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A B S T R A C T

The negative impacts of climate extremes on socioeconomic sectors in Australia makes understanding their
behaviour under future climate change necessary for regional planning. Providing robust and actionable climate
information at regional scales relies on the downscaling of global climate model data and its translation into
impact-relevant information. The New South Wales/Australian Capital Territory Regional Climate Modelling
(NARCliM) project contains downscaled climate data over all of Australia at a 50 km resolution, with ensembles of
simulations for the recent past (1990–2009), near future (2020–2039) and far future (2060–2079). Here we
calculate and examine sector-relevant indices of climate extremes recommended by the Expert Team on Sector-
specific Climate Indices (ET-SCI). We demonstrate the utility of NARCliM and the ET-SCI indices in under-
standing how future changes in climate extremes could impact aspects of the health and agricultural sectors in
Australia.

Consistent with previous climate projections, our results indicate that increases in heat and drought related
extremes throughout the 21st century will occur. In the far future, maximum day time temperatures are projected
to increase by up to 3.5 �C depending on season and location. The number of heatwaves and the duration of the
most intense heatwaves will increase significantly in the near and far future, with greater increases in the north
than south. All capital cities are projected to experience at least a tripling of heatwave days each year by the far
future, compared to the recent past. Applying published heat-health relationships to projected changes in tem-
perature shows that increases in mortality due to high temperatures for all cities examined would occur if pro-
jected future climates occurred today.

Drought and the number of days above 30 �C are also projected to increase over the major wheat-growing
regions of the country, particularly during spring when sensitivity of wheat to heat stress is greatest. Assuming
no adaptation or acclimatisation, published statistical relationships between drought and national wheat yield
suggest that national yields will have a less than one quarter chance of exceeding the annual historical average
under far future precipitation change (excluding impacts of future temperature change and CO2 fertilization). The
NARCliM data examined here, along with the ET-SCI indices calculated, provide a powerful and publicly available
dataset for regional planning against future changes in climate extremes.
1. Introduction

Australia is exposed to a variety of climates due to its large size and
meridional extent. Northern Australia is dominated by the seasonal
migration of the Inter-tropical Convergence Zone (ITCZ) and the summer
monsoon, leading to a mean annual precipitation of over 1,000mm.
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Central and southern Australia are largely dominated by the subtropical
high pressure belt, which is generally associated with clear skies, large
sensible heat fluxes and is collocated with Australia's deserts. Conversely,
the southern flank of the continent is influenced by wintertime mid-
latitude cyclones, which bring substantial precipitation to southern
portions of the mainland as well as the western half of Tasmania.
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With such a wide range of climates, Australia also experiences a great
diversity of climatic extremes, including heatwaves, floods, droughts and
frosts (Westra et al., 2016). Understanding how extremes may change in
the future is an important aspect of adaptation planning, as changes to
rare but high impact climate events are likely to be a greater challenge to
communities compared to changes in the average climate state. For
example, while mean temperature in Alice Springs (Fig. 1) over the last
half-century has increased from 20.4 to 21.2 �C, over the same period 35
more days each year now experience temperatures exceeding 35 �C. It is
likely this latter fact has more serious implications for this community.
Nonetheless, relatively small changes in the mean state can also cause
climate extremes, such as during drought when persistently lower than
normal (but not necessarily extremely low) precipitation leads to severe
soil moisture shortages. Different extremes are also known to compound
one another, such as the heatwaves that can follow the drying of soils
during drought (Alexander, 2011).

Each ‘extreme’ causes a disruption to the natural and built environ-
ment. The nature of damage and the spatial and temporal footprint dif-
fers between each type of extreme (e.g. from sub-daily extreme
precipitation that occurs locally to multi-year drought that can occur over
a large region). Being exposed to a large number of different extremes,
numerous socioeconomic sectors in Australia are at risk to adverse
changes in their frequency, duration and intensity. For example, the
“Millennium drought” (circa 1997–2010) significantly reduced national
agricultural production and contributed to a reduction in the industry's
GDP contribution from 2.9% to 2.4% (van Dijk et al., 2013). The 2009
Victorian heatwave led to 374 deaths (VGDHS, 2009), more than twice
the number caused by the more highly publicised bushfires that it pre-
ceded (Teague et al., 2010). More generally, high temperatures
throughout the country have been shown to increase morbidity (Bi et al.,
2011) and mortality (Coates et al., 2014), as well as decrease labour
productivity (Zander et al., 2015) and crop yields (Asseng et al., 2011).
Given these diverse impacts there are substantial benefits to be gained
from robust projections of climate extremes as well as the development
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and application of sector-specific climate indices with which to measure
them.

Projections of climate extremes over Australia from global climate
models have all indicated increases in hot extremes and decreases in cold
extremes over the course of the 21st century. Alexander and Arblaster
(2009, 2017) conducted comprehensive reviews of projected changes in
climate extremes over Australia based on the third and fifth phases of the
Coupled Modelling Intercomparison Project (CMIP3 and CMIP5,
respectively; Meehl et al., 2007; Taylor et al., 2011). Based on the highest
emission scenarios in CMIP5 these authors showed significant increases
in all hot extremes for most locations in the future, as well as significant
increases in dry days and significant decreases in annual precipitation
over southwest Western Australia and the central east coast (Alexander
and Arblaster, 2017). Results consistent with these have been found in
other CMIP5 (Sillmann et al., 2013; Cowan et al., 2014) and CMIP3 an-
alyses (Mpelasoka et al., 2008; Perkins and Pitman, 2009; Alexander and
Arblaster, 2009; Kirono et al., 2011). Remarkably, CMIP5 data suggest
that day time temperature extremes that currently occur every 20 years
will occur every 5 or fewer years by the middle of the century (IPCC,
2012).

While General Circulation Models (GCM's) capture many aspects of
large scale climate change well (IPCC, 2013), studies of changes in ex-
tremes and their impact on society require finer spatial resolutions and
sometimes more processes (e.g. convective storms) than are available in
GCMs. Dynamical and statistical downscaling have typically been used to
bridge the resolution gap (Ekstr€om et al., 2015). Existing high resolution
dynamically downscaled projections over south-eastern Australia indi-
cate that by 2020–2039 the frequency of heatwaves will significantly
increase over most areas compared to 1990–2009, and by 2060–2079 the
amplitude of the hottest heatwaves will also significantly increase
(Argüeso et al., 2015). Conversely, mean heatwave temperatures may
decrease in the future in some southeast Australian coastal regions due to
a disproportionate increase in mild versus severe heatwaves (Argüeso et
al., 2015). The same projections suggest that future changes in extreme
Fig. 1. The 50 km resolution model
domain of the NARCliM project; the red
box shows the outline of an inner finer
resolution (10 km) domain. In the in-
terest of estimating indices for conti-
nental Australia, only output from the
50 km resolution domain is used. See
section two for details. Locations refer-
enced in this study also shown.(For
interpretation of the references to
colour in this figure legend, the reader
is referred to the Web version of this
article.)
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precipitation will be significant in far fewer locations compared to
extreme temperature changes, although mean wet-day precipitation in-
tensity will significantly increase over large parts of inland New South
Wales (NSW) and Victoria (Evans et al., 2014a). Statistically downscaled
CMIP5 projections over the NSW wheat belt also suggest an increased
risk of heat-stress for crops and reduced risk of frost damage by the
second half of the 21st century (Wang et al., 2016). In southwest Western
Australia, dynamical downscaling indicates that mean and extreme
daytime temperatures will increase more than night time temperatures,
and that winter time precipitation will decrease (Andrys et al., 2017).
These projections have highlighted substantial risks to Western Austral-
ia's viticulture (Firth et al., 2017).

Previous downscaling studies have been invaluable for providing
projections of climate change over different regions of Australia. How-
ever, their relatively small spatial domains – typically chosen in favour of
higher resolution – have precluded physically consistent projections of
climate extremes across the continent. Here we use climate simulations
from the NSW/Australian Capital Territory (ACT) Regional Climate
Modelling project (NARCliM; Evans et al., 2014b) to examine projections
of climate extremes over the whole of Australia during the 21st century.
The NARCliM project is a joint initiative between the University of New
South Wales and the New South Wales Office of Environment and Her-
itage to produce regional climate projections over NSW and the ACT as
well as over all of Australia. To assess changes in climate extremes we
calculate indices recommended by the Expert Team on Sector-specific
Climate Indices (ET-SCI; Alexander et al. in revision). The ET-SCI is co-
ordinated by the World Meteorological Organisation under the Com-
mission for Climatology with a mandate to develop and promote climate
extremes indices relevant to sectors (such as health, water and agricul-
ture). These indices are calculated from daily values of minimum and
maximum air temperature and precipitation. We note that other
sector-relevant climate variables are not included in the calculation of
these indices, such as humidity, which is important for understanding the
physiological responses to heat stress (Monteith and Unsworth, 2013).
Such exclusions are made because extremes indices frequently rely on
long historical records (needed to account for long-term climate vari-
ability), which do not exist for more complex climate variables (Alex-
ander et al. in revision). The NARCliM climate model data is available via
the New South Wales Office of Environment and Heritage (OEH, 2017)
and the ET-SCI indices calculated here are available upon request from
the authors. For this study, we focus on indices relevant to the health and
agriculture sectors, i.e. heatwaves, droughts and other temperature ex-
tremes, given the present sensitivity of these sectors to climate vari-
ability. Consequently, this paper does not represent a comprehensive
assessment of sector-impacts from changing climate extremes, but is a
demonstration of how the NARCliM data and ET-SCI indices may be used
to improve our understanding of climate change impacts.

The remainder of this paper is organised as follows. In section two we
describe the datasets used, including the NARCliM simulations and the
ET-SCI indices. In section three we present projected changes in our
selected climate extremes and in section four we review these projected
changes in the context of known relationships with health and agricul-
ture. We conclude the paper in section five. The supplementary material
contains a catalogue of maps of future changes in all ET-SCI climate
indices (see section 2.3).

2. Methods

2.1. NARCliM

The NARCliM project consists of regional climate simulations over
two spatial domains, one covering the Australian and New Zealand land
masses at 50 km spatial resolution and another covering NSW and the
ACT at 10 km spatial resolution (Fig. 1; Evans et al., 2014b). These
simulations were conducted with the Weather, Research and Forecasting
model version 3.3 (Shamarock et al., 2008). Numerous studies describe
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various aspects of the 10 km (Evans et al., 2014a, 2016; Argüeso et al.,
2015; Olson et al., 2016; Macadam et al., 2016) and 50 km domains
(Clarke et al., 2016; Fita et al., 2016; Bao et al., 2017), although less work
has been done on the 50 km domain, which is the exclusive focus of this
study as it covers the entire continent. Three time periods were simulated
in NARCliM; the recent past (1990–2009), near-future (2020–2039) and
far-future (2060–2079). Each period consists of an ensemble of 12 sim-
ulations. Each ensemble member differs by its boundary and initial
conditions as well as the physical parameterisations used in WRF. Four
GCMs were used to provide boundary and initial conditions to the WRF
simulations. These were chosen from CMIP3 by first removing un-
equivocally poor performing models over the Australian domain and
then choosing models that spanned the plausible future change in tem-
perature and precipitation found in the full ensemble, and that had the
most independent errors. The GCMs chosen were MIROC3.2, ECHAM5,
CCCM3.1 and the CSIRO-Mk3.0. Using data from these four GCMs, three
different configurations of WRF were run (resulting in ensembles of 12).
The WRF configurations included different combinations of parameter-
isations for the surface layer, planetary boundary layer, cumulus con-
vection, short and long wave radiation and cloud microphysics. For the
future periods, CMIP3 simulations forced by the Special Report on
Emission Scenarios (SRES) A2 scenario were used. Current global CO2
emissions data suggest we are following a trajectory slightly higher than
SRES A2 (Peters et al., 2013), thus the projections presented here as they
relate to temperature extremes may be conservative. For more details on
the NARCliM experiment design see Evans et al. (2014b).

Because model output typically has a bias relative to the observed
climate (given the error inherent in model boundary conditions, model
design and our understanding of the climate system) a ‘bias correction’
was applied to the WRF output prior to calculating the ET-SCI indices
(Evans and Argüeso, 2014). This correction is imposed to make themodel
simulation more similar to observed data in a distributional sense. There
are concerns about this process (e.g. adverse impacts on inter-variable
relationships and spatiotemporal relationships) as discussed by Ehret
et al. (2012). However, for pragmatic reasons it is routinely applied to
climate model output for use in impact work. Different methods for this
correction exist, here it is an adjustment of the cumulative distribution
functions of modelled daily maximum and minimum 2m temperatures
and total precipitation at each grid cell toward the observed cumulative
distribution functions calculated from gridded observations (section 2.2).
While this procedure adjusts modelled values toward observations it does
not affect the sequence of modelled events (e.g. the number of consec-
utive dry or wet days) nor measures of exceedance of relative (i.e.
percentile based) thresholds. Indeed, previous work has shown that this
bias correction leads to significant improvements in indices that rely on
absolute thresholds but not necessarily in indices based on percentiles
(Gross et al., 2017). This bias correction has also been shown to improve
simulated crop yields (Macadam et al., 2016). Bias correction was per-
formed for all time periods using observations for 1990–2009, which
assumes that biases in the future will be the same as in the recent past.

2.2. Observations

Substantial model evaluation has been performed on the output of the
10 km NSW/ACT domain (Evans et al., 2014a, 2016; Argüeso et al.,
2015; Olson et al., 2016; Gross et al., 2017), however, the same has not
been carried out for the 50 km Australian domain used here. In order to
evaluate the WRF simulations we use daily minimum and maximum 2m
temperatures and daily precipitation from the Australian Water Avail-
ability Project (AWAP; Jones et al., 2009), the same dataset used to
perform bias-correction. This dataset is available at a spatial resolution of
5 km and extends back to 1900. For our purpose the AWAP data was
regridded to the WRF grid using inverse-distance weighting and was only
considered from 1990 to 2009, corresponding to the simulations of the
recent past. Given the bias correction applied to the WRF output, the
biases in most of the calculated climate extremes indices are expectedly



Table 1
ET-SCI indices calculated in this study. Those in bold are examined in the main text, remaining are shown in supplementary material. TN¼ daily minimum temperature, TX¼ daily maximum
temperature, TM ¼ mean daily temperature ¼ (TN þ TX)/2, PR ¼ daily precipitation total. *Heatwave aspects can be calculated for three definitions of heatwave: EHF (used in this study),
TX90 and TN90 (See Perkins and Alexander, 2013 for details).

Name Definition Units

FD Number of days when TN< 0 �C days
TNlt2 Number of days when TN < 2 �C days

TNltm2 Number of days when TN<�2 �C days
TNltm20 Number of days when TN<�20 �C days
ID Number of days when TX< 0 �C days
SU Number of days when TX> 25 �C days
TR Number of days when TN> 20 �C days
GSL Annual number of days between the first occurrence of 6 consecutive days with TM> 5 �C and the first occurrence of 6 consecutive days with

TM< 5 �C
days

TXx Warmest daily TX �C

TNn Coldest daily TN �C
WSDI Annual number of days contributing to events where 6 or more consecutive days experience TX> 90th percentile days
WSDId Annual number of days contributing to events where d or more consecutive days experience TX> 90th percentile days
CSDI Annual number of days contributing to events where 6 or more consecutive days experience TN< 10th percentile days
CSDId Annual number of days contributing to events where d or more consecutive days experience TN< 10th percentile days
TXgt50p Percentage of days where TX> 50th percentile %
TX95t Value of 95th percentile of TX �C
TMge5 Number of days when TM>¼ 5 �C days
TMlt5 Number of days when TM< 5 �C days
TMge10 Number of days when TM>¼ 10 �C days
TMlt10 Number of days when TM< 10 �C days
TXge30 Number of days when TX>¼ 30 �C days

TXge35 Number of days when TX>¼ 35 �C days
TXdTNd Annual count of d consecutive days where both TX> 95th percentile and TN> 95th percentile, where 10>¼ d>¼ 2 events
HDDheatn Annual sum of n - TM (where n is a user-defined location-specific base temperature and TM< n) degree-days
CDDcoldn Annual sum of TM - n (where n is a user-defined location-specific base temperature and TM> n) degree-days
GDDgrown Annual sum of TM - n (where n is a user-defined location-specific base temperature and TM> n) degree-days
CDD Maximum number of consecutive dry days (when PR< 1.0mm) days
R20mm Number of days when PR>¼ 20mm days
PRCPTOT Sum of daily PR>¼ 1.0mm mm
R95pTOT 100*r95p/PRCPTOT %
R99pTOT 100*r99p/PRCPTOT %
RXdday Maximum d-day PR total mm
SPI Measure of drought using the Standardised Precipitation Index. See McKee et al. (1993) and the WMO SPI User guide (WMO, 2012) for details. unitless
SPEI Measure of drought using the Standardised Precipitation Evapotranspiration Index. See Vicente-Serrano et al. (2010) for details. unitless
HWN* Heatwave Number: The number of individual heatwaves that occur each summer (Nov – Mar in southern hemisphere and May – Sep in

northern hemisphere). For EHF heatwaves are counted over the entire year. A heatwave is defined as 3 ormore days where either the EHF is
positive, TX > 90th percentile or where TN > 90th percentile, depending on the definition of heatwave chosen*. Percentiles are calculated
from the recent past simulation (1990–2009).

unitless

HWF* Heatwave Frequency: The number of days that contribute to heatwaves identified by HWN. days
HWD* Heatwave Duration: The length of the longest heatwave identified by HWN. days
HWM* Heatwave Magnitude: The mean temperature of all heatwaves identified by HWN. �C (�C2 for

EHF)
HWA* Heatwave Amplitude: The peak daily value in the hottest heatwave (defined as the heatwave with highest HWM). �C (�C2 for

EHF)
CWN Coldwave Number: The number of individual “coldwaves” that occur each year as defined by the Excess Cold Factor (Nairn and Fawcett, 2013). unitless
CWF Coldwave Frequency: The number of days that contribute to coldwaves as identified by CWN. days
CWD Coldwave Duration: The length of the longest coldwave identified by CWN. days
CWM Coldwave Magnitude: The mean temperature of all coldwaves identified by CWN. �C2

CWA Coldwave Amplitude: The minimum daily value in the coldest coldwave (defined as the coldwave with lowest CWM). �C2

TXbdTNbd Annual number of d consecutive days where both TX< 5th percentile and TN< 5th percentile, where 10>¼ d>¼2 events
DTR Mean difference between daily TX and daily TN �C
TNx Warmest daily TN �C
TXn Coldest daily TX �C
TMm Mean daily mean temperature �C
TXm Mean daily maximum temperature �C
TNm Mean daily minimum temperature �C
TX10p Percentage of days when TX< 10th percentile %
TX90p Percentage of days when TX> 90th percentile %
TN10p Percentage of days when TN< 10th percentile %
TN90p Percentage of days when TN> 90th percentile %
CWD Maximum annual number of consecutive wet days (when PR>¼ 1.0mm) days
R10mm Number of days when PR>¼ 10mm days
Rnnmm Number of days when PR>¼ nn days
SDII Annual total PR divided by the number of wet days (when total PR>¼ 1.0mm) mm/day
R95p Annual sum of daily PR> 95th percentile mm
R99p Annual sum of daily PR> 99th percentile mm
Rx1day Maximum 1-day PR total mm
Rx5day Maximum 5-day PR total mm
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Table 2
SPEI/SPI drought categories (WMO, 2012).

SPEI/SPI Drought severity

2.0 and higher Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
�0.99 to 0.99 Near normal
�1.0 to �1.49 Moderately dry
�1.5 to �1.99 Severely dry
�2 and lower Extremely dry
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small, with the exceptions of indices involving counts of wet or dry days,
such as Consecutive Wet Days and Consecutive Dry Days (Supplementary
Fig. 12 and 13). See the supplementary material for a comparison of the
extremes indices analysed in this paper with indices calculated from the
AWAP data.

2.3. Climate extremes indices

Table 1 lists the ET-SCI indices calculated from the NARCliM climate
model ensemble. This was performed with the ClimPACT software
developed under the auspices of the ET-SCI (Alexander et al. in revision).
As previously mentioned, we focus on indices relevant to the health and
agricultural sectors. Specifically, we examine heatwaves defined by the
Excess Heat Factor (EHF), drought defined by the Standardised
Precipitation-Evapotranspiration Index (SPEI), as well as several simple
temperature indices including TXx, TXm, TXge35, TXge30 and TNlt2
(Table 1 for definitions).

Multi-model means of all three time periods are shown in maps while
the inter-model spread for specific locations or regions are shown in box
plots. Maps of all ET-SCI indices are available in the supplementary
material. Where applicable, we calculate seasonal values corresponding
to Summer (DJF: December-January-February), Autumn (MAM: March-
April-May), Winter (JJA: June-July-August) and Spring (SON:
September-October-November). We note that three-month seasons are
not representative of all climatic regimes, such as for tropical Australian
rainfall, but are useful at subtropical and mid-latitudes where the ma-
jority of the population live. For all indices that rely upon a base period
for calculation we use the recent past (i.e. 1990–2009). Details of the
heatwave, drought and other indices used in this study are given below.

There are numerous definitions of heatwaves, many of which are
region or discipline dependant (Perkins and Alexander, 2013). Here we
define heatwaves using the EHF (Nairn and Fawcett, 2013), the index
used for forecasting heatwaves by the Australian Bureau of Meteorology.
The EHF has been shown to more highly correlate with heat-related
deaths than daily mean or maximum temperature alone and thus is a
better indicator of health impacts (PwC, 2011; Nairn and Fawcett, 2013;
Scalley et al., 2015). To assess the various aspects of heatwaves we use
the framework recommended by Perkins and Alexander (2013) which
includes five definition-independent ‘heatwave aspects’ that are
described in Table 1. These are heatwave number (the number of heat-
wave events), heatwave frequency (the number of days contributing to
heatwaves), heatwave duration (the length of the most intense heat-
wave), heatwave magnitude (the mean intensity of all heatwaves) and
the heatwave amplitude (the intensity of the hottest day of the hottest
heatwave). These heatwave aspects are by definition calculated annually.

The EHF combines a comparison of daily temperatures to clima-
tology, with a comparison of daily temperatures to the preceding 30 days
(thus explicitly considering acclimatisation). These two measures are
represented by excess heat indices (EHI) of significance (sig) and accli-
matisation (acc), respectively.

EHIsig ¼ (Ti þ Ti-1 þ Ti-2)/3–T95 (1)

EHIacc ¼ (Ti þ Ti-1 þ Ti-2)/3–(Ti-3 þ … þ Ti-32)/30 (2)

Where Ti represents the mean daily temperature, (TXi þ TNi)/2, of
day i and T95 represents the 95th percentile of all daily mean tempera-
tures over the base period 1990–2009 (Nairn and Fawcett specify
1961–1990 as the base period, however, this is adjusted given the
NARCliM experimental design). The use of mean temperature as opposed
to maximum (i.e. daytime) temperature permits this index to account for
the accumulation of heat that may occur due to high night time tem-
peratures, which can be critical in determining the severity of a heatwave
(e.g. Karl and Knight, 1997). Calculating T95 over all calendar days re-
sults in most heatwave days being identified during summer months, and
while heatwaves can occur at any time of year (Perkins and Alexander,
2013), deaths due to heatwaves in Australia overwhelmingly occur
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during summer (Coates et al., 2014).
The EHF is then a combination of the above two excess heat indices.

EHF¼ EHIsig x max(1,EHIacc) (3)

The EHF has units of �C2. While this unit is more difficult to interpret
than temperature, the quadratic relationship between EHIsig and EHIacc is
consistent with observed relationships between heat events and sectoral
responses (Nairn and Fawcett, 2013). Consistent with Perkins and
Alexander (2013), to identify heatwave events we require that the EHF
be positive for a minimum of three consecutive days.

While the EHF is a more advanced metric for gauging heat-health
impacts, it has only been developed recently and there are few case
studies using it currently (Langlois et al., 2013; Nairn and Fawcett, 2013;
Jegasothy et al., 2017). Conversely, numerous studies have examined the
relationship between health and more simple temperature thresholds.
Specifically, TXm, TXge35 and TXge30 have been used in previous
studies to quantify the relationship between heat and health and thus we
apply these relationships to future projections of the indices (section 4.1).

Wheat is the largest contributor to Australia's agricultural sector
(Hughes et al., 2015) and is vulnerable to temperature extremes and
drought. Temperatures above 30 �C for a single day have been shown to
significantly reduce wheat grain development (Saini and Aspinall, 1982),
while freezing temperatures also damage crops (Marcellos and Single,
1975). Thus we use TXge30 and TNlt2 to quantify the effects of heat
stress and frost damage on crops. The choice of TNlt2 is based on evi-
dence that air temperatures in the canopy can be notably higher than
those at the surface of a crop (Marcellos and Single, 1975; Kala et al.,
2009), thus we measure ‘frost risk days’ as the number of days where
night time temperature is below 2 �C (TNlt2).

Like heatwaves, droughts are complex and lack a unified definition.
Despite this, all definitions highlight a deficit of soil-moisture caused at
least by insufficient precipitation. In this study we use the SPEI to
quantify drought (Vicente-Serrano et al., 2010), which is a modified form
of the Standardised Precipitation Index (SPI; McKee et al., 1993). The SPI
is a popular index due to its simplicity, flexibility and minimal data re-
quirements (only monthly precipitation is required) and is the drought
index recommended by the World Meteorological Organisation (WMO,
2012). The SPI measures drought by comparing standardised accumu-
lations of precipitation each month and for a user-specified number of
preceding months to equivalent calendar months within a base period,
after fitting the latter to a Gamma distribution. The ability to specify the
number of precedingmonths gives the SPI the ability to monitor droughts
over different time scales. For example, hydrological droughts associated
with groundwater and streamflow may occur on time scales of 24–48
months, whereas meteorological droughts may occur after one month of
insufficient precipitation. Despite these benefits, a limitation of the SPI is
that it does not consider the effect of evapotranspiration on the surface
water balance. The SPEI addresses this by explicitly subtracting potential
evapotranspiration from precipitation accumulations and has been
shown to more accurately capture changing drought intensity under
global warming (Vicente-Serrano et al., 2010). Here we use the Har-
greaves method to calculate evapotranspiration (see Supplementary
section 1 for details), consistent with previous work (Herold et al.,
2016). Furthermore, we use the 3-month SPEI, a typical time scale for soil
moisture drought and thus of agricultural relevance. SPEI values are
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calculated monthly and in this instance the SPEI value for month i (e.g.
May) represents a comparison of precipitation minus potential evapo-
transpiration accumulations over months i-2, i-1 and i (e.g. March, April,
May) to the equivalent three month accumulations over a base period (in
this case 1990–2009). Given the SPEI is standardised, positive values
represent wetter-than-average conditions while negative values repre-
sent drier-than-average conditions. See Table 2 for a common interpre-
tation of SPEI severity.
2.4. Significance

To take advantage of the large ensemble size in NARCliM we utilise
the convention of Tebaldi et al. (2011) to identify regions of statistically
significant change when mapping our results. This method considers the
presence of internal climate variability and assesses the degree of
consensus between models on the significance of a change. For each grid
cell, when 50% or more of the model ensemble (of which there are 12
members) show significant change based on a t-test where p¼ .05, and at
least 80% of those models agree on the direction of change, we display
the multi-model mean in colour and with stippling. This indicates a
significant increase or decrease in the corresponding climate index. If at
least 50% of the model ensemble shows significant change but less than
80% of those models agree on the direction of change, we do not show
the multi-model mean but instead colour the grid cell white. This in-
dicates significant model disagreement on the projected change. Lastly, if
less than 50% of the model ensembles show a significant change we show
the multi-model mean in colour with no stippling. This indicates that the
projected multi-model mean change is within the variability of the
simulated present day climate in most models.

3. Projections

3.1. Heatwaves

Fig. 2 shows the five heatwave aspects assessed in this study (by row),
for the recent past (left column) and for changes in the near and far future
(middle and right columns, respectively). In the near future the number
of heatwaves double in the country's north, with three events annually in
the recent past and an additional three to four occurring in the near
future (Fig. 2 first row). In the far future heatwaves triple along the
continent's northern fringe, increasing by six or more compared to the
recent past. In the south increases are smaller, with two heatwaves per
year in the recent past and an increase of one to two in the near future
and three to four in the far future.

Change in heatwave frequency (the number of days contributing to
heatwaves) expectedly follows a similar pattern to changes in heatwave
number (Fig. 2 second row). The number of heatwave days in the north
doubles in the near future, compared to the recent past, and is over six
times higher in many northern regions in the far future. This is attributed
to the smaller temperature variability of the tropics and thus the rela-
tively small increases in temperature needed to exceed the 95th
percentile on which the EHF is based (section 2.3). Changes in heatwave
days are substantially smaller in the south but still increase by a factor of
two to three by the far future.

The most extreme heatwaves in the recent past were approximately
six to nine days long in the central and northern parts of the country, and
three to six days long in the south (Fig. 2 third row). In the near future the
most extreme heatwaves will approximately double in length in the north
and by the far future will be over one month long.

There is some evidence that ocean thermal inertia and the Great
Fig. 2. Multi-model means of fives heatwave aspects (Table 1 for definitions) calc
middle column: near-future change from recent past, right column: far-future chang
frequency (HWF), third row: heatwave duration (HWD), fourth row: heatwave ma
significant change (section 2.4 for method). Values at the top right of each panel
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Dividing Range (along the east coast of Australia, Fig. 1) moderate in-
creases in heatwave frequency and duration along Australia's coasts,
notably reducing changes there compared to those that occur inland
(Fig. 2 second row). Interestingly, for heatwave frequency, number and
duration the northern half of Tasmania responds more strongly to far
future climate change than does the south-eastern fringe of the mainland
(Fig. 2).

Heatwave magnitude does not change significantly over most of the
continent in the future and decreases in some regions in the east (Fig. 2
fourth row). This has been reported by Argüeso et al. (2015) in southeast
Australia and attributed to a disproportionate increase in mild versus
strong heatwaves that consequently lowered mean heatwave intensity.
We note a similar behaviour in the change in coldwave temperatures,
where coldwaves are defined inversely to EHF (Nairn and Fawcett,
2013). On average, coldwaves in many parts of the country get colder
into the far future despite increases in mean temperature, a side-effect of
a reduction in the number of relatively mild coldwaves (Supplementary
Fig. 1). Changes in heatwave number (HWN), frequency (HWF) and
duration (HWD) are larger in the north than south in both future periods,
while heatwave amplitude (HWA) increases more in the south.

A comparison of capital cities (Fig. 1) highlights the difference in
heatwave frequency between the major population centres, for Darwin
particularly, which exhibits an ensemble median of 37 and 135 heatwave
days each year in the near and far future, respectively, up from only 11
days in the recent past (Fig. 3a). Thus, in the far future over four months
of the year will exhibit heatwave conditions in Darwin, almost all of
which will occur during November to March. However, the model
ensemble also exhibits the largest spread for Darwin, from less than 100
heatwave days a year to over 200 days. Melbourne, Adelaide and Hobart
will experience the smallest increases in heatwave days, though by the
far future period this will still constitute an at least tripling compared to
the recent past. In contrast to its large changes in heatwave frequency,
Darwin experiences the smallest increases in heatwave amplitude in the
future, commensurate with its low temperature variability (Fig. 3b).
Cities south of Brisbane exhibit similar changes in heatwave amplitude,
with Adelaide experiencing the largest increase in the far future.
3.2. Daytime temperature extremes

Changes in maximum daytime temperature, TXx, indicate how the
rightmost tail of the probability distribution will change in the future.
Seasonal values of TXx are shown in Fig. 4. Increases in the near future
are significant over most of the continent in all seasons and by the far
future are significant over the entire continent in all seasons. The largest
increases in the near future occur on the west coast during winter and in
the far southeast during spring, whereas the smallest increases occur in
the southeast during winter and autumn. In the far future an east-west
gradient is apparent in all seasons, with the largest increases occurring
in the west.

The number of days where daytime temperature exceeds 30 �C,
TXge30, represents a threshold index that in most locations and seasons
is less extreme than TXx. It has also been linked to heat-related mortality
(see section 4.1). In the near future during spring and summer, areas that
do not currently experience temperatures over 30 �C on all days of the
season (i.e. central and southern Australia) will experience significant
increases (Fig. 5 middle column). The largest increase in days above
30 �C will be in autumn and winter in the north in both the near and far
future. By the far future in autumn, winter and spring, there will be on
average more than one extra week of days above 30 �C across the country
compared to the recent past.
ulated for the Excess Heat Factor (EHF; section 2.3). Left column: recent past,
e from recent past. Top row: heatwave number (HWN), second row: heatwave
gnitude (HWM), bottom row: heatwave amplitude (HWA). Stippling indicates
represent the minimum, mean and maximum of the plotted field.



Fig. 3. Box and whisker plots for a) heatwave frequency (HWF) and, b)
heatwave amplitude (HWA) at each city for the recent past (blue), near-future
(green) and far-future (red). Bottom and top of boxes indicate the 25th and
75th percentiles, respectively. Middle line is the ensemble median and
whiskers extend to the lowest and highest ensemble member. Data is taken
from the closest grid cell to each city.

N. Herold et al. Weather and Climate Extremes 20 (2018) 54–68
3.3. Drought

We measure drought intensity for all four seasons using the 3-month
SPEI for the last month of each season (e.g. drought intensity for
December-January-February is represented by the 3-month SPEI value
for February). All SPEI values have been calculated using the recent past
(1990–2009) as the base period. Since the SPEI is standardised values in
the base period are by definition close to zero and thus not shown. In
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other words, Fig. 6 should be interpreted as the change in drought con-
ditions relative to the recent past. In the near future, almost all regions of
the continent exhibit similar soil moisture conditions compared to the
recent past, with the exception of some significant drying in the south-
west and southeast during spring (Fig. 6 top row). In the far future
drought substantially intensifies in spring to cover a large portion of the
southern half of the continent (Fig. 6 bottom row), with moderate and
severe drought in the southwest and moderate drought in the southeast
(Table 2 for SPEI severity). For comparison, severe to extreme drought
conditions occurred in Sydney seven times during the period of the
Millennium drought (circa 1997–2010). The southwest and southeast of
the continent also coincide with areas of large increases in spring TXx
(Fig. 4). Less intense (but still significant) drying occurs in the southwest
during winter and summer, and some significant drying and model
disagreement occurs in the north during winter.

3.4. Hot days and frost nights in wheat growing regions

Here we separate the wheat growing areas of Australia into three
regions and show changes in the spatial mean of TXge30 and TNlt2 for
each (see inset of Fig. 7a for regions). While regional means can neglect a
considerable degree of spatial heterogeneity (Zheng et al., 2012) and
different wheat varieties are grown in different regions we treat these
values as indicative of the changes that may influence future sowing and
harvesting periods. More spatial detail can be gained from the corre-
sponding seasonal maps of TXge30 and TNlt2 (Supplementary Figs. 41
and 32, respectively).

Given the southerly locations of the wheat growing regions none
currently experience day time temperatures over 30 �C during June, July
or August (Fig. 7a). Future increases in TXge30 are large in middle to late
spring, the flowering period for wheat, with little or no increases during
winter in all three regions. The western and eastern regions experience
substantially larger increases in spring and summer hot days compared to
the southern region.

The western wheat growing region experiences relatively few frost
risk days and by the far future will likely experience less than two on
average each month during winter (Fig. 7b). The eastern region experi-
enced the most frost in the recent past but by the far-future the number of
frost risk days in August will be the same as what occurred in September
in the recent past, and the number of frost risk days that occur in
September will be similar to what occurred in October in the recent past.
More dramatically, the most frost risk days of any month in the far future
will likely be less than what occurred any time in winter in the recent
past, in all three regions.

4. Discussion

4.1. Linking changes in climate extremes to health impacts

Increasing temperatures can lead to increases in excess mortality (the
number of deaths above that expected) as well as increases in the
transmission of vector borne diseases. We combine our results with
several studies that have measured the relationship between temperature
and daily excess mortality in several Australian cities (Guest et al., 1999;
Hu et al., 2008; Bi et al., 2008; Williams et al., 2012a, b), and between
temperature and increases in cases of the Ross River Virus near Hobart
(Werner et al., 2012). These studies used indices equivalent to ET-SCI
indices described in Table 1 and thus can be applied to our results to
provide simple estimates of the health impacts of future climate change,
as summarised in Table 3. However, the literature on heat-health re-
lationships in Australia is more extensive than reflected in these analyses,
see for example Oppermann et al. (2017) for a review on heat-health
relationships in a tropical Australian setting, and Hanna et al. (2010)
for impacts on working Australians.

Hu et al. (2008) found that in Sydney during summer, mortality in-
creases by 0.9% for each �C increase in mean daytime temperature. Based



Fig. 4. Multi-model means of TXx (maximum daytime temperature) for each time period and season. Left column: recent past, middle column: near-future change
from recent past, right column: far-future change from recent past. Top row: DJF, second row: MAM, third row: JJA, bottom row: SON. Stippling indicates
significant change (section 2.4 for method). Values at the top right of each panel represent the minimum, mean and maximum of the plotted field.
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on this relationship and projected increases in summer TXm (Table 1 for
definition) there would be a 0.9% and 1.8% increase in annual all-age
mortality due to increased summer daytime temperatures under a near
and far future climate, respectively (Table 3). In Brisbane, mortality for
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people aged 65 years and older has been found to increase by 7% per �C
increase in mean summer daytime temperatures (Bi et al., 2008). Based
on this relationship and projected increases in summer TXm there would
be a 3.5% and 11.9% increase in mortality for this age group under a near



Fig. 5. Same as Fig. 4 except for TXge30 (number of days with daytime temperatures at or above 30 �C).
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and far future climate, respectively. Guest et al. (1999) quantified excess
mortality for multiple temperature thresholds in most major cities which
allows us to estimate the number of heat-related deaths that would occur
under near and far future climates (Table 3). Estimated increases in daily
excess mortality due to daytime temperatures above 30 �C are highest for
Sydney and Brisbane under a far future climate (76.8 and 32.5 more
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deaths, respectively). For Sydney this is largely a result of the pop-
ulation's sensitivity to high temperatures, whereas for Brisbane it is
largely due to the increase in the number of hot days. Williams et al.
(2012a) showed that excess mortality in Adelaide across all age groups
increases when warm season daytime temperatures exceed 30 �C. Days at
or exceeding 30 �C in Adelaide are set to increase from 55 in the recent



Fig. 6. Multi-model means of the Standardised Precipitation-Evapotranspiration Index (SPEI; section 2.3) for each season. Top row: near-future, bottom row: far-
future. First column: DJF, second column: MAM, third column: JJA, fourth column: SON. A base period of 1990–2009 (i.e. the recent past) is used to calculate SPEI
for all time periods. Thus, by definition the SPEI is close to zero during the recent past and excluded here. Future values should be interpreted as increases or
decreases in drought conditions relative to the recent past. See Table 2 for an interpretation of drought intensity. Stippling indicates significant change (section 2.4
for method). Values at the top right of each panel represent the minimum, mean and maximum of the plotted field.
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past to 60 in the near future and to 75 in the far future. Similarly, Perth
experiences all age excess mortality increases when warm season day-
time temperatures exceed 34–36 �C (Williams et al., 2012b). Days at or
above 35 �C are set to increase from 20 in the recent past to 25 in the near
future and to 40 in the far future. The EHF has also been shown to
correlate well with heat-related deaths (PwC, 2011; Langlois et al.,
2013) and demonstrates potential to anticipate the timing of health im-
pacts from heatwaves. Indeed, excess mortality due to EHF heatwaves
has been calculated for several Australian cities (PwC, 2011), though
data availability prevents the same methodology being applied here.

While Australia experiences relatively low incidences of vector borne
diseases it has been shown, for example, that cases of the Ross River virus
increase by 23.9% per �C increase in monthly mean daytime temperature
near Hobart (Werner et al., 2012). NARCliM projections indicate that
TXm in Hobart will increase in April – when infections are most likely –

by 0.6 �C in the near future and by 1.9 �C in the far future, equivalent to
increases in infections of 14% and 45%, respectively, if these climates
occurred today (Table 3).

We emphasize that these health impacts only consider the effect of
future climate change on the current population, and thus changes in
demographics, population size and distribution, the probability distri-
bution of daily temperature, air pollution, acclimatisation and other
environmental factors are not taken into account. Population growth
would likely increase estimates of absolute excess mortality, though
factors such as acclimatisation and the increased availability of air-
conditioning, for example, would likely decrease them. However, re-
ductions due to acclimatisation are a source of considerable uncertainty
(Gosling et al., 2017) and there are physiological (e.g. Sherwood and
Huber, 2010) and behavioural limits (e.g. 100% penetration of
air-conditioning) to adaptation. Furthermore, EHF already captures some
aspect of physiological acclimatisation. Nonetheless, these estimated
health impacts should be interpreted as the hypothetical effect of future
climates occurring in the present.

More sophisticated heat-health relationships have also been exam-
ined in the literature, which relate climate variables such as minimum
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daily temperature, humidity, temperature across days and/or percentile
thresholds (e.g. Loughnan et al., 2010a; Tong et al., 2010; Pearce et al.,
2016) to a variety of health impacts such as ambulance call-outs and
emergency department presentations, along with more demographically
or medically stratified analyses (e.g. Hansen et al., 2008a, b; Tong et al.,
2010; Williams et al., 2012a, b; Turner et al., 2013). High temperatures
also have health impacts beyond mortality, including increased
morbidity (e.g. Naish et al., 2009; Loughnan et al., 2010b; Bi et al.,
2011), decreased labour productivity (Zander et al., 2015) and the
cessation of vital community services (Hughes and Steffen, 2014).
However, accounting for future changes in non-climatic factors when
estimating health impacts, as well as considering a larger array of health
outcomes and climatic variables, involves large uncertainties across
multiple disciplines (e.g. Huang et al., 2011) and is beyond the scope of
this study.
4.2. Linking changes in climate extremes to agricultural impacts

The most direct way climate change impacts agriculture is via mod-
ifications to the timing and/or intensity of temperature and precipitation
(e.g. Nicholls, 1997; Crimp et al., 2016; Madadgar et al., 2017). In the far
future spring soil moisture is set to decrease significantly across southern
Australia while winter and summer soil moisture will decrease in the
southwest (Fig. 6). The combination of more frequent hot days (Fig. 7a)
and significantly decreased soil moisture during the spring growing
season will impose a permanent burden on rain-fed crops in the south-
west and southeast, a finding consistent with previous regional climate
modelling (Andrys et al., 2017; Firth et al., 2017). Increases in daytime
temperature extremes in the southwest are also projected to be among
the highest in the country during spring (Fig. 4), a time when wheat is
most vulnerable to heat stress.

Decreases in frost risk days – particularly in the southern and eastern
wheat growing regions – should allow sowing and harvesting to move
forward to take advantage of warmer winters and avoid hotter springs.
We note, however, that frost occurrences have increased over recent



Fig. 7. Box and whisker plots showing spatial means of a) TXge30 (number of days with daytime temperatures at or above 30 �C) and, b) TNlt2 (number of days
with night time temperatures below 2 �C) over the western, southern and eastern wheat growing regions for the recent past (blue), near-future (green) and far-
future (red). Bottom and top of boxes indicate the 25th and 75th percentiles, respectively. Middle line is the ensemble median and whiskers extend to the lowest
and highest ensemble member. See inset (a) for region masks (DAWR, 2016). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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decades in the country's southeast and southwest during certain months
of the year (Dittus et al., 2014; Crimp et al., 2015). This has been
attributed to decreasing soil moisture and subsequent increases in
clear-sky conditions and larger nocturnal heat losses. That NARCliM does
not exhibit this in regional means (Fig. 7b) or at the grid cell scale
(Supplementary Fig. 15) could indicate that WRF does not capture frost
dynamics adequately - as suggested in previous work (Andrys et al.,
2017), that our seasonal (3 month) analyses are smoothing out trends at
the monthly time scale or that increases in frost risk days will not
continue into the future.

Increases in temperature and decreases in soil moisture are inherently
related through sensible and latent heat partitioning (e.g. Donat et al.,
2017). Calculation of the SPI reveals substantially less drought (in area
and intensity) compared to the SPEI (cf. Supplementary Fig. 2 and Fig.
65
6), thus the additional drought estimated by the SPEI can be attributed to
the impact of increasing temperatures on evapotranspiration. Mpelasoka
et al. (2008) examined future drought projections also taking into
consideration evapotranspiration and found similar patterns of change to
those shown here (Fig. 6) though to a lesser extent, possibly due to their
use of a more sophisticated soil moisture index and/or relatively coarse
resolution global climate models (Mpelasoka et al., 2008). We also note
the potential limitation of calculating evapotranspiration using the
Hargreaves method, which assumes grass crop at all locations and which
may bias our results toward dry values.

Madadgar et al. (2017) modelled the joint probability between
observed crop yields and the October 6 month SPI from Australian
rain-fed wheat growing regions. Combining their results with SPI
calculated from NARCliM over all wheat growing regions (Fig. 7a inset)



Table 3
Published heat-health relationships and corresponding projections of health impacts based on the NARCliM ensemble median. Values in right three columns represent measures defined in
the ‘Units’ column. 1Where applicable, values in parentheses indicate increases in annual mortality (as a percentage or number of deaths) or increases in annual cases of Ross River Virus (as a
percentage) based on the corresponding relationship. These estimates only consider the effect of future climates on the present day population (i.e. at the time of the corresponding study).
See section 4.1 for details.2 Williams et al. (2012a), study period: 1993–2009.3Guest et al. (1999), study period: 1979–1990.4Williams et al. (2012b), study period: 1994–2008.5Hu et al.
(2008), study period: 1994–2004.6Bi et al. (2008), study period: 1986–1995.7Werner et al. (2012), study period: 1993–2009.

CityRef Relationship Units Recent
past

Near future1 Far
future1

Adelaide2 Excess mortality increases during October–March on days where
TX> 30 �C.

Days
>30 �C

55 days 60 days 75 days

Adelaide3 Excess mortality of 0.6 during summer on days where TX> 30 �C. Days
>30 �C

36 days 41 days
(3 extra deaths)

48 days
(7.2 extra deaths)

Perth4 Excess mortality increases during November–April on days where
TX> 35 �C.

Days
>35 �C

20 days 25 days 40 days

Perth3 Excess mortality of 1 during summer on days where TX> 35 �C. Days
>35 �C

16 days 19 days
(3 extra deaths)

30 days
(14 extra deaths)

Sydney5 Increased excess mortality of 0.9% per�C in summer TX. 95% confidence
interval (CI): 0.6–1.3%.

Summer
TXm

29 �C 30 �C
(0.9% extra deaths, CI:
0.6–1.3%)

31 �C
(1.8% extra deaths, CI:
1.2–2.6%)

Sydney3 Excess mortality of 6.4 during summer on days where TX> 30 �C. Days
>30 �C

32 days 38 days
(38.4 extra deaths)

44 days
(76.8 extra deaths)

Brisbane6 Increased excess mortality of 7% per �C in monthly mean summer TX, for
people 65 years and older.

Summer
TXm

29.3 �C 29.8 �C
(3.5% extra deaths)

31 �C
(11.9% extra deaths)

Brisbane3 Excess mortality of 1.3 during summer on days where TX> 30 �C. Days
>30 �C

31 days 37 days
(7.8 extra deaths)

56 days
(32.5 extra deaths)

Melbourne3 Excess mortality of 2.9 during summer on days where TX> 30 �C. Days
>30 �C

20 days 24 days
(11.6 extra deaths)

29 days
(26.1 extra deaths)

Hobart7 Increased RRV cases of 23.2% per �C in monthly mean TX. 95% confidence
interval (CI): 3–44%.

April TXm 16.5 �C 17.1 �C
(14% more cases, CI:
1.8–26.4%)

18.4 �C
(45% more cases, CI:
5.7–83.6%)
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allows us to estimate the impact of projected soil-moisture conditions on
Australian wheat yield. Relating the 6 month SPI value from all wheat
growing regions for October from the NARCliM ensemble with the
modelled probabilities from Madadgar et al. (2017), and using an annual
historical wheat yield of 1602 kg/ha (based on 1980–2012 data, from
Madadgar et al., 2017), there will be on average a 32% chance of
exceeding the historical annual yield in the near future, and a 22%
chance of exceeding it in the far future. Similar to our estimated health
impacts, these values only consider the effects of climate change (and in
fact only changes in precipitation), whereas significant future impacts
would also come from reductions in frost damage (e.g. Nicholls, 1997),
increased heat stress (e.g. Saini and Aspinall, 1982), increased CO2
fertilization and direct anthropogenic interactions with the environment,
such as deforestation or changes in water abstraction (Kiem et al., 2016).
Advances in technology, improved farming practices, changes in farming
locations and the breeding of better adapted wheat varieties (Zheng et
al., 2012) could also affect future yields. The same statistical model based
on the SPEI as opposed to the SPI would also likely show greater yield
decreases.

Macadam et al. (2016) used output from the NARCliM ensemble to
force a wheat crop model over the NSW wheat belt, in southeast
Australia. In contrast to our estimate of future national wheat yields using
the probabilities modelled by Madadgar et al. (2017), Macadam et al.
(2016) modelled a mean increase in NSW wheat yield of approximately
800 kg/ha by the far future (also based on the 50 km bias-corrected
NARCliM data). This conflicting result may be explained by the fact
that the NSW wheat belt mostly lies outside the region of projected
drought in the far future (Fig. 6). Furthermore, the physical cropmodel of
Macadam et al. (2016) simulated a specific wheat variety (Ventura
wheat) on a specific soil type (Brown clay) and considered CO2 fertil-
ization. Conversely, the statistical model developed by Madadgar et al.
(2017) utilised wheat yield data over all soil types and wheat growing
regions in the country and by definition did not consider CO2
fertilization.

5. Conclusions

The NARCliM ensemble includes simulations over all of Australia at a
66
50 km spatial resolution for the recent past (1990–2009), near future
(2020–2039) and far future (2060–2079), the latter two of which assume
an intermediate emissions scenario (SRES A2). Consistent with previous
climate projections for Australia, these simulations indicate increases in
heat and drought related extremes throughout the 21st century. In the far
future, day time temperature extremes are projected to increase by up to
3.5 �C depending on season and location. Moderate to severe drought
conditions are also expected in the far future in the southwest and
southeast during spring.

In addition to these results, we reveal new insights into potential
changes in future climate extremes and assess their implications on the
health and agricultural sectors. Heatwave frequency, number and dura-
tion will increase significantly in the near and far future, with greater
increases in the north than south. All capital cities will experience at
minimum a tripling of heatwave days each year by the far future
compared to the recent past. For example, the number of heatwave days
in Sydney each year will increase from 5.5 in the recent past to 23 in the
far future. Implications for mortality are also severe, with projected
future climates leading to increases in mortality due to high temperatures
in all examined capital cities. The number of days at or above 30 �C in the
major wheat growing regions will also increase substantially, particularly
during spring when wheat is most vulnerable to temperature. Projected
decreases in precipitation would decrease the likelihood of meeting
historical production levels. Australian national wheat yields will have
less than a one quarter chance of exceeding the annual historical average
under projected far future precipitation change. Though this does not
take into account the increases in heat stress, decreases in frost damage,
increases in CO2 fertilization and acclimatisation that would also occur
under a future climate. Furthermore, while our analysis uses bias-
corrected data, the correcting procedure assumes biases in the future
are identical – in a distributional sense – to the biases of the recent past,
which is unlikely true.

The NARCliM project is a publically available ensemble of regional
climate model projections over the Australian continent, and at higher
resolution over southeast Australia, capable of providing data at a spatial
scale appropriate for regional planning. Combined with the ET-SCI
indices it provides a suite of climate data for the 21st century that is
easy to translate into sector impacts.
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