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9Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Pisa I-56127 and INFN sezione di Pisa, Italy

10Mathematics Department, University of Massachusetts Dartmouth, Dartmouth,
Massachusetts 02747, USA

11Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
12Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
13Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ, United Kingdom

14LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 23 December 2017; published 22 February 2018)

Thanks to the recent discoveries of gravitational wave signals from binary black hole mergers by Advanced
Laser Interferometer Gravitational Wave Observatory and Advanced Virgo, the genuinely strong-field
dynamics of spacetime can now be probed, allowing for stringent tests of general relativity (GR). One set of
tests consists of allowing for parametrized deformations away from GR in the template waveform models and
then constraining the size of the deviations, as was done for the detected signals in previous work. In this
paper, we construct reduced-order quadratures so as to speed up likelihood calculations for parameter
estimation on future events. Next, we explicitly demonstrate the robustness of the parametrized tests by
showing that they will correctly indicate consistency with GR if the theory is valid. We also check to what
extent deviations from GR can be constrained as information from an increasing number of detections is
combined. Finally, we evaluate the sensitivity of the method to possible violations of GR.
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I. INTRODUCTION

Since 2015, the twin Advanced Laser Interferometer
Gravitational Wave Observatories (Advanced LIGOs)
[1] have routinely been detecting gravitational wave
signals from coalescing binary black holes [2–6],
recently also in conjunction with Advanced Virgo
[7,8]. Later in the decade, the worldwide gravitational
wave detector network will be extended with the
Japanese KAGRA [9], to be followed by LIGO-India
[10]. In the course of the next several years, tens to

hundreds more binary black hole detections are expected
to be made [4].
Coalescences of stellar mass binary black holes (BBHs)

are ideal laboratories for testing the genuinely strong-field
dynamics of general relativity (GR) [11,12]: they are likely
to be pure spacetime events, involving stronger curvatures
and shorter dynamical time scales than in any other
experiment or observation, by many orders of magnitude
[13]. The process starts with two black holes that are
orbiting each other, gradually losing orbital energy and
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orbital angular momentum through the emission of gravi-
tational waves (GWs). By the time the GW frequency is
high enough to be in the sensitive band of Earth-based
detectors, the binary will likely have shed almost all of
its original eccentricity [14] and will be undergoing quasi-
circular inspiral. Eventually, the inspiral becomes non-
adiabatic, after which the components of the binary
undergo a plunge followed by merger, leading to the
formation of a single, highly excited black hole. The latter
undergoes ringdown as it asymptotes to a quiescent, Kerr
black hole. The GW signal that is emitted can, at large
distances, be described as a small metric perturbation
propagating at the speed of light on a Minkowski back-
ground; however, the shape of the wave encodes detailed
information about the strong-field, dynamical inspiral-
merger-ringdown (IMR) process it originated from.
A number of techniques have been developed to under-

stand inspiral-merger-ringdown in GR, including large-
scale numerical relativity (NR) simulations resulting from
direct integration of the Einstein equations [15–17] and
the construction of (semi)analytic waveform models. The
effective one-body (EOB) formalism [18–22] has been
extended to combine the post-Newtonian (PN) description
of inspiral [23] with NR results for the merger, as well as
black hole perturbation theory for the ringdown [24–26],
leading to high-quality IMR waveforms in the time domain
[27]. In the frequency domain, phenomenological IMR
models [28–30] were developed based on a frequency
domain PN expansion together with hybridized EOB/NR
waveforms [31–33].
A variety of possible deviations from GR have been

considered in the context of binary coalescence, including
scalar-tensor theories, a varying Newton constant, modified
GW dispersion relations, e.g., arising from “massive
graviton” models, violations of the no-hair hypothesis,
violations of cosmic censorship, and parity violating
theories (see, e.g., [13] and references therein). Even within
the GR paradigm, one can think of alternative compact
objects to black holes (e.g. boson stars, dark matter stars, or
gravastars), which may exhibit tidal effects during inspiral
(see [34,35]) and will also have a different ringdown signal
from a black hole. For some alternative theories, it has been
worked out how the post-Newtonian inspiral would be
modified to leading order [36], and for certain exotic
objects, the ringdown spectrum has been computed [37].
However, what seems to be lacking in all cases are the kind
of high-accuracy IMR waveforms that are available for
BBH coalescence in GR. Thus, given observational GW
data for a detected compact binary coalescence event, at
present, it is not possible to compare GR with alternative
theories or BBH coalescences with those of alternative
compact objects, while making use of the full information
in the IMR signal. Moreover, GR might be violated in an
altogether different way that is yet to be envisaged.

Given these restrictions, at the present time, it is
expedient to devise tests of the theory of general relativity
itself, which to the largest extent possible are generic and as
accurate as we can make them. Following the recent binary
black hole merger detections, a battery of such tests were
deployed [4,5,12]: looking for coherent excess signal
power in the data after subtraction of the best-fitting GR
waveform [38,39], checking for consistency with GR
between the pre- and postmerger signals in terms of masses
and spins [40,41], evaluating consistency of the postmerger
signal with the presence of a least-damped ringdown mode
[12], constraining anomalous GW propagation with a view
on bounding the mass of the graviton as well as violations
of local Lorentz invariance [42,43] (the latter also using the
binary neutron star detection [44–46]), looking for evi-
dence of nonstandard polarization states [47], and meas-
uring a series of judiciously chosen coefficients associated
with parametrized deformations of IMR waveforms away
from GR [4,5,12,36,48–54]. This paper deals primarily
with the latter tests.
As mentioned above, a number of IMR waveform

models have been developed. For parametrized tests of
GR, we use the phenomenological models, which have a
closed expression in the frequency domain and hence can
be generated fast on a computer (which is important for
data analysis purposes when exploring high-dimensional
parameter spaces), capture the essential physics of the
problem (including, e.g., spin-induced precession), and
allow for some amount of analytic insight into the meaning
of the induced deformations. In particular, we use the
model which in the LIGO Algorithm Library is designated
as IMRPhenomPv2 [31–33]. The IMRPhenomPv2 wave-
form phase is characterized by a number of parameters
fpig: (i) in the adiabatic inspiral regime, PN coefficients
fφ0;…;φ7g and fφ5l;φ6lg; (ii) in the intermediate regime
between adiabatic inspiral and merger, phenomenological
coefficients fβ0;…; β3g; and (iii) in the merger-ringdown
regime fα0;…; α5g. In the most relevant of these coef-
ficients, parametrized deformations are introduced by
allowing for relative deviations: pi → ð1þ δp̂iÞpi. The
δp̂i will be referred to as our testing parameters.
We then perform a series of tests, in each of which some

testing parameter δp̂j is allowed to vary freely along with
all other parameters entering the phase (component masses
and spins, which enter through the GR expressions for the
pi themselves), but δp̂k ¼ 0 for k ≠ j. In principle, multiple
δp̂i could be allowed to vary at the same time, but this will
lead to a degradation in the measurement accuracy for all of
them [12]; statistical errors will be much smaller when the
δp̂i are varied one at a time. Note that, in most alternative
theories of gravity, a violation will likely show up in more
than one coefficient. However, as already demonstrated in
[55] in a PN context, looking for a deviation from zero in a
single testing parameter is an efficient way to search for
GR violations that occur at multiple PN orders, and one can
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even find violations at powers of frequency that are distinct
from the one that the testing parameter is associated with
[52,53]. Of course, if a deviation is present, then the
individual measurements of the δp̂i will not necessarily
reflect the predicted values of the correct alternative theory.
Should one want to measure or constrain, e.g., extra
charges or coupling constants that may be present in one’s
favorite alternative theory using an IMR signal, then an
accurate IMR waveform model would need to be con-
structed for that particular theory. However, this is not the
aim of the framework presented here; what we want to do is
test Einstein’s theory itself by constraining deviations from
the theory.
Even though the IMRPhenomPv2 waveform model has

an explicit analytic expression, in the case of low-mass
binary mergers, which leave a long signal in the detectors’
sensitive band, the analyses are computationally costly and
can take more than a month of time to complete, due to the
large number of likelihood evaluations [Oð108Þ] that must
be performed. Given the large number of detections that are
expected to be made in the coming LIGO-Virgo observing
runs, ways must be found to reduce the computational
burden. One solution is to speed up the likelihood calcu-
lation by constructing reduced-order quadratures (ROQs)
[56–58], which in turn are based on reduced-order models
[59–66]. In the method of reduced-order quadratures, the
discrete overlap calculation involved in the likelihood
evaluation is split up into a data dependent sum, which
only needs to be evaluated once for each detection, and a
much shorter sum that takes care of the parameter depen-
dent part of the overlap calculation that must be performed
many times during the sampling over parameter space. In
line with the method outlined above, a series of ROQs is
created, in each of which a single testing parameter δp̂i is
allowed for.
Results of the parametrized tests for the LIGO-Virgo

detections of binary black hole coalescences have already
appeared elsewhere [4,5,12]. The aim of this paper is
twofold: (a) to construct ROQs for IMRPhenomPv2 wave-
forms with parametrized deformations, for use on future
detections, and (b) to explicitly demonstrate the robustness
and sensitivity of the method as a whole, which had not yet
been done in previous publications.
The structure of this paper is as follows. In Sec. II, we

briefly recall the waveform model used and explore
analytically how the phase varies with the chosen defor-
mations and as a function of mass. We describe the setup
of the parametrized tests and explain how results from
multiple detections can be combined to arrive at stronger
bounds on GR violations. Section III describes the con-
struction of the reduced-order quadrature for waveforms
with testing parameters. Next, in Sec. IV, we present
some checks of the correctness and robustness of the
data analysis pipeline. In Sec. V, we show how well the
parametrized tests can bound GR violations by combining

information from all available sources. Furthermore, we
investigate how testing parameters in the template wave-
forms respond when deviations in one or more parameters
are present in the signal. Section VI provides a summary
and conclusions.
Throughout this paper, we set c ¼ G ¼ 1 unless speci-

fied otherwise.

II. WAVEFORM MODEL AND
PARAMETRIZED TESTS

A. Waveform model

The starting point for the parametrized tests is the
phenomenological frequency domain waveform model
which in the LIGO Algorithm Library is designated as
IMRPhenomPv2 [33]. This waveform model describes an
approximate signal of a precessing binary by applying a
rotation transformation [33,67] to an underlying aligned
spin waveform model, here taken to be IMRPhenomD
[31,32]. The orbital precession dynamics are given in terms
of an effective spin parametrization [33,68]. For an in-depth
description, we refer to these papers; here we only give a
quick overview.
The phasing of IMRPhenomPv2 consists of three regimes,

whose physical meaning and parametrization are as follows:
(1) The inspiral regime is parametrized by post-

Newtonian coefficients fφ0;…;φ7g and fφ5l;φ6lg,
as well as phenomenological parameters fσ0;…;σ4g.
The latter are contributions at high effective PN
order (up to 5.5 PN) to correct for nonadiabaticity
in late inspiral and for unknown high-order PN
coefficients in the adiabatic regime.

(2) The intermediate regime transitions between inspiral
and merger-ringdown; it is parametrized by the
phenomenological coefficients fβ0;…; β3g.

(3) The merger-ringdown regime is parametrized
by a combination of phenomenological and ana-
lytical black hole perturbation theory parameters
fα0;…; α5g.

Note that the PN coefficients fφ0;…;φ7g and fφ5l;φ6lg
have their usual dependences on the binary’s component
masses and spins. The other phenomenological parameters
are fixed by calibration against numerical relativity wave-
forms. For the functions of frequency in which the above
parameters appear, we refer to [32]; see also Table I in [12].
The transition from the inspiral to the intermediate regime
happens at a frequency f ¼ f1 ¼ 0.018/M (whereM is the
totalmass) and from the intermediate to themerger-ringdown
regime at f ¼ f2 ¼ 0.5fRD, with fRD a “ringdown fre-
quency”, in such a way that the waveform is C1 continuous.
Figure 1 shows the modulus of the waveform jh̃ðfÞj,

highlighting the three regimes; also shown is the Fourier
transform to the time domain hðtÞ and the corresponding
instantaneous frequency as a function of time.
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Not all of the coefficients mentioned above will be used
in the parametrized tests. In the inspiral regime, φ5 is
completely degenerate with the phase at coalescence φc;
similarly, the pair ðσ0; σ1Þ is degenerate with ðφc; tcÞ, with
tc as the time at coalescence. The pairs ðβ0; β1Þ and ðα0; α1Þ
are set by the requirement of C1 continuity between the
different regimes. We also omit α5, which occurs in the
same term as α4, meaning that there will be some amount
of degeneracy between the two. Finally, we do not use
fσ2; σ3; σ4g, whose fractional calibration uncertainties
were larger [ða fewÞ × 10−1] than those of the other
phenomenological parameters [at most ða fewÞ × 10−2],
though all calibration uncertainties were observed to be
below measurement uncertainties for the binary black hole
coalescence detections that were made [69].
The way our parametrized tests are implemented is by

allowing for fractional deviations from the GR values for all
of the remaining coefficients pi in turn

pGR
i ðm1; m2;S1;S2Þ → ð1þ δp̂iÞpGR

i ðm1; m2;S1;S2Þ;
ð1Þ

where m1, m2 are the component masses and S1, S2 are the
component spins; one has

fδp̂igi ¼ fδφ̂0;…; δφ̂7; δφ̂5l; δφ̂6l; δβ̂2; δβ̂3; δα̂2; δα̂3; δα̂4g:
ð2Þ

We note that in GR, φ1 ≡ 0, so that as an exception, we let
δφ̂1 be an absolute rather than a relative deviation.
Including extrinsic parameters coming from the detector

response, in practice, the full parameter sets of the resulting
waveform models will be

λ⃗ ¼ ftc;φc; DL; θ;ϕ;ψ ; m1; m2; χ1; χ2; χp; θJ; α0; δp̂ig:
ð3Þ

Here, tc and φc are, respectively, the time and phase at
coalescence; DL is the luminosity distance; ðθ;ϕÞ give the
sky position; ψ is a polarization angle; m1 and m2 are the
component masses; χ1 and χ2 are spin magnitudes; and χp
is an “effective” spin precession parameter given by [68]

χp ¼ maxðA1m2
1χ1⊥; A2m2

2χ2⊥Þ
A2
1m

2
1

; ð4Þ

where A1 ¼ 2þ 3m2/2m1, A2 ¼ 2þ 3m1/2m2, and χ1⊥,
χ2⊥ are the projections of the spin vectors onto the orbital
plane, i.e., orthogonal to the direction of the orbital angular
momentum L̂ at a specific reference frequency fref. θJ is the
angle between the line of sight n̂ and the total angular
momentum Ĵ at fref , and α0 indicates the azimuthal
orientation of L̂ at fref [33].

B. Effect of testing parameters on the phase

Before going on to evaluate the sensitivity of para-
metrized tests given stellar mass BBHs as seen in the
advanced detectors, we first illustrate the effect on the
phase of varying the δp̂i. As it turns out, one of the best-
determined PN testing parameters tends to be δφ̂3; in the
intermediate regime this is δβ̂2 and in the merger-ringdown
regime it is δα̂2; these are the parameters we focus on.
Figure 2 shows how the phase as a function of frequency

varies with testing parameters Ψðδp̂i; fÞ, as well as the
difference with the phase in GR, ΔΨðδp̂i; fÞ ¼ Ψðδp̂i; fÞ−
ΨGRðfÞ, for tc ¼ φc ¼ 0. Two kinds of sources are con-
sidered, with masses and spins chosen to be the means of
the posterior density functions for the signals that were
designated GW150914 [2] and GW151226 [3]. The phases
and their differences are plotted from flow ¼ 20 Hz and up
to a frequency where the dominant ðl ¼ 2; m ¼ 2Þmode of
the ringdown signal can be safely assumed to have ended
(600 Hz for GW150914 and 800 Hz for GW151226). The
qualitative behavior is as expected given the differences
between the two. GW150914, being more massive,
had a short inspiral regime and the merger occurred at
f ∼ 130 Hz, close to the frequency where the detectors are
the most sensitive. By contrast, GW151226 had a much

FIG. 1. The three regimes of the IMRPhenomPv2 model. (Top)
The modulus of the waveform as a function of frequency for a
signal similar to GW150914. (Bottom) Fourier transform to the
time domain (top) and instantaneous frequency as a function of
time (bottom).
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longer inspiral (with ∼55 cycles in band) and its merger
occurred at f ∼ 450 Hz. For the PN testing parameter δφ̂3, a
much larger phase difference is accumulated in the case of
GW151226, which will cause this parameter to be much
better measured in the latter case despite the overall smaller
signal-to-noise ratio. The intermediate regime parameter δβ̂2
exhibits a relatively slowly increasing phase difference and
levels out between 100 and 200 Hz for both events, which is
where the detectors are the most sensitive; hence, we can
expect it to be roughly equally well measurable for both
events. Finally, for δα̂2, in the case of GW150914, the phase

difference reaches a maximum at some point before decreas-
ing again, while for GW151226, the difference keeps
increasing up to high frequencies, but not with a larger
maximum phase difference; hence, this parameter will be
better measurable with GW150914, for which the merger-
ringdown regime occurs at frequencies closer to the range of
best detector sensitivity. These expectations are borne out by
the published results for the two events [4,5,12]. Note that
varying the δp̂i has an effect at all frequencies; this is a
consequence of the C1 junction conditions between the
inspiral, intermediate, and merger-ringdown regimes.

FIG. 2. The effect of varying testing parameters on the phase as a function of frequency for tc ¼ φc ¼ 0. In the top of each panel, we
plot the GR phase (black) as well as the way the phase varies with a testing parameter (colors); the bottom shows the difference. In the
left column, we show results for an event with parameters like that of GW150914 and similarly in the right column for GW151226.
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In Fig. 3, we illustrate the phase differences as chirp
mass Mc ¼ Mη3/5 is varied (where M ¼ m1 þm2 and
η ¼ m1m2/M2), for particular values of the δp̂i; the
symmetric mass ratio is fixed at η ¼ 0.2 and again
tc ¼ φc ¼ 0; shown are the ΔΨðδp̂i; fÞ for f ¼ 150 Hz,
i.e., close to the frequency of optimal sensitivity for the
Advanced LIGO detectors. Again, the behavior is as
expected. Low Mc corresponds to waveforms with signifi-
cant inspiral in band; deviations in the φi then have a large

effect on the observable phase.Deviations in the intermediate
regime parameters βi have the largest effect when this
regime occurs at frequencies where the detectors are the
most sensitive, which corresponds to Mc ¼ 10–20 M⊙.
Finally, shifts in the merger-ringdown parameters αi have
their largest effect for Mc ≳ 20 M⊙, which brings this
regime in the detectors’ most sensitive band. For complete-
ness, we show results for zero spins, as well as aligned spins
with jS1;2j ¼ 0.9; thewell-known effect of “orbital hang-up”
[70], which prolongs the duration of waveforms in the time
domain, then causes similar features to occur at higherMc.

C. Parameter estimation

Parameter estimation is done using the LALInference
framework [71,72], in which the posterior density distri-
bution for the parameters λ⃗ is obtained as

pðλ⃗jHi; d; IÞ ¼
pðλ⃗jHi; IÞpðdjHi; λ⃗; IÞ

pðdjIÞ : ð5Þ

Here, Hi is the hypothesis corresponding to the waveform
model in which δp̂i is an extra free parameter, d are the
data, and I denotes whatever background information we
may have; pðdjHi; λ⃗; IÞ is the likelihood function, which up
to an overall prefactor is given by

pðdjHi; λ⃗; IÞ ∝ exp½−hd − hðλ⃗Þjd − hðλ⃗Þi/2�; ð6Þ

with hðλ⃗Þ the signal model described in Sec. II A and h·j·i as
the noise-weighted inner product

hajbi ¼ 4ℜ
Z

fhigh

flow

a�ðfÞbðfÞ
SnðfÞ

df; ð7Þ

where ℜ denotes the real part, and SnðfÞ is the one-sided
noise spectral density. For the second-generation detectors,
the lower cutoff frequency is taken to be flow ¼ 20 Hz,
while fhigh ¼ 2048 Hz suffices as an upper cutoff fre-
quency for stellar mass BBH coalescences. The likelihood
function is evaluated using the efficient nested sampling
algorithm [71]. pðλ⃗jHi; IÞ is the prior probability density
for the free parameters; for those parameters that also
appear in the GR waveform, these are chosen in the same
way as in [72], while for δp̂i, we choose priors uniform in
an interval that is wide enough to contain the supports of
the posterior densities; suitable ranges are given in Sec. III
B below. Finally, pðdjIÞ is the probability of the data,
which can be absorbed into an overall normalization factor
for the posterior density pðλ⃗jHi; d; IÞ.
To obtain one-dimensional posterior densities for the

parameters δp̂i, one marginalizes over all other parameters

pðδp̂ijHi; d; IÞ ¼
Z

dθ⃗pðθ⃗; δp̂ijHi; d; IÞ; ð8Þ

FIG. 3. The differences at f ¼ 150 Hz between the GR phase
and the phase for given values of testing parameters, for inspiral
(top), the intermediate regime (middle), and the merger-ringdown
regime (bottom). For definiteness, we again set tc ¼ φc ¼ 0. The
solid lines are for zero spins, and the dashed lines for aligned
spins with jS1;2j ¼ 0.9.
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where the integration is performed over all parameters in
(3) except for δp̂i.
Finally, posterior densities from individual events can be

conveniently combined to arrive at stronger bounds on the
δp̂i under the assumption that the fractional deviations are
the same in each event. Assuming independent detections
d1; d2;…; dN , it is easy to see that

pðδp̂ijHi; d1; d2;…; dN; IÞ

¼ pðδp̂ijIÞ1−N
YN
n¼1

pðδp̂ijHi; dn; IÞ: ð9Þ

For events with similar signal-to-noise ratios and in the
absence of measurement offsets, one can expect the widths
of these posteriors to decrease roughly with

ffiffiffiffi
N

p
.

III. REDUCED-ORDER QUADRATURES FOR
FAST LIKELIHOOD CALCULATIONS

A. Basic method

We now proceed to constructing reduced-order quad-
ratures. The technical underpinnings have already been
discussed in detail elsewhere [57,58]; here we will only
give an overview.
The first step is to approximate the waveform hðλ⃗; fÞ as

hðλ⃗; fÞ ≃ PEn ½hðλ⃗; fÞ�

≡Xn
i¼1

ðeijhðλ⃗ÞÞeiðfÞ; ð10Þ

where the vectors in the reduced basis En ¼ feiðfÞgni¼1 are
orthonormal with respect to the inner product

ðajbÞ≡
Z

fmax

fmin

a�ðfÞbðfÞdf; ð11Þ

and the approximation is good to within a greedy projection
error ϵ:

jjhðλ⃗; fÞ − PEn ½hðλ⃗; fÞ�jj2 < ϵ; ð12Þ

for λ⃗ ∈ T N, where T N is a suitably large training set and
jjajj≡ ffiffiffiffiffiffiffiffiffiffiffiðajaÞp

. From this, one constructs an empirical
interpolant to approximate the waveform

In½h�ðλ⃗; fÞ≡
Xn
i¼1

xiðλ⃗ÞeiðfÞ; ð13Þ

where the coefficients xi are solutions to

In½h�ðλ⃗;F kÞ ¼ hðλ⃗;F kÞ ð14Þ
at interpolation points fF kgnk¼1. Defining the matrix
Aij ¼ ejðF iÞ, one has

In½h�ðλ⃗;F kÞ ¼
Xn
i¼1

Xn
k¼1

ðA−1Þikhðλ⃗;F kÞeiðfÞ

¼
Xn
k¼1

BL
k ðfÞhðλ⃗;F kÞ; ð15Þ

where

BL
k ðfÞ ¼

Xn
i¼1

ðA−1ÞikeiðfÞ: ð16Þ

The fF kgnk¼1 are chosen from a set ffigLi¼1, where L is
related to the duration T of the longest waveform consid-
ered through

L ¼ ðfmax − fminÞT þ 1; ð17Þ

and the fi are spaced by Δf ¼ 1/T. The first interpolation
point F 1 is chosen such that it maximizes the amplitude of
the first reduced basis vector, i.e., je1ðF 1Þj ≥ je1ðfiÞj for
all fi. Next, one builds an interpolant of e2ðfÞ using only e1
and F 1, and one finds an F 2 that maximizes the pointwise
interpolation error, i.e., jI1½e2�ðF 2Þ − e2ðF 2Þj ≥ jI1½e2�
ðfiÞ − e2ðfiÞj for all fi. One then continues in this fashion
until n interpolation points have been obtained.
Though the interpolant In½h�ðλ⃗; fÞ can be evaluated at

any parameter values λ⃗, the underlying reduced basis En

satisfies the tolerance criterion (12) only for λ⃗ ∈ T N. Next
comes the validation step, where the accuracy of the
interpolant is evaluated also for values λ⃗ that lie outside
the training set (though inside the same ranges as for
the training set, where the waveform approximant is
deemed valid). Arbitrary values are picked, for which it
is checked that

jjhðλ⃗; fÞ − In½h�ðλ⃗; fÞjj2 < β ð18Þ
for some choice of maximum interpolation error β. All
“bad points” λ⃗ for which this is not the case get collected
and added to the training set T N , thus creating a new
training set on which the algorithm is repeated, leading to a
new interpolant In0 ½h�ðλ⃗; fÞ. The validation step is repeated
until no more bad points are found, leading to the final
interpolant INL

½h�ðλ⃗; fÞ.
Recall that the aim is to speed up the calculation of the

likelihood L ¼ pðdjHi; λ⃗; IÞ, the logarithm of which takes
the form

logL ¼ 1

2
½2hdjhðλ⃗Þi − hhðλ⃗Þjhðλ⃗Þi − hdjdi�: ð19Þ

First, consider the term hdjhi. Substituting for hðλ⃗; fÞ the
empirical interpolant INL

½h�ðλ⃗; fÞ and discretizing the
integral in the definition of the inner product, one gets
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hdjhðλ⃗Þi ¼ 4Δfℜ
XL
i¼1

d�ðfiÞhðλ⃗; fiÞ
SnðfiÞ

≃ 4Δfℜ
XL
i¼1

XNL

k¼1

BL
k ðfiÞhðλ⃗;F kÞ

d�ðfiÞ
SnðfiÞ

¼ 4Δfℜ
XNL

k¼1

�XL
i¼1

BL
k ðfiÞ

d�ðfiÞ
SnðfiÞ

�
hðλ⃗;F kÞ

¼
XNL

k¼1

wkhðλ⃗;F kÞ; ð20Þ

where

wk ≡ 4Δfℜ
XL
i¼1

BL
k ðfiÞ

d�ðfiÞ
SnðfiÞ

: ð21Þ

An important point is now that, typically, NL ≪ L, and the
likelihood calculations (20), which during the nested
sampling process need to be performed “on the fly” for
many different parameter values, now only involve the
evaluation of NL expressions hðλ⃗;F kÞ, rather than the L
evaluations of hðλ⃗; fÞ that were required originally. While it
is true that the calculation of the ROQ weights wk still
involves a sum over L terms, they only need to be evaluated
once for every detection. This means that, with the ROQ,
this part of the likelihood calculation will be sped up by a
factor L/NL.
Finally, in Eq. (19), there is also the term hhðλ⃗Þjhðλ⃗Þi,

which can be approximated by an expression of the form

hhðλ⃗Þjhðλ⃗Þi ¼
XNQ

j¼1

wQ
j jhðλ⃗;FQ

j Þj2; ð22Þ

where

wQ
j ¼ 4Δfℜ

XL
i¼1

BQ
j ðfiÞ

SnðfiÞ
; ð23Þ

for some BQ
j , and typically NQ ≪ L. The BQ

j are obtained
through a similar procedure as in the linear case. Here too, the
weights wQ

j will only have to be calculated once per
detection. Note that L and Q in the superscripts refer to
the linear and quadratic parts of the likelihood respectively.
The above only gives an overview of the rationale behind

ROQs. In practice, one needs to write the waveform hðλ⃗; fÞ
in terms of the þ and × polarizations as Fþhþðλ⃗; fÞ þ
F×h×ðλ⃗; fÞ, with Fþ and F× as the beam pattern functions.
However, it turns out that a single set of functions fBL

j g is

sufficient to represent hþ and h×, and a single set fBQ
j g is

sufficient to represent the products jhþj2, jh×j2, and
ℜh�þh× [57,58].

B. A ROQ for IMRPhenomPv2 with parametrized
deformations

A ROQ for IMRPhenomPv2 in the GR case was already
constructed in [58]. Here, we want to build a series of
ROQs for IMRPhenomPv2, each including a single testing
parameter δp̂i. As a starting point, we use the final reduced
basis for the GR waveform T N (where N can be either the
NL or the NQ of the linear and quadratic bases, respec-
tively), and for each basis element we introduce Nδp̂i

¼
500 samples placed uniformly in the δp̂i direction (see
Fig. 4). The ranges for the various δp̂i are chosen such that
they accommodate the widths of posterior density functions
of the LIGO-Virgo events that were recorded so far (with
the exception of δα̂2, δα̂3, δα̂4, which are essentially
unmeasurable for low-mass events)

δφ̂0 ∈ ½−2; 2�; δφ̂1 ∈ ½−5; 5�; δφ̂2 ∈ ½−10; 10�;
δφ̂3 ∈ ½−10; 10�; δφ̂4 ∈ ½−10; 10�; δφ̂5l ∈ ½−10; 10�;
δφ̂6 ∈ ½−10; 10�; δφ̂6l ∈ ½−20; 20�; δφ̂7 ∈ ½−20; 20�;
δβ̂2 ∈ ½−5; 5�; δβ̂3 ∈ ½−5; 5�;
δα̂2 ∈ ½−5; 5�; δα̂3 ∈ ½−5; 5�; δα̂4 ∈ ½−5; 5�: ð24Þ

FIG. 4. Schematic illustration of how the original basis for
IMRPhenomPv2 from [58] (triangles) is extended in the addi-
tional parameter dimension δp̂i (in this example δφ̂3) to form a
new training set. The plot only shows a three-dimensional slice of
the full parameter space. Note that points with −0.02 ≤ δφ̂3 ≤
0.02 are not shown to aid visualization.

TABLE I. The different chirp mass bins for which ROQs were
built, with the ranges of waveform durations in the GR case as
well as sampling in frequency.

Bin Mc (M⊙) GR waveform duration (sec) Δf (Hz)

A [12.3, 45] [0.4, 4] 1/4
B [7.9, 14.8] [3, 8] 1/8
C [5.2, 9.5] [6, 16] 1/16
D [3.4, 6.2] [12, 32] 1/32
E [2.2, 4.2] [23.8, 64] 1/64
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The resulting set T N×Nδp̂i
then becomes a training set

for the construction of a new ROQ, as outlined in the
previous subsection. As for the ROQ of the GR waveform,
this is done independently for waveforms in different
overlapping chirp mass bins, so as to obtain better like-
lihood calculation speedups than when all chirp masses
would be lumped together. The chirp mass ranges roughly
corresponding to different ranges for the length of the

waveform in the time domain. We note that away from the
GR case there is no clear mapping from chirp mass to
waveform length, as the latter is also partially determined
by the values of the δp̂i. Even so, in each bin we a priori set
Δf ¼ 1/Tmax, where Tmax is the longest GR waveform in
the bin; though waveforms can become longer when
δp̂i ≠ 0, in the end what counts is that all interpolation
errors are below the given threshold. To reduce the burden

FIG. 5. Distributions of interpolation errors at different validation steps for some of the testing parameters and chirp mass bins. The left
column is for the linear bases, the right column for the quadratic ones. (First row) δφ̂3 for chirp mass bin A in Table I; (second row) δβ̂2
for bin C; (third row) δα̂2 for bin C. In some cases no bad points are found, so that the basis does not need to be enlarged and no further
validation steps are needed.
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on computer memory required, we perform multibanding
as explained in [58]: an adaptive frequency resolution
ΔfðfÞ is applied such that waveforms are sampled less
densely at higher frequencies, where there is less power per
frequency bin due to the faster frequency sweep (see
Fig. 1). However, once a basis has been obtained, we up
sample by direct evaluation of the waveform model.
The various bins are shown in Table I. Note that no ROQs

were made for systems with Mc > 45 M⊙, since for such
binaries the signal will be short enough that parameter
estimation is sufficiently fast and not much speedup can
be expected from a ROQ. The bin with the lowest chirp
masses considered here isMc ∈ ½2.2; 5.2�M⊙, correspond-
ing to a lowest total mass of M ≃ 5 M⊙ for m1/m2 ¼ 1,
which should suffice for the lightest astrophysical binary
black holes. For the other parameters appearing in
IMRPhenomPv2, we use the same ranges as in [58]:
1 ≤ m1/m2 ≤ 9; ð−0.9;−0.9;0Þ≤ ðχ1L;χ2L;χpÞ≤ ð0.9;0.9;
0.9Þ, where χ1L, χ2L are the spin components along the
direction of angular momentum L̂; ð0; 0Þ ≤ ðθJ; α0Þ ≤
ðπ; 2πÞ; and m1 ≥ m2 ≥ 1 M⊙. In the validation steps,
we also impose the bound χ1L ≥ 0.4–7η, as was done in
[58]; this is needed to avoid clustering of bad points in a
particular region, indicating a limitation of the original
IMRPhenomPv2 waveform model. For the ROQs with the
δp̂i, it turned out to be necessary to impose an additional

bound
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ21L þ χ2p

q
≤ 0.98.

Like for the GR version of IMRPhenomPv2, the greedy
projection error is set to ϵ ¼ 10−8 and the maximum
interpolation error is set to β ¼ 10−6. Some representative
distributions of the interpolation error at different validation
steps are shown in Fig. 5. As it turns out, the addition of a

testing parameter δφ̂i typically increases the sizes of the
final bases in the different chirp mass bins by only a factor
of a few, though with some exceptions; the largest increase
happens to be for δφ̂1 and M ∈ ½3.4; 6.2�M⊙, where the
linear basis size went from 524 to 5264.
Table II shows the speedups in likelihood calculations—

defined as ½ðfmax − fminÞT þ 1�/ðNL þ NQÞ—that are
achievable with the ROQs. The speedup is greatest for
long signals where analyses are the most involved. These
are the theoretical speedups; the actual speedups in prac-
tical parameter estimation will vary, but tend to be the same
as the theoretical ones within a factor of 2 or less.
Finally, the ROQs were interfaced with the aforemen-

tioned LALInference framework. Figure 6 compares some
parameter estimation results obtained with and without the
ROQ on the same simulated signal. We see that the results
are consistent, with posterior density functions not differing
by more than what is expected given uncertainties in the
sampling process [72]. The robustness of the infrastructure
will be tested in more detail in the next section.

IV. ROBUSTNESS OF THE TESTS

We now perform some checks of the correctness of the
data analysis pipeline and its robustness against waveform
systematics and instrumental noise. We do this in two ways.
One is to construct so-called p-p plots, which quantify the
statistical inconsistencies of the posterior density distribu-
tions. Another consists of analyzing a numerical waveform
injected in many different stretches of real detector noise, as
a check that the pipeline behaves as it should under the
combined effects of the injected waveform being different
from the template waveform model and the presence of
instrumental glitches in the detector output.

A. Reliable measurement of testing parameters

A requirement for a parameter estimation algorithm is
that it is capable of measuring parameters in a statistically
reliable way. Detector noise can cause offsets in posterior
density functions, but given a large number of signals, it
should be the case that the correct parameter value is
recovered with a confidence p in a fraction p of the cases.
Specifically, assuming GR is correct, for any of the para-
metrized tests, it should be the case that the value δp̂i ¼ 0
lies in a confidence interval of width p for a fraction p of
the measurements. We check this by adding 100 simulated
GR signals (injections) to synthetic, stationary, Gaussian
noise, with the predicted power spectral density at design
sensitivity for the two Advanced LIGO detectors [73].
The signals have randomly chosen sky positions and
orientations and are placed uniformly in comoving volume
with DL ∈ ½250; 750� Mpc, with component masses m1,
m2 ∈ ½6; 40�M⊙, and arbitrarily oriented spins with mag-
nitudes jS1j, jS2j ∈ ½0; 0.9�. Injections are analyzed with the
ROQs whose chirp mass bins they fall into; in reality, one
would look at the chirp mass measured with GR templates.

TABLE II. Theoretical speedups of likelihood calculations due
to the ROQs, for different testing parameters and the chirp mass
bins of Table I. Note how these are larger for longer signals,
where they are the most needed. Speedups in practical parameter
estimation will vary, but tend to be the same as the theoretical
ones within a factor of 2 or less.

δp̂i A B C D E

δφ̂0 4.3 7.6 28.3 38.7 47.1
δφ̂1 3.0 4.6 8.6 11.7 27.1
δφ̂2 4.2 6.8 24.8 42.4 56.5
δφ̂3 4.0 6.1 20.8 36.9 55.8
δφ̂4 3.9 10.1 40.3 76.5 111.2
δφ̂5l 4.1 7.6 29.9 62.9 97.9
δφ̂6 3.7 9.8 39.0 76.0 114.0
δφ̂6l 3.8 10.1 42.1 78.1 117.1
δφ̂7 3.7 9.1 39.5 74.7 112.6
δβ̂2 3.0 8.7 34.9 78.0 117.5

δβ̂3 3.5 6.8 28.5 69.8 111.2
δα̂2 2.8 9.2 39.4 88.2 124.6
δα̂3 2.9 10.8 44.8 87.5 128.3
δα̂4 2.8 10.4 43.3 88.1 131.6
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p-p plots for a few of the testing parameters are shown in
Fig. 7. As an indicator of consistency of the results with
absence of bias in the measurements, one can calculate the
Kolmogorov-Smirnov (K-S) statistic, which is defined as
the maximum (in absolute value) of the difference between
distributions; in our case, the latter are simply the p-p
distribution on the one hand and the diagonal on the other.
We find K-S values of 0.04, 0.09, and 0.04 for δφ̂3, δβ̂2, and
δα̂2, respectively. We conclude that the analyses work as
expected.

B. Numerical relativity injections in real detector noise

Finally, we investigate the response of the parametrized
tests to a numerical relativity waveform injected in detector

noise that contains instrumental glitches. In particular, we
use real data from the S6 data set, but “recolored” to the
early Advanced LIGO noise curve from [74]; this pro-
cedure changes the average power spectral density but
retains (and in fact enhances) any instrumental nonstatio-
narities that were present in the original data. Since
instrumental glitches will have a larger effect for short-
duration signals, we focus on GW150914. We consider a
numerical relativity waveform from the SXS catalog, whose
mass ratio and spins are close to the measured means for
GR150914; specifically, we pick SXS:BBH:0307 [75]. The
intrinsic parameters were ðm1; m2Þ ¼ ð40.83; 33.26ÞM⊙,
and S1¼ð0.092;0.038;0.326Þ, S2¼ð0.215;0.301;−0.558Þ
at fref¼20Hz. This same waveform is then injected in 21

FIG. 6. A comparison of parameter estimation results on a simulated signal with parameters Mc ¼ 8.9 M⊙, q ¼ 1.99,
DL ¼ 200 Mpc, and δp̂i ¼ 0, in synthetic, stationary, Gaussian noise, analyzed with and without the ROQ. Results are shown for
the cases δφ̂3 (top row), δβ̂2 (middle row), and δα̂2 (bottom row). In each case, we show the posterior density function for the testing
parameter itself (left column) and for chirp mass (right column). The values of the parameters in the signal are indicated by the vertical
dashed lines. Results with and without ROQ agree to within sampling uncertainties [72].
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different stretches of noise [76,77] and the parametrized tests
are performed. In choosing these stretches, care was taken to
pick ones that did not exhibit egregiously large glitches
(which can be done by visual inspection of time-frequency

spectrograms), since the presence of a sufficiently sizeable
departure from Gaussianity of the noise may preclude an
event being detected in the first place. The strategy is similar
to what was followed in [78] (see their Sec. III E), where the
effect of possible nonstationarities on parameter estimation—
in the GR case—was also assessed by injecting a particular
numerical relativity waveform in different stretches of real
detector noise.
As a diagnostic, we define the “GR quantile” as the

cumulative probability of a given δp̂i being nonpositive

Qi ≡
Z

0

−∞
pðδp̂ijHi; d; IÞdδp̂i: ð25Þ

If the GR quantile is close to zero, then the posterior
pðδp̂ijHi; d; IÞ exhibits a significant offset towards positive
δp̂i; if it is close to one, then there is a large offset towards
negative values. Given many measurements on the same
signal in different noise realizations, we expect theQi to be
distributed uniformly on the interval [0, 1].
In Fig. 8, we first of all show the 90% credible intervals for

the PN testing parameters fδφ̂0;…; δφ̂7g and fδφ̂5l; δφ̂6lg
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FIG. 7. Fraction of simulated signals in stationary Gaussian noise for which the value of zero for δp̂i is within a given confidence level.
Shown are p-p plots for δφ̂3 (left), δβ̂2 (middle), and δα̂2 (right). The dark and light gray bands indicate the 1-σ and 2-σ departures from
the diagonal that can be expected on theoretical grounds. The results are consistent with a general absence of bias in the measurements.

FIG. 8. Ninety percent credible intervals for the PN testing parameters obtained by performing the parametrized tests on a numerical
relativity injection in 21 different stretches of realistic detector data. Note how offsets tend to alternate from one PN testing parameter to
the next; this is due to partial correlation between them and the alternating signs of the PN parameters themselves.

FIG. 9. Histograms of GR quantiles for the PN testing param-
eters corresponding to the same simulations as for Fig. 8. Though
based on analyses of only 21 stretches of data, the results are
consistent with the quantiles being uniformly distributed on the
interval [0,1].
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for the 21 stretches of data.We note how the deviations in the
PN parameters tend to alternate in sign, due to the fact that
there is some correlation between them, and that the φi
themselves have alternating signs. Next, in Fig. 9, we show
the distribution of theQi, which despite the small sample size
is indeed suggestive of uniformity on [0,1].
Needless to say, a full investigation for systems like

GW150914 would require performing the parametrized
tests for a much larger sample of data stretches than the 21
used here and it would be of interest to repeat the study for
other choices of masses and spins; due to computational
restrictions, this was not practicable. Nevertheless, the
outcome is indicative of the expected behavior.

V. MEASUREMENT SENSITIVITIES

Next, we want to assess the power of our parametrized
tests in constraining GR violations and their sensitivity to
selected GR violations, by adding simulated signals to
stationary Gaussian detector noise with the power spectral
density of the Advanced LIGO detectors at design sensi-
tivity [73] and performing parameter estimation as in the
previous section.
As far as GR violations are concerned, ideally one would

like to do this using specific alternative theories of gravity.
However, in most cases, the effects of particular theories
have only been calculated for the inspiral and then only to
leading PN order [13,36,51,79]; to our knowledge, full
inspiral-merger-ringdown waveform models with reason-
able inclusion of all relevant physical effects so far only
exist for GR itself. Hence, we confine ourselves to
injections that have a deviation δp̂i in a particular coef-
ficient pi or in several of the pi at the same time, starting
from some PN order. However, in the template waveforms
used for the measurements, we still only vary a single one
of the δp̂i at a time. As we shall see, if the injections have
deviations in multiple coefficients, then single-parameter
tests will still pick this up. In fact, even parameters that are
not associated with the deviations in the signal must show
deviations. Such effects had already been observed in
[52,53,55], and should not come as a surprise: template

waveform models will use whatever additional freedom
they have to accommodate anomalies in the signals. At the
same time, only varying one testing parameter leads to a
higher measurement accuracy than for multiple parameters
being varied at the same time. A drawback is that posterior
densities for testing parameters can not be straightfor-
wardly mapped to statements about whatever additional
charges, coupling constants, or energy scales may be
present in some particular alternative theories. For this to
be possible, accurate and complete inspiral-merger-ring-
down waveforms for alternative theories would be required,
but these are not currently available. However, the purpose
of the parametrized tests is not to place bounds on
parameters characterizing other theories, but rather to test
the theory of general relativity itself, with as high an
accuracy as possible.

A. Bounding GR violations

First, we illustrate the ability of the parametrized tests in
putting bounds on GR violations, which will get increas-
ingly sharper as information from multiple events is
combined. The posterior density functions for each of
the δp̂i obtained from the simulated signals in Sec. IVA
lead to combined posterior densities according to the
prescription of Eq. (9). As shown in Fig. 10, after a few
tens of detections, these will be sharply peaked near the
value of zero. In these examples, after 50 (100) detections,
the 1 − σ accuracies on δφ̂3, δβ̂2, and δα̂2 are, respectively,
0.013 (0.008), 0.020 (0.013), and 0.054 (0.032).

B. Simulated signals with deviations in
particular coefficients

We now consider injections that have a deviation in a
particular coefficient pi. The GR parameters are picked to
be the means of the posterior density distributions for
GW150914 [2]. We focus on this type of source so as to
have some amount of sensitivity to each of the inspiral,
intermediate, and merger-ringdown regimes. The injections
are done in stationary Gaussian noise with the predicted

FIG. 10. Sharper constraints on deviation from GR can be obtained by combining posterior density functions for the δp̂i from all
available detections. This is illustrated for δφ̂3 (left), δβ̂2 (middle), and δα̂2 (right). The black curve shows the median of the joint
distribution, and the darker and lighter shadings show the 68% and 95% confidence intervals, respectively.
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power spectral density at design sensitivity for the two
Advanced LIGO detectors [73]. For the deviations, we
consider in turn two representative parameters from each of
the inspiral, intermediate, and merger-ringdown regimes
and give the corresponding δp̂i a magnitude that roughly
corresponds to 5 times the standard deviation observed
for GW150914, with both positive and negative signs.
In particular, δφ̂3 ¼ �0.4, δφ̂4 ¼ �3.3, δβ̂2 ¼ �0.7, δβ̂3 ¼
�0.8, δα̂2 ¼ �1.3, and δα4 ¼ �1.6.
Figure 11 shows posterior densities for the cases where

the injection has either nonzero δφ̂3 or nonzero δφ̂4, and in
the measurements, all of the δpi are allowed to vary in turn.
A few things can be noted:
(1) In each case, the posterior density for the testing

parameter where the deviation in the signal resides
has no support at the GR value of zero, but the
support does contain the injected value.

(2) The posterior densities of all of the other PN testing
parameters, with the exception of δφ̂1, show strong
offsets away from zero.

(3) On the other hand, the intermediate-regime and
merger-ringdown testing parameters show much less
of a response to a deviation in a PN parameter.

(4) The deviations in the PN parameters tend to alternate
in sign. This reflects the fact that there is some
amount of correlation between these parameters and
that the φi themselves have alternating signs.

The posteriors in Figs. 12 and 13, where either an
intermediate-regime parameter or a merger-ringdown

parameter in the signal has a deviation, show analogous
behavior: for the parameter where the deviation resides,
posteriors have no support at zero, but this is also the case
for at least one other parameter, usually one in the same
regime.

C. Simulated signals with deviations in multiple
coefficients

Next, we consider injections in which all the δp̂i are
nonzero starting from some PN order. Two scenarios are
considered:
(1) All testing parameters starting from 1.5 PN have the

same fractional shifts δp̂i ¼ 0.5. This includes the
sets δφ̂3;4;5l;6;6l;7, δβ̂2;3, and δα̂2;3;4.

(2) All testing parameters starting from1.5PNhave shifts
whose sign alternates from one parameter to the next,
according to the way they are correlated: δφ̂3;5l;6l;7 ¼
−0.4 and δφ̂4;6 ¼ þ0.4. For the intermediate-regime
and merger-ringdown parameters, we choose δβ̂2 ¼
δβ̂3 ¼ −0.4 and δα̂2 ¼ δα̂3 ¼ δα̂4 ¼ 0.4.

The results are shown in Fig. 14, and can be summarized
as follows:
(1) Again strong deviations are picked up even by testing

parameters that are not associated with the violations
in the signal; both for the same- and alternating-sign
violations, all of the testing parameters return a
posterior density function whose support does not
contain the GR value of zero.

FIG. 11. (Top) Posterior densities for testing parameters for an injection with δφ̂3 ¼ þ0.4 (orange) and δφ̂3 ¼ −0.4 (blue). (Bottom)
posteriors for an injection with δφ̂4 ¼ þ3.3 (orange) and δφ̂4 ¼ −3.3 (blue). Note how all the PN testing parameters indicate a deviation
from GR, not just the ones that deviate from zero in the signal.
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FIG. 12. (Top) Posterior densities for testing parameters for an injection with δβ̂2 ¼ þ0.7 (orange) and δβ̂2 ¼ −0.7 (blue). (Bottom)
Posteriors for an injection with δβ̂3 ¼ þ0.8 (orange) and δβ̂3 ¼ −0.8 (blue). In each case, the GR violation is also picked up by the
other δβ̂i.

FIG. 13. (Top) Posterior densities for testing parameters for an injection with δα̂2 ¼ þ1.3 (orange) and δα̂2 ¼ −1.3 (blue). (Bottom)
Posteriors for an injection with δα̂4 ¼ þ1.6 (orange) and δα̂4 ¼ −1.6 (blue). Here too, in each case, the other δα̂i also pick up the GR
violation.
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(ii) Even in the case where the signs of all the deviations
are the same, we see alternation in the offsets of the
posterior densities for PN parameters, following the
way they are correlated.

(iii) For PN parameters from 1.5 PN onwards, the
measured GR violation is larger than the injected
deviation; individual parameters respond to the
collective change in the waveform induced by the
shifts in all of the testing parameters together.

Hence, measuring the δp̂i one by one can enable the
discovery of GR violations also when the signal has
multiple pi that deviate from their GR values.

VI. SUMMARY AND CONCLUSIONS

In [4,5,12], the detected binary black hole signals were
analyzed using template waveforms that allow for para-
metrized deviations from GR, so as to test the strong-field
dynamics of the theory. In this work, we have introduced
reduced-order quadratures that speed up likelihood calcu-
lations by factors of a few to more than a hundred, which
will significantly ease the computational burden in apply-
ing the method to future events. Our chosen waveform
model is IMRPhenomPv2, though we note that the method
used in this paper can in principle also be applied to
reduced-order models for other frequency domain wave-
forms with parametrized deviations added, such as the ones
in [61,62]. We also established the method’s robustness
through p-p plots for simulated signals in synthetic
Gaussian noise and by examining the results for a numeri-
cal relativity injection in different stretches of real data from
the S6 data set, recolored to the Advanced LIGO final
design sensitivity. Finally, the sensitivity of the method was
evaluated using both GR injections and injections with GR
violations in various parameters.
A range of alternative theories of gravity have been

considered, which are often characterized by additional

charges or coupling constants. The tests presented here do
not easily map to statements about such parameters; putting
constraints on particular alternative theories would require
full inspiral-merger-ringdown waveforms of similar quality
as the ones we have for GR. The regular observation of
binary black hole coalescences will be an incentive for
theorists to develop such models. However, the main aim of
the parametrized tests is to perform stringent tests of GR
itself, and as we have demonstrated, our method provides a
reliable and accurate way of doing this.
Recently a binary neutron star merger was also discov-

ered [44]. Here too the parametrized tests can be applied,
although care should be taken so that the effects of the
neutron stars’ tidal deformation are not confused with a
violation of GR. This can be done by analyzing the signal
up to frequencies of only a few hundred hertz so that tidal
effects can be neglected [52–54] or by including tidal
deformabilities in the signal. The latter approach has the
advantage that the entire signal can be used, but there will
also be some loss of sensitivity due to the increased
dimensionality of parameter space; which approach will
be the most efficient is yet to be determined. Especially for
these kinds of events, which involve longer signals than for
binary black holes, it would be beneficial to construct
reduced-order quadratures; this too is left for future work.
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