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a b s t r a c t 

Modern district energy systems are highly complex with several controllable and uncontrollable vari- 

ables. To effectively manage a multi-vector district requires a holistic perspective in terms of both mod- 

elling and optimisation. Current district optimisation strategies found in the literature often consider very 

simple models for energy generation and conversion technologies. To improve upon the state of the art, 

more realistic and accurate models must be produced whilst remaining computationally and mathemat- 

ically simple enough to calculate within short periods. Therefore, this paper provides a comprehensive 

review of modelling techniques for common district energy conversion technologies including Power-to- 

Gas. In addition, dynamic building modelling techniques are reviewed, as buildings must be considered 

active and flexible participants in a district energy system. In both cases, a specific focus is placed on ar- 

tificial intelligence-based models suitable for implementation in the real-time operational optimisation of 

multi-vector systems. Future research directions identified from this review include the need to integrate 

simplified models of energy conversion units, energy distribution networks, dynamic building models 

and energy storage into a holistic district optimisation framework. Finally, a future district energy man- 

agement solution is proposed. It leverages semantic modelling to allow interoperability of heterogeneous 

data sources to provide added value inferencing from contextually enriched information. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Given that the building sector contributes around 40% of EU

reenhouse gas emissions and energy consumption [1] , increased

ocus on improving energy efficiency is vital to meeting national

nd international obligations. A prominent trend in achieving this

s the increased decentralisation of energy infrastructure. This is, in

art, enforced by the users who both consume energy and produce

t, often using small-scale renewable generation like solar PV pan-

ls. Furthermore, decentralising energy production leads to other

ossible benefits; transmission losses are reduced, and cogenera-

ion or trigeneration units could be utilised. Cogeneration can be

chieved using combined heat and power units, CHP, that effec-

ively capture the waste heat from electricity production and sup-

ly nearby demand with it. Often, these are facilitated by a district

eating system, which also has the benefits of being able to accept

arious forms of heating energy input such as excess heat from in-

ustry, waste incineration, CHP, geothermal or heat pumps [2] . 
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Whilst the use of stochastic renewable resources such as wind

ower and solar energy are undoubtedly necessary to reduce

reenhouse gas emissions; they also introduce a level of uncer-

ainty into the energy supply system. This necessitates a transition

rom a demand-led energy system to one in which both supply

nd demand are partially controlled. This new stress on energy

rids is one of the driving forces behind research relating to the

mart grid. To achieve the full potential of the smart grid, increased

ata interoperability, better forecasting and better energy manage-

ent systems are required [3] . Buildings must be seen as an active

articipant in a district energy system, providing demand flexibil-

ty through bi-directional communication with the energy network

4] . 

Pivotal to the success of a decentralised, district energy sys-

em is the ability to manage it holistically. Energy networks such

s heat, electricity and gas that were previously controlled inde-

endently must now be managed and controlled in an integrated

anner as they become more coupled. For example, CHPs produce

oth electricity and heat often from gas; heat pumps use electricity

o produce heat, electricity can be converted to gas, stored for later

se or used to generate heat through ‘Power-to-Gas’ technology.

herefore, optimisation of just a single energy network may lead
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic layout of a multi-vector energy hub. Yellow indicating electricity, red heat, and green gas. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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to an overall sub-optimal result if other networks are not consid-

ered. To develop an effective optimisation, accurate, yet simplified

internal models of all aspects of a district energy system. To aid

in overcoming this challenge, this paper will review modelling ap-

proaches of various energy generation and conversion components

often found in district energy systems. This paper will also provide

an agenda-setting perspective on the eventual goal of integrating

them into a holistic district energy model that can be used for op-

erational optimisation of multi-vector energy systems. 

The rest of the paper is organised as follows: Section 2 de-

tails why improved simplified models of district energy compo-

nents need to be developed and provides the methodology and

contribution of this review. Section 3 reviews modelling tech-

niques from the supply side of a district energy system. Conversely,

Section 4 discusses modelling of the demand side of a district. Rec-

ommendations for district energy modelling based on the reviewed

literature are made in Section 5 alongside a future vision for a dis-

trict energy management platform and the key components this

requires. Finally, Section 6 provides the conclusions. 

2. Motivation and methodology 

Modelling and optimisation of entire district energy systems

have already been attempted in several academic publications and

scientific projects. The leading approach in the literature to achieve

this is the Energy Hub modelling concept [5] ; which simplifies

complex urban energy systems to a series of input-output energy

hubs. The inputs are in the form of primary energy sources, and

the outputs are the produced electricity, heat and/or gas. The ‘Hub’

itself contains the mathematical modelling of the conversion pro-

cess and technologies ( Fig. 1 ). However, this type of modelling of-

ten simplifies energy conversion units to simple constant efficien-

cies, failing to take into account part load characteristics, warming

up periods and other energy losses. 

The energy hub concept has been utilised in several papers

studying the optimal layout and design of district energy systems

[6–10] . This includes selection and sizing of the energy production

units and consideration of which energy hubs should be connected.
his work is aimed at the design stage or future scenario evalua-

ion and is based on steady-state analysis of known (or assumed)

eak demand. Therefore, the assessed temporal scale is years of

ssumed behaviour rather than day to day optimisation at a sub-

ourly resolution. 

Operational optimisation of energy hubs can also be found in

he literature, often using Model Predictive Control (MPC), [11–

3] . In [14] , the energy demand was determined from EnergyPlus

uilding simulation models; then the potential, uncontrollable, re-

ewable supply was assumed forecast and finally the energy hub

hen matched supply and demand in an optimal way using lin-

ar programming techniques. A dynamic particle swarm optimi-

ation study was carried out on a Canadian case study in [15] ,

sing known hourly, heating, cooling, electricity and transporta-

ion loads. Maroufmashat et al. [16] also built on the energy hub

oncept to create a generic smart energy network model for op-

rational optimisation. This paper includes detailed modelling of

nergy storage, which was included in the energy hub modelling.

ame theory has been applied to smart energy hubs in [17,18] for

emand response interactions with an electricity and natural gas

tility company. The authors’ argued that previously demand re-

ponse measures could only be aimed at consumers with load

exibility, however, if a multi-source energy hub is available con-

umers can participate by changing the source of their electricity

upply. 

Considering a network of energy hubs is shown in the litera-

ure to be an effective way of optimising energy management at

 district level. However, all of the studies in this section made a

umber of simplifications. The buildings are often simplified mod-

ls or using design stage assumptions rather than using accurately

alibrated building energy models. The building energy demand is

lso assumed perfectly forecasted and inflexible with no consider-

tion of demand-side management or demand response measures.

he efficiency of the energy conversion units is often oversimpli-

ed. They assume a thermal and/or electrical efficiency to be con-

tant and therefore does not include part load factors and warming

p characteristics, which are vital for a realistic day-ahead optimi-

ation [19] . 
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There is potential to improve upon the energy hub model with

ore detailed component models in place of a conversion matrix

ith static efficiencies. These models could be mathematically de-

ived or could use machine learning or artificial intelligence. Ma-

hine learning techniques are able to capture and predict complex

on-linear relationships in several fields including energy manage-

ent and buildings [20] . These methods require large amounts of

raining data from which an algorithm can learn outcomes from

ast trends and, once trained, can use that knowledge to pro-

uce predictions for future scenarios [21] . Deep learning is a spe-

ific branch of machine learning that extends existing techniques

o achieve a greater understanding of the data. These models are

omprised of a more complex architecture and contrasting func-

ions. Deep learning has been successfully applied to fields such

s image classification, pattern recognition and speech recognition

22,23] . Regardless of the modelling techniques applied, it is essen-

ial that the resulting model remains mathematically and compu-

ationally simple enough for near real-time optimisation. 

.1. Previous reviews 

State of the art reviews exist for the broader topic of district

nergy systems and district energy modelling. Allegrini et al. [24] ,

eviews software modelling tools for district energy systems. While

he topics reviewed are similar to this review (energy generation

echnology and multi-vector district energy systems) the scope of

he review is focussed on physics-based software tools. Indeed, one

f the outcomes of the review is the need for more low-level mod-

ls with reduced complexity which is the main focus of our re-

iew. Keirstead et al. [25] , reviewed urban energy systems from

everal aspects including urban climate, building design and trans-

ortation. This review takes a broader view of urban energy sys-

ems with the long-term aim of an entirely integrated, smart city,

odel encompassing all the described aspects. However, compo-

ent level energy generation or demand modelling is not included.

 key identified future challenge is the access to and integration of

ast amounts of data from several sources leveraging cloud com-

uting advances. A potential approach to achieving this vision is

iscussed in Section 5 of this review. 

A review of district energy modelling for energy planning opti-

isation has been carried out in [26] . The authors reviewed mod-

lling and optimisation techniques at different district scales to re-

ult in the optimal selection and layout of energy generation tech-

ology. In contrast, our review focusses on modelling for use in

eal-time operational optimisation applied to existing district en-

rgy systems. Connolly et al. [27] gives a detailed review of 37

vailable computational simulation software packages. It studies

ach tool, gives the advantages and disadvantages, and discussed

hat aspects of a district energy system they can effectively model.

 review by Baños et al. [28] , discusses optimisation techniques

pplied to district energy systems. While this covers much of the

ame area as our review, the paper looks at the applicability of

ifferent optimisation methods applied to district energy systems

ather than the modelling techniques those optimisations require. 

Furthermore, existing, detailed, reviews for several subsections

f this review can be found in the literature, these will be refer-

nced and acknowledged where relevant. These reviews tend to be

articularly in-depth and cover several aspects of modelling that

re not required or suitable for modelling for operational control.

his review aims to provide a more holistic review for researchers

nd practitioners that require a general understanding of modelling

echniques for each component of a district energy system. The

uthors would encourage readers with a specific interest in mod-

lling one component to also consult the specific reviews where

pplicable. 
.2. Scope, limitations and contribution 

The purpose of the review paper is to provide an overview

f existing modelling techniques of components within urban

nd district energy systems including the emerging technology of

ower to gas. In contrast to existing work, this review intends to

rovide a wider, holistic, summary of modelling a district energy

ystem specifically for operational optimisation. It will attempt to

ather academics’ and practitioners’ attention towards currently

vailable methods, along with their performance, usefulness and

imitations for online or near real-time optimisation applications.

t will discuss not only the well-known physics-based modelling

oftware but also include newer computational intelligence and

achine learning techniques for modelling individual components

s well as deep learning approaches. Indeed, this review will de-

ote an increased focus on these approaches as they are likely to

e more suitable for real-time, operational optimisation but are

argely neglected in current urban energy modelling reviews. Fur-

hermore, demand-side energy modelling will be reviewed, as fore-

asting future energy consumption is essential for any advanced

istrict energy management strategy. This review does not cover

rban design and planning tools as the focus is more on compo-

ent modelling techniques to allow more optimal control of an ex-

sting district system. 

To achieve this stated aim, the body of literature was queried

hrough searching well established and respected databases of

cademic publications such as IEEE Xplore, ScienceDirect, Scopus

nd Google Scholar. The extensive list of sources was further fil-

ered with weighting given to rigorously peer-reviewed studies and

ased on their impact in the wider research field. A specific em-

hasis was placed on simplified modelling techniques with hourly

o sub-hourly granularity where applicable and available. 

. Component modelling 

This review intends to take a bottom-up approach to district

nergy modelling by focussing on modelling techniques devel-

ped for each specific component commonly found within dis-

rict energy systems. This section will review modelling techniques

ound in the literature applied to combined heat and power (CHP),

oilers, Solar thermal and photovoltaic systems, Wind Generation,

ower-to-Gas and Heat Pumps. 

.1. Combined heat and power 

Combined heat and power, CHP, is becoming a favoured tech-

ology during the transition from a fossil fuel energy infrastructure

o a low carbon future. While they still frequently use fossil fuels,

amely natural gas, they can achieve greatly improved efficiencies.

his is as a result of utilising the heat by-product from electric-

ty generation in a local heating system and thus also reducing

ransmission losses. Total efficiencies of around 80–90% have been

chieved as opposed to the 30–40% figure achieved in traditional,

arge-scale, fossil fuel electrical power plants [29] . There is a range

f CHP types based mainly on the type of prime mover, typical ex-

mples include internal combustion, fuel cell and Stirling engine.

urthermore, during summer the heat produced by the CHP can

e used to drive cooling cycles forming trigeneration cycles (heat-

ng, cooling, and electricity). The main three cooling technologies

riven by heat are absorption, adsorption and ejector cycles. An

jector cooling cycle, in particular, was modelled in [29] , based on

he heat from a CHP. 

Best et al. [30] , developed a district energy modelling tool with

 modular design. In particular, the authors focused on the mathe-

atical modelling of CHPs and chillers. The CHP model used man-

facturers rated capacity and adjusts this for altitude, outdoor tem-
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perature, and part load ratio using statistical regression equations.

The resulting model allowed the fuel consumption, cost, and CO2

emissions to be calculated based on the energy demand. Wang

et al. [31] , aimed to optimise the operation of several CHP units

and thermal energy storage for a district heating network. Their

CHP model was based on a convex, feasible operating region based

on characteristic points. However, for 2 of the 3 CHPs included in

the case study, they only had two characteristic points at max-

imum and minimum operation. The authors included ramp rate

constraints, which were modelled as a percentage the CHP output

can increase or decrease from one hour to the next. Maintenance

periods were also considered in this optimisation problem. 

Detailed thermodynamic modelling of micro-CHP, residential

scale devices has been developed as part of an IEA project in [32] A

grey box approach to modelling sub-components of 4 types of

CHP has been taken. The model reflected partial physical processes

but also required empirical constants to be determined based on

the measurements obtained from real units. Each sub-component

within the device was modelled as a separate control volume to

which fundamental conservation laws can be applied. These mod-

els have been integrated into four different modelling platforms,

namely ESP-r, TRNSYS, EnergyPlus and IDA-ICE. Validation of these

models was provided in [33] , which showed excellent agreement

between simulation and measurement of a Solid Oxide Fuel Cell

(SOFC) CHP. Average errors of 1.2%, 8.3%, and 5.4% were reported

for electrical, thermal and total efficiencies. For more information

on the detail of the modelling techniques see [34] for internal

combustion engine and Stirling engine CHP’s and [35] for informa-

tion on solid oxide fuel cell CHP’s. 

Savola and Keppo [36] aimed to generate multiple linear regres-

sion models to calculate the power production of several CHP at

part loads. While CHP power output at high loads is almost linear,

as the part load decreases the power decreases non-linearly due

to a rapid decrease in turbine isentropic efficiency. Therefore, this

work proposed multiple linear regression models depending on the

part load factor of the CHP. These can be described mathematically

using the following equation: 

P (Q, T h , T c ) = a · Q + b · T h + c · T c + d (1)

Where P is power production (W), Q is the part load factor (-),

T h is the outgoing fluid temperature ( °C), T c is the incoming fluid

temperature ( °C) and a, b, c and d are regression coefficients. Us-

ing three separate regression lines for different sections of the part

load curve was shown to be accurate versus a simulation model

and yet remains a linear equation simple enough to be included in

optimisation strategies. 

An analytical approach to assess the characteristics of a cogen-

eration gas turbine unit was carried out in [37] . Using this ap-

proach, curves relating several parameter ratios (such as thermal

efficiency over design thermal efficiency) could be related to the

part load ratio. This work amongst others, is used in [38] to create

best-fit curves to calculate part load thermal efficiency and part

load fuel consumption as a function of the part load percentage.

These curves were compared to experimental data of three gas tur-

bine CHPs and showed excellent consistency. The equation for this

curve is given in (2) . 

ηth,PL 

ηth,Nom 

= −0 . 0 0 0 0634(P L ) 2 + 0 . 0137(P L ) + 0 . 262 (2)

Where ηth, PL is the part load thermal efficiency, ηth, Nom 

is the

nominal thermal efficiency, and PL is the part load percentage

where all variables are dimensionless. 

For wider district energy optimisation, the authors believe

that multiple linear regression equations or non-linear regression

curves are best suited for real-time operational optimisation and

management. They provide an accurate representation of the be-

haviour of a CHP while requiring minimal computational effort to
alculate due to their relative simplicity. This approach provides

ore realistic modelling than the constant efficiencies used in the

tate-of-the-art energy hub formulations. 

.2. Boilers 

Typically, district heating plant rooms are comprised of mul-

iple energy conversion technologies. Due to the decrease in effi-

iency in part load conditions and fluctuating electricity demand,

HPs are often sized to provide the baseload and operate contin-

ously where possible. Additional heating load flexibility will be

rovided by more traditional boilers, which can more ably modu-

ate their output based on instantaneous demand. Typically, these

oilers will have very high thermal efficiencies and have a wider

perating range than the more inflexible CHPs. The most com-

only found fuel source for district-level boilers is natural gas

owever biomass is becoming increasingly popular due to govern-

ental policy schemes. 

A thermodynamically derived, mathematical model of a steam

oiler was presented in [39] The model included factors for vari-

us sources of energy loss such as heat losses to the environment

hrough each component and combustion losses. This allowed each

ource of energy loss to be analysed and potentially reduced. From

he mathematical model, a part load efficiency curve was produced

onsisting of three distinct zones. From 0–40% load, a hyperbolic

elationship between load and efficiency existed, from 40 to 80%

here was a near linear relationship and above 80% resulted in

ear constant efficiency. The model was verified through compari-

on with experimental measurements. A similar method of model

evelopment was applied to domestic condensing boilers in [40] .

he resulting model calculated outlet water and gas temperatures

nd thermal efficiency based on the inlet temperatures, flow rates

nd static boiler parameters. Petrocelli and Lezzi [41] analytically

odelled a wood pellet boiler and analysed the effect of storage

ank size and control strategy on the boiler emissions. The authors

ound that increasing the size of the storage tank decreased emis-

ions due to less frequent startup and shut down times. 

A numerical Computational Fluid Dynamics (CFD), software,

NSYS Fluent, was used to provide a more complete analysis of

oiler behaviour in [42] . The verified model allowed analysis of

ow conditions and flame behaviour as well as NOx output. As a

esult, NOx reduction strategies could be trialled before implemen-

ation. However, this level of detail does come at the cost of com-

utational complexity as the model contains 6.8 million meshing

ells and significant computational time. Similar CFD analysis of a

iomass boiler was carried out in [43] . This study combined a 1D

odel of the fuel bed to provide inputs to a full 3D CFD simulation

f the whole boiler. 

A simplified grey box model was derived in [44] . The au-

hors aimed to make a generic boiler model consisting of three

hases; the combustion chamber, heat exchanger and thermal stor-

ge. Where possible empirical relationships were used to ensure

he resulting model required as few input parameters as possible,

ost of which can be found on standard boiler specification sheets.

 generic boiler simulation model was also developed in [45] . Sev-

ral different combustibles including oil, gas, pellet and wood chips

ere modelled and several flue gas temperature modelling tech-

iques were used. The model was developed to be integrated into

he TRNSYS simulation platform and claims a thermal efficiency

rediction accuracy of ± 1%. 

A combined, hybrid model for determining the behaviour of a

arge coal-fired, steam boiler can be found in [46] . A neural net-

ork was used to provide a simple calculation of flue gas tem-

erature which was an input for an analytical model to calculate

he thermal efficiency. The resulting model was therefore compu-

ationally simple enough to be used for real-time control applica-
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Table 1 

Summary of CHP and boiler modelling. 

Ref Method Input parameters Output parameters Model accuracy Component 

[30] Regression Ambient temp, altitude, part load Efficiency - CHP 

[31] Convex operating 

regions 

Operating point Power, heat and cost output - CHP 

[32,33] Grey box modelling Empirical coefficients, operating strategy Electrical, thermal and overall 

efficiency 

1.2%, 8.5%, 5.3% Average 

error 

CHP 

[34] Grey box modelling Empirical coefficients, control signal Fuel flow rate, electrical output, 

heat recovery rate, outlet temp 

R 2 = 1, 0.993, 0.991, 

0.991 

CHP 

[36] Multiple linear 

regression 

Part load, output temp Power production < 0.01 Squared error CHP 

[38] Regression Part load Relative efficiency - CHP 

[39] Thermodynamic 

principles 

Boiler static data, operating strategy Thermal efficiency 0.35% Mean error Gas boiler 

[40] Thermodynamic 

principles 

Boiler static data, ambient conditions, fuel and 

water mass flow rate, water temp 

Outlet water and gas temp, heat 

output, efficiency 

0.2-2.5% Relative error 

(Efficiency) 

Gas boiler 

[42] CFD Geometry, boundary conditions, operating 

strategy 

NO x Emissions, boiler temps, flow 

velocities 

< 16% (NO x ) Biogas Boiler 

[44] Grey box modelling Empirical coefficients, static manufacturer data, 

operating strategy 

Hot water supply temp, flue gas 

temp 

< 1% to < 8% Relative 

error 

Gas boiler 

[46] ANN + Analytical 

model 

Feed water temp, oxygen content, thermal 

power, heat flux to preheater, air temp, fuel 

lower heat value 

Flue gas temp R 2 = 95% Coal-Fired Steam 

Boiler 

[47] State space model Biomass flow rate, primary air mass flow, sum 

of primary and secondary air mass 

Residual oxygen content, feed temp - Biomass boiler 
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ions. A simplified, non-linear, 3rd order state space model of a

iomass boiler was used in [47] for a model based control applica-

ion. The model-based control contributed a significant reduction

n CO and particulate emissions and resulted in an improved ther-

al efficiency. 

This section has shown several detailed, numerical modelling

tudies of the behaviour of boilers under various conditions and

sing various combustibles. However, for the purposes of real-time,

perational control of a district, this level of computational com-

lexity and simulation time is infeasible and unnecessary. Many

f the modelling procedures described in this section are based

n specific types of boilers. Therefore, in the authors’ opinion, ap-

ropriate modelling of a boiler in a district configuration can be

chieved through experimentally finding the empirical relationship

etween fuel input or part load factor and the heat power out-

ut similar to that found in Section 3.1 . Effort s should be made

o account for start-up and shut-down periods which can display

istinct behaviour and are likely to effect real-time optimisation

trategies. Table 1 summarises the reviewed literature related to

he modelling of CHP and Boilers. 

.3. Solar energy 

Power systems’ operation and planning is being performed ac-

ording to the Smart-grid (SG) vision [48] . With more renewable

echnologies being integrated into existing and new energy supply

nfrastructure, especially the non-predictable ones (wind and so-

ar), it would be challenging to maintain balance between supply

nd demand. A continuous balance always needs to be maintained

etween supply and demand at any moment by continuously con-

rolling demand and adjusting energy generation [49] . The stochas-

ic nature of solar energy generation introduces exigent issues for

he optimal operation and planning of SG. Predictive analytics will

lay a significant role towards optimal real-time management, se-

ure operation and maintaining a balance between energy supply

nd demand. Solar energy generation is dependent on several fac-

ors such as orientation, shading, cloud cover, air temperature and

olar irradiation. Therefore, prediction of solar energy output is of-

en dependent on the prediction or measurement of these param-

ters. Whilst the field of solar energy systems is expanding to in-

lude building integrated solar systems this review will only con-
ider the most common and developed solar energy technologies

amely photovoltaic panels and solar thermal collectors. 

.3.1. Photovoltaics (PV) 

The textbook approach to calculating the electrical power gen-

rated by a solar cell is defined as: 

 = I · η · A (3) 

Where P is the power produced (W), I is the total solar radia-

ion on the PV surface (W/m 

2 ), η is the total system efficiency (-),

nd A is the area of the PV panel (m 

2 ). However, making this calcu-

ation is dependent on knowledge of potentially difficult to obtain

arameters such as solar radiation, shading, ambient temperature

nd solar cell efficiency which may not be constant. Durisch et al.

50] , emphasised the need for more detailed information than that

rovided by a manufacturer datasheet at standard test conditions.

t empirically modelled PV efficiency as a function of solar cell

emperature, global irradiation and relative air mass. From ambi-

nt temperature and global radiation forecasting the cell temper-

ture was determined through an empirical relationship. Then the

ell efficiency was calculated using a further empirical relationship

nd hence cell power output could be produced using Eq. (3) . The

uthors argued that their PV efficiency model could aid planners

hen selecting the type of PV cell to deploy in different regions

ased on typical ambient temperature and global irradiance. How-

ver, they did not foresee the model being used for short term

ower prediction. The developed model has been further validated

n both [51,52] , where the model was adapted and applied to real

est sites in Algeria and Bulgaria respectively to assess the per-

ormance under different operating conditions. Additional devel-

pment and refinement of the Durisch model was conducted in

53] by including wind speed as an input. This produced an al-

ernate method of calculating PV cell temperature, as a function

f ambient temperature, global irradiance and wind speed, which

hen impacted the resulting estimate of cell efficiency. A more sim-

lified model was produced in [54] which does not require a large

umber of input parameters. However, due to its simplified nature,

he model outputted the daily energy performance of a PV solar

ell which is not suitable for use in operational control. 

PV panels can also be modelled using a simple electrical cir-

uit composed of a current generator wired in parallel with one

r several diodes and resistors. Ma et al. [55] reviewed the various
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Fig. 2. Solar cell equivalent circuits. Source: Ma et al. [55] . 
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configurations found in the literature. Modelling an ideal solar PV

cell consists of just a single diode although this lacks accuracy due

to its simplicity. Introducing the additional resistors and diodes

shown in Fig. 2 increases the accuracy of the PV model but also

increases the complexity and hence computation time. The most

commonly used model is the 5-parameter model with 1 diode and

2 resistors as shown in Fig. 2 . However, this requires calibration

procedures to determine the 5 parameters. Examples of procedures

to determine the 5 parameters can be found in [56–58] along with

validation of the models against measured performance. The mod-

elling of PV arrays under partial shading was presented in [59] .

The model’s inputs are the PV panel’s characteristics (maximum

power, current, and voltage at the maximum power point, short

circuit current, open circuit voltage) the shading patterns, solar in-

sulation level, number of modules, working temperature and num-

ber of blocking diodes. The output of the simulation was the I-V

characteristic and the maximum power point for each group of the

PV panel. Despite the high accuracy of these models they still re-

quire weather parameters to be measured or predicted as inputs

which can be difficult in practice. 

Whilst solar cell equivalent circuits are the most common ap-

proach to modelling solar PV power output, advances in artificial

intelligence and machine learning are beginning to emerge as con-

tenders. A rural PV-Diesel hybrid system was modelled and opti-

mised using neural networks in [60] . An ANN was developed to

predict solar radiation based on more commonly available weather

data. This was then used as an input to another ANN to predict

the power output from a PV array. Using this information, optimal

dispatch of solar power and diesel generator operation could be

found. Kharb et al. [61] uses an ANFIS model to improve the effi-

ciency of a solar panel by maximum power point tracking, MPPT.

They use temperature and irradiance as inputs and from this pre-

dict the MPP which allowed the controller to react quickly to

changing environmental conditions. 

As equation (3) demonstrates, solar irradiance is directly pro-

portional to the power output of a PV cell. Therefore, prediction

of solar irradiance and solar power output are almost one and

the same. Three different types of ANN model were trialled in

[62] to forecast ground level solar insulation and ambient temper-

ature which were then used to calculate PV panel power output.

The models were trained using the previous 16 days meteorolog-

s  
cal data. The inputs to the model included the previous 24 h in-

ulation, temperature and atmospheric insulation as well as fore-

ast atmospheric insulation and relative humidity. There was a

mall difference between the three types of ANN, each using dif-

erent learning algorithms, and this was likely to be influenced by

he ANN parameter values. The mean absolute percentage error

omparing the model output and actual values was around 15–

0% throughout the year which translated to a similar accuracy

n predicting the power output. Similarly, Mellit and Pavan [63] ,

eveloped and ANN-based, 24 h ahead, solar irradiance prediction

ethod. Inputs to the model included mean irradiance value, air

emperature and day of the month and very good prediction ac-

uracy was achieved, particularly on sunny days. Day-ahead so-

ar irradiance predictions were then used to calculate predicted

olar power output, and this was compared to a real facility in

taly. An R 

2 value of 0.9 and a mean absolute error of less than

% was achieved. Deep learning techniques were applied to model

he power generation of 21 different solar farms in Germany in

64] . Techniques trialled include Long Short-Term Memory (LSTM),

eep Belief Network (DBN) and Auto-Encoder LSTM. These were

ompared to a physical modelling approach as well as a ‘shallow’

ulti-Layer Perceptron (MLP) model. It was shown that whilst all

achine learning models significantly outperformed the physical

odel, the deep learning methods only provided a small improve-

ent over the MLP. 

.3.2. Solar thermal 

Whilst PV technology uses solar energy to generate electricity;

olar thermal collectors aim to convert the same solar energy into

seful heat often in combination with a hot water storage tank.

heoretical solutions and standards for calculating the efficiency

nd useful heat energy conversion of solar thermal collectors are

idely available and were well explained in [65] . The analytical

odelling of solar thermal collectors has been adapted to be in-

luded in building simulation platforms such as EnergyPlus and

RNSYS. However, this requires knowledge of several solar collec-

or parameters in addition to many weather variables such as the

olar irradiance, wind speed and ambient temperature. Therefore,

ike the case of solar PV, simplified models are required for wider

cale, real-time, energy optimisation. 

Several thermodynamically derived, mathematical modelling

tudies of solar thermal collectors can be found in the literature.
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Table 2 

Summary of solar energy modelling. 

Ref Method Input parameters Output parameters Model accuracy Location 

[50] Empirical modelling Empirical constants, global radiation, cell 

temperature, relative air mass 

Cell efficiency, power output – Jordan 

[54] Empirical Modelling Daily aggregate of module temperature, air 

mass, global radiation 

Daily performance ratio 1.55–4.19% Relative RMSE Switzerland 

[56] 5 Parameter model Solar radiation, module temp, ambient temp Output current and voltage < 1.4% Relative error Hong Kong 

[57] 5 Parameter model Solar radiation, module temp Output current, voltage and power < 10% Relative error China 

[60] ANN Date / Time, wind speed, rainfall, ambient 

temp, humidity 

solar irradiation MSE = 200 W/m 

2 Australia 

[61] ANFIS Solar irradiance, ambient temp MPP – - 

[62] ANN Previous solar insulation, temp, atmospheric 

insolation, forecast solar insulation, and 

relative humidity 

Ground level solar insulation MAPE = 15–20% Japan 

[63] ANN Ambient temp and solar irradiance Solar power r = 98.5–99.2%, MBE = 

3.1–5.4% 

Italy 

[64] MLP, LSTM, DBN, 

Auto-LSTM 

Weather forecast data, Previous power 

generation 

Solar power generation RMSE: MLP = 0.0724, 

LSTM = 0.0724, DBN = 

0.0713, AutoLSTM = 

0.0713 

Germany 

[66] Thermodynamic 

principles 

Thermodynamic parameters, weather 

conditions, inlet temp 

Solar thermal outlet temp – UK 

[67] Thermodynamic 

principles 

Thermodynamic parameters, weather 

conditions 

Component temps, air temp, 

efficiency 

< 7% Relative error - 

[69] 2D Finite difference 

thermal model 

Thermodynamic parameters, weather 

conditions 

Component temp 5–10% Relative RMSE France 

[71] ANFIS Ambient temp, solar radiation, previous tank 

temp 

tank temp, heat input, solar 

fraction 

1–9% Relative error canada 

[72] ANN Average daily temp, total daily solar radiation, 

starting tank temp 

Daily energy output, final tank 

temp 

r = 95–96% - 

Note - MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Squared Error), MSE (Mean Squared Error), ANFIS (Adaptive Neuro-Fuzzy Inference System), MPP (Max 

Power Point), MBE (Mean Bias Error), MLP (Multi-Layer Perceptron), LSTM (Long Short-Term Memory), DBN (Deep Belief Network). 
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i  

t  
hese tend to develop models for improvements or alterations to

he standard flat plate solar collector. For instance, Dowson et al.

66] developed a model for a polymer air collector with an aerogel

nsulation layer. A model to calculate the efficiency, output temper-

ture and component temperature of a novel counter flow v-groove

olar collector can be found in [67] . Luo et al. [68] modelled the

ffect of using nanofluids to improve the system efficiencies of a

olar thermal collector. Electrical circuit analogies can also be used

or the modelling of solar thermal collectors as demonstrated in

69,70] . Electrical circuit models simplify the mathematics of mod-

lling solar thermal systems but still retain some knowledge of the

hysical components. 

When sufficient amounts of data are available, it is possible to

odel solar thermal collectors with an ANN, similar to the case of

olar PV. For instance, the performance of a solar thermal system

as been modelled using both ANFIS and ANN in [71] with compa-

able results. The model showed a mean relative error of 1% when

redicting the stratification temperature, and 9% for the solar frac-

ion. The results show a high level of accuracy and reliability using

rtificial intelligence methods, with a significant reduction in com-

lexity compared to a full mathematical description of the system.

owever, the amount of data required (panel’s characteristic, ori-

ntation, tilt, and solar radiation every minute) can be difficult to

ollect in practice. Kalogirou et al. [72] , also used an ANN to pre-

ict the output characteristics of a large-scale solar thermal sys-

em. It predicted the energy output and the storage tank tempera-

ure with accuracies of R 

2 > 0.95. However, this study focussed on

he total daily energy output rather than the finer timescales re-

uired for operational optimisation. 

.3.3. Discussion 

This section has shown several mathematical and machine

earning methods for predicting solar energy output, the reviewed

iterature has been summarised in Table 2 . In the case of solar

V, the more simplified analytical models based on empirical re-

ationships or equivalent electrical circuits may be suitable for use
n operational control and optimisation due to their short calcula-

ion time. The analytical approaches used for solar thermal mod-

lling are too complex for use in real-time optimisation. Accurate

redictions of solar PV or solar thermal output will undoubtedly

equire relevant weather variables as inputs. Therefore, to predict

uture solar energy generation, accurate weather forecasts are re-

uired. In many cases, sufficiently accurate forecasts of variables

n an appropriate temporal scale such as ambient outdoor tem-

erature and relative humidity will be available from national me-

eorological services. The forecasting of global solar radiation has a

igher associated uncertainty and is less commonly available pub-

icly. Therefore, many of the machine learning methods reviewed

n this section first aimed to predict solar irradiance and from that

alculate the solar power output, offering a computationally effi-

ient and simple approach. However, the common downsides as-

ociated with machine learning prediction models also apply for

olar energy modelling. These include the requirement for a large

mount of historical or simulated data and the inflexibility of the

odel to adapt to any changes made to the system. Furthermore,

achine learning approaches can be susceptible to problems of

verfitting. This occurs during the training process if the model

ts too well to the training data set without learning the general

rends. Then when applied to an unseen testing data set, the model

erforms poorly. Depending on the machine learning approach, dif-

erent methods exits to prevent this. These include ‘pruning’ the

rained model to remove any unnecessary links or stopping train-

ng early based on the performance of a validation dataset. Note

hat these drawbacks associated with machine learning are true of

very application rather than just the reviewed studies presented

ere. 

.4. Wind power 

Wind power generation relies on wind speed, which could be

nfluenced by obstacle, terrain and height. Wind power genera-

ion is stochastic in nature, and therefore the reliability of wind
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Fig. 3. Typical wind power curv e. 
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power generation is not satisfactory as it cannot produce and sup-

ply steady electricity to the electrical grid. The wind power pene-

tration influences the power system operation. To tackle this chal-

lenge, the power system operators/decision makers must make a

detailed schedule plan and set a reserve capacity for it [73] . Wind

power may not frequently be considered a small-scale urban en-

ergy source as wind farms are often built on a large scale and in

more remote locations. However, it is feasible that a wind farm

may be first directly connected to an urban microgrid rather than

the wider national grid. Also, given that wind power is one of the

largest renewable generation sources currently deployed the au-

thors believe that prediction of this power generation is worthy

of discussion in this review. Two recent reviews [49,73] , state that

there are three broad methods for calculating wind speed or wind

power generation. These include physical-based, white box, numer-

ical models, more traditional statistical models such as ARIMA, and

newer artificial intelligence-based models such as ANN, fuzzy logic

and Support Vector Machine, SVM. 

Typically, the power generated by a wind turbine can be de-

fined as a function of wind speed. However, a wind turbine will

have four operational zones which should be defined by the man-

ufacturer of the turbine. Initially, at low wind speeds the turbine

will remain stationary and produce no power until a cut in speed

is reached. Then in the second zone, the output power is a cubic

function of wind speed (shown in (4) ) until the rated wind speed

and power is reached. Where P , is the generated power (W), C p , is

the dimensionless power coefficient of the turbine, ρ , is the den-

sity of air (kg/m 

3 ), A is the swept area of the turbine (m 

2 ) and U

is the wind velocity (m/s). 

P = C p 
1 

2 

ρAU 

3 (4)

In the third zone, the power output will remain constant at the

rated power regardless of wind speed. Finally, if the wind speed

becomes too high, the turbine will shut down to prevent damaging

loads. A typical wind power - wind speed curve is shown in Fig. 3 .

Therefore, the challenge of predicting wind speed and wind power

are almost one and the same. However, errors in wind speed fore-

casting are exacerbated by the cubic relation between wind speed

and power. 

Whilst the wind-power curve is typically provided by manufac-

turers, this relationship does not factor in the specific context of

each site (e.g. turbulence) or the condition of the turbine (e.g. de-

terioration and wear) or the proximity to additional turbines [74] .

A common method found within the literature aims to develop

site specific wind-power curves to achieve greater accuracy. Jin and

Tian [75] , proposed a probabilistic method to model wind power

generation by adding a term to Eq. (4) to reflect the stochasticity

of the wind speed and power variation between wind turbines in

the same wind farm. Lydia et al. [76] , applied a range of techniques
o generate a more accurate wind-power curve applied to 5 differ-

nt datasets. These techniques included parametric modelling such

s a linearized segmented model, four and five parameter logis-

ic expressions as well as non-parametric modelling including neu-

al networks, fuzzy clustering and data mining approaches. For the

ake of brevity only the results from the best model (5-parameter

ogistic function) and for dataset 1 are included in Table 3 . Wind-

ower curve techniques may be necessary to understand more re-

listic site-specific conditions; however, the resulting curve still re-

uires forecast wind speed as an input to predict power genera-

ion. Given that both recent reviews, [49,73] , state that for short-

erm prediction (hourly to sub-hourly) artificial intelligence based

odels are most effective, the rest of this section will focus on this

rea. 

Five different machine learning techniques were applied to the

rediction of future wind speed and wind power generation in

77] . They considered predictions using different time steps and

rediction horizons. For very short-term wind speed and power

redictions, they found SVM models outperformed other data min-

ng techniques. This used the previous hours’ time series data to

redict up to an hour ahead in 10-min intervals. The authors also

onsidered a slightly longer timeframe for predicting wind power

p to 4 h ahead using the previous 4 h, mean power generation

ata. Multi-layer perceptron, MLP, was the most accurate method

or this timeframe prediction. An ANN was used in [78] to make

hort-term forecasts of wind speed at a wind farm site in Mex-

co. The ANN was trained based on time series data and used the

revious hours values of wind speed to predict the next hour. A

ethod combining wavelet transformation and neural networks to

redict short-term wind power generation at a national level in

ortugal was developed in [79] . Adding the wavelet transforma-

ion to get a better representation of the input data provided an

ncrease in accuracy compared to using an ANN alone in all four

easons. 

Quan et al. [80] aimed to address the calculation of prediction

ncertainties. They produced an ANN that outputted the lower and

pper bound of electrical load and wind power generation rather

han a specific prediction value. A Particle Swarm Optimisation

PSO) procedure was used to minimise the width between these

ounds under the constraint of 90% prediction coverage. The pro-

osed procedure provided a significant improvement over more

raditional methods although the width between the bounds for

ind power generation remained high due to the randomness and

ntermittent nature of wind power. Similarly, Men et al. [81] de-

eloped an ensemble mixture density neural network method to

ake a probabilistic forecast of wind speed and power. It pro-

ided not only a prediction but also confidence bounds for the pre-

icted time series. It was found to outperform several other pre-

iction methods regarding prediction accuracy and quality of the

onfidence bounds. An ensemble approach combined with wavelet

ransformation and a deep learning, Convolutional Neural Network

CNN) was proposed in [82] . The model required only recorded,

ime-series values of wind power as an input, from which it pre-

icted wind power from 15 min to 8 h ahead. The proposed

ethodology was compared to a back-propagation and SVM ap-

roach and was shown to outperform these models in every test.

elch et al. [83] , developed three neural networks using differ-

nt methods to predict short-term wind speeds. The authors found

hat recurrent neural networks outperformed the multi-layer per-

eptron architecture. An alternative, Naive Bayes decision tree pre-

iction model is used in [84] . It aims to extract relationships be-

ween wind speed and additional weather data. Support Vector

achine (SVM) prediction models have been compared to ANN in

85] to predict mean daily wind speed. They find that the SVM

odel compares favourably against the ANN. 
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Table 3 

Wind modelling literature summary. 

Ref Method Input parameters Output parameters Model accuracy Location 

[76] Parametric modelling Wind speed Wind power RMSE = 0.6408, MBE = 0.4874 Various 

[77] SVM, MLP, Decision tree Previous wind speeds Wind speed and power Relative error = 15% and 23% - 

[78] ANN Previous wind speeds Wind speed MSE = 0.0016, MAE = 00399 Mexico 

[81] Ensemble MDN Forecast wind speed Wind speed and power 

and uncertainty 

RMSE = 1.9688 and 174.38 Taiwan 

[82] CNN Previous wind power Wind power CRPS = 0.281-4.339 China 

[83] MLP, RNN, SRN Current wind speed, air temp, humidity Wind speed Relative error: MLP = 0.5038, 

RNN = 0.4354, SRN = 0.4544 

USA 

[84] Decision trees Time, atmospheric pressure, sea-level 

pressure, temp, humidity, wind 

speed and direction, insulation 

Wind speed Classification error rate = 17.54- 22.61 Japan 

[85] SVM and ANN Previous hours wind speed Wind speed MSE = 0.0090 (ANN), MSE = 0.0078 

(SVM) 

Saudi Arabia 

Note - MLP (Multi-Layer Perceptron), RNN (Recurrent Neural Network), SRN (Simultaneous Recurrent Neural Network), MDN (Mixture Density Network), MSE (Mean 

Squared Error), MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), CNN (Convolutional Neural Network), CRPS (Continuous Ranking Probability Score) 
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In summary, from the assessed literature, the authors agree that

achine learning methods have the potential to provide the sim-

lest and most accurate short-term prediction (up to 24 h ahead)

f wind power generation. However, in comparison to the other

eneration technologies considered in this review, wind power

eneration forecasting appears to be the most difficult. This is due

o the almost complete randomness in the wind speed profile. In

omparison to solar energy prediction, which is also weather de-

endent, the daily, or seasonal patterns are very limited. This is re-

ected in the wide uncertainties reported from the reviewed litera-

ure. A summary of the literature reviewed in this section is found

n Table 3 . 

.5. Power-to-Gas 

The use of Power-to-Gas (P2G) (hydrogen or methane) technol-

gy is a relatively new concept for national energy systems. Due

o plans for large expansions in stochastic renewable power gen-

ration, a technology is required to be able to effectively store or

onvert excess electricity at times when it cannot be dispatched.

he power to gas technology can convert excess electricity into hy-

rogen, and subsequently, methane for later use. These gases could

e integrated with other sectors such as the chemical industry or

ransportation if hydrogen powered vehicles have significant take-

p. Alternatively, methane (or synthetic natural gas) could be di-

ectly injected into the existing gas network with some researchers

lso suggesting that pure hydrogen could be injected to the same

etwork up to a defined threshold with minimal negative conse-

uences. If appropriate economic and technological conditions pre-

ail, P2G could become a significant technology in the context of

ulti-vector energy systems as they have consequences for elec-

ricity, gas and heat as shown in Fig. 4 . 

Both [86,87] provide a technical overview of the systems and

conomic analysis. Initially hydrogen is produced using water elec-

rolysis requiring electricity as an input using one of three current

ethods; alkaline water electrolysis, proton exchange membrane

lectrolysis or high-temperature water electrolysis. Then a metha-

ation stage converts the hydrogen to methane requiring a carbon

ource which could come from carbon capture at fossil fuel power

lants, anaerobic digestion of biomass, or from the air. Whilst the

echnology is still largely at a pilot testing stage there is some con-

ern at the high capital costs and relatively low conversion effi-

iencies of the technology. 

Several national-level investigations into the economic feasibil-

ty of P2G have been carried out. Studies by [88,89] modelled the

ntegration of hydrogen electrolysers and P2G at a national level

ased on UK gas and electricity networks. For a future scenario

ith high wind power generation capacity, the authors found that
llowing hydrogen to be directly injected into the gas network

ould reduce costs and emissions due to the greater capture of

ind resource. A similar national scale, energy storage study in a

utch context was considered in [90] . A comparison of pumped

ydro, compressed air, and power to gas energy storage was pro-

ided with varying capacity and different scenarios of wind power

roduction. The study finds P2G to be the least cost-effective en-

rgy storage option due to relatively low cycle efficiencies. A future

erman scenario with 85% renewable energy was studied in [91] .

his work aimed to consider the optimal amount of P2G capacity

o deploy but also where to deploy it. In this scenario, P2G could

ead to significant cost reductions, increased renewable share, and

 reduction in CO2 emissions. Guandalini et al. [92] , analysed the

ffect of adding hydrogen electrolysers and gas turbines to large

ind farms to provide balancing services. Including these units al-

owed a more ‘aggressive’ declaration of production to the trans-

ission system operator as inaccurate predictions could be miti-

ated. An economic analysis of the use of P2G was applied in a

erman context in [93] . This work found that for the current and

ear future energy landscape, P2G is not a profitable method of

roviding balancing services to the national grid. This is due to

igh capital costs and relatively low gas prices in relation to elec-

ricity prices. 

All previously discussed studies model the electrolysers or

ower to gas systems as a constant efficiency and were inter-

sted in long-term economic effects over a large geographic scale.

hermodynamic analysis of electrolysers and power to gas plants

as conducted in [94,95] . These studies assessed the energy de-

and for producing hydrogen at different pressures using different

lectrolysis pathways. However, these models were highly complex

nd would be problematic to integrate into real-time, operational,

istrict optimisation. Despite their aims to account for thermody-

amic irreversibility, these models have yet to be validated against

eal experimental data. Due to the fact that P2G technology is rela-

ively new and still in an R&D phase, operational data is not widely

vailable. This means that short-term, simplified, modelling of part

oad efficiencies is not covered in the state of the art literature and

epresents a significant research gap. 

.6. Heat pumps 

Heat pumps have long been identified as a future clean energy

ource for meeting building heat demand providing they can utilise

enewable electricity. They can be categorised as ground source or

ir source heat pumps and have the advantage that they can also

rovide cooling in warmer seasons. They have high energy efficien-

ies with a typical coefficient of performances (COP) of around 3–4,

eaning for one unit of electrical energy input you get 3–4 units
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Fig. 4. Schematic overview of the energy vector pathways of Power-to-Gas. 
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of useful heating energy. Studies that consider heat pumps using

the typical energy hub modelling procedure, outlined in Section 2 ,

would model this COP as constant when in fact it is dependent on

a number of factors including the part load percentage, outdoor

air temperature, and ground temperature. Therefore, more realistic

models must be developed to allow true optimal control of heat

pumps within a multi-vector district energy system. 

Several modelling approaches can be found in the literature. A

thermodynamically derived, a dimensionless number relating bore-

hole wall temperature to heat gain per unit length can be calcu-

lated. Commercial, numerical, heat transfer software can be used

to model heat pumps with great accuracy. Artificial Neural Net-

works, ANN, have also been utilised as well as state space models

[96] . Of these approaches, only ANN and state space models are

simple enough to be utilised for real-time operational control, and

thus only studies using these methods will be discussed in this

section. 

An Adaptive Neuro-Fuzzy Inference System, ANFIS, approach

was used to calculate the COP of a ground source heat pump

in [97] . Compressor inlet and outlet temperature, as well as the

ground temperature were used as inputs to the model. A num-

ber of different membership functions were trialled and the best of

which achieved an accuracy with a maximum error of 0.25%. Gang

and Wang [98] used an ANN to predict the output water temper-

ature of a ground heat exchanger which allowed better control of

a hybrid ground source heat pump with a cooling tower. An ANN

was used in [99] to predict heating capacity and compressor work

done (and hence calculated COP) of a direct expansion geother-

mal heat pump. Inputs to the model were the temperature and

pressure of the evaporator at the inlet and outlet, condenser inlet

cooling water temperature, and the discharge pressure. A formal

method of varying heat pump parameter set points was utilised
o allow generation of a complete training data set in a relatively

hort period. 

Zhang et al. [100] used a Radial Basis Function Neural Network,

BFNN, to model the performance of a ground source heat pump.

he model was then used in conjunction with a particle swarm

ptimisation, PSO, to minimise operational energy consumption of

he heat pump given a known building demand. ANN and ANFIS

odels were compared in [101] for calculating the COP of a ground

ource heat pump. The inputs to the two types of model were the

ame; namely, the evaporator inlet and outlet temperature, con-

enser inlet and outlet temperature, and the load side inlet and

utlet temperature. Good accuracy between experimental results

nd model predicted COP were reported with slightly better results

rom the ANFIS model. However, these models only allowed retro-

pective COP calculation as the temperature inputs needed to be

easured first meaning this cannot be used for model predictive

ontrol applications. 

Both a nonlinear autoregressive exogenous, NARX, model and a

educed order state space model were used in [102] for prediction

f mean ground loop fluid temperature. These were then utilised

n a dynamic programming optimisation and nonlinear MPC op-

imisation respectively. Both models achieved excellent prediction

nd allowed calculation of heat pump COP to minimise the cost of

nergy consumption for a hybrid ground source heat pump system.

hmad et al. [103] and Ahmad [104] used a quadratic equation to

odel COP of a heat pump. The developed model was then used to

evelop nonlinear model predictive control for a solar thermal sys-

em combined with a heat pump. In [105] , heat transfer and power

f a heat pump was modelled using quadratic regression curves

ased on simulated data. Similarly, models of the pump, fan coil

nits, piping network, heat storage and building space temperature

ere created. Whilst several heat pump variables were accurately
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Table 4 

Heat pump literature summary. 

Ref Method Input parameters Output parameters Model accuracy 

[97] ANFIS Compressor inlet and outlet temp, ground temp COP CV = 0.136, Relative error < 

0.25% 

[98] ANN Heat exchanger inlet temp, pipe surface temp, 

backfill wall temp 

Heat exchanger outlet temp RMSE = 0.034 - 0.062 

[99] ANN Inlet and outlet evaporator temp and pressure, 

inlet cooling water temp, discharge pressure 

Heat energy output, 

compressor power 

consumption 

CV = 2.45 and 3.41% 

[100] RBFNN Building load, water loop mass flow rate, 

ground loop inlet temp 

COP and water supply temp MRE = 4.53% 

[101] ANFIS and ANN Evaporator inlet and outlet temp, condenser 

inlet and outlet temp, load side inlet and 

outlet temp 

COP RMSE = 0.06475 (ANN), RMSE 

= 0.05524 (ANFIS) 

[102] NARX and State space 

model 

Model regressors Mean circulating fluid temp Fit-NRMSE = 98.63% 

[105] Quadratic regression curve 

fitting 

Compressor speed, circulation pump speed, 

ground loop temp, building circuit temp 

Heating, cooling and power Relative error = 13.8%, 5%, 2.4% 

Note - ANFIS (Adaptive Neuro-Fuzzy Inference System), COP (Coefficient of Performance), CV (Coefficient of Variation), RMSE (Root Mean Squared Error), RBFNN (Radial 

Basis Function Neural Networks), MRE (Mean Relative Error), NARX (Nonlinear Autoregressive Network with Exogenous Inputs), NRMSE (Normalised Root Mean Squared 

Error) 
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redicted the authors did not envisage the potential to use this

odel for a building set point temperature optimisation aiming to

inimise the energy consumption from the heat pump. 

In summary, simplified models for calculating heat pump pa-

ameters do exist within the literature. These are most commonly

ased on neural networks, state space models or regression curves.

owever, many of the examples discussed use very specific pa-

ameters as inputs that would not necessarily be metered or easily

orecasted for the next 24 h. In an ideal case, for a holistic district

nergy model, the COP would be calculated based on the predicted

nergy demand, forecasted weather conditions and heat network

emperatures. A summary of the literature reviewed in this section

an be found in Table 4 . 

. Dynamic building modelling 

Buildings need to be considered as integral and active parts

f an urban energy system and therefore need to be modelled

ccurately. Building loads (heating and cooling, hot water and

lectricity consumption) depend on a number of different factors

.g., weather conditions (solar radiation, dry-bulb air temperature,

ind speed), thermal properties of building’s fabric, occupants’ be-

aviour, installed energy system, operational schedules, etc. These

nterdependencies increase the complexity of the problem, and

herefore accurate prediction of building energy consumption can

e a challenging task. However, several different building mod-

lling techniques currently exist with different advantages and dis-

dvantages. These modelling techniques can broadly be categorised

s white box, grey box, or black box models [106] . 

.1. White box 

White box or Engineering methods are based on using physical

rinciples to calculate thermal dynamics and energy behaviour of

 building or system [107] . Engineering models can be divided into

he following categories; detailed methods and simplified meth-

ds [107] . Simplified methods can include degree-day, bin meth-

ds, etc. and are steady-state models. These methods are predom-

nately useful when the building energy consumption is more de-

endent on the building fabric. Detailed methods (e.g. TRNSYS,

OE-2, EnergyPlus) often enable users to evaluate design with re-

uced uncertainties, because of their multi-domain modelling ca-

abilities [108] . Detailed simulation models can produce accurate

esults; however, they require an extensive amount of building and
nvironmental data for modelling a building and its systems. Mod-

rn research efforts are targeting the use of 3D laser scanning and

hotogrammetry techniques to quickly realise an accurate as-built

epresentation of building geometry on a district scale [109,110] .

owever, digitisation and subsequent generation of energy models

emains a time-consuming task requiring significant manual inter-

ention [111] . 

Furthermore, these initial building energy models do not tend

o perform well in predicting energy consumption of occupied

uildings as compared to the design stage prediction [21] . Ex-

ensive calibration effort s are often required during the opera-

ional phase to adjust the model to reflect reality. This requires

idespread metering, categorised spatially and by end use at small

ime intervals. However, once a calibrated energy model has been

ompleted it can output an exhaustive range of variables from

uilding level total electricity consumption down to the air flow

ate of a single zone. Detailed simulation models tend to be more

omputationally expensive and therefore, are generally considered

ot suitable for near real-time optimisation problems. 

Once a basic energy model has been constructed using the

nown geometry, construction materials, energy systems and ba-

ic rule-of-thumb internal gains estimates; significant effort s are

equired to calibrate a model. While no agreed upon, universal,

ethodology has been achieved there are a number of litera-

ure reviews on the subject [112–114] and a number of proposed

ethodologies [115,116] . However, many of these methods are still

anual, iterative and time consuming. They often involve identify-

ng the most sensitive parameters that impact on energy consump-

ion using probabilistic analysis such as a Monte Carlo simulation

117] . From this the modeller can allocate most effort to iteratively

orrecting these parameters [116] . Many of these methodologies

im to estimate a level of uncertainty associated with the resulting

uilding model also [118] . A recent step has been made through

he development of “Autotune’ for Energy Plus models [119] . This

ethod uses an evolutionary algorithm to tune selected important

ariables aiming to minimise the error between the Energy Plus

utput and measured data. However, given the number of ‘tune-

ble’ parameters in a typical building and given that a population-

ased optimisation method is used; this leads to a very large

umber of evaluations and hence simulations. To address this, the

tudy uses several high-performance computing techniques and

upercomputers, which make this method inaccessible to ordinary

ractitioners. The resulting calibrated model, when applied to a

omplex building, achieved an accuracy of CV(RMSE) = 11.82% and

BE = −1.27%, equivalent to a manual calibration. 
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A calibration methodology was implemented in [120] applied to

two simulated building and one actual building. Influential mod-

elling parameters were first identified with best guess estimates

inputted. This was followed by a course and fine grid Monte Carlo

simulation to refine and improve calibration solutions. The result-

ing calibrated model achieved a CV(RMSE) value of 6–8% when

comparing simulated vs actual monthly electricity consumption.

Monetti et al. [121] , used a particle swarm optimisation, PSO, to

calibrate several parameters of an EnergyPlus building. The authors

considered infiltration, equipment power, ground temperature, ma-

terial properties and thicknesses as variables. Once calibrated, a

CV(RMSE) of 0.19–20.40% was reported for hourly heating energy

consumption comparison of several zones. A two-stage, building

energy modelling procedure was carried out in [122] . The initial

stage involved detailed inspection of as-built building documen-

tation and surveys of internal loads. The second stage required a

more thorough interrogation of key BMS data and occupant sur-

veys. The completed model complied with ASHRAE Guideline 14

accuracy limits for modelling of heat pump electrical demands,

heat pump thermal output, building electrical consumption, nat-

ural gas consumption, and indoor zone temperature. 

White box simulations have been used in the literature as an

evaluation engine for optimisation procedures. In [123] , an Ener-

gyPlus simulation model was used to optimise pre-cooling opera-

tion to minimise energy cost whilst ensuring temperature bounds

were met. To automatically link EnergyPlus, other modelling tools,

and optimisation procedures in environments such as MATLAB, the

Building Controls Virtual Test Bed, BCVTB [124] , can be used. En-

ergyPlus was used in conjunction with a Genetic Algorithm, GA,

in [108] . The optimal management of window openings, window

blinds and mechanical ventilation was considered with the objec-

tive of meeting the occupants thermal, visual and indoor air qual-

ity needs whilst minimising cost. Each individual solution in the

GA was run in EnergyPlus allowing its’ fitness to be evaluated.

However, both of these examples have to use very simplified build-

ing models to keep the simulation time within reasonable limits.

To complete a metaheuristic optimisation requiring a large number

of evaluations of a realistic, complex, building model is not feasible

for real-time optimisation, where results are needed in the order of

15-min intervals. 

4.2. Grey box 

Grey box models are hybrid models; they use simplified physi-

cal descriptions to model building and/or building energy systems.

The coefficients of the models are identified based on the opera-

tional data using parameter identification methods. A simple ex-

ample of this type of models is the RC-model; in which an elec-

trical analogy is used to model heat transfer through a wall. This

method simplifies the problem through a linearization of the equa-

tion and hence reduces the computational time [125] . These mod-

els are mostly used as a good compromise between modelling ac-

curacy and computational time. 

A methodology to develop the simplest, yet suitably accurate,

RC model for a single storey case study building in Denmark was

explained in [126] . It aimed to model the indoor temperature as

a function of solar irradiance and heating input. The final model

achieved errors less than ± 0.1 °C but from a district optimisa-

tion perspective, prediction of heat consumption as a function of

set point temperature and weather would be more useful. Ahmad

et al. [103] and Ahmad [104] , developed an RC model for a two-

room building. The model was used to output energy consump-

tion of the building. The authors developed an MPC controller to

save energy consumption while maintaining thermal comfort. Sim-

ilarly, Berthou et al. [127] tested four different configurations of

RC models each increasing in complexity. The authors found the
 resistors, 2 capacitance model to be the best compromise be-

ween accuracy and complexity. TRNSYS data was used to tune the

C model parameters which used occupancy, ventilation, tempera-

ure set point and solar gain as inputs to predict indoor tempera-

ure and heating and cooling demand with resulting fit values of

8% and 89% respectively. Zhou et al. [128] , developed not only a

uilding load prediction model but also weather modules to pro-

ide the inputs to the building load RC model, hence developing an

nline, day-ahead, prediction service. Grey dynamic models were

sed to predict outdoor temperature and relative humidity which

ere then used to forecast the solar radiation. The predicted so-

ar radiation was then used as an input to forecast building cool-

ng demand with an eventual R 

2 value of 0.91–0.93. However, the

umber of testing days included was quite limited, and weather

orecasting errors had an impact on the eventual energy demand

rediction. 

Reynders et al. [129] , derived several RC models to emulate a

ore complex, white box Modelica model. First to fifth order RC

odels were tested along with different training data sets, the

ddition of noisy data, and using alternative, more easily mea-

ured, inputs. The study found that using solar irradiance on ver-

ical planes could effectively take the place of solar gain data and

uilding electrical demand could be used as a proxy for internal

ains data. However, the resulting grey box model is only validated

gainst a white box model of a generic Belgian house rather than

 real case study. A toolbox design for the streamlining and semi-

utomation of the development of RC models for model predictive

ontrol is outlined in [130] . The software aids the data handling,

odel selection and parameter estimation, however, achieved poor

alidation results in one case study due to inappropriate training

ata. A dynamic, thermal RC model was integrated with an ex-

sting stochastic, Markov-Chain, electrical demand and occupancy

odel in [131] . Building demand, hot water cylinder, gas boiler and

eating control models are all integrated and receive active occu-

ancy profiles based on a UK building use survey. However, this

tudy was aimed at producing generalised, aggregated, probabilis-

ic thermal demand of several building rather than specifically for

eal-time optimisation like the other studies in this section. 

Afram and Janabi-Sharifi [132] , developed a detailed grey box

odel of a residential HVAC system comprised of subcomponent

odels for an Energy Recovery Ventilator (ERV), Air Handling Unit

AHU), buffer tank, radiant floor panels, and a Ground Source Heat

ump (GSHP) based on energy balance equations. Once the model

arameters had been identified, only zone and buffer tank set

oints as well as outdoor air temperature were required as inputs.

he authors argue such a model would be prime for use in con-

unction with MPC. An example where RC models were effectively

pplied is provided in a case study based on a Czech university

uilding in [133,134] . The MPC strategy took weather and occu-

ancy as inputs and aimed to minimise the energy cost whilst en-

uring thermal comfort by controlling the set point temperature of

he water supplied to the building. The RC model would output the

redicted building temperature based on the given inputs. 

.3. Black box 

Black box models are input-output models based purely on data

ith no representation of the underlying physical characteristics

f a system. These can include purely statistical based regression

odels, Artificial Neural Networks (ANN), Neural Network Auto-

egressive model with exogenous inputs (NNARX), Support Vec-

or Machine (SVM) or Random Forest models. Black box models

ave been used extensively in the literature to predict or calculate

 wide range of variables key to building optimisation and control

uch as electricity demand, heating demand, indoor temperature,

nd predicted mean vote (PMV - a measure of thermal comfort).
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ummaries of these types of computational intelligence techniques

an be found in [20,135] . The above methods rely on a training pe-

iod that uses extensive amounts of data. This means that histori-

al data needs to be logged for an extended period or simulation

odels need to be used to produce substantial amounts of realistic

ata. 

Much of the literature based on creating ANN to accurately pre-

ict building data emphasises the need to ensure the most appro-

riate inputs are used as well as the optimal architecture and in-

ernal function are selected. Ferreira and Ruano [136] , uses a GA to

nd the optimal architecture of an ANN to predict the climate of

 greenhouse, the resulting model can then be used for optimisa-

ion processes. A complete example of selecting functions between

ach layer can be found in [137] . The resulting model could predict

lectricity consumption, thermal energy consumption and PMV in

 sports facility. From this the HVAC system could be optimised us-

ng a model predictive control technique. PMV is normally a com-

licated parameter to calculate requiring seven (often difficult to

easure) variables to be used as inputs to Fanger’s equation. Both

138,139] produce ANN based solutions to calculate PMV without 

he need to solve Fanger’s equation. 

Bagnasco et al. [140] , uses an ANN to forecast the electric-

ty demand of a hospital in Turin. Considered inputs include the

ay of the week, time of day, loads at the same timestep from

he previous day and from seven days ago, outdoor temperature,

nd whether or not it is a weekday. Similarly, [141] , forecasts day

head electricity consumption at 15-min intervals using an ANN.

t only considers five input variables, day type, time of day, op-

rational condition, outdoor temperature and outdoor relative hu-

idity but achieves very good prediction accuracy with CvRMSE in

he order of 8–10%. A regression-based, data analysis approach was

sed in [142] to find a correlation between weather and occupancy

ariables to three electrical load types (appliance, ventilation, and

ooling). They found that work hours, occupancy and outdoor tem-

erature were the most important variables in calculating the elec-

rical loads and using fewer predictor inputs resulted in lower er-

ors. The use of ANN and Random Forest algorithms was compared

n [21] for the prediction of HVAC electrical consumption of a ho-

el in Madrid. Considered inputs included weather variables, date

nd time variables, the number of guests and the number of rooms

ooked. The ANN was shown to marginally outperform the Ran-

om Forest model however the authors argued that Random Forest

ased methods are easier to tune. A comprehensive and systematic

eview of electrical load forecasting in buildings, [143] , concluded

hat black box models such as ANN or SVM are well suited to the

ask. 

ARX and NNARX models were compared for their suitability to

odel indoor temperature in [144] . The model aimed to predict

he indoor temperature of a building using previous indoor tem-

erature, outdoor temperature, solar radiation and heating power

s inputs. The NNARX model significantly outperformed the linear

RX model and once pruned using the optimal brain surgery algo-

ithm achieved an SSE of 0.906. Royer et al. [145] , used a second

rder state space model to predict the indoor temperature of zones

lso using outdoor temperature, solar radiation and HVAC opera-

ion as inputs. The model proved itself to be adaptable to different

uildings but achieved poor results in colder climates. 

In most cases, the purpose of the previously described models

s to be used as an evaluation engine in optimisation strategies and

tilised in conjunction with MPC. For example, in [146] , ANN are

sed to predict the outdoor and indoor temperature for the next

 h. These prediction models were used by a GA-fuzzy optimisa-

ion to control the fan coil operation reducing energy consumption

y 35.8%. Similarly, Lee et al. [147] , used a neural network based

odel to predict zone temperature and power consumption. This

as used as part of an optimisation strategy that controlled the set
oint temperature, generation devices and deployment of storage.

 multi-objective GA was used to simultaneously minimise energy

onsumption and predicted percentage dissatisfied (PPD - A mea-

ure of thermal comfort) in [148] . A combination of GA and ANN

ere applied to the same case study building in [149] . In this case

 zone level optimisation approach was applied to reduce energy

onsumption from sporadically occupied zones. This required in-

ependent ANN to model the heating energy consumption and in-

oor temperature of each zone. 

Deep learning techniques have been more widely applied to

uilding energy consumption than in the other topics of this re-

iew paper. Deep learning methods are commonly based on ex-

ensions of a simpler ANN and are well suited to complex tasks

uch as image processing. Both [150,151] , applied deep learning

ethods to the same dataset. The trialled methods included Long

hort-Term Memory (LSTM), Conditional Restricted Boltzmann Ma-

hines (CRBM) and Factored Conditional Restricted Boltzmann Ma-

hines (FCRBM) with the aim of forecasting residential electricity

onsumption over varying time horizons. In most scenarios the

eep learning models were able to outperform more traditional

achine learning models. Fan et al. [152] , tested different feature

xtraction methods combined with several modelling techniques

anging from multiple linear regression to machine learning tech-

iques to Deep Neural Networks (DNN) to predict building cool-

ng energy consumption. They found that application of a deep

earning unsupervised feature extraction technique could improve

odel performance compared to more traditional methods. How-

ver, in this case study, it was concluded that a truly ‘deep’ model

as not optimal, and the cooling load was best predicted by an

xtreme Gradient Boosting (XGB) model. DNN were also used in

153] for forecast the electricity consumption of 40 commercial

uildings in South Korea. The DNN were shown to consistently

utperform shallow neural networks and a double seasonal Holt-

inters (DSHW) model across different building use categories. 

.4. Discussion 

A summary of the reviewed literature can be found in Table 5 .

he authors of this paper are in agreement with previous reviews

hat detailed, white box simulation models are not suitable for

ub-hourly real-time optimisation. The computational time is too

reat to be used as an evaluation engine, and they require an ex-

ert to create and then calibrate the model using vast amounts

f static and dynamic building data. Both grey box and black box

uilding models have been proven to be effective in the reviewed

iterature for modelling a wide range of building variables. For use

n conjunction with district optimisation, it is assumed that build-

ng demand prediction and indoor temperature or thermal comfort

ould be the most useful model outputs. From this, the simplified

uilding models could be used as an evaluation engine in the opti-

isation algorithm testing the building response to chosen control

ignals. 

. Discussion and future research directions 

This paper has reviewed the broad topic of energy modelling

or district energy systems. Due to the interdependencies and con-

ectivity between previously distinct energy vectors, a more holis-

ic energy management strategy and modelling approach must be

rovided. Several approaches can be found within the literature;

owever, conversion technologies are often modelled simplistically.

hey often assume constant conversion efficiencies and no warm

p or cool down periods which could lead to overall infeasible

r sub-optimal solutions. Therefore, this paper has reviewed mod-

lling approaches for common energy generation and conversion
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Table 5 

Building modelling literature summary. 

Ref Method Input parameters Output parameters Model accuracy Real case 

study 

[119] EnergyPlus autotune Building geometry, material properties, 

occupancy, lighting, equipment and 

HVAC gains and schedules 

Electricity consumption CV = 11.82%, MBE = -1.27% No 

[120] EnergyPlus manual tuning Building geometry, material properties, 

occupancy, lighting, equipment and 

HVAC gains and schedules 

Electrical and gas consumption GOF = 5–7% Yes 

[121] EnergyPlus manual tuning Material properties, lighting, equipment 

and HVAC gains, and ventilation 

Heating consumption CV = 0.19–20.4%, 

MBE = -0.14-0.83% 

Yes 

[122] EnergyPlus manual tuning Building geometry, material properties, 

occupancy, lighting, equipment and 

HVAC gains and schedules, occupancy 

survey 

HP electricity consumption, HP 

heat supply, indoor temp, 

electrical and gas consumption 

CV = 7.3–25.1%, CV = 18.2–33.5%, 

CV = 12.4–28.7%, CV = 

6.3–16.5%, CV = 4.5–14.1% 

Yes 

[126] RC grey box Solar irradiance, heating input, static 

parameters 

Indoor temperature Absolute error < ± 0.1 °C Yes 

[128] RC Grey Box Outdoor temp, humidity, solar radiation, 

internal gains 

Building load R 2 = 0.91-0.93 Yes 

[129] RC grey box Solar irradiance, electrical consumption, 

outdoor temp, set point temp 

Heating demand, indoor temp – No 

[130] RC grey box Outdoor temp, horizontal solar 

irradiance, heating load 

Indoor temp RMSE = 0.33K Yes 

[132] RC grey box Buffer tank and zone set point, outdoor 

temp 

Ventilation & AHU outlet temp, 

Tank & Zone temp, radiant 

floor and gshp return temp 

R 2 = 0.996-1.0 0 0, 

CV = 0.010-0.069 

Yes 

[137] ANN Minute, hour, day, month, occupancy, 

humidity, pool temp, indoor temp, 

outdoor temp, air flow rate 

Electrical and thermal energy 

consumption, and PMV 

MSE = 0.0015% Yes 

[138] ANN Air temp, web bulb temp, globe temp, air 

velocity, clothing, activity 

PMV - Yes 

[139] RBF ANN Air temp, relative humidity, globe temp PMV Absolute error < ± 0.0075 Yes 

[140] ANN Previous days consumption, previous 

week consumption, day type, 

timestamp, outdoor temp 

Electricity consumption Mean MAPE = 7% Yes 

[141] ANN Operational condition, time, day, outdoor 

temp and humidity 

Electricity consumption CV = 7.97-11.06% Yes 

[142] Regression Outdoor temp, daylight, work hours, 

radiation, occupancy 

Appliance load, ventilation load, 

cooling load 

RMSE = 7.1-13% Yes 

[144] ARX and NARX Outdoor temp, solar radiation, heating 

input 

Indoor temperature SSE = 0.9060 (NARX), 

SSE = 15.0379 (ARX) 

Yes 

[145] State Space Model Outdoor temp, solar radiation, HVAC 

Operation 

Indoor temperature Fit = 92-84% No 

[146] ANN Outdoor temp, time, hvac operation, 

convective transfer of windows 

Indoor temperature R 2 = 0.97, RMSE = 1.11K Yes 

[147] NARX Day of the week, time, outdoor temp, set 

point temp, AHU supply temp, AHU 

flow rate 

Indoor temperature and HVAC 

consumption 

CV = 0.007868, CV = 0.114 No 

[148] ANN Outdoor temp, solar irradiance, humidity, 

hour, set point temp, previous indoor 

temp 

Energy consumption, PPD, indoor 

temperature 

R 2 = 0.9888, 0.9982, 0.9985 No 

[152] SVR, XGB, DNN Time, Date, Outdoor temperature, 

Relative humidity 

Cooling energy consumption CV(RMSE): SVR = 19.0%, XGB = 

17.8%, DNN = 20.9% 

Yes 

[153] DNN Outdoor temperature, humidity, solar 

radiation, cloud cover, wind speed, 

date and time, previous consumption 

Electricity consumption Average MAPE = 8.85 Yes 

Note - CV (Coefficient of Variation), MBE (Mean Bias Error), GOF (Goodness of Fit), HP (Heat Pump), RC (Resistor Capacitance), RMSE (Root Mean Squared Error), RBF (Radial 

Basis Function), PMV (Predicted Mean Vote), GSHP (Ground Source Heat Pump), MAPE (Mean Absolute Percentage Error), NARX (Nonlinear Autoregressive Network with 

Exogenous Inputs, SSE (Sum of Squared Error), SVR (Support Vector Regression), XGB (Extreme Gradient Boosting), DNN (Deep Neural Network). 
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technologies including CHP, boilers, solar PV, solar thermal, wind

power, Power-to-Gas, and heat pumps. 

The scope of this review was to determine suitable modelling

for use in real-time optimisation and therefore with short com-

putational periods. For CHPs and boilers, this can be achieved us-

ing relatively simple polynomial regression curves relating the part

load factor to the efficiency, or through using multiple linear re-

gression equations. This either requires manufacturer data or a

small amount of experimental data. Solar energy prediction (both

PV and thermal) is highly dependent on the prediction of solar ir-

radiance. Currently, leading methods in the literature use machine

learning models to forecast this variable. Then either a further ma-

chine learning model or solar equivalent circuits can be used to
alculate PV output. In the case of solar thermal, machine learn-

ng models are recommended. However, as is often the case with

achine learning models, a significant amount of historical data is

equired. 

Short-term, wind power forecasting remains a significant chal-

enge within the literature. This is due to the inherent stochasticity

n wind speed and the lack of a consistent daily profile in com-

arison to solar power. The modelling of P2G systems is relatively

nexplored within the current body of literature due to their sta-

us as an emerging technology still in an R&D phase. Therefore,

o recommendation can be made on the suitability of different

odelling approaches. It is expected that when operational data

ecomes available, linear or polynomial regression curves relating
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xpected gas output to electricity input will be appropriate. Heat

umps are generally modelled by a COP or seasonal performance

atio; however, this is far from constant in reality. Many factors

ncluding part load, outdoor air temperature, and ground tempera-

ure can influence the conversion efficiency of a heat pump. From

he reviewed literature, machine learning methods such as ANFIS

r ANN could prove useful in modelling this behaviour. 

A section on the modelling of building energy consumption is

lso included in this review. Many leading district energy optimi-

ation studies fail to consider the demand-side of the district, often

ssuming a perfectly predicted, inflexible load. However, buildings

ust be considered an active participant in a district energy sys-

em, providing crucial flexibility. Building energy modelling can be

laced into three broad categories, white box, grey box or black

ox models. From the reviewed literature, the authors do not rec-

mmend the use of white box models due to their computational

omplexity and input data requirements. Both grey box and black

ox models have been proven in the literature to be able to ef-

ectively model building energy demand or indoor temperatures as

 function of weather conditions, occupancy and HVAC operation.

rom a district optimisation point of view, parameters such as the

et point temperature of a zone or building could be utilised as a

ecision variable to allow flexibility at certain peak points. 

Of the energy conversion and generation technologies reviewed,

odelling techniques are well developed and accurate results have

een reported. However, from the reviewed studies it appears that

ind speed and power forecasting with short timesteps is the

ost difficult due to the erratic nature of wind. Therefore, im-

rovements to current methods or development of new prediction

ethods are required. Furthermore, research remains to be com-

leted on the simplified modelling of power to gas systems. Whilst

his is a relatively young technology, it is vital that operational data

an be made available to allow researchers to understand the in-

er relationships between unit inputs and outputs. Something that

s largely neglected in the modelling studies reviewed in this paper

s a clear representation of the uncertainty of the resulting model.

verall accuracy results are reported, but clear uncertainty bounds

ould be useful if provided to an optimisation strategy to prevent

ractically infeasible or undesirable solutions. 

.1. Requirements for holistic optimisation of multi-vector energy 

ystems 

Providing suitably accurate modelling of district energy gener-

tion and conversion technologies can be developed, the clear fu-

ure research task is to integrate these models into a unified dis-

rict energy management platform. To strive towards optimal oper-

tion in terms of minimal cost to consumers, reduction in primary

nergy consumption and reduction in greenhouse gas emissions,

he authors believe any such platform must have a number of dis-

inct modules set out in Fig. 5 . 

• Data Logging - There must be a direct interface to log key

time-series data from currently underutilised, Building Man-

agement Systems (BMS) and other district-level generation and

energy network sensors. Increased availability of sensor data

through growth in the Internet of Things (IoT) technology

should also be envisaged and embraced as a new opportunity

for district energy management. 
• Prediction - Forecasting models of pivotal energy management

trends such as building energy demand and expected renew-

able energy generation should be created using the methods

discussed in this review. This module should also be respon-

sible for directly predicting expected weather conditions or re-

trieving this information from local weather data repositories.
Exploration of newer, ensemble-based prediction methods such

as Random Forest should be tested in this field. 
• Optimisation - Information developed in the prediction mod-

ule should be utilised to optimise the set point strategy of the

controllable district energy generation over the period of 24 h.

Internal simplified models, reviewed in this paper, will form es-

sential components of this optimisation algorithms to evaluate

potential solutions effectively. Effort s should also be made to

include models to simulate the behaviour of the energy net-

works and energy storage solutions which were considered be-

yond the scope of this review but undoubtedly influence solu-

tion feasibility in multi-vector networks. By digitising and up-

scaling energy management to an urban level, developments in

cloud computing technology could be leveraged to provide in-

creased computational resource. 
• User display - Easy to read, Key Performance Indicators (KPI’s)

must be effectively communicated to a facility manager in

a graphical manner. Changes to the baseline scenario made

by the optimisation should be clear alongside automatic fault

detection. Communication through this module must be bi-

directional, allowing a facility manager to provide their inputs

and overrides due to user request. The development of recog-

nised district scale, urban sustainability assessment criteria is

required to provide more instructive feedback. 
• Semantic modelling - The distinct modules that form the dis-

trict energy management platform must be unified through

higher order semantic models of the district. This underpins the

entire platform structure, allowing data interoperability through

common machine interpretable descriptions of district compo-

nents. Furthermore, by exploiting semantic reasoning and in-

ference of rich, contextualised data, automatic fault detection,

adaptation to unforeseen circumstances and semi-automatic 

parameter selection for modelling can be achieved. 

As discussed, the semantic description of the district energy

ystem provides an additional level of robustness to energy man-

gement at an urban scale. A comprehensive and generic descrip-

ion allows future adaptation, scalability, and interoperability. For

xample, future expansion or retrofitting projects could be simu-

ated in the design stage and then easily integrated upon project

ompletion with no requirement for a complete model overhaul.

urthermore, due to the semantic basis of this energy manage-

ent platform, the information could be mapped to provide inputs

o wider regional scale modelling platforms through a higher level

emantic model that encompasses factors such as transportation or

ider energy policy planning. 

Application of advanced deep learning techniques has not yet

ecome commonplace within the building energy domain. How-

ver, the inclusion of an extensive store of semantically enriched

istorical data could also allow the exploitation of newer AI tech-

iques such as deep learning, automatic feature extraction and un-

upervised learning. This could potentially improve the prediction

ccuracy of many of the models detailed in this paper. Further-

ore, these models could adapt to changes in system configura-

ion providing they are continually re-training based on the most

ecent available data. Feature extraction techniques and unsuper-

ised learning have the potential to determine the optimal input

ariables to a machine learning model without relying on the prior

nowledge of facility managers. 

A further, vital future research direction is the requirement for

n optimisation methodology that leverages flexibility in build-

ng demand in addition to the flexibility provided in the supply-

ide by a multi-vector energy system. This can be achieved in

everal different ways that will likely depend on the configura-

ion of the selected district, the number of different stakehold-

rs and the building mix (residential or publicly owned). In the
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Fig. 5. Vision of a future district energy management platform. 
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case of a district of publicly owned buildings or a district entirely

owned by one stakeholder, a centralised optimisation could be

most suitable. Such an architecture would directly include build-

ing set points as decision variables in the district level optimisa-

tion. However, if there is a mixed ownership district including res-

idential buildings, stakeholders are unlikely to acquiesce to cen-

tralised management. In this scenario, the authors envisage an

internal, market-based system in which the district optimisation

would produce a predicted demand profile over a given time pe-

riod. It could then make financial offers to consumers to reduce or

increase their demand at specified periods resulting in a reduced

total district energy cost. To automate this procedure, a smart me-

ter agent would act on behalf of a consumer depending on their

specifications. 

Several optimisation techniques applied to district energy sys-

tems have been applied in the literature, the most common of

which is mixed integer linear programming, MILP [154–156] . How-

ever, it is envisaged that any optimisation approach would have

to be conducted in a model predictive control, MPC, sliding win-

dow fashion. This would mean optimising for a set time horizon,

e.g. 24 h, but only implementing the first timestep of the optimal

solution e.g. 15 min. This would allow the optimisation to adapt

and react to changes in the forecast of uncontrollable variables

such as renewable generation or consumer demand. Furthermore,

stochastic optimisation approaches [157,158] , which explicitly con-

sider uncertainties in predictions, are gaining popularity in district

energy management problems. A detailed review of optimisation

techniques (e.g. genetic algorithms, ant colony optimisation, par-

ticle swarm optimisation, etc.) applied to HVAC systems can be

found in [159] . 
. Conclusion 

This paper has aimed to provide a wide-ranging review of state

f the art techniques for modelling multi-vector district energy

ystems. The key criterion of the review was modelling techniques

or operational optimisation, meaning a sub-hourly time resolu-

ion requiring short computational times and simplified models.

herefore, throughout this paper, newer machine learning meth-

ds, largely neglected in previous reviews, have contributed a size-

ble proportion of the paper. The conversion technologies consid-

red in this review are CHP, boilers, solar PV, solar thermal, wind

urbines, Power-to-Gas, and heat pumps. Of these technologies,

ost are well covered within the literature. However, wind speed

nd power prediction remain challenging, and Power-to-Gas mod-

lling has yet to be explored by researchers due to its relative in-

ancy. 

Building modelling has also been included in this review as the

uthors felt that inclusion of demand-side modelling is essential

o any district energy optimisation. The three broad categories are

hysics based white box models, data or machine learning based

lack box models and in between hybrid grey box models. This re-

iew agrees with previous studies that white box modelling tech-

iques are too complex, and computationally time-consuming for

se in real-time optimisation. However, both grey box and black

ox models have proven effective in modelling building energy de-

and and indoor thermal conditions. 

Finally, this article has outlined the future research directions

y illustrating the ideal potential district energy management plat-

orm. This requires several distinct modules; including data record-

ng from BMS, a prediction module based on historical recorded
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ata or otherwise, an optimisation module to take advantage of

he district energy predictions and generate set points for control-

able supply, and a well-developed user-interface to illustrate to

he facility manager the impact of the optimisation and the overall

erformance of the district. These modules will be supported by a

igher order semantic model describing the district energy system

o ensure interoperability and communication between manage-

ent modules. Work to achieve this vision of a future district en-

rgy management platform is ongoing through the authors’ work

s part of the PENTAGON project and through the development

f an integrated, semantic, computational urban sustainability

latform. 
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