the integral conservation law. The essential idea is to

divide the domain into many control volumes and approximate the integral

conservation law on each of the control volumes. Because the flux entering a

given volume is identical to that leaving an adjacent volume, these methods

are conservative. Finite volume methods are also easily formulated to allow

for unstructured meshes. Beginning with the incompressible form of the mo-

mentum equation divided through by the density (p = P/ρ) and density has

been absorbed into the body force term fi

∂ui
∂t

+
∂ui∂uj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi. (1.0.4)
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The equation is integrated over the control volume of a computational cell∫ ∫ ∫
V

[
∂ui
∂t

+
∂ui∂uj
∂xj

]
dV =

∫ ∫ ∫
V

[
− ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi

]
dV (1.0.5)

The time dependent term and the body force term are assumed to be constant

over the volume of the cell. The divergence theorem is applied to remaining

terms to give

∂ui
∂t
V +

∫ ∫
A

uiujnjdA = −
∫ ∫

A

pnidA+

∫ ∫
ν
∂ui
∂xj

njdA+ fiV (1.0.6)

where n is the normal of the surface of the control volume and V is the volume.

Usually polyhedra are used as control volumes and values are assumed constant

over each face, and so the area integrals can be written as summations over

each face

∂ui
∂t
V +

∑
nbr

(uiujnjA)nbr = −
∑
nbr

(pniA)nbr+
∑
nbr

(
ν
∂ui
∂xj

njA

)
nbr

+fiV (1.0.7)

where the subscript nbr denotes the value at any given face.

1.0.3 Finite Element methods

The finite element method again formulates the problem in terms of a system

of algebraic equations. The method yields approximate values of the unknowns

at discrete number points over the domain. To solve the problem, it subdi-

vides the computational domain into a number of finite elements. The simple

equations that model these finite elements are then assembled into a larger

system of equations that model the entire problem. FEM then uses varia-

tional methods to approximate a solution by minimizing an associated error

function.

For example, we consider the two dimensional steady flow problem in a

domain Ω where the fluid velocity u = 0 at the boundary Γ. The formulation
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of our example is now. For x ∈ Ω solve u satisfying

div u = 0, (1.0.8)

− div σ + ρ(u · ∇u) = ρb, (1.0.9)

σij = −Pδij + T (1.0.10)

u = 0 for x ∈ Γ. (1.0.11)

where T is the deviatoric extra stress tensor. Define the solution space for u

as

V = H1
E(Ω) =

{
v :

∫
Ω

(v(x))2dΩ +

∫
Ω

|∇v(x)|2dΩ ≤ C1, v = 0 on Γ

}
.

(1.0.12)

and the solution space for P as

Q = HE(Ω) =

{
q :

∫
Ω

(q(x))2dΩ ≤ C2

}
. (1.0.13)

In order to derive the weak formulation, equations (1.0.8) and (1.0.9) must be

multiplied by test functions that belong to the solution space. First equation

(1.0.8) is multiplied by a test function q and integrated over Ω which yields∫
Ω

q div udΩ = 0. (1.0.14)

The momentum equations (1.0.9) consist of two equations (one for the x and

y directions), which are each multiplied by separate test functions v1 and v2

and then integrated over Ω. By defining v = (v1, v2)† these equations can be

combined to ∫
Ω

(− div σ + ρ(u · ∇u)) · vdΩ =

∫
Ω

b · vdΩ. (1.0.15)

The first term in (1.0.15) is further reduced by applying integration by parts

(Divergence theorem) to∫
Ω(− divΣ) · vdΩ =

∫
Ω

σ · ∇vdΩ−
∫

Γ

n · σ · vdΓ (1.0.16)
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where n is the outward pointing unit normal vector. Furthermore by substi-

tuting equation (1.0.10) into (1.0.16), the first term of (1.0.15) may be written

as ∫
Ω(− divΣ) · vdΩ =

∫
Ω

T · ∇vdΩ +

∫
Ω

P div vdΩ−
∫

Γ

n · σ · vdΓ

(1.0.17)

Combining these results leads to the weak formulation of the Navier-Stokes

equations. Find u ∈ V and P ∈ Q with

u = 0 at Γ, (1.0.18)

such that ∫
Ω

q div udΩ = 0, (1.0.19)∫
Ω

T · ∇vdΩ +

∫
Ω

ρ(u · ∇u) · vdΩ−
∫

Ω

P div vdΩ =

∫
Ω

ρb · vdΩ, (1.0.20)

for all v such that v = 0 at Γ, Ω is the fluid domain boundary, Γ is the

boundary of Ω and T is the deviatoric extra stress tensor. We see that no

derivatives of P and q are necessary and so it is sufficient that P and q are

integrable. For u and v, first derivatives are required and hence not only u

and v but also their first derivatives must be integrable.

In the standard Galerkin method we define a basis function Ψi(x) for the

pressure components and functions Φij(x) for the vector components (Φi1 and

Φi2 for the x and y directions). Now the approximation of u and P will be

defined by

ph =
m∑
j=1

pjΨj(x) (1.0.21)

uh =
n∑
j=1

u1jΦj1(x) + u2jΦj2(x) =
2n∑
j=1

ujΦj(x). (1.0.22)

In equation (1.0.22) uj is defined by uj = u1j (j = 1, . . . , n), uj+n = u2j

(j = 1, . . . , n) and Φj in the same way. In order to get the standard Galerkin
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formulation we substitute v = Φi(x), q = Ψi(x) into the weak formulation. In

this way we get, find ph and uh defined by equations (1.0.21,1.0.22) such that∫
Ω

Ψi div uhdΩ = 0, i = 1, . . . ,m (1.0.23)

and ∫
Ω

T · ∇ΦidΩ +

∫
Ω

ρ(uh · ∇uh) · ΦidΩ (1.0.24)

−
∫

Ω

P div ΦidΩ =

∫
Ω

ρb · ΦidΩ, i = 1, . . . ,m. (1.0.25)

The finite element method may be used to construct the basis functions Φi

and Ψi and once they are known the integrals (1.0.23) and (1.0.25) may be

evaluated element-wise. This produces a system of m+2n non-linear equations

with m + 2n unknowns. The solution of the system of equations introduces

two difficulties, firstly the equations are non-linear so require an iterative solver

and secondly the equations resulting from the mass equation do not contain

the unknown pressure P . For a finite element problem to be well-posed it is

necessary that the test spaces satisfy the well known LBB condition. In general

finite element methods are very amenable to unstructured meshes but are

more difficult to formulate and implement when compared to finite difference

schemes.

With the LBM the aim is to construct simplified kinetic type models that

preserve the conservation laws (e.g. mass, momentum) and necessary symme-

tries (e.g. Galilean invariance) so that in the macroscopic limit, the macro-

scopic averaged properties obey the desired continuum equations of motion,

such as the Navier-Stokes equations. These simplified models are sufficient

since the macroscopic dynamics are not sensitive to the underlying details of

the microscopic physics.

The LBM developed in the late 1980s has seen rapid development and is

now being used for many applications such as heat convection in buildings [54],

blood coagulation in a human artery [4] and modelling of fluid turbulence [19].
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1.1 Different Modelling Approaches

People have been interested in the world around them for thousands of years

but it is only in the last few centuries that we have started to quantify physical

phenomena. The physics of fluids is very complicated and for all but the

simplest of flows is poorly understood. With the rise of computing power it

has been possible to start to model fluids numerically. Traditionally scientists

have modelled fluids at a continuum scale, where fluids are described in terms of

space filling fields, such as density, velocity, and pressure, that vary smoothly in

space and time. Such a description is fairly adequate for many applications, to

the point that the physics of fluids is often implicitly identified with continuum

fluid mechanics. Nevertheless, it has been known for over a century, that fluids

(gas and liquids) are ultimately composed of a collection of individual entities,

atoms and molecules, whose discrete nature becomes apparent at scales around

the nanometre and below.

The different levels of description have an associated characteristic length

scale. At the macroscopic level there may be a number of such lengths such

as the width of a channel or the diameter of an object in the flow. These

are examples of geometric lengths but more intrinsic flow properties like the

diameter of a vortex shed in turbulent flow may also be considered. Denote

the smallest of the hydrodynamic length scales by LH . At the particle, or

microscopic scale, the characteristic length scale is generally taken to be the

mean free path, Lmfp, which is the average distance particles travel between

collisions. A basic hypothesis underlying continuum fluid mechanics is that

the macroscopic description holds whenever LH � Lmfp, or alternatively

ε =
Lmfp
LH

� 1, (1.1.1)

where ε is known as the Knudsen number.

For a purely microscopic approach we consider a collection of N particles

of mass m moving in a volume V at time t, each with position vector xi,

i = 1, . . . , N . Let each particle move freely under the influence of a force Fi.
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The particles are described by the Hamiltonian equations of motion:

dxi
dt

=
ji
m
, (1.1.2)

dji
dt

= Fi (1.1.3)

where ji is the momentum of particle i. If initial conditions and boundary

conditions are specified, the Hamiltonian equations can, in principle, be solved

in time to give full knowledge of the state of the system. However, the number

of particles N in V is large. In fact, it is typically very large indeed. If we

had a 1 m3 box full of air at room temperature, we would have roughly 1025

particles. This is why simply solving the Hamiltonian equations is an infeasible

task in practice.

The macroscopic approach does not consider the internal structure of V

but instead considers it to be an arbitrary material volume fixed in space with

a density ρ and a momentum which is assumed to satisfy the conservation laws

of Newtonian mechanics so that

d

dt

∫
V

ρdV = 0, (1.1.4)

d

dt

∫
V

ρudV =

∫
S

n · σdS +

∫
V

ρbdV, (1.1.5)

where u is the fluid velocity, σ is a stress tensor, S is the surface of V with

outward normal n and b is a body force (such as gravity). Applying the di-

vergence and Reynolds transport theorems yields, under the assumptions that

all integrands are continuous and the fluid is incompressible, the macroscopic

equations of motion for a fluid are

∇ · u = 0, (1.1.6)

ρ
Du

Dt
= ∇ · σ + ρb, (1.1.7)

where
D

Dt
=

∂

∂t
+ u · ∇ (1.1.8)

is the material derivative. To derive an explicit form of the stress tensor we
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write the components σαβ of σ in the form

σαβ = −Pδαβ + Tαβ, (1.1.9)

where δαβ is the usual Kronecker delta function and T is the deviatoric extra

stress tensor. Define P , the pressure, to be the negative average of the diagonal

stress components, i.e.

P = −1

3
Tr σ. (1.1.10)

A constitutive equation is needed to model the extra stress tensor T to

close the system of equations. This can take many forms depending on the

type of fluid that is to be modelled. For a Newtonian fluid it is assumed that

the extra stress tensor is proportional to the rate of strain γ̇ i.e.

T = ηγ̇, (1.1.11)

where η, is known as the viscosity and the rate of strain tensor is defined to

be

γ̇ = ∇u + (∇u)†, (1.1.12)

and † denotes the matrix transpose. With T defined in (1.1.11), the Navier-

Stokes equations can be recovered

ρ
Du

Dt
= −∇P + η∇2u + ρb, (1.1.13)

∇ · u = 0. (1.1.14)

This forms a continuum model that assumes the underlying physical sys-

tem is smoothly varying, in contrast to physical fluids which are actually com-

posed of a fixed number of discrete particles. The Navier-Stokes equations

(1.1.13), (1.1.14) are highly nonlinear and analytic solutions are rarely avail-

able. Therefore, numerical solutions become necessary and traditionally this

has been achieved through finite volume or finite element methods (local meth-

ods) or spectral elements (global method). For many real life problems, such

as the aerodynamic properties of cars or weather forecasting, these techniques

have proved to be very successful, especially in predicting qualitative behaviour

of fluid flows. However there are some potential issues which can cause com-
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putational difficulties. For example, there may be truncation errors and nu-

merical instabilities due to the necessary discretisation process, irregular fluid

domain boundaries which are difficult to incorporate (in particular with the

finite volume method), a Poisson solver is often required to solve for the pres-

sure (which is computationally expensive), issues with the ill-posedness of the

discrete problem caused by possible incompatibilty between the approximation

spaces (finite and spectral element methods), the nonlinearity of the Navier-

Stokes equations and for multiphase flows, the interface between the two fluids

has to be tracked in time (which is not easily achieved by continuum-based

methods). For non-Newtonian fluids that have a complex constitutive equa-

tion for the stress, care must be taken to avoid extra numerical instabilities

and spurious oscillations when dealing with the convective term, u · ∇T.

Modern computing architectures are driving the demand for CFD tech-

niques that are amenable to parallel computing. There are two main issues

with producing an algorithm suitable for parallel computing,

(i) the fraction of parallel content

(ii) the load balance.

To illustrate (i), suppose we were given the task of summing N numbers.

We could get P processors to sum a fraction of the numbers each but there

is a serial bottleneck when it comes to summing these P partial sums. An

algorithm with many such bottlenecks will not work well on parallel computers.

The benefit (S(P )) of using P processors, where W is the fraction of work that

can be performed in parallel is given in [100] by

S(P ) =
1

W/P + (1−W )
. (1.1.15)

This equation shows that in the limit of an infinite number of processors, the

speed up asymptotes to S(∞) = 1/(1−W ). As an example suppose we have

ninety percent parallel code, the above equation shows that the maximum pay

off will never exceed a factor of 10. Therefore 10 processors is approximately

the threshold above which further parallelisation becomes wasteful. For ref-

erence large scale LBM easily place more than 99 percent of the computer

demand on the collision phase which is perfectly parallel [100] giving scope for
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the use of more than 100 processors.

Load balancing, (ii) refers to making sure each processor is doing roughly

the same amount of work, as computational speed can be limited by the speed

of the slowest processor. With regular geometries, load balancing is a trivial

matter, where a simple geometric domain decomposition assures good perfor-

mance. When the geometry is complex and possibly even changing in time it

is difficult a priori to know how to ensure each processor is performing even ap-

proximately the same amount of work. LBM has a simple data structure and

so is well positioned to steer clear of load balancing issues for many practical

applications.

A third intermediate level of description is provided by kinetic theory. This

connects the small scale (Lmfp) microscopic picture with the large scale (LH)

macroscopic properties. Kinetic theory considers a statistical description of

the fluid microstructure and defines the physical observables (e.g. density, ve-

locity, temperature, pressure) to be averages over a large number of molecular

histories. The primary variable in kinetic theory is not the position of a parti-

cle or the macroscopic velocity, but instead the distribution function, f(x, ξ, t),

which is defined to be the probability of finding a particle at position x with

velocity ξ at time t.

In 1872 Ludwig Boltzmann devised the famous Boltzmann equation which

describes the statistical behaviour of a thermodynamic system not in thermo-

dynamic equilibrium which reads

∂tf + ξ · ∇f = Ω(f) (1.1.16)

where f = f(x, ξ, t) is the single particle distribution function, ξ is the mi-

croscopic velocity, and Ω(f) is a collision operator, so that f(x, ξ, t)d3xd3ξ is

the probability of finding a particle in the volume d3x around x with velocity

between ξ and ξ + dξ.

The macroscopic variables are determined from the moments of the distri-
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bution function

ρ(x, t) =

∫
f(x, ξ, t)dξ, (1.1.17)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)dξ, (1.1.18)

ρ(x, t)e(x, t) =

∫
(ξ − u)2f(x, ξ, t)dξ, (1.1.19)

where ρ is the fluid density, u is the fluid velocity and e is the internal energy,

the energy contained within the system excluding the kinetic and potential

energy of the system as a whole.

The collision operator Ω(f) is very complicated and suitable approxima-

tions need to be constructed to make the LBE amenable to numerical com-

putations. The assumption behind many simplifications to Ω is that a large

amount of information about the two-body interactions is unlikely to influence,

to a great extent, the values of experimentally measured quantities.

Cercignani [12] showed that the collision integral possesses exactly five

elementary collision invariants ψk(c), k = 0, . . . , 4, i.e.∫
Ω(f, f)ψk(c)dc = 0. (1.1.20)

These are

ψ0 = 1, (ψ1, ψ2, ψ3) = c, ψ4 = c2. (1.1.21)

Simpler collision operators should also satisfy this constraint as well as the

tendency to a Maxwellian distribution (H-theorem) [81]. The most commonly

chosen approximation to the collision operator is the Bhatnagar-Gross-Krook

(BGK) operator [5]

Ω(f) = −1

λ
(f − f eq) (1.1.22)

which represents a simplified description of a particle’s relaxation to a local

equilibrium state due to collisions. In equation (1.1.22), λ is the relaxation

time (characteristic time taken to relax to the equilibrium solution) due to

collisions and f eq is the Boltzmann-Maxwellian distribution function

f eq =
ρ

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

)
, (1.1.23)
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where R is the ideal gas constant, D is the dimension of physical space, and ρ,

u and T are the macroscopic density, velocity and temperature, respectively.

This simplified model does have some disadvantages as the relaxation time

simultaneously controls the fluid viscosity and the discretisation errors. Solu-

tions obtained with the BGK model generally exhibit λ-dependent and there-

fore viscosity-dependent characteristics. Thus the fundamental physical re-

quirement that hydrodynamic solutions are uniquely determined by their non-

dimensional physical parameters is not satisfied [53] (p. 143).

The connection between kinetic theory and hydrodynamics is provided

by multiscale analysis, which separates the different spatial and temporal

scales within a fluid. This is done using Chapman-Enskog analysis on Boltz-

mann’s equation (1.1.16) which allows one to derive the Navier-Stokes equa-

tions (1.1.13) and (1.1.14).

1.2 The Lattice Gas Cellular Automaton

In 1986, Frisch, Hasslacher and Pomeau [30] showed that a simple cellular

automaton (commonly called FHP after the authors’ initials) which obeyed

only simple conservation laws at a microscopic level, was able to reproduce the

complexity of real fluid flows. This was the subject of great excitement in the

CFD community. The prospects were promising: a round-off free, intrinsically

parallel computational paradigm for fluid flow and perhaps, even more im-

portantly the analogue of the Ising model for turbulence [100]. A few serious

problems (such as statistical noise and amenability to three dimensions) were

quickly recognised and the Lattice Boltzmann Equation (LBE) was developed

in its wake as a response to some of drawbacks of LGCA [45]. LBE is now

viewed as its own self-standing research subject in its own right and it can be

derived independently, without reference to LGCA at all. However, it is still

useful to start with a brief overview of LGCA as it aids our understanding of

the LBE.

The FHP lattice, which is shown in Figure 1.2.1, is a regular lattice with

hexagonal symmetry and associated with each node are the six link vectors

defined by

ci =

(
cos

iπ

3
, sin

iπ

3

)
, i = 1, . . . , 6, (1.2.1)
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Figure 1.2.1: The FHP lattice.

and |ci| = 1 for all i. Each lattice site hosts up to six particles with the

following prescriptions:

• All particles have the same mass m = 1.

• Particles can move only along one of the six directions defined by the

discrete displacements ci.

• In a time step the particles hop to the nearest neighbour in the direction

of the corresponding discrete vector ci. Both longer and shorter jumps

are forbidden, which means all lattice particles have the same energy.

• No two particles sitting on the same site can move along the same direc-

tion ci (exclusion principle) in the same time step.

Although real molecules can move at virtually any speed (subject to special

relativity) and in any direction this apparently poor cartoon of true molecular

dynamics has all that it takes to simulate realistic hydrodynamics.

We can readily code the information of the system by using a single binary

digit per site and direction so that the entire state of the lattice gas is specified

by 6N bits, where N is the number of lattice sites. Define the occupation

variables ni(x, t) such that

ni(x, t) = 0 particle, with velocity in i direction, absence at site x and time t,

(1.2.2)

ni(x, t) = 1 particle, with velocity in i direction, presence at site x and time t.

(1.2.3)

LGCA consists of two main stages, propagation/streaming, in which each
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Figure 1.2.2: The collision rules on the FHP lattice. The numbers on the open
arrows are the transition probabilities. The most common choice for p is 0.5

particle hops to one of its nearest neighbours according to its momentum, and

collision in which particles entering the same lattice site interact and change

their momentum according to a set of pre-determined collision rules (in practice

this is done by use of a look-up table).

The LGCA evolution can now be described by the equation

ni(x + ci, t+ 1)− ni(x, t) = Ωi(n) (1.2.4)

where Ωi is the collision operator that acts on all particles n = {ni : i =

1, . . . , 6}. The collision operator Ωi must conserve mass and momentum, i.e.∑
i

Ωi = 0, (1.2.5)∑
i

Ωici = 0. (1.2.6)

In the HPP model the collision phase is deterministic whereas the FHP model

features a partially stochastic process. If there is a head-on two body collision

then the incoming particles will rotate by either +π
3

or −π
3

with probabilities

p and 1− p, respectively. Examples are shown in Figure 1.2.2.
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In order to calculate macroscopic quantities such as density and momen-

tum, we first start by averaging ni over a small subdomain x in some suitable

manner to reduce the statistical noise associated with LGCA. The region in

which spatial averaging takes place must be small compared to a typical macro-

scopic length scale of the flow. The mean occupation numbers Ni are then used

to calculate the macroscopic density, momentum and momentum flux tensor

defined, respectively, by

ρ(x, t) =
∑

Ni(x, t) (1.2.7)

ρ(x, t)uα(x, t) =
∑

Ni(x, t)ciα (1.2.8)

Παβ(x, t) =
∑

Ni(x, t)ciαciβ (1.2.9)

where uα is the α component of velocity u. Rivet and Boon [87] have shown

that the FHP lattice gas, can give rise to the full equations of motion for a

real isotropic fluid.

Despite the elegance and practical appeal of round-off-free parallel com-

puting, LGCA are plagued by a number of anomalies, such as statistical noise

(common to any particle method) and broken symmetries which cannot be

restored even in the limit of zero lattice spacing [21].

One such problem is encountered when we move into the third dimension.

The only regular polytope that fills the whole space is the cube, while the

only regular polytopes with a sufficiently large symmetry group are the do-

decahedron and icosahedron. There is an elegant solution to this problem,

d’Humières et al.[26] showed that a suitable lattice could be found by going

into the fourth dimension. They showed that the Face Centred HyperCube

(FCHC) has the correct properties. It consists of all neighbours of a given site

(the central site) generated by the speeds ci = [±1,±1, 0, 0] and permutations

thereof. This yields 24 speeds all with the same magnitude c2
i = 2.

If we examine the lattice (Figure 1.2.3) we see that the neighbours in the

centre of a face are represented by two particles corresponding to the ±1 in

the fourth dimension. Although it solves the problem of isotropy in the third

dimension, it dramatically increases the computational complexity. This was

a decisive factor in the move from LGCA to LBM.
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Figure 1.2.3: The face centered hypercubic lattice.

1.3 From LGCA to LBM

The Lattice Boltzmann Model (LBM) can be viewed as a direct extension of

LGCA developed by researchers such as McNamara and Zanetti [69] to resolve

some of the shortcomings of LGCA. The occupation variable ni is replaced

by the average population density fi(x, t) = 〈ni(x, t)〉. Taking the ensemble

average of the LGCA evolution equation (1.2.4) leads to the non-linear LBE

fi(x + ci, t+ 1) = fi(x, t) + 〈Ωi(n)〉. (1.3.1)

To obtain a kinetic equation in closed form Boltzmann’s assumption that

particles entering a collision are uncorrelated is used

fi(x + ci, t+ 1) = fi(x, t) + Ωi(f), (1.3.2)

where f = [f1, . . . , fb]. In the lattice Boltzmann framework, the macroscopic

density and momentum are defined by the zeroth and first moments of the
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distribution function, respectively:

ρ =
∑
i

fi, (1.3.3)

ρu =
∑
i

fici. (1.3.4)

This solved some issues such as statistical noise but still had difficulties in

three dimensions, a lack of Galilean invariance and a relatively high viscosity

and therefore low Reynolds number barrier (due to the maximum number of

collisions an automaton can support) [84].

The next major breakthrough was by Higuera and Jimenez [45] who con-

quered the exponential complexity limitation by considering perturbations of

the local equilibrium function. The macrostates of the LBM are functions of

the space variable x and vary slowly in space. Any significant variation takes

place over distances much larger than the lattice length scale. We can say that

the population distribution function departs slightly from the local equilibrium

state and write

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . , (1.3.5)

where f
(0)
i = f eqi is the equilibrium state and the expansion parameter (Knud-

sen number) ε� 1 is the ratio of the microscopic scale to the smallest macro-

scopic scale.

The equilibrium component is required to fulfil the following constraints

b∑
i=1

f eqi = ρ, (1.3.6)

b∑
i=1

f eqi ci = ρu. (1.3.7)

Upon inserting fi into the collision term and expanding in a Taylor series about

the equilibrium component we get

Ωi(fi) ≈ Ω
(0)
i + ε

∑
j

∂Ω
(0)
i

∂fj
f

(1)
j +

ε2

2

∑
jk

∂2Ω
(0)
i

∂fj∂fk
f

(1)
j f

(1)
k , (1.3.8)

where Ω
(0)
i = Ωi(f

(0)
i ). This equation can be simplified since Ωi(f

(0)
i ) = 0 and
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by the conservation of momentum
∂Ω

(0)
i

∂fj
f

(1)
j = 0 [84], so that we obtain the

quasi-linear lattice Boltzmann equation

fi(x + ci, t+ 1)− fi(x, t) =
∑
j

Mij

(
fj − f eqj

)
, (1.3.9)

where Mij =
∂Ω

(0)
i

∂fj
, defines the collision matrix which determines the scattering

rate between directions i and j. The importance of this procedure is that it

reduces the complexity of the collision term from 2b to b2 and then, due to

the symmetry of Mij, to order b, thus making it computationally feasible to

perform lattice Boltzmann simulations in three dimensions.

The viscosity of the LB fluid is entirely controlled by a single parameter,

namely the leading nonzero eigenvalue of the scattering matrix Mij [100]. The

remaining eigenvalues are then chosen to improve stability. This raises the

question that since transport is related to a single nonzero eigenvalue, why not

simplify things and choose a one parameter scattering matrix? Many authors

[16, 52, 82] raised this point simultaneously and defined the Lattice Bhatnagar

Gross Krook (LBGK) model

fi(x + ci, t+ 1)− fi(x, t) = ω
(
fj − f eqj

)
, (1.3.10)

where ω, which is the first nonzero eigenvalue of Mij, is a relaxation param-

eter. The LBGK model is the simplest and most efficient LBM that recovers

the Navier-Stokes equations and is probably the most widely used due to its

simplicity and ease of implementation.

1.4 Overview of the Lattice Boltzmann Model

The LBM simplifies Boltzmann’s original idea of gas dynamics by reducing the

number of particles and confining them to the nodes of a lattice. Although it is

entirely possible to perform lattice Boltzmann simulations on the FHP lattice

with additional ‘rest’ velocity, most simulations are now performed on square

lattices. The common notation used for describing lattices used in LBM is

DmQn where m is the number of dimensions and n is the number of velocities.

The advantages of square lattices include greater accuracy due to the increased
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Figure 1.4.1: The D2Q9 Lattice

number of discrete velocity vectors [97], the ease of implementation and their

amenability to three dimensional problems. To give a brief overview of the

lattice Boltzmann method we shall discuss the D2Q9 model, which is two

dimensional and consists of nine discrete velocity vectors. Figure 1.4.1 shows

a typical lattice node of the D2Q9 model with nine velocities ci defined by

ci =


(0, 0) i = 0

(−1, 1), (−1, 0), (−1,−1), (0,−1) i = 1, 2, 3, 4

(1,−1), (1, 0), (1, 1), (0, 1) i = 5, 6, 7, 8

(1.4.1)

where ci = −ci+4 for i = 1, 2, 3, 4, as this makes coding easier.

We associate a discrete probability distribution function fi(xi, ci, t) or sim-

ply fi(xi, t) i = 0, . . . , 8, which describes the probability of streaming in one

particular direction. We can then discretise (1.1.16) to obtain

fi(x + ci∆t, t+ ∆t)− fi(x, t)︸ ︷︷ ︸
streaming

= Ωi︸︷︷︸
collision

. (1.4.2)

where the key steps in LBM are the streaming (or propagation) and colli-

sion processes. When implementing the model the collision and propagation

(streaming) steps are computed separately, and attention must be paid when

applying boundary conditions since some types have to applied after the colli-

sion step and some after the propagation step. For example the on-grid bounce

back boundary condition is applied after the propagation step but the mid-grid

bounce back boundary condition is applied after the collision step.
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The macroscopic fluid density, momentum and internal energy can be de-

fined by moments of the microscopic particle distribution function,

ρ(x, t) =
8∑
i=0

fi(x, t), (1.4.3)

ρ(x, t)u(x, t) =
8∑
i=0

cifi(x, t), (1.4.4)

ρ(x, t)e(x, t) =
8∑
i=0

(ci − u)2fi(x, t), (1.4.5)

The equilibrium component (to be discussed in more detail in Chapter 3)

to which the distribution function relaxes, is required to fulfil the following

constraints:

ρ(x, t) =
8∑
i=0

f eqi (x, , t), (1.4.6)

ρ(x, t)u(x, t) =
8∑
i=0

cif
eq
i (x, t). (1.4.7)

When using the on-grid bounce-back boundary condition (which will be

discussed in the next chapter), the algorithm can be summarized as follows:

1. Initialize ρ, u, fi and f eqi

2. Collision step: calculate the updated distribution functions

3. Propagation step: move fi → f ∗i in the direction of ci

4. Compute the post propagation boundary conditions (if applicable)

5. Compute macroscopic ρ and u from f ∗i using the moment equations

6. Compute f eqi using the equilibrium equation

7. Advance time and repeat steps 2 to 7 until the stopping criteria are

satisfied. For example a specified end time or convergence to a steady

state solution.
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In the case where mid-grid bounce-back condition is used, the boundary

condition is computed after the collision step rather than after the propagation

step.



Chapter 2

The Lattice Boltzmann Method:

Implementation

In this chapter we will explore in greater depth different aspects of the LBM

and how one would implement the algorithm in practice.

2.1 Collision Algorithm

When constructing simpler collision operators it has been common to use one

of two different methods based on either a single relaxation time or multiple

relaxation times. Single relaxation time methods tend to be faster and easier

to implement and multiple relaxation times tend to be more stable.

BGK single relaxation time

A simplified collision model that satisfies the necessary constraints is the BGK

(Bhatnagar, Gross Krook) approximation [5]:

Ω(f) = ω(f eq − f), (2.1.1)

where f now relaxes towards f eq with a single relaxation time τf = 1/ω where

ω is the collision frequency. This gives rise to the LBGK equation

fi(x + ci∆t, t+ ∆t)− fi(x, t) = − 1

τf
(fi(x, t)− f eqi (x, t)). (2.1.2)

23
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From the study of the literature we see that the lattice form of the BGK

is the most commonly used collision operator due to the ease with which it

can be implemented. However due to the use of a single relaxation time the

method does suffer from stability issues unless 0 < τf < 2. Since there is a

single relaxation time it means that the bulk ν ′ and kinematic ν viscosities

are linearly proportional [23]. The use of a single relaxation time means that

heat transfer takes place at the same rate as momentum transfer. Therefore the

Prandtl number is always unity and so the LBGK equation is only appropriate

for isothermal flows.

Multiple Relaxation Time (MRT)

The lattices commonly used in applications contain more distribution functions

than necessary to reproduce the fluid density, momentum, and stress that ap-

pear in the Navier-Stokes equations. The additional degrees of freedom are

required for isotropy, but are detrimental to stability. A Multiple-Relaxation-

Time (MRT) or matrix collision operator is constructed to over-relax the stress

alone. The remaining variables (non physical) are damped towards equilib-

rium, leading to substantial gains in stability.

MRT collision schemes are applied to the moments for each lattice point

rather than the distribution functions [49, 56]. The moments and distribution

functions which are related to each other by

M = T f (2.1.3)

where f is a vector of allm distribution functions for the point, i.e. (f0, f1, ..., f8)†,

M the vector of moments (also the size of the number of discrete lattice speeds

and dependent on the lattice system) and T the transformation matrix that

renders the moments in terms of the distribution functions. Equilibrium values

for the moments Meq, can be determined by transforming the standard local

equilibrium functions into moment space by

Meq = T f eq, (2.1.4)

where f eq is the vector of local equilibrium distribution functions. The resulting

equilibrium moments can alternatively be expressed directly as functions of
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fluid density and velocity. Certain moments, such as density and momentum,

must be conserved and their equilibrium values are set so that no changes

are made. The post-collisional moments are determined by relaxation of the

non-equilibrium part, i.e.

M(x, t+ ∆t) = M(x, t)− Λ(M(x, t)−Meq(x, t)) (2.1.5)

where Λ is the collision matrix, which takes the form of a diagonal matrix of

collision parameters (again the same size as the number of discrete velocities

of the lattice used), which we represent by the vector s so that

Λ = diag(s). (2.1.6)

Some of the collision parameters can be specified to set both kinematic

and bulk viscosities, a few others can be tuned to improve simulation stability

and the remainder are fixed (as previously stated) to conserve macroscopic

hydrodynamics. Setting all the values of s (the diagonal entries of Λ) to 1
τf

reduces the scheme to the BGK single relaxation time collision model.

Since the collision matrix is diagonal, equation (2.1.5) can be rewritten in

terms of each moment, i.e.

Mi(x, t+ ∆t) = Mi(x, t)− si(Mi(x, t)−Meq
i (x, t) (2.1.7)

Multiplying Mi(x, t + ∆t) by the inverse of the transformation matrix, T−1,

gives the post-collisional distribution functions.

An example is given for the D2Q9 lattice system; the moment vector is

M = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
† (2.1.8)

with ρ as the density, e the energy, ε the square of energy, j momentum, q

energy flux, pxx the diagonal stress tensor component and pxy the off-diagonal

stress tensor component. The transformation matrix is
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T =



1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0


The equilibrium moment vector is

Meq =

(
ρ,−2ρ+

3(j2
x + j2

y)

ρ
, wερ+ wεj

(j2
x + j2

y)

ρ
, jx,−jx, jy,−jy,

j2
x − j2

y

3ρ
,
jx + jy

3ρ

)†
with wε and wεj as adjustable parameters: for convergence to the single re-

laxation time BGK scheme, these are set equal to 1 and -3 respectively. Of

the 9 collision parameters available, s0, s3 and s5 have no effect (except when

applying external forces, when they should be set equal to one) as the asso-

ciated moments are preserved and s2, s4 and s6 are tuneable parameters for

calculational stability with the condition that s4 = s6. Lallemand and Luo

[56] state that one can keep values of these three relaxation parameters only

slightly larger than 1 such that the corresponding kinetic modes are well sepa-

rated from those modes more directly affecting hydrodynamic transport. The

remaining parameters represent the viscosities of the fluid, i.e.

ν =
1

3

(
1

s7

− 1

2

)
(∆x)2

∆t
=

1

3

(
1

s8

− 1

2

)
(∆x)2

∆t
=

1

3

(
τf −

1

2

)
(∆x)2

∆t

ν ′ =
1

6

(
1

s1

− 1

2

)
(∆x)2

∆t
=

1

6

(
τbulk −

1

2

)
(∆x)2

∆t

so that τ = 1
s7

= 1
s8

and τbulk = 1
s1

.
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2.2 Propagation Algorithm

The simplest implementation involves the use of a temporary array to copy

post-collisional distribution functions to their new positions, which are subse-

quently copied back to the main distribution function array. This method is

clear, easy to understand and can be applied throughout the system’s lattice

points in any order, its drawbacks include the use of two loops for propagation

and array copying, two large arrays for distribution functions at each lattice

node and significant amounts of time expended in memory access.

An alternative, more memory efficient implementation of propagation is

the swap algorithm detailed in [68], in which this process is performed by the

systematic swapping of pairs of collided distribution function values. To make

this easier to implement, the lattice links are organised so that the conjugate

link j to link i (i.e. cj = −ci) is equal to i + m−1
2

for i = 1, . . . , m−1
2

(where

m is number of discrete velocities of the lattice model). Looping i between 1

and m−1
2

the post-collisional distribution functions for each lattice point fi(x)

are initially swapped with their conjugate values fj(x), then at each point the

value fj(x) is then swapped with fi(x + ci∆t).

These sets of swaps can be carried out either in two separate steps or in one

go. The use of separate swap steps requires two sweeps through the domain,

but the order in which distribution functions are swapped does not matter

and no boundary domain is necessary for serial calculations. Simultaneous

swapping cannot make use of automatic periodic boundary conditions and

requires lattice links to be additionally ordered so that the first half are directed

to lattice points that have previously gone through at least the first swap stage,

but only a single sweep through the domain is required.

The two array method when implemented efficiently could be significantly

faster on modern computer architectures as there are fewer read and writes to

memory which for large systems can take a significant time. There is a trade

off between speed and memory usage and this may depend on the particular

application.
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2.3 Boundary Conditions

To apply boundary conditions to a Lattice Boltzmann Equation simulation,

the distribution functions fi at boundary lattice points have to be modified or

replaced during each time step to give the required fluid velocity or pressure.

This may take place either between the collision and propagation stages or at

the end of each time step. The easy implementation of boundary conditions

is a massive advantage for LBM, making LBM an ideal numerical method for

the simulation of fluid flows in complicated geometries, such as flow through

porous media. Here are some examples of simple boundary conditions.

Periodic

Periodic boundaries are used to simulate bulk fluids sufficiently far away from

the actual boundaries of a real physical system so that surface effects can be

neglected. As the fluid moves out of one face of the system volume it reappears

on the opposite face with the same velocity, density etc.

Bounce-back

This boundary condition evolved from the bounce back condition of LGCA.

The bounce-back condition applies a no-slip condition at a boundary. This

is applied after the propagation stage by reversing the distribution functions

sitting on each wall node xw, i.e.

fi(xw, t) = fj(xw, t) (2.3.1)

where j is the conjugate lattice link to i, i.e. cj = −ci. The reflection of

distribution functions occurs on-grid and this is shown in Figure 2.3.1. On-

grid bounce-back is a first order approximation of the boundary condition

(error is proportional to lattice spacing), but it is completely local.

Ziegler [105] realised that a second-order bounce back scheme can be used if

the boundary lies between two lattice grid lines and this is illustrated in Figure

2.3.2. This method essentially applies the actual reflection halfway between

timesteps and is a spatially second-order method.

The bounce-back condition is accurate and easy to implement when the
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Figure 2.3.1: Illustration of on-grid bounce-back

boundary lines up with the lattice [84]. However, in general, this is not the case.

Curved boundaries can be approximated with staircase-like lattices, leading to

discontinuities which cause larger numerical errors as the Reynolds number

increases. To overcome this, it is common to use interpolation. However, this

adds complexity and the resulting method loses simplicity and efficiency.

Constant pressure/velocity

To specify either velocity or density (pressure) at planar boundaries the Zou-

He method [106] can be used. This is based upon applying the bounce-back

rule to the non-equilibrium distribution functions,

f
(1)
i (xw, t) = f

(1)
j (xw, t) (2.3.2)

where f
(1)
i = fi − f eqi . This function can be used to determine the missing

wall velocity or density along with the known distribution function values.

For instance, for a left edge with a known velocity uw using the D2Q9 lat-

tice scheme, after streaming f0, f1, f2, f3, f4 and f8 are known. We need to

determine f5, f6, f7 and ρ (see Figure 2.3.3).

The idea of Zou-He boundary conditions is to formulate the unknown dis-

tribution functions, f5, f6, f7 and ρ using the moment formulae for the density
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Figure 2.3.2: Illustration of mid-grid bounce back

and the momentum. Rearranging the moment formulae gives

f5 + f6 + f7 = ρ− (f0 + f1 + f2 + f3 + f4 + f8) (2.3.3)

f5 + f6 + f7 = ρuw,x + (f2 + f1 + f3) (2.3.4)

f7 − f5 = ρuw,y − f8 + f4 − f1 + f3 (2.3.5)

Using (2.3.3) and (2.3.4) we can determine

ρw =
f0 + f4 + f8 + 2(f1 + f2 + f3)

1− uw,x
(2.3.6)

To solve for f5, f6 and f7 we need to close the system for which we require

a fourth equation. The assumption made by Zou-He [106] is that the bounce-

back rule still holds for the non-equilibrium part of the particle distribution
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normal to the boundary. In this case, the fourth equation is

f6 − f eq6 = f2 − f eq2 (2.3.7)

With f6 determined, f5 and f7 are subsequently calculated using

f6 = f2 +
2ρwvw,y

3

f7 = f3 −
1

2
(f8 − f4) +

1

6
ρwuw,x +

1

2
ρwuw,y

f5 = f1 +
1

2
(f8 − f4) +

1

6
ρwuw,x −

1

2
ρwuw,y

The other form, specifying the wall fluid density, requires the calculation

of the wall velocity, which can be simplified by setting non-orthogonal velocity

components to zero. For the analogous example at the top wall for D2Q9, the

same equations for f3, f4 and f5 can be used together with

ρwuw,y = 0,

ρwuw,x = f0 + f2 + f6 + 2(f1 + f7 + f8)− ρw.

One complication for three-dimensional lattices is the requirement to apply

the non-equilibrium bounce-back to all unknown distribution functions, which

ordinarily over-specifies the system but can be counteracted using transverse

momentum corrections for directions other than orthogonal to the boundary,

which are non-zero for e.g. shearing flows. It should be noted that if the wall

velocity is set to zero, the boundary condition reduces to on-grid bounce-back.

Figure 2.3.3: Illustration of Zou-He velocity BC
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2.4 Body Forces

To incorporate a body force such as a pressure force or gravity there are two

many options which both give accurate results. Either external forces are dealt

with by adding τF
ρ

to the velocity of the fluid when calculating the equilibrium

distribution function f eqi [67], or by adding a forcing term to the collisional

distribution function [37]

Fi =

(
1− 1

2τf
wi

)[
ci − v

c2
s

+
ci − v

c4
s

ci

]
· F (2.4.1)

where v is defined to be u + ∆t
2ρ

F and is also used in calculating the equilib-

rium distribution function. This second method is by Guo et al. [37] has been

shown to recover the correct continuity and moment equations. Mohamad

and Kusmin [70] show that adding a forcing term to the collisional distri-

bution function is the more accurate, however, for small values of viscosity

either scheme predicts the same results. Due to the ease of adding a forcing

term to the collisional distribution function that is the recommended way of

incorporating a body force in LBM.

2.5 Numerical Results

To demonstrate the LBM we present some numerical results to illustrate the

effects of using different boundary conditions and different underlying lattices.

Poiseuille Channel Flow

Here we present the classic Poiseuille channel flow in order to highlight the

differences between mid-grid and on-grid bounce back conditions in terms of

accuracy of the velocity profile. A single fluid is modelled on a 42 × 42 grid

using fixed density boundary conditions on the left and right boundaries to

represent a pressure drop across the system, which is bounded by solid walls

at the top and bottom. The solid walls are modelled with both the on-grid

bounce back condition and the mid-grid bounce back condition. This generates

a pressure-driven (Poiseuille) laminar flow with a parabolic velocity profile
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which we can compare with the analytic solution

u(y) =
1

2µ

(
−dp
dx

)
y(h− y) (2.5.1)

where h is the width of the channel, µ is the dynamic viscosity and dp
dx

is the

pressure gradient. The plot of the numerical and analytic velocity profiles for

the on-grid bounce back condition shows good agreement in the centre of the

channel but has errors near the walls. The velocity is normalised so that the

maximum velocity is unity. The mid-grid bounce back condition has a much

smaller error compared with the analytic solution. This is shown in Fig 2.5.3

where the root mean square error has been calculated using

Err =

√√√√ 1

N

N∑
i=1

|ulbm − uanalytic|2 (2.5.2)

where N is the number of lattice sites. Fig 2.5.3 indicates that the convergence

for the standard bounce back scheme is only first order compared to the mid-

grid bounce back scheme which has second order convergence.

Couette Flow

In order to demonstrate LBM on the D2Q7 lattice we present numerical solu-

tions for Couette flow. Here we have a stationary bottom plate, a top plate

moving with a constant velocity U and periodic boundary conditions on the

left and right walls of the domain. This has an exact solution in the steady

state

u(y) = U
y

h
. (2.5.3)

The calculations were performed on a 50×50 grid and what we can see from

Figures 2.5.4 and 2.5.5 is that they both give very good agreement with the

analytical solution with root square errors of 6.87 × 10−09 and 3.50 × 10−17,

respectively.
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Figure 2.5.1: Normalised velocity profiles for Poiseuille flow with on-grid
bounce back condition with ω = 1.25

Figure 2.5.2: Normalised velocity profiles for Poiseuille flow with mid-grid
bounce back condition with ω = 1.25
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Figure 2.5.3: Comparison between the root mean square error for the mid-grid
and on-grid bounce back boundary conditions with ω = 1.25.

Figure 2.5.4: Couette Flow on the D2Q7 lattice, horizontal velocity profile,
ω = 1
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Figure 2.5.5: Couette Flow on the D2Q9 lattice, horizontal velocity profile,
ω = 1

2.6 Discussion

In this Chapter we have discussed the implementation of the LBM. What has

been demonstrated is the ease of implementation for a wide variety of flow

scenarios. We started by examining different collision operators used such

as BGK and MRT. The BGK operator is the most widely used do to the

ease of implementation but the MRT has significant advantages due to the

increase in stability of the method. The propagation algorithm used can make

a significant difference to the computational efficiency of the LBM especially

when it is used to solve large problems. The choice of propagation algorithm

is therefore informed by the nature of your computational architecture. Since

the major advantage of using LBM over macroscopic solvers is the ease of

implementing boundary conditions, different boundary conditions have been

discussed and results have been presented demonstrating the advantages of

using the mid-grid bounce back over the on-grid bounce back.



Chapter 3

Lattice Boltzmann Theory

Although the Lattice Boltzmann Method was developed from the Lattice Gas

Cellular Automata, it can be derived independently. Understanding how to

construct the LBM for solving the Navier-Stokes equations using a D2Q9

lattice is important if we want to construct Lattice Boltzmann style solvers

for other equations such as the Fokker-Planck equation which is used in the

modelling of a particle under the influence of drag forces and random forces

as in Brownian motion or for developing Lattice Boltzmann solvers for non-

isothermal flow in which higher order schemes are necessary for thermodynamic

consistency. In this chapter we look at how to derive the Lattice Boltzmann

equation from the continuous Boltzmann equation,the derivation of the equi-

librium distribution function for the Lattice Boltzmann Equation and how the

Lattice Boltzmann Equation is able to reproduce the physics of the Navier-

Stokes equations.

3.1 From the Continuum Boltzmann Equation

to the Lattice Boltzmann Equation

Although as discussed previously, lattice Boltzmann equations were first con-

sidered as empirical extensions of the earlier lattice gas celluar automata

(LGCA), they may be derived systematically by truncating the continuum

Boltzmann equation in velocity space [42, 66, 1]. We consider the continuum

37
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Boltzmann BGK equation

∂tf + ξ · ∇f = −1

τ
(f − f eq) (3.1.1)

with the Maxwell-Boltzmann equilibrium distribution function

f eq =
ρ

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

)
, (3.1.2)

where the macroscopic variables are determined from the moments of the dis-

tribution function

ρ(x, t) =

∫
f(x, ξ, t)dξ, (3.1.3)

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)dξ, (3.1.4)

ρ(x, t)e(x, t) =

∫
(ξ − u)2f(x, ξ, t)dξ, (3.1.5)

where ρ is the fluid density, u is the fluid velocity and e is the internal energy,

the energy contained within the system excluding the kinetic and potential

energy of the system as a whole. Using a Taylor expansion on the equilibrium

equation (3.1.2) up to u2 we obtain

f eq =
ρ

(2πRT )D/2
exp

(
− ξ2

2RT

)(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u2

2RT

)
+O(u3).

(3.1.6)

In order to derive the Navier-Stokes equations, the following moment integral

must be evaluated exactly ∫
ξmf eqdξ, (3.1.7)

where 0 ≤ m ≤ 3 for isothermal models [42]. The truncated equilibrium

function has the form

f eq = exp

(
− ξ2

2RT

)
p(ξ) (3.1.8)
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where p is a polynomial in ξ and so as He and Luo [42] realised these integrals

may be evaluated as sums using Gauss-Hermitian quadrature formulae,

I =

∫
ξm exp

(
− ξ2

2RT

)
p(ξ)dξ =

∑
i=0

Wi exp

(
− ξ2

i

2RT

)
p(ξi), (3.1.9)

where Wi and ξi are the weights and abscissae of the quadrature respectively.

Since the only values of the distribution function as evaluated at the ab-

scissae need to be evolved in x and t, these values are sufficient to evaluate

the required moments. Thus the continuum Boltzmann BGK equation may

be replaced by the lattice Boltzmann BGK equation, [23]

∂tfi + ξi · ∇fi = −1

τ
(fi − f eqi ), for i = 0, . . . , N (3.1.10)

where

fi(x, t) =
Wif(x, ξi, t)

exp
(
− ξ2

2RT

) . (3.1.11)

Accordingly, the macroscopic variables can be computed by quadrature as well

ρ(x, t) =
∑
i

fi(x, ξi, t), (3.1.12)

ρ(x, t)u(x, t) =
∑
i

ξifi(x, ξi, t), (3.1.13)

ρ(x, t)e(x, t) =
∑
i

(ξi − u)2fi(x, ξi, t). (3.1.14)

To derive the previously mentioned D2Q9 model, a Cartesian coordinate

system is used. We set p(ξ) = ξmx ξ
n
y and the integral of equation (3.1.9)

becomes

I = (
√

2RT )m+n+2ImIn, (3.1.15)

where

Im =

∫ +∞

−∞
exp(−z2)zmdz (3.1.16)

where z = ξx/
√

2RT or z = ξy/
√

2RT . Evaluating Im using Gauss-Hermitian

quadrature the three abscissae zj and the corresponding weights ωj of the
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quadrature are

z1 = −
√

3/2, z2 = 0, z3 =
√

3/2, (3.1.17)

ω1 =
√
π/6, ω2 = 2

√
π/3, ω3 =

√
π/6, (3.1.18)

then the integral I becomes

I = 2RT

[
ω2

2p(0) +
4∑
i=1

ω1ω2p(ξi) +
8∑
i=5

ω2
1p(ξi)

]
, (3.1.19)

where ξi is the zero velocity vector for i = 0, the vectors of
√

3RT (±1, 0) and√
3RT (0,±1) for i = 1, . . . , 4 and vectors of

√
3RT (±1,±1) for i = 5, . . . , 8.

To obtain the D2Q9 isothermal model we choose
√

3RT = c where c is the

ratio the lattice spacing to lattice time step. Thus by comparing equations

(3.1.9) and (3.1.19), we can identify the weights defined in (3.1.9)

Wi = 2πRT exp(ξ2
i /2RT )wi, (3.1.20)

where

wi =


4/9, i = 0

1/9, i = 1, . . . , 4

1/36, i = 5, . . . , 8.

(3.1.21)

The discrete equilibrium distribution functions are

f eqi = wiρ

{
1 +

3(ci · u)

c2
+

9(ci · u)2

2c4
− 3u2

2c2

}
. (3.1.22)

In order to fully disretise the lattice Boltzmann equation we must approxi-

mate (3.1.10) in time and space. Integrating (3.1.10) along a characteristic for

a time interval ∆t we obtain

fi(x+ξi∆t, t+∆t)−fi(x, t) = −1

τ

∫ ∆t

0

fi(x+ξis, t+s)−f eq(x+ξis, t+s)ds.

(3.1.23)
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If we approximate this integral by the trapezium rule, we have

fi(x + ξi∆t, t+ ∆t)− fi(x, t)

= −∆t

2τ
(fi(x + ξi∆t, t+ ∆t)− f eqi (x + ξi∆t, t+ ∆t) + fi(x, t)− f eqi (x, t))

(3.1.24)

which unfortunately is implicit. Using a change of variables first suggested by

He et al. [43]

f̄i(x
′, t′) = fi(x

′, t′) +
∆t

2τ
(fi(x

′, t′)− f eqi (x′, t′)) (3.1.25)

the implicit system can be recast in the explicit form

f̄i(x + ξi∆t, t+ ∆t)− f̄i(x, t) = − ∆t

τ + ∆t/2
(f̄i(x, t)− f eqi (x, t)). (3.1.26)

The macroscopic density, momentum and momentum flux are readily recon-

structed from moments of the f̄i

ρ(x, t) =
∑
i

f̄i(x, ξi, t), (3.1.27)

ρ(x, t)u(x, t) =
∑
i

ξif̄i(x, ξi, t), (3.1.28)(
1 +

∆t

2τ

)
Π =

∑
i=0

ξiξif̄i +
∆t

2τ
Πeq. (3.1.29)

It should be noted that this formulation is equivalent to the usual construction

based on a Taylor expansion of the discrete equation where second order accu-

racy may be achieved with what looks like only a first order approximation to

(3.1.10), by replacing the relaxation time τ with τ + ∆t/2 [17]. The variables

often denoted fi appearing in the discrete system are actually the f̄i in our

notation, so that the non-equilibrium momentum flux Π(1) in the fully discrete

system (3.1.26) is given by

Π(1) =
Π̄−Πeq

1 + ∆t/(2τ)
, (3.1.30)

rather than by Π−Πeq as in the continuous system.
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3.2 Derivation of the Equilibrium Distribution

Function

There are two methods by which the local equilibria for the Lattice Boltzmann

Equation can be constructed. The bottom-up method obtains the equilibrium

from the Maxwell-Boltzmann equilibrium distribution. The top-down method

constructs the equilibrium so that the required macroscopic properties can be

reproduced.

Equilibrium from the Maxwell-Boltzmann equilibrium distribution

The equilibrium distribution f eq is given by

f eq =
ρ

(2πθ)D/2
e−(v−u)2/2θ (3.2.1)

where θ = c2
s = kT/m is the scaled temperature, k is the Boltzmann constant,

T is the fluid temperature, v is the microscopic velocity, u is the mean fluid

velocity, D is the space dimension, and m is the mass of the particle. The

parameter cs is the speed of sound in a gas close to equilibrium described by

f eq.

When |v − u| �
√
θ, the equilibrium distribution can be expanded and

approximated by

f eq =
ρ

(2πθ)D/2
exp

(
−v

2

2θ

)[
1 +

v · u
θ

+
(v · u)2

2θ2
− u2

2θ

]
(3.2.2)

For a microscopic quantity ψ(v), the associated macroscopic quantity Ψ is

calculated by

Ψ =

∫
ψ(v)f eqdv (3.2.3)

Let v =
√

2θc, where c is a rescaled thermal velocity; the macroscopic

velocity u can be similarly rescaled to
√

2θũ. Equations (3.2.2) and (3.2.3)

can thus be combined to give

Ψ =

∫
e−c

2

ψ(c)

√
2θρ

(2πθ)D/2
[
1 + 2(c · ũ) + (c · ũ)2 − ũ2

]
dc (3.2.4)
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Using Gaussian-Hermite quadrature to approximate the integral yields

Ψ '
∑

ψ(ci)

√
2θ

(2πθ)D/2
w(ci)

[
1 + 2(c · ũ) + (c · ũ)2 − ũ2

]
dc (3.2.5)

Let

wi =

√
2θρ

(2πθ)D/2
w(ci) (3.2.6)

and

f eqi = wiρ
[
1 + 2(c · ũ) + (c · ũ)2 − ũ2

]
. (3.2.7)

The value of w(ci) can be obtained from Gauss-Hermite quadrature. Equa-

tion (3.2.7) is the equilibrium particle distribution function in the discrete

regime and wi is called the weight factor for speed vector vi. Equation (3.2.7)

can also be written in the form

f eqi = wiρ

[
1 +

(ci.u)

θ
+

(ci.u)2

2θ2
− u2

2θ

]
. (3.2.8)

Constructing the equilibrium from the required macroscopic prop-

erties

The second way of constructing the equilibrium distribution is by starting

from the macroscopic properties and solving the linear system to recover the

coefficients of the equilibrium function. Here we give as an example the D2Q9

model as given by Reis [84].

The general form of the equilibrium distribution function can be written

up to O(u2) [15]:

f eqi = ρwi
(
A+Bci · u + Cu2 +D(ci · u)2

)
(3.2.9)

where A,B,C and D are constants. The weights wi, i = 0, . . . , 8 are chosen

to be positive to ensure positive mass density and so that the lattice velocity

moments coincide with those of the Maxwell distribution up to fourth order



44

i.e.

8∑
i=0

wi = 1, (3.2.10)

8∑
i=0

wiciα = 0, (3.2.11)

8∑
i=0

wiciαciβ = θδαβ, (3.2.12)

8∑
i=0

wiciαciβciγ = 0, (3.2.13)

8∑
i=0

wiciαciβciγciδ = θ2(δαβδγδ + δαγδβδ + δαδδγβ), (3.2.14)

where δαβ is the Kronecker delta function and ciα denotes the α component of

the ith lattice velocity.

Using mass conservation (1.3.6)

ρ = ρ(A+ Cu2 +Duαuβθδαβ) (3.2.15)

so we see that at 0th order

A = 1, (3.2.16)

and at order O(u2):

C +Dθ = 0. (3.2.17)

Now using momentum conservation (1.3.7)

B =
1

θ
. (3.2.18)

Defining the momentum flux tensor, Παβ, to be the second moment of the

equilibrium function we find that

Παβ =
8∑
i=0

f eqi ciαciβ, (3.2.19)

= p0δαβ + ρuαuβ (3.2.20)
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where p0 = θρ and we have set (at order u2)

Cθ + 3Dθ2 = 1, (3.2.21)

and (at order O(uαuβ))

2Dθ2 = 1. (3.2.22)

A little algebra reveals that

B = 3, (3.2.23)

C = −3

2
, (3.2.24)

D =
9

2
, (3.2.25)

θ =
1

3
(3.2.26)

and the weights are

wi =


4
9

i = 0

1
9

i = 2, 4, 6, 8

1
36

i = 1, 3, 5, 7.

(3.2.27)

Therefore, the D2Q9 equilibrium function is given by

f eqi = ρwi

(
1 + 3ci · u +

9

2
(ci · u)2 − 3

2
u2

)
(3.2.28)

with pressure p0 defined by

p0 =
ρ

3
. (3.2.29)

Note that the pressure satisfies an ideal equation of state and the factor 1/3

is the speed of sound squared, i.e. c2
s = 1/3.

A similar analysis can be performed for the D2Q7 lattice. The equilibrium

for the moving particles have the general form

f eqi = d+
ρ

3c2
ci · u + ρ

2

3c4
(ci · u)2 + γu2 (3.2.30)

and the equilibrium distribution for the rest particles has the form

f eq0 = d0 + γ0u
2 (3.2.31)
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where d, d0, γ and γ0 are coefficients to be determined and c is the length of a

lattice vector. Examining the mass conservation law we derive the following

constraints

ρ = d0 + 6d, (3.2.32)

0 = γ0 + ρ
2

c2
+ 6γ (3.2.33)

and the momentum flux tensor can be expressed as

Πij =
∑
α

(cα)i(cα)jf
eq
α = 3c2dδij + ρuiuj +

(ρ
2

+ 3c2γ
)

u2δij, (3.2.34)

which satisfies the requirement of Galilean invariance. It can immediately be

seen that the velocity dependence of the pressure is eliminated by setting

γ = − ρ

6c2
. (3.2.35)

We can then solve equation (3.2.33) to find γ0 = −ρ/c2. The choice of d0 is

rather arbitrary but is commonly chosen so that d0 = ρ0/7 where ρ0 is the

total number of particles divided by the total number of lattice sites. Since d0

is a constant d is seen to be linearly dependent on the total particle density ρ

with the pressure related to the total particle density having the form for an

isothermal ideal gas,

p = c2
sρ. (3.2.36)

3.3 Relation Between the Lattice Boltzmann

Method and Navier-Stokes

In this chapter we show why LBM can be used to simulate fluid dynamics

by showing that one can, by use of multiscale analysis (commonly referred

to as the Chapman-Enskog procedure), derive the Navier-Stokes equations.

Applying the BGK approximation to the collision operator we define the LBGK

equation to be

fi(x + ci, t+ 1)− fi(x, t) = −1

τ

(
fi − f (0)

i

)
(3.3.1)
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Expanding fi(x + ci, t + 1) about the point (x, t) and defining fi = fi(x, t)

gives

∂tfi+ciα∂αfi+
1

2
(∂ttfi + 2ciα∂t∂αfi + ciαciβ∂α∂βfi) = −1

τ

(
fi − f (0)

i

)
(3.3.2)

Now separate space and time scales as

x =
1

ε
x1, t =

1

ε
t1 +

1

ε2
t2 (3.3.3)

so that ∂t = ε∂t1 + ε2∂t2 , ∂x = ε∂x1 This means that the second-order partial

derivatives are

∂tt = ε2∂t1t1 + 2ε3∂t1∂t2 + ε4∂t2t2 (3.3.4)

∂αα = ε2∂α1α1 (3.3.5)

∂t∂α = ε2∂t1α1 + ε3∂t2α1 (3.3.6)

Using these with (3.3.2) gives

ε∂t1fi + ε2∂t2fi + ciα1ε∂α1fi +
1

2

[
ε2∂t1t1fi + 2ε3∂t1t2fi + ε4∂t2t2fi

+2ciα1

(
ε2∂t1∂α1fi + ε3∂t2∂α1fi

)
+ ciα1ciβ1ε

2∂α1∂β1fi
]

= −1

τ

(
fi − f (0)

i

)
(3.3.7)

Now we say that the particle distribution function departs slightly from

the local equilibrium state and write

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . (3.3.8)

and then substitute (3.3.8) into (3.3.7) and compare coefficients of ε. At first

order in ε we have

∂t1f
(0)
i + ciα∂αf

(0)
i = −1

τ
f

(1)
i (3.3.9)

Using mass conservation (taking moments) of (3.3.9) we obtain

∂t1ρ+ ∂αρuα = 0 (3.3.10)
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and momentum conservation yields

∂t1ρuα + ∂βΠαβ = 0. (3.3.11)

The O(ε2) terms give

∂t1f
(1)
i + ∂t2f

(0)
i + ciα1∂α1f

(1)
i +

1

2
∂t1t1f

(0)
i

+ciα1∂t1∂α1f
(0)
i +

1

2
ciα1ciβ1∂α1∂β1f

(0)
i = −1

τ
f

(2)
i (3.3.12)

and taking zeroth order moments gives

∂t2ρ+
1

2
∂t1t1ρ+ ∂t1∂αρuα +

1

2
∂α∂βΠαβ = 0. (3.3.13)

Differentiating (3.3.10) with respect to t1 and (3.3.11) with respect to α

yields

∂t1t1ρ = −∂t1∂αρuα,

∂α∂t1ρuα + ∂α∂βΠαβ = 0,

⇒ ∂t1t1ρ = −∂t1∂αρuα = ∂α∂βΠαβ (3.3.14)

and substituting this into (3.3.13) shows that

∂t2ρ = 0, (3.3.15)

which with (3.3.10) yields the continuity equation:

∂tρ+∇ · ρu = 0. (3.3.16)

Next taking first order moments of (3.3.12) we find

∂t2ρuα + ∂βQαβ +
1

2
∂t1t1ρuα︸ ︷︷ ︸

=− 1
2
∂t1∂βΠαβ

+∂t1∂βΠαβ +
1

2
∂β∂γPαβγ = 0 (3.3.17)

⇒ ∂t2ρuα + ∂βQαβ +
1

2
∂t1∂βΠαβ +

1

2
∂β∂γPαβγ = 0, (3.3.18)
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where Pαβγ =
∑

i f
(0)
i ciαciβciγ and Qαβ =

∑
i f

(1)
i ciαciβ.

For the D2Q9 lattice the momentum flux tensor which gives rise to the

Newtonian stress tensor, is

Παβ = p0δαβ + ρuαuβ, (3.3.19)

where pressure p0 = ρ/3. Differentiating the momentum flux tensor with first

with respect to time and space yields

∂t1Παβ = ∂t1

(ρ
3
δαβ + ρuαuβ

)
(3.3.20)

= ∂t1
ρ

3
δαβ + ∂t1(ρuαuβ) (3.3.21)

= −1

3
∂αρuαδαβ + ∂t1(ρuαuβ) (3.3.22)

and

∂t1∂βΠαβ == −1

3
∂α∂βρuαδαβ + ∂t1∂β(ρuαuβ) (3.3.23)

which up to second order in u (low Mach number approximation) gives,

∂t1∂βΠαβ = −1

3
∂α∂βρuβ (3.3.24)

and

∂β∂γPαβγ =
1

3
(∂β∂βρuα + 2∂α∂βρuβ). (3.3.25)

To find Qαβ we take the second moment of equation (3.3.9)

∂t1Παβ + ∂γPαβγ = −1

τ
Qαβ

so that

Qαβ = −τ (∂t1Παβ + ∂γPαβγ) . (3.3.26)

The substitution of the above into (3.3.18) gives

∂t2ρuα +

(
1

2
− τf

)
(∂t1∂βΠαβ + ∂β∂γPαβγ) = 0. (3.3.27)
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This can be written as

∂t2ρu = ν(∇2ρu +∇∇ · ρu), (3.3.28)

where

ν =
1

3

(
τf −

1

2

)
, (3.3.29)

is the kinematic viscosity and we note that 0 < 1
τf
< 2.

Finally, summing equations (3.3.11) and (3.3.28), assuming incompressibil-

ity we arrive at the Navier-Stokes equations for incompressible flow:

∂tu + u · ∇u = −1

ρ
∇p0 + ν∇2u, (3.3.30)

∇ · u = 0. (3.3.31)

3.4 Discussion

In Chapter 3 the derivation of the equilibrium distribution function is given in

two ways. Firstly it is given as a discretised version of the Maxwell-Boltzmann

equilibrium distribution using Gauss-Hermite quadrature and secondly it is

constructed from the macroscopic properties required and using them to solve

the linear system to recover the coefficients of the equilibrium function. Also

in Chapter 3 is the relation between the LBM and Navier-Stokes equations

which is given by the Chapman-Enskog multiscale procedure. Chapter 3 is

vital when looking for ways to adapt the LBM to solve other problems such

as the Fokker-Planck equation as will be shown in Chapter 7.



Chapter 4

Multiphase fluid flows

Multiphase flows are of great importance to industry and applied science as

they include processes such as boiling fluids, liquid metal melting and so-

lidification, and even food manufacturing processes such as the creation of

mayonnaise.

The numerical simulation of multiphase flows is challenging because in ad-

dition to the usual difficulties associated with tracking single phase motion,

it also requires the calculation of the interface between the two fluids which

changes dynamically in time. Existing methods that deal with moving inter-

faces generally fall into two distinct categories which are front tracking and

front capturing.

In front tracking methods, markers are attached to the moving interface

and their dynamics are explicitly designed so that they follow the interface

evolution. As long as the interface remains sufficiently smooth, the interface

can be tracked fairly accurately. If the interface breaks up and reconnects, front

tracking suffers from the similar difficulty of Lagrangian methods, namely ill-

conditioning and singularities due to markers coming too close to each other.

The main developers of this approach are Glimm and collaborators [34, 20, 35,

33].

Front capturing methods solve this problem by using an Eulerian approach

and defining a data structure throughout the whole computational domain.

The interface is located by examining where the discontinuities take place.

These methods avoid the problems associated with large distortions of the in-

terface but they suffer from severe numerical diffusion effects which tend to

51
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smear out the interface in the course of the computation. Front capturing

methods are actually the oldest approach to computing multifluid and mul-

tiphase flows. The marker and cell (MAC) method, uses marker particles to

identify each fluid and was developed by Harlow and Welch [39] in 1965. The

volume of fluid (VOF) method which was first described by Noh and Wood-

ward in 1976 [73] and is based on earlier MAC methods. A modern formulation

of VOF is used in a number of computer codes, such as FLOW-3D, ANSYS

Fluent and STAR-CCM. A review of the VOF method can be found in Scar-

dovelli and Zaleski [90].

From a review of the literature, we shall discuss four different formulations

of LBM for immiscible multiphase flows, namely;

• Chromodynamic models (see [36]);

• Pseudo-potential models (see [95]);

• Free-energy models (see [101]);

• Mean-field models (see [43]).

There seems to be no general consensus yet on which one of these methods

should be recommended as the best LBE solution for multiphase problems. In

fact, all of them are still affected by a certain degree of inevitable empiricism

due to the fact that, even in the continuum, a fully fledged kinetic theory of

complex fluid flow is still missing. It seems that all of the LBE models belong

to a wide family of diffuse-interface models where the interface is located over

several lattice points, the width of which is greatly influenced by the choice of

multiphase model.

4.1 Surface Tension

Before we begin a discussion of various LBE models we consider some basic

ideas of the physics of multiphase flows. The key to the physics of multiphase

flows is the notion of surface tension. From a macroscopic perspective, surface

tension (σ) is defined as the reversible work per unit surface needed to increase
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the area A of surface Σ by an amount ∆A:

∆W = σ∆A. (4.1.1)

If we consider a spherical liquid droplet of radius R at a pressure Pl, im-

mersed in its vapour at a pressure Pv > Pl. The question is how much work is

spent on the vapour-liquid system to expand the radius of the liquid droplet

from R to R+∆R (condensation). This work is given by ∆W = (Pv−Pl)∆V ,

where ∆V = 4πR2∆R is the volume change of the droplet. This is the energy

supply from the exterior needed to win the action of surface tension, whose

‘task’ is to withstand the growth of the liquid surface. Mathematically we

have:

(Pv − Pl)∆V = σ∆A. (4.1.2)

Using the equation for the surface area of a sphere (A = 4πR2), we obtain

the Laplace relation:

∆P =
2σ

R
. (4.1.3)

From a microscopic perspective, surface tension is related to intermolecu-

lar interactions. Imagining the same liquid droplet as before, we consider a

molecule sitting right on the droplet interface. Since the liquid is more dense

than the vapour, this boundary molecule interacts with more liquid molecules

than vapour molecules and since the intermolecular potential is attractive (van

der Waals forces, hydrogen bonding etc.), the net result is that the boundary

molecule naturally tends to be pulled back into the liquid region. This is in

contrast to the situation of an internal molecule which, being surrounded by

an equal number of molecules in all directions, does not experience any net

force.

The conclusion we reach is that a surface molecule has an excess of energy

with respect to an internal one, the difference representing the work needed

to extract the internal molecule and ‘peel it off’ the surface. The same energy

must be supplied to push a vapour molecule inside the liquid droplet, so that

surface growth involves an energy toll. This implies that surface tension is a

decreasing function of temperature and vanishes at the critical liquid-vapour

point, where the two phases become virtually indistinguishable.
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4.2 Chromodynamic models

The first multiphase LBE model was introduced by Gunstensen et al. [36],

based upon the two component lattice gas model developed by Rothman and

Keller [88].

In these models we have two particle distributions fiR and fiB, one for each

fluid. It is common to call these fluids Red (R) and Blue (B). Each phase

obeys its own LBGK equation:

∆ifis = −ωs(fis − f eqis ) + Sis, i = 1, . . . , b s = R, B. (4.2.1)

The source term Sis represents the mesoscopic interaction between the two

phases and it is therefore the term responsible for describing phase separation

via surface tension effects. For example, Reis and Phillips [85] handle the

source term by a second collision operator.

The central quantities are the colour gradient F(x) and the colour flux

K(x) defined as follows:

F(x) =
∑
i

ci[ρr(x + ci)− ρb(x + ci)] (4.2.2)

and

K(x) =
∑
i

(fiR − fiB)ci. (4.2.3)

Reis and Phillips [85] choose the source term so that the correct form of

the continuum equations are recovered. The source term adds mass to popu-

lations moving in the direction normal to the red-blue interface and removes

mass parallel to the interface. Since this term does not conserve colour densi-

ties separately an additional step is needed to promote phase segregation and

maintain surfaces between fluids. Succi [100] notes ‘that such a type of ‘smell

and go’ dynamics is commonplace in many other sectors of complex fluid dy-

namics, including polar fluids and biological flows.’ Reis and Phillips suggest

minimising the ‘colour energy’ Q = K · F to break the colour symmetry and

cause the red and blue particles to move in preferential directions and maintain

surfaces. This however would involve variational minimisation at every single

lattice site where there is a mixture of fluids and is computationally expensive.
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Lischuk et al. [62] and Halliday et al. [38] proposed using a continuum surface

force to model interfacial tension and promote segregation using the algorithm

by D’Ortona et al. [27] which gives a non-zero boundary thickness between the

fluids and reduces non-physical effects such as pinning of drops to the lattice,

spatial anisotropy in interfacial tension and spurious microcurrents.

Chromodynamic models have some positive and some negative features.

With refinement it is able to handle many different phases. For example,

DL MESO [93] is capable of computing up to six different phases and the

method is able to model phases with a high density ratio (O(1000)). It is

important to note that with chromodynamic approaches, the diffusive interface

can be kept very sharp, of the order of one or two lattice sites.

The “coloured fluid” model has some issues, it is more complicated and

computationally expensive to implement than the pseudo-potential model and

the method is only valid for isothermal flows.

4.3 The pseudo-potential approach

The chromodynamic approach of Gunstensen [36] is based on a significant

abstraction of the physical reality. The ‘colour force’ is nothing but the logical

statement that molecules sitting at the interface between, say, dense and light

fluids, experience a net force driven by the different values of the average

intermolecular distance in the two fluids. It is therefore natural to look for

more physically-oriented representations, in which these forces are directly

encoded as the result of pairwise molecular interactions.

[95] model interactions between multiple phases and components by calcu-

lating pairwise interaction potentials. These potentials use an ‘effective mass’

for each component, ψa, which is a function of density and is most frequently

defined as

ψa(x) = ρa0

[
1− exp

(
−ρ

a(x)

ρa0

)]
(4.3.1)

where ρa is the local density of component a and ρa0 is the reference density

for the same component.

Defining gab as the interaction coefficient between components a and b, the

overall force on component a due to interactions with other components is
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defined as

Fa = −ψa(x)
∑
b

gab
∑
i

wiψ
b(x + ci)ci (4.3.2)

There are a few different ways of implementing this force such as adding τfF/ρ

to the velocity of the fluid when calculating the equilibrium distribution func-

tion f eqi , or adding a forcing term to the collisional distribution function which

is favoured by Guo et al. [37].

The Shan-Chen model is able to simulate many phase separation and in-

terface phenomena and it is quick to run and code, although it struggles to

simulate phases with density ratios bigger than O(100).

The main drawback of the Shan-Chen model is the lack of thermodynamics

as first pointed out by Swift et al. [101]. The thermodynamic inconsistency

of the Shan-Chen model can be better explained by examining the pressure

tensor. By expanding equation (4.3.2) about x and recognising that

∇ ·P = ∇(ρRT )− F (4.3.3)

must be satisfied at equilibrium we recover

P =

[
ρRT +

gRT

2
ψ2 +

g(RT )2

2
(ψ∇2ψ +

1

2
|∇ψ|2)

]
I− g(RT )2

2
∇ψ∇ψ.

(4.3.4)

This pressure tensor implies that the Shan-Chen model has the two basic

properties of non-ideal gases:

(i) An equation of state of the form

p0 = ρRT +
gRT

2
ψ(ρ)2, (4.3.5)

(ii) and the surface tension

σ =
gRT

2
∞infty
−∞ |∇ψ|2dz. (4.3.6)

However, to be consistent with the equation of state in thermodynamic theory,

we must have

ψ =

√
2(p0 − ρRT )

gRT
(4.3.7)



Edward Lewis Lattice Boltzmann Methods for Flows of Complex Fluids 57

On the other hand, to be consistent with the thermodynamic definition of the

surface tension given by Rowlinson and Widom [89],

σRowlinson ∝
∫ ∞
−∞
|∇ρ|2dz (4.3.8)

we must have

ψ ∝ ρ. (4.3.9)

Since equations (4.3.7) and (4.3.9) cannot be satisfied simultaneously, the

Shan-Chen model is thermodynamically inconsistent. The assumption that

causes this inconsistency is that a molecule only interacts with its nearest

neighbours. The idea of only using nearest neighbour interactions originates

from the celebrated Ising model but may not be appropriate for describing

molecular interactions in dense fluids. Nearest neighbour interactions only

have one characteristic length (the lattice size) and therefore is not sufficient to

describe the Lennard-Jones potential where both short range repulsion (Pauli

repulsion at short ranges due to overlapping electron orbitals) and long range

attraction (van der Waals forces) are important.

Figure 4.3.1: Lennard Jones Potential
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4.4 The free energy approach

A step forward in the direction of thermodynamic consistency was taken by

Swift et al. [101]. These authors introduce the equilibrium pressure tensor for

a non-ideal fluid directly into an extended form of the collision operator. The

idea is that, by doing so, the fluid is instructed to reach the right thermody-

namic equilibrium directly under the effect of the correct equation of state.

The method of Swift et al. [101] builds on the van der Waals formulation of

a two component isothermal fluid. The basic object of the theory is the free

energy density functional Ψ, (free energy per unit volume) defined as

Ψ[ρ] =

∫
1

2
k
[
(∇ρ)2 + ψ(ρ)

]
dV, (4.4.1)

where the first term is the energy penalty paid to build density gradients, and

the second term is the bulk free energy where ψ is the free-energy density. The

non-local pressure relates to Ψ through the following expression:

P = ρ
dΨ

dρ
−Ψ = P0 − kρ∇2ρ2 − 1

2
k|∇ρ|2, (4.4.2)

where

P0 = ρΨ′ −Ψ (4.4.3)

is the equation of state of the fluid (prime stands for derivative with respect

to density). The full pressure tensor in a non-uniform fluid includes an off-

diagonal component

Pab = Pδab + k∂aρ∂bρ, (4.4.4)

where the second term is related to interfacial surface tension effects.

An important question is how do we encode this pressure tensor in the

equilibrium distribution?

The recipe is to add (weakly) non-local terms to the discrete equilibria.

In particular, for a seven state FHP lattice, Swift et al. [101] propose the

following expression:

f eqi = A+Bciαuα + Cu2 +Dciαciβuαuβ + Fαciα +Gabciαciβ, (4.4.5)

f eq0 = A0 + C0u
2 (4.4.6)
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The Lagrangian parameters A,B,C,D, Fα, Gαβ are prescribed by the usual

conservation of mass, momentum and momentum flux tensor constraints, with

Pαβ given by (4.4.4). These relations are sufficient to compute the parame-

ters as a function ρ and its spatial derivatives, thus solving the problem of

identifying a proper free energy for the multiphase LB system.

Swift et al. [101] demonstrate their model with 2D simulations based on

the van der Waals fluid energy density ΨV dW = ρT ln ρ/(1 − ρb) − aρ2. Like

their predecessors, they test their scheme against Laplace’s law:

Pin − Pout =
σ

R
, (4.4.7)

where ‘in/out’ refer to inner/outer pressure of a bubble of radius R. Another

test refers to the dispersion relation of capillary waves. They also compute

the coexistence curve between the two phases for several values of the (static)

fluid temperature, reporting excellent agreement with thermodynamic theory.

The main drawback to using a free energy model is that they suffer from

a lack of Galilean invariance in the viscous term when one derives the Navier-

Stokes equations. This introduces spurious currents in the interface whenever

there is a density gradient. There is one case where the model of Swift et al.

[101] works consistently which is for a binary fluid where each fluid is an ideal

gas.

4.5 Mean field model

He et al. [43] proposed an LBM multiphase model based on mean field theory

and Enskog’s model for dense fluids. It was demonstrated later that the mean

field model can be derived from the BBGKY theory with appropriate approx-

imations [41]. BBGKY theory (Bogoliubov-Born-Green-Kirkwood-Yvon the-

ory) is a set of equations describing the dynamics of a system of a large number

of interacting particles. The equation for an n particle distribution function

in the BBGKY theory includes the (n+ 1) particle distribution function thus

forming a coupled chain of equations. To close this system, approximations

have to be introduced The key to the mean field model is to use mean field

theory to describe the long range attraction among molecules, while using the
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Enskog theory for dense fluids to account for short range repulsion. According

to Chen et al. [18] we see that the mean field model not only recovers the

correct mass, momentum and energy equations, it also contains the correct

thermodynamics.

Historically, kinetic theory was first developed for studying ideal gas trans-

port. To extend its application to phase transitions and multiphase flows, one

must incorporate molecular interactions which become increasingly important

in most fluids as the density increases.

The mean field LBM multiphase model is derived from kinetic theory with

the intermolecular potential incorporated intrinsically. From this perspective,

it inherits the fundamental feature of the inter-particle potential model. At

the same time, the mean field theory guarantees thermodynamic consistency.

In the theory of the BBGKY hierachy, the evolution equation for the single-

particle distribution, f(ξ1, r1), is:

∂tf + ξ1 · ∇r1f + F · ∇ξ1f =

∫ ∫
∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2 (4.5.1)

where F is the external force, ξ1 and ξ2 are microscopic velocities, f (2)(ξ1, r1, ξ2, r2)

is the two-particle distribution function, and V (r12) is the pair-wise intermolec-

ular potential between particle 1 and particle 2. In the BBGKY hierarchy of

equations, the time evolution of n-particle distribution depends on the (n+1)st

particle distribution. Approximations have to be introduced to close this for-

mulation.

He and Doolen [41] perform a simple closure at the level of the two-particle

distribution. They begin by dividing the space integral domain of the right

hand side of equation (4.5.1) into two parts: {D1 : |r2 − r1| < d} and {D2 :

|r2 − r1| ≥ d}:

∫ ∫
∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2

=

∫ ∫
D1

∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2︸ ︷︷ ︸
J1

+

∫ ∫
D2

∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2︸ ︷︷ ︸
J2

(4.5.2)
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where d is the effective diameter of molecules. It is known that many inter-

molecular potentials can be approximated by the Lennard-Jones potential (see

Fig 4.3.1), which possesses a short-range strong repulsive core and a long range

weak attractive tail. Here the first integral, J1, describes the strong repul-

sive force which dominates short range molecular interaction and the second

integral, J , describes the weak attractive force which dominates long range

molecular interaction.

The short range behaviour is essentially a collision process where the rate

of change of the single particle distribution in this process, J1, can be well

modelled by Enskog’s theory for dense fluids [13]:

J1 =

∫
D1

∫
∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2

= χΩ0 − bρχf eq
{

(ξ − u) ·
[
∇ log(ρ2χT ) +

3

5

(
C2 − 5

2

)
∇ log T

]
+

2

5

[
2CC : ∇u +

(
C2 − 5

2

)
∇ · u

]}
(4.5.3)

where Ω0 is the ordinary collision term which neglects particle size; C =

(ξ − u)/
√

2RT and C is its magnitude; “:” represents the scalar product of

two tensors; ρ,u, and T are the macroscopic density, velocity and temperature,

respectively, f eq is the Maxwell equilibrium distribution function:

f eq =
ρ

(2πRT )3/2
exp

[
−(ξ − u)2

2RT

]
(4.5.4)

χ is the density dependent collision probability,

χ = 1 +
5

8
bρ+ 0.2869(bρ)2 + 0.1103(bρ)3 + 0.0386(bρ)4 + . . . (4.5.5)

where b = 2πd3/3m, with d being the diameter and m the molecular mass.

Notice that the corresponding χ for the van der Waals’ equation of state is:

χ =
1

1− bρ
(4.5.6)

which only agrees with Eq. (4.5.5) to zeroth order.
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The rate of change of the single particle distribution due to long range

molecular interaction is neglected in Enskog’s original work. It can be very

important in real fluids. Modern physics has shown that, for most liquids, the

radial distribution function is approximately unity beyond a distance of one

molecular diameter [83]. This implies that f (2)(ξ1, r1, ξ2, r2) ≈ f(ξ1, r1)f(ξ2, r2)

in D2. This approximation leads to:

J2 =

∫
D2

∫
∂f (2)

∂ξ1

· ∇r1V (r12)dξ2dr2 = ∇
{∫

D2

ρ(r2)V (r12)dr2

}
· ∇ξ1f.

(4.5.7)

The term in the bracket is exactly the mean field approximation for the

intermolecular potential [89]:

Vm =

∫
D2

ρ(r2)V (r12)dr2 (4.5.8)

Its gradient gives the average force acting on a molecule by the surrounding

molecules. Assuming the density is a slowly varying variable, we can expand

the density in a Taylor series:

ρ(r2) = ρ(r1) + r21 · ∇ρ+
1

2
r21r21 : ∇∇ρ+ . . . (4.5.9)

where r21 = r2 − r1. Substituting Eq. (4.5.9) into Eq. (4.5.8), we have:

Vm ' −2aρ− κ∇2ρ (4.5.10)

where the coefficients a and κ are defined in terms of the intermolecular po-

tential by:

a = −1

2

∫
r>d

V (r)dr, κ = −1

6

∫
r>d

r2V (r)dr

a and κ are usually assumed to be constant. The integral, J2, subsequently

becomes:

J2 = ∇Vm · ∇ξ1f. (4.5.11)

This form of J2 suggests that the average long range intermolecular po-

tential acts on a molecule in exactly the same way as an external potential. In

other words, the long range molecular interaction can be modelled as a local

point force. It should be mentioned that the above derivations depend on the
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assumption that density varies slowly. This obviously is a source of at least

some of the issues when modelling binary fluids with a large density ratio.

Combining Enksog’s theory for dense fluids and mean field theory for the

intermolecular potential, one obtains the following kinetic equation to describe

the flow of dense fluids [43]:

∂tf + ξ · ∇f + F · ∇ξf = J1 +∇Vm · ∇ξf (4.5.12)

where the subscripts have been dropped for simplicity. The macroscopic fluid

density, ρ, velocity, u, and the temperature, T , are calculated as the velocity

moments of the distribution functions:

ρ =

∫
fdξ (4.5.13)

ρu =

∫
ξfdξ (4.5.14)

3ρRT

2
=

∫
(ξ − u)2

2
fdξ. (4.5.15)

It is important to note that J1, in general, cannot be expressed as product

of a single force and velocity gradient of the distribution function. As a result,

the molecular interaction as a whole also cannot be modelled by a single force

term, as in the Shan-Chen model.

Any numerical approach can be used to solve the kinetic equation, but ob-

viously we will focus on a discrete numerical lattice Boltzmann based scheme.

The lattice restricts the molecule movements and this constraint can cause

issues with non-isothermal flows. To study thermodynamics in which temper-

ature variation exists, the theory must be extended. In the study performed by

He and Doolen [41], is an expansion approach for small temperature variations.

Most LBM models neglect terms of order M3 (M is the Mach number).

This cut off error does not hamper LBM applications to nearly incompressible

flows. [41] assume further that the variation of the absolute temperature is

small in the domain of interest.

To facilitate the discussion, they introduce:

T = T0(1 + θ) (4.5.16)
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where T0 is the average temperature of a system and θ is the normalized tem-

perature variation. With the assumptions of small temperature variations and

small Mach numbers, the equilibrium density distribution can be approximated

by:

f eq =
ρ

(2πRT0)3/2
exp

[
− ξ2

2RT0

] [
1 +

(
ξ2

2RT0

− 3

2

)
θ

+
ξ · u
RT0

+
(ξ · u)2

2(RT0)2
− u2

2RT0

]
. (4.5.17)

Using this equilibrium distribution, the next task is to select a discrete

velocity set, or quadrature, that replaces the moment integrals in calculating

macroscopic variables. It should be noted that the traditional D2Q7, D2Q9,

D3Q15, D3Q19 and D3Q27 lattices are inadequate for this type of thermal

model as a second-order time integration scheme is necessary, suitable quadra-

tures with higher accuracy can be found in [77].

Nevertheless, once a sufficiently accurate quadrature is chosen (ca, a =

1, 2, . . . , N), we can define the discrete distribution function as:

fa(r, t) = waf(r, ca, t) (4.5.18)

where wa are the corresponding weight coefficients. If we use the BGK model

with a single relaxation time approximation for the ordinary collision term we

assume:

∇ξf ≈ −
(ξ − u)

RT
f eq (4.5.19)

the evolution equation for the discrete distribution function, fa, becomes:

fa(r + caδt)− fa(r, δt) = −χ(fa − f eqa )

τf + 0.5
+

τf
τf + 0.5

Ωaf
eqδt (4.5.20)

where δt is the time step and τf is the relaxation parameter;

Ωa =
(ca − u) · (F−∇Vm)

RT
− bρχ

{
(ca − u) ·

[
∇ log(ρ2χT ) +

3

5

(
C2
a −

5

2

)
∇ log T

]
+

2

5

[
2CaCa : ∇u +

(
C2
a −

5

2

)
∇ · u

]}
(4.5.21)
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Ca = (ca − u)/
√

2RT and Ca is its magnitude. The equilibrium distributions

have the following forms:

f eqa = wa

[
1 +

(
ξ2

2RT0

− 3

2

)
θ +

ξ · u
RT0

+
(ξ · u)2

2(RT0)2
− u2

2RT0

]
(4.5.22)

Note that at least a second order time integration is necessary for LBM

multiphase models [43]. Otherwise, non-physical properties such as spurious

currents arise in simulations.

The macroscopic variables can be calculated using:

ρ =
∑
a

fa (4.5.23)

ρu =
∑
a

faca +
δt
2

[ρF− ρ∇Vm −∇(bρ2χRT )] (4.5.24)

3ρRT

2
=

3ρRT0(1 + θ)

2
=
∑
a

fa
(ca − u)2

2
(4.5.25)

The viscosity and thermal conductivity of the above model have the following

forms:

µ = τfρRT0δt

(
1

χ
+

2

5
bρ

)
(4.5.26)

λ =
5

2
τfρR

2T0δt

(
1

χ
+

3

5
bρ

)
(4.5.27)

According to the authors the implementation of the model is straightfor-

ward. Besides the need for higher order velocity lattices, the only compli-

cation compared to the ideal gas LBM model is the calculation of gradients

of macroscopic variables in Ωa. Some of these gradients are involved in pre-

vious isothermal LBM multiphase models where their calculations have been

straightforward.

The drawback of the mean field LBM multiphase model is that it cannot

simulate multiphase flows with high density ratio. This drawback is likely due

to the assumption that the density profile across an interface must be smooth.

How to improve LBM multiphase models to simulate high density flows is still

a challenging task. There have been several advances on this front such as
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solving for the pressure field separately (see Inamuro et al. [50] for details).

4.6 Numerical Results

As the reader can see there are a variety of methods for implementing multi-

phase fluid flow within a lattice Boltzmann method. It is important to know

what sorts of fluids you intend to model before you choose a particular scheme.

The pseudo potential model is capable of simulating high density ratio flu-

ids but gives relatively low numerical stability and wide interfaces for multi-

component immiscible systems [103]. By contrast the colour model is capable

of simulating fluids with a significant viscosity ratio and recovers the analyti-

cal solutions for Poiseuille flow and fingering simulations. Due to the current

author’s interest in Non-Newtonian fluids where viscosity is variable it was

decided to focus attention on a colour-gradient model which we present here.

Lattice Boltzmann immiscible two-phase model

The two-dimensional colour-gradient model is developed for immiscible two-

phase fluids based on the work by Halliday et al. [38] and Reis and Phillips

[85]. We give details again here for completeness. In the model, we label one

fluid ’red’ and one ’blue’. The distribution function for each fluid is denoted by

fi,k, where k = R or B, i = 0, . . . , 8, denote velocity directions for the D2Q9

lattice grid, and the total distribution function is defined as fi = fi,R + fi,B.

The lattice velocity vectors on the D2Q9 grid are given, as usual, as

ci =


(0, 0), i = 0,

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4, respectively,

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8, respectively.

(4.6.1)

In each time step, the distribution function of each fluid undergoes a colli-

sion substep and a streaming substep, and the evolution equation is expressed

by

fi,k(x + ci∆t, t+ ∆t) = fi,k(x, t) + Ωi,k[fi,k(x, t)] (4.6.2)

where x and t are the position and time, ∆t is the time step, and Ωi,k is the
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collision operator. The collision operator Ωi,k consists of three parts [85]:

Ωi,k = (Ωi,k)
(3)[(Ωi,k)

(1) + (Ωi,k)
(2)], (4.6.3)

where (Ωi,k)
(1) is the BGK collision operator, (Ωi,k)

(2) is the perturbation op-

erator which generates an interfacial tension, and (Ωi,k)
(3) is the recolouring

operator which contributes to maintaining the phase interface. For each phase,

mass conservation and total momentum conservation are expressed (as usual)

as

ρk =
∑
i

fi,k =
∑
i

f
(eq)
i,k , (4.6.4)

ρu =
∑
i

∑
k

cifi,k =
∑
i

∑
k

cif
(eq)
i,k , (4.6.5)

where ρk is the density of fluid k, ρ = ρR + ρB is the total density, and u is

the velocity of the fluid mixture.

BGK collision operator

The BGK collision operator is applied for each fluid, of which the particle

distribution functions are relaxed towards a local equilibrium with a single

relaxation time, written as

(Ωi,k)
(1) = −ωk[fi,k − f (eq)

i,k ]. (4.6.6)

For a given multiphase flow, the equilibrium distribution function is defined

by [85]

f
(eq)
i,k (ρ,u) = ρk(φi,k +Wi[3ci · u + 4.5(ci · u)2 − 1.5(u)2]) (4.6.7)

where Wi is the weight defined by

Wi =


4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8,

(4.6.8)
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and φi,k is a parameter related to the density ratio written as [85]

φi,k =


αk, i = 0,

(1− αk)/5, i = 1, 2, 3, 4,

(1− αk)/20, i = 5, 6, 7, 8,

(4.6.9)

where 0 ≤ αk ≤ 1 should be satisfied to avoid unphysical negative values for

fluid density. We note that αR and αB should satisfy the constraint

γ = ρR/ρB =
(1− αB)

(1− αR)
(4.6.10)

[85], where γ is the density ratio of the red to blue fluids. The model has been

proved to be valid in Reis and Phillips [85] for simulations with density ratio

up to 18.5. Ba et al. [3] consider the case γ = 1, for simplicity, as their interest

was modelling contact-angle hysteresis.

The interface between the two phases is identified by the constant contours

of the phase field function ρN , which is defined as

ρN(x, t) =
ρR(x, t)− ρB(x, t)

ρR(x, t) + ρB(x, t)
. (4.6.11)

In the single phase regions Reis and Phillips [85] have shown by Chapman-

Enskog expansion that the Navier-Stokes equations are recovered. The re-

laxation parameter ωk is a function of fluid kinematic viscosity and given by

ωk = 1/(3νk + 0.5), in which νk is the kinematic viscosity of fluid k.

In the interface region (|ρN | < 1), to ensure the smoothness of the relax-

ation parameter and the stability of the interface, the relaxation parameter is

written as [85]

ω =



ωR, ρN > δ

gR(ρN), δ ≥ ρN > 0

gB(ρN), 0 ≥ ρN > −δ

ωB, ρN < −δ,

(4.6.12)

where δ is a free parameter associated with the interface thickness and taken to
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be 0.1 in the simulation by Ba et al. [3], and gR and gB are parabolic functions

of ρN written as

gR(ρN) = χ+ ηρN + κ(ρN)2, (4.6.13)

gB(ρN) = χ+ λρN + υ(ρN)2, (4.6.14)

in which the coefficients are taken to be

χ = 2ωRωB/(ωR + ωB), (4.6.15)

η = 2(ωR − χ)/δ, (4.6.16)

κ = −η/(2δ), (4.6.17)

λ = 2(χ− ωB)/δ, (4.6.18)

υ = λ = (2δ). (4.6.19)

Perturbation operator

In the perturbation operator, the CSF model [38] is used to model the inter-

facial tension, which has been demonstrated to effectively reduce the spurious

velocities [62]. The interface force acts centripetally normal to the local in-

terface and its magnitude is proportional to the gradient of the phase field

function (more commonly known as the colour gradient) ∇ρN . The local cur-

vature of the interface is given by

K = −∇S · n, (4.6.20)

where∇S = (I−nn)·∇ is the surface gradient operator and n = −∇ρN/|∇ρN |
is the outward pointing unit normal vector of the interface. In two dimensions,

the curvature of the interface can be expressed by

K = nxny

(
∂

∂y
nx +

∂

∂x
ny

)
− n2

x

∂

∂y
ny − n2

y

∂

∂x
nx. (4.6.21)

The derivatives can be calculated using a standard finite difference method.

The interfacial tension force is then given by

F = −0.5σK∇ρN , (4.6.22)
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where σ is the interfacial tension which is applied only at the lattice sites where

the two fluids coexist.

Ba et al. [3], apply the body force of Guo et al. [37] due to its high accuracy

in modelling a spatially varying body force and capability in reducing effec-

tively the spurious velocites. According to Guo et al. [37], the perturbation

operator (Ωi)
(2) = (Ωi,R)(2) + (Ωi,B)(2) is written as

(Ωi)
(2) = Wi

(
1− ω

2

)
[3(ci − u) + 9(ci · u)ci] · F (4.6.23)

where the velocity is redefined to include some of the effect of the external

body force

ρu =
∑
i

∑
k

cifi,k +
1

2
F. (4.6.24)

Then the interfacial tension contribution is assigned to each phase, and the

pertubation operator of fluid k is given by

(Ωi)
(2) = AkWi

(
1− ωk

2

)
[3(ci − u) + 9(ci · u)ci] · F (4.6.25)

where Ak is the fraction of interfacial tension contributed by the fluid k, and

satisfies
∑

k Ak = 1.

Recolouring operator

In the work by Ba et al. [3], the recolouring algorithm proposed by Latva et

al. [58] is used to promote phase segregation and to maintain a reasonable

interface. This algorithm allows the red and blue fluids to mix moderately at

the tangent of the interface, and at the same time keeps the colour distribution

symmetric with respect to the colour gradient. Thus, it can further reduce

the spurious velocities and remove the lattice pinning problem produced by

the original recolouring operator of Gunstensen et al. [36]. The algorithm is

written as

(Ωi,R)(3)(fi,R) =
ρR
ρ
f ′i + β

ρRρB
ρ2

cos(ϕi)|ci|
∑
k

f
(eq)
i,k (ρk, 0, αk),

(Ωi,B)(3)(fi,R) =
ρB
ρ
f ′i + β

ρRρB
ρ2

cos(ϕi)|ci|
∑
k

f
(eq)
i,k (ρk, 0, αk), (4.6.26)
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β 0.01 0.1 0.3 0.5 0.7 0.9
Error 0.009034 0.008225 0.008024 0.008008 0.008004 0.008003

Table 4.1: Root mean square error associated with the interface parameter β.

where f ′i is the post-perturbation value of the total distribution function, ϕi is

the angle between the colour gradient ∇ρN and the lattice direction ci, and β

is a free parameter associated with the interface thickness such that 0 < β < 1.

In the study Ba et al. [3] chose β = 0.7 to maintain a steady interface [38].

Choosing β = 0.7 means the interface has a thickness of four to five lattice

spaces.

4.7 Poiseuille Flow

Consider two incompressible immiscible fluids moving under the influence of

a pressure gradient G in the x-direction. If the flow is stable (the Reynolds

number is sufficiently small) and the interface remains in the centre of the

channel at all times then the analytic solutions for steady flow are

ur =
Gh2

2µr

[
−
(y
h

)2

+
y

h

(
µr − µb
µr + µb

)
+

2µr
µr + µb

]
, −h ≤ y ≤ 0, (4.7.1)

ub =
Gh2

2µb

[
−
(y
h

)2

+
y

h

(
µr − µb
µr + µb

)
+

2µb
µr + µb

]
, 0 ≤ y ≤ h, (4.7.2)

where h is the half channel width and µr and µb are the shear viscosities for

the red and blue fluids [85].

A 128×65 lattice was used with fixed velocity condition on the top and bot-

tom walls with a periodic boundary and the left and right. Initially the upper

half contained pure red fluid, the bottom pure blue and the interface consisted

of half red and half blue. Both fluids have the same density but different re-

laxation times and therefore different viscosities (µb = 0.2525, µr = 0.7575).

Increasing the value of β sharpens the interface and gives a more accurate an-

swer at the cost of numerical stability. The smoothing of the interface can be

seen in Figure 4.7.2 and the overall root mean square error (given by equation

(2.5.2)) associated with changing the value of β is given in Table 4.1.
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Figure 4.7.1: Numeric measurements of velocity of two adjacent immiscible
fluids.

Figure 4.7.2: Numeric measurements of velocity of two adjacent fluids with
β = 0.1
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Figure 4.7.3: Numeric measurements of velocity in three-layer Poiseuille flow.

Using the same boundary conditions and body force we measure the veloc-

ity of a three-layer ‘ABA’ flow where one fluid is sandwiched between another

less viscous fluid. Once again we see good agreement with the analytic solu-

tions which in this case are

ub =
G

8

(
3h2

µr
+
h2 − 4y2

µb

)
, −h ≤ y ≤ −h

2
, (4.7.3)

ur =
G

2µr

(
h2 − y2

)
,−h

2
≤ y ≤ h

2
, (4.7.4)

ub =
G

8

(
3h2

µr
+
h2 − 4y2

µb

)
. (4.7.5)

4.8 Discussion

In Chapter 4 an overview of LBM for multiphase fluid flows has been given.

The four main approaches are chromodynamic models, pseudo-potential mod-

els, free-energy models and mean field models. Free energy and mean field

models are necessary when examining non-isothermal flows but are compu-

tationally expensive to solve and aren’t able to solve fluid flows with a large
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density ratio. Pseudo-potential models are easy to implement as they require

adding a body force term to the LBM and are capable of simulating fluids

with a high density ratio but have relatively low numerical stability and wide

diffuse interfaces between the fluids. The colour model is capable of simulating

fluids with a significant viscosity ratio and recovers the analytic solutions for

Poiseuille flow and fingering simulations. In this Chapter the colour model

was used to solve two and three layer Poiseuille flow and gives good agreement

with the analytical solutions.



Chapter 5

Lattice Boltzmann methods for

droplets

The behaviour of microdroplets on a solid surface is of great interest to many

different industries. As well as the obvious application to inkjet printing, it

is important for emerging fields such as the noncontact printing of functional

electronics and biological materials and in the fields of microfluidic devices,

microchemistry, and fast prototyping [98, 94, 104]. The advantages of inkjet

printing of liquid materials over traditional delivery techniques are many and

based on the technological ability of printheads to generate homogeneously

sized droplets on demand at a determined speed and direction [10]. These

characteristics create a scenario where precise volumes of reagents and/or re-

active components can be dispatched at a specific location at precise times.

The process of noncontact printing involves the generation, deposition, and

coalescences of droplets to make patterns for graphics applications or three-

dimensional structures in other manufacturing processes [25]. In graphical

applications, the coalescence of droplets on a substrate needs to be controlled

to reduce pixelation and increase the resolution of printing. In contrast, in ad-

ditive manufacture applications such as in the synthesis of nylon 6 in situ via

inkjet printing of reactive fluids, good mixing during drop-on-drop deposition

is essential [29].

In microdroplet dynamics, the behaviour of the contact line region, where

three phases (fluid-fluid-solid) coexist, and the physical mechanism of the mi-

croscopic interactions between the fluid and solid phases are very complex and

75
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play a very crucial role [9]. Some numerical methods dealing with contact-line

behaviour have been proposed based on macroscopic hydrodynamic equations

and/or microscopic molecular dynamics. In the commonly used macroscopic

approaches, such as volume of fluid (VOF) [86], the interfacial behaviour is

often obtained by solving a transport equation for the volume fraction and im-

plementing an interface reconstruction process, which is very complicated and

usually difficult to implement. Also, empirical slip models are required for such

kinds of methods to overcome the stress singularity problem associated with

the traditional no-slip boundary condition [3]. Microscopic methods have also

been applied but they are computationally expensive and this restricts their

application to practical problems [51]. Recently Lattice Boltzmann methods

have been applied to microdroplet behaviour [11, 10, 3]. Whereas Castrejón-

Pita et al. [10] use a pseudopotential model, Ba et al. [3] use a colour model

based on the work by Reis and Phillips [85]. In colour-gradient models, the con-

tact angle is usually considered by directly prescribing a colour-function value

on the wall or implementing a colour-conserving wetting boundary condition

in both static and dynamic contact line simulations. Both methods naturally

satisfy the classical Navier slip rule in hydrodynamic models between the dy-

namic contact angle and contact line velocity, which makes the colour-gradient

model an effective tool for the dynamic contact-angle simulations.

What follows is a description of the algorithm of Ba et al. [3] which will

be used to solve a variety of problems.

5.1 Numerical implementation of wetting bound-

ary condition

To simulate microdroplet motion on a solid surface we need a colour-gradient

wetting boundary condition that includes hysteresis. Ba et al. [3] employ a

colour conserving scheme based on Hollis et al. [46] and contact angle hysteresis

algorithm based on the numerical strategy of Dupont and Legendre [28] but

with some modifications as the original model of Dupont and Legendre [28] is

for macroscopic VOF-based models and not the mesoscopic LBM.
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Figure 5.1.1: A D2Q9 lattice node on the bottom boundary of a 2D domain
(at propagation step).

Colour conserving boundary condition

To model the fluid-surface interactions, Ba et al. [3] make modifications to

the boundary condition proposed by Hollis et al. [46] according to their colli-

sion operator Ωi,k in which the boundary closure scheme is applied to ensure

mass conservation for each phase, and a variant of the recolouring operator is

designed to maintain the reasonable interface at the solid boundary.

Figure 5.1.1 represents a lattice node on the bottom wall, which moves with

velocity u0 = (u0x, u0y). Assume that the node just lies in the interface of the

red and blue fluids. At this lattice node, the post-propagation value of the fluid

distribution fi,k exists only for i 6= 2, 5, 6, thus, the total distribution function

that propagates into the fluid domain at the node for each phase is written

as F k
in =

∑
i 6=2,5,6 fi,k. On the other hand, the post-perturbation value of the

distribution function f ′i,k needs to be considered only for the live links, i.e.,

i 6= 4, 7, 8 since the post-perturbation distribution functions with i = 4, 7, 8

will propagate out of the fluid domain. Therefore, the effective mass for each

phase after collision is given as
∑

i 6=4,7,8 f
′
i,k. To ensure mass conservation after

each phase, the post-propagation and post-perturbation effective mass of each

phase must be equal. Thus, the colour conservation can then be expressed as

F k
in =

∑
i 6=4,7,8

f ′i,k. (5.1.1)

According to the lattice Boltzmann equation (equation (4.6.2)), the distri-
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bution function of each phase after the collision can be written as

f ′i,k = f
(0)
i,k (ρ′k,u0) + (Ωi,k)

(2) + (1− ω)f
(1)
i,k , (5.1.2)

where ρ′k represents the auxiliary boundary density determined by the colour

conservation. The subtotal of the higher order component of the distribution

functions f
(1)
i,k on the live links is assumed to be zero, and the subtotal of the

perturbation operator (Ωi,k)
(2) on the live links disrupts the conservation by

∆Mk =
∑
i 6=4,7,8

(Ωi,k)
(2) =

∑
i 6=4,7,8

AkWi

(
1− ω

2

)
× [3(ci − u0) + 9(ci · u0)ci] · F 6= 0.

(5.1.3)

Thus, the subtotal of the equilibrium distribution function f
(0)
i,k (ρ′k,u0) can be

derived using equation (5.1.2), and written as

F k
in −∆Mk =

∑
i 6=4,7,8

f
(0)
i,k (ρ′k,u0). (5.1.4)

Then, the auxiliary boundary density ρ′k is obtained by introducing the equi-

librium distribution function into the above equation:

ρ′k =
F k

in −∆Mk∑
i 6=4,7,8 f

(0)
i,k (1,u0)

=
F k

in −∆Mk

0.7 + 0.3αk + 0.5u0y − 0.5u2
0y

(5.1.5)

Generally, the y component of the wall velocity is considered zero, in which

case

ρ′k =
F k

in −∆Mk

0.7 + 0.3αk
. (5.1.6)

The higher-order distribution function f
(1)
i,k should satisfy the following con-
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straints as given in [46]: ∑
i 6=4,7,8

f
(1)
i,k = 0,

∑
i

f
(1)
i,k ciα =

1

2
Fα,∑

i

f
(1)
i,k ciαciβ = −2

3
ρ′kSαβ/ω, (5.1.7)

where Sαβ is the strain rate tensor and defined in [46] by

Sαβ =
1

2
(∂αuβ + ∂βuα) +

3ω

4ρ
(Fαuβ + Fβuα). (5.1.8)

Solving the underspecified equation (5.1.7) by means of the singular value

decomposition we obtain f
(1)
i,k as follows:

f
(1)
0,k

f
(1)
1,k

f
(1)
2,k

f
(1)
3,k

f
(1)
5,k

f
(1)
6,k


=

1

36



0 −5 −12 −2 0

3 −2 6 −8 0

0 1 −12 10 0

−3 −2 6 −8 0

3 4 6 4 9

−3 4 6 4 −9


×


δtFx

δtFxy

−2ρ′kSxx/(3ω)

−2ρ′kSyy/(3ω)

−2ρ′kSxy/(3ω)

 . (5.1.9)

Then, the post-perturbation distribution function of each phase on the bound-

ary can be obtained by equation (5.1.2).

A modified recolouring step is needed for boundary nodes to maintain the

interface after the collision process. Based on the colour conservation, the

post-segregation densities assigned to the live links should satisfy

∑
i 6=4,7,8

Ri = FR
in ,

∑
i 6=4,7,8

Bi = FB
in ,

∑
i 6=4,7,8

fi = FR
in + FB

in , (5.1.10)

where Ri (Bi) represent the post-segregation distribution function of red (blue)

fluid.

We define ρR and ρB as the densities of red and blue fluids at the boundary

nodes, and ρ = ρR + ρB as the total density. To obtain an equation for ρR and
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ρB, we substitute equation (4.6.26) into (5.1.10) which yields [3]

FR
in =

ρR
ρR + ρB

(
FR

in + FB
in

)
(5.1.11)

+ β
ρRρB

(ρR + ρB)2
n ·

( ∑
i 6=4,7,8

{[Req
i (R′, 0, αR) +Beq

i (B′, 0, αB)]ci}

)
|ci|,

(5.1.12)

which can be expressed in the form

FR
in =

ρR
ρR + ρB

(
FR

in + FB
in

)
+β

ρRρB
(ρR + ρB)2

ny×{0.3[ρR(1−αR) +ρB(1−αB)]},

(5.1.13)

where ny is the y component of the interface normal vector n. The conservation

of total mass requires

ρ =
∑
k

ρ′k. (5.1.14)

Combining equations (5.1.13) and (5.1.14), we obtain a cubic equation with

respect to ρR:

k(αR−αB)ρ3
R+k(−αR+2αB−1)ρρ2

R+[(FR
in +FB

in )ρ+kρ2(1−αB)]ρR−Finρ
2 = 0,

(5.1.15)

where k = 0.3βny. Equation (5.1.15) can be solved by Newton-Raphson say,

and then Ri can be calculated using the following segregation formula [3]

Ri =
ρR

ρR + ρB
(f ′i)+β

ρRρB
(ρR + ρB)2

cos(ϕi)|ci|× [Req
i (ρR, 0, αR)+Beq

i (ρB, 0, αB)].

(5.1.16)

Numerical implementation of constant contact angle

The gradient of the phase field at the boundary nodes is calculated differently

from the interior fluid nodes due to the lack of information at adjacent nodes

and the necessity of introducing the contact angle. To illustrate the calculation

procedure, we choose a bottom boundary node.

For a specified contact angle θ, the gradient of the phase field, ∇ρN , at the
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boundary node should satisfy

∇ρN

|∇ρN |
= n =

sin θex + cos θey, if ∂ρN

∂x
< 0

− sin θex + cos θey, if ∂ρN

∂x
> 0.

(5.1.17)

Then, we can obtain a relation for x and y components of ∇ρN :(
∂ρN

∂y

)
x,1

sin θ = −
∣∣∣∣∂ρN∂x

∣∣∣∣
x,1

cos θ. (5.1.18)

Ba et al. [3] evaluate (∂ρN/∂x)x,1 by use of a central difference scheme. The

value of (∂ρN/∂y)x,1 is then obtained using equation (5.1.18). Thus, the spec-

ified contact angle is implicitly imposed by the gradient of the phase field.

Implementation of dynamic contact angle

In order to reproduce droplet behaviour correctly, it is necessary to develop a

contact angle hysteresis model. Ba et al. [3] base their model on the numerical

strategy previously proposed in a macroscopic VOF model [28]. It is a colour

gradient based algorithm to account for the contact angle hysteresis, in which

an iterative procedure is incorporated to obtain an equilibrium contact an-

gle, and the dynamic contact angle is determined by the updated equilibrium

contact angle.

Generally, the hysteresis phenomenon of contact line can be defined as

follows [99]

Ucl > 0 if θd = θA, (5.1.19)

Ucl < 0 if θd = θR, (5.1.20)

Ucl > 0 if θR < θd < θA, (5.1.21)

where θd is the dynamic contact angle, and θR and θA are, respectively, the

limited values of the receding and advancing contact angle. The hysteresis

window (θR, θA) is determined by the properties of the solid substrates in

contact with the droplet such as surface roughness and nonuniformity [22]. Ba

et al. [3] focus on droplet behaviour with a given hysteresis window. For a

given hysteresis window, to model the contact-angle hysteresis behaviour, at
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each time step, we need to obtain an instantaneous dynamic contact angle θd

that satisfies the following condition: the droplet deforms properly within the

interval (θR, θA), beyond which the droplet will move on the solid surface with

θd obeying the Navier slip relationship. As an illustration see Figure 5.1.2.

Ba et al. [3] implemented an iterative procedure (bisection) for the contact

line nodes at both receding and advancing sides to find the equilibrium contact

angle θe, at which the x component of the fluid momentum ux will be cancelled

locally.

Subsequently, the dynamic contact angle (θd) is determined by the following

rules based on the calculated equilibrium contact angle:

(1) If θR < θe < θA, the dynamic contact angle θd is directly assigned as

θd = θe, and θd is then used to calculate the derivatives of the phase field at

the solid wall. Thus, the momentum is locally cancelled, and the contact line

remains stationary on the solid wall.

(2) If θe < θR or θe > θA, the equilibrium is disrupted and the droplet starts

to move over the solid surface. The dynamic contact angle θd is determined

such that it satisfies the well known Navier slip relationship i.e.,

cos θr = cos θR + 9Cacl ln(r/lm) for θe < θR,

cos θa = cos θA + 9Cacl ln(r/lm) for θe > θA, (5.1.22)

where θr (θa) is the obtained dynamic contact angle at receding (advancing)

side, Cacl is the contact line Capillary number defined by Cacl = µRUcl/σ, r is

the intermediate length scale and lm is the microscopic length scale. To guar-

antee the slip relationship (equation (5.1.22)), empirical slip-length models are

usually required in macroscopic models [28]. Latva-Kokko and Rothman [59]

have shown that colour-gradient models naturally satisfy the Navier-slip rela-

tion, due to the nature of intermolecular interactions of LBM when the θR (θA)

is appointed as the dynamic contact angle θd. Based on this argument we take

θd as θR (or θA) when θe is beyond the hysteresis window, and the obtained θd

in simulation will vary automatically with Cacl according to equation (5.1.22).

Therefore, no additional models or assumptions are required in the method

described by Ba et al. [3].

To verify the accuracy and applicability of their LBM for simulating droplet
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Figure 5.1.2: Illustration of droplet contact angles by Ba et al. [3]

motion Ba et al. [3] firstly investigated the equilibrium shapes of the droplet

wetting on a solid surface to verify the models ability to impose a given static

contact angle θs. Different values of θs were used, ranging from θs = 10◦ to

θs = 170◦. Their results show good agreement between theoretical results and

their model for all presented contact angles. Next they validated their dynamic

colour-conserving wetting boundary condition by simulationg the dynamical

partial wetting process. Initially the droplet with radius R0 is located with its

centroid 0.95R0 above the bottom plate. As the droplet continually spreads

over the solid surface, its contact angle changes until it is approximately equal

to the imposed static contact angle θ0 = 45◦. The time evolution of the

dimensionless we length shows good agreement with experimental data. They

then use their model to simulate the droplet behaviour subjected to a simple

shear flow. For the droplet pinned to the wall, the predicted shape of the

droplet agrees with results by Schleizer and Bonnecaze [92].

5.2 Discussion

In this chapter we have discussed a significant colour model capable of simu-

lating the flow of droplets and contact angle hysteresis. With the presented

model, the influence of hysteresis on the dynamical behaviour of contact line

can be studied systematically, enabling us to predict droplet motion in nu-

merous industrial applications such as ink-jet printing or fibre coating and so

it is helpful to improving our understanding of the mechanisms controlling
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droplet behaviour at microscale. A key feature of Lattice Boltzmann methods

for simulating the impingement and spreading of droplets on solid surfaces is

that only the static contact angles are needed as the dynamic contact angle

emerges naturally from the simulation without complicated treatment.



Chapter 6

LBM for viscoelastic fluids

So far the focus of this thesis has been on Newtonian fluids, characterised by

the Navier-Stokes equation (1.1.13,1.1.14). A Newtonian fluid is a fluid with

a simple microstructure, in which the viscous stress is linearly proportional to

the rate of strain (rate of change of deformation over time), with the coefficient

of proportionality called the viscosity.

This is sufficient to describe many everyday fluids such as air and water but

there are many other fluids that are non-Newtonian, such as molten polymers

and other commonly found substances such as ketchup, custard, toothpaste,

starch suspensions, paint, blood, and shampoo.

There are many different types of non-Newtonian behaviour such as rheopecty

or thixotropy, where apparent viscosity increases or decreases under a constant

shear rate over time, shear thickening or thinning, where apparent viscosity

increases or decreases as the shear rate is increased and viscoelasticity, where

the substance exhibits both elastic and viscous behaviour. In this chapter we

focus on models for viscoelasticity.

6.1 What are viscoelastic fluids?

Viscoelasticity is the ‘property of a substance of exhibiting both elastic and

viscous behaviour, the application of a constant stress causing an immediate

deformation that disappears if the stress is quickly removed but increases for

a time and becomes permanent if the stress is maintained’ [74]. In rheology,

solids and liquids form a continuum, characterised by the ratio of a charac-

85
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teristic relaxation time (τ1) of the material to a characteristic time of the

experiment (T0). The time scale ratio, De = τ1/T0 is called the Deborah num-

ber, after the prophetess in the Book of Judges, and is zero for a Newtonian

fluid and infinite for a Hookean elastic solid. The time scale in practice varies

widely, for example water, which is 10−13s, minutes for polymer solutions, to

hours for melts and soft solids [79].

Understanding the dynamics of polymer solutions is important in relation

to plastic manufacture, performance of lubricants and applications of paints

[7].

6.2 Mathematically modelling viscoelastic flu-

ids

6.2.1 Linear Viscoelasticity

The macroscopic equations of motion for a fluid are

∇ · u = 0, (6.2.1)

ρ
Du

Dt
= ∇ · σ, (6.2.2)

where we have omitted the body force. The stress can be decomposed as

follows

σαβ = −Pδαβ + Tαβ, (6.2.3)

where δαβ is the usual Kronecker delta function and T is the deviatoric ex-

tra stress tensor. The constitutive relation for the extra stress tensor for a

Newtonian fluid is given by

T = ηγ̇ (6.2.4)

where

γ̇ = ∇u + (∇u)†. (6.2.5)

To understand some of the features of linear viscoelasticity we start by

examining the behaviour under small amplitude oscillatory shear motion. The
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stress can be shown to be [102]

Tαβ(t) =

∫ t

−∞
G(t− t′)A(1)

αβ(t′)dt′ (6.2.6)

where G(t) is the relaxation modulus of the fluid and A
(1)
αβ is the first Rivlin-

Ericksen tensor which is equivalent to the rate of strain [80] (p29) tensor γ̇.

We can recover the stress for a Newtonian fluid by setting G(t) = ηδ(t) so that

T =

∫ t

−∞
ηδ(t− t′)γ̇(t′)dt′ = ηγ̇(t). (6.2.7)

Consider one-dimensional shearing motion and in particular small ampli-

tude oscillatory motion with strain given by

γ(t) = γ0 exp(iωt), (6.2.8)

where i is the imaginary unit, ω is the frequency and γ0 is the strain amplitude.

Then

γ̇ = iωγ0 exp(iωt), (6.2.9)

and substituting this into (6.2.6) we recover

T = iωγ0 exp(−iωt)
∫ t

−∞
G(t− t′) exp(iωt′)dt′. (6.2.10)

Defining the complex modulus G∗ as T/γ and making the change of variable

s = t− t′ gives

G? = iω

∫ ∞
0

G(s) exp(−iωs)ds. (6.2.11)

The real and imaginary components of G?

G? = G′ + iG′′ (6.2.12)

are known as the storage modulus G′ and loss modulus G′′. The complex

viscosity, η? is defined to be T/γ̇, hence

η? = η′ − iη′′ = G′′

ω
− iG

′

ω
. (6.2.13)
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The exact form of η? depends on the constitutive relation for stress. Two

such models are the Maxwell and Jeffreys model which are given by

T + λ1Ṫ = ηγ̇, (6.2.14)

T + λ1Ṫ = η(γ̇ + λ2γ̈) (6.2.15)

respectively, where λ1 is a relaxation time and λ2 is a retardation time. For

the Jeffreys model (6.2.15) the components of the complex shear viscosity are

found to be

η′ = η∞ +
η0 − η∞

1 + (ωλ1)2
, (6.2.16)

η′′ =
ωλ1(η0 − η∞)

1 + (ωλ1)2
, (6.2.17)

where η0 and η∞ are the zero and infinite frequency viscosities, respectively.

The special case η∞ = 0 recovers the Maxwell model.

Extending the Maxwell model (6.2.14) to higher dimensions gives the Upper

Convected Maxwell (UCM) model for stress

T + λ1

∇
T= ηγ̇ (6.2.18)

where
∇
T denotes the upper convected derivative of T given by

∇
T=

DT

Dt
− (∇u) ·T−T · (∇u)†. (6.2.19)

6.2.2 Constitutive equations derived from microstruc-

tures

In the microstructural approach, a relevant model for the microstructure of the

fluid is proposed and the consequences of this are explored at the macrostruc-

tural level, with appropriate averages (ensemble or volume) being taken to

smooth out microstructural details.

In dilute polymer solutions, we neglect the interaction between different

polymers and inter-polymer interaction and therefore the only forces that come

into play are the hydrodynamic forces and the Brownian forces exerted on the
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polymer by the surrounding solvent molecules.

The elastic dumbbell model

We consider an elastic dumbbell immersed in a Newtonian solvent and con-

sisting of two identical beads and an inter-connecting spring. The two beads

each have mass m and have position vectors r1 and r2 relative to some fixed

coordinate frame. The equations of motion for the beads in the dumbbell can

be written as [80]

m
d

dt

(
dri
dt
− u(ri)

)
= −ζ

(
dri
dt
− u(ri)

)
+ Fi + Bi, i = 1, 2, (6.2.20)

where u(ri) is the velocity of the solvent at the point with position vector ri,

Fi is the force on the ith bead exerted by the spring, ζ is the friction coefficient

and Bi is the Brownian force due to the impact of the solvent molecules on

the ith bead given by

Bidt =
√

2kTζdWi (6.2.21)

where Wi = Wi(t) is a multi-dimensional Wiener process. Let Q = r2 − r1

denote the end-to-end vector of the dumbbell and suppose that the flow is

homogeneous so that we may write

u(ri) = u(0) + κri, (6.2.22)

where κ = (∇u)† is constant in space. It was shown by Schieber and Öttinger

[91] that by subtracting the two components of (6.2.20) and introducing the

relative velocity

V =
dQ

dt
− κQ, (6.2.23)

we now arrive at the equivalent first-order system of stochastic equations

mdV = −(ζV + 2F)dt+ 2
√
kTζdWt,

dQ = (V + κQ)dt, (6.2.24)

where F = F1 = −F2 and Wt = (W2 −W1)/
√

2.

Suppose that the probability that a dumbbell has an orientation in the
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range Q to Q+dQ and a velocity in the range V to V+dV at time t is given by

ψ(Q,V, t)dQdV, where ψ(Q,V, t) is the configurational distribution function.

The Fokker-Planck equation corresponding to the system of equations (6.2.24)

and governing the evolution of ψ(Q,V, t) is

∂ψ

∂t
= − ∂

∂Q
· [(V + κQ)ψ] +

1

m

∂

∂V
· [(ζV + 2F)ψ] +

2ktζ

m2

∂2ψ

∂V2
. (6.2.25)

By taking entropic spring force laws of the form

F = Hf(Q)Q (6.2.26)

where H is a spring constant and f(Q) some scalar function of the dumbbell

length Q = |Q|, and λ1 = ζ/4H for the relaxation of the dumbbell configura-

tion we arrive at the contracted Fokker-Planck equation [80]

∂ψ

∂t
= − ∂

∂Q
·
[
κQψ − 1

2λ1

f(Q)Qψ − 2kT

ζ

∂ψ

∂Q

]
. (6.2.27)

Defining the ensemble average 〈·〉 for any function g of Q by

〈g(Q)〉 =

∫
g(Q)ψ(Q,V, t)dQ (6.2.28)

and by referring to Bird et al. [8], relating the extra-stress tensor T to the

ensemble average of the dyadic product QF as

T = −nkT I + ηsγ̇ + n〈QF〉, (6.2.29)

where n is the number density of the dumbbells, we arrive at the Kramers

expression for the stress tensor. We now multiply (6.2.27) by QQ, integrate

over R3, and use the divergence theorem and the fact that ψ → 0 as |Q| tends

to its maximum permissible length to obtain [48]

〈
∇

QQ〉 =
4kT

ζ
I− 1

λ1

〈QF〉 (6.2.30)

and by substituting for 〈QF〉 into the Kramers expression (6.2.29) for T we
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recover the Giesekus expression for the stress tensor

T = ηsγ̇ −
nζ

4
〈
∇

QQ〉. (6.2.31)

If the connecting spring force is Hookean, the force law for F is

F = HQ (6.2.32)

and equations (6.2.29) and (6.2.31) become

T = −nkT I + ηsγ̇ + nH〈QQ〉, (6.2.33)

T = ηsγ̇ −
nζ

4
〈
∇

QQ〉. (6.2.34)

Observing that
∇
I= −γ̇ (6.2.35)

we can eliminate 〈QQ〉 between equations (6.2.33) and (6.2.34) by taking the

upper convected derivative of (6.2.33) to give

T + λ1

∇
T= η0

(
γ̇ + λ2

∇
γ̇

)
(6.2.36)

where

λ2 =
ηsζ

4(ηp + ηs)H
=

ηsλ1

(ηp + ηs)
(6.2.37)

is the characteristic retardation time for the fluid and η0 = ηp + ηs is the total

viscosity where the zero shear rate polymeric viscosity, ηp, is given by

ηp =
nkTζ

4H
. (6.2.38)

Equation (6.2.36) is known as the Oldroyd B constitutive equation. The solvent

and polymeric contributions to the stress can be separated as

T = ηsγ̇ + τ p, (6.2.39)
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where τ p is the elastic stress and by substituting into (6.2.36) we obtain

τ p + λ1
∇
τ p= ηpγ̇ (6.2.40)

which is the UCM equation for the extra stress T as ηs → 0.

The Oldroyd-B model is crude and cannot capture many features of real

complex fluids. However, the model has a constant shear viscosity and so can

be useful in providing qualitative predictions of the flow of Boger fluids. Boger

fluids are the exception in having a constant viscosity and as a consequence

the Oldroyd B model is of limited use in industrial applications. The infinite

extensibility of the Hookean connecting spring leads to an extensional viscosity

which blows up at a finite extensional rate [80] making the Oldroyd-B model

unable to predict extensional flow of dilute polymer solutions.

This leads naturally to examining whether something tractable and useful

can come out of a finitely extensible spring model. As an alternative to the

Hookean spring consider the connector force law

F =
HQ

1− (tr(QQ)/Q2
0)

(6.2.41)

where Q2
0 is some finite constant. It may be seen that with a force law of this

type the spring cannot be extended beyond a length Q0. This gives rise to

the model’s name FENE which stands for finitely extensible nonlinear elastic.

The main problem with FENE is that it is not possible to derive a closed form

constitutive equation directly from the diffusion equation for the configuration

pdf [80]. It is common to make approximations to FENE such as FENE-P (first

described by Peterlin [78] hence the ‘P’), however due to its simplifications,

FENE-P is not able to predict the hysteresis effects that polymers have in

elongational flow in contrast to the FENE model [6].

CONNFFESSIT

Traditionally the mathematical description and numerical simulation of the

flow of polymeric fluids have involved the coupling of the macroscopic equa-

tions for the conservation of linear momentum and of mass with the deter-

mination of the polymeric contribution to the Cauchy stress tensor through
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some constitutive equation, considering the fact that the stresses depend not

only on the instantaneous rate of deformation but also on the history of the

deformation which fluids experienced.

The idea of using stochastic simulations of the polymer dynamics as an

alternative to solving constitutive equations for the determination of the poly-

mer stress is due to Laso and Öttinger [57]. They termed this hybrid method

CONNFFESSIT (Calculation of Non-Newtonian Flow: Finite Elements and

Stochastic Simulation Technique). This approach combines a finite element

solution of the conservation equations with stochastic simulation techniques

for computing polymer stress. Since the approach combines a description of

the microstructure of a polymeric liquid using kinetic theory with a macro-

scopic description of the flow this type of simulation method is known as a

micro-macro approach. This approach allows for greater flexibility in the ki-

netic theory models that can be studied since it does not require the existence

of an equivalent or approximate closed-form constitutive equation. Therefore,

models based on kinetic theory considerations such as the FENE model can be

simulated without resorting to closure approximations that are not universally

accurate.

Numerical methods based on the micro-macro approach decouple the so-

lution of the conservation laws from the solution of the stochastic differential

equation for the polymer conformations that serves to determine the polymer

contribution to the extra-stress tensor. At each time step (for transient flows)

or iteration (for steady flows) the micro-macro algorithm proceeds as follows:

1. Using the current approximation to the polymer stress as a source term

in the momentum equation the conservation equations are solved using

standard finite element methods, for example, to obtain updated approx-

imations to the velocity and pressure fields.

2. The new velocity field is then used to convect a sufficiently large number

of model polymer ‘molecules’ through the flow domain. This is achieved

by integrating the stochastic differential equation associated with the

kinetic theory model along particle trajectories.

3. The polymer stress within an element is determined from the configura-

tions of the polymer molecules in that element.
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These steps are repeated until convergence is obtained.

Despite the advantages of the CONNFFESSIT approach in terms of the

kinetic theory models that can be simulated there were a number of compu-

tational shortcomings in the original implementations of the idea. First, the

trajectories of a large number of molecules have to be determined. Secondly, to

evaluate the local polymer stress the model polymer molecules must be sorted

according to elements. Thirdly, the computed stress may be nonsmooth and

this may cause problems when differentiated to form the source term in the

momentum equation [80].

6.3 Viscoelastic Lattice Boltzmann methods

In general, the equations governing the motion of viscoelastic fluids are com-

plicated nonlinear partial differential equations. For example, for an incom-

pressible fluid one must solve the system of equations

∇ · u = 0, (6.3.1)

ρ
Du

Dt
= ∇ · σ, (6.3.2)

σ = −pI + T (6.3.3)

where the extra stress tensor T is given by an appropriate consitutive equation

such as the UCM model. There are only a few special cases where analyti-

cal solutions exist and most of those are for the simpler rheological models.

Therefore, accurate and efficient numerical schemes are vital for solving non-

Newtonian flow problems. Traditional approaches to solving non-Newtonian

flow problems are very similar to solving Newtonian flow problems, such as fi-

nite difference, finite volume, finite elements or spectral elements. Some of the

problems previously discussed when solving Newtonian fluid problems are ap-

parent for non-Newtonian fluid problems. For example, irregular geometries,

unresolved theoretical problems concerning compatibility conditions to ensure

a well-posed discrete problem (LBB condition), and difficulties in dealing with

the convective term, u · ∇T. Since the lattice Boltzmann method is based on

discrete mesoscopic dynamics, and has already proved to be useful in solving

Newtonian fluid problems in irregular geometries (such as porous rock) it is
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considered a promising computational tool for viscoelastic flows.

6.3.1 A lattice Boltzmann method for the Jeffreys model

The first attempt to incorporate viscoelastic effects into the lattice Boltzmann

method was by Giraud et al. [31], who added the Jeffreys’ complex shear

viscosity (6.2.17) into the original LBE framework. They considered the LBE

with a full collision matrix,

fi(x + ci, t+ 1) = fi(x, t)−
∑
j

Ωij(fj − f eqj ). (6.3.4)

and first defined the model on a D2Q13 lattice. As previously discussed in

Chapter 1, the leading nonzero eigenvalue of the scattering matrix Ω controls

the viscosity of the LB fluid with the remaining eigenvalues arbitary. The

normalised eigenvectors of this model were chosen to be

φ0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/
√

13,

φ1 = (0, 1, 0,−1, 0, 1,−1,−1, 1, 2, 0,−2, 0)/
√

14,

φ2 = (0, 0, 1, 0,−1, 1, 1,−1,−1, 0, 2, 0,−2)/
√

14,

φ3 = (28, 15, 15, 15, 15, 2, 2, 2, 2,−24,−24,−24,−24)/2
√

1001,

φ4 = (0, 1,−1, 1,−1, 0, 0, 0, 0, 4,−4, 4,−4)/2
√

17,

φ5 = (0, 0, 0, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0)/2,

φ6 = (4,−2,−2,−2,−2, 1, 1, 1, 1, 0, 0, 0, 0)/6,

φ7 = (28, 4, 4, 4, 4,−20,−20,−20,−20, 9, 9, 9, 9)/6
√

77,

φ8 = (0,−2, 0, 2, 0, 1,−1,−1, 1, 0, 0, 0, 0)/2
√

3,

φ9 = (0, 0,−2, 0, 2, 1, 1,−1,−1, 0, 0, 0, 0)/2
√

3,

φ10 = (0,−2, 0, 2, 0,−2, 2, 2,−2, 3, 0,−3, 0)/
√

42,

φ11 = (0, 0,−2, 0, 2,−2, 2, 2,−2, 0, 3, 0,−3)/
√

42,

φ12 = (0,−4, 4,−4, 4, 0, 0, 0, 0, 1,−1, 1,−1)/2
√

17,

corresponding to the eigenvalues

{0, 0, 0, λe, λν , λ′ν , λS, λS, λχ, λχ, λ′χ, λ′χ, λz}. (6.3.5)
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To incorporate viscoelastic effects into this model, Giraud et al. [31] coupled

the symmetric viscous stress tensor to some new quantity that evolves slowly

in time causing memory effects. The new model they proposed was a D2Q15

model with φ4 and φ5 replaced by

φ4 = (a, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0, 4,−4, 4,−4), (6.3.6)

φ5 = (0, b, 0, 0, 0, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0), (6.3.7)

and two new eigenvectors

φ13 = (−68/a, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0, 4,−4, 4,−4), (6.3.8)

φ14 = (0,−4/b, 0, 0, 0, 0, 0, 1,−1, 1,−1, 0, 0, 0, 0), (6.3.9)

where a and b are coupling constants and the eigenvectors haven’t been nor-

malised. The corresponding eigenvalues are denoted by [λγ, λγ] and the added

lattice vectors are in the rest particle position. The other eleven eigenvec-

tors are derived from the previous D2Q13 lattice with each vector having an

additional two components equal to zero added to the front of them.

If λγ = 0, the moments m13 and m14 are conserved and the following

macroscopic equations are obtained

∂tρ+ ∂xjx + ∂yjy = 0, (6.3.10)

∂tjx +

(
∂x
j2
x

ρ
+ ∂y

jxjy
ρ

)
+ ∂xP +

c⊥
κ

(∂xm13 + ∂ym14)

= ν∞∆jx + ξ∞∂x(∂xjx + ∂yjy), (6.3.11)

∂tjy +

(
∂y
j2
y

ρ
+ ∂x

jxjy
ρ

)
+ ∂yP +

c⊥
κ

(∂xm14 − ∂ym13)

= ν∞∆jy + ξ∞∂y(∂xjx + ∂yjy), (6.3.12)

∂tm13 + κ(∂xjx − ∂yjy) = D∞∆m13, (6.3.13)

∂tm14 + κ(∂xjy + ∂yjx) = D∞∆m14, (6.3.14)

where j is the momentum, and κ and c⊥ are free parameters such that 0 <

κ < 749/442 and c2
⊥ < κ/2 < 749/884. The viscosity and pressure are given



Edward Lewis Lattice Boltzmann Methods for Flows of Complex Fluids 97

by

ν∞ =
(κ

2
− c2

⊥

)( 1

λν
− 0.5

)
, (6.3.15)

ξ∞ =

(
2κ

2
− c2

s

)(
1

λe
− 0.5

)
, (6.3.16)

D∞ = c2
⊥

845− 1383κ+ 442κ2

κ(749− 442κ)

(
1

λξ
− 0.5

)
, (6.3.17)

P = c2
sρ, (6.3.18)

where the sound speed, cs is a free parameter.

When λγ 6= 0, m13 and m14 are not conserved quantities and must have

equilibrium values and are set to zero in Giraud et al. [31] for simplicity.

If λγ is of the same order of magnitude as the other eigenvalues, the Navier-

Stokes equations can be derived by the Chapman-Enskog analysis with a shear

viscosity

ν0 =
(κ

2
− c2

⊥

)( 1

λν
− 0.5

)
+ c2
⊥

(
1

λν
− 0.5

)
. (6.3.19)

When λγ is non-zero but very small, the fluid behaves viscously for time

scales much longer than 1/λγ and elastically for very short time scales. Al-

though this model was encouraging the results presented were only qualitative

and the amount of numerical evidence for viscoelasticity is small. Giraud et al.

were unable to derive the macroscopic equations of motion since the Chapman-

Enskog analysis assumes the time scales are much larger than the inverse of

the smallest non-zero eigenvalue, which is not necessarily true in this model.

This model was improved by Giraud et al. [32] by reducing the lattice to

a D2Q11 model. They argued that the collision matrix Ωij can be perturbed

in the same manner as the distribution functions in the Chapmann-Enskog

analysis so that

Ω = Ω(0) + εΩ(1) + ε2Ω(2). (6.3.20)

The matrices are assumed to have the same eigenvectors which are split into

three groups. The conserved ones with zero eigenvalues, the quasi-conserved

ones with zero eigenvalues for Ω(0) but non zero ones for Ω(1) and Ω(2) and the

non-conserved ones with non zero eigenvalues for Ω(0) and zero eigenvalues for

Ω(1) and Ω(2). After some algebra, the three conservation equations and two
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quasi-conservation ones corresponding to the eleven-velocity model are given

by

∂tρ+ ∂xjx + ∂yjy = 0, (6.3.21)

∂tjx + ∂xP + c⊥(∂xm9 + ∂ym10)

(
1− λγ

2

)
= ν∞∆jx + ξ∞∂x(∂xjx + ∂yjy), (6.3.22)

∂tjy + ∂yP + c⊥(∂xm10 − ∂ym9)

(
1− λγ

2

)
= ν∞∆jy + ξ∞∂y(∂xjx + ∂yjy), (6.3.23)(

1− λγ
2

)
∂tm9 + λγm10 + ∂xjx − ∂yjy = D∞∆m9, (6.3.24)(

1− λγ
2

)
∂tm10 + λγm9 + ∂xjx − ∂yjy = D∞∆m10, (6.3.25)

where

ν∞ =

(
1− 4c2

⊥
4

)(
1

λν
− 0.5

)
, (6.3.26)

ξ∞ =

(
3

4
− c2

s

)(
1

λe
− 0.5

)
, (6.3.27)

D∞ = c2
⊥

(
1

λξ
− 0.5

)
. (6.3.28)

The three conservation equations can also be written in an equivalent me-

chanical formulation

∂tρ+ ∂xjx + ∂yjy = 0, (6.3.29)

∂tjα = ∂βσαβ, (6.3.30)

where the stress tensor σαβ = −Pδαβ + σ
(v)
αβ + σ

(N)
αβ contains two traceless

tensors, one the usual viscous form for compressible fluids (v) and one for the

non-Newtonian contributions (N)

σ
(v)
αβ = ν∞(∂αjβ + ∂βjα − ∂γjγ∂αβ) + ξ∞∂γjγδαβ, (6.3.31)

σ
(N)
αβ = c⊥

(
1− λγ

2

)
mαβ (6.3.32)
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where mxx = myy = m9 and mxy = myx = m10. Equation (6.3.32) is a solution

of

σ
(N)
αβ + τ(∂tσ

(N)
αβ +D∞∆σ

(N)
αβ ) = (ν0 − ν∞)(∂αjβ + ∂βjα − ∂γjγδαβ, ) (6.3.33)

which Giraud et al. [32] claim is the Jeffreys constitutive equation with an

added stress diffusion term D∞∆σ
(N)
αβ , which becomes negligible when D∞τ ≈

1.

For verification, Giraud et al. [32] simulated a pulsed Couette flow between

two plates, where the plate at height h = 0 oscillates in time with pulsation ω

while the other one at h = H was kept fixed and modelled with the bounce-back

condition. Their results for the amplitude of the flow velocity are in excellent

agreement with theoretical predictions but errors in the second harmonic are

observed.

It should be noted that the right hand side of (6.3.33) should contain time

derivatives that are present in a Jeffreys model. It should also be noted that

equation (6.3.33) does not satisfy the principles of objectivity of continuum

mechanics (cf. [79] for further details) and thus is not frame invariant and

may only be valid for simple shear flows (with α = x and β = y in (6.3.33)).

6.3.2 Lattice Fokker-Planck Equation

Luo and He [66] have shown how the lattice Boltzmann equation can be derived

from a direct numerical discretisation of the continuous Boltzmann equation.

A lattice Boltzmann style equation for the Fokker-Planck equation has been

developed by Onishi et al. [75] which uses the ideas of Luo to discretise the

Fokker-Planck equation on a lattice in order to recover the UCM model for

polymeric liquids.

The procedures are organised as follows. Firstly, the configuration space is

discretised so that the moments of ψ in the discrete space agree with those in

the continuous space. Then, the time evolution equation for the distribution

function defined in the discrete space is derived, and is further discretised in

physical space and time.

In order to illustrate the discretisation procedure, a new variable ψ(Q) =

φ(Q)e−(H/2kBTm)(Q·Q) and a normalisation factor QC =
√

2kBTm/H are intro-
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duced. With the new variable, the moments of ψ involve integrations of the

form,

〈B(Q)〉 =

∫
B(Q)ψ(Q)d(Q) =

(
2kBTm
H

)D/2 ∫
B(QCξ)φ(QCξ)e−ξ·ξdξ,

(6.3.34)

where B(Q) is an arbitrary function of Q, and ξ = Q/QC is a non-dimensional

configuration vector. It is well known that this form of integration can be ap-

proximated with Gauss-Hermitian quadrature up to a certain order depending

on the number of the vectors, N , used to span the discrete space:

∫
ξmα e

−ξ·ξdξ = πD/2

N∑
j

ωjξ
m
jα, (6.3.35)

where ξα is the α-th component of a D dimensional vector ξ, ξj is the j-th

vector of the discrete space, and ωj is the corresponding weight factor. Apply-

ing the Gauss-Hermite quadrature, 〈B(Q)〉 can be evaluated by the weighted

summation with a new weight ψj,

〈B(Q)〉 =
N∑
j

B(Qj)ψj, (6.3.36)

where

ψj = ωj

(
2πkBTm

H

)D/2
φ(Qj). (6.3.37)

This result indicates that any moments of ψ in continuous space can be

evaluated with equation (6.3.36), in discrete space. From this viewpoint, ψj

can be regarded as the configurational distribution function in the discrete

configuration space Qj = QCξj.

The time evolution equation for ψj can be derived by referring to the

Fokker-Planck equation,

∂ψj
∂t

= −u · ∇ψj + Ωψ,j +Mj. (6.3.38)

We have collected terms from the continuous Fokker-Planck equation based

on their physical interpretation. Ωψ,j describes the transition process for the

dumbbells to approach an equilibrium state, due to the competition between
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the thermal fluctuations and the spring force between the connected beads.

Mj describes the effect of the solvent flow on the rotation and elongation of

the polymer dumbbells. The term −u ·∇ψj accounts for the convection of the

dumbbells based on the solvent flow. The equilibrium distribution ψeq(Q) is

determined as the following

ψeq(Q) =

(
H

2πkBTm

)D/2
exp

(
− H

2kBTm
Q ·Q

)
. (6.3.39)

By the direct substitution of equation (6.3.37) into equation (6.3.39), the dis-

crete equilibrium distribution ψeqj is obtained as

ψeqj = ωj. (6.3.40)

The dynamics to approach the equilibrium states can be approximated with

a relaxation model when the system is close to its equilibrium. Onishi et al.

[75] consider a single relaxation time model similar to the BGK model for the

velocity distribution function in the standard LBM for Ωψ,j

Ωψ,j = − 1

τψ
(ψj − ψeqj ), (6.3.41)

where τψ is the relaxation time for ψj. Next, the discrete model to account

for effects of solvent flows Mj is derived. A direct substitution of equation

(6.3.37) into the first term in the right-hand side of equation (6.2.27) results

in the following

Mj = ψj
H

kBTm

(
QjQj −

kBTm
H

I

)
: κ† − κ† : Qj

∂ψj
∂Q

. (6.3.42)

Unfortunately, the second term still involves a partial derivative in the config-

uration space, and needs further discretisation. This difficulty, however, can

be avoided by replacing the previously derived terms Mj by

Mj = ωj

(
H

kBTm

)2(
QjQj −

kBTm
H

I

)
:
(
κ† · 〈QjQj〉

)
. (6.3.43)

Equation (6.3.43) is obtained in a rather ad hoc manner in that it was derived

so that the number of density of polymers is conserved and isotropy is main-
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tained. It can be shown that the zeroth to second moments agree with those

of the continuous model. In this sense, Mj can be used to recover the correct

dynamics at the continuous level, at least up to the second moment of Q i.e.∑
j

Mj = 0,
∑
j

QjMj = 0,
∑
j

QjQjMj = κ† · 〈QjQj〉+ 〈QjQj〉 · κ

(6.3.44)

The final step is the discretisation of physical space and time of equation

(6.3.38). In order to discretise equation (6.3.38) in time, equation (6.3.38)

is integrated with the second-order scheme, as the derivation of the LBE for

thermohydrodynamics [40]

ψj(xj, t+ ∆t)− ψj(xj, t) = ∆ψj −
∆t

τψ + 0.5∆t
[ψj(x, t)− ψeqj (x, t)]

+
τψ

τψ + 0.5∆t
Mj∆t. (6.3.45)

It is interesting to note that in this discretisation the ψj term in equation

(6.3.45) is not the same as the ψj in equation (6.3.38). In fact

ψ̄j = ψj +
∆t

2τψ

(
ψj − ψeqj

)
−∆t

Mj

2
(6.3.46)

where ψ̄j is the new ψj in equation (6.3.45). This alters the second order mo-

ment of ψj and hence the approximation to 〈Q ·Q〉 introducing an error when

trying to simulate equation (6.3.38) but it has been confirmed through simu-

lations that this discretisation method has second-order accuracy with respect

to space and time [75]. Unlike the standard Lattice Boltzmann equation in

the literature, the left hand side of equation (6.3.45) is the variation of ψj in

time. A discrete model for the convection term ∆ψj will be discussed later.

Equation (6.3.45) is the main equation proposed in the paper to evaluate

viscoelastic stresses of fluids. The viscoelastic stresses are again obtained in

the Kramers form

τ p = −np
∑
j

QjF
C
j ψj + np

∑
j

QjF
C
j ψ

eq
j . (6.3.47)
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The dynamics of τ p calculated by equation (6.3.47) is equivalent to the UCM

model because the time evolution of the second moment of the discrete distri-

bution satisfies the following equation

〈
∇

QjQj〉 = − 1

τψ

(
〈QjQj〉 −

kBTm
H

I

)
. (6.3.48)

Note that equation (6.3.48) holds only if the vectors and weight factors

in the Gauss-Hermite quadrature equation (6.3.35) are chosen so that second

order moments can be resolved exactly. One of the optimal choices for this

purpose in the two-dimensional case is given by

Qj =


(0, 0), j = 0,

(±1, 0)Q, (0,±1)Q, j = 1, 2, 3, 4,

(±1,±1)Q, j = 5, 6, 7, 8.

(6.3.49)

where Q =
√

3kBTm/H, and Q must be set to unity. The corresponding

weight factors are ωj = 4/9(|Qj|2 = 0), 1/9(|Qj|2 = Q2) 1/36(|Qj|2 = 2Q2)

With such a choice, equation (6.3.35) holds for m = 0, 1, . . . , 5, which is

sufficient for the recovery of the second-order equation (6.3.48). Note that

the number of discrete vectors can be reduced due to the head-tail symmetry

of the dumbbells currently considered. However, the vectors shown above

may be useful for future applications such as modelling block copolymers with

conformational asymmetry.

Finally, the polymer relaxation time and the zero-shear-rate viscosity are

related to the relaxation time for ψj as,

λH = τψ, µp = npkBTmτψ. (6.3.50)

Coupling with the Lattice Boltzmann model

In this section, the hydrodynamics of the solvent is modelled by the LBM.

In the LBM, states of fluids are described by the velocity distribution fi(x, t)

which indicates the probability of having a particle with velocity ci at lattice

site x and time t. For simplicity the D2Q9 model is shown here. For such a
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system, the evolution equation of fi is given as the following equation which

can be derived directly from the Boltzmann equation,

fi(x + ci∆t, t+ ∆t)− fi(x, t) = − ∆t

τn + 0.5∆t
[fi(x, t)− f eqi (x, t)]

+
τn

τn + 0.5∆t
Fi∆t. (6.3.51)

where Ωi = −∆t(fi − f eqi )/(τn + 0.5∆t) describes the collision process of par-

ticles, that is, the BGK model with the relaxation time τn and Fi is the body

force term. Again it is interesting to note that this discretisation introduces an

error in the second moment of fi. The non-equilibrium momentum flux Π(1)

in this discrete system is given by

Π(1) =
Π̄−Π(0)

1 + ∆t/(2τn)
(6.3.52)

rather than by Π−Π(0) as in the continuous system [23].

The equilibrium distribution f eqi depends on local physical quantities such

as the number density of particles ns = Σifi and the flow velocity v =

Σicifi/ns. The constraints on the choice of f eqi are to conserve mass and

momentum during the collision process, and to satisfy isotropy and Galilean

invariance. The commonly used equilibrium distribution which satisfies such

constraints can be obtained by expanding the Maxwell-Boltzmann distribution

up to the second-order in v

f eqi = nsωi

[
1 +

3ci · ṽ
c2

+
9(ci · ṽ)2

2c4
− 3ṽ2

2c2

]
, (6.3.53)

where c2 = 3kBTm/m is the magnitude of the characteristic velocity of the

particles, which is set to be unity for the Gauss-Hermite quadrature, with m

being the mass of the particle. The weight factor ωi is given as 4/9(|ci|2 = 0),

1/9(|ci|2 = c2), 1/36(|ci|2 = 2c2), and ṽ is set to v + 0.5∆t(F/ρ) with F the

body force acting on the fluid.

When the expanded Maxwell-Boltzmann distribution is used, equation

(6.3.51) recovers the Navier-Stokes equation at the continuous level, with the
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viscosity related to the relaxation time τn

τ s = µs(κ + κ†), µs = nskBTmτn. (6.3.54)

Onishi et al. [75] introduce a modified equilibrium distribution in order to

incorporate the excess stress τ p accounting for the contribution from dumbbells

f eqi = nsωi

[
1 +

3ci · ṽ
c2

+
9(ci · ṽ)2

2c4
− 3ṽ2

2c2

]
+ ωiTi,

Ti =
9

2

(
cici
c2
− 1

3
I

)
:

τ p
kBTm

. (6.3.55)

With the modified equilibrium distribution, the zeroth to second velocity

moments are, respectively, calculated as

Σif
eq
i = ns, (6.3.56)

Σicif
eq
i = nsṽ, (6.3.57)

Σicicif
eq
i = nsṽṽ +

nskBTm
m

I +
τ p
m
. (6.3.58)

These results show that the introduction of Ti does not effect the conserva-

tion of mass and the conservation of momentum during the collision process.

Using the Chapman-Enskog analysis, however, it can be shown that the macro-

scopic dynamics still obey the Navier-Stokes equations, except that the total

stress is now composed of two parts, τ = τ s+τ p. Thus, combining the results

equation (6.3.47) and equation (6.3.54), the proposed Lattice Boltzmann equa-

tion (6.3.51) is shown to recover the continuity equation and the Navier-Stokes

equation coupled with the Oldroyd-B constitutive equation at the continuous

level. Finally, the body force term Fi can be calculated as follows,

Fi = 3ωi

[
ci − ṽ

c2
+

3cici · ṽ
c4

]
· F. (6.3.59)

The convection model for dumbbells

In practical simulations, physical space is firstly discretised with square lat-

tices. Two distribution functions, one for the configuration of dumbbells and

the other for the velocity distribution of solvent particles, are initialised at each
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lattice point with certain values. Then, these distributions are let to evolve

according to equation (6.3.45) and equation (6.3.51), respectively. In the time

evolution processes, two distributions interact with each other through f eqi ,Mj

and so on.

It is appropriate here to elucidate the method to calculate the net variation

of the number of dumbbells due to the flow to solvent, that is, ∆ψj in equation

(6.3.45). The simplest way is to use the velocity distribution of the solvent as

the weights to count the number of dumbbells entering and leaving each lattice

point. The central lattice point xc exchanges dumbbells with the neighbouring

lattice points xα = xc + gα, where gα is a connecting vector of the two lattice

points. The number of solvent particles flying from xc to xα is fα(xc), and

conversely, fα′(xα) is the number of solvent particles flying from xα to xc, where

α′ indicates the index for the opposite direction of cα. Hence, the net variation

of the number dumbbells with the configuration vector Qj is evaluated with

the weight Wα(x)

∆ψj(xc) = Σα [−ψj(xc)Wα(xc) + ψj(xα)Wα′(xα)] /n̄, (6.3.60)

Wα(x) = fα/Σifi(x), (6.3.61)

where ψj(xc)Wα(xc) can be considered as the probability for the dumbbells

to move from the lattice point (xc) into (xα) and n̄ is a normalisation factor.

Equation (6.3.60) can be expanded around xc up to the second-order of gα,

which results in the following equation.

∆ψj(xc) ≈ −v · ∇ψj +
1

6
∇2ψj. (6.3.62)

This result indicates that there exists a diffusion term in addition to the

convection term. The additional diffusion term may be justified as the re-

sult of the thermal fluctuation of the solvent. However, the length and time

scales of the polymer diffusion should be much smaller compared with hy-

drodynamic scales. Also, the diffusion term is unwanted for constructing an

accurate scheme for the constitutive equation. For these reasons, Onishi et al.

introduce an anti-diffusion term into the weight factors as follows,

Wα(x) = fi/Σfi(x)− Cωα (6.3.63)
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where ωα is the weight factor to calculate the equilibrium distribution of fi

and C is the control parameter for the anti-diffusion coefficient.

Numerical results Onishi model

Onishi et al. [75] calculate shear and first normal stress difference using their

model and the results show good agreement with theoretical predictions at a

Deborah number De = λH γ̇ = 10. They also investigate the validity of the

model by examining small-amplitude oscillatory shear flows. The temporal

evolution of the shear rate and the polymer stress are seen to be in-phase

which qualitatively agrees with the UCM model. They performed quantitative

comparisons with analytic solutions when the oscillation had a high frequency

and the flow domain was large and found the numerical results obtained in

[75] agree very well with the analytical solutions.

Here we present results for simple shear flow where the velocity field is

imposed in the simulation domain. The dumbbell distribution functions are

initially set to their equilibrium values and the velocity field is given by:

ux = γ̇y (6.3.64)

uy = 0 (6.3.65)

where γ̇ is the shear rate.

Substituting this velocity field into the Olroyd B constitutive equation

(6.2.36) we obtain(
Txx, Txy

Txy, Tyy

)
− λ1

{(
0, γ̇

0, 0

)(
Txx, Txy

Txy, Tyy

)
+

(
Txx, Txy

Txy, Tyy

)(
0, 0

γ̇, 0

)}

= η0

(
−2λ2γ̇, γ̇

γ̇, 0

)
,

(6.3.66)
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which upon solving this system yields

Txx = 2η0(λ1 − λ2)γ̇2, (6.3.67)

Tyy = 0, (6.3.68)

Txy = η0γ̇. (6.3.69)

In Figures 6.3.1 and 6.3.3, we see excellent agreement between the numerical

results and the analytical solutions for the components of the stress tensor for

three different relaxation times and different shear rates. These simulations

were performed on a 150 × 50 lattice. The simulation was stopped when no

change in time was observed. The simulation was then performed on various

sized lattices in order to test the order of convergence. The error Err of the

viscoelastic tensor components is given by

Err =

√
1

N

N∑
|T̃P,αβ − TP,αβ|2 (6.3.70)

where N is the number of points evaluated, T̃P,αβ is the result of the simulation

and TP,αβ is the analytic result. The results in Figure 6.3.2 indicate second

order accuracy for two different γ̇.

To check the temporal evolution of Tp, the start up shear flow is chosen on

the same size lattice to the previous test. The time dependent components of

the stress tensor are given by Huilgol and Phan-Thien [48] as

TP,xx(t) = 2ηpλ1γ̇
2
(
1− e−t/λ1

)
− 2ηpγ̇

2te−t/λ1 (6.3.71)

TP,xy(t) = ηpγ̇
(
1− e−t/λ1

)
(6.3.72)

and we again see excellent agreement with simulated results for start up shear

flow in Figure 6.3.4.

6.4 Discussion

In this chapter we have discussed some lattice Boltzmann methods for vis-

coelastic flows. These can be classified as either multi-relaxation models or

models based on a direct discretisation of the Fokker-Planck equation on a
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Figure 6.3.1: Comparison of simulation results with the analytical solution at
steady state Txx in simple shear with λ = 83.33, λ = 416.67 and λ = 833.33
at different shear rates γ̇. These simulations were performed on a 150 × 50
lattice.

lattice. The multi-relaxation models proposed by Giraud et al. [31, 32] take

advantage of the LBM framework, incorporating viscoelastic effects into the

collision operator, so that the characteristic quantities of complex fluids are

given purely in terms of lattice moments. The ability to tune the collision

matrix gives these models the potential to recover the constitutive equation of

choice without resorting to additional numerical differentiation of macroscopic

quantities. However the relation between lattice moments and viscoelastic

properties is not well understood at present. The models based on discretising

the lattice Fokker-Planck equation have a firm mathematical basis and promise

to be a competitive alternative to macroscopic numerical models for polymeric

fluids, especially for the problems defined in irregular geometries and multi-

phase flows, where lattice Boltzmann methods already have an advantage over

traditional numerical schemes. Here we have presented results validating the

model by Onishi et al. [75] in the cases of steady shear flow and start up shear

flow where we demonstrate excellent agreement with the analytic results.
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Figure 6.3.2: Err of TP,xx and TP,xy at different spacial resolutions N .

Figure 6.3.3: Comparison of simulation results with the analytical solution at
steady state Txy in simple shear with λ = 83.33, λ = 416.67 and λ = 833.33
at different shear rates γ̇.
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Figure 6.3.4: Comparison of evolution of computational and analytical solution
for TP,xx and TP,xy.



Chapter 7

LBM for FENE model

The numerical modelling of complex fluids such as colloidal suspensions, poly-

mer solutions and melts, and amphiphilic fluids is very important for many

applications. Collodial suspensions are found throughout nature for example

milk and blood and are used for a wide variety of purposes, gelofusine is a

colloid which is used as an blood replacement if a significant amount of blood

has been lost and cranberry glass is made by adding colloidal gold to molten

glass. As the Lattice Boltzmann method has been used for flows of Newtonian

fluids, due to its advantages in modelling flows in complex geometries (such

as flow through porous media), flows of multiple fluids and its amenability to

parallel computing [18, 100, 17]. Traditionally flows of complex fluids have

been modelled numerically by coupling approximate macroscopic constitutive

relations for the stress tensor with a Navier-Stokes description for the solvent.

There has been many recent developments of the LBM directed at mod-

elling collodial suspensions [76, 55, 47], liquid crystals [24] and amphiphilic

fluids [14, 72, 63]. These models tend to fall into two distinct categories, top

down and bottom up. In the top down approach epitomised in Denniston et al.

[24], a thermodynamic potential is used to recover the macroscopic target equa-

tions. For a bottom up approach the dynamics of complex fluids is modelled at

the kinetic level in order to recover required macroscopic phenomena. The am-

phiphilic fluid model which reproduces the self-assembled micellar structures

[72, 63] is important as it motivated the novel approach of Onishi et al.[75] for

modelling polymeric liquids. In that model, viscoelastic stresses of polymeric

liquids are evaluated as the net effect of the motion of underlying polymers.

112
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The dynamics of the polymers is modelled based on kinetic theory for polymer

solutions. This model is successful at modelling infinitely extendible dumbbells

which have closed formed macroscopic constitutive equations.

However, a major problem is that many kinetic theory models for polymeric

liquids, such as the FENE dumbbell model, cannot be formulated in terms of

closed form constitutive equations. In most approaches a macroscopic flow

solver is coupled with microscopic Brownian dynamics (BD) simulations. One

can derive an Itô stochastic differential equation which, under certain condi-

tions is equivalent to the Fokker-Planck equation. Thus, the solution of closed

form differential or integral constitutive equations can be avoided and replaced

with the solution of Itô type stochastic differential equations for the conforma-

tions of the polymer molecules describing the coarse grained microstructure.

The elastic stress and other macroscopic quantities are then computed by

means of ensemble averages.

Since the pioneering work by Laso and Öttinger [57], with the CONNFFES-

SITT method, micro-macro simulations have become increasingly popular as

they have opened up exciting possibilities for incorporating more physics of

polymeric fluids into kinetic theory models. The idea to solve the Fokker-

Planck equation for the configurational pdf has great value in numerical com-

putations as it has been shown that the direct solution of the Fokker-Planck

equation can be much more efficient than stochastic methods in the case of

homogeneous flows [64]. Recently Moroni et al. [71] proposed using a lattice

Boltzmann style method for solving the Fokker-Planck equation on a lattice.

They expanded the Fokker-Planck collision operator in a sequence of Hermite

polynomials to account for the diffusion term. This approach is amenable when

examining weak flows, as for strong flows one would require a large number

of terms to account for the large departure from equilibrium. Recently Singh

et al. [96] and Ammar [2] independently developed similar lattice Boltzmann

schemes for the Fokker-Planck equation. Essentially these works used the fact

that the Fokker-Planck equation is an advection-diffusion equation in config-

uration space which can be simulated by breaking momentum conservation

in the LB framework [96]. Computationally the advantage of the method by

Onishi et al. [75] is that it requires a single lattice which is used for both the

solvent distribution functions and the configurational distribution functions
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where as the method described by Ammar [2] and Singh et al. [96] require

solving a lattice Fokker-Planck equation in configurational space to recover

the elastic stress at every single lattice site in physical space.

In this chapter we develop a lattice Boltzmann style solver for the Fokker-

Planck equation using a single lattice, similar to the framework developed by

Onishi et al., but instead using the FENE force law which has a very different

equilibrium solution. There are two major theoretical differences between what

we have developed and the model by Onishi et al. [75]. Firstly they assume

that the configurational distribution functions will be similar to the equilibrium

solution which for Hookean dumbbells is similar to the equilibrium solution for

the Lattice Boltzmann equation, and then use Gauss-Hermite quadrature to

calculated the necessary moments of the distribution functions to recover the

elastic stress. Secondly the configuration space for Hookean dumbbells is R2

(for 2d dumbbells) or R3 (for 3d dumbbells). For FENE dumbbells the equilib-

rium solution has a very different form and so the Hermite weighting function

is not appropriate and the configurational space is a disk bounded by the max-

imum permissible length
√
b and so we require a different quadrature rule that

has been developed here. This leads different discrete equilibrium distribu-

tion functions and to the use of a D2Q7 lattice for the polymeric distribution

functions and the solvent distribution functions so a new coupling is required.

After discussing this new solver for simulating the flow of FENE fluids we

will discuss the FENE solver by Ammar [2] in more detail and then present

results using both approaches.

7.1 A LBM for FENE fluids

7.1.1 Kinetic theory description of the Fokker-Planck

equation for FENE dumbbells

Traditionally viscoelastic stresses have been modelled by solving approximate

macroscopic constitutive equations such as the upper-convected Maxwell (UCM)

model

T + λ1

∇
T= η0γ̇, (7.1.1)
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where the shear rate is given by

γ̇ = (∇u + (∇u)†) (7.1.2)

and the upper-convected derivative is defined by

∇
T=

∂T

∂t
+ u ·T−∇u ·T−T · (∇u)† (7.1.3)

where T is the extra stress tensor, η0 = ηp + ηs is the sum of the polymeric

viscosity and the solvent viscosity, and λ1 is the polymer relaxation time. As

we have seen previously the UCM model can be derived based on simple ki-

netic theory for polymeric liquids, where the polymer solution is modelled by

a Newtonian solvent and dumbbells dispersed in the solvent. The dumbbells

consist of two beads connected by a spring. For the UCM model the spring

force is assumed to be Hookean, F = HQ where H is the spring constant. The

viscoelastic stresses are computed based on ensemble averages of the configu-

ration of the dumbbells and are given by the Kramers expression

Tp = −np〈QF〉+ npkbTmI (7.1.4)

where Tp is the polymeric stress tensor, np is the number density of the dumb-

bells, kb is the Boltzmann constant, and Tm is the mean temperature. 〈·〉
is the ensemble average which is weighted by the configurational distribution

function ψ(Q,x, t), which indicates the probability of finding a dumbbell with

configuration Q at (x, t). The time evolution of ψ obeys a Fokker-Planck

equation

∂ψ

∂t
= −u · ∇ψ − ∂

∂Q
· [κ ·Qψ] +

2kbTm
ζ

∂

∂Q

[
∂ψ

∂Q
+ F

ψ

kbTm

]
(7.1.5)

where ζ is the friction coefficient. Multiplying both sides by QQ and inte-

grating over the configurational space leads to the dynamical equation of the

second moment of ψ

〈
∇

QQ〉 =
4kbTm
ζ

I− 4

ζ
〈QF〉 (7.1.6)
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and from this and Kramers expression for the stress tensor we can recover the

UCM model with λ1 = ζ/4H and ηp = npkbTmλ1 [80].

7.1.2 Discrete kinetic model for FENE dumbbells

The aim is to derive a discrete kinetic equation equivalent to the Fokker-Planck

equation, so that the macroscopic physics can be recovered and viscoelastic

stresses evaluated efficiently with the configurational distribution functions in

discrete space and time.

The derivation of the kinetic equation follows the methodology described

by Onishi et al. [75], with important changes to incorporate different equilib-

rium distribution function associated with the FENE model as opposed to the

Oldroyd-B or FENE-P model.

The non-dimensional equilibrium distribution function for the FENE model,

ψeq(Q), in the 2D case is given in Lozinski et al. [65]

ψeq(Q) =
b+ 2

2πb

(
1− Q ·Q

b

)b/2
(7.1.7)

where
√
b is the dimensionless maximum spring extensibility with the nondi-

mensional force law given by

F(Q) =
Q

1− Q·Q
b

. (7.1.8)

In practice b is usually chosen to be between 20 and 100 as 20 is at the lower end

of what is physically meaningful and values larger than 100 cause only minor

modifications of the Oldroyd-B model. Note that b is not a free parameter,

but roughly the number of momomer units represented by the dumbbell, and

therefore b should be a large number [44] and it should be noted that in the

limit b→∞ we recover the Hookean dumbbell model.

To illustrate the discretisation procedure, we introduce a new variable, ψ,

related to φ by

ψ(Q) = φ(Q)
b+ 2

2πb

(
1− Q ·Q

b

)b/2
. (7.1.9)
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The moments of ψ involve integrals of the form,

〈B(Q)〉 =

∫
|Q|≤

√
b

B(Q)ψ(Q)dQ =
b+ 2

2π

∫
|x|≤1

B(
√
bx)φ(

√
bx)(1− x2)b/2dx

(7.1.10)

where we have used the change of variable x = Q/
√
b with Jacobian b.

Consider the quadrature rule

∫
|y|≤1

ymα (1− y · y)b/2dy =
N∑
i

λiy
m
iα, (7.1.11)

where the weights λi and nodes yi are chosen so that the rule is exact up

to a certain order depending on the number of vectors N , used to span the

discrete space. With such a quadrature rule one would be able to compute the

moments of ψ in continuous space in discrete space.

Generalised Gauss Quadrature Rule

We need to derive an appropriate Gaussian quadrature so we evaluate integrals

of the form

I =

∫
x2+y2≤1

(1− (x2 + y2))b/2xiyjdxdy. (7.1.12)

Making the substitution x = ρ cos θ and y = ρ sin θ, this integral becomes

I =

∫ 1

−1

|ρ|(1− ρ2)b/2ρi+jdρ

∫ π/2

−π/2
cosi θ sinj θdθ (7.1.13)

and then the substitution t = sin θ yields

I =

∫ 1

−1

|ρ|(1− ρ2)b/2ρi+jdρ︸ ︷︷ ︸
Have to derive a new Gaussian rule

∫ 1

−1

(1− t2)i/2tj(1− t2)−1/2dt︸ ︷︷ ︸
Gauss Chebyshev

(7.1.14)

Consider the set of polynomials orthogonal on (−1, 1) with respect to the

weight function |ρ|(1− ρ2)b/2. Let Pn(x) be the element of the set of degree n.

If ∫ 1

−1

w(x)f(x)dx ≈
n∑
i=1

Aif(xi) (7.1.15)
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then this rule is exact for all polynomials of degree 2n−1 or less if the weights

Ai are given by

Ai =

∫ 1

−1
w(x)P 2

n−1(x)dx

P ′n(xi)Pn−1(xi)
(7.1.16)

and the nodes xi correspond to the zeros of the orthogonal polynomial Pn and

the orthogonal polynomials (of the form Pn(x) = xn+an,n−1x
n−1 +· · ·+an,1x+

an,0) are derived by use of a recursive relation of the form

Pn(x) = (x− βn)Pn−1(x)− γnPn−2(x), n = 2, 3, 4, . . . , (7.1.17)

P1(x) = x− β1, P0(x) = 1 (7.1.18)

where

βn =
In,n−1

In−1,n−1

+ an−1,n−2 (7.1.19)

and

γn =
In−1,n−1

In−2,n−2

(7.1.20)

in which

In,m =

∫ 1

−1

w(x)xnPm(x)dx. (7.1.21)

The first two orthogonal polynomials are

P0(x) = 1, P1(x) = x, (7.1.22)

and then using the recursive relation the next two polynomials are

P2(x) = x2 − 2

b+ 4
, P3(x) = x3 − 4

b+ 6
x, (7.1.23)

and the corresponding weights are given by the values in the Table:7.1 so that

∫ 1

−1

|ρ|(1− ρ2)b/2ρldρ =
2∑

k=0

xlkAk (7.1.24)
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xi Ai
0 1/(b+ 4)

−
√

4/(b+ 6) (b+ 6)/(2(b+ 2)(b+ 4))√
4/(b+ 6) (b+ 6)/(2(b+ 2)(b+ 4))

Table 7.1: Nodes and Weights for derived quadrature rule.

for l ≤ 5.

A third order scheme for Gauss-Chebyshev quadrature is

∫ 1

−1

(1− x2)−1/2xldt =
2∑
j=0

xljBi (7.1.25)

where the corresponding weights are given in the Table:7.2 for l ≤ 5.

xi Bi

0 π/3

−
√

3/2 π/3√
3/2 π/3

Table 7.2: Nodes and Weights for Gauss-Chebyshev quadrature rule.

Now we have separate Gaussian rules for each of the integrals in (7.1.14).

We take their Cartesian product to form the new quadrature rule, recalling

that x = ρ cos θ and y = ρ sin θ, so that

∫
|x|≤1

f(x, y)(1− x2)b/2dx =
6∑
i=0

f(xi, yi)λi, (7.1.26)

where the nodes and weights are defined in Table:7.3 This quadrature rule

approximates integrals over the disk by the use of nodes at the vertices of a

hexagon. One way to derive the Lattice Boltzmann method is by discretising

the Boltzmann equation using Gauss-Hermite quadrature. The integral is

over the domain R2. If R2 is approximated as an infinitely large square one

recovers the D2Q9 lattice and if it is approximated as an infinitely large disk

the D2Q7 lattice is recovered. The difference between the original FHP (D2Q7)

lattice and our Fokker-Planck lattice is the length of the lattice vectors. In
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i xi yi λi
0 0 0 π/(b+ 4)

1 −
√

(4/(b+ 6))/2
√

(4/(b+ 6))
√

3/2 π
3

(b+6)
(2(b+2)(b+4))

2 −
√

(4/(b+ 6))/2 −
√

(4/(b+ 6))
√

3/2 π
3

(b+6)
(2(b+2)(b+4))

3 −
√

(4/(b+ 6)) 0 π
3

(b+6)
(2(b+2)(b+4))

4
√

(4/(b+ 6))/2 −
√

(4/(b+ 6))
√

3/2 π
3

(b+6)
(2(b+2)(b+4))

5
√

(4/(b+ 6))/2
√

(4/(b+ 6))
√

3/2 π
3

(b+6)
(2(b+2)(b+4))

6
√

(4/(b+ 6)) 0 π
3

(b+6)
(2(b+2)(b+4))

Table 7.3: Nodes and Weights for quadrature rule for I.

the original FHP lattice for isothermal fluids the length of the lattice vector

has no physical significance [42], whereas here we have the length of the lattice

vector depending on b.

Returning to the discretisation of the configuration space, by applying the

Gaussian quadrature, 〈B(Q)〉 can be evaluated by the weighted summation

with a new weight ψj,

〈B(Q)〉 =
N∑
j

ψjB(Qj) (7.1.27)

where

ψj =
b+ 2

2π
λjφ(Qj). (7.1.28)

is the configurational distribution function in discrete configuration space with

Qj =
√
bxj.

In order to derive the discrete equilibrium distribution function, we start

by substituting (7.1.9) into (7.1.28)

ψj =
b+ 2

2π
λjφ(Qj) =

b+ 2

2π
λjψ(Qj)

2πb

b+ 2

(
1− Qj ·Qj

b

)−b/2
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and then evaluating this expression at equilibrium using (7.1.7) we obtain

ψeqj =
b+ 2

2π
λjψ

eq(Qj)
2πb

b+ 2

(
1− Qj ·Qj

b

)−b/2
=
b+ 2

2π
λj
b+ 2

2πb

(
1− Qj ·Qj

b

)b/2
2πb

b+ 2

(
1− Qj ·Qj

b

)−b/2
so that

ψeqj = λj

(
b+ 2

2π

)
. (7.1.29)

The time evolution equation for ψj can be derived by referring to the Fokker-

Planck equation (7.1.5) and collecting terms based on their physical contribu-

tions
∂ψj
∂t

= −v · ∇ψj + Ωψ,j +Mj, (7.1.30)

where Ωψ,j describes the transition process for the dumbbells to approach an

equilibrium state, due to the competition between the thermal fluctuation and

the spring force between the connected bead and Mj accounts for the effects

of the elongation and rotation of the solvent on the polymer chains. The term

−v · ∇ψj accounts for the convection of the dumbbells based on the solvent

flow.

The dynamics to approach the equilibrium states can be approximated

with a relaxation model when the system is close to its equilibrium. In this

study, a single time relaxation model similar to the BGK model for the velocity

distribution function in the standard LBM is employed for Ωψ,j

Ωψ,j = − 1

τψj

(
ψj − ψeqj

)
, (7.1.31)

where τψj is the relaxation time for ψj.

Next the discrete model to account for effects of solvent Mj is derived.

Consider the discretisation of the corresponding term from equation (7.1.5)

S = − ∂

∂Q
· [κ ·Qψ] . (7.1.32)
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Use of the new variable defined by (7.1.9) gives

S = − ∂

∂Q
·

[
κ ·Qφ(Q)

b+ 2

2πb

(
1− Q ·Q

b

)b/2]
(7.1.33)

and then performing the derivative using the product rule yields

S = −
(
b+ 2

2πb

)(
κ : Q

∂

∂Q

[
φ(Q)

(
1− Q ·Q

b

)b/2]
+ κ : φ(Q)

(
1− Q ·Q

b

)b/2
I

)
(7.1.34)

and then using the product rule on the remaining derivative gives

S =−
(
b+ 2

2πb

)(
κ : Q

∂

∂Q
{φ(Q)}

(
1− Q ·Q

b

)b/2
− κ : QQ

(
1− Q ·Q

b

)b/2−1

φ(Q) + κ : φ(Q)

(
1− Q ·Q

b

)b/2
I

)
.

(7.1.35)

We then integrate this term over configurational space and discretise the inte-
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gral using Gauss-Jacobi quadrature in a similar manner as before

∫
SdQ =

(
b+ 2

2πb

)∫
|Q|≤

√
b

{(
1− Q ·Q

b

)b/2 [
−κ : Q

∂φ(Q)

∂Q
− κ : φ(Q)I

]

+

(
1− Q ·Q

b

)b/2−1

[κ : QQφ(Q)]

}
dQ

=

(
b+ 2

2π

)∫
|x|≤1

{
(1− x · x)b/2

[
−κ : x

√
b
∂φ(x)

∂x
− κ : φ(x

√
b)I

+ (1− x · x)−1 κ : xxbφ(x
√

b)
]}

dx

≈
(
b+ 2

2π

) N∑
j

λj

[(
1− Qj ·Qj

b

)−1

[κ : QjQjφ(Qj)]

−κ : Iφ(Qj)− κ : Qj
∂φ(Q)

∂Q

∣∣∣∣
Q=Qj

]

=
N∑
j

[(
1− Qj ·Qj

b

)−1

[κ : QjQjψj]− κ : Iψj − κ : Qj
∂ψj
∂Q

]
=
∑
j

Mj

where

∂ψj
∂Q

=

(
b+ 2

2π

)
λj
∂φ(Q)

∂Q

∣∣∣∣
Q=Qj

(7.1.36)

and

Mj =

(
1− Qj ·Qj

b

)−1

[κ : QjQjψj]− κ : Iψj − κ : Qj
∂ψj
∂Q

(7.1.37)

= κ :

[(
1− Qj ·Qj

b

)−1

QjQj − I

]
ψj − κ : Qj

∂ψj
∂Q

. (7.1.38)

It should be noted that this expression for Mj involves a partial derivative in

continuous configuration space of a function φ evaluated at the points Qj. To

facilitate the discretisation of this partial derivative, a new form for the Mj

term is proposed such that it recovers the correct dynamics at the continuous
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level, at least, up to the second moment of Q

M0 = 2

(
−1 0

0 −1

)
: (κ · 〈QjQj〉) (7.1.39)

M1 =

(
0 −1/

√
3

−1/
√

3 2/3

)
: (κ · 〈QjQj〉) (7.1.40)

M2 =

(
1 0

0 −1/3

)
: (κ · 〈QjQj〉) (7.1.41)

M3 =

(
0 1/

√
3

1/
√

3 2/3

)
: (κ · 〈QjQj〉) (7.1.42)

M4 =

(
0 −1/

√
3

−1/
√

3 2/3

)
: (κ · 〈QjQj〉) (7.1.43)

M5 =

(
1 0

0 −1/3

)
: (κ · 〈QjQj〉) (7.1.44)

M6 =

(
0 1/

√
3

1/
√

3 2/3

)
: (κ · 〈QjQj〉) (7.1.45)

(7.1.46)

so ∑
j

Mj = 0,
∑
j

QjMj = 0 (7.1.47)∑
j

QjQjMj = κ · 〈QjQj〉+ 〈QjQj〉 · κT . (7.1.48)

Finally discretising equation (7.1.30) in physical space and time, replacing the

time derivative by a first order time difference, as in the derivation of the

LBGK [81, 17] gives

ψj(x, t + 1) − ψj(x, t) = ∆ψj −
1

τψj

(
ψj(x, t)− ψeqj (x, t)

)
+ Mj (7.1.49)

where ∆ψj is the convection of the dumbbells which can be handled but in the

flow geometries we are exploring can be neglected. The viscoelastic stresses
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are obtained in the Kramers form

Tp(x, t) =
1− β
We

(
b+ 4

b

)∑
j

QjQj(
1− Q2

j

b

)(ψj − ψeqj )

 (7.1.50)

where β is the ratio of the solvent viscosity to the total viscosity and We is

the Weissenberg number which is the ratio of the elastic forces to the viscous

forces.

7.1.3 Coupling with LBM

In this section, the hydrodynamics of the solvent is modelled by the LBM.

In the LBM, states of fluids are described by the velocity distribution fi(x, t)

which indicates the probability of having a particle with velocity ci at lat-

tice site x and time t. For ease of coupling with our derived Lattice Fokker

Planck model the D2Q7 model is shown here. For such a system, the evolution

equation of fi is given by the LBGK equation

fi(x + ci, t+ 1)− fi(x, t) = − 1

τn
[fi(x, t)− f eqi (x, t)] (7.1.51)

with the relaxation time τn.

The equilibrium distribution f eqi depends on local physical quantities such

as the number density of particles ns = Σifi and the flow velocity u =

Σicifi/ns. The constraints on the choice of f eqi are to conserve mass and

momentum during the collision process, and to satisfy isotropy and Galilean

invariance. The commonly used equilibrium distribution which satisfies such

constraints can be obtained by expanding the Maxwell-Boltzmann distribution

up to second-order in u:

f eqi = ns

[
1− z

6
+

ci · u
3c2

+
2(ci · u)2

3c4
− u2

6c2

]
, i = 1, . . . , 6 (7.1.52)

f eq0 = ns

(
z − u2

c2

)
(7.1.53)
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where c = |ci| and z is a parameter that controls the speed of sound cs by

cs =

√
1− z

2
. (7.1.54)

A given kinematic viscosity can be achieved by use of the appropriate relax-

ation time parameter τn using the relation

ν =
c2

4

(
τn −

1

2

)
. (7.1.55)

When the expanded Maxwell-Boltzmann distribution is used, equation

(7.1.51) recovers the Navier-Stokes equation at the continuous level.

To incorporate the extra stress Tp from the contribution from the dumbbells

a modified equilibrium distribution is introduced

f eqi = ns

[
1− z

6
+

ci · u
3c2

+
2(ci · u)2

3c4
− u2

6c2

]
+ Ti, i = 1, . . . , 6

f eq0 = ns(z −
u2

c2
) + T0 (7.1.56)

where

T0 =
1

c2

(
−1 0

0 −1

)
: Tp T1,4 =

1

c2

(
0 −1/(2

√
3)

−1/(2
√

3) 1/3

)
: Tp (7.1.57)

T2,5 =
1

c2

(
1/2 0

0 −1/6

)
: Tp T3,6 =

1

c2

(
0 1/(2

√
3)

1/(2
√

3) 1/3

)
: Tp. (7.1.58)

With the modified equilibrium distribution, the zeroth to second velocity

moments are, respectively, calculated as∑
i

f eqi = ns, (7.1.59)∑
i

cif
eq
i = nsu, (7.1.60)

∑
i

cicif
eq
i = nsuu +

ns(1− z)c2

2
I + TP . (7.1.61)

These results show that the introduction of Ti does not effect the conserva-
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tion of mass and the conservation of momentum during the collision process.

Using the standard Chapman-Enskog analysis [13], [75], [84] it can be shown

that the mass and momentum equations are recovered

∂ρ

∂t
+∇ · ρu = 0, (7.1.62)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p−∇ · σ (7.1.63)

σ = µsγ̇ + µpTP (7.1.64)

where µs is the solvent viscosity and µp is the polymeric viscosity.

7.1.4 Lattice Boltzmann method for polymer kinetic

theory

Ammar [2] presents an alternative scheme for solving the Fokker-Planck equa-

tion. Starting with the usual LBGK for fluids

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −1

τ
(fi(x, t)− f eqi (x, t)) (7.1.65)

for i = 0, . . . , 8 with the D2Q9 lattice. Denote c as the ratio between the

lattice spacing ∆x and the time step ∆t. The local equilibrium distribution

function f eqi is given by

f eqi (x, t) =

(
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

)
ωiψ (7.1.66)

where cs is the so called lattice speed of sound in the LBM for fluids and

is given by cs = c/
√

3, and u is a convection vector that is not the same

as the physical velocity. The weights ωi are the normal lattice Boltzmann

weights. The distribution functions and the equilibrium distribution functions
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are subject to the following conditions∑
i

fi =
∑
i

f eqi = ψ (7.1.67)∑
i

cif
eq
i = ψu (7.1.68)∑

i

cicif
eq
i = ψ(uu + c2

sI) (7.1.69)

where I is the identity tensor. To derive the Fokker-Planck equation, apply an

expansion similar to the Chapman-Enskog expansion,

fi = f eqi + εf
(1)
i + εf

(2)
i (7.1.70)

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
(7.1.71)

∂

∂x
= ε

∂

∂x1

. (7.1.72)

Using equation (7.1.70) and (7.1.67) gives∑
i

f
(k)
i = 0, k = 1, 2. (7.1.73)

Denote a combined time-space derivative operator Di as

Di =
∂

∂t
+ ci ·

∂

∂x
(7.1.74)

D1i =
∂

∂t1
+ ci ·

∂

∂x1

(7.1.75)

The expansion of equation (7.1.65) gives

Difi +
∆t

2
D2
i fi + · · · = − 1

τ∆t
(fi − f eqi ). (7.1.76)
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Using equations (7.1.70), (7.1.71), (7.1.72) and (7.1.76) we can write for dif-

ferent orders of ε

D1if
eq
i = − 1

τ∆t
f

(1)
i (7.1.77)

∂

∂t2
f eqi +D1if

(1)
i +

∆t

2
D1if

eq
i = − 1

τ∆t
f

(2)
i . (7.1.78)

Combining equations (7.1.77) and (7.1.78) yields

∂

∂t2
f eqi +

(
1− 1

2τ

)
D1if

(1)
i = − 1

τ∆t
f

(2)
i . (7.1.79)

After summing equations (7.1.77) and (7.1.79) and using the constraints on

the moments of the distribution functions (7.1.70), (7.1.71) and (7.1.72), we

obtain

∂

∂t1
ψ +

∂

∂x1

· (uψ) = 0 (7.1.80)

∂

∂t2
ψ +

(
1− 1

2τ

)
∂

∂x1

·
∑
i

cif
(1)
i = 0 (7.1.81)

where ∑
i

cif
(1)
i = −τ∆t

∑
i

ciDif eqi

= −τ∆t

(
∂

∂t1
(uψ) +

∂

∂x1

· (ψuu + c2
sI)

)
(7.1.82)

The velocity u is dependent on the flow velocity gradient at the macroscopic

level and the large space scale. Thus we can write equation (7.1.82) as

∑
i

cif
(1)
i = −τ∆t

(
u

(
∂

∂t1
ψ +

∂

∂x1

· (ψu)

)
+ c2

s

∂

∂x1

ψ

)
(7.1.83)

and then using equation (7.1.80)

∑
i

cif
(1)
i = −τ∆t

(
c2
s

∂

∂x1

ψ

)
. (7.1.84)
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Substituting this expression into equation (7.1.81) yields

∂

∂t2
ψ = ∆t

(
τ − 1

2

)
c2
s

∂

∂x1

ψ (7.1.85)

which we combine with equation (7.1.80) to recover

∂

∂t
ψ +

∂

∂x
· (uψ) = ∆t

(
τ − 1

2

)
c2
s

∂2

∂x2
ψ (7.1.86)

which is the general form of the parabolic Fokker-Planck equation.

The Fokker-Planck equation we wish to use to simulate a FENE polymeric

liquid is

∂ψ

∂t
= − ∂

∂Q
·
(
∇v ·Qψ − 1

2λ1

Fψ

)
+

1

2λ1

∂2ψ

∂Q2
(7.1.87)

where F is the FENE force law and λ1 is the polymeric relaxation time, so we

require

u = ∇v ·Q− 1

2λ1

F (7.1.88)

∆t

(
τ − 1

2

)
c2
s =

1

2λ1

(7.1.89)

and then the system evolving equations (7.1.65),(7.1.66),(7.1.67) is able to

reproduce the physics of equation (7.1.87). The polymer stress Tp is provided

by the Kramers expression

Tp =

∫
ψ(Q)F(Q)QdQ− I (7.1.90)

and the equilibrium distribution is

ψ0 =
H(Q)−b/2∫
H(Q)−b/2dQ

(7.1.91)

where

H(χ) =
1

1−Q2/b
. (7.1.92)

The scheme is summarised as
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1. Calculate u = ∇v − 1
2λ1
H(χ)Q.

2. Calculate the lattice relaxation time τ = 1/(2λ1∆tc2
s) + 0.5.

3. Initialise the distribution functions according to fi = ωiψ0 i = 0, . . . , 8.

4. For each time step for each lattice site:

• Calculate the total probability function according to (7.1.67) ψ =∑
i fi

• Update f eqi according to (7.1.66).

• Perform collision step to obtain intermediate distribution functions

f ?i = fi − 1
τ
(fi − f eqi ).

• Perform the streaming step fi = move on lattice f ∗i by ci.

• Perform the post streaming boundary condition.

It should be noted that for the FENE dumbbell the possible configuration

space is the disk with radius
√
b and it is necessary to apply a mass conserving

boundary condition at the edge of the disk such as the bounce back condition.

It is thought that other than having the mass conserving property that the

exact nature of the boundary condition is not important since ψ → 0 as

Q→
√
b [96].

Coupled Couette flow

We consider the start-up of plane Couette flow in which a polymeric liquid is

enclosed between two parallel plates of infinite length separated by distance

L = 1. For t < 0, the fluid and the two plates are at rest. At t = 0 the

top plate begins to move in the positive x-direction with a speed U = 1. The

problem is to find the time evolution of u, the horizontal component of the

velocity, for t > 0. The velocity field is assumed to be of the form

u = u(y, t), v = 0. (7.1.93)

This velocity field automatically satisfies the incompressibility condition. There-

fore, at any moment in time, the velocity may be determined from the hori-
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zontal component of the dimensionless momentum equation

Re
∂u

∂t
= β

∂2u

∂y2
− ∂TP,xy

∂y
(7.1.94)

where Re is the Reynolds number and β is the dimensionless viscosity ratio,

which is defined at the ratio of the solvent to the total viscosity. The poly-

meric contribution to the extra-stress tensor for the 2d FENE model can be

computed, at each instant in time using the Kramers expression

TP(x, t) =
1− β
We

(
b+ 4

b

)(∫
ψ(Q)F(Q)QdQ− I

)
, (7.1.95)

where We = λ1U/L is the global Weissenberg number. The equation of motion

(7.1.94) is discretised in time using the backwards Euler method and discretised

in space using central differences

Re

(
un+1
j − unj

∆t

)
= β

un+1
j+1 − 2un+1

j + un+1
j−1

(∆y)2
−
(

(TP,xy)
n
j+1 − (TP,xy)

n
j−1

2∆y

)
(7.1.96)

where ∆t is the time step. Given the polymeric contribution to the shear stress

at time tn = n∆t, equation (7.1.96) can be solved to determine u at the new

time. The numerical procedure can be summarised as

1. at time tn solve the governing equations for u (7.1.96),

2. at each grid site solve the Fokker-Planck equation with the FENE force

law using a sub-grid LBM to equilibrium,

3. computation of the local viscolastic stress tensor, (7.1.95),

4. addition of the extra stress to the momentum equation (7.1.96).

The lattice resolution used to solve each respective Fokker-Planck equation is

determined locally based on the local We. As has been demonstrated in Figure

7.1.3, the number of grid points required for a certain degree of accuracy in

the viscoelastic stress, is dependent on the local We. This allows the error to

be controlled and optimised the computational speed.
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7.1.5 Numerical Results

For the LBM of Ammar [2] we start by examining start-up shear flow where

the velocity gradient given by

ux = γ̇y (7.1.97)

uy = 0 (7.1.98)

where γ̇ is the shear rate. The resulting state-state probability distribution

function (pdf) for We = 5, b = 10 is shown in Figure 7.1.2 while the stress

evolution for varying We is shown in Figure 7.1.1. This shows good agreement

with results in Ammar [2] and Leonenko and Phillips [60]. Error analysis has

been carried out for We = 1 and We = 5 and is shown in Figure 7.1.3. As no

analytical solution exists, the shear stress has been normalised using the value

obtained with the highest number of nodes for each case. Note that for lower

We the shape of the pdf at state state is closer to the initial configuration and

so for higher We we require a higher number of nodes to converge.

Next we considered extensional flow. In Figure 7.1.4 the steady state value

of the extensional viscosity is presented with b = 50. Around We = 0.5 there is

a drastic increase in the extensional viscosity and then a much higher plateau

at higher We. As we can see from Figure 7.1.4 it is necessary to increase the

number of grid points to capture the high We plateau. This sudden increase

of the extensional viscosity is known as coil-stretch transition. The lower

plateau corresponds to dumbbells that have only been weakly stretched and

are close to the equilibrium extension where as the higher plateau corresponds

to dumbbells that have been nearly fully stretched. When the dumbbells

are nearly fully stretched the condition that ψ(Q) → 0 at the boundary is

violated. This is the probably cause of the error at high We as the bounce back

boundary condition is artificial and assumed that ψ(Q)→ 0 at the boundary.

In Figures 7.1.5 and 7.1.6 the growth of the extensional viscosity is shown

with different values of We and the extensibility parameter b. This again

shows good agreement with results by Singh et al. [96].

Now we present results for the model presented in this Chapter. Starting

with steady state simple shear in Figures 7.1.7 and 7.1.8 we can see excellent

agreement for the viscoelastic stress for small We < 0.5 and the relative errors
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Figure 7.1.1: Start up shear flow shown for We = 1, We = 3 and We = 5
with b = 10.

have been given in Tables 7.4 and 7.5. As we can see the relative error at

higher We for higher values of b is smaller. A significant source of error in our

method is the assumption that the pdf of configuration of the dumbbells is

close to equilibrium. In the Ammar model essentially utilises the fact that the

Fokker-Planck equation is an advection-diffusion equation in configurational

space which can be simulated by breaking momentum conservation in the

lattice Boltzmann framework. This means that like the Onishi model, this

model is only suitable for weak flows. In fact upon solving lattice Fokker-

Planck equation (7.1.49) for steady state simple shear we find that when

γ̇λ >
2(b+ 6)

8b
√

3
(7.1.99)

the discrete probability distribution functions are no longer valid as ψj /∈ [0, 1].

However, for weak flows the model developed in this Chapter is much more

computationally efficient when compared to the model by Ammar [2]. For

example with We = 0.1, b = 10 we find our method takes 0.0714s compared to

137.4993s to reach the steady state solution which is a very significant increase

in speed. It might be beneficial in the future when solving large viscoelastic

problems to use both methods depending on the local Weissenberg number.

In Figure 7.1.9 the time evolution of the shear stress for start up shear flow is

shown and shows good qualitative agreement with results by Ammar [2] and

Singh et al. [96].



Edward Lewis Lattice Boltzmann Methods for Flows of Complex Fluids 135

Figure 7.1.2: Shaded surface of the pdf for We = 5, b = 10

Couette Flow

The next set of results are for the full coupled flow problem of start-up plane

Couette flow. Across the channel we solve the evolution of the horizontal

velocity at 9 equally spaced points y = yk, k = 0, . . . , 8. The material and

flow parameters are given by b = 10, Re = 1, λ1 = 1 and β = 1/9. The

time step is chosen as a compromise between performance and stability and is

chosen to be ∆t = T/3000 with T = 10. We present results for the evolution

We 0.01 0.05 0.1 0.5 1
Ammar 0.0071 0.0357 0.0714 0.3489 0.6580

Present work 0.0071 0.0357 0.0714 0.3571 0.7143
% Diff. -0.1988 -0.0269 -0.0870 -2.3659 -8.5573

Table 7.4: Relative percentage errors in steady state shear stress with b = 10
between Ammar and the method developed in this Chapter.
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Figure 7.1.3: Error convergence for We = 1 and We = 5 with b = 10.

We 0.01 0.05 0.1 0.5 1
Ammar 0.0096 0.0480 0.0961 0.4770 0.9332

Present work 0.0096 0.0481 0.0962 0.4808 0.9615
% Diff. -0.4234 -0.0669 -0.0406 -0.7890 -3.0360

Table 7.5: Relative percentage errors in steady state shear stress with b = 100
between Ammar and the method developed in this Chapter.

of the horizontal velocity component at the points y0, y2, y4, y6, y8 in Figure

7.1.10. Qualitative agreement with Leonenko and Phillips [60] is observed.

The velocity exhibits a strong overshoot followed by a weak undershoot before

converging on a steady state value at around t = 3. The overshoot is strongest

in the centre of the channel. The corresponding evolution of the shear stress

at the mid-point of the channel is shown in Figure 7.1.11 which shows good

agreement with the results by Leonenko and Phillips [60].

7.1.6 Discussion

In this chapter we have presented results for Lattice Boltzmann equation style

solvers for the Fokker-Planck equation for the FENE dumbbell model. The

model by Ammar [2] is robust under shear flows for a wide range of We but

requires large grid sizes to capture the high plateau at large We under exten-

sional flow, due to the artificiality of the bounce back condition.

To model complex viscoelastic flows it is necessary to couple the solver

for the polymeric stress with a solver for the solvent velocity. The procedure

follows an iterative process where first the governing equations for the velocity
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Figure 7.1.4: Steady state value of extensional viscosity with different We for
b = 50.

and pressure are solved, then the polymeric stress tensor is evaluated at each

point in physical space and then the velocity and pressure are updated based

on the extra stress to the momentum equation. For the FENE dumbbell model

there is no closed form constitutive equation for the polymeric stress tensor

and therefore macroscopic simulation techniques cannot be employed. Based

on the solution of the Fokker-Planck equation in the mesoscopic stage, a meso-

macro numerical algorithm is described. This has been demonstrated for start-

up plane Couette flow. Excellent agreement is obtained with the results by

Leonenko and Phillips [60]. For large physical domains this is computationally

expensive but with proper hardware implementation deserves attention in the

framework of numerical methods for complex fluids.

In the model developed in this chapter, we have attempted to solve the

Fokker-Planck equation using a single lattice to span both configurational and

physical spaces. The LBM of Ammar [2] and Singh et al. [96] use a sepa-
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rate lattice to span the configurational space for each point in physical space.

Using a single lattice achieves a significant reduction in computation time.

For small We < 0.5 the present model is capable of replicating the results by

Ammar [2] and Singh et al. [96] for shear flow and computationally takes a

small fraction of the time to reach a steady state solution (0.0714s compared to

137.4993s). As the method by Ammar [2] requires the Fokker-Planck equation

to be solved at each physical point in space, this would lead to an even more

significant reduction in computation time when used to solve for large physical

domains. However, the assumption that the distribution functions can be ex-

panded about the equilibrium solution means that our method is only suitable

for weak flows We < 0.5. It might be therefore beneficial to investigate a dual

approach if solving flows with a mixture of large and small values of the local

We to achieve the best of both approaches.
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(a) b=20

(b) b=50

(c) b=100

Figure 7.1.5: Time evolution of the extensional viscosity for We = 0.3.
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(a) b=20

(b) b=50

(c) b=100

Figure 7.1.6: Time evolution of the extensional viscosity for We = 3.0.
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Figure 7.1.7: Comparison between the shear stress with b = 10 at different We
between the method by Ammar and the method developed in this Chapter.

Figure 7.1.8: Comparison between the shear stress with b = 100 at different
We between the method by Ammar and the method developed in this Chapter.
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Figure 7.1.9: Time evolution of shear stress with b = 10 using the present
model.

Figure 7.1.10: Time evolution of the horizontal component of velocity at differ-
ent locations for the start-up plane Couette flow of a FENE fluid with b = 10,
λ1 = 1 and T = 10.
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Figure 7.1.11: Time evolution of shear stress at the mid-channel location for
the start-up plane Couette flow of a FENE fluid with b = 10, λ1 = 1 and
T = 10.



Chapter 8

Conclusions and future Work

The lattice Boltzmann method is a relatively new technique in computational

fluid dynamics based on the resolution of physics at a mesoscopic level. It

has already had many successes in solving many different flow scenarios such

multi-phase fluid flows or flow through porous media and the aim of this thesis

was to expand on this success into solving viscoelastic flows.

Chapter 1 is an introduction into LBM and put it into context based on

other macroscopic fluid solvers and the LGCA which was its direct forebear.

It is important to remember that there is no numerical scheme that is the best

at solving every problem and attempts were made to highlight areas where

LBM have significant advantages over traditional macroscopic solvers such as

FDM or FEM.

Chapter 2 explains how to implement a LBM scheme. The collision al-

gorithm is discussed and the two main approximations BGK and MRT are

given. In practice the BGK is far more popular due to its ease of use but

MRT has significant advantages for studying more complicated flows as there

are non-physical parameters that can be tuned to improve stability. When

solving large systems the propagation algorithm used can have a significant

difference to the speed of the overall LBM. A more efficient implementation of

the propagation algorithm in terms of the memory required is given. However,

on modern computer architectures it has been found to be significantly slower

than a two array approach. A major advantage of the LBM over traditional

macroscopic fluid velocity solvers is the ease of implementation of boundary

conditions. In LBM boundary conditions are applied locally and so it is very

144
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simple to describe fluid flow in complex geometries such as porous media. The

so called bounce-back condition is used to simulate no-penetration and no-slip

condition at a boundary. The two major versions of the bounce-back con-

dition, (on grid and mid grid) are described and results are presented as to

the increase in accuracy from using the mid grid condition for Poiseuille flow.

Zou-He [106] developed a constant velocity/pressure boundary condition that

is second order accurate based on the assumption that the bounce back rule

holds for the non-equilibrium part of the particle distribution function normal

to the boundary and results are presented for the D2Q7 and D2Q9 lattice for

Couette flow using the Zou-He constant velocity condition.

In Chapter 3 the derivation of the equilibrium distribution function is pre-

sented in two ways. Firstly it is given as a discretised version of the Maxwell-

Boltzmann equilibrium distribution using Gauss-Hermite quadrature and sec-

ondly it is constructed from the macroscopic properties required and using

them to solve the linear system to recover the coefficients of the equilibrium

function. Also in Chapter 3 is the relation between the LBM and Navier-Stokes

equations which is given by the Chapman-Enskog multi-scale procedure. Chap-

ter 3 is vital when looking for ways to adapt the LBM to solve other problems

such as the Fokker-Planck equation as shown in Chapter 7.

In Chapter 4 an overview of LBM for multiphase fluid flows is given. The

four main approaches are chromodynamic models, pseudo-potential models,

free-energy models and mean field models. Free energy and mean field models

are necessary when examining non-isothermal flows but are computationally

expensive and are not able to solve fluid flows with a large density ratio.

Pseudo-potential models are easy to implement as they require adding a body

force term to the LBM and are capable of simulating fluids with a high density

ratio but have relatively low numerical stability and wide diffuse interfaces

between the fluids. The colour model is capable of simulating fluids with a

significant viscosity ratio and recovers the analytic solutions for Poiseuille flow

and fingering simulations. In this Chapter the colour model is used to solve two

and three layer Poiseuille flow and gives good agreement with the analytical

solutions.

In Chapter 5 a LBM for droplets is discussed. Lattice Boltzmann methods

are extremely well suited to modelling the behaviour of droplets on surfaces
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since only the static contact angles are needed to simulate the impingement

and spreading of droplets as the dynamic contact angle emerges naturally from

the simulation without complicated treatment. In the context of real world

applications this allows the LBM to be easily calibrated to match experimental

results. The static contact angles can be measured by placing a droplet on a

surface and tilting the surface until the droplet starts to move and measuring

the advancing and receding contact angles relative to the surface. This then

allows more complicated droplet flows to be studied numerically.

In Chapter 6 an overview of LBM for viscoelastic flows is presented. The

multi-relaxation models for non-Newtonian LBE’s proposed by Giraud et al.

[31, 32] take advantage of the LB framework by incorporating viscoelastic ef-

fects into the collision operator so that characteristic quantities of complex

fluids are given purely in terms of lattice moments. The ability to ‘tune’ the

collision matrix gives these models the potential to recover the constitutive

equation of choice without having to resort to additional numerical differenti-

ation of macroscopic quantities such as the velocity gradient. This theoretical

advantage has yet to be demonstrated correctly in practice and the relation

between the viscoelastic properties and lattice moments is not well understood

at present. The lattice Fokker-Planck models on the other hand have a firm

mathematical basis as they are shown to be a direct discretisation of the con-

tinuous kinetic equation.

In Chapter 7 two lattice based approaches are used to solve the Fokker-

Planck equation with the FENE force law. The method by Ammar [2] and

Singh et al. [96] is presented and shows excellent agreement with other FENE

solvers. This method though requires solutions to be generated on separate

lattices since a separate Fokker-Planck equation at every position in physical

space needs to be solved which is computationally expensive. Taking the work

by Onishi et al. [75] as an inspiration the Fokker-Planck equation with a FENE

force law was discretised using only one lattice for the whole physical space.

This gives a dramatic increase in computational efficiency in terms of both

memory and processing power. However, in deriving our model we assume that

the distribution functions can be expanded about the equilibrium distribution

and for strong flows this assumption does not hold. Therefore while our model

is dramatically faster at computing polymeric stresses at small values of the
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Weissenberg number (We < 0.5) it is unable to accurately capture polymeric

behaviour for larger values of We. This contribution is being prepared for

submission to Physical Review E. [61]. The start-up of plane Couette flow is

considered. A numerical method for solving this problem based on a coupling

of the method by Ammar [2] and a solver for macroscopic fluid velocity as

been performed and shows excellent agreement for the temporal evolution of

both the solvent velocity and the shear stress with the results by Leonenko

and Phillips [60].

Future work involves capitalising on the success and features of the LBM

by coupling our method for solving for the Fokker-Planck equation with the

FENE force law, with a LBM for multiphase fluid flow. A current drawback

to our approach is that is unable to accurately capture polymeric behaviour at

larger values of We. Currently there a two ideas to improve or mitigate this

drawback. Firstly it is worth investigating using more lattice speeds (corre-

sponding to using more nodes in the Gaussian quadrature) when performing

the discretisation. Presently the model expands the pdf about the equilibrium

solution and adding more terms into this expansion should increase the range

of permissible values of We. Secondly a hybrid approach may be adopted

where at smaller values of We our model is used to solve for the polymeric

stress and at higher values of We where our approach breaks down, use the

LBM of Ammar [2]. This should deliver a considerable increase in the overall

speed of solution of the polymeric stress. A distinct advantage of the LBM

for multiphase fluid flow is for simulating droplets on surfaces, and so it is

proposed to couple our method for computing the viscoelastic stresses with a

LBM for droplets to simulate the flow of droplets of polymeric liquids on sur-

faces. This has industrial applications including ink-jet printing where many

dyes and paints are viscoelastic.
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