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Introduction 
Patients with locally-advanced pancreatic cancer who do not progress on initial treatment with 

chemotherapy may achieve improved local control with chemoradiotherapy [1].  There is evidence 

for a dose-response relationship in pancreatic cancer [2], hence increased dose could achieve better 

tumour control.  However, the radiotherapy dose that can be delivered is limited by gastro-intestinal 

(GI) toxicity [3-5], the risk of which also increases with dose [6]. 

 

Clinical data on the radiotherapy tolerances for the stomach and duodenum remain sparse, but 

some studies have confirmed the association between organ-at-risk (OAR) radiotherapy parameters 

and subsequent risk of toxicity [5, 7-12].  

 

We analysed toxicity outcomes in patients with local-advanced pancreatic cancer treated in two 

prospective phase-II clinical trials.  Patients in the SCALOP study (NCT 01032057, n=74) with stable or 

responding disease after 12 weeks of induction gemcitabine and capecitabine chemotherapy were 

randomised to receive either gemcitabine or capecitabine alongside 50.4 Gy in 28 fractions [13].  

Patients in the single-arm open-label ARCII study (EudraCT 2008-006302-42, n=23) received 59.4 Gy 

in 33 fractions during concomitant chemoradiotherapy with gemcitabine, cisplatin, and nelfinavir (a 

hypoxia modifier) [14].  

 

This analysis aimed to: 1) identify normal-tissue dose-volume histogram (DVH) parameters 

associated with increased risk of toxicity; 2) develop and validate predictive multivariable models for 

personalised estimation of risk that might be utilised in the clinic; 3) investigate possible associations 

of toxicity and survival outcomes.  

 

Material and Methods 
 

Patient data 
The trial eligibility criteria, treatment details and outcomes have been reported previously [13, 14].  

Toxicity events were prospectively recorded according to Common Terminology Criteria of Adverse 

Events (CTCAE), version 3.0 [15] in SCALOP and version 4.0 [16] in ARCII and both studies recorded 

baseline symptoms.  In ARCII, clinical assessments were weekly during radiotherapy, 6–8 weeks after 

radiotherapy and 3-monthly until 12 months.  In SCALOP, assessments were monthly during 

induction chemotherapy, weekly during radiotherapy, 2 weeks following radiotherapy, and 3 months 

and 6 months later.  In both studies, patients were prescribed prophylactic anti-emetics and acid-

suppressant medication.  

 

Symptoms of acute toxicity (nausea, vomiting, abdominal pain, GI bleeding/perforation, bowel 

obstruction, anorexia ± weight loss) were pooled to generate a single endpoint of ‘upper GI toxicity’ 
(UGIT) [17].  The maximal grade of any of these symptoms suffered by each patient during three 

months (90 days) from the onset of radiotherapy was collated.  The toxicity outcome was 

dichotomised according to a threshold of grade ≥2, chosen because this indicates requirement for 

medical intervention.   

 

Two patients from ARCII were excluded as they received only one radiotherapy fraction.  For one 

patient this was due to disease progression and the other due to unrelated medical comorbidity.  

One patient from SCALOP was excluded due to gastric outlet obstruction on planning CT causing 

abnormal stomach dilatation (measured stomach volume was 2954 cm3.  Median stomach volume 

was 361 cm3 (interquartile range 255 cm3 – 541 cm3).  Radiotherapy dose data was not available for 

three patients from the SCALOP study.  In total 91 patients (70 from SCALOP, 21 from ARCII) were 

included in the final analysis.  
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Disease and patient characteristics collected included age, sex, performance status, Body Mass Index 

(BMI), tumour volume and tumour location as indicated by centre of mass (head, neck or other).  In 

ARCII the Karnofsky Performance Status had been recorded and values were converted to equivalent 

ECOG grade [18].  For SCALOP patients, weight-loss during induction chemotherapy was calculated 

in kilograms.   

 

Radiotherapy data 
The details of radiotherapy delivery in the two studies, including radiotherapy trials quality 

assurance, have been described elsewhere [13, 14, 19, 20].  In SCALOP the Gross Tumour Volume 

(GTV) was defined as tumour visualised on CT scan with lymph nodes >1 cm diameter, and Planning 

Target Volume (PTV) was defined as GTV plus 20 mm margin in craniocaudal direction and 15 mm 

margin otherwise.  All patients were prescribed 50.4 Gy in 28 daily fractions in a single phase with 

three-dimensional conformal radiotherapy.  In ARCII radiotherapy was delivered in two phases: 50.4 

Gy in 28 daily fractions was prescribed to the primary tumour and draining lymph node regions 

followed by a sequential boost of 9 Gy in 5 fractions to the primary tumour PTV (also defined as GTV 

plus 20mm in the craniocaudal direction and 15mm in other directions).  Phase 1 was delivered using 

IMRT and phase 2 using conformal planning.  No dose-volume constraints for the stomach or 

duodenum were set in either study.  The use of intravenous contrast and oral water contrast (100-

200ml) for treatment-planning imaging was specified in both studies.  For ARCII, patients were 

fasted for two hours prior to planning and treatment.  Two patients in ARCII underwent re-planning 

due to weight-loss during radiotherapy.  The two partial courses were summed using deformable 

registration in Mirada RTx (Mirada Medical, Oxford, UK).  Doses were recalculated to reflect the 

delivered dose if patients did not complete their prescribed treatment (four patients in SCALOP and 

two in ARCII discontinued radiotherapy early due to toxicity, while overall 95% of planned fractions 

were delivered in SCALOP and 99% in ARCII).  For both trials the prophylactic use of a proton-pump 

inhibitor or histamine receptor blocker and appropriate anti-emetics during radiotherapy were 

mandatory, unless contra-indicated. 

 

The stomach and duodenum were contoured retrospectively according the Radiation Therapy 

Oncology Group (RTOG) atlas and guidance [21], with specialist radiologist support.  Where these 

structures had been previously contoured by treating clinicians (in all ARCII patients, and in nine 

SCALOP patients) they were modified as necessary. 

 

Radiotherapy planning CT and dose data were anonymised and imported into the CERR 

(Computational Environment for Radiotherapy Research) software package [22] and cumulative 

absolute dose-volume data was exported in 5-Gy bins (i.e. V5Gy, V10Gy etc.). 

 

Statistics 
Radiotherapy dose-volume data was not normally distributed hence non-parametric tests were used 

for assessment of associations and correlation.  Differences in continuous variables between groups 

were assessed using the Mann-Whitney-Wilcoxon test and differences in categorical frequencies 

using Chi-squared.  Tests for correlations used Kendall tau-b for dichotomous variables and 

Spearman’s rank for continuous variables.  Binary logistic regression was used to test relationships of 
predictive variables with risk of dichotomised outcomes and ordinal regression for grade of toxicity.  

Optimal risk thresholds for division of patients into groups according to continuous variables were 

derived using ROC analysis and Youden’s index [23].  Factors showing significant associations on 

univariate analysis and those with sound clinical rationale for relationships with toxicity were 

incorporated into multivariate logistic regression, which utilised backwards stepwise selection with 

criterion for retention in final model p < 0.1.  Optimal models were selected by maximal classification 

accuracy and AUC, with minimum Akaike Information Criterion (AIC), and five-fold internal cross-
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validation was used to estimate generalisability.  Overall and progression-free survival were 

compared between groups using log-rank (Mantel-Cox).  

 

Results 
CTCAE grade ≥2 UGIT symptoms occurred in 38 patients (42%) – grade 1 in 36 (39.6%), grade 2 in 26 

(28.6%), and grade 3 in 12 (13.2%).  No grade 4 or 5 toxicity occurred.  Risk of grade ≥2 UGIT was 
higher among the ARCII cohort than among the SCALOP patients, but not significantly so (χ2=1.267, 

p=0.260), as were proportion of patients with performance status ≥1 (χ2=2.837, p=0.092) and with 

tumour centre of mass in the neck or body of the pancreas, rather than the head (χ2=6.773, 

p=0.335).  Other clinical and treatment parameters were equivalent across the two cohorts (Table 

1). 

 

On univariate analysis the stomach cumulative V35Gy (volume receiving 35 Gy or more) was 

significantly higher for patients with toxicity: median for patients with grade 0-1 UGIT=30.9 cm3 (IQR 

12.0-62.0), compared with median for patients with grade ≥2=39.4 cm3 (24.8-101.7), p=0.036.  For 

the differential DVH parameter V35Gy (volume receiving between 35 Gy and 40 Gy) the statistical 

significance of the difference between these groups was greater (median 6.36 cm3 (IQR 1.89-18.4) vs 

10.2 cm3 (5.24-18.4), p=0.035), and the strongest association with toxicity risk was seen for 

differential DVH region V35-45Gy (median 12.9 cm3 (IQR 3.56-23.4) vs 16.4 cm3 (9.75-32.0), p=0.033).  

On univariate logistic regression the stomach V35-45Gy was predictive of risk of UGIT grade ≥2 (odds 
ratio 1.035, 95% CI 1.007-1.063, p=0.014).  Median stomach V35-45Gy for patients increased 

sequentially with toxicity grade (see Table 2 and Figure 1) and on univariate ordinal regression was 

predictive of UGIT grade (odds ratio 1.023, 1.003-1.044, p=0.022).  As a predictor of the risk of UGIT 

grade ≥2, the AUC was 0.632 (0.516-0.747).  Toxicity incidence was 33/66 (50%) for patients with V35-

45Gy above the optimal discriminatory threshold of 7.1 cm3, and 5/25 (20%) below, with sensitivity of 

0.868 and specificity 0.377.  Using an alternative threshold of 30 cm3 (the volume threshold with 

second-highest Youden index), the risk was 13/20 (65%) above and 25/71 (35%) below.  Duodenum 

dose-volume parameters did not predict toxicity risk or severity in any cohort.   
 

Table 3 shows the results of univariate logistic regression for risk of UGIT grade ≥2 for clinical factors.  
Risk was higher in patients with ECOG performance status 1 or higher, but the difference was not 

significant (odds ratio 1.661, 95% CI 0.717-3.852, p=0.235).  For patients in the SCALOP study the 

amount of weight loss during induction chemotherapy, and concomitant chemotherapy (risk was 

highest for patients receiving gemcitabine), were significant predictors of risk and severity of UGIT – 

odds ratio with 95% CI 1.199 (1.040-1.382) and 3.632 (1.300-10.151) respectively.  Increasing age 

was a significant predictor of toxicity risk and severity only for the ARCII cohort, odds ratio 1.344 

(95% CI 1.015-1.780). 

 

The optimal multivariate model incorporated patient sex, chemotherapy regimen (gemcitabine vs 

capecitabine vs ARCII regimen) and stomach V35-45Gy as a continuous variable.  This achieved overall 

predictive accuracy of 71.4% and AUC of 0.745, and the ROC curve is shown in Figure 2.  Model 

coefficients are included in supplementary material.  Age, performance status, tumour volume and 

tumour location were not retained in the model.  Figure 3 shows the observed against predicted 

incidence of toxicity for three evenly-sized groups divided by predicted risk.  On five-fold internal 

cross-validation the mean AUC on the training set was 0.736 (standard deviation 0.035) but on an 

unseen test cohort was 0.598 (SD 0.188).  The predictive factor most frequently retained in the 

model was chemotherapy group (retained in four models), followed by stomach V35-45Gy (three 

models), sex, and GTV volume (two models each).  Tumour volume and stomach V35-45Gy were 

significantly correlated with each other (Spearman’s correlation coefficient 0.211, p=0.044).  

Stomach V35-45Gy was highest in ARCII, (median 21.0, IQR 10.6-30.1) next highest in the gemcitabine 
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arm (14.5, 7.9-28.7) and lowest in the capecitabine arm (9.8, 2.9-22.3), and significantly different 

between these groups (Kruskal-Wallis test, χ2=7.197, p=0.027).   

 
Overall survival was significantly worse in patients who experienced grade ≥2 UGIT: median 10.8 
months (95% CI 11.9-17.7) vs 14.8 months (8.5-13.1), log-rank 5.637, p=0.018, and this association 

persisted when patients who went on to suffer progressive disease within 90 days of starting 

radiotherapy were excluded from the analysis (this was the case for three patients from ARCII and 

three from SCALOP).  Patients with acute grade ≥2 UGIT were not less likely to complete 
radiotherapy: 41/53 patients (71.1%) received all fractions compared to 27/38 (77.4%), χ2=0.466, 

p=0.495.  Progression-free survival was also worse for patients with acute UGI toxicity, but the 

difference was not significant: 6.1 months (95% CI 4.1-8.2) compared with 8.2 (6.6-9), p=0.052.   

Discussion 
We have analysed data from two prospective trials of chemoradiotherapy for locally-advanced 

pancreatic cancer and demonstrated dose-volume and patient-related factors influencing risk and 

severity of acute GI toxicity, which itself was associated with worse overall survival.   

 

We found stomach dose-volume was predictive of toxicity risk, and have derived thresholds that 

could be used to inform radiotherapy planning: for our patients, if V35-45Gy was kept below 30 cm3, 

the risk of grade ≥2 toxicity was 35% or less, and if kept below 7.1 cm3, the risk was 20% or less.  

Similar findings have previously been reported (Table 4), however we believe our study is the first 

using pancreatic cancer chemoradiotherapy data to show with ordinal regression that increasing 

volume of stomach irradiated predicts increasing severity of toxicity.  This result emphasises the fact 

that the stomach should always be accurately contoured for patients receiving this treatment, and 

suggests that the more effort is made to minimise stomach dose-volume, the greater the benefit to 

the patient in terms of both reduced risk and severity of toxicity.  While tumour volume (as indicated 

by GTV volume) and stomach V35-45Gy were significantly correlated with each other, as would be 

expected, the evidence indicates that the stomach dose-volume is associated with increased risk of 

toxicity independently of tumour size.  As shown in Table 3, GTV volume was not itself associated 

with increased toxicity on univariate analysis, and while it did get retained in two of the five 

multivariable models generated using the internal cross-validation, it was not mutually-exclusive for 

retention with the stomach V35-45Gy, which would be expected if the two parameters were simply 

surrogates for each other.  

 

We note the slightly higher predictive performance of a differential DVH parameter rather than a 

conventional cumulative DVH and suggest that a more specific measurement has shown a clearer 

association with outcomes.  Relative (proportional) volume parameters were also investigated, 

however due to very small differences in values between patients, these parameters led to unstable 

results in regression modelling.  

 

The incidence of toxicity was somewhat different between these two clinical trials, though the causal 

relationship for this is difficult to elucidate, due to possible confounding differences in the 

treatments delivered.  Not only was the concomitant chemotherapy different, but in ARCII the 

radiotherapy field was larger in order to irradiate draining lymph nodes, and the dose to the tumour 

was higher, while the SCALOP patients had received induction chemotherapy.  Despite this 

heterogeneity, we were able to show that patient sex and the stomach dose-volume remained 

significant contributors to overall risk in the multivariable model for the pooled cohort.  It is not clear 

why, in both studies, females were at greater risk of toxicity than men, and there were no significant 

associations between sex and other factors such as age, PS, tumour size/location, or presence of 

baseline symptoms (included in supplementary data).  In the SCALOP cohort, weight loss during 
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induction chemotherapy was associated with increasing risk of acute toxicity following concomitant 

radiotherapy, and the risk of both acute and late GI toxicity after pelvic radiotherapy has previously 

been shown to be higher in women with low body weight [24, 25].  

 

Predictive modelling of radiotherapy toxicity can be prone to overfitting, with disappointing results 

on external validation [26].  We believe our work is the first in this clinical treatment paradigm to 

undertake internal cross-validation to assess generalisability and restrain potentially over-optimistic 

estimates of prospective model performance.  Our results indicate a degree of overfitting may have 

occurred, with model performance on unseen data weaker than on training cohorts.  This has been 

recognised to be a possible drawback of using stepwise predictor selection methods [27].   

 

The association between toxicity and survival does not appear to be explained by any single factor, 

such as failure to complete radiotherapy, and instead may represent a combination of effects that 

are not individually significant.  For multiple clinical factors (tumour size, age, BMI, PS, recent weight 

loss, symptoms at baseline) the direction of effect associated with risk of toxicity would also be 

expected to be associated with worse outcomes overall (Table 2). 

 

Several publications have analysed GI OAR dose-volumes in chemoradiotherapy for pancreatic 

cancer (Table 3) and a number have identified stomach dose-volume as predictive of toxicity.  These 

include Nakamura et al. who found the best predictors of grade ≥2 acute GI toxicity were stomach 

V50Gy and D2cm3 (highest dose to ≥2 cm3) [10].  Cattaneo et al. analysed outcomes for patients treated 

with relatively hypofractionated chemo-radiotherapy (prescribed dose 44.25 Gy in 15 #) [11] and 

found stomach V20Gy was the best predictor of acute toxicity, while duodenum V40Gy and V45Gy were 

correlated specifically with ‘anatomical’ damage.  Recently Shinoto et al. have published analysis of 
carbon-ion chemoradiotherapy dose-volume parameters, though the values themselves may not be 

directly comparable with those from photon radiotherapy [28].  It is worth noting that in our analysis 

we failed to show associations of GI toxicity with duodenum dose-volume, despite other studies 

having shown evidence of a relationship [29].  Murphy et al. showed a trend for association of 

increased duodenal dose-volume with grade ≥3 GI toxicity in patients treated with concomitant 
gemcitabine [7], but Huang et al. found the best predictor of toxicity in similar patients was the 

duodenum V35Gy  (V25Gy when including patients who received concomitant erlotinib) [9].  Kelly et al. 

have examined the largest cohort in this group, and found duodenum V55Gy the best predictor of risk 

[5].  Stomach dose-volume parameters have also been shown to predict toxicity risk in radiotherapy 

for hepatic tumours [30]: the combined ‘Gastroduodenum’ V35Gy [8] and the stomach V25Gy [12] have 

been shown to predict ‘gastroduodenal’ toxicity, and stomach Dmax has shown association with 

gastric bleeding [31].    

 

The stomach is where ingested food bathes in acidic secretions before passing into the duodenum.  

Irradiation of the stomach can cause loss of appetite, nausea and vomiting within hours.  The 

mechanism is thought to involve 5-HT3 secretion by enterochromaffin cells and vagal neural 

impulses to the brainstem vomiting centre, which stimulates expulsion of the stomach contents [32].  

Gastric mucosal inflammation develops over subsequent days, with denudation of the gastric 

mucosa leading to painful superficial ulceration with possible GI bleeding [33].  We have added to 

the growing evidence-base for the importance of stomach dose-volume in predicting toxicity in 

chemoradiotherapy for LAPC, though with limitations.  Due to the number of parameters that are 

tested in DVH analysis, there is a risk of type I error (a "false positive", in which the null hypothesis is 

rejected despite it being true).  Conversely, when analysing observational data, negative results may 

be due to insufficient cases or insufficient variation in the independent factors, however, neither 

trial protocol enforced radiotherapy planning constraints for the stomach or duodenum, potentially 

allowing dose-volume to vary between patients.  Though this dataset comprises the largest 

prospective pancreas radiotherapy trial cohort analysed to date, the sample size remains relatively 
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small and the method of pooling data from two trials increases risk heterogeneity and of confounds.  

True external validation of these findings is required and is intended to be conducted using data 

from an ongoing randomised study investigating chemoradiotherapy in LAPC.  

 

Analysis of toxicity is hindered by the complex relationship of symptoms with the effects of 

treatment and disease.  Conflating multiple symptoms to derive a single endpoint will obscure 

causes of specific symptoms, but while endpoints such as ulceration on endoscopy are highly 

objective, these severe events represent only a proportion of all relevant morbidity.  Patient-

reported outcomes may represent an improvement over conventional methods but are not 

established in upper-abdominal radiotherapy toxicity assessment.  Spatial parameters describing 

dose to the structure wall could be more appropriate than dose-volume parameters [34], but due to 

interfractional motion and deformation the delivered dose to the stomach may significantly differ 

from planned dose even if breath-hold methods are implemented [35], and ideally outcomes would 

be analysed against delivered dose.   

Conclusions 
In chemoradiotherapy for locally-advanced pancreatic cancer, the volume of stomach irradiated to 

moderately high dose (35-45 Gy) predicts incidence and severity of acute toxicity, while other factors 

predictive of risk include sex and concomitant chemotherapy agents.  Reducing the volume of 

stomach irradiated to doses in this range may reduce the risk and severity of toxicity for these 

patients.  
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Figures 
 

 

Figure 1.  Box & whisker plot of stomach V35-45Gy against maximal acute upper-GI toxicity grade. 
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Figure 2.  ROC curve for multivariable logistic regression model incorporating patient sex, 

chemotherapy treatment arm and stomach V35-45Gy.   
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Figure 3.  Plot of observed proportional incidence of acute UGI toxicity grade ≥2 among three evenly-

sized cohorts divided according to risk (low, medium, high) as predicted by multivariable logistic 

regression model incorporating patient sex, chemotherapy treatment arm and stomach V35-45Gy.   

 

  



 

14 

 

Figure legends 
 

Figure 1.  Box & whisker plot of stomach V35-45Gy against maximal acute upper-GI toxicity grade. 

Figure 2.  ROC curve for multivariable logistic regression model incorporating patient sex, 

chemotherapy treatment arm and stomach V35-45Gy.   

Figure 3.  Plot of observed proportional incidence of acute UGI toxicity grade ≥2 among three evenly-

sized cohorts divided according to risk (low, medium, high) as predicted by multivariable logistic 

regression model incorporating patient sex, chemotherapy treatment arm and stomach V35-45Gy.   
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Tables 
 
Table 1.  Collated patient characteristics and acute toxicity incidence 

  

  
 Combined cohort  ARCII SCALOP  

N   91  21 70 

       

Age, mean (range)   64.0 (43.4–78.8)  64.5 (43.4-78.8) 63.8 (45.9-77.9) 

       

Sex Male  50 (54.9%)  11 (52.4%) 39 (55.7%) 

 Female  41 (45.1%)  10 (47.6%) 31 (44.3%) 

       

BMI, mean (range)   23.9 (16.4-44.4)  23.6 (17.4-34.2) 24.0 (16.4-44.4) 

       

ECOG Performance status  0  45 (49.5%)  7 (33%) 38 (54.3%) 

 1  39 (42.9%)  10 (47.6%) 29 (41.4%) 

 2  7 (7.7%)  4 (19.0%) 3 (4.3%) 

       

Tumour volume [cm3], mean (range)   35.9 (1.4-114.2)  29.8 (6.6 – 74.0) 37.7 (1.4-114.2) 

       

Tumour location  Body  8 (8.8%)  4 (19.0%) 4 (5.7%) 

 Head  64 (70.3%)  13 (61.9%) 51 (72.9%) 

 Neck  19 (20.9%)  4 (19.0%) 45 (21.4%) 

       

Concomitant chemotherapy      Gem, Cisplatin & Gem 36 (51.4%) 

     Nelfinavir (100%) Cape 34 (48.6%) 

       

Grade 0 Upper GI Toxicity   17 (18.7%)  3 (14.3%) 14 (20.0%) 

Grade 1 Upper GI Toxicity   36 (39.6%)  7 (33.3%) 29 (41.4%) 

Grade 2 Upper GI Toxicity   26 (28.6%)  8 (38.1%) 18 (25.7%) 

Grade 3 Upper GI Toxicity   12 (13.2%)  3 (14.3%) 9 (12.9%) 

       

Grade ≥2 Upper GI Toxicity   38 (41.8%)  11 (52.4%) 27 (38.6%) 

       

Grade ≥2 Nausea or Vomiting   27 (29.7%)  12 (57.1%) 15 (21.4%) 

Grade ≥2 Anorexia   13 (14.3%)  3 (14.3%) 10 (14.3%) 

Grade ≥2 Abdominal Pain   13 (14.3%)  3 (14.3%) 10 (14.3%) 

Grade ≥2 Weight Loss   8 (8.8%)  1 (4.8%) 7 (10%) 

Grade ≥2 GI Bleeding   9 (9.9%)  0 (0%) 9 (12.9%) 

       

Baseline Grade ≥2 Upper GI toxicity   10 (11.0%)  1 (4.8%) 9 (12.9%) 

       

Baseline Grade ≥2 Nausea or Vomiting   2 (2.2%)  1 (4.8%) 1 (1.4%) 

Baseline Grade ≥2 Abdominal Pain   5 (5.5%)  0 5 (7.1%) 

Baseline Grade ≥2 Weight Loss   3 (3.3%)  0 3 (4.3%) 
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Table 2.  Stomach V35-45Gy according to grade of acute upper-GI toxicity, for the pooled cohort (n=91) 

Toxicity Grade  0 1 2 3 

Stomach 

V35-45Gy [cm3] 

Median 9.70 12.93 15.31 28.02 

IQR 1.72-22.00 5.54-23.37 9.95-31.51 9.74-32.26 
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Table 3.  Collated results of univariate logistic regression of clinical factors against risk of Grade ≥ 2 UGIT, showing odds 

ratio (with 95% CI) 

 Combined cohort ARCII SCALOP  

Age 1.007 (0.955-1.060) 1.344 (1.015-1.780) * 0.969 (0.913-1.027) 

BMI 0.970 (0.881-1.068) 1.082 (0.861-1.359) 0.945 (0.843-1.060) 

Tumour volume 1.014 (0.995-1.033) 1.007 (0.962-1.055) 1.007 (0.989-1.026) 

ECOG PS (0-1 vs 2) 1.961 (0.412 - 9.322) 3.375 (0.290 - 39.322) 0.788 (0.068 - 9.139) 

Patient sex# 0.591 (0.255-1.370 0.556 (0.098-3.148) 0.607 (0.230-1.604) 

Tumour location (head vs other) 1.795 (0.723-4.454) 4.800 (0.682-33.798) 1.225 (0.419-3.582) 

Baseline UGIT (any grade) 1.540 (0.649-3.656) 1.500 (0.195-11.536) 0.800 (0.155-4.123) 

Weight loss during induction chemo   1.199 (1.040-1.382) * 

Concomitant chemotherapy +   3.632 (1.300-10.151) * 

 

*Indicates significance at p < 0.05 level; # Risk is higher for females, in both studies, + Gemcitabine vs 

capecitabine, risk is highest for gemcitabine arm.  BMI=Body Mass Index; ECOG=Eastern Cooperative 

Oncology Group; PS=Performance Status. 
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Table 4.  Findings of published analyses of the dose-volume relationships of gastrointestinal organs at risk in pancreatic cancer radiotherapy, or of treatment of other conditions in which relationships with 

stomach DVH are identified.  Risk comparison, where reported, indicates proportional incidence of specified toxicity for patients whose radiotherapy plans achieved or did not achieve the specified threshold value 

Reference Cancer site N 
Concurrent 

Chemotherapy 
RT Dose-Schedule  

RT 

technique 
Toxicity Outcome 

Predictive dose-volume parameter and threshold 

values (with risk comparison) where reported 

Murphy 

2007 [7] 
LAPC 74 Gemcitabine 36 Gy in 15 # 3D ‘Duodenal’ Duodenum gEUD 

Huang 

2012 [9] 
LAPC 46 

Gemcitabine ±  

erlotinib 
36 Gy  in 15 # 

3D (40)/ 

IMRT (6) 
Grade ≥3 GI All patients: Duodenum V25Gy  45% (8% vs 48% ) 

Non-erlotinib: Duodenum V35Gy 20% (0% vs 41%)  

Nakamura 

2012 [10] 
LAPC 40 Gemcitabine 54 Gy in 30 # 

3D + IMRT 

boost 

Acute GI & 

Upper GI Bleed 

Stomach V50Gy 16 cm3  (9% vs 61%) 

Stomach D2cm3 53.6 Gy Gy (0% vs 57%) 

StoDuo V50Gy 33 cm3 (0% vs 44%) 

Kelly 

2013 [5] 
LAPC 106 

Gemcitabine ± 

5FU/cape ± EGFRi 
50.4 Gy in 28 # 

3D (75)/ 

IMRT (31) 

Grade ≥ 2 
‘Duodenal’ Duodenum V55Gy 1 cm3 

Cattaneo  

2013 [11] 
LAPC 61 

Capecitabine or 

5FU 
44±15 Gy boost, in 15 #  IMRT Grade ≥2 GI 

Stomach V20Gy 31% 

Duodenum V40Gy 16% 

Duodenum V45Gy 2.6% 

        

Kim 

2009 [8] 
HCC 73 None 36 Gy in 12 # 3D 

Grade ≥ 3 
‘gastroduodenal’ Gastroduodenum V35Gy 5% (4% vs 48%) 

Yoon 

2013 [12] 
HCC 90 None 33 Gy in 11 # 3D 

Grade ≥ 2 
‘gastroduodenal’ 

Stomach V25Gy 6.3% (2.9% vs 57.1%) 

Duodenum V35Gy 5.4% (9.4% vs 45.9%) 

Pan 

2003 [30] 

Hepatic 

tumours 
92 

Hepatic arterial 

chemotherapy 

1.5 Gy per # BD with chemo 

or 1.8 – 3 Gy per # QDS without 
3D Upper GI bleed 

Stomach TD50 62 Gy 

Duodenum TD50 180 Gy 

Feng 

2012 [31] 

Hepatic 

tumours 
116 

IV 5FU  or  

Hepatic FUDR 

54 Gy in 28 # or 1.5 Gy per # BD 

regimen with FUDR 
3D Gastric bleeding Stomach Dmax 

 

(N=number of patients analysed; RT=radiotherapy; #=fractions; LAPC=locally advanced pancreatic cancer; Gy=Gray; 3D=3-dimensional conformal radiotherapy; 

gEUD=generalised Equivalent Uniform Dose; IMRT= intensity modulated radiotherapy; 5FU=5-fluoro-uracil; cape=capecitabine; EGFRi=epithelial growth factor receptor 

inhibitor; HCC=hepato-cellular carcinoma; GI=gastrointestinal; StoDuo=combined stomach & duodenum volume; IV=Intravenous; Hepatic FUDR=intrahepatic infusion of 5-

fluorodeoxyuridine; NS=not specified; Dmax =maximum dose; Dmean=mean dose) 
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Stomach dose-volume predicts acute gastro-intestinal toxicity in chemoradiotherapy for 

locally-advanced pancreatic cancer 
Supplementary data tables  

 

  Odds ratio  95% CI p 

Pooled cohort Stomach V35-45Gy [cm3] 1.023 1.003-1.044 0.022 

     

ARCII Age [years] 1.159 1.019-1.318 0.024 

     

SCALOP Concomitant Chemotherapy + 3.56 1.43-8.85 0.006 

     

 Weight loss [kg] 1.172 1.046-1.314 0.006 

 
Table 2.  Statistically significant results for univariate ordinal regression. + Gemcitabine vs capecitabine, severity grade is higher for 

gemcitabine.  95% CI = 95% confidence intervals; V35-45Gy = volume of organ receiving between 35 & 45 Gy.   

 

 Coefficient SE  p  Odds Ratio 95% CI 

Chemo = Gemcitabine 1.350 0.559  0.016  3.859 1.291-11.533 

Chemo = ARCII 1.022 0.636  0.108  2.779 0.799-9.665 

Sex = Female 0.782 0.481  0.104  2.185 0.851-5.613 

Stomach V35-45Gy [cm3] 0.033 0.015  0.025  1.034 1.004-1.064 

Constant -2.163 0.603  0.000  0.115  

 

Table 3.  Multivariate logistic regression model coefficients.  SE = standard error; 95% CI = 95% confidence intervals; V35-45Gy = volume of organ 

receiving between 35 & 45 Gy.   

 

 N Age GTV Volume Stomach V35-45Gy 

Male 40 64.9 (57.0-70.3) 31.7 (19.2-47.8) 18.3 (5.2-26.7) 

Female 51 65.5 (57.7-69.5) 27.9 (19.9-42.7) 13.1 (6.7-26.0) 

M-W U  992.5 960.0 1002.0 

p-value  0.795 0.604 0.854 

 

Table 4.  Continuous variables according to patient sex.  Median values with inter-quartile range are reported.  P-value indicates result of 

Mann-Whitney U test.  N = number of patients; GTV = Gross Tumour Volume; V35-45Gy = volume of organ receiving between 35 & 45 Gy.   

 

 ECOG PS Tumour location Baseline toxicity Trial / Chemotherapy 

 0 ≥1 Head Neck/body None Present ARCII Cape Gem 

Male 25 25 40 10 33 11 11 17 22 

Female 20 21 34 7 25 12 10 17 14 

Chi-squared 0.013 0.127 0.663 0.945 

p-value 0.908 0.722 0.718 0.624 

 

Table 5.  Categorical variables according to patient sex.  P-value indicates result of chi-squared testing.  +Trial/chemotherapy = concomitant 

chemotherapy regimen, considered as three categories – 1) ARCII 2) SCALOP capecitabine 3) SCALOP gemcitabine.  

 

 


