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Abstract: In this work, we report on the growth of high yield small bandgap InAs and 

InAsSb inserts embedded in InAsP nanowires grown on an InP substrate by catalyst-free 

selective-area metal-organic chemical vapor deposition. It is observed that the growth of the 

inserts with high aspect ratios can be achieved by properly tuning the V/III ratio. Nanowire 

arrays with InAs(Sb) inserts exhibit strong photoluminescence at 77 K from interband 

transitions, spanning a wavelength range of 2.30–3.70 µm. In addition, the InAsP/InAs 

heterointerfaces are characterized by a scanning transmission electron microscope and an 

energy-dispersive X-ray spectroscopy. We believe that these results pave the way to 

engineering interband transitions and enabling hybrid integration for nanoscale optical 

devices at the mid-wavelength infrared. 
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1. Introduction 

Semiconductor photonic devices operating at wavelengths longer than 2.5 μm have received 

increasing attention due to the variety of applications in lasers and photodetectors at mid-

wavelength infrared (MWIR). To date, there has been significant effort to develop MWIR 

materials on InP substrates, allowing direct epitaxy of high-performance optical devices on 

well-studied substrates at a reduced cost compared to InAs substrates. Those optical devices 

include, but are not limited to, extended InGaAs interband photodetectors [1], InGaAs/InAlAs 

(type-I) quantum-well infrared photodetectors [2], and InGaAs/GaAsSb(Bi) (type-II) multi-

quantum well lasers and photodetectors [3–6]. Another material system based on arsenic-rich 

InAs(Sb)/InAsP type-I heterojunctions with compressively strained InAs(Sb) layers serves as 

a potential candidate as well for interband optical devices with minimized Auger 

recombination [7,8]. However, thin film epitaxy of InAsP/InAs(Sb) heterostructures, 

especially with high antimony or phosphorus composition, is challenging due to lattice 

mismatches, which might result in planar defects. Alternatively, heteroepitaxy with large 

lattice mismatch can be achieved by the bottom-up growth of vertical freestanding nanowires 

due to elastic deformation occurring at heterogeneous interfaces [9,10]. 

Growth of thin film InAsP/InAs(Sb) multi-quantum well and superlattices has been 

previously reported for the applications of lasers and light-emitting diodes up to 6 µm, 

available in the literature [7,8,11–13]. On the other hand, growth of InAs/In(As)P 

heterostructures in nanowires has been achieved by chemical beam epitaxy to realize quasi 

one-dimensional potential barriers as well as quantum devices such as resonant tunneling 

diodes and single-electron transistors [14,15]. Unfortunately, all those heterostructures 

mentioned above are grown on InAs substrates, and no study in nanowires regarding optical 

properties of InAs(Sb) in this material system has been shown. 

In this letter, we provide a detailed study of high yield axial InAs(Sb) inserts in InAsP 

nanowires grown on InP substrates by catalyst-free selective-area metal-organic chemical 
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vapor deposition (SA-MOCVD). Selective-area growth of nanowires has been demonstrated 

to be a more robust technique than assembled growth, because the engineered patterns of 

nanowire arrays, such as periodicity, pitch, and placement, enable the exploitation of unique 

optical properties. Interestingly, we find that the aspect ratio of insert segments can be freely 

controlled by the V/III ratio during growth. Strong optical emission over 2.3 µm has been 

obtained from nanowire arrays with InAs(Sb) inserts at cryogenic temperature. We further 

examine InAs/InAsP heterointerfaces by scanning transmission electron microscope and 

energy-dispersive X-ray spectroscopy. These results establish an experimental foundation for 

engineering interband transitions and enabling hybrid integration for nanoscale MWIR optical 

devices. 

2. Experimental details 

InAs and InAsSb inserts in InAsP nanowires were grown on Zn-doped InP (111)B substrate 

using SA-MOCVD. Note that for SA-MOCVD, growth of vertical arsenic-rich InAs(P)(Sb) 

nanowires is more favorable along (111)B instead of (111)A [10]. A schematic diagram of the 

nanowire structure with an insert is illustrated in Fig. 1(a). To achieve high vertical yield on 

InP (111)B, a thin layer of InAs was introduced prior to nanowire growth [8,16]. Here, the 

major steps of the process are given. A 20 nm silicon dioxide (SiO2) film was first deposited 

on the substrate as a growth mask, and then patterned with nanoholes by electron-beam 

lithography (EBL). The substrate was subsequently exposed by reactive ion etching of the 

SiO2 mask. The diameter and pitch of the nanoholes were 40 nm and 600 nm, respectively. 

Nanowire growth was accomplished using a low-pressure (60 Torr) Emcore D-75 MOCVD 

reactor with hydrogen (H2) as the carrier gas. The group III precursor was trimethylindium 

[TMIn], and the group V precursors were tertiarybutylphosphine [TBP], tertiarybutylarsine 

[TBAs], and trisdimethylaminoantimony [TDMASb]. Before nanowire growth was 

initialized, all samples were annealed at a temperature of 590°C for 10 minutes to fully 

remove the surface native oxide. The temperature was then decreased to the growth 

temperature at 550°C. Growth of InAs inserts was carried out at a V/III ratio between 16 and 

48, while for the growth of InAsSb inserts, the V/III ratio was kept fixed at 4. A 2-sec growth 

interruption with H2 purge was used as the switching sequence for all heterointerfaces. An 

antimony vapor phase, i.e. [TDMASb]/([TDMASb] + [TBAs]), of 0.6 was used for InAsSb 

inserts. Finally, the growth was terminated by shutting off TMIn, and the chamber was cooled 

down under TBP overpressure. Note that we intentionally induced slight overgrowth in the 

lateral direction during growth of the upper InAsP segment as a passivation layer for the 

inserts. Figure 1(b) shows a scanning electron microscope (SEM) image of a close-up look of 

a highly-uniform InAsP nanowire array with InAs inserts. 

The height and diameter of nanowires were characterized using SEM. Photoluminescence 

(PL) measurement at cryogenic temperature (77 K) was carried out by a solid-state red laser 

at 671 nm as the pumping source (normal incidence, polarization ratio > 100:1) and a liquid-

nitrogen cooled InSb detector in a Nicholet 6700 Fourier transform infrared (FTIR) 

spectrometer. The incident laser power and the spot size on samples were calibrated as 2 mW 

and 50 µm, respectively. In addition, a step-scan mode with a resolution of 32 cm−1 was used 

for FTIR. The InAs inserts were further examined by scanning transmission electron 

microscope (STEM) and energy-dispersive X-ray spectroscopy (EDX). To prepare the 

STEM/EDX samples, nanowires were mechanically moved onto the grids with carbon films. 

3. Results and discussion 

3.1 InAs inserts 

Purely axial growth of small bandgap inserts is desired for nanowires because any overgrowth 

in the lateral directions may form a shunt path for carriers through the spacing between 

segments. Thus, the first part of the study concerns the growth condition to achieve a high 
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aspect ratio, i.e. nanowire height divided by nanowire diameter, with enhanced axial growth 

and eliminated lateral growth. Interestingly, we observe that by tuning V/III ratio the aspect 

ratio can be freely controlled. As shown in Fig. 2(a), three different V/III ratios of 16, 32, and 

48 are applied to 30-sec growth of InAs inserts on top of InAsP bottom segments, which 

results in very different nanowire dimensions. The changes of height and diameter after InAs 

growth are characterized by SEM and summarized in Fig. 2(b), and the calculated aspect ratio 

as a function of V/III ratio is shown in the inset. The results are remarkable – an aspect ratio 

of nearly 100 is achieved using a V/III ratio of 16, meaning that growth of a 100 nm axial 

InAs insert only results in a lateral overgrowth of about four monolayers on nanowire 

sidewalls. The increase of aspect ratio with decreasing V/III ratio can be explained by a lower 

activation energy at the InAsP/InAs interface due to precursor pyrolysis [17] or interpreted by 

an enhanced diffusion length of indium adatoms on SiO2 growth mask due to less phosphorus 

[18,19]. 

 

Fig. 1. (a) Schematics of InAs(Sb) inserts in InAsP nanowires grown on InP (111)B. (b) A 

close-up look of nanowire array with InAs inserts. The scale bar is 1 µm. 

 

Fig. 2. (a) SEM images of InAs segments grown on InAsP bottom segments using different 

V/III ratios of 16, 32, and 48. The scale bar is 1 µm. (b) The average change of nanowire 

height ∆H as a function of the average change of nanowire diameter ∆D after the growth of 

InAs inserts. The inset shows the aspect ratio of InAs growth as a function of V/III ratio. 

PL characterization of InAsP/InAs/InAsP heterostructures (shown in Fig. 1(a)) is carried 

out at cryogenic temperature (77 K), as shown in Fig. 3(a). The growth time of InAs inserts is 

varied from 5 to 30 seconds. The emission peak at lower energy is attributed to the emission 

from InAs inserts, shaded in blue, which spans a wavelength range of 2.31 – 2.57 µm, while 

the peak at a higher energy results from InAsP segments. Spectrum fitting is accomplished by 

using only two Gaussian functions, suggesting interband transitions are the dominant form of 

emission for all segments. The peak energy of InAs inserts as a function of growth time is 
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displayed in Fig. 3(b). We observe that the peak energy of InAsP segments is almost constant 

between 0.630 and 0.635 eV, while the peak energy of InAs inserts shifts towards higher 

energy with decreasing growth time. The phosphorus composition is estimated to be 0.23 and 

0.24 based on our previous growth study of InAsP nanowires on InP substrates [10]. The peak 

shift of InAs inserts might result from phosphorus inter-diffusion at InAsP/InAs 

heterointerfaces, or the quantized well-like structure of InAs. Additionally, it is noted that the 

emission peak of InAs inserts grown for 30 seconds is at 0.483 eV, much different from the 

zinc-blende InAs bandgap of 0.415 eV at 77 K. It is mainly due to a high-density of rotational 

twins, i.e. crystal phase switches between zinc-blende and wurzite, which is commonly 

observed in InAs nanowires grown by selective-area growth mode [20,21]. 

Having determined the peak energy, we study the surface passivation for InAs inserts. As 

mentioned earlier, top InAsP segments are intentionally grown laterally to realize passivation 

layers with larger bandgap. It is known that by introducing phosphorus into InAs the surface 

state density can be largely suppressed [10,22,23]. Here, we compare the PL emission from 

two nanowire arrays with 30-sec and 60-sec InAsP top segments while the growth time of 

InAs inserts is kept fixed at 30 seconds. The measured PL spectra are depicted in Fig. 3(c). As 

expected, the emission from inserts is enhanced by a factor of seven with no shift of InAs 

peak energy. Thus, it is evident that the increased emission results from a reduction of surface 

state density at nanowire surface. 

 

Fig. 3. (a) PL characterization (77 K) of nanowire arrays with InAs inserts. The growth time of 

inserts is varied from 5 to 30 seconds. The dashed lines are drawn to guide the eye for the 

emission peaks of InAs and InAsP segments. (b) A summary of peak energy as a function of 

growth time of InAs inserts. (c) Optical emission of nanowire arrays where the InAsP top 

segments are grown for 30 and 60 seconds, respectively. The growth time of InAs inserts is 

kept fixed at 30 seconds. 

                                                         Vol. 8, No. 4 | 1 Apr 2018 | OPTICAL MATERIALS EXPRESS 1079 



Figure 4 shows STEM/EDX characterization of a single nanowire with a 60-sec InAs 

insert. The insert is clearly shown in the highlighted region with an estimated width of 150 

nm. In this study, we use a 2-sec H2 purging scheme during growth interruptions between 

segments as the source gas switching procedure. The duration of H2 purging is critical – the 

residual arsenic or phosphorus adatoms need to be fully removed to avoid being incorporated 

into the next growth segment. This is normally known as the “memory effect” for As/P 

material systems [24,25]. One potential solution is to optimize the switching sequence of 

As/P by extending the time of H2 purging scheme to fully remove any residual arsenic or 

phosphorus adatoms on dielectric growth masks. Since the EDX measurement was performed 

on an as-grown nanowire (no thinning), the scan resolution is insufficient to accurately assess 

the abruptness of the heterointerface and so further study will be necessary. 

 

Fig. 4. STEM and EDX line-scan of a single nanowire with a 60-sec InAs insert. 

3.2 InAsSb inserts 

We now present a study of InAsSb inserts in InAsP nanowires. Growth of purely axial 

InAsSb inserts is achieved using a V/III ratio of 4, as shown in Fig. 5(a). The axial growth 

rate of InAsSb is determined to be 282 nm/min. Similar to the previous growth of InAs 

inserts, the top InAsP segments are used as high bandgap passivation layers. We performed 

77 K PL measurements of as-grown samples of InAsP/InAsSb and InAsP/InAsSb/InAsP, as 

shown in Fig. 5(b) and 5(c), respectively. In Fig. 5(b), the emission peak of InAsSb, shaded in 

blue, is at 0.390 eV, i.e. 3.12 µm. It is not surprising that there is no InAsP emission in the 

spectrum and the signal from InAsSb nanowires is weak. First, an exchange of arsenic and 

phosphorus on nanowire surface occurs during InAsSb growth, resulting in an arsenide-like 

surface with high density of surface states for the bottom InAsP segments [10]. Second, the 

weak InAsSb emission is due to a high surface state density as well. By adding the top InAsP 

segments, inserts and bottom InAsP segments are properly passivated, and thus, the emission 

from both inserts and InAsP segments are dramatically enhanced, as shown in Fig. 5(c). We 

note that the peak energy of InAsSb is shifted from 0.390 eV to a lower energy of 0.335 eV 

(3.70 µm), which results from a relaxation of Fermi-level pinning at the surface of InAsSb 

inserts. The antimony composition is estimated to be between 0.08 and 0.10 based on 

previous growth studies of InAsSb nanowires [16,26]. Additionally, the full-width half-max 

(FWHM) of the InAsSb peak is 73.7 meV, higher than the value obtained from InAsSb bulk 

nanowires, which is about 45.0 meV [26]. This might be due to a nonuniform antimony 

composition across the insert segment. 
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4. Conclusion 

We successfully grew InAs and InAsSb inserts in InAsP nanowires on InP (111)B substrates 

by SA-MOCVD. We observed optical emission spanning a wavelength range from 2.31 – 

3.70 µm from interband transition by PL characterization. The growth of InAs inserts was 

further examined by STEM/EDX. It is worth noting that by choosing a proper V/III ratio, we 

achieved the growth of inserts with high aspect ratio. We believe that this study provides a 

promising approach to integrate InAs(Sb) active layers on low-cost InP substrates for 

optoelectronics at MWIR. 

 

Fig. 5. (a) SEM images of growth process of InAsSb inserts. (b) PL characterization (77 K) of 

InAsP/InAsSb and InAsP/InAsSb/InAsP heterostructures, respectively. The inset shows a 

close-up look of emission from InAsSb inserts. 
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