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ABSTRACT Terms are linguistic signifiers of domain–specific concepts. Semantic similarity between
terms refers to the corresponding distance in the conceptual space. In this paper, we use lexico-syntactic
information to define a vector space representation in which cosine similarity closely approximates semantic
similarity between the corresponding terms. Given a multi–word term, each word is weighed in terms
of its defining properties. In this context, the head noun is given the highest weight. Other words are
weighed depending on their relations to the head noun. We formalized the problem as that of determining a
topological ordering of a direct acyclic graph, which is based on constituency and dependency relations
within a noun phrase. To counteract the errors associated with automatically inferred constituency and
dependency relations, we implemented a heuristic approach to approximating the topological ordering.
Different weights are assigned to different words based on their positions. Clustering experiments per-
formed on such a vector space representation showed considerable improvement over the conventional
bag–of–word representation. Specifically, it more consistently reflected semantic similarity between the
terms. This was established by analyzing the differences between automatically generated dendrograms
and manually constructed taxonomies. In conclusion, our method can be used to semi–automate taxonomy
construction.

INDEX TERMS Semantic similarity, natural language processing, clustering methods, knowledge
acquisition.

I. INTRODUCTION
A term is intuitively defined as a noun phrase that occurs
frequently in a domain–specific discourse and has a special
meaning in the given domain [1], [2]. In other words, terms
are linguistic signifiers of domain–specific concepts [3].
As such, they are basic means of conveying scientific and
technical information [4]. In comparison to other words and
phrases used in a sublanguage, terms carry heavier infor-
mation load. It is, therefore, essential to build and maintain
terminologies in order to enhance the performance of many
natural language processing (NLP) applications.

All terms belonging to a specific domain collectively
form its terminology [3]. Bodenreider et al. [5] emphasize
the structured nature of a terminology with the hierarchy
being the main organizational principle. Most terminolo-
gies use hierarchies based on a relation of dominance that
comprises the taxonomic (is–a) relation and the meronymic
(part of) relation with the former used most commonly in
practice. This implies that a terminology is not merely a

collection of terms, but rather a structure imposed over such
collection.

The relations between concepts can be mapped to lexi-
cal relations between the corresponding terms [6]. Lexical
semantics defines four types of congruence relations: identity,
inclusion, overlap and disjunction [7]. In many cases, such
relations between terms can be inferred by simply comparing
their bag–of–words (BOW) representations. For example,
two terms t1 = effective contraceptive method and t2 = effec-
tive method of contraceptioncan bemapped to the same BOW
representation, BOW(t1) = BOW(t2) = {effect, contracept,
method}, where the stop words have been removed and the
remaining content stemmed. This type of reasoning is used in
FlexiTerm [8], an automatic term recognition (ATR) system,
to infer that the given terms refer to the same domain–specific
concept, i.e. that they are synonyms. Synonymy is the lexical
relation that corresponds to identity. In the context of termi-
nology structuring, an equally important lexical relation is
that of hyponymy [9], [10]. It corresponds to inclusion, which
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we mentioned previously as the main vehicle for adding tax-
onomic structure to terminologies. Most studies on extract-
ing hyponymy relations from text focus on external context
of the participating terms using lexico–syntactic patterns
and/or distributional semantics, e.g. [11]–[17]. In this study,
we are focusing on multi–word terms (MWTs) and relations
between them that can be inferred from their content. In some
cases, the BOW approach may be used to identify hyponymy
relation between terms. For example, the subsumption rela-
tionship between the BOW representatives of two terms
t1 = anterior cruciate ligament and t2 = cruciate ligament
can be used to infer that t1 is a hyponym of t2. However,
the BOW approach is insufficient (e.g. complete tear of ante-
rior cruciate ligament is not a hyponym of anterior cruciate
ligament), because identification of hyponymy very much
depends on the analysis of syntactic relations, mainly the
head–modifier relation [5], [18], [19].

The concept of a head predates modern linguistic the-
ory, but is found in current theories in the areas of syntax
(when relating to phrases), morphology (when relating to
word structure, especially compounding) as well as semantics
(when governing meaning relations). Heads are the elements
of larger constructs and dominate those constructs in struc-
tural and/or semantic respects. For example, in the phrase
high blood pressure, the noun pressure is usually considered
to be the head. From a semantic standpoint, it governs the
semantic relations of the combination [20] such that the
whole phrase is a kind of pressure, with blood and high
being semantic dependents, the first forming a compound
with pressure and the second being an adjectival dependent
of that compound once formed [NP [JJ high] [NP [NN blood]
[NN pressure]]] (note that we are using the Penn Treebank tag
set [21]).

Although typically structural and semantic heads coincide,
this is not always a straightforward case. Some expressions
may be fully or partially idiomatic where the semantics
may not follow regularities regarding headedness. Ambi-
guity may also arise from competing structural analyses.
For example, although English compounds are normally
right–headed, a secretary general is not a kind of general.
Similarly, a sexually transmitted disease clinic is not a disease
clinic that can be transmitted sexually [22]. The latter is
an example of the bracketing paradox where a phrase may
have multiple structural analyses (e.g. [NP [NP [ADJP sexually
transmitted] disease] clinic] vs. [NP [ADJP sexually transmit-
ted] [NP disease clinic]]) and either idiomatic, established
meanings or contextual clues are needed to choose the correct
structure [23]. Generally, compounding has been observed
to be more idiosyncratic with regard to semantic heads and
competing structures than syntactic combinations. This is
especially the case with noun–noun compounds in English,
as seen above, and is complicated further if more than two
nouns are involved as is the case more frequently in technical
language [24].

In phrase structure grammars [25]–[27], heads are com-
bined with other elements to form larger phrases in a

FIGURE 1. A parse tree example.

FIGURE 2. A parse tree example.

hierarchical fashion. We make use of the concept of
headedness in the analysis of the internal structure of
multi–word terms in order to detect their lexico–syntactic
similarity that can help organize them into a hierarchy. Con-
sider, for example, twoMWTs, acute exacerbation of chronic
obstructive pulmonary disease and chronic obstructive pul-
monary disease exacerbation, whose parse trees are shown
in Fig. 1 and 2 respectively. The fact that the noun exacerba-
tion is the overall head of both phrases allows us to align the
two phrases by matching their heads as well as the subphrase
chronic obstructive pulmonary disease, which in turn allows
us to infer that acute exacerbation of chronic obstructive
pulmonary disease is a hyponym of chronic obstructive
pulmonary disease exacerbation.
Headedness and phrase structure hierarchies have been

used to extract semantic structures before; the notorious
case of noun–noun compound semantics has been the sub-
ject of many recent efforts in NLP, including a special
issue of Natural Language Engineering dedicated to the
topic (Vol 19:3, 2013). Although the semantics of com-
pounds remains challenging, our present focus and approach
is geared toward syntactic mechanisms. In this paper,
we explore the phrase structure hierarchy in an approach to
measuring semantic similarity between MWTs.

We have previously developed an ATR system called
FlexiTerm [8]. Given a domain–specific corpus of text docu-
ments as an input, the system outputs a list of MWTs recog-
nized automatically. The lack of structure reduces the utility
of theATR results and limits potential applications. Hierarchy
is the main organizational principle of terminologies and this
is the step that we would like to automate. Hierarchical clus-
tering is an unsupervised data mining approach that builds
a hierarchy from an otherwise unstructured data set, which
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makes it fit for the given purpose. The choice of a similarity
measure will affect the type of hierarchy produced. Ideally,
we would like it to correspond closely to the structure of
taxonomy. In other words, terms representing concepts of
the same type, i.e. hyponyms, co–hyponyms and hypernyms,
should be grouped together in the hierarchy. We have already
established that the head noun is pivotal in determining
the hyponymy relation and, therefore, the similarity mea-
sure should reflect this property. In this paper, we describe
our approach to extending the functionality of FlexiTerm to
include measuring of semantic similarity between MWTs
and, subsequently, their hierarchical clustering.

FIGURE 3. Data processing flowchart.

II. METHODS
A. METHOD OVERVIEW
Fig. 3 describes the key steps taken to organize a list ofMWTs
extracted automatically from a domain–specific corpus of
text documents into a hierarchy based on their semantic
similarity. Given a vector space, calculation of similarity and
hierarchical clustering make straightforward use of existing
computational methods. For them to achieve the desired out-
come, the most crucial step is the choice of an appropriate
vector space representation [28]. In our case, we want to
marry the hierarchical nature of the internal structure of
MWTs with their flat vector representation.

In our approach, this is achieved by weighing lexical
features in accordance with their syntactic relation to the
head noun. These relations can be extracted automatically
by traditional means of syntactic analysis (dependency and
constituency parsing) andmodelled as a graph. The following
sections provide more details on each processing step with
most space dedicated to feature representation and extraction.

B. NOUN PHRASE STRUCTURE AS
A DIRECTED ACYCLIC GRAPH
From the syntactic point of view, terms are noun
phrases (NPs) [1], [2]. To formally represent the structure of
NPs, a few definitions from graph theory are in order [29].
A directed graph is an ordered pair (V, A), where V is a set
of elements called vertices and A is a subset of ordered pairs
of distinct vertices called arcs. An arc (u, v) ∈ A is said to
leave its tail–vertex u and to enter its head–vertex v. We say
that u dominates v, which can be denoted by u→ v. An out–
degree of a vertex u ∈ V is d+(u) = |{v : (u, v) ∈ A}|, i.e. the
number of arcs leaving u. A directed acyclic graph (DAG)
is a finite directed graph that has no cycles, i.e. there is no

vertex v such that there is a sequence of arcs (vi, vi+1) ∈ A
(i = 1, . . . , n) where v1 = v and vn = v.

Syntactic structure of NPs can be modelled by a depen-
dency grammar, a syntactic framework based on binary
asymmetric relations, called dependencies, between individ-
ual words [30]. Dependencies reflect grammatical functions,
where a word depends on another if it acts as a comple-
ment or a modifier of the latter, which in such dependency
acts as the functional head.Well–formedness of a dependency
structure is prescribed by four axioms [31]:

A1. One and only one element is independent.
A2. All other elements depend directly on some element.
A3. No element depends directly on more than one other.
A4. If A depends directly on B and some element C

intervenes between them (in the linear order of the string),
then C depends directly on A or B or some other intervening
element.

Axioms A1–A3 imply that a well–formed dependency
structure must be a tree, where the only independent element
(i.e. the head) is its root. Axiom A4 does not allow arcs to
cross in a dependency tree.

Stanford CoreNLP [32] is an NLP toolkit with a broad
range of grammatical analysis tools including a dependency
parser. Stanford dependencies are triplets that include the
name of the relation, governor and dependent [33]. Stanford
CoreNLP supports a collapsed representation of dependen-
cies, in which dependencies involving prepositions, conjuncts
and relative clauses are collapsed to get direct dependencies
between content words [34]. Let us consider, for example,
dependency relations within the phrase acute exacerbation
of chronic obstructive pulmonary disease. The noun exac-
erbation is the head of the corresponding dependency tree,
which has got two modifiers, the adjective acute and the
noun disease, which is further modified by three adjectives
chronic, obstructive and pulmonary. Note that there is a
direct dependency between the noun complement (exacer-
bation) of a preposition (of) and what it modifies (disease).
Stanford dependency parser provides an option for the col-
lapsed dependencies to preserve a tree structure. In turn,
the collapsed dependencies should represent a well–formed
dependency structure as prescribed by axioms A1–A4.
Fig. 4 provides a tree view of the collapsed dependencies
generated by the Stanford dependency parser.

FIGURE 4. A collapsed dependency tree example.
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FIGURE 5. Ordering of vertices in a dependency graph for the phrase
acute exacerbation of chronic obstructive pulmonary disease.

Every tree is a DAG. In a collapsed dependency tree,
vertices are the content words and arcs are dependency
relations between them. For those vertices u in the depen-
dency tree that have out–degree d+(u) > 1, we would
like to add arcs between vertices linked to u while pre-
serving a DAG structure. For example, in the tree shown
in Fig. 4 d+(exacerbation) = 2 and d+(disease) = 3.
We would like to enhance the original dependency graph by
organizing the corresponding sets of vertices {acute, disease}
and {chronic, obstructive, pulmonary} respectively. Specifi-
cally, we would like to induce linear order relations on these
sets, e.g. acute < disease and pulmonary < obstructive <

chronic. Fig. 5 shows an example of a dependency graph
enrichedwith arcs that correspond to the two linear order rela-
tions. Note that linear ordering of vertices at the same level
of the tree prevents cycles from forming, thus the resulting
structure is that of a DAG. Next we explain how to induce
linear order in a systematic way. For this purpose, we make
use of a constituency parse.

As an alternative – or rather a complement – to dependency
grammar, syntactic structure of NPs can be modelled by a
phrase structure grammar, a syntactic framework based on
constituency relations where individual words are grouped
into phrases in a hierarchical fashion [35]. Fig. 1 shows
an example of a constituency parse. The tree structure of a
constituency parse can be used to compare the strength of
association between words.

For example, focusing on the set of descendants of the
node exacerbation in the collapsed dependency tree shown
in Fig. 4, we can order the set {acute, disease} using the
strength of association with their parent (exacerbation) in the
constituency parse tree shown in Fig. 1. Using the depth of the
most specific common antecedent to measure the strength of
association we get S(acute, exacerbation)= 2 and S(disease,
exacerbation) = 1. Given that S(acute, exacerbation) >

S(disease, exacerbation), we conclude that the word acute
is more strongly associated with the word exacerbation than
is the word disease, and, therefore, by convention the word
acute should come before the word disease in the linear order.

In case of a tie, we introduce another convention based on the
original word order in the given phrase.

For example, focusing on the set of descendants of the node
disease in the collapsed dependency tree shown in Fig. 4,
we can attempt to order the set {chronic, obstructive, pul-
monary} using the strength of association with the word
disease. Using the depth of the most specific common
antecedent in the constituency parse tree to measure the
strength of association we get a tie: S(chronic, disease) =
S(obstructive, disease) = S( pulmonary, disease) = 3. Using
the original word order from right to left to break the tie,
we conclude that pulmonary < obstructive < chronic. If we
now add the newly introduced linear order relationships to
the original dependency graph given in Fig. 4, we get a DAG
shown in Fig. 5.

FIGURE 6. An alternative constituency parse.

If we consider an alternative constituency parse for the
given phrase (see Fig. 6), we get S(acute, exacerbation) = 1
and S(disease, exacerbation) = 2. Given that S(acute, exac-
erbation) < S(disease, exacerbation), we conclude that the
word disease is more strongly associated with the word exac-
erbation than is the word acute, and, therefore, by convention
the word disease should come before the word acute in
the linear order. As before, the words chronic, obstructive,
pulmonary are tied, i.e. S(chronic, disease) = S(obstructive,
disease) = S( pulmonary, disease) = 4. Using the original
word order from right to left to break the tie, we conclude that
pulmonary< obstructive< chronic. If we now add the newly
introduced linear order relations to the original dependency
graph given in Fig. 4, we get a DAG shown in Fig. 7, which
differs from the one shown in Fig. 5 only by the direction of
the arc between the words acute and disease.

C. TOPOLOGICAL ORDERING OF
A DIRECTED ACYCLIC GRAPH
Going back to the graph theory, a topological ordering
of a directed graph is defined as a linear ordering of its
vertices such that for every arc (u, v) in the given graph,
vertex u comes before vertex v in the given ordering [29].
Using the most recent example of a directed graph shown
in Fig. 7, the sequence exacerbation, disease, pulmonary,
obstructive, chronic, acute is a topological ordering as is the
sequence exacerbation, disease, acute, pulmonary, obstruc-
tive, chronic. Obviously, the given examples show that a
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FIGURE 7. Alternative ordering of vertices in a dependency graph for the
phrase acute exacerbation of chronic obstructive pulmonary disease.

topological ordering need not be unique. A topological order-
ing of a directed graph exists if and only if the graph is acyclic,
in which case a topological ordering can be found in linear
time [36].

In this section, we explained the manner in which depen-
dencies between the words in an NP can be represented by
a DAG. Therefore, we can find a topological ordering of
the words in an NP, where the first element in the ordering
is always the head noun. Adding a constraint that elements
of simple NPs – the ones that contain no nested phrases
(e.g. NPchronic obstructive pulmonary disease in the con-
stituency parse shown in Fig. 7) – must stay adjacent in
the topological ordering, we can further reduce the search
space. Under these constraints, the only acceptable topologi-
cal ordering of a DAG shown in Fig. 7 is the sequence exac-
erbation, disease, pulmonary, obstructive, chronic, acute.
Intuitively, such ordering reflects the strength of association
with the head noun.

D. THEORY VERSUS PRACTICE
There are practical challenges associated with implementing
the proposed theoretical approach, which are related to the
performance of constituency and dependency parsers in terms
of efficiency and accuracy [23], [37]. The most prominent
issue associated with parsing MWTs is that of identifying
post–modifiers in NPs. The basic canonical structure of an
English NP consists of a determiner (e.g. an article), a mod-
ifier (e.g. an adjective), followed by the obligatory head
noun, which could be followed by a post–modifier (typi-
cally phrasal), all modifiers being entirely optional [38], [39].
In the absence of a post–modifier, the head noun will be the
right–most noun in the NP. Based on this assumption, a post–
modifier often gets erroneously identified as the head. For
example, let us observe the differences in dependency graphs
(see Fig. 8–11) obtained automatically by Stanford CoreNLP
(shown on the left) against those defined manually by a lin-
guist (shown on the right). The only correctly parsed phrase is
the one illustrated in Fig. 11. In all others, the post–modifier
was treated either as the head of a sub–phrase (Fig. 8) or the

FIGURE 8. Dependency graphs for the phrase patients with hepatitis C.

FIGURE 9. Dependency graphs for the phrase tumor necrosis factor
alpha.

FIGURE 10. Dependency graphs for the phrase nuclear factor kappa B.

FIGURE 11. Dependency graphs for the phrase human factor VIII.

overall head (Fig. 9 and 10), changing the topological order
of the given phrases from patients, hepatitis, C to patients, C,
hepatitis in Fig. 8, from factor, necrosis, tumor, alpha to
alpha, factor, necrosis, tumor in Fig. 9 and from factor,
nuclear, kappa, B to kappa, factor, nuclear, B in Fig. 10.

Biomedical domain exhibits prevalent use of post–
modifiers in the formation of MWTs [18], in particular in
the form of numerals both Arabic (e.g. diabetes mellitus
type 2) and Roman (e.g. blood coagulation factor IX), letters
both Latin (e.g. acute hepatitis B) and Greek (e.g. thyroid
hormone receptor beta), Latin phrases (e.g. papillary carci-
noma in situ) or a combination of these (e.g. human factor
VIIIa or vitamin B12). These modifiers are typically intro-
duced to enumerate different varieties of the same concept
so as to lexically distinguish between these instances in a
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discourse. As such, these modifiers on their own usually
encode little or no domain–specific meaning. For instance,
the letter B in nuclear factor kappa B bears no relationship
whatsoever to the same letter in acute hepatitis B. Incorrectly
treating it as the head of the two respective phrases would give
it unduly importance and could skew the lexico–syntactic
comparison of the two otherwise unrelated terms. Still, this
special class of modifiers cannot be treated as stop words and
simply removed from consideration, because they do encode
useful information when collocated with other lexical units
within aMWT. Their heavy dependence on other lexical units
should be reflected by the relatively low priority given to them
in any lexico–syntactic comparison of the respective terms.

In summary, by parsing an NP, it can be represented
as a DAG, which can be ordered in linear time using an
existing algorithm. However, with the accuracy of parsers
in the biomedical domain being in the low 90s at best [40],
we are likely to see parsing errors translated into inaccurate
topological ordering. The fact that our input is restricted
to MWTs recognized automatically by FlexiTerm reduces
the complexity of the parsing problem, which allowed us
to implement an efficient heuristic approach to approximat-
ing topological ordering. The approach described thus far is
certainly more general and remains a viable option pending
future improvements in parsing performance. In the context
of this study, it provides a formal mathematical description of
the problem at hand.

E. ASSUMPTIONS
FlexiTerm recognizes MWTs whose structure conforms to a
set of pre–defined lexico–syntactic patterns [8]. We will limit
our discussion to the default set of patterns, which include:

T1. (JJ | NN)+ NN, e.g. congestive heart failure
T2. (NN | JJ)∗ NN POS (NN | JJ)∗ NN, e.g.Hoffa’s fat pad
T3. (NN| JJ)∗ NN IN (NN| JJ)∗ NN, e.g. acute exacerba-

tion of chronic bronchitis
These constraints reduce the complexity of the parsing

problem. To further simplify the problem, we assume that the
syntactic structure of MWTs of these three types complies
with the structure shown in Fig. 12–15. Note that the provided
structures assume the absence of post–modifiers. We will
explain later how post–modifiers will be dealt with.

FIGURE 12. Assumed dependency and constituency parses of NPs of
type T1.

For the simple NPs of types T1 and T2, minor devia-
tions from the correct syntactic structure are irrelevant as the
corresponding phrases would always be ordered from right

FIGURE 13. Assumed dependency and constituency parses of NPs of
type T2.

FIGURE 14. Assumed dependency and constituency parses of NPs of
type T3 with any preposition other than of.

FIGURE 15. Assumed dependency and constituency parses of NPs of
type T3 with the preposition of.

to left. For example, let us compare the correct constituency
parse of the phrase Alzheimer’s disease assessment scale
[NP [NP Alzheimer’s disease] [NP assessment scale]] against
the assumed one [NP [NP Alzheimer’s] [NP disease assessment
scale]]. After removing the possessive, in both cases we get
the same order – scale, assessment, disease, Alzheimer.

Further, we differentiate between two subtypes of complex
NPs of type T3 depending on a specific preposition used.
The special treatment of the preposition of is based on the
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observation of synonyms recognized by FlexiTerm. Con-
sider, for example, two synonyms complete cartilage loss and
complete loss of cartilage(for more examples of semantic
interpretation of NPs using paraphrases see [41]). Ideally,
the given synonyms should have the same topological order.
The simple NP variant complete cartilage loss has got the
following order – loss, cartilage, complete (note that prepo-
sitions, as stop words, are not included in the order). If we
assume the alternative NP variant has got the structure shown
in Fig. 14, then its topological order would be loss, complete,
cartilage. If, however, we assume it has got the structure
shown in Fig. 15, then its topological order would be loss,
cartilage, complete. In theory, this can be explained by the
genitive use of the preposition of, where the forms NN1 POS
NN2 and NN2 of NN1 are equivalent with the possessive
often being omitted, albeit incorrectly. Other prepositions
do not usually exhibit such strong association to the head
noun, e.g. oxygen saturation on room air or commonmigraine
without aura, where adjectival and nominal modifiers take
precedence to the prepositional modifier as reflected by the
structure shown in Fig. 14. There are, of course, exceptions to
these rules, e.g. range of motion exerciseswhose correct parse
[NP [NP range [PP of motion]] exercises] does not correspond
to either of the proposed structures or the corresponding
topological orders. Such exceptions will naturally introduce
some degree of noise into the processed data. Its effects will
be explored later by evaluating the end goal of this study,
which is to cluster semantically similar terms.

F. A HEURISTIC APPROACH TO TOPOLOGICAL ORDERING
Previously described lexico–syntactic constraints on term
formation patterns (T1–T3) together with assumptions on
their syntactic structure (Fig. 12–15) allowed us to implement
an efficient heuristic approach to approximating topological
ordering of content words within MWTs. To effectively deal
with a previously discussed class of post–modifiers, we add
a constraint that no such modifier should come before a regu-
lar content word in the topological ordering. The following
pseudocode provides a summary of the proposed heuristic
approach:

1. Tokenize a term and add a special left–boundary
token (LBT) at the start.

2. Remove the following tokens:

a. possessives (e.g. Hoffa’sfat pad)
b. past participles that follow a hyphen (e.g. immunore-

ceptor tyrosine–based activation motif)
c. preposition like (e.g. killer–cell immunoglobulin–

like receptor)
d. punctuation (e.g. Epstein–Barr virus)
e. numerals (e.g. casein kinase II or

24,25–dihydroxyvitamin D3)

3. Move all tokens of the following types ahead of the
left–boundary token:

a. letters (e.g. nuclear factor kappa B)
b. Latin phrases (e.g. papillary carcinoma in situ)

4. Remove prepositions in Latin phrases (e.g. papillary
carcinoma in situ).

5. If a preposition is present, then let us refer to the
sequence of tokens from the preposition to the right
as PP.
a. If the preposition is of, then move PP in front of

the token that immediately precedes the preposi-
tion of.

b. If any other preposition, then move PP immedi-
ately after the left boundary token.

6. Invert the order of all tokens.
7. Remove the left boundary token and any stop words.

TABLE 1. A run–through example of topological ordering

TABLE 2. A run–through example of topological ordering.

Tables 1 and 2 provide two run–through examples for the
given algorithm. They also illustrate the motivation behind
specific algorithm steps. For example, past participles are
removed from hyphenated expressions as they are considered
to be auxiliary in the sense that they are primarily supporting
the correct syntax rather than carrying significant seman-
tic load. Preposition like is removed for the same reason.
In addition, like being a preposition, we want to exclude
it from consideration in Step 5. For the same reason, we
remove prepositions found within Latin phrases. The given
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algorithm could easily be adapted to process more complex
terms recursively, one prepositional phrase at the time from
left to right. For example, mutation in the inhibitor of kappa
light polypeptide gene enhancer in B cells would be ordered
as mutation, inhibitor, enhancer, gene, polypeptide, light,
cells, kappa, B.

G. VECTOR SPACE
A topological order of the content words that comprise a
MWT allows us to assign different weights to different words
based on their position in the given order. The idea is sim-
ilar to that of the vector space model used in information
retrieval, where text documents are represented by feature
vectors. Each feature corresponds to a word and it is assigned
a weight based on its relevance to the document, e.g. using
a statistical measure such as term frequency–inverse docu-
ment frequency [42]. In turn, vector representation allows
documents to be easily compared against one another using
the simple concepts of angles or distances borrowed from
analytic geometry.

Going back to our original problem, let us explain how
MWTs could be represented by feature vectors. Each fea-
ture corresponds to a content word w or, more precisely,
its stem. Its relevance to a given MWT t , R(w), is calcu-
lated as a non–negative non–increasing function f (p(w)) of
its position p in the topological order of the term t . The
proximity of two vectors can be calculated using measures
such as Euclidian distance or cosine similarity. We opted for
the latter because it represents a measurement of orientation
and not magnitude [43]. As such, it is preferred in the con-
text of our particular vector space representation. Namely,
the proposed feature vectors will be sparse, i.e. their elements
will have mostly zero values, and consequently Euclidean
distance would exhibit weak discrimination in face of high
dimensionality [44].

H. HIERARCHICAL CLUSTERING
Having chosen a proximity metrics in a vector space, MWTs
can now be clustered using their feature vectors. In partic-
ular, hierarchical clustering can be used to organize terms
into a hierarchy. In agglomerative hierarchical clustering this
is achieved by iteratively merging clusters. The key opera-
tion here is the computation of the proximity between clus-
ters. Different criteria can be used to compare two clusters,
e.g. single, complete or average linkage [45], [46]. Single
linkage (or minimum distance) is based on the distance
between two closest members of the respective clusters. Sin-
gle linkage can handle non–elliptical shapes of the clusters,
but it is sensitive to noise and outliers [47]. Conversely, com-
plete linkage (or maximum distance) is based on the distance
between two furthest members of the respective clusters.
Complete linkage is less susceptible to noise and outliers, but
it tends to break large clusters. Finally, average linkage (or
average distance) is based on the average pairwise distance
between the members of the respective clusters. It represents
a compromise between single and complete linkage. It is

less susceptible to noise and outliers, but it is biased towards
spherical clusters. Our implementation of hierarchical clus-
tering supports all three modes of agglomeration.

The results of hierarchical clustering are often visualized
using a dendrogram, a tree diagram that illustrates how clus-
ters are iteratively merged. Leaf nodes correspond to indi-
vidual elements being. Each internal node corresponds to a
cluster obtained by merging the children nodes. Its height
corresponds to the proximity of themerged clusters.We chose
to formally encode dendrograms using the Newick format,
a simple grammar that allows tree structure to be repre-
sented using parentheses and commas [48]. It also allows
for storing node labels and branch lengths. The format is
widely used in bioinformatics applications to store, exchange
and display phylogenetic trees [49]. All dendrograms in
this article have been visualized using an online tool called
EvolView [50], [51].

III. RESULTS
We will describe the details of our experiments in the context
of the data processing flow shown in Fig. 3. The section on
raw data describes the properties of text documents used as
input to ATR. The section on processed data describes the
parameters of ATR and the selection of MWTs for further
processing. The data representation section describes how
MWTs were converted into feature vectors. In this study we
make use of existing clustering methods. For them to perform
well, the most crucial step is the choice of an appropriate
vector space representation, which is where the main contri-
bution of this study lies. Therefore, to evaluate the clustering
performance, this is where we introduce the baseline as an
alternative data representation method. Finally, the results
were evaluated in terms of clustering tendency and clustering
accuracy and reported in the corresponding sections.

A. RAW DATA
A study of subdomain variation in biomedical language has
highlighted significant implications for evaluation of NLP
tools [56]. In particular, the study emphasized that molec-
ular biology is not representative of the overall biomedical
domain,meaning that the results obtained using a corpus from
this subdomain (e.g. [52]) cannot be generalized. Similarly,
a comparative evaluation of term recognition approaches
revealed that the choice of corpora have a significant impact
on their performance [57]. Therefore, in order to evaluate our
method across a wide variety of sublanguages, i.e. languages
confined to specialized domains [58], we used 9 data sets
associated with a range of biomedical topics and discourse
types (see Table 3 for basic description).

B. PROCESSED DATA
Each data set described in Table 3 was processed by
FlexiTerm [8] in order to automatically extract MWTs. The
latest version of FlexiTerm integrates recognition of acronym
and their mapping to the corresponding full forms into the
term recognition process [59]. It supports two modes of
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TABLE 3. Data sets used in evaluation.

acronym recognition: (1) explicit (or local) acronyms, which
are defined in a text document following scientific writing
conventions, and (2) implicit (or global) acronyms, which are
used in a text document without an explicit definition. Appro-
priate options were used for each data set, i.e. option (1) was
used with scientific reports (i.e. data sets D1–D5), whereas
option (2) was used with clinical narratives (i.e. data sets
D6–D9). No other changes to the default values of FlexiTerm
parameters were made.

FlexiTerm groups all variants of the same term together
by neutralizing main sources of variation in biomedical
terms – orthographic, morphological and syntactic variation
as well as acronyms. In order to measure similarity between
MWTs, themost frequent term variant other than the acronym
was selected as the term representative. For each data set,
we selected 120 top–rankedMWTs (i.e. their representatives)
to conduct clustering experiments.

C. DATA REPRESENTATION
MWTs were converted into feature vectors as described pre-
viously in Section II.G. In short, content words were used
as features. Given a MWT, each content word was weighed
depending on its position in a topological order of all con-
tent words that comprise the MWT. In our experiments,
the weight was chosen to be inversely proportional to the
position. We used constant weights in an alternative data
representation. Note that this is equivalent to the conven-
tional BOW representation discussed previously in Section I.
This representation was used to provide the baseline in our
experiments.

D. CLUSTERING TENDENCY
Before performing clustering experiments, we assessed the
clustering tendency of two data representation methods.

Clustering tendency measures the degree to which a given
data set exhibits a clustering structure. For example, data that
contain compact non–overlapping clusters are regarded to
have higher clustering tendency. On the other hand, randomly
distributed data have little or no clustering tendency. It is
important to assess clustering tendency because clustering
methods will cluster data even in the absence of natural
clusters, i.e. those whose members are sufficiently related to
one another and sufficiently unrelated to non–members so as
to facilitate comprehension of the ways in which individual
elements are related.

We employed the visual assessment of tendency (VAT)
method [60]. Given a dissimilarity matrix, whose cells
express the similarity between the corresponding elements,
the VAT algorithm re–orders the elements (i.e. the corre-
sponding rows and columns of the matrix) so that more simi-
lar elements appear closer in the new ordering. Visualization
of the re–ordered dissimilarity matrix can then be used to
assess the degree of clustering tendency. If the data have
stronger clustering tendency, then the matrix will appear to
have a more prominent block–diagonal structure. In practice,
each block in the matrix corresponds to a cluster present in
the data. On the other hand, if the data have poorer clustering
tendency, then the matrix will appear to have a less prominent
block–diagonal structure.

FIGURE 16. Visual assessment of clustering tendency for the baseline
data representation.

We ran the VAT algorithm on both data representations.
The results are shown in Fig. 16 and 17. Visual inspection of
the results reveals that the proposed weighted data represen-
tation has got stronger clustering tendency than the baseline
representation as illustrated by higher concentration of blocks
along the diagonal and reduced randomness away from the
diagonal. The next step is to check whether this change in
the topology of the feature space more accurately reflects the
underlying semantics. This hypothesis is tested by assessing
the clustering accuracy.
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FIGURE 17. Visual assessment of clustering tendency for the weighted
data representation.

E. CLUSTERING ACCURACY
Evaluating the results of hierarchical clustering is an open
research problem. The approaches used in evaluating the
results of partitional clustering based onmeasuring intra– and
inter–cluster distances do not translate easily into hierarchi-
cal clustering because of the different nature of the clusters
produced – the ones in partitional clustering do not overlap,
whereas the ones in hierarchical clustering do. Therefore,
different measures were proposed to evaluate the results of
hierarchical clustering. For example, [61] proposed cutting
dendrograms at various levels and counting the number of
matching elements in the remaining clusters. In text min-
ing, hierarchical clustering is often evaluated in the context
of a specific application, e.g. browsing a large document
collection [62]–[64].

We too considered a practical application of clustering
results. Our ultimate aim was for the automatically induced
hierarchy of terms to mimic the structure of a taxonomy.
In other words, terms representing concepts of the same
type, i.e. hyponyms, co–hyponyms and hypernyms, should
be grouped together in the hierarchy. To create the gold
standard, we organized 120 terms extracted from each data
set into a hierarchy using the following principles: (1) All co–
hyponyms should be grouped at the same level, e.g. core bind-
ing factor alpha and core binding factor beta. (2) Hyponyms
should be at lower level than their hypernyms, e.g. core
binding factorshould be a level above core binding factor
alpha and core binding factor beta. (3) If it does not affect
conditions (1) and (2), then a term (or a cluster) should be
grouped with the most related cluster of terms, e.g. cell line
should be grouped with a cluster containing specific cells
such as B cell or Jurkat cell.

To evaluate an automatically generated dendrogram,
it should be compared to the gold standard. The more
similar the two are, the better the clustering results.

To estimate the similarity between the two hierarchies,
we used the Robinson–Foulds metric [65]. Given a pair of
distinct unrooted trees, each having the same set of labelled
leaves, the Robinson–Foulds distance between the two trees
is defined as the smallest number of contractions required to
convert one tree into the other. A contraction is an operation
performed on an edge by creating a union of the correspond-
ing vertices.

FIGURE 18. The Robson–Foulds distance from the gold standard.

Dendrograms can be viewed as a particular type of
unweighted phylogenetic trees for which the Robinson–
Foulds distance can be computed efficiently, i.e. in time
linear to the number of leaves [66]. We used DendroPy [67]
to compute the Robinson–Foulds distance with respect to
the gold standard. Fig. 18 provides the values calculated
for this distance for each dataset and the parameters of our
experiments, which include the choice of data representa-
tion (including the baseline – indicated by an asterisk) and
agglomerative method (single, complete and average link-
age). Our data representation method (blue lines) outper-
formed the baseline (red lines) in terms of clustering accuracy
regardless of the agglomerative method used. Given a data
representation, there is little difference between complete and
average linkage. However, with a single exception (see D8),
the performance of single linkage is consistently poorer than
that of the other two methods.

To illustrate the differences in clustering accuracy,
we selected a few main categories of terms (e.g. in the data
set D1 these would be cells, proteins, etc.) and color–coded
them in the dendrograms provided in the supplementary files
as well as Fig. 19 and 20 (e.g. in data set D1 proteins are
highlighted in yellow). Visual inspection of the dendrograms
demonstrates that the weighted data representation provides
better consistency in grouping the terms of the same category
together. This is more consistent with a taxonomic orga-
nization principle (i.e. is–a relationship), hence 30% fewer
contractions are required to map dendrograms from Fig. 20
to the corresponding taxonomies than the baseline ones.

20554 VOLUME 6, 2018



I. Spasić et al.: Head to Head: Semantic Similarity of Multi–Word Terms

FIGURE 19. Dendrograms obtained from baseline data representation
using complete linkage.

FIGURE 20. Dendrograms obtained from the weighted data
representation using complete linkage.

Manual inspection of the dendrograms confirmed that, as
intended, clustering on the weighted data representation tends
to favor semantic similarity (based on is–a relationship) over
semantic relatedness (based on any relationship between
terms including but not limited to is–a) unlike the conven-
tional BOW approach. Therefore, the weighted data repre-
sentation approach is better suited for the task of automatic
taxonomy construction.

IV. CONCLUSION
We presented an approach to organizing a list of MWTs
extracted automatically from a domain–specific corpus of
text documents into a hierarchy based on their semantic
similarity. Given a vector space, calculation of similarity and
hierarchical clustering make straightforward use of existing
computational methods. For them to achieve the desired out-
come, the most crucial step is the choice of an appropri-
ate vector space representation, which is where the main
contribution of this study lies. In our approach, we trans-
lated the graph–like structure of MWTs into a flat vector
representation. To define the problem, we first formalized
interpretation of the noun phrase structure based on graph
theory and used it to define topological ordering of its con-
stituents based on constituency and dependency relations
between them. Given a DAG, such ordering can be found
in linear time using an existing algorithm. However, this
approach is sensitive to errors associated with automatically
inferred constituency and dependency relations. Therefore,
we implemented an alternative algorithm, which, given a
noun phrase, approximates the topological ordering of its
constituents. Such ordering is then used to assign different
weights to different words based on their position in the
ordering. Clustering performed on such vector space repre-
sentation shows considerable improvement over the conven-
tional BOW representation, i.e. it more consistently reflects
semantic similarity between the terms. Semantic similarity is
based on is–a relationship, which represent the main organi-
zational principle of terminologies. Therefore, in combina-
tion with our existing term recognition approach, the method
described in this study can be used to semi–automate tax-
onomy construction from a corpus of domain–specific doc-
uments. Our approach is complementary to distributional
semantics approaches (e.g. [68], [69]), which require large
amounts of contextual information to infer relations between
terms, in the sense that it uses the terms themselves to make
comparisons. The fact that our approach does not require a
large data set to make such inferences is advantageous in
scenarios where accessibility of text data is limited, e.g. in
clinical applications where privacy concerns exist.
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[53] R. I. Doǧana, R. Leamana, and Z. Lua, ‘‘NCBI disease corpus: A resource
for disease name recognition and concept normalization,’’ J. Biomed.
Inform., vol. 47, pp. 1–10, Feb. 2014.

[54] D. Demner-Fushman and J. G. Mork, ‘‘Extracting characteristics of the
study subjects from full-text articles,’’ in Proc. Annu. Symp. Amer. Med.
Inform. Assoc., San Francisco, CA, USA, 2015, pp. 484–491.

[55] Ö. Uzuner, ‘‘Recognizing obesity and comorbidities in sparse data,’’
J. Amer. Med. Inform. Assoc., vol. 16, no. 4, pp. 561–570, 2009.

[56] T. Lippincott, D. Ó. Séaghdha, and A. Korhonen, ‘‘Exploring subdomain
variation in biomedical language,’’BMCBioinf., vol. 12, p. 212,May 2011.

[57] Z. Zhang, J. Iria, C. Brewster, and F. Ciravegna, ‘‘A comparative evaluation
of term recognition algorithms,’’ inProc. 6th Int. Conf. Lang. Resour. Eval.,
Marrakech, Morocco, 2008, pp. 2108–2111.

[58] Z. Harris, ‘‘Discourse and sublanguage,’’ in Sublanguage: Studies
of Language in Restricted Semantic Domains, R. Kittredge and
J. Lehrberger, Eds. Berlin, Germany: Walter de Gruyter, 1982,
pp. 231–236.

[59] I. Spasić, ‘‘Acronyms as an integral part of multi-word term recognition—
A token of appreciation,’’ IEEE Access, vol. 6, pp. 8351–8363, 2018.

[60] J. C. Bezdek and R. J. Hathaway, ‘‘VAT: A tool for visual assessment of
(cluster) tendency,’’ in Proc. Int. Joint Conf. Neural Netw., Honolulu, HI,
USA, 2002, pp. 2225–2230.

20556 VOLUME 6, 2018



I. Spasić et al.: Head to Head: Semantic Similarity of Multi–Word Terms

[61] E. B. Fowlkes and C. L. Mallows, ‘‘A method for comparing two hierar-
chical clusterings,’’ J. Amer. Statist. Assoc., vol. 78, no. 383, pp. 553–569,
1983.

[62] B. Larsen and C. Aone, ‘‘Fast and effective text mining using linear-
time document clustering,’’ in Proc. 5th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, San Diego, CA, USA, 1999, pp. 16–22.

[63] Y. Zhao and G. Karypis, ‘‘Evaluation of hierarchical clustering algorithms
for document datasets,’’ in Proc. 11th Int. Conf. Inf. Knowl. Manage.,
McLean, VA, USA, 2002, pp. 515–524.

[64] N. Sahoo, J. Callan, R. Krishnan, G. Duncan, and R. Padman, ‘‘Incremental
hierarchical clustering of text documents,’’ in Proc. 15th ACM Int. Conf.
Inf. Knowl. Manage., Arlington, VA, USA, 2006, pp. 357–366.

[65] D. F. Robinson and L. R. Foulds, ‘‘Comparison of phylogenetic trees,’’
Math. Biosci., vol. 53, nos. 1–2, pp. 131–147, 1981.

[66] W. H. E. Day, ‘‘Optimal algorithms for comparing trees with labeled
leaves,’’ J. Classification, vol. 2, no. 1, pp. 7–28, 1985.

[67] J. Sukumaran and M. T. Holder, ‘‘DendroPy: A Python library for phylo-
genetic computing,’’ Bioinformatics, vol. 26, no. 12, pp. 1569–1571, 2010.

[68] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
26th Int. Conf. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2013,
pp. 3111–3119.

[69] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., Doha, Qatar, 2014, pp. 1532–1543.

IRENA SPASIĆ received the Ph.D. degree in com-
puter science from the University of Salford, U.K.,
in 2004. Following posts at the Universities of
Belgrade, Salford and Manchester, she joined the
Cardiff School of Computer Science and Informat-
ics in 2010, and became a Full Professor in 2016.
She leads the text and data mining research
theme at Cardiff University, and is a co-founder
of the U.K. Healthcare Text Analytics Research
Network. Her research interests include text min-

ing, knowledge representation, machine learning, and information manage-
ment with applications in healthcare, life sciences, and social sciences.

PADRAIG CORCORAN is currently a Lecturer
with the School of Computer Science and
Informatics, Cardiff University. He received the
European Marie Curie International Outgoing
Fellowship. He spent the outgoing phase of the
fellowship at the Massachusetts Institute of Tech-
nology. During the incoming phase, he was with
University College Dublin.

ANDREI GAGARIN received the Ph.D. degree in
computer science from the University of Manitoba
in 2003. He was with the University of Quebec,
Montreal, Acadia University, and the University
of London. He has been a Lecturer in mathemat-
ics with Cardiff University since 2016. His main
research interests are in graph theory, optimization
in networks, combinatorics, operational research,
data analysis, algorithms design and engineering,
and workflows and access control.

ANDREAS BUERKI received the Ph.D. degree
in general linguistics from the University of
Basel in 2013. He is currently a Lecturer in lin-
guistics with Cardiff University, specializing in
phraseology and corpus linguistics and quantita-
tive approaches to linguistic structure and lan-
guage change. He is a member of the advisory
council of the European Society of Phraseology.

VOLUME 6, 2018 20557


	INTRODUCTION
	METHODS
	METHOD OVERVIEW
	NOUN PHRASE STRUCTURE AS A DIRECTED ACYCLIC GRAPH
	TOPOLOGICAL ORDERING OF A DIRECTED ACYCLIC GRAPH
	THEORY VERSUS PRACTICE
	ASSUMPTIONS
	A HEURISTIC APPROACH TO TOPOLOGICAL ORDERING
	VECTOR SPACE
	HIERARCHICAL CLUSTERING

	RESULTS
	RAW DATA
	PROCESSED DATA
	DATA REPRESENTATION
	CLUSTERING TENDENCY
	CLUSTERING ACCURACY

	CONCLUSION
	REFERENCES
	Biographies
	IRENA SPASIC
	PADRAIG CORCORAN
	ANDREI GAGARIN
	ANDREAS BUERKI


