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The twenty-four papers that comprise this special issue detail the empirical work and theoretical 

perspectives of research teams from some sixteen countries across five continents, bearing testament to 

the significance of the health challenge that autism spectrum disorder (ASD) represents for the 

international medical community, and to the vibrancy of the global neuroscience research effort that is 

underway as our field works to understand this extraordinarily prevalent condition.  The work spans 

almost the entirety of approaches represented in the neurosciences, reporting on molecular 

neurogenetics, synaptic physiology, neuronal pathology, animal models, human neurophysiology, 

anatomy and psychophysics (see Fig 1 and special issue cover image).  Our authors wade into the ever 

thorny issue of phenotyping, classification systems, and putative relationships between the autism and 

schizophrenia phenotypes (Aggernaes, 2017).  The issue showcases new work that very effectively 

leverages the publicly-available consortial neuroimaging databases to interrogate potential structural 

and functional differences between ASD and neurotypical individuals (Pappaianni et al., 2017; Subbaraju 

et al., 2017).  Structural brain imaging approaches are also used to assess potential white-matter tract 

differences in both the superior longitudinal fasciculus (Fitzgerald et al., 2017) and the oft-implicated 

corpus callosum (Giuliano et al., 2017). A number of studies report new findings in various animal 

models of autism (Acosta et al., 2017; Martella et al., 2017; Rai-Bhogal et al., 2017), and below we will 

discuss the extraordinary promise of this approach, but also highlight some of the potential limitations. 

Work is also presented that addresses secondary outcome measures in ASD, measures such as eye-

tracking to assess cerebellar integrity or the comorbidity of ASD and epilepsy, approaches that may 

allow for better sub-phenotyping within the heterogeneous populations that comprise ASD (Bozzi et al., 

2017; Freedman & Foxe, 2017).  Basic sensory-perceptual anomalies are a recurrent theme in ASD, and 

lend themselves very well to investigation with current neurophysiological and neuroimaging 

techniques. Here, a set of studies report on such 

diverse processes as auditory spatial processing, pain 

anticipation, and error registration (Gu et al., 2017; Kim 

et al., 2017; Lodhia et al., 2017), and an opinion piece 

by Sarah Haigh of the University of Pittsburgh presents 

evidence both for and against what we call the “neural 

unreliability” hypothesis, the notion that initial cortical 

sensory responses to repeated events are more 

variable across trials in ASD (Dinstein et al., 2012; Haigh 

et al., 2015; Haigh et al., 2016; Butler et al., 2017; 

Haigh, 2017).  

In what follows, we take a quick tour through this 

landscape, and provide some of our own thoughts 

regarding the research directions currently being 

pursued by the field of Neuroscience, highlighting those 

areas where we believe that new breakthroughs in our 

understanding are likely to come from.  

 

  

Figure 1: The cover image for this special issue of 

EJN depicts just some of the neuroscience tools 

being brought to bear as the field seeks new 

understanding of the neurobiological underpinnings 

of Autism. Original Image by Bonnie Gloris. 
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THE INCREASING PROMISE OF LARGE CONSORTIUM DATABASES FOR ASD RESEARCH 

A major advance in the field of neurodevelopmental disorders, especially in research into the 

neuropathology of ASD, has been the emergence of large publically available data repositories from the 

various research consortia. For example, the Autism Genetic Resource Exchange (AGRE) provides 

genotypic data from more than 1700 well-characterized multiplex and simplex families, in concert with 

diagnostic and cognitive testing data and other relevant clinical history.  Similarly, the Simons Simplex 

Collection (SSC) contains genotypes from over 3000 individuals with ASD. The U.S. National Institute of 

Mental Health (NIMH) Data Archive (NDA) is another superb and ever-growing repository that shares 

de-identified human subject data with researchers, data that have been accumulated, tabulated and 

harmonized across multiple domains from hundreds of NIH-funded studies. It is now mandated by the 

NIMH when providing grants to investigators for clinical trials, that principle investigators ensure that 

the data are uploaded to the NDA database, thereby ensuring that publicly funded research data can be 

used to maximum efficacy. Neuroimaging databases such as the Autism Brain Imaging Database 

Exchange (ABIDE) are also furnishing researchers, who are not based at major neuroimaging centers or 

who don’t have access to multi-million dollar grants to collect the necessarily large datasets, with the 

opportunity to test their hypotheses and their novel analyses methods on well-curated existing data.  Of 

course, as well as the cost effectiveness of this approach, this is allowing the field to move away from 

the all-too-typical small cohort studies that are often highly under-powered (Mitchell, 2018). A good 

example of the use of such a large neuroimaging database is to be found in the paper herein by 

Subbaraju and colleagues from the University of Singapore (Subbaraju et al., 2017). These authors used 

resting-state functional magnetic resonance imaging (fMRI) data from almost 600 adolescent males 

from the ABIDE consortium, and applied a novel whole-brain voxel-based methodology that they have 

called the “Severity based Spatial Filtering Method” (SSFM) to identify regions of activation that best 

discriminated ASD from neurotypicals, and in turn, related these measures to autism severity scores.  

They uncovered regions showing both increased activity (in the ventromedial pre-frontal cortex and 

anterior temporal cortex) and diminished activity (in the posterior cingulate gyrus), and they note that 

the regions they uncover overlap substantially with known nodes of the social brain circuit (Philip et al., 

2012).  

Similarly, Pappaianni and colleagues used a selection of structural MRI data from the ABIDE database to 

assess whether children (aged 8-11 years) with ASD would show similar grey matter structural 

differences in the so-called “Autism-Specific Structural Network” (ASN) to those found in a previous 

study of adults with ASD that was conducted by the same research group (Grecucci et al., 2016; 

Pappaianni et al., 2017).  They also applied a relatively new method called Source-Based Morphometry 

(SoBM) which proved more sensitive than the more traditional and commonly used Voxel-Based 

Morphometry (VBM) technique in revealing between-group structural differences. The ASN refers to a 

fronto-parieto-temporal network, and indeed, the authors found evidence for a similar set of structural 

differences in this young ASD cohort in the inferior-middle temporal gyrus, the inferior parietal lobule 

and the postcentral gyrus, that nicely echoed their previous findings in ASD adults. 

The issue of anatomical connectivity differences in ASD is also addressed in a paper from Trinity College 

in Dublin by Fitzgerald and colleagues (Fitzgerald et al., 2017), where the “Constrained Spherical 

Deconvolution-based Tractography” technique was used to specifically assay diffusion MRI data within 

the sub-divisions of the superior longitudinal fasciculus (SLF), a major white matter tract connecting 

frontal regions to occipital, parietal and temporal cortical regions.  These authors are the first to be able 
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to segregate the three major branches of the SLF in this way, and in doing so they isolate increased 

fractional anisotropy (FA) and linear diffusion coefficients in the right SLF II, greater linear diffusion 

coefficient in the left SLF I and greater rightward asymmetry of FA in the SLF II in their ASD group. 

Perhaps somewhat counterintuitively, given multiple theories positing under-connectivity in long-range 

cortico-cortical pathways in ASD (Casanova & Trippe, 2009), these results actually suggest increased 

anatomical connectivity along this major integrative pathway. A limitation of the Fitzgerald study is that 

there are no behavioral measures that can be leveraged. Given the role of the SLF in fronto-parietal 

connectivity, such increased connectivity might be expected to lead to changes in behaviours that rely 

on this cortical circuit, such as during spatial attention tasks or other cognitive control tasks. The authors 

do, however, point to prior work from their group that suggests increased spatial orienting abilities in 

ASD adults (McGrath et al., 2012). Clearly, direct testing of this hypothesis will be required to 

convincingly establish such a link. 

Continuing the white matter connectivity theme, the corpus callosum (CC) has long been implicated in 

ASD (Vogan et al., 2016; Di et al., 2017; Wegiel et al., 2017), and a report from Giuliani and colleagues 

extends this work to pre-school children (with an average age of approximately 4 years) using structural 

volumetric measures. Another good feature of this study was that an equal cohort of girls with ASD was 

recruited, avoiding the usual male bias that we often see in such studies. ASD participants, specifically 

the boys, showed overall total greater brain volume than controls, a finding that accords well with the 

literature (Courchesne et al., 2003; Hazlett et al., 2017). Once age and gender and total brain volume 

were controlled for, however, there were no significant differences in CC volume, either overall or 

within the specific subdivisions they examined. They then went on to split the groups into two age 

brackets (those below 49 months and those above). Under this analysis, they did find that ASD boys 

showed larger CC volumes than controls, even after controlling for total brain volume.  When 

considering CC volume relative to clinical symptom severity, they also found a negative correlation 

between severity as measured using the Autism Diagnostic Observation Schedule (ADOS) and CC volume 

across the entire ASD cohort.  A tantalizing suggestion then is that early brain overgrowth, including CC 

expansion, may prove a good predictor of clinical outcome, but clearly this will need to be specifically 

tested in a prospective study using a much larger high-risk population. 

 

ANIMAL MODELS OF ASD 

Animal models continue to be crucial in our quest to develop new understanding about the underlying 

neurobiology of neurodevelopmental disorders and in our efforts to develop and quickly test potential 

new interventions and therapies.  Of course the relevance of the work is only as good as the model 

system, and there has been much ringing of hands with regard to the existing animal models for autism. 

The animal model approach tends to work well in monogenic diseases like Rett Syndrome (Watase & 

Zoghbi, 2003; Ladas et al., 2009) or Fragile-X (Richter et al., 2015; Pardo et al., 2017), where the causal 

mutations giving rise to the human condition are known, can be engineered in the mouse model, and 

where the human disease phenotype is relatively well recapitulated in the animal.  This approach, 

however, is considerably more complicated in a condition as heterogeneous as ASD, where diagnosis is 

based purely on clinical symptoms, and most everyone agrees that in the vast majority of cases it 

represents a constellation of related conditions of mixed genotypic background (RK et al., 2017; 

Vorstman et al., 2017).  
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A two-pronged approach has been taken to address this problem. The first is to engineer mice with 

mutations in specific genes or copy-number variants (CNVs), based on rare mutations that are known to 

give rise to so-called syndromic cases of ASD in the human population (Ehlinger & Commons, 2017; Liska 

et al., 2017), or based on data from the large genome wide association (GWAS) studies where more 

common single nucleotide polymorphisms (SNPs) have been associated with increased risk for an ASD 

(Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017).  Even in models of 

known “syndromic” mutations, the phenotypes of the animals can be relatively mild (Kabitzke et al., 

2017) and difficult to relate to the human condition.  

The second approach has been to recognize and quantify ASD-like phenotypes in mouse models 

produced through environmental exposures, neural insults, or other gene mutations that have not yet 

been identified as causal in the human ASD population. ASD is characterized by impairments in social 

communication and restricted, repetitive and stereotyped interests and behaviors. Clearly, a major 

challenge in bridging the translational gap between species is in understanding what kinds of behaviors 

in a mouse can be reasonably associated with these human phenotypes.  When one thinks of the 

characteristic social awkwardness of a school-aged boy with an ASD, the lack of eye-contact, the poor 

responsivity to instruction, the fixation on a favorite toy, the toe-walking or hand flapping, it can be 

difficult to fully appreciate how such features can be meaningfully assayed in a mouse. Nonetheless, 

mice are also social creatures, can show repetitive behaviors such as excessive grooming, emit social and 

distress calls to each other (Esposito et al., 2017), and great strides have been made in the behavioral 

domain to develop sophisticated approaches to measuring these and other potential ASD-related 

phenotypes (Kazdoba et al., 2016a; Kazdoba et al., 2016b).  

The current special issue contains a number of papers that leverage animal models to try to better 

understand ASD. As above, one of the classical approaches involves recapitulating human mutations in 

mouse models to understand causal relationships between molecular mechanisms and behavioral 

phenotypes, and indeed, results from mouse models can sometimes show a striking level of 

pathophysiological convergence between syndromic and non-syndromic genetic forms of ASD, including 

defects in long term depression (LTD) and of metabotropic receptor and endocannabinoid signaling 

(Baudouin, 2014). Endocannabinoid dysfunction has been well characterized in mouse models for 

syndromic forms of ASD, such as Fragile X (Castagnola et al., 2017), but remains understudied in mouse 

models for non-syndromic forms of ASD. Following previous demonstration that endocannabinoid 

signaling can lead to deficits in the electrophysiological properties of pyramidal hippocampal neurons in 

mice carrying a mutation in Nlgn3 (Foldy et al., 2013), a gene associated with non-syndromic forms of 

ASD (Baudouin et al., 2012), Martella and colleagues attempt to further our understanding of the 

relationship between endocannabinoid signaling and neuronal activity deficits (Martella et al., 2017). 

Critically, they show that the absence of LTD at dorsal striatum excitatory synapses in mice carrying a 

mutation in Nlgn3 can be partially rescued by activation of cannabinoid CB1 receptors. These results are 

consistent with the concept of convergence of pathophysiology and provide evidence that modulation 

of endocannabinoid signaling could be a therapeutic strategy for both syndromic and non-syndromic 

forms of ASD. Growing evidence also suggests that ASD symptoms can be caused by deficits in lipid 

metabolism (Wong et al., 2015). Rai-Bhogal and colleagues used mouse models to determine if 

impairment in lipid signaling can cause ASD-related phenotypes (Rai-Bhogal et al., 2017). They found 

that the absence of COX1 and COX2, two key components of the lipid signaling cascade, resulted in 

dysregulation of pathways important for brain development and function, likely to relate to ASD.    
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A good example of an ASD mouse model that is produced through neural insult is to be found in the 

paper by Acosta and colleagues (Acosta et al., 2017).  Prenatal exposure to valproic acid (VPA) in 

humans has been associated with ASD (Roullet et al., 2013) and so in utero exposure has been used in 

mouse models to understand potential ASD phenotypes in the offspring. The main phenotype of interest 

in the Acosta study was auditory temporal processing, since temporal processing deficits have been 

reported in human ASD individuals (Kwakye et al., 2011; Foss-Feig et al., 2017) and other work has 

shown that they have difficulties in estimating the passage of time over short intervals (Allman et al., 

2011a; Allman et al., 2011b).  Acosta and colleagues tested the ability of VPA exposed male and female 

mice to acquire interval timing responses in 15-s and 45-s peak-interval procedures. In these tests, both 

female and male mice prenatally exposed to VPA showed reduced timing accuracy and precision 

compared to control mice, thereby recapitulating the associated human phenotype. Of major clinical 

interest was their observation that these interval timing deficits were reversed after early social 

enrichment in the male VPA mice, which was achieved by rearing the prenatally exposed VPA mice 

together with control mice. The clinical implications for ASD children are obvious. 

SECONDARY OUTCOMES AND THE SEARCH FOR QUANTIFIABLE ENDOPHENOTYPES AND WELL-

DELINIATED SUB-PHENOTYPES 

As mentioned above, diagnosis of ASD is primarily based on core behavioral symptoms, namely social-

communication deficits and repetitive behaviors and restricted interests, which are difficult to accurately 

quantify. ASDs, however, are also associated with a host of other multifaceted symptoms, mainly due to 

the fact that they are associated with various comorbidities. For some of these comorbidities, like motoric 

impairment or epilepsy, there is already advanced understanding of their underlying biological 

mechanisms and objective criteria have been developed to measure their severity. Although 

heterogeneity of symptoms is a challenge in our understanding of ASD pathology, it can also prove to be 

useful, as specific symptom dimensions may help in defining specific sub-populations of ASD along 

quantifiable criteria. Uncovering such neurophysiological and molecular mechanisms is essential in the 

design of new therapeutic strategies, because they are potential targets for pharmacological 

interventions, and for clinical trials, as they can be used as quantifiable endpoints. 

In this special issue, Freedman and Foxe and Bozzi and colleagues provide reviews of the pathophysiology 

of two comorbid symptoms that have been strongly associated with ASD, namely deficits in oculomotor 

plasticity and epilepsy (Bozzi et al., 2017; Freedman & Foxe, 2017). Oculomotor plasticity or saccadic eye 

movement adaptation is controlled in part by the cerebellum, a brain region often implicated in ASD (see 

(Olivito et al., 2017) in this volume; (Hampson & Blatt, 2015); but  also see (Traut et al., 2017)). In their 

review, Freedman and Foxe explore the link between saccadic eye movement adaptation and ASD. They 

argue that using oculomotor plasticity deficits as a biomarker could help to identify more homogenous 

populations of ASD with deficits in cerebellar functions. The lack of consistency in neuroimaging findings 

regarding cerebellar pathology in ASD may well be related to the heterogeneity of this disorder, and they 

make the case that re-examining cerebellar pathology through the lens of eye-movement deficits may 

help to clarify this situation and identify a sub-phenotype within ASD. In keeping with this theme of 

possible cerebellar dysfunction in ASD, Olivito and colleagues show decreased cerebellar gray matter in 

the right Crus II in a small cohort of adults with ASD, and in turn, show reduced functional connectivity 

between this region and multiple distributed cortical regions (Olivito et al., 2017). It will be of significant 

interest in future work to determine if eye-movement deficits in ASD can be related directly to cerebellar 

structural and functional measures. 
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Epilepsy is characterized by the occurrence of unprovoked bursts of neuronal activity thought to be caused 

by an imbalance between excitation and inhibition within neuronal circuits. Defect in excitation/inhibition 

balance has long been postulated to be one of the pathophysiological mechanism associated with ASD 

and, interestingly, epilepsy is a comorbid symptom frequently observed in ASD, especially in lower 

functioning individuals. Bozzi and colleagues provide a review of the role of excitatory/inhibitory 

imbalance in both pathologies, providing a potentially powerful theoretical framework to explain the co-

occurrence of these symptoms at the molecular level (Bozzi et al., 2017).  

Executive functioning (EF) is another domain in which there has been a great deal of research interest in 

ASD populations. Work shows that there are deficits in EF sub-functions such as working memory (Wang 

et al., 2017) and general cognitive flexibility (Corbett et al., 2009; Dajani & Uddin, 2015). Here, Kim and 

colleagues provide a nice overview of the available evidence for EF processing deficits, specifically in 

younger children with ASD, and present some fascinating event-related potential (ERP) evidence that 

kindergarten-aged ASD children produce larger error-related negativities, pointing to potentially elevated 

response monitoring systems (Kim et al., 2017). ERP measures are relatively easily obtained in ASD 

children in this general age-range (Brandwein et al., 2013; Brandwein et al., 2015), and will undoubtedly 

be very useful in the effort to define sub-phenotypes within the spectrum. For example, do children with 

ASD show a general EF deficit such that all sub-functions (e.g. working memory, task-set reconfigurations, 

inhibitory control) are affected equally, or will we find that children have more specific deficits in one or 

the other of these functions? If the latter, this information could be very helpful in devising tailored 

intervention strategies and ERPs could provide objective outcome measures against which to test the 

efficacy of any given therapeutic approach. Of course, in almost all of these ERP studies, it is the higher-

functioning, or as Kim and colleagues nicely put it, the “more-able”, children that can be readily assessed. 

It remains a major challenge to the field to devise appropriate EEG approaches that can be deployed in 

the large ASD populations who are considerably more impaired (Kasari et al., 2013; Tager-Flusberg & 

Kasari, 2013). 

 

SENSORY-PERCEPTUAL ATYPICALITIES IN ASD 

Theories of autism abound, and it could reasonably be argued that few of them provide conclusive and 

easily falsifiable predictions or speak to the underlying neural processes.   One relatively recently thesis 

that does lend itself very well to direct neurophysiological testing proposes that the neural response itself 

may simply be more variable from moment to moment in autism, and that this might prevent an orderly 

mapping between stimulation (constant) and brain response (variable) (e.g. (Simmons et al., 2009; 

Dinstein et al., 2015).  As a consequence, neural representations would be expected to be compromised 

and perception of the world would in turn be disordered.  This is a readily testable hypothesis, since the 

prediction is that there will be higher trial-to-trial variance in the sensory-perceptual responses of 

individuals with an ASD, which can be measured with high fidelity using modern neurophysiological 

techniques such as functional imaging and event-related potentials (ERPs).  However, as reviewed by 

Haigh, the literature is inconclusive when it comes to the so-called “neural unreliability” thesis (Haigh, 

2017). Haigh suggests that increased variance in the neural response in ASD may be more apparent for 

complex versus simple stimuli and may also be more apparent under conditions that are more demanding.  

As it stands, there is evidence both for (e.g. (Dinstein et al., 2012) and against (e.g. (Butler et al., 2017) the 

unreliability thesis. On the negative side of the argument, Butler and colleagues recently showed that the 
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neural response is no more variable in ASD than in an age and IQ matched healthy control group for simple 

visual and somatosensory stimuli, using ERPs and frequency-based assays of inter-trial coherence (Butler 

et al., 2017).  It is clear that rigorous testing in which stimulus and task complexity are parametrically 

varied, and appropriate imaging and analytic methods applied (e.g., EEG and inter-trail phase coherence) 

in large representative cohorts, will help to get to the bottom of the discrepancies in the literature. 

Another domain that has been implicated in ASD is that of spatial processing.  ERP data have pointed to 

deficits in visuo-spatial processing for peripheral targets (Townsend et al., 2001) and to differential 

visuo-cortical mapping of peripheral spatial locations (Frey et al., 2013), although there is also 

behavioural evidence for generally intact visuo-spatial abilities (Edgin & Pennington, 2005). Lodhia and 

colleagues present work here on auditory spatial processing, using ERP measures to compare the 

auditory cortical responses of ASD and neurotypical (NT) control individuals to inter-aural amplitude and 

inter-aural temporal differences (Lodhia et al., 2017). These are two key cues for determining where an 

auditory event or object is in the environment. Unfortunately, the Lodhia study does not include 

behavioral assays in their participants, so electrophysiological results could not be allied to any potential 

behavioral differences between groups. In any case, their ERP data suggest that inter-aural amplitude 

cues are processed typically by ASD individuals but that the timing cues are not (as evidenced by a lack 

of the so-called object related negativity (ORN) ERP component). It is of note that prior work by the 

group had shown a behavioral deficit in ASD as a function of inter-aural temporal cues (Lodhia et al., 

2014), although more recent behavioral work by Lin and colleagues showed typical-to-superior auditory 

spatial abilities in ASD, although it should be noted that they did not use inter-aural temporal cues (Lin 

et al., 2015). Clearly, there is more work yet to be done to unpack just how intact auditory spatial 

processing is in ASD.  

It is common for parents and clinicians to report that individuals with ASD display atypical responses to 

pain, with reports of both hyper- and hypo-sensitivity (Klintwall et al., 2011). For example, quantification 

of facial pain reactions in children undergoing a blood draw (i.e. a needle stick), point to increased pain-

related responsivity in children with ASD (Nader et al., 2004). However, a recent review of the literature 

suggests that when it comes to actually experiencing pain itself, individuals with ASD don’t show any 

real differences in their pain thresholds (Moore, 2015). A distinction worth making then is that there 

may be a disparity between the actual experience of pain itself versus the anticipation of a potentially 

painful stimulus, especially in light of the sensory defensiveness that is often seen in ASD (Cascio et al., 

2016).  In this issue, Gu and colleagues used functional neuroimaging to look at this issue of anticipation 

versus actual pain perception in a group of high-functioning adults with ASD (Gu et al., 2017). Before any 

scanning was conducted, they first asked participants to calibrate an electrodermal stimulus to a point 

where they felt that it would be moderately painful for them. Interestingly, the ASD participants set the 

stimulation lower than their NT counterparts. They then scanned these same folks while they both 

anticipated and then experienced the actual stimulation. They found that only during anticipation was 

differential processing observed between groups, with the ASD participants showing increased rostral 

and dorsal anterior cingulate cortex activation, whereas no differences were observed during actual 

stimulation. So, the results suggest that estimation of the impact of an impending sensory input causes 

greater anticipatory neural activity in ASD, suggesting that predictive processes may be the root cause of 

many of these issues around pain perception. Clearly the issue of pain perception will likely remain a 

serious issue for both caregivers and for ASD individuals themselves, so it is very encouraging to read 
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recent work showing that a somatosensory therapy regimen in children with an ASD can decrease pain 

sensitivity, in concert with increases in tactile sensitivity (Riquelme et al., 2018). 

 

SOCIAL PROCESSING AND IMITATION IN ASD 

Clearly, it is in the domain of social interactions that individuals with ASD encounter some of the 

greatest challenges in their everyday lives. The ability to read subtle facial expressions, to engage in joint 

attention, to effectively parse the speech signal in multi-speaker environments, or to understand the 

often obtuse prosodic content of speech, can all present major difficulties for these individuals 

(Volkmar, 2011).  Measurement of sensory-perceptual responses to these types of stimuli can provide a 

window into the integrity of these building blocks of social cognition.  Behavioral measures, eye-

tracking, event-related potentials (ERP), magneto-encephalography (MEG), and fMRI have all been 

deployed to this end, providing some support for impaired face and gaze processing (Itier & Batty, 2009; 

Nomi & Uddin, 2015; Neuhaus et al., 2016) see also (Jemel et al., 2006) for discussion), for speech 

processing difficulties (Smith & Bennetto, 2007; Foxe et al., 2015; Ross et al., 2015; Beker et al., 2018), 

and for deficits in the ability to evaluate the social dynamics of scenes and scenarios (Frazier et al., 2017) 

(Mundy, 2017). 

In this issue, a pair of companion papers sought to extend this work to 4-6 month old infants deemed to 

be at high risk for autism by virtue of the fact that they were born with an older sibling already 

diagnosed with ASD (Braukmann et al., 2017; Lloyd-Fox et al., 2017).  Diagnosis of autism is a purely 

clinical observational enterprise, and one of the holy grails of autism research is to identify biomarkers 

that can be used for objective diagnosis and prediction.  This is clearly a tall order for such a highly 

heterogeneous, typically multigenic, condition that overlaps in symptoms and genetic risk factors with 

other neurodevelopmental disorders, but a laudable one nonetheless.  To determine if a biomarker has 

diagnostic utility it should ultimately differentiate among those with and those without the condition 

prior to when a clinically-based diagnosis can confidently be made—in this case in infants since 

diagnosis of autism is already relatively stable by 2 years of age (Guthrie et al., 2013).  Using functional 

near-infrared spectroscopy (fNIRS), the hemodynamic response to face and control images, and speech 

and non-speech inputs, was measured in high-risk infants who were then tested for autism at 3 years of 

age.  Braukmann and colleagues report a diminished response to dynamic visual social stimuli in high-

risk 5 month olds who go on to receive a diagnosis of autism versus those that do not (Braukmann et al., 

2017). If these brain measures are endophenotypic, relating to genetic liability for autism, comparison 

with a control group of low risk infants should yield a graded response function whereby the high-risk 

non-converters fall in-between high-risk ASD (HR-ASD) and low-risk individuals.  Lloyd-Fox and 

colleagues included such a group and found a diminished response in the HR-ASD group compared to 

the low risk group for both auditory and visual social stimuli, and a  significant difference between HR-

ASD who went on receive a diagnosis of autism versus HR-ASD that did not for visual but not auditory  

social stimuli (Lloyd-Fox et al., 2017).   

Despite modest cohort sizes in both of these studies, the findings are promising with regard to the 

search for biomarkers of autism. Both studies show that the brain responses of infants at high risk for 

autism fail to distinguish between social and non-social stimuli, suggesting that the social deficits that 

are a hallmark of ASD might be detectable at a very early age.  Ultimately it will fall to large-scale multi-
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site studies to determine the reliability of any potential biomarkers of autism, and to determine how 

they relate to the autism phenotype.    

Speech-language processing atypicalities are also common in autism.  Impaired basic sensory-perceptual 

processing of speech has been demonstrated in numerous EEG, MEG and fMRI studies (Lepisto et al., 

2005; Kujala et al., 2013; Herringshaw et al., 2016; Yoshimura et al., 2017), suggesting that language 

atypicalities may be rooted in part in sensory processing deficits for speech stimuli.  In this issue, Finch 

and colleagues take a novel approach to considering speech processing (Finch et al., 2017).  Testing 

toddlers from a high-risk group (as previously defined) and a low risk control group, they compared EEG 

brain responses to “old” words that toddlers should be highly familiar with, to brain responses to “new” 

words that toddlers would have little-to-no exposure to.  They found that old versus new word effects 

varied as a function of membership in the risk group and subdivisions therein (i.e. whether a diagnosis 

was received, or whether aspects of the autism phenotype were present even if they didn’t meet 

criteria for diagnosis). Their analyses make the critical point that both autistic traits and language 

function need to be considered when assaying speech processing in autism.  How these variables 

interact to influence speech processing in autism is undoubtedly a complex story that involves not only 

differences in perceptual processing, but also in attention and motivation.  Indeed, in another speech 

processing study using EEG, this time in 9-year-old children, we see evidence for both differential 

sensory processing and differential attentional orienting, dependent on stimulus type (Huang et al., 

2017).  

Moving on from basic sensory processing of social stimuli to more complex situations, Datko and 

colleagues address deficits in so-called theory of mind (TOM), the ability to read another’s intentions 

based on their behaviors, in individuals with autism (Baron-Cohen et al., 1985; Perner et al., 1989; Senju 

et al., 2009; Jones et al., 2018). The mirror neuron system (MNS), whereby the neurons active while 

performing an action are also active while observing that same action (Rizzolatti et al., 1996), have been 

forwarded as the potential neural mechanisms of TOM (Gallese et al., 2004).   While direct 

measurement of the MNS in humans is tricky, scalp EEG has shown suppression of activity in the alpha 

band from motor cortex (referred to as mu) while engaging in or observing an action.  This so-called mu-

suppression, which is shown to be impaired in ASD in some studies (Oberman et al., 2005), has been 

taken as a proxy for the human MNS.  It stands to reason then that neurofeedback (NFB) directed at 

controlling mu activity (oscillations in the alpha range, over motor regions) might prime the MNS and 

increase its effectiveness.  Here Datko and colleagues show  reduction of problem behaviors and 

increased fMRI activation of the MNS system in autism following NFB to increase mu activity (Datko et 

al., 2017).  Thus simply “exercising” the neural pathways that generate oscillatory activity in specific 

frequency bands, it would appear, can lead to improved brain function and behaviors.  NFB is an avenue 

of treatment that is ripe for exploration, although the neural rhythms affected in ASD, and the 

underlying causes of impaired neuro-oscillatory function, are areas that are in need of considerably 

more empirical evidence (Beker et al., 2018).  

In this issue Dickenson and colleagues make headway on this front, showing a strong relationship 

between peak alpha frequency (measured from resting state EEG) and cognitive function in ASD 

(Dickinson et al., 2017).  While alpha power did not differ between groups, peak alpha frequency was 

lower in the ASD compared to the control group, and lower peak alpha frequency was associated with 

lower non-verbal function in ASD, whereas lower peak alpha frequency was associated with younger 

ages in TD.  Since IQ differed substantially between the groups, however, follow-up work will be needed 
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to determine whether this finding holds when IQ is controlled for.  Nevertheless, differences in neuro-

oscillatory activity in the alpha band have been previously reported (see e.g. reviews from (Simon & 

Wallace, 2016; Beker et al., 2018), and we expect this is an important direction to follow. For example, 

in Murphy and colleagues (Murphy et al., 2014), attention related alpha suppression was significantly 

reduced in high functioning individuals with autism, with accompanying deficits in task performance 

when participants were involved in an inter-sensory selective attention task.    

Joint attention is critical to the development of TOM.  Typically observable before 8 months of age, 
deficits in joint attention may represent one of the earliest signs of impaired social processing in 
autism (Charman et al., 1997; Charman, 2003; Bedford et al., 2012). Joint attention involves both 
following the direction of another’s attention, and directing the attention of others to share one’s 
own experiences.  Mundy provides a review of the development of the joint attention system 
including what we know of the underlying neural substrates, and the role of joint attention in 
developmentally later emerging social-cognitive processing (Mundy, 2017).  He also makes clear 
that much work remains to complete our understanding of the development of social-cognitive 
processing, and points to much needed avenues of exploration.  This review provides an excellent 
starting point for those embarking on such endeavors.   
 
In a highly related vein, implicit recognition that a social partner might be mimicking us, for example 
imitating facial expressions or body posture, can be highly rewarding and increase pro-social 
behavior.  Hsu and colleagues test the hypothesis that such mimicry does not typically activate the 
reward system in individuals with autism (Hsu et al., 2017).  In their fMRI study, a pre-scan 
“conditioning” session associated actor faces with social mimicking or anti-mimicking of the 
participant (e.g., presenting a video of the actor having a sad expression when the participant had a 
happy one). Images of the same actors’ faces were then presented to participants, now in neutral 
expression, in the scanner.  While the control group showed the expected increase in ventral 
striatal activity for the mimicry versus anti-mimicry condition, the ASD group showed the opposite 
pattern.  These intriguing data support the hypothesis of a differential response in the reward system to 
social-mimicry in autism, but also raise questions as to why there was enhanced ventral striatal 
activation in response to the anti-mimicry condition in this group.  
 

Autisms defining characteristics represent outliers of normally distributed human behaviors. As such, 

insight into autism may be gleaned from studying how information processing varies as a function of 

placement along this distribution in the neurotypical population.  Donaldson and colleagues use such an 

approach to test the influence of transcranial direct current stimulation (tDCS) over the temporo-

parietal junction on social-cognitive performance, and how this relates to Autism-Spectrum Quotient 

(AQ) scores, which measure tendencies toward autistic traits in the neurotypical population (Donaldson 

et al., 2017).  They also used ERP and EEG frequency analyses to directly assess the effects of electrical 

stimulation on neural processing. The first thing to note is that there was an association between higher 

AQ scores and the abilities of their participants to infer the mental state of others in pictorial images. 

Effects of their tDCS intervention were modest, however, but they did observe differential pre- versus 

post-stimulation performance in a facial emotional recognition test in higher AQ individuals as a 

function of cathodal stimulation. Much remains to be understood regarding the potential of these 

approaches in ASD, and perhaps the lack of strong results in the Donaldson paper is mostly due to the 

fact that they are working exclusively in neurotypical adults, albeit with variance in their AQ scores. 
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There is certainly a great deal of ongoing interest in using brain stimulation techniques, including 

invasive deep brain approaches, to try to ameliorate the clinical symptoms of psychiatric, neurological 

and neurodevelopmental disorders (Durschmid et al., 2017; Gomez et al., 2017) . It will be hugely 

important for the field, as these techniques gain ever more traction, that we can establish mechanistic 

accounts of their modes of action to guide sensible evidence-based applications (Voroslakos et al., 

2018). Obviously too, there are significant ethical considerations that will need to be carefully thought 

through (Stahl et al., 2017). For example, is it reasonable to refer to some of these techniques as non-

invasive (i.e. TMS or tDCS), a common occurrence in the literature, simply because these tools allow for 

the delivery of stimulation to occur from outside the head, despite the fact that their effects are directly 

upon brain tissue. 

IN CLOSING 

Despite the gamut of cutting-edge techniques and the accelerating pace of neuroscience research into 

the neurobiological underpinnings of ASD, much work remains before we can establish a comprehensive 

model of this highly prevalent condition.  It could reasonably be asked, for example, whether we as a 

field can say with confidence that there are consistent structural anatomical findings that we can affirm 

as a definitive phenotype of autism? We must also continue to be mindful of the possibility that our 

animal models, however elegant, may not always be as close a proxy for the human condition as we 

might wish (Silverman et al., 2010; Hiroi, 2018). In those working in human participants, we must 

expand our studies beyond the high-functioning groups that make up the vast majority of our studies 

and move to investigations in those children and adults who are the most affected, those who ultimately 

need our help the most.  Although there are clear challenges ahead, it is also clear that amazing strides 

are being made, as can be seen in the contributions to this special issue. We are delighted to bring this 

collection of fascinating papers to the readers of EJN, and we very much look forward to many more 

exciting contributions from researchers in the autism field. 
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