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ABSTRACT

Carbon monoxide plays an important role in interstellar molecular clouds, both as a coolant, and as a diagnostic molecule. However,
a proper evaluation of the cooling rate due to CO requires a determination of the populations of many levels, the spontaneous and
stimulated radiative de-excitation rates between these levels, and the transfer of the emitted multi-line radiation; additionally, this must
be done for three isotopologues. It would be useful to have a simple analytic formulation that avoided these complications and the
associated computational overhead; this could then be used in situations where CO plays an important role as a coolant, but the details
of this role are not the main concern. We derive such a formulation here, by first considering the two asymptotic forms that obtain in the
limits of (a) low volume-density and optical depth, and (b) high volume-density and optical depth. These forms are then combined in
such a way as to fit the detailed numerical results from Goldsmith & Langer (1978, ApJ, 222, 881; hereafter GL78). The GL78 results
cover low temperatures, and a range of physical conditions where the interplay of thermal and sub-thermal excitation, optical-depth
effects, and the contributions from rare isotopologues, are all important. The fit is obtained using the Metropolis-Hastings method,
and reproduces the results of GL78 well. It is a purely local and analytic function of state — specifically a function of the density, ρ,
isothermal sound speed, a, CO abundance, XCO , and velocity divergence, ∇ · υ. As an illustration of its use, we consider the cooling
layer following a slow steady non-magnetic planar J-shock. We show that, in this idealised configuration, if the post-shock cooling is
dominated by CO and its isotopologues, the thickness of the post-shock cooling layer is very small and approximately independent of
the pre-shock velocity, υo, or pre-shock isothermal sound speed, ao.

Key words. hydrodynamics – molecular processes – radiation mechanisms: thermal – shock waves – ISM: clouds

1. Introduction

Carbon monoxide, CO, is a critical molecule in the physics of
molecular clouds and star formation. First, it is believed to be
the next most abundant molecule in the Universe after molecular
hydrogen, H2. Second, as compared with H2, it has a rela-
tively high moment of inertia, and a permanent dipole moment,
so it emits readily at the low temperatures found in molecular
clouds, whereas H2 does not; therefore CO and its isotopologues
are often used to trace the structure and dynamics of molec-
ular clouds (e.g. Roman-Duval et al. 2016). Third, because it
emits readily, it plays an important role in the thermal bal-
ance of molecular clouds, helping to maintain their pervasive
low temperatures. However, the physics underlying the forma-
tion/destruction of CO, and the net line emission from CO, is
complicated.

The pathways to CO formation are very diverse and uncer-
tain; they depend on the formation of several other species,
on reaction rates that are only known approximately, and on
the agency of cosmic rays to produce molecular ions. Like-
wise, the destruction of CO is difficult to model, largely because
it involves line radiation; as a consequence, evaluating self-
shielding is difficult, and is made more difficult because self-
shielding has to compete with some lines also being blocked
by H2, with dust attenuation, and, at high densities, with CO
freeze-out. A variety of schemes has been proposed to estimate
the abundance of CO without considering all these details (e.g.
Nelson & Langer 1997, 1999), and indeed these approximate
schemes are the ones used in many interstellar chemistry codes
(e.g. Glover & Clark 2012a). In the Solar vicinity, it seems that

gas-phase CO is usually the dominant form of carbon at volume
densities in the range 3 × 102 H2 cm−3 <∼ nH2

<∼ 3 × 105 H2 cm−3

and column-densities NH2
>∼ 1021 cm−2. At lower volume- and

column-densities, CO gives way to atomic and ionic carbon (Co

and C+), due to the slow rate of the two-body reactions lead-
ing to CO formation, and the strong ultraviolet irradiation which
rapidly destroys CO. At higher volume-densities, CO appears to
freeze out onto dust; parenthetically, CO’s role as a coolant also
becomes less important at these higher densities, because the
gas starts to couple thermally to the dust, and hence to cool by
continuum emission from dust.

Line emission from CO is complicated by the fact that, in
the range of volume- and column-density where CO tends to
be abundant, transfer of population between the different levels
on the rotational ladder of CO involves a balance between colli-
sional and radiative excitation and de-excitation, and the details
of this balance shift with changing volume-density, column-
density, temperature and velocity dispersion. CO line emission is
seldom in either of the asymptotic limits of very low volume- and
column-density (hence low line-centre optical depth), or very
high volume- and column-density (hence high line-centre opti-
cal depth), where its collective line emission can be described by
simple algebraic equations (e.g. Goldreich & Kwan 1974).

Here we derive an approximate analytic formulation for the
net cooling rate from CO and its isotopologues. The formula-
tion is simple in the sense that it is a purely local function of
state, depending only on four parameters: (i) the mass-density,
ρ, or equivalently the volume-density of molecular hydrogen,
nH2

; (ii) the isothermal sound speed, a, or equivalently the
gas-kinetic temperature, T ; (iii) the relative abundance of CO,
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XCO ≡ nCO/nH2
; and (iv) the velocity divergence, ∇·υ. The formu-

lation is obtained by first deriving the simple algebraic equations
that describe the dependence of the CO cooling rate on den-
sity, temperature, CO abundance and velocity divergence, in the
asymptotic limit of low volume-density and optical depth, and in
the asymptotic limit of high volume-density and optical depth;
hereafter we refer to these equations as the asymptotic forms.
Their derivation is based on fundamental physical arguments,
and forms the subject of Sect. 2. Then, in Sect. 3 the coeffi-
cients in front of the asymptotic forms, and the variation between
them, are fit by reproducing the detailed results of GL78, using
an ad hoc mathematical function. In Sect. 4 we illustrate the
application of the approximate analytic formulation by using it
to evaluate the thickness of the post-shock cooling layer behind a
low-velocity steady J-shock in a non-magnetic molecular cloud.
In Sect. 5 we summarise our conclusions.

For mathematical convenience, we use the mass-density, ρ
and the isothermal sound speed, a= (kB T/m̄)1/2 (in place of the
number-density of molecular hydrogen, nH2

, and the gas-kinetic
temperature T ) in much of the analysis. Here kB is Boltzmann’s
constant and m̄ is the mean gas-particle mass. For the pur-
pose of illustration, we use a reference temperature To = 10 K
and a mean gas-particle mass m̄ = 3.97 × 10−24 g (appropriate
for molecular gas with elemental composition X = 0.70, Y =
0.28, Z = 0.02);1 hence the reference isothermal sound speed
is ao = 0.187 km s−1. On the assumption that virtually all the
hydrogen is in the form of H2, we also define the mean mass
per hydrogen molecule, m̄H2

= ρ/nH2
=4.77 × 10−24 g, and hence

ρ = nH2
m̄H2

.

2. The CO cooling rate: asymptotic theory

In this section we derive, using basic physical arguments, the
dependence of the CO line cooling rate on the density, on the
isothermal sound speed (or equivalently the temperature), on
the gas-phase CO abundance, and on the local velocity diver-
gence. We treat the two asymptotic limits of (i) very low
volume-density and optical depth (hereafter the “LO” limit), and
(ii) very high volume-density and optical depth (hereafter the
“HI” limit). We do not derive the absolute physical value of the
cooling rate in these limits, but only the dependence on den-
sity, isothermal sound speed, abundance and velocity divergence.
The coefficients converting these dependences into actual phys-
ical values are obtained in the following section (Sect. 3) by
comparing the theoretical predictions with the detailed results
of GL78.

2.1. CO cooling in the LO limit

For a linear molecule with moment of inertia IMOL , the rotational
levels are characterised by quantum number J, and have energy
EJ = J(J + 1)~2/2IMOL ; therefore, if the gas-kinetic temperature
is T , they are significantly excited up to

JMAX ' fEX

(2IMOL kB T )1/2

~
, (1)

where fEX is a factor greater than, but of order, unity. Radiative
de-excitations from level J to level J−1 release photons with

1 In accordance with standard practice, X, Y, Z are here the abun-
dances by mass of hydrogen, helium and other elements (the ‘heavies’),
whereas XCO ≡nCO/nH2

is the abundance of CO relative to H2 by number.
For simplicity, we assume that all the hydrogen is molecular.

energy ∆EJ = J~2/IMOL . Therefore the mean energy of emitted
photons is

∆E '

J=JMAX∫
J=0

∆EJ (2J + 1) dJ


J=JMAX∫
J=0

(2J + 1) dJ


−1

' fEX ~

(
8kB T
9IMOL

)1/2

. (2)

Here, we have replaced a sum over levels with an integral. This is
reasonable for higher temperatures, T >∼ 20 K, but may introduce
a small systematic error at lower temperatures where only a few
levels are involved.

At sufficiently low volume-density, i.e. well below the crit-
ical density, the level populations are not thermalised. Most
molecules sit in their ground state, and most collisional exci-
tations are followed by radiative de-excitations. For example,
at T ∼ 10 K, the first rotationally excited level of CO, J = 1,
has a critical density of order 103 H2 cm−3; for higher-J levels,
higher temperatures and densities are required before they are
thermalised. At sufficiently low optical depth (i.e. sufficiently
low column-density and/or high velocity divergence), the lines
are optically thin, so most of the emitted photons escape directly;
consequently the thermal kinetic energy that caused the ini-
tial excitation is lost, and the gas is cooled. For example, at
T ∼ 10 K and with purely thermal velocity dispersion, i.e. no
turbulence and no velocity gradient, the first rotational transition
of CO (J = 1→ 0) becomes optically thick for column-densities
NH2

>∼ 1019 H2 cm−2; this limit is increased if there is turbulence
and/or a velocity gradient delivering extra velocity dispersion.
The rate of collisional excitation per unit volume depends on the
product of the number-densities of the molecule and the exciting
collider (here presumed to be H2, see below) and their relative
speed, so it is approximately proportional to nMOL nH2

T 1/2. The
number of lines that are excited is approximately proportional to
T 1/2 (see Eq. (1)). And the mean energy of the emitted photons
is approximately proportional to T 1/2 (see Eq. (2)). Therefore,
in the limit of very low volume-density and optical depth, the
cooling rate per unit volume can be approximated by

ΛMOL.LO ∝ nMOL nH2
T 3/2 ∝ XMOL ρ

2a3. (3)

In treating cooling by CO, we presume that H2 is the dominant
agent of collisional excitation, since, in regions where there is
CO, H2 is likely to be by far the most abundant species; GL78
make the same assumption.

On the basis of Eq. (3), we posit that, in the LO limit, the
cooling rate due to CO is given by

ΛCO.LO ' λCO.LO XCO ρ
2a3. (4)

The coefficient λCO.LO will be estimated in Sect. 3, but the above
dependence of ΛCO.LO on XCO , ρ and a is now fixed.

2.2. CO cooling in the HI limit

At sufficiently high volume-density, i.e. well above the critical
density, the level populations are approximately thermalised, and
radiative de-excitations account for only a small fraction of de-
excitations. At sufficiently high optical depth (i.e. sufficiently
high column-density and/or low velocity divergence), the inten-
sity in the emission line cores is approximately equal to the
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Planck function, and the net frequency width of all the excited
lines is

∆νNET =

J=JMAX∫
J=0

∆EJ

h
fLW∆υ

c
dJ ' f 2

EX

kB T
h

fLW∆υ

c
. (5)

Here ∆υ is the velocity spread along the line of sight and fLW

is the factor by which the effective width of an optically thick
line with central frequency νo differs from2 νo∆υ/c. The effec-
tive width of the Planck spectrum is ∆νBB = fBB kB T/h where
fBB = 14.4, and so the total cooling rate per unit volume in this
limit can be approximated by

ΛMOL.HI '
6σSB T 4

D
∆νNET

∆νBB

'
6σSB T 4

c
∆υ

D
f 2

EX
fLW

fBB

(6)

∝ a8 |∇ · υ|. (7)

In deriving Eq. (6), we have adopted the most generic geometry
we could imagine, viz. a spherical cloud of diameter D expand-
ing or collapsing homologously, so that ∆υ/D ≡ |∇ · υ|/3; GL78
adopt the same configuration. However, in obtaining Eq. (7), this
choice becomes immaterial, since we only retain the dependence
on a and ∇ · υ. The effect of geometry is encapsulated entirely
in the ∇ · υ term, which measures how far, in different directions
on the sky, line-photons have to travel before the Doppler-shift
has separated their frequency from the frequencies that can be
absorbed by the molecules they are passing.

In effect we are adopting the large velocity gradient (LVG)
approximation to treat optically thick cooling radiation. The LVG
approximation was introduced by Sobolev (1960), and developed
further by Castor (1970) and Lucy (1971), in the context of stellar
outflows, but it can also be applied to the cooling of molecular
clouds (e.g. Goldreich & Kwan 1974). Basically it assumes that
line radiation only experiences self-absorption in a local region
whose linear size is of order σ |∇ · υ|−1, where σ is the local
velocity dispersion (thermal plus turbulent) and υ is the local
bulk velocity. Any material outside this region is moving at a
sufficiently different velocity (bulk plus or minus the dispersion)
from the emitting region that it cannot absorb its line radiation.
Strictly, the LVG approximation requires that the large-scale spa-
tial variation of the bulk velocity is monotonic along any line of
sight.

On the basis of Eq. (7), we posit that, in the HI limit, the CO
cooling rate is given by

ΛCO.HI ' λCO.HI a8 |∇ · υ| ; (8)

the coefficient λCO.HI will be estimated in Sect. 3, but the above
dependence of ΛCO.HI on a and |∇ · υ| is now fixed — and ΛCO.HI is
independent of ρ and XCO .

2 If the equivalent width of an optically thick emission line falls on
the flat portion of the curve of growth, this factor is approximately con-
stant, and that is what we assume here. If the equivalent width falls
on the square-root portion of the curve of growth, fLW depends on
the column-density (as N1/2

MOL
). However, this requires extremely large

column-densities. By the time such high column-densities are reached,
molecules like CO are likely to have frozen out — and, even if they have
not, the density is so high that molecular-line cooling has given way to
dust cooling.

We note parenthetically that the only parameters in Eq. (6)
that depend on the specific molecule are fEX and fLW , and that this
dependence is in general rather weak, so Eq. (6) is approximately
valid for many other linear molecules in this high volume-
density, high optical depth limit. Thus, for example, the results
presented by GL78 for cooling by O2 are very similar to those
for CO (at the same density and temperature).

2.3. In between the LO and HI limits

In the next section (Sect. 3) we show how Eqs. (4) and (8) can be
combined to obtain an approximate analytic formulation for the
total CO cooling rate in the intermediate regime (between the LO
and HI limits) using

ΛCO.TOT =
{
Λ−1/β

CO.LO
+ Λ−1/β

CO.HI

}−β
, (9)

with β = β(ρ, a).

3. The CO cooling rate: calibration

In the preceding section (Sect. 2) we have obtained expressions
for the CO cooling rate (in the LO and HI limits) in terms of the
mass-density, ρ, the isothermal sound speed, a, the abundance
of CO, XCO , and the velocity divergence, ∇ · υ. This is because
these are the most convenient variables to use when treating the
equations of hydrodynamics. Here, we replace ρ with the density
of molecular hydrogen nH2

, and a with the temperature, T , since
these are the variables used by GL78. It is straightforward to
switch between the two, using nH2

= ρ/m̄H2
and T = m̄a2/kB .

3.1. The detailed results of Goldsmith & Langer (1978)

GL78 consider a uniform-density spherical cloud with a lin-
ear radial velocity field, and determine the net cooling rate,
ΛCO.TOT , from CO and its isotopologues. To do this, they solve
in detail (i) the equations of statistical equilibrium, to deter-
mine CO level populations; then (ii) the equations of radiative
emission (spontaneous and stimulated), to determine the net CO
emissivity; finally (iii) they use an escape probability in lieu
of solving the equation of radiative transfer. In their Fig. 2,
which is the input we use to calibrate our approximate ana-
lytic formulation, they plot the quantity log

10
{ΛCO.TOT/nCO } against

log
10
{nH2

/cm−3}, for different values of T and different val-

ues of3 log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}
, specifically T =

10, 20, 40, and 60 K and log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}

=

−8, −7, −6, −5, and − 4. We note that ΛCO.TOT/nCO is the cool-
ing rate per CO molecule. It depends on XCO/|∇ · υ|, because
– all other things being equal – the optical depth increases
with increasing XCO and decreases with increasing |∇ · υ|. In
the LO limit, where the emission is optically thin, ΛCO.TOT/nCO is
independent of XCO/|∇ · υ|.

Given the complexity of the physics underlying the net CO
cooling rate, and the consequent computational cost of calculat-
ing it properly, it would be useful to have an approximate analytic
formulation that captured the dependence on local variables
but avoided the associated computational cost. This formulation
could then be used in situations where CO cooling played an

3 The factor of 3 here, and in subsequent expressions, derives from
the fact that we have replaced Goldsmith and Langer’s dυ/dr with
∇ · υ = 3 dυ/dr.

A20, page 3 of 8



A&A 611, A20 (2018)

Fig. 1. Continuous curves give the total CO cooling rate, as pre-
dicted by the approximate analytic formulation derived here (Eqs. (15)
through (18)). The different panels correspond to (a) T = 10 K; (b)
T = 20 K; (c) T = 40 K; and (d) T = 60 K (these temperatures are
given in the top lefthand corner of each panel). The different curves
represent different values of log

10

{
XCO (|∇ · υ|/3 km s−1 pc−1)−1

}
=

−8, −7, −6, −5, and − 4 (these values are given down the righthand
margin of each panel). The rates obtained by the detailed computations
of GL78 are given at discrete values of the density, log

10

{
nH2

/cm−3
}

=

1, 2, 3, 4, 5, 6, and 7; plus signs, stars, open circles, crosses and open
squares correspond respectively to log

10

{
XCO (|∇ · υ|/3 km s−1 pc−1)−1

}
=

−8, −7, −6, −5, and − 4.

important role, but was not the principal interest, as for exam-
ple, contracting pre-stellar cores, or the accretion shock at the
boundary of an assembling filament.

3.2. The fitting procedure

To fit the GL78 results analytically, we have read from
their plots the values of log

10
{ΛCO.TOT/nCO } for each

treated combination of T , i.e. T = 10, 20, 40, and 60 K,
and log

10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}
, i.e.

log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}

= −8, −7, −6, −5, and −4,

at the densities log
10
{nH2

/cm−3} = 1, 2, 3, 4, 5, 6, and 7, thus
a total of 140 discrete values. We estimate that the uncertainty
which derives from our reading these values of GL78’s Fig. 2 by
eye is <0.03 in log

10
{ΛCO.LO/nCO } i.e. at worst ±7%, and less than

the thickness of the lines in Fig. 1.
We then use a Metropolis-Hastings Markov Chain

Monte Carlo algorithm to find the five fitting parameters
(Λ′

CO.LO
,Λ′

CO.HI
, β′

O
, β′nH2

, β′T ) in the formulation

ΛCO.LO

nCO

= λ′
CO.LO

( nH2

cm−3

) (T
K

)3/2
, (10)

ΛCO.HI

nCO

= λ′
CO.LO

(
XCO km s−1 pc−1

|∇ · υ|

)−1 ( nH2

cm−3

)−1 (T
K

)4
, (11)

β = β′o

( nH2

cm−3

)β′nH2
(T
K

)β′T
, (12)

ΛCO.TOT

nCO

=


(
ΛCO.LO

nCO

)−1/β

+

(
ΛCO.HI

nCO

)−1/β

−β

, (13)

that give the best fit to these discrete values.
We note that the exponents from Eqs. (4) and (8) are not

being allowed to vary, they retain the values derived in Sect. 2.
Because we are here fitting ΛCO.TOT/nCO (rather than ΛCO.TOT ), the
ρ2 term in Eq. (4) has become n1

H2
, and the ρ0 term implicit in

Eq. (8) has become n−1
H2

. The a3 term in Eq. (4) has become T 3/2

and the a8 term in Eq. (4) has become T 4.

3.3. The best fit and its accuracy

The best fit to the results from GL78 is obtained with the
following values for the fitting parameters:

λ′
CO.LO

= 2.16 × 10−27 erg s−1 ,
λ′

CO.HI
= 2.21 × 10−28 erg s−1 ,

β′o = 1.23 ,
β′nH2

= 0.0533 ,
β′T = 0.164 .


(14)

In other words, the best fit is

ΛCO.LO

nCO

=
[
2.16 × 10−27 erg s−1

] ( nH2

cm−3

) (T
K

)3/2
; (15)

ΛCO.HI

nCO

=
[
2.21 × 10−28 erg s−1

]
×

(
XCO km s−1 pc−1

|∇ · υ|

)−1 ( nH2

cm−3

)−1 (T
K

)4
; (16)

β = 1.23
( nH2

cm−3

)0.0533 (T
K

)0.164

; (17)

ΛCO.TOT

nCO

=


(
ΛCO.LO

nCO

)−1/β

+

(
ΛCO.HI

nCO

)−1/β

−β

. (18)

The continuous lines in Fig. 1 show the predictions of Eqs.
(15) through (18) for T = 10, 20, 40, and 60 K (respectively

panels a, b, c, d), and log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}

=

−8, −7, −6, −5, and − 4 (separate lines labelled on the right-
hand margin of each panel). Like GL78 we limit the plots to
densities in the range 1 ≤ log

10
{nH2

/cm−3} ≤ 7. The continu-
ous curves should be compared with the discrete symbols, which
give the values that we have read from Fig. 2 of GL78 and that
we used in the Metropolis-Hastings fitting procedure.

In general, the agreement is good, with the magni-
tude of the fractional offset being everywhere <0.18 in
log

10
{ΛCO.LO/nCO }

(
i.e., at worst, +52%

−34%

)
, and on average <∼0.07 in

log
10
{ΛCO.LO/nCO }

(
i.e., typically, +18%

−15%

)
. The fractional offset is

worst in the intermediate regime. This is as expected, since the
analytic forms that obtain in the asymptotic limits (LO and HI)
are physically motivated, and therefore in some sense absolute.
In contrast, the intermediate regime between these limits is being
fit with an algebraic expression that has no physical motivation
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beyond the fact that it relaxes to the asymptotic forms in the cor-
responding limits; it is therefore unable to produce an exact fit.
The error in reading the discrete values of GL78’s Fig. 1 by eye
(±3%) is much smaller than the fractional offsets cited above,
and can therefore be ignored.

There are some additional uncertainties that should be noted.
First, GL78 used the coefficients for collisional de-excitation
of CO by H2 computed by Green & Thaddeus (1976). More
recent computations by Yang et al. (2010) have increased these
coefficients somewhat, at the lowest temperatures, T <∼ 20 K.
Therefore the GL78 cooling rates, and our approximate ana-
lytic formulation based on them, may be a little low at these
low temperatures. Second, the device of replacing with integrals,
summations over the discrete contributions from individual lev-
els, will be most inaccurate at low temperatures where only a few
levels are involved.

We note that the rarer isotopologues of CO make little contri-
bution to the cooling in the LO limit, but do contribute once the
12C16O lines start to become optically thick, because the rarer
isotopologues remain optically thin to much higher column-
densities. They also make an important contribution in the HI
limit, by providing extra bandwidth at high column-densities;
in fact, in the HI limit, each isotopologue makes essentially the
same contribution to the net cooling rate.

3.4. Use and range of applicability of the approximate
analytic formulation

Given this level of accuracy, the approximate analytic formu-
lation (i.e. Eqs. (15) through (18)) provides a convenient and
computationally very inexpensive way to estimate the net CO
cooling rate: convenient because it is a local function of state,
and computationally inexpensive because it entails only a small
number of arithmetic operations. It can therefore be used to
greatly speed up numerical and/or analytic integrations of the
energy equation in hydrodynamic or hydrostatic simulations,
provided only that the conditions are within the range explored
by GL78.

The numerical results of GL78 cover the density
range 10 cm−3 ≤ nH2

<∼ 107 cm−3, the temperature range
10 K ≤ T ≤ 60 K, and the abundance/velocity-divergence range

−8 <∼ log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}
<∼ −4, and therefore

this is the range over which our approximate analytic for-
mulation is most secure. Given the regularity of the curves
in GL78, and their apparent self-similarity, it may be safe
to extrapolate further. It is unlikely that gas-phase CO is
the dominant form of CO outside the density range defined
above, so we only consider extrapolation of the temperature
and abundance/velocity-divergence ranges. Specifically, we
presume that the approximate analytic formulation can be
extended to somewhat higher temperatures, T ∼ 100 K, and
somewhat lower abundances or higher velocity divergences,

log
10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}
∼ − 9.

4. Slow steady planar J-shocks in non-magnetic
molecular clouds

As a simple example of the application of our approximate ana-
lytic formulation, we consider the role of CO in post-shock
cooling layers in molecular clouds. There are many other possi-
ble applications, for example the role of CO cooling in collapsing
and fragmenting pre-stellar cores, and the thermodynamics of

the accretion shock bounding a growing filament. We plan to
investigate these in future papers.

Molecular clouds are observed to be highly turbulent, and
supersonic velocity dispersions are the norm on scales >∼0.1 pc
(Larson 1981; Solomon et al. 1987; Goodman et al. 1998; Caselli
et al. 2002; Heyer & Brunt 2004). Shocks are therefore endemic
in molecular clouds, and a critical issue is then how quickly the
post-shock gas cools back to something like its pre-shock value.
In particular, if post-shock cooling is very quick, shocks can for
many purposes be treated as isothermal discontinuities, and this
may greatly simplify analysis of the dynamics on larger scales.

In the interests of simplicity, we focus on slow, steady, pla-
nar J-shocks (e.g. Brand 1989; Flower et al. 2003). We note
(i) that, if the shock velocity is high, υo >∼ 15 km s−1, the asso-
ciated kinetic energy, and resulting post-shock thermal energy,
may be sufficient to drive significant chemical changes; (ii) that
these chemical changes may influence the dynamical coupling
between the gas, the dust and the magnetic field; and (iii) that the
cooling radiation from the hot gas immediately behind the shock
may have important effects on the chemistry and thermal state of
the gas flowing into the shock, as will the ambient radiation field.
However, these three considerations are probably not important
for the low-velocity shocks, υo <∼ 1.5 km s−1, considered here.

4.1. The hydrodynamics of a J-shock plus cooling layer

We consider a slow steady planar J-shock at x = 0, with gas flow-
ing in from x < 0, having density ρ(x<0)=ρo, velocity parallel to
the x axis υ(x<0) = υo, and isothermal sound speed a(x<0) = ao.
There is no magnetic field, so we are ignoring the possibility that
the shock is cushioned by a lateral magnetic field; in that case,
the shock would be a C-shock, and the immediate post-shock
temperature would be somewhat lower, but, as shown by Pon
et al. (2012), the cooling would still very likely be dominated by
CO. We are also ignoring the possibility that the pre-shock gas is
significantly heated by the radiation from the post-shock cooling
layer; this is a reasonable assumption, since gas in the post-shock
cooling layer is necessarily at a very different velocity to the gas
flowing into the shock, and therefore the CO cooling radiation
cannot be absorbed by the inflowing gas.

We assume that the gas flowing through the shock is and
remains molecular, with constant adiabatic exponent γ = 5/3.
This is strictly only true in low-temperature regions, T <∼ 100 K,
where the rotational degrees of freedom of molecular hydrogen
are not significantly excited (Whitworth & Clarke 1997; Boley
et al. 2007). This requirement is naturally met, since the GL78
results (and hence our approximate analytic formulation) are lim-
ited to temperatures T <∼ 60 K. If the pre-shock temperature is
∼10 K, this means we must restrict our model to shocks with
υo <∼ 1.0 km s−1. If we extrapolate the approximate analytic for-
mulation to T <∼ 100 K, we can treat shocks with υo <∼ 1.5 km s−1.

The gas emerging from the shock has density, ρs, velocity, υs,
and isothermal sound speed, as, given by the Rankine–Hugoniot
conditions:

ρs =
8υ2

oρo

(2υ2
o + 10a2

o)
' 4ρo ; (19)

υs =
(2υ2

o + 10a2
o)υo

8υ2
o

'
υo

4
; (20)

a2
s =

(2υ2
o + 10a2

o)(6υ2
o − 2a2

o)
64υ2

o
'

3υ2
o

16
, (21)

where the second expressions apply provided υ2
o � a2

o, and we
recall that here ao is the isothermal sound speed.
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In the post-shock region (x > 0), conservation of mass
requires constant ρ(x)υ(x), hence

ρ(x) =
ρoυo

υ(x)
; (22)

conservation of momentum requires constant
ρ(x)

(
υ2(x) + a2(x)

)
, hence

a2(x) =

(
υo +

a2
o

υo

)
υ(x) − υ2(x) ; (23)

and conservation of energy requires

d
dx

{
ρ(x)υ(x)

(
υ2(x)

2
+
γa2(x)
(γ − 1)

)}
=

ρoυo

{
5
2

(
υo +

a2
o

υo

)
− 4υ(x)

}
dυ
dx

= −Λ

(
ρ, a,

∣∣∣∣∣dυdx

∣∣∣∣∣) , (24)

where Λ(ρ, a, |dυ/dx|) is the cooling rate per unit volume, and in
planar geometry ∇ · υ→ dυ/dx.

Since, in the post-shock cooling layer, υ(x) <∼ υo/4, Eqs. (23)
and (24) approximate to

a2(x) ' υoυ(x), (25)

5ρoυ
2
o

2
dυ
dx
' −Λ

(
ρ, a,−

dυ
dx

)
, (26)

where we have substituted |dυ/dx| = −dυ/ddx, since the gas
here is decelerating.

4.2. The thermodynamics of a J-shock plus cooling layer

We assume that the abundance of CO is fixed at XCO =3 × 10−4.
In other words, we assume that essentially all the carbon is in
CO, that the abundance of C is 1.5 × 10−4 (cf. Sembach et al.
2000), and that CO is not destroyed in the shock, nor has it had
time to freeze out significantly (e.g. Goldsmith 2001).

Substituting from Eq. (9) into Eq. (26), we obtain

dυ
dx
' −

2ΛCO.LO XCOρ
2a3

5ρoυ
2
o

1 −
(
2ΛCO.HI a

8

5ρoυ
2
o

)−1/β 
β

' −
2ΛCO.LO XCOρoυ

3/2
o

5υ1/2

1 −
(
2ΛCO.HIυ

2
oυ

4

5ρo

)−1/β 
β

; (27)

the second expression is obtained by substituting for ρ and a from
Eqs. (22) and (25).

In Eq. (27), the leading term (outside the braces) represents
deceleration due to cooling in the low-density optically thin
regime. The term in braces represents the correction due to the
cooling trending towards the high-density optically thick regime,
and this can in principle cause the post-shock cooling to stall.
Since the gas must decelerate to υ=ao (see discussion following
Eq. (29) below), it follows that post-shock cooling will not stall
due to the CO cooling becoming optically thick, provided that

υo �

(
5 ρo

2 ΛCO.HI a4
o

)1/2
� 4 × 10−4 km s−1

( nH2 .O

cm−3

)1/2 (To

K

)−1

, (28)

where nH2 .O
= ρo/m̄H2

is the number-density of molecular hydro-
gen in the pre-shock gas. If this inequality is well satisfied,
we can neglect the term in braces, and this is generally the
case. For example, if the pre-shock density is high, say nH2 .O

=

105 cm−3, and the temperature is low, say To = 10 K, we require
υo � 0.012 km s−1, which is a rather weak constraint on υo.
In most cases of interest, the pre-shock density is lower than
105 cm−3, and the temperature cannot be much below ∼10 K,
in which case the minimum velocity is even lower. Furthermore,
if the pre-shock density is any higher than 105 cm−3, the gas is
probably so well thermally coupled to the dust that molecular
line cooling is redundant (e.g. Glover & Clark 2012b).

4.3. The thickness of the post-shock cooling layer

The thickness of the post-shock cooling layer is

∆xPSC =

υ' ao∫
υ' υo/4

dυ
dυ/dx

. (29)

The lower limit on this integral is the immediate post-shock
velocity, given by Eq. (20). If we were to follow the gas until it
cooled right back down to To = m̄oa2

o/kB , the upper limit on the
integral would be υ= a2

o/υo. However, by this stage the velocity
would be highly subsonic and the LVG approximation would no
longer be valid (in the sense that it would be seriously under-
estimating the cooling rate). Therefore we set the upper limit
to υ = ao; in other words, we follow the deceleration until the
velocity becomes subsonic. We believe this is justified, since the
integral in Eq. (29) is dominated by the lower limit (υ = υo/4).

If we substitute from Eq. (27) in Eq. (29), neglecting the
correction term for optical thickness, we obtain

∆xPSC
<∼

5
24 ΛCO.LO XCO ρo

<∼ 0.1 pc
(

XCO

3×10−4

)−1 ( nH2 .O

cm−3

)−1
. (30)

We have replaced ' with <∼ in Eq. (30) – and also in Eq. (32)
below – because (a) we have neglected the contribution from the
upper limit in the integral of Eq. (29), and this contribution can
be quite large for relatively slow shocks, thereby reducing ∆xPSC

further; (b) for fast shocks there will be a significant additional
cooling contribution from dust (Glover & Clark 2012b), and pos-
sibly also other molecules (Neufeld et al. 1995), due to the high
post-shock density, reducing ∆xPSC still further.

The gas passes through ∆xPSC in a time

∆tPSC =

υ' ao∫
υ' υo/4

dυ
υ dυ/dx

(31)

<∼
5

2ΛCO.LO XCOρoυo

<∼ 1.2 Myr
(

XCO

3×10−4

)−1( nH2 .O

cm−3

)−1( υo

km s−1

)−1
; (32)

and the integrated flux in CO cooling lines from the shock is

FCO
<∼

5ρoυ
3
o

8
(33)

<∼3×10−9 erg cm−2 s−1
( nH2 .O

cm−3

) (
υo

km s−1

)3
. (34)
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4.4. Caveats on shock model

As already stated, gas-phase CO appears to be the dom-
inant form of carbon at volume densities in the range
3 × 102 H2 cm−3 <∼ nH2

<∼ 3 × 105 H2 cm−3, and therefore our
shock model can only be applied to shocks involving pre-shock
gas with density, nH2 .O

, in this range. Many shocks arising in
turbulent molecular clouds will involve gas with density in this
range.

J-shocks in turbulent molecular clouds will only approx-
imate to being steady and planar if the counter-flows that
form them have coherence lengths significantly larger than
the thickness of the post-shock cooling layer, ∆xPSC . If
we adopt coherence lengths from Larson’s relations, i.e.
L∼ 1600 pc (nH2 .O

/cm−3)−0.91 (Larson 1981), this condition is
very well satisfied. For example, if we set XCO = 3 × 10−4, we
have ∆xPSC/L ∼ 6 × 10−5 (nH2

/cm−3)−0.09. This suggests that the
assumption of a steady planar shock is reasonable.

If we assume that the approximate analytic formulation can
be extended to T ∼ 100 K, and that the pre-shock gas has
T ∼ 10 K, then our shock model can only be applied to shocks
with pre-shock velocity υo <∼ 1.5 km s−1, otherwise the immedi-
ate post-shock gas-kinetic temperature (i.e. pre cooling) is too
high. This is a significant, but not critical, restriction, since there
are likely to be many shocks satisfying this constraint.

For example, column-density maps of low-mass cores
(Könyves et al. 2015) and filaments (Palmeirim et al. 2013) have
centrally condensed profiles. However, the column-density con-
trast between the background and the line of sight through the
centre of the core or the spine of the filament is small, typically
<∼10. This indicates that the ram pressure of the gas accreting
onto the core or filament is low, otherwise the profile would
be flat. It also suggests that the background volume-density is
not hugely lower than that inside the core or filament, hence
the Mach number of the approximately isothermal accretion
shock at the boundary of the core or filament must be low,
M <∼ 5, and the pre-shock velocity must also be low, υo <∼
1 km s−1. In addition we note that gravitational acceleration of
the material accreting onto a marginally Jeans-unstable core or
Ostriker-unstable filament can only generate marginally trans-
sonic velocities, so gravitational acceleration does not alter this
conclusion.

To first order, we can approximate

|∇ · υ| ∼
υo

∆xPSC

'
υo

0.1 pc

(
XCO

3×10−4

) ( nH2 .O

cm−3

)
, (35)

using Eq. (30). If again we set XCO = 3 × 10−4, then the limits

on X−1
CO
|∇ ·υ|, i.e. −9 <∼ log

10

{
XCO

(
|∇ · υ|/3 km s−1 pc−1

)−1
}
<∼ −4

yield

2.4 <∼
(

υo

km s−1

) ( nH2 .O

cm−3

)
<∼ 2.4 × 105 . (36)

Since we already have the constraint υo <∼ 1.5 km s−1, this
reduces to nH2 .O

<∼ 1.6 × 105 cm−3, which is only slightly more
restrictive than the upper limit on nH2

derived at the start of this
section.

Our shock model assumes that the carbon in the pre-shock
gas is mainly in CO, and that the CO is not destroyed in the
shock, nor does it freeze out. If this is not the case, cooling
will be provided by other species, for example C+ (see Glover
& Clark 2012a), but the gas will not cool so fast, and will prob-
ably not be able to get down to ∼10 K, unless the post-shock

density becomes high enough for the gas to couple thermally to
the dust.

4.5. Discussion of shock results

The thickness of the post-shock cooling layer, ∆xPSC , and the
post-shock cooling time, ∆tPSC , are both likely to be very small,
as compared with other length- and time-scales in the molec-
ular cloud. With typical pre-shock densities in a molecular
cloud, nH2 .O

>∼ 3 × 102 cm−3, and setting XCO ' 3×10−4, we have
∆xPSC

<∼ 0.0003 pc (≡70 AU) and ∆tPSC
<∼ 4 kyr (υo/km s−1)−1.

These values are similar to the values derived by Pon et al. (2014,
2016), although they treated magnetically cushioned C-shocks,
in which the compression and heating are less abrupt and less
extreme.

One reason why CO is an effective post-shock coolant is that
it has a low dipole moment, and therefore its lines remain opti-
cally thin up to quite high column-densities. A second reason is
that the steady deceleration of the post-shock gas ensures that
there is a broad range of velocities, and hence wavelengths, over
which each line can be emitted, and therefore the lines do not
readily become optically thick.

When treating the dynamics of turbulent interstellar clouds
– for example, their assembly, cloud/cloud collisions, the for-
mation of sheets and filaments and cores – Eqs. (30) and (32)
can be used to assess rather quickly whether it is acceptable
to treat the associated shocks as isothermal discontinuities, or
alternatively, what resolution is needed to resolve the post-shock
cooling layers. That is, provided that the inherent assumptions in
our analysis are valid, viz. steady slow non-magnetic planar J-
shocks, in which CO dominates the cooling and is not destroyed
or removed from the gas-phase (as discussed in Sect. 4.4).

Pon et al. (2012) and Pon et al. (2016) estimate that the vol-
ume fraction of a turbulent molecular cloud that is involved in
shock dissipation (i.e. the fraction that is in post-shock cooling
layers) is fPSC ∼ 0.001. Given the short cooling times estimated
above (Eq. (32)), it follows that a representative fluid element
in such a cloud should be shocked at least once every Myr.
Indeed, Pan & Padoan (2009) identify such shocks as an impor-
tant overall heating mechanism for molecular clouds, although
our estimates indicate that this heating should be very localised
and transient.

5. Conclusions

We have derived a simple approximate analytic formulation for
the cooling rate due to rotational transitions of the CO molecule,

ΛCO.LO '
[
4.63 × 108 cm2 g−1

]
XCO ρ

2a3 ,

ΛCO.HI '
[
4.58 × 10−45 cm−9 g s6

]
a8 |∇ · υ| ,

β ' 0.813
(

ρ
g cm−3

)0.0533 (
a

cm s−1

)0.328
,

ΛCO.TOT '
{
Λ−1/β

CO.LO
+ Λ−1/β

CO.HI

}−β
.


(37)

An equivalent formulation, but giving ΛCO.TOT/nCO in terms of nH2
and T (instead of ρ and a), is given in Eqs. (15) through (18). Our
approximate analytic formulation extends from the low-density
optically thin limit, to the high-density optically thick limit, and
includes the contributions from the different isotopologues of
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CO. It is based on physical considerations, but is calibrated
against the detailed numerical results of GL78, and reproduces
those results well (see Fig. 1). It should be usable for

10 K <∼ T <∼ 100 K,

3 × 102 cm−3 <∼ nH2
<∼ 3 × 105 cm−3,

10 km s−1 pc−1 <∼ |∇ · υ|

(
XCO

3 × 10−4

)−1
<∼ 106 km s−1 pc−1.

Using this formulation, we have derived estimates of the
thickness of post-shock cooling layers, ∆xPSC , and post-shock
cooling times, ∆tPSC , under the assumptions (i) that the shocks
are steady slow non-magnetic planar J-shocks, and (ii) that
CO dominates the cooling, and is not destroyed or removed
from the gas-phase in the shock or the post-shock cooling
layer. With these caveats, and given the constraints on shock
velocity, pre-shockdensity and pre-shock temperature detailed in
Sect. 4.4, our estimates can be used to justify treating shocks
as isothermal discontinuities when the primary concern is
dynamics on larger scales; to evaluate the resolution required
to model a shock; and to estimate the integrated CO flux from
a post-shock cooling region. The values of ∆tPSC suggest that a
typical fluid element in a molecular cloud should be shocked at
least once every Myr.
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