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Abstract 19 

The ~2.06 Ga Kevitsa mafic-ultramafic intrusion in northern Finland, hosts a large disseminated Ni-20 

Cu-PGE deposit. The deposit occurs in the ultramafic olivine-pyroxene cumulates and show a 21 

range in Ni tenors varying from 4-7 wt% (regular ore) to >10 wt% (Ni-PGE ore). There are also a 22 

metal-poor sulfide mineralization (false ore) and contact mineralization that are uneconomic (Ni 23 

tenor <4 wt%).  24 

 The obtained 87Sr/86Sr(i) values of the Kevitsa ultramafic cumulates are highly radiogenic (>0.7045) 25 

in comparison to the estimated depleted-mantle Sr isotope ratio of ~0.702 at 2.06 Ga. The sulfur 26 

δ34S values are generally higher than +2 ‰, which together with the Sr isotope data imply 27 

involvement of crustal material in the genesis of the Kevitsa intrusion and its ores. The 87Sr/86Sr(i) 28 

values obtained from the ore-bearing domain of the intrusion show stratigraphic variation and 29 

exceed 0.7050, with the maximum value reaching up to 0.7109. In contrast, in rocks around the 30 

ore domain, the initial Sr isotope compositions remain more or less constant (0.7047–0.7060) 31 

throughout the intrusive stratigraphy. The isotope data suggest that the ore-bearing domain of the 32 

intrusion represents a dynamic site with multiple injections of variably contaminated magma 33 

whereas the surrounding part of the intrusion experienced a less vigorous emplacement history. 34 

No correlation is observed between the strontium and sulfur isotope compositions. This is 35 

explained by bulk assimilation of the silicate magma in a deeper staging magma chamber and 36 

variable assimilation of sulfur during magma transport into the Kevitsa magma chamber. The low 37 

level of metals in false ore and Ni-depleted nature of its olivine suggest that some sulfides may 38 

have precipitated and deposited in the feeder conduit during the initial stage of magma 39 

emplacement. Cannibalization of early-formed sulfides by later magma injections may have been 40 

important in the formation of the economic ore deposit. 41 



Introduction 42 

 43 

The evolutionary histories of mafic-ultramafic intrusive bodies may involve complex episodes of 44 

magma replenishment, magma mixing and mingling, contamination, crystal fractionation, and 45 

post-cumulus processes (e.g., DePaolo 1985; Sparks et al. 1985; Meyer and Wilson 1999; Namur et 46 

al. 2010). Whole-rock chemistry and mineral compositions are widely applied to interpret 47 

magmatic histories of intrusive bodies (e.g., Seat et al. 2007; Pang et al. 2009; Namur et al. 2010). 48 

Where these compositions change due to crystal fractionation, radiogenic or stable isotope ratios 49 

remain unaffected in closed-system processes, but may change due to addition of crustal 50 

contaminants or influx of magmas of distinct lineage into magma chambers. Consequently, 51 

isotopes have the advantage of identifying involvement of isotopically distinct magmas in the 52 

generation of igneous rock suites. 53 

 54 

In-situ LA-MC-ICP-MS analysis is an effective method to determine the Sr isotope composition of 55 

plagioclase grains, potentially revealing variations in the magma composition from which the 56 

plagioclase crystallized. Grain-scale studies have been used to identify open magma chambers (Liu 57 

et al. 2014), to identify chemically distinct magmas and mixing of either magmas or minerals 58 

(Tepley et al. 1999; Seabrook et al. 2005; Yang et al. 2013a; Chen et al. 2016), and to reveal crustal 59 

contamination (Tepley and Davidson 2003). Hence, isotopes provide a tool to unravel processes 60 

operating during filling of magma chambers, including those related to sulfide ore formation in 61 

mineralized intrusions. 62 



The Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion is one of the manifestations of the wide-63 

spread Paleoproterozoic mafic magmatism in the Central Lapland greenstone belt, northern 64 

Finland (Hanski and Huhma 2005). Other roughly coeval magmatic sulfide mineralization is 65 

represented by the nearby Sakatti Cu-Ni-PGE deposit occurring in a small subvolcanic peridotite 66 

body (Brownscombe et al. 2015) and the komatiite-hosted Lomalampi PGE-(Ni-Cu) deposit 67 

(Törmänen et al. 2016). The Kevitsa Ni-Cu-(PGE) ore occurs in the central part of the ultramafic 68 

portion of the intrusion, whereas magmatic sulfide segregations are more commonly found at the 69 

base of differentiated mafic-ultramafic intrusions (e.g., Barnes and Lightfoot 2005). The deposit is 70 

made up of low-grade disseminated sulfides with current measured, indicated, and inferred 71 

mineral resources of 166Mt at 0.22 % Ni, 0.35 % Cu, 0.13 g/t Pt, and 0.08 g/t, Pd (data available at 72 

Boliden AB Web site).  The metal content of sulfides shows an unusually large variation with their 73 

Ni tenors covering a range from ~4 wt% up to 40 wt% (Mutanen 1997; Yang et al. 2013b). 74 

 75 

According to the interpretations by Mutanen (1997), the Kevitsa intrusion represents 76 

differentiation of a single batch of basaltic magma and in part, lithological and chemical variations 77 

reflect variable degrees of in-situ contamination with material from pelitic metasedimentary and 78 

mafic-ultramafic volcanogenic rocks. More recently, the injection of multiple magma pulses has 79 

been considered a more plausible explanation for the lithological and compositional variability 80 

within the ore domain and for the formation of the sulfide ores (Gregory et al. 2011; Luolavirta et 81 

al. 2018). A dynamic magma plumbing system could enable sulfide liquid to interact with a large 82 

volume of silicate magma, leading to an increase in the chalcophile element contents of the 83 

sulfides. Such an open-system behavior has been emphasized by Naldrett (1999, 2011) as one of 84 

the fundamental aspects in the formation of magmatic sulfide ores and has been regarded as 85 



plausible in various well-known ore deposits, such as Voisey´s Bay (Li and Naldrett 1999), Jinchuan 86 

(Song et al. 2009), Noril´sk-Talnakh (Li et al. 2003) and Uitkomst (Li et al. 2002). 87 

  88 

Another key process in the formation of magmatic sulfide deposits is segregation of an immiscible 89 

sulfide liquid (e.g., Naldrett 2004). Sulfide saturation of mafic magma can be achieved via various 90 

mechanisms involving changes in magma compositions or P-T conditions (see Li and Ripley 2005 91 

and Ripley and Li 2013 for reviews); yet, incorporation of external sulfur is generally considered 92 

most important (e.g., Ripley and Li 2013; Keyes and Lightfoot 2010). The evidence for the presence 93 

of external sulfur is well-documented from many Ni-Cu-PGE sulfide deposits, such as Noril’sk (Li et 94 

al. 2003; Malitch et al. 2014), Voisey´s Bay (Ripley et al. 1999, 2002), Jinchuan (Ripley et al. 2005; 95 

Duan et al. 2016), and Pechenga (Barnes et al. 2001), with the most convincing argument being 96 

the non-mantle-like S isotope signatures.  However, some large sulfide deposits, notably Nebo-97 

Babel (Seat et al. 2009) lack definite crustal S isotopic signatures and hence the necessity of 98 

external sulfur in generating a sulfide deposit is debatable.  99 

 100 

In this study, we report in-situ Sr isotope data for plagioclase and in-situ S isotope data for sulfides 101 

from the Kevitsa intrusion in order to assess the nature of magma chamber processes and the role 102 

of crustal contamination in the formation of the Kevitsa intrusion and its ore deposit. Interestingly, 103 

the range of isotopic compositions and the isotope stratigraphy turned out to be markedly 104 

different in different parts of the intrusion.   105 

 106 

 107 



Geological setting of the Kevitsa intrusion 108 

 109 

The ca. 2058±4 Ma Kevitsa mafic-ultramafic intrusion is located in the Central Lapland greenstone 110 

belt (CLGB) in northern Finland (Mutanen 1997; Mutanen and Huhma 2001; Fig. 1). The CLGB is 111 

mainly composed of Paleoproterozoic komatiitic to rhyolitic metavolcanic rocks, mafic-ultramafic 112 

intrusions and sedimentary rocks with an evolutionary history ranging from ca. 2.5 Ga to 1.8 Ga. 113 

The geology of the CLGB is summarized by Hanski and Huhma (2005). A number of mafic-114 

ultramafic intrusive bodies and volcanic rocks occur in the vicinity of the Kevitsa intrusion, 115 

including the large 2.44 Ga Koitelainen layered intrusion (Mutanen and Huhma 2001) and the Cu-116 

Ni-PGE ore-bearing Sakatti intrusion (Brownscombe et al. 2015). 117 

  118 

The CLGB is divided into six stratigraphic groups which are from oldest to youngest: Salla, Onkamo 119 

(currently Kuusamo Group), Sodankylä, Savukoski, Kittilä (Kittilä suite) and Kumpu Groups (Hanski 120 

and Huhma 2005; Luukas et al. 2017). The Kevitsa intrusion is hosted by the Savukoski Group 121 

volcano-sedimentary sequence consisting of interlayered phyllites, graphitic black shales and 122 

mafic to ultramafic volcanogenic rocks (Lehtonen et al. 1998; Hanski et al. 2001a; Hanski and 123 

Huhma 2005). The volcano-sedimentary country rocks are locally recrystallized to a fine-grained 124 

hornfels aureole around the intrusion. The metavolcanic rocks and, in particular, the black shales, 125 

may contain high quantities of sulfides.  126 

 127 

 128 

 129 



Kevitsa intrusion and its ore types 130 

 131 

The Kevitsa intrusion is composed of an approximately 1.5-km-thick ultramafic lower part and a 132 

gabbroic upper part with a minor amount of granophyre on top (Mutanen 1997; Fig. 1). The 133 

maximum thickness of the gabbroic succession at the current erosional level exceeds 500 m. In 134 

addition, dunitic rocks occur as inclusions within the Kevitsa intrusion and as a separate intrusive 135 

body (Central Dunite) in close association with the Kevitsa intrusive successions (Mutanen 1997; 136 

Yang et al. 2013b; Luolavirta et al. in press) (Fig. 1).  137 

 138 

Rock types 139 

 140 

At the bottom of the Kevitsa intrusion, there is a basal series comprising pyroxenite and gabbro. 141 

The overlying ultramafic cumulates include olivine pyroxenites (OLPX), plagioclase-bearing 142 

(olivine) websterites (pOLWB) and pyroxenites (PX) (Fig. 2). The olivine pyroxenites (more 143 

precisely olivine websterites and olivine clinopyroxenites) represent the most abundant rock type 144 

and are composed of cumulus olivine (10–30 %), clinopyroxene (65–85 %), and oikocrystic 145 

orthopyroxene (0–15 %), showing ad- to mesocumulate textures (Figs. 3a, b). The pyroxenites 146 

contain less than 5 % olivine (Fig. 3c). Accessory minerals include magnetite, intercumulus 147 

plagioclase, sulfides and locally phlogopite, hornblende, ilmenite, and apatite. Plagioclase-bearing 148 

olivine websterites can be distinguished from typical olivine pyroxenites and pyroxenites by their 149 

higher contents of plagioclase (15–25 %) and orthopyroxene (15–30 %). In pOLWB, plagioclase 150 

occurs largely as an intercumulus phase defining an orthocumulate texture (Figs. 3d–e). Olivine 151 



can be one of the major constituents of pOLWB (up to 15 %) or absent. Hornblende, phlogopite, 152 

magnetite, and sulfides are common accessory minerals. Fine-grained gabbros (microgabbros) 153 

with gradational contacts are found in close association with pOLWB and are considered as part of 154 

the pOLWB zones. Hence, we use the term pOLWB or pOLWB zone as a lithological unit including 155 

microgabbros. 156 

 157 

Clinopyroxene and olivine are the prevalent constituents throughout the ultramafic zone, being 158 

generally subhedral and rather equal in size (~0.5–1.5 mm). Orthopyroxene is oikocrystic (~2–5 159 

mm), enclosing rounded to anhedral grains of olivine, clinopyroxene, and magnetite. In olivine 160 

pyroxenites and pyroxenites, plagioclase occurs as a low-mode intercumulus phase. In pOLWB, 161 

plagioclase occupies large intercumulus domains as irregularly shaped individual grains up to 5 162 

mm in size, which may enclose olivine and clinopyroxene. Aggregates of smaller 163 

anhedral/subhedral plagioclase crystals occur as well. 164 

  165 

The Central Dunite is composed of olivine-chromite cumulates, with its modal mineralogy varying 166 

from dunite to wehrlite and feldspathic wehrlite. The dunite body shows a chemical affinity to the 167 

picritic basalts of the Savukoski Group as well as to the Kevitsa olivine-pyroxene cumulates and has 168 

been regarded as representing an initial stage of the formation of the Kevitsa intrusive suite rocks 169 

(Luolavirta et al. in press). The ore-bearing domain of the ultramafic zone is characterized by 170 

numerous rafts of dunitic rocks (up to several tens of meters in size) and komatiitic xenoliths. 171 

Pelitic xenoliths are rare within the ultramafic zone and tend to be found near the basal contact of 172 

the intrusion.  173 



Internal stratigraphy 174 

 175 

In terms of lithological variation, the cumulate stratigraphy of the ultramafic rocks constituting the 176 

ore-bearing domain and the surrounding intrusion are hard to correlate. The ore domain is 177 

characterized by numerous dunitic and komatiitic inclusions, discontinuous zones of pOLWB 178 

within the OLPX (Fig. 2a) and stratigraphic fluctuations in whole-rock and mineral compositions. 179 

Around the ore domain, the rocks appear far more homogeneous and a simple stratigraphy with a 180 

typical evolutionary trend from basal series rocks via olivine pyroxenites and pyroxenites is 181 

observed (Fig. 2b). The relationship between the gabbroic zone and the ultramafic part of the 182 

Kevitsa intrusion is not well constrained. Overall, in the south, the contact appears steeply dipping 183 

and inter-fingered.  184 

 185 

The deposit and ore types 186 

 187 

The Kevitsa Ni-Cu-(PGE) deposit is hosted by olivine pyroxenites in the central part of the 188 

ultramafic zone of the intrusion (Fig. 2a). The mineralization is made up of low-grade disseminated 189 

sulfides, with the whole-rock sulfur content typically being below 3 wt%. The low grades are 190 

compensated by the large dimensions of the ore body: it extends along the northwest axis for 191 

more than 1200 m, has a width of ~500 m and exceeds to a depth of up to 800 m. The ore body is 192 

irregular in shape and consists of several mineralized domains with variable ore grades. 193 

 194 



Based mainly on the Ni tenor, four ore types were recognized by Mutanen (1997): “regular”, “Ni-195 

PGE”, “false” and contact mineralization. The regular and Ni-PGE ore (Ni-Cu-(PGE) ore) comprise 196 

the economic resources, of which the regular ore type covers ~95 % by volume (Santaguida et al. 197 

2015). The regular ore type generally has a Ni tenor in the range of 4–7 %, with Ni/Cu ratio falling 198 

below 1 and the PGE content varying from "low" (~100 ppb of Pt) to high (~750 ppb of Pt). The Ni-199 

PGE ore occurs as lens-like discontinuous bodies and is characterized by a high Ni tenor of >10 %, 200 

low copper and high PGE contents (400 to 3000 ppb of Pt). In the preliminary characterization of 201 

the ore types by Mutanen (1997), the term "transitional ore" was also used to an ore type with an 202 

intermediate composition between the regular and Ni-PGE ore. However, based on the chemical 203 

affinity of the transitional ore towards the Ni-PGE ore (Hanski et al. 1997, discussed below), the 204 

transitional ore can be considered lower-grade Ni-PGE ore. The uneconomic mineralization that is 205 

called false ore has a low Ni tenor (0.5–4 wt%) and low Pd and Pt contents, ranging from few tens 206 

of ppb to values below the detection limit of 10 ppb. The contact mineralization can locally 207 

comprise semi-massive sulfides but shows very low metal contents (Ni tenor 1–2 wt%). It is worth 208 

emphasizing that there exists a continuous range of ore compositions with two broad 209 

compositional trends from the regular ore: one towards ores very rich in Ni (and PGE) and low in 210 

Cu and the other towards mineralized rocks almost totally devoid of Ni, Cu and PGE. 211 

 212 

There is a clear relationship between the metal tenors of the different ore types and their sulfide 213 

mineral assemblages. The dominant ore minerals are pentlandite and chalcopyrite in the regular 214 

ore type and pentlandite, millerite, and heazlewoodite in the Ni-PGE ore type. The false ore and 215 

contact mineralization are dominated by pyrrhotite. The sulfides occur together with a small 216 

amount of magnetite in the interstitial spaces between olivine and pyroxene grains. Besides the 217 



well-developed magmatic textures of the sulfides, the magmatic origin of the mineralization is 218 

reflected, for example, in positive correlations between nickel, copper and sulfur contents as well 219 

as between platinum and palladium concentrations (not shown). Pd/Pt ratios for false ore, regular 220 

ore and Ni-PGE ore are similar (~0.6; Le Vaillant et al. 2016). Effects of hydrothermal alteration to 221 

the Kevitsa sulfide ore has recently been discussed by Le Vaillant et al. (2016) who argue that of 222 

the base metals, copper (and Au) may have been locally redistributed, but to what extent is not 223 

well established. 224 

 225 

Besides metal tenors, the ore types show differences in their REE contents and isotope 226 

compositions. The most intriguing mineralization type is the Ni-PGE ore, which has abnormally 227 

high contents of Ni, not only in the sulfides, but also in the primary silicates (olivine and 228 

clinopyroxene), being in this sense very “primitive” (Mutanen 1997; Yang et al. 2013b; Luolavirta 229 

et al. 2018). Yet, this ore type has significantly LREE-enriched chondrite-normalized REE patterns 230 

(CeN/YbN ~7, Hanski et al. 1997; Luolavirta et al. 2018) and records low initial ɛNd (-6.4; Huhma et 231 

al. 2017 in review) (Fig. 4). Furthermore, Luolavirta et al. (2018) demonstrated that there is a 232 

mineralogical difference between the ore types, as the host rocks to the Ni-PGE ore type tend to 233 

be virtually devoid of orthopyroxene (olivine clinopyroxenites). The ɛNd values for regular and false 234 

ore are similar (-3.4; 4Huhma et al. 2017 in review) (Fig. 4) with both of them showing mildly LREE-235 

enriched REE patterns (CeN/YbN ~2; Hanski et al. 1997; Luolavirta et al. 2018), but they differ in 236 

terms of their S isotope compositions. Average whole-rock δ34S values of +3.8, +6.1 and +8.2‰ 237 

have been reported for regular, Ni-PGE (including the transitional ore) and false ore, respectively 238 

(Grinenko et al. 2003) (Fig. 5). 239 

 240 



Sampling and analytical methods 241 

Samples 242 

 243 

Samples for in-situ strontium and sulfur isotope analyses were collected from three drill cores to 244 

cover the stratigraphy through the ultramafic cumulate succession and to obtain isotope data 245 

from the different ore types. Drill core KV-103 represents the ore domain, being relatively deep 246 

(~750 m) and intersecting both the regular and Ni-PGE ore types. Drill cores KV-280 and KV-297 247 

are located a few hundred meters outside the ore-bearing domain and intersect a false ore-type 248 

mineralization and contact mineralization. The compositions of major minerals (olivine, 249 

clinopyroxene, orthopyroxene) of these drill cores are discussed in another paper (Luolavirta et al. 250 

2018).  251 

 252 

Analytical methods 253 

 254 

In-situ Sr isotope analyses of plagioclase were performed by laser ablation multi-collector 255 

inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) using a Nu Plasma HR mass 256 

spectrometer and a Photon Machine Analyte G2 laser microprobe at the Geological Survey of 257 

Finland in Espoo. Samples were ablated in He gas (gas flows = 0.4 and 0.1 l/min) within a HelEx 258 

ablation cell (Müller et al. 2009). Strontium isotope analyses of plagioclase were made in static 259 

ablation mode employing the following parameters: beam diameter 110 μm, pulse frequency 10 260 

Hz, beam fluence 2.07 J/cm2. The MC-ICP-MS instrument was equipped with 9 Faraday detectors 261 

and amplifiers with 10^11 Ω resistors. During the laser ablation, data were collected in static mode 262 



(84Sr-Kr, 85Rb, 86Sr-Kr, 87Rb-Sr, 88Sr). Measured isotope ratios were corrected for instrument 263 

fractionation applying an exponential law and a 86Sr/88Sr value of 0.1194. The isobaric interference 264 

of 87Rb on 87Sr was monitored and corrected using the 85Rb ion signal and a value of 0.38571 for 265 

the 87Rb/85Rb ratio. The isobaric interference of 86Kr on 86Sr was corrected using a 30 s background 266 

measurement, preceding every ablation. Strontium isotope ratios were age-corrected to 2058 Ma 267 

based on 85Rb/86Sr ratios. The average total Sr signal obtained for plagioclase samples was 0.4 V. 268 

Under these conditions, 120 s of ablation are needed to obtain an internal precision of ≤ ± 0.00007 269 

(1σ). The decay constant of 87Rb of 1.3968×10−11 y−1 given by Rotenberg et al. (2012) was used in 270 

all calculations. The accuracy of the laser ablation protocol was verified throughout the day of 271 

measurement by repeated analysis of an in-house plagioclase standard from a megacryst of the 272 

Cameroon volcanic chain (sample Mir a; Rankenburg et al. 2004). The laser ablation parameters 273 

were similar for the samples and standard. During the course of this study, the measured 87Sr/86Sr 274 

values for the standard ranged from 0.70300 to 0.70319 and averaged 0.70310 ± 0.00008 (2σ, 275 

n=30), which is similar to the TIMS value of 0.70311 ± 0.0001 (2σ) obtained by Rankenburg et al. 276 

(2004). Variations in the 87Sr/86Sr ratio of the plagioclase standard over the course of the study are 277 

given in Electronic Supplementary Material 1 (ESM 1). 278 

    279 

In-situ sulfur isotopes analyses of pyrrhotite and pyrite were performed employing the same 280 

instrument as for the Sr isotope analyses. Samples were ablated in He gas (gas flows = 0.4 and 0.1 281 

l/min) within a HelEx ablation cell (Müller et al. 2009). Sulfur isotopes were measured at medium 282 

resolution. During the ablation, data were collected in static mode (32S, 34S). Sulfide samples were 283 

ablated at a spatial resolution of 50 micrometers, using a laser beam fluence of 0.83 J/cm2 at 5Hz. 284 

The total S signal was typically 0.5–4.0 V. Under these conditions, after a 20 s baseline 285 



measurement, 30–40 s of ablation is needed to obtain an internal precision in 34S/32S of ≤ ± 286 

0.000005 (1 SE). In-house pyrrhotite and pyrite standards were utilized for external standard 287 

bracketing and quality control of analyses. The standards used have been analyzed by gas mass 288 

spectrometry. For the quality control pyrite standard, our measured δ34SCDT (‰) value is +6.61 ± 289 

0.45 (n=29) against the gas mass spectrometer-determined value of +5.8 ± 0.3 (‰). For pyrrhotite, 290 

these values are 4.4 ± 0.3 (‰, 1σ, n=13) and +4.8 ± 0.3 (‰, 1σ, n=3), respectively. 291 

 292 

Plagioclase compositions were determined using a JEOL JXA-8200 electron microprobe at the 293 

Center of Microscopy and Nanotechnology, the University of Oulu, with a standard built-in ZAF 294 

correction routine. The analytical conditions were an accelerating voltage of 15 kV and a beam 295 

current of 30 nA. Peak counting times on major elements were 60 s and 30 s for the background. 296 

The whole-rock trace-elements used in this study were provided by the mining company.  Whole-297 

rock major and trace element abundances were produced at an ALS geochemistry laboratory using 298 

ICP-MS/ICP-AES after four-acid near-total sample digestion and precious metals by ICP-MS/ICP-299 

AES after fire assay pre-concentration. 300 

 301 

Results 302 

Sr isotope composition of plagioclase 303 

General features 304 

Only fresh and nonfractured interstitial plagioclase grains were selected for laser ablation to 305 

minimize alteration effects to the Rb-Sr isotope system. The Rb/Sr ratios of the analyzed 306 

plagioclase grains are low and relatively constant (≤0.005) indicating very little growth of 307 



radiogenic 87Sr by 87Rb decay since the crystallization of the Kevitsa intrusion at 2.06 Ga. As stated 308 

above, results of repeated analyses of in-house standard are within the recommended value, 309 

verifying the accuracy of our laser ablation protocol (see ESM 1). Representative isotope data with 310 

2σ error margins and anorthite contents of plagioclase are presented in Table 1 and the whole 311 

dataset is tabulated in Electronic Supplementary Material 2 (ESM 2). 312 

 313 

It must be noted that the low mode of plagioclase restricted the number of spot analyses in OLPX 314 

and PX samples, whereas for pOLWB, a more comprehensive sampling could be conducted. 315 

Nevertheless, the measured 87Sr/86Sr(i) ratios are heterogeneous in each sample  (Fig. 3) and 316 

overall, no observable correlations with An contents and 87Sr/86Sr(i) could be established. 317 

Relationships between the anorthite content and 87Sr/86Sr(i) in plagioclase are illustrated in 318 

Electronic Supplementary Material 3 (ESM 3). 319 

 320 

Drill cores KV297 and KV280 (outside the ore domain) 321 

 322 

The initial 87Sr/86Sr ratios in the samples collected from the "unmineralized" part of the Kevitsa 323 

intrusion vary from 0.7047 to 0.7060 (Figs. 6 and 7). In one sample of false ore (KV280 ~520 m) 324 

and in the gabbro at the top of drill core KV-297, individual spot analyses show slightly higher 325 

initial ratios (0.0768 and 0.7065, respectively). However, the observed range of Sr isotope 326 

compositions remain relatively constant throughout the stratigraphy. 327 

 328 



Overall, the An contents increase slightly from the base upwards, after which they remain 329 

constant in OLPX and then decrease towards the top of the ultramafic unit. One sample (at a 330 

depth of around 750 m in drill core KV280) stands out in having markedly lower An contents. This 331 

sample contains abundant primary phlogopite, which is not common in other studied samples. 332 

The only cumulus plagioclase analyzed in this study is from the gabbro sample at the top of drill 333 

core KV-297. This sample shows a highly heterogeneous plagioclase composition but the Sr 334 

isotope ratios are in the same range as in the underlying ultramafic cumulates. It appears that the 335 

cores of individual plagioclase grains record the lowest 87Sr/86Sr(i) ratios (~0.7055) in this gabbroic 336 

sample (see ESM 3). 337 

 338 

Drill core KV103 (ore domain) 339 

 340 

In drill core KV103, representing the ore-bearing domain of the ultramafic zone, 87Sr/86Sr(i) varies 341 

considerably from 0.7050 to as high as 0.7109 (Fig. 8). The highest Sr isotope ratios, 0.7089–342 

0.7109, were measured from the host rocks to the Ni-PGE ore type, which is consistent with the 343 

highly non-radiogenic Nd isotope composition of this ore type (Hanski et al. 1997, Fig. 4). Also a 344 

marked peak in La/Nb coincides with the Ni-PGE ore, indicating elevated LREE contents in the host 345 

rocks. The mineral compositions and Sr isotope ratios vary widely in the olivine pyroxenites below 346 

the pOLWB. The OPLXs above the pOLWB unit are characterized by more uniform Sr isotope ratios 347 

of  0.7055 to 0.7073 and a smooth decrease in the An contents of plagioclase (except for a sharp 348 

increase in the uppermost portion of the drill core), but oscillatory variations in the contents of 349 

trace elements, such as Zr, and in the olivine compositions. Overall, the 87Sr/86Sr(i) values are 350 

somewhat higher in comparison to the values obtained for rocks outside the ore domain (~0.7047 351 



to 0.7060). The samples of regular ore yielded initial Sr isotope ratios of 0.7055 to 0.7068, similar 352 

to those of the false ore and consistent with the overlap in the initial εNd values between these ore 353 

types (Hanski et al. 1997, Fig. 4).  354 

 355 

The 87Sr/86Sr(i) values within the pOLWB zone show a progressive upward increase, which 356 

correlates with a decrease in the An contents of plagioclase and an increase in the Fo contents of 357 

olivine. Sample-scale and intra-grain variations in 87Sr/86Sr(i) are large (Figs. 3d–f, ESM 3). Core to 358 

rim traverses across selected plagioclase grains did not reveal any systematic variations in the An 359 

content and/or Sr isotope ratio. One sample is an exception where the core domains of individual 360 

grains tend to record the lowest 87Sr/86Sr(i) values (KV-103-541.14, see ESM 3) and in this case, it  361 

can be postulated that the plagioclase cores represent an early cumulus phase mantled by 362 

overgrowths with a variable isotope signature. The microgabbros seem to record two groups of 363 

plagioclase with different 87Sr/86Sr(i). However, the small number of analyses may have generated 364 

an analytical bias, since distinct ratios were measured from single grain and no correlation 365 

between the 87Sr/86Sr(i) ratio and An content of that spot can be demonstrated. 366 

 367 

A sharp decrease in the Sr isotope ratio at the upper pOLWB–OLPX contact coincides with a minor 368 

increase in the olivine Fo contents and the occurrence of ore grades of Ni-Cu sulfides (regular ore). 369 

 370 

 371 

In-situ S isotope analyses 372 



 373 

Sulfur isotope compositions were analyzed for pyrrhotite and, in two samples, also for pyrite. In 374 

addition to the different ore types, δ34S values were also measured for sulfides from "barren" 375 

rocks with little sulfides. Representative S isotope analyses are listed in Table 1. The whole dataset 376 

is provided in Electronic Supplementary Material 4 (ESM 4) and illustrated in Fig. 5.  377 

 378 

Drill core KV297 and KV280 (outside the ore domain) 379 

 380 

The false ore samples from drill core KV-280 (outside the ore domain) record a relatively heavy 381 

sulfur isotope compositions, with δ34S ranging from +5.1 to +8.0 ‰ and the median δ34S value 382 

being ~+6.5 ‰ (Figs. 5 and 7). For false ore samples, Grinenko et al. (2003) report a wide range of 383 

whole-rock δ34S values from +3.4 up to +18.6 ‰. Most of these whole-rock S isotope data cluster 384 

in the range from +5.5 to +11.7 ‰, being broadly in line with the measured in-situ values of this 385 

study (Fig. 5). The δ34S values in S-poor samples from drill cores KV297 and KV280 range between 386 

+2.5 and +6, being generally ≥ +3 ‰ in the lower parts of these drill cores and ≤3 ‰ higher in the 387 

stratigraphy (Figs. 6 and 7).  388 

 389 

Drill core KV103 (within the ore domain) 390 

 391 

The obtained δ34S values for the regular ore type vary from +3.6 to +5.5 ‰, with a median of ~+4 392 

‰, consistent with the previously measured whole-rock δ34S values of +2.0 to +4.6 ‰ (+3.8 ‰ on 393 



average; Grinenko et al. 2003, Fig. 5). The samples of the Ni-PGE ore type record δ34S values of 394 

+1.3 to +4.0 ‰ with a median value of +2.6 ‰ (Fig. 5). Interestingly, the obtained in-situ δ34S 395 

values for Ni-PGE ore are lower than the whole-rock values of +3.0 to +8.8 ‰ (+6.1 ‰ on average) 396 

reported by Grinenko et al. (2003) (Fig. 5). 397 

 398 

The S isotope compositions remain constant in the OLPX below the pOLWB whereas the mineral 399 

compositions and Sr isotope ratios vary (Fig. 8). In pOLWB, S isotopic compositions are heavy and 400 

vary considerably from ~+4‰ up to ~+12‰ with stratigraphic fluctuations.  The S isotope 401 

compositions show mantle-like (from -0.4‰ to +1.55‰) values at a depth of around 300 m, which 402 

coincide with a reversal in the whole-rock Zr contents and is roughly coincidental with the onset of 403 

a reversal in olivine composition observed few tens of meters below this depth (see Fig. 8). No 404 

correlation exists between the S and Sr isotope compositions.  405 

 406 

Discussion 407 

Petrogenetic implications for the formation of the Kevitsa ultramafic cumulates 408 

 409 

Stratigraphic variations and reversals in mineral compositions and whole-rock element 410 

abundances and/or changes in the types and proportions of fractionating minerals are generally 411 

considered to indicate open magma chamber processes and periods of magma recharge in 412 

igneous rock suites (e.g., Cox and Hawkesworth 1985; Eales et al. 1986, 1990). Radiogenic isotopes 413 

(such as Sr) may provide further evidence for such magma chamber processes (e.g., Namur et al. 414 

2010; Liu et al. 2014) by identifying influxes of isotopically different magmas. 415 



This study has shown that compared to the estimated 2.06 Ga depleted-mantle or bulk-Earth Sr 416 

isotope ratios of 0.7018 and 0.7023, respectively (O’Nions et al. 1979), the calculated 87Sr/86Sr(i) 417 

values of plagioclase (>0.7045) are highly radiogenic throughout the Kevitsa ultramafic cumulates, 418 

implying strong involvement of crustal material in their genesis. Similarly, the δ34S values 419 

measured for pyrrhotite and pyrite vary from -0.42 to +8.00 ‰, being generally greater than +2 ‰ 420 

(Fig. 5) and hence heavier than uncontaminated mantle-derived sulfur, which has been estimated 421 

to have δ34S values from -2 to +2 ‰ (Ripley and Li 2003). 422 

 423 

The Sr isotope ratios of the Ni-PGE ore (0.709–0.711) are generally much higher than those 424 

(~0.704 to 0.709) obtained by whole-rock (Eales et al. 1990; Lee and Butcher 1990; Kruger 1994; 425 

Mitchell et al. 1998) or plagioclase analyses (Seabrook et al. 2005; Yang et al. 2013a; Mangwegape 426 

et al. 2016; Wilson et al. 2017) of Lower and Main zone rocks from the Bushveld Complex, which is 427 

similar in age to the Kevitsa intrusion (Fig. 4). There are no Sr isotope data on the immediate 428 

country rocks or any other rock type from the vicinity of the Kevitsa intrusion to compare with, but 429 

Kröner et al. (1981) have published Sr isotope data from the 3.1 Ga Tojottamanselkä gneiss dome 430 

located around 10 km north of Kevitsa. At 2.06 Ga, these gneisses had 87Sr/86Sr ratios of 0.707–431 

0.711, which overlap the upper part of the 87Sr/86Sr(i) range measured for Kevitsa rocks. The 432 

similarity of the 87Sr/86Sr(i) values suggests that the contaminant end-member must have had even 433 

more radiogenic Sr than that of the ancient gneisses of the Tojottamanselkä dome. 434 

 435 

It is worth emphasizing that the Sr isotopes were analyzed using intercumulus plagioclase. It is 436 

well-known that the interstitial liquid may percolate within the cumulus pile and hence its 437 

composition may not directly reflect that of the coexisting cumulus phases (e.g. Boudreau and 438 



McCallum 1992; Karykowski and Maier 2017). However, in the case of the Ni-PGE ore, the peculiar 439 

features of the silicates (enrichment in LREE, highly radiogenic Sr in plagioclase, highly negative 440 

initial whole-rock ɛNd, and Ni-rich olivine) as well as the sulfide phase (high Ni tenor) seem to be 441 

characteristic for all analyzed samples. In order to preserve these unique features, neither the 442 

sulfide liquid nor the intercumulus silicate melt could have migrated extensively with respect to 443 

each other or with respect to the cumulus minerals. 444 

 445 

Formation of the ”unmineralized” domain of the intrusion 446 

 447 

The ultramafic cumulates around the ore domain (drill cores KV-297 and KV-280) show modest 448 

fluctuations in whole-rock Zr and olivine Fo contents, rather constant La/Nb ratio, and record 449 

predictable fractionation trends from the basal pyroxene-gabbro via olivine pyroxenites to 450 

pyroxenites (and gabbro in drill core KV-297) (Figs. 6 and 7). Also, the range of the Sr isotope 451 

compositions remain constant throughout the stratigraphy. From the base upwards, reverse 452 

fractionation trends can be observed, particularly in the Zr contents. Such marginal reversals are a 453 

common feature for mafic intrusive bodies worldwide and are considered to reflect prolonged 454 

magma emplacement (Latypov et al. 2011; Egorova and Latypov 2012a, 2012b).  455 

 456 

The recent model by Le Vaillant et al. (2017) proposes that the metal-poor sulfide dissemination 457 

(false ore) around the ore domain formed within early-stage xenolith-laden sill-like intrusions in 458 

which high viscosity circumstances restricted mixing of the magma and sulfide liquid, resulting in 459 

low metal tenors. This model is not consistent with the observed homogeneity in the chemical and 460 



Sr isotopic compositions of the ultramafic cumulates around the ore domain. We propose that the 461 

rocks around the ore domain formed by continuous inputs of chemically and isotopically rather 462 

uniform basaltic magma into the Kevitsa magma chamber, followed by crystal fractionation.  463 

 464 

The S isotope compositions in false ores are markedly heavier in comparison to "barren" rocks (S 465 

<0.5 wt%). Also the chalcophile metal contents, particularly those of Pt and Pd, as well as the Ni 466 

content in olivine (discussed further below) are relatively low. Giving the predictable evolutionary 467 

paths and compositional homogeneity of several hundred meters thick succession of olivine 468 

pyroxenite in the drill cores located outside the ore domain, the inputs of magma hardly took 469 

place as discrete periods of magma emplacement, yet  the metal content and the sulfide budget of 470 

the inflowing magma batches varied. Notably, the Sr isotopic compositions remain rather 471 

homogeneous throughout the stratigraphy whereas the S isotopic compositions vary. This is best 472 

explained by bulk contamination of the magma at some deep-seated staging chamber and variable 473 

degrees of assimilation of crustal sulfur during transportation of the magma into the Kevitsa 474 

magma chamber. 475 

 476 

Formation of the ore-bearing domain of the intrusion 477 

 478 

The compositional stratigraphy of drill core KV-103 is characterized by obvious fluctuations in the 479 

whole-rock Zr contents and olivine compositions and variations in the Sr and S isotope signatures 480 

(Fig. 8). Luolavirta et al. (2018) suggest that the stratigraphic variations in mineral and whole-rock 481 

compositions in the drill cores from the ore domain reflect episodes of magma replenishment. The 482 



high 87Sr/86Sr(i) values (0.709–0.711) in the host rocks to the Ni-PGE ore and their marked decrease 483 

at the level of the regular ore further support open magma chamber processes, yet restricted to 484 

the ore-bearing domain of the intrusion. The sulfur isotope ratios in drill core KV-103 show no 485 

correlation with the Sr isotope compositions, indicating that the magma pulses assimilated 486 

variable degrees of silicate components and sulfur from the country rocks or the isotopic 487 

signatures were generated via separate contamination processes  (as proposed based on isotopic 488 

data outside the deposit area in drill cores KV-297 and KV-280). 489 

 490 

Sample-scale Sr isotope heterogeneity and intra-mineral disequilibrium in pOLWB 491 

 492 

Plagioclase-bearing olivine websterites are only found in the ore domain where they form irregular 493 

zones that locally act as marker horizon for regular ore-type sulfides (as in drill core KV-103). 494 

According to the model by Mutanen (1997), whereby all lithological and chemical variations are a 495 

result of variable degrees of in-situ contamination, the zones of pOLWB could be interpreted to 496 

reflect significant incorporation of pelitic material in their genesis. More recently, the generation 497 

of the zones of pOLWB has been related to fractionation of individual magma pulses, with sulfide 498 

mineralization occurring near the basal parts of these pulses (Gregory et al. 2011). The obtained Sr 499 

isotope ratios show a progressive increase up-hole through the pOLWB, which correlates with a 500 

decreasing anorthite content of plagioclase and an increasing Fo content of olivine. Such mineral 501 

compositional and isotopic profiles cannot be explained by simple crystal fractionation.  502 

 503 



In the pOLWB zones, the sample-scale variations in 87Sr/86Sr(i) are relatively large and core-to-rim 504 

traverses reveal considerable intra-mineral isotopic differences (Fig. 3d-f, ESM3). Grain-scale 505 

isotopic disequilibrium has been explained by interaction of the initial magma with a new, 506 

isotopically distinct magma influx (Tepley et al. 2000; Gao et al. 2015), by late-stage infiltration of 507 

isotopically distinct residual melt or fluid through the cumulate pile and its reaction with solid 508 

crystals in the pile (Chutas et al. 2012; Yang et al. 2013a), or crystallization accompanied by 509 

contamination (Templey and Davidson 2003). These processes should result in systematic core-to-510 

rim zonation in isotope compositions of individual grains. Chutas et al. (2012) also observed 511 

different Sr isotope compositions between large and small orthopyroxene grains in the Lower 512 

Zone of Bushveld Complex and proposed that the larger grains grew at the expense of smaller 513 

ones in the presence of fluid with different 87Sr/86Sr(i).  514 

 515 

To explain the wide sample- and grain-scale spread of 87Sr/86Sr(i) in pOLWB is not straightforward. 516 

First of all, we have not observed either clear trends in 87Sr/86Sr(i) values between plagioclase cores 517 

and rims or any distinct textural populations that record more homogeneous 87Sr/86Sr(i) values. 518 

Also, no apparent correlation exists between 87Sr/86Sr(i) and An, suggesting that the plagioclase 519 

crystallized from an isotopically heterogeneous intercumulus liquid. However, it must be noted 520 

that the analyzed plagioclase grains are irregular in shape and the actual position of core domains 521 

(assumed early cumulate) cannot be accurately defined. The 87Sr/86Sr(i) values in the pOLWB zone 522 

approach those measured from the underlying OLPX unit hosting Ni-PGE ore and hence, upwards 523 

percolation of residual melt originating from the underlying OLPX could be a viable explanation for 524 

the radiogenic Sr in the pOLWB. However, in this case, it would be reasonable to expect an 525 

opposite sense of isotopic change, i.e., an upwards decrease in 87Sr/86Sr(i) in the pOLWB. A similar 526 



assumption would apply to the interaction (mixing/mingling or melt percolation) between pOLWB 527 

with the overlying OLPX. 528 

 529 

A concomitant up-hole increase in Mg# of orthopyroxene and initial Sr isotope ratio, similar to that 530 

observed in pOLWB zone, has been described from the basal unit of the Lower Main Zone of the 531 

Bushveld Complex (Mitchell 1990; Mitchell et al. 1998). It was explained by mixing of resident 532 

residual magma in the chamber with new influxes of the Main Zone-type, high-87Sr/86Sr(i) magma. 533 

Progressive mixing or mingling of unsolidified pOLWB and the overlying, more primitive OLPX 534 

could potentially explain the reverse fractionation trends in mafic minerals, yet as discussed 535 

above, the Sr isotopic profile across the pOLWB - OLPX contact does not indicate any significant 536 

interaction between these rock units. It must be noted that the compositions of ferromagnesian 537 

minerals may have equilibrated with variable degrees of trapped liquid resulting in modifications 538 

in their primary compositions (Barnes 1986). This could potentially explain the up-hole increase in 539 

the olivine Fo contents in the pOLWB zone. Petrography or whole-rock compositions of the 540 

studied samples, however, do not reveal any significant differences in the amount of trapped 541 

liquid. 542 

 543 

In the Rum layered intrusion, Templey and Davidson (2003) observed a trend of upward-increasing 544 

plagioclase 87Sr/86Sr(i) towards a lithological unit contact, accompanied by isotopic disequilibrium 545 

between cores and rims of some grains. The authors propose that the magma from which the 546 

plagioclase crystallized underwent progressively larger degrees of in-situ contamination. The 547 

model predicts that isotopic disequilibrium develops in minerals initially growing near the 548 

roof/margins of the intrusion where crustal contamination can be assumed to be most effective. 549 



The presence of microgabbros within the zones of pOLWB supports the crystallization of the 550 

pOLWB in proximity to the wall rocks. Similar considerations can be inferred from the relatively 551 

large variation in the S isotope composition in the pOLWB zones. However, we cannot 552 

unambiguously state whether the pOLWB potentially represents a roof sequence of a discrete 553 

magma pulse or a separate intrusive phase(s) at the time when the geometry of the Kevitsa 554 

intrusion was different from what is currently observed, or autolith(s) of some former marginal-555 

phase rock of the Kevitsa intrusion. 556 

 557 

Implications for ore-forming processes 558 

Isotopic constraints on the origin of the Ni-Cu-(PGE) ore 559 

 560 

Many authors have discussed and reviewed the theoretical aspects related to the formation of 561 

magmatic Ni-Cu-PGE deposits (e.g., Naldrett 1999, 2004, 2011; Maier et al. 2001; Arndt et al. 562 

2005; Barnes and Lightfoot 2005; Maier and Groves 2011; Song et al. 2011). Briefly, the key factors 563 

include: i) a reasonably high degree of mantle melting generating a parental mafic-ultramafic 564 

magma with adequate concentrations of metals, ii) emplacement of the magma into or onto the 565 

crust with minimum prior fractionation of olivine or sulfides, iii) contamination of the magma with 566 

crustal materials, promoting sulfide saturation, iv) interaction of sulfides with a large volume of 567 

magma resulting in  enrichment of the sulfides in metals and v) mechanical concentration of 568 

sulfides to economic levels. 569 

 570 



The solubility of sulfide in a mafic magma is known to increases with falling pressure and hence 571 

magmas ascending to shallow crustal depths are likely sulfur undersaturated (e.g., Mavrogenes & 572 

O´Neill 1999). Consequently, a process is required to bring the magma to sulfur saturation under 573 

low-pressure conditions.  In the case of magmatic Ni-Cu sulfide deposits, this is generally achieved 574 

via various processes of contamination, such as addition of silica or volatiles (see Ripley and Li 575 

2013 for a review). Evidently, the most feasible process is incorporation or external sulfur to the 576 

magma as evidenced by the non-mantle-like S isotopic signatures of various sulfide deposit (e.g., Li 577 

et al. 2003; Ripley et al. 1999, 2002, 2005; Barnes et al. 2001; Duan et al. 2016). 578 

 579 

In this respect, the Kevitsa deposit is not an exception as almost all measured δ34S isotope values 580 

in both "barren" and mineralized samples in the Kevitsa ultramafic cumulates exceed +2 ‰ (Fig. 581 

5), suggesting incorporation of crustal sulfur into the Kevitsa magma.  Both the regular and false 582 

ore type record heavy S isotope compositions (δ34S averaging +4.0 ‰ and +6.5 ‰, respectively) 583 

and hence external sulfur appears to have been important in the formation of these mineralization 584 

styles. For the Ni-PGE ore type, the average in-situ δ34S value (~ +2.6 ‰) is only slightly above the 585 

assumed mantle values. However, significantly heavier whole-rock δ34S values of +3.7 to +8.8‰ 586 

have also been reported (Grinenko et al. 2003) and hence there might be a substantial internal 587 

isotopic variation in these ore zones. 588 

 589 

The obtained Sr and S isotope compositions do not show any mutual correlation.  In particular, 590 

outside the ore domain, the Sr isotopic compositions remain relatively constant throughout the 591 

stratigraphy whereas S isotopes vary significantly (Figs. 6 and 7). As discussed above, this suggests 592 

bulk contamination of the silicate magma at depth, followed by selective assimilation of crustal 593 

sulfur during the transportation of the magma into the Kevitsa magma chamber. This is in 594 



agreement with Grinenko et al. (2003) who reported heavy S isotopic compositions (+18 ‰ on 595 

average) for the immediate sedimentary rocks around the Kevitsa intrusion but noted marked 596 

decoupling in the C contents and δ13C values between the Kevitsa ores and sediments. 597 

Consequently, they concluded that these sedimentary rocks could not act as the main source of 598 

sulfur and hence sulfur assimilation took place at a deeper level in the crust. 599 

 600 

As discussed above, it is proposed that the ore-bearing domain of the intrusion formed via 601 

multiple emplacements of variably contaminated silicate magma and sulfide liquid. Dynamic 602 

systems are generally considered favorable for generating economic sulfide deposits because 603 

sulfides are able to interact with, and collect metals from, a large volume of magma (e.g., Naldrett 604 

2011). The vigorous emplacement of the ore domain of the Kevitsa intrusion is further supported 605 

by the presence of numerous dunitic inclusions and komatiitic xenoliths, highlighting the capacity 606 

of intruding magmas to break off fragments from adjacent wall rocks. Recently, Luolavirta et al. (in 607 

press) proposed that the flow rate of the magma decreased due to the entrapment of a large 608 

number of inclusions, which aided settling of the sulfide droplets. An alternative view by Le 609 

Vaillant et al. (2017) proposes that the regular ores formed under high R factors in an expanded 610 

convecting magma chamber.   611 

 612 

The origin of the Ni-PGE ore stays enigmatic. Yang et al. (2013b) suggested that assimilation of Ni-613 

rich sulfides from komatiitic xenoliths enriched the magma in Ni, leading to the crystallization of 614 

Ni-enriched olivine found in the Ni-PGE ore and the formation of this ore type. However, they 615 

acknowledge that this model fails to explain the peculiar isotopic and REE characteristics of the 616 

ore type. The crustal-like isotope compositions of the host rocks to the Ni-PGE ore suggest 617 



significant incorporation of crustal material in their genesis. This is in contrast with the primitive 618 

mineral compositions as well as the mineralogy of the host rocks (olivine-clinopyroxene cumulates 619 

with little or no orthopyroxene), which argue against any excessive role of crustal contamination. 620 

The contaminant for the Ni-PGE ore remains unidentified but was likely poor in silica and rich in 621 

calcium (and obviously Ni and PGEs) to aid crystallization of Ca-pyroxene rather than 622 

orthopyroxene. To generate the markedly distinct chemistry of the Ni-PGE ore in comparison to 623 

the regular and false ore, the magma(s) producing the Ni-PGE ore type probably interacted with 624 

different country rocks en route to the Kevitsa magma chamber. 625 

 626 

The regular and false ore types record similar initial 87Sr/86Sr (this study) and ɛNd (Huhma et al. 627 

2017 in review), REE characteristics (Hanski et al. 1997; Luolavirta et al. 2018) as well as a range in 628 

the compositions of ferromagnesian minerals.  Hence, the parental silicate magmas for the two 629 

ore types were likely similar in composition. However, marked differences are observed in the S 630 

isotope compositions and metal contents in minerals and rocks, which are discussed in the 631 

following chapter.  632 

 633 

Previous sulfide segregation 634 

 635 

Olivine Fo-Ni trends are powerful in providing information about the evolution of the magmas, 636 

and in particular their sulfide saturation history (e.g., Li & Naldrett 1999; Li et al. 2004; Li et al. 637 

2007; Thakurta et al. 2008; Li et al. 2013).  This is due to the fact that in the presence of sulfides, Ni 638 

as a highly chalcophile element (DNi ~500; Peach et al. 1990) readily partitions into the sulfide 639 



phase, resulting in Ni depletion in the magma and in the olivine crystallized from it. Also, sub-640 

solidus Ni-Fe exchange reactions between olivine and coexisting sulfide may modify the primary 641 

olivine compositions, producing an inverse olivine Ni-Fo relationship as documented from several 642 

magmatic sulfide ore deposits, such as Jinchuan (Li et al. 2004), Noril´sk and Talnakh (Li et al. 2003) 643 

and Voisey´s Bay (Li and Naldrett 1999).   644 

 645 

In the Kevitsa olivine-pyroxene cumulates, sample-scale variations in the Fo content of olivine are 646 

modest (~1 %) but Ni in olivine may vary considerably, resulting in a wide scatter in a Fo vs. Ni plot 647 

(Fig. 9). The same is true for the olivine in the Central Dunite and dunite inclusions hosted by the 648 

Kevitsa intrusion (Luolavirta et al. in press). To model fractional crystallization, theoretical olivine 649 

Fo-Ni compositional trends were constructed using the PETROLG software (Danyushevsky and 650 

Plechov 2011). The olivine-melt model (involving DNi) from Herzberg and O´Hara (2002), the 651 

clinopyroxene-melt model from Danyushevsky (2001), and the clinopyroxene-melt DNi value of 3 652 

(Lindstrom and Weill 1978) were used. A Mg-rich picritic basalt (700 ppm Ni) from the Savukoski 653 

Group (Hanski et al. 2001a) is considered parental for the early-stage dunitic cumulates of the 654 

Kevitsa intrusive suite (Luolavirta et al. in press) and was used as the initial melt composition. The 655 

extremely nickeliferous olivines in the host rocks to the Ni-PGE ore were not considered in the 656 

calculation. Calculations were conducted under conditions of QFM+3 (three log units above the 657 

quartz-fayalite-magnetite fO2 buffer), QFM+2 and QFM-1.  658 

 659 

The olivine in the host rocks to the false ore is clearly depleted in Ni with respect to the expected 660 

Ni contents due to fractional crystallization. Analyses of olivine enclosed in orthopyroxene 661 

oikocrysts (isolated from sulfides) in false ore samples record similarly low Ni abundances as 662 

olivine grains in contact with sulfides, indicating that the Ni-poor nature of olivine is not due to 663 



late-stage equilibration with sulfides. Analogously, Yang et al. (2013b) did not observe any 664 

significant differences in the olivine Ni contents between olivine grains enclosed in clinopyroxene 665 

crystals and those in contact with sulfide minerals in the Ni-PGE ore type. Furthermore, we cannot 666 

identify any reverse trends in the Ni-Fo relationships that would suggest Fe-Ni exchange reactions. 667 

Therefore, the magma producing the olivine in false ore was most likely depleted in Ni due to an 668 

early attainment of sulfide saturation.  669 

 670 

Given the compositional and isotopic similarity of the host rocks to the regular and false ores, the 671 

false ore could represent a differentiate after the formation of economic Ni-Cu ore, explaining the 672 

lack of metals in the former. The olivine data from Mutanen (1997) suggest that the forsterite 673 

content in olivine in false ore (Fo76–78.5) is overlapping but generally lower than that of the regular 674 

ore (Fo77–84). However, our new data on false ores expand the range of Fo in false ores to the 675 

range of regular ores. Also, the whole-rock compositions show no difference in the fractionation 676 

stage between these two ore types. It must be noted that the dense sulfide liquid may migrate 677 

within semi-consolidated cumulates, so that the observed assemblage of silicate and sulfide 678 

minerals in false ores do not necessarily represent interrelated accumulations. The different S 679 

isotope compositions of the regular and false ore, however, do not favor a simple genetic 680 

relationship of the two.  681 

 682 

Due to the highly chalcophile nature of platinum group elements (DPGEsulfide-silicate ~20 000; e.g., 683 

Fleet et al. 1991), the sulfide segregation history can also be assessed on the basis of the PGE 684 

contents and their relative abundances with respect to less chalcophile base metals (e.g., Maier et 685 

al. 1998; Barnes and Lightfoot 2005). In false ores, the Pt and Pd concentrations are low in 686 



comparison to "barren" olivine pyroxenites (see Figs. 6 and 7) and fall close to or below the 687 

detection limit (10 ppb). Such low values may cause large errors in the calculated Cu/Pd or Pt/Pd 688 

ratios, for example, and hence, in this case, are not reliable for evaluating the possibility of an 689 

earlier sulfide-saturation event. Nevertheless, the markedly low concentrations of Pt and Pd in the 690 

false ores are well in line with the Ni-depleted nature of the olivine of the ore type, supporting an 691 

earlier sulfide segregation event. In this case, to produce metal-poor false ore, the magma must 692 

have reached sulfide saturation at two separate stages. The heavy sulfur isotope compositions 693 

measured for the false ore indicate a substantial proportion of crustal sulfur, which is consistent 694 

with multiple sulfur saturation events. 695 

 696 

Geological model 697 

 698 

The different Sr isotope profiles obtained from drill cores outside and within the ore domain 699 

cannot be unambiguously correlated. The Sr isotope ratios record a significant variability in the ore 700 

domain (see Fig. 8) whereas the surrounding rocks (see Figs. 6 and 7) show less radiogenic and 701 

more constant isotope compositions throughout the stratigraphy. Luolavirta et al. (2018) 702 

demonstrate that the lithological, whole-rock and mineral compositional variations in the 703 

stratigraphy are far more pronounced in the ultramafic rocks of the ore-bearing domain in 704 

comparison to the surrounding ultramafic rocks. This is well in line with the observed isotopic 705 

signatures. The isotopic and compositional differences can be interpreted to reflect distinct 706 

magmatic histories in the ore domain and its surroundings. To explain the spatial stratigraphic and 707 

compositional differences between different parts of the Kevitsa intrusion and the characteristic 708 

features of the ore types, the following integrated model is proposed for the magmatic evolution 709 

of the Kevitsa intrusive suite rocks and its Ni-Cu-(PGE) deposit (Fig. 10). 710 



Stage 1. Intrusion(s) of picritic basalt magma formed olivine-chromite cumulates (Central Dunite) 711 

in the conduits (Luolavirta et al. in press). 712 

Stage 2. Picritic basalt in a lower staging chamber differentiated to basaltic magma and underwent 713 

comprehensive country rock contamination. The basaltic magma intruded as a continuous, stable 714 

flow into the Kevitsa magma chamber and crystallized olivine-pyroxene cumulates. During their 715 

flow, the magma pulses assimilated sulfur from country rocks to variable degrees. When sulfur 716 

saturation was achieved, some of the sulfides were lodged probably in depressions within the 717 

conduit. Metal-depleted magma further gained sulfur from the country rocks and carried sulfide 718 

melt into the Kevitsa magma chamber precipitating metal-poor false ores (and contact type 719 

mineralization). Later crystal fractionation resulted in the formation of pyroxenites in a nearly 720 

closed system. 721 

Stage 3. The Kevitsa magma chamber began to operate as a dynamic open system and magmas 722 

intruded into the hot interior of the Kevitsa intrusion. A number of stage-1 dunitic cumulates and 723 

xenoliths were further brecciated by these magmas and redistributed within the olivine-pyroxene 724 

cumulates. The origin of the zones of pOLWB remains ambiguous. They may either represent 725 

blocks of separate earlier sill(s) or autolith(s) of some marginal phase rocks formed at stage 2. A 726 

simple origin by crystal fractionation involving contamination cannot be ruled out either. 727 

Ni-Cu-(PGE) ores formed by sulfur-saturated magma influxes, and were potentially upgraded by 728 

assimilation of the stage-2 proto-ore material in the conduit. Variable degrees of interaction of the 729 

new magma pulses with the early-formed sulfides could account for the wide variation in ore 730 

tenors found in the Kevitsa deposit. The magmas producing the Ni-PGE ore likely passed through 731 

distinct country rocks and followed a different route into the Kevitsa magma chamber. The 732 



numerous dunite inclusions and mafic-ultramafic xenoliths within the deposit area may have 733 

reduced the flow rate of the magmas and aided concentration of the sulfides. 734 

 735 

Conclusions 736 

 737 

Both strontium and sulfur isotope compositions of the Kevitsa ultramafic cumulates deviate from 738 

those expected for purely mantle-derived magmas, indicating involvement of crustal material in 739 

their genesis. Variations in the Sr and S isotope data together with mineral and whole-rock 740 

chemistry demonstrate that the ore-bearing domain of the Kevitsa intrusion represents a dynamic 741 

site with multiple emplacements of variably contaminated silicate magma and sulfide liquid. In 742 

contrast, the rocks around the ore domain formed from a compositionally more uniform magma 743 

and underwent a less vigorous emplacement history. The sulfur in the Kevitsa ores is at least in 744 

part derived from crustal sources, with the external sulfur playing an important role in triggering 745 

sulfide saturation. The metal-depleted nature of the false ores and their host rocks indicate 746 

previous S-saturation and formation of proto-ores during an early stage of magma emplacement. 747 

Assimilation of the early formed sulfides may have upgraded the metal tenors of the Kevitsa Ni-748 

Cu-(PGE) ore. 749 
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Table captions 1000 

Table 1 Representative in-situ isotope data from plagioclase and sulfides from the Kevitsa 1001 

ultramafic zone.  1002 

 Figure captions 1003 

Fig. 1 Geologic map of the Kevitsa intrusion and location of the sampled drill cores and cross 1004 

sections of Fig. 2. Location of the Ni-Cu-(PGE) deposit is denoted by the outline of the open pit. 1005 

Fig. 2 a) S-N (A-A´) and b) SE-NE (B-B´) cross sections across the Kevitsa intrusion showing the 1006 

broad outlines of the Ni-Cu-(PGE) ore body (> 0.15 % Ni) and false ore bodies around the ore 1007 

domain (< 0.1 % Ni). For locations of the profiles, see Fig. 1. 1008 

Fig. 3 Photomicrographs of rocks from the Kevitsa ultramafic zone, showing laser spot positions as 1009 

red circles and Sr(i) ratios with corresponding An contents in plagioclase. a) and b) olivine 1010 

pyroxenite, c) pyroxenite, d–f) plagioclase-bearing (ol) websterite. 1011 

Fig. 4 εNd vs. 87Sr/86Sr(i) diagram showing compositions of the Kevitsa false, regular and Ni-PGE ore 1012 

types. εNd data for Kevitsa ores from Huhma et al. (2017 in review) and Sr isotopic data from the 1013 



present study. Field for Bushveld Bushveld Lower and Main zone and mantle-derived magma arter 1014 

Maier et al. (2000) and for Archean tonaliitic gneiss (Tojottamanselkä gneiss, 10 km north of 1015 

Kevitsa) after Hanski et al. (2001b) and Kröner et al. (1981).  1016 

Fig. 5 Sulfur isotopic compositions of Kevitsa ores and ultramafic rocks. Whole-rock data from 1017 

Grinenko et al. (2003). In-situ data from the present study. 1018 

Fig. 6 Stratigraphic variations of Sr isotope ratios and An contents of plagioclase and S isotope 1019 

compositions of sulfide in drill core KV-297 (outside the ore domain). The observed range in Sr 1020 

isotope compositions is depicted by the gray shaded column. Whole-rock Zr, La/Nb , S, Ni, Cu, Pt 1021 

and Pb contents are from the Kevitsa mine data base. Fo contents of olivine taken from Luolavirta 1022 

et al. (2018) and field for mantle-derived sulfur after Ripley and Li (2003).  PX - Pyroxenite, OLPX - 1023 

olivine pyroxenite, Basal PX-GAB - Basal pyroxenite-gabbro. Po - pyrrhotite, Py - pyrite. 1024 

Fig. 7 Stratigraphic variations of Sr isotope ratios and An contents of plagioclase and S isotope 1025 

compositions of sulfide in drill core KV-280 (outside the ore domain). The observed range in Sr 1026 

isotope compositions is depicted by the gray shaded column. Whole-rock Zr, La/Nb , S, Ni, Cu, Pt 1027 

and Pb contents are from the Kevitsa mine data base. Fo contents of olivine taken from Luolavirta 1028 

et al. (2018) and field for mantle-derived sulfur after Ripley and Li (2003). PX - pyroxenite, OLPX - 1029 

olivine pyroxenite, Basal PX-GAB - Basal pyroxenite-gabbro.  1030 

Fig. 8 Stratigraphic variations of Sr isotope ratios and An contents of plagioclase and S isotope 1031 

compositions of sulfide in drill core KV-103. Gray shaded column represents the range in Sr isotope 1032 

compositions observed in drill cores KV-297 and KV-280 (outside the ore domain,  Figs. 4 and 5). 1033 

Whole-rock Zr, La/Nb , S, Ni, Cu, Pt and Pb contents are from the Kevitsa mine data-base. Fo 1034 

contents of olivine taken from Luolavirta et al. (2017b). OLPX - olivine pyroxenite, * - olivine 1035 

(clino)pyroxenite. pOLWB - plagiolclase-bearing (olivine) websterite. Po - pyrrhotite, Py - pyrite. 1036 



Fig. 9 Plot of nickel vs. forsterite (Fo %) contents of olivine in dunitic cumulates and Kevitsa olivine-1037 

pyroxene cumulates compared with theoretical olivine compositional trends calculated at QFM+3, 1038 

QFM+2 and QFM-1 for picritie-basalt parental magma. White dots in model curves refer to 10, 20, 1039 

30 and 40 percentages of fractional crystallization. Olivine data for dunitic cumulates taken from 1040 

Luolavirta et al. (in press) and for Kevitsa olivine-pyroxene cumulates from Luolavirta et al. (2018). 1041 

Fig. 10 Schematic illustration of the emplacement of the Kevitsa intrusive suite rocks and 1042 

formation of the Ni-Cu-(PGE) ore (modified after Luolavirta et al. 2017b). 1043 
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Table 1 Representative in-situ isotope data from plagioclase and sulfides from the Kevitsa ultramafic zone 

Sample Lithology 87Rb/86Sr 87Sr/86Sr 87Sr/86Sr (i) 2σ An   δ34S‰ 2σ   

KV280-74.45 PX 0.0049 0.7058 0.7056 0.00014 68.7     

  0.0061 0.7058 0.7056 0.00014 51.7     

  0.0071 0.7057 0.7055 0.00015 51.4     
           KV297-391.95 OLPX 0.0020 0.7056 0.7056 0.00014 69.2  2.52 0.18 po 

  0.0141 0.7054 0.7050 0.00015 70.4  3.04 0.18 po 

           KV280-574.95 OLPX (F) 0.0029 0.7051 0.7050 0.00012 68.8  7.60 0.20 po 

  0.0026 0.7051 0.7050 0.00011 68.4  7.19 0.24 po 

  0.0033 0.7054 0.7053 0.00013 72.8  8.00 0.23 po 

  0.0027 0.7053 0.7052 0.00014 71.9     

           KV297-1236.80 Basal PX 0.0032 0.7058 0.7057 0.00015 59.3  4.00 0.19 po 

  0.0035 0.7051 0.7050 0.00014 60.6  3.57 0.21 po 

           KV103-258.08 OLPX 0.0033 0.7067 0.7066 0.00018 42.2  3.08 0.22 po 

  0.0700 0.7091 0.7071 0.00029 42.4  3.35 0.24 po 

           KV103-303.49 OLPX 0.0130 0.7066 0.7062 0.00021 45.1  -0.42 0.15 py 

  0.0116 0.7074 0.7071 0.00014 46.6  -0.33 0.26 po 

  0.0082 0.7074 0.7072 0.00015 45.1  1.31 0.15 py 

  0.0074 0.7069 0.7067 0.00021 45.5  1.55 0.23 po 

           KV103-421.10 OLPX (R) 0.0089 0.7064 0.7061 0.00023 46.2  4.13 0.24 po 

  0.0111 0.7058 0.7055 0.00024 47.8  5.47 0.26 po 

  0.0127 0.7063 0.7060 0.00022 44.5  3.75 0.20 po 

  0.0069 0.7065 0.7063 0.00021 44.1  3.79 0.20 po 

           KV103-489.30 pOLWB 0.0106 0.7066 0.7063 0.00023 42.7 core 7.63 0.24 po 

  0.0114 0.7078 0.7075 0.00024 42.7 core 6.98 0.19 po 

  0.0103 0.7068 0.7065 0.00028 45.3 rim 6.99 0.20 po 

  0.0127 0.7076 0.7072 0.00027 41.8 rim 5.84 0.23 po 

           KV103-671.18 OLPX*  (N) 0.0095 0.7112 0.7109 0.00024 46.6  3.95 0.31 po 

  0.0136 0.7107 0.7103 0.00030 47.6  1.33 0.24 po 

    0.0112 0.7111 0.7108 0.00027 49.5   2.24 0.25 po 
OLPX - olivine pyroxenite, OLPX* - olivine (clino)pyroxenite, pOLWB - plagioclase bearing (ol) websterite,  PX - pyroxenite 
F, R and N indicate false, regular and Ni-PGE ore, respectively. An=anorthite, po=pyrrhotite, py=pyrite.     
Initial 87Sr/86Sr ratio ±2σ calculated using an age of 2.058 Ga       
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