This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/110768/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: https://doi.org/10.1177/2515245918776023

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Beyond statistics: accepting the null hypothesis in mature sciences

Richard D. Morey1, Saskia Homer1, & Travis Proulx1

1 School of Psychology, Cardiff University

Author Note

This draft was compiled at Fri Apr 13 10:08:29 2018 (NA). Text, code, and data from Michelson and Morley (1887) and Mendel (1866) are also available at https://github.com/richarddmorey/nullHistoryAMPPS. All figures are licensed CC BY 4.0. Author Contributions: The main concept of the paper is due to author RM, as are the two physics examples; author SH primarily contributed the genetics example. Both RM and SH developed the commentary on these examples. Author TP contributed the philosophy of science elements.

Correspondence concerning this article should be addressed to Richard D. Morey, School of Psychology, 70 Park Place, Cardiff, UK. E-mail: richarddmorey@gmail.com
Scientific theories explain phenomena using simplifying assumptions: for instance, that the speed of light does not depend on the direction in which the light is moving, or that the height of a pea plant depends on a small number of alleles randomly obtained from its parents. The ability to support these simplifying assumptions with statistical evidence is crucial to scientific progress, though it might involve “accepting” the null hypothesis. We review two historical examples where statistical evidence was used to accept a simplifying assumption (rejecting the luminiferous aether and genetic theory) and one where the null hypothesis was not accepted in spite of repeated failures (gravitational waves), drawing lessons from each. We emphasize the role of the scientific context in the acceptance of the null: accepting the null is never a purely statistical affair.

Keywords: null hypothesis, philosophy of science, statistics
Beyond statistics: accepting the null hypothesis in mature sciences

On a warm summer morning in 1887, Albert Michelson hunched over a heavy stone table in a basement of Western Reserve College. He peered through an eyepiece whose other end disappeared under a wooden hood covering the table. With his right hand, he slowly turned a screw to calibrate one of sixteen mirrors fixed to the stone. Beneath the hood, beams of yellow sodium light bounced back and forth between the mirrors along two perpendicular paths that both ended at the eyepiece. By adjusting the screw, Michelson ensured that the lengths of the two paths were equal.

The stone slab sat on a piece of wood which itself was floating in a pool of liquid mercury. Around noon Michelson gave the table a push, causing it to slowly spin. Every 22.5 degrees of rotation — about as many seconds — he looked through the eyepiece and scribbled down a number. That afternoon he took over one-hundred readings, stopping only to give the table a small push to keep it spinning. He came back that evening for another hundred measurements, repeating the process again over the next two days.

The numbers Michelson and his colleague Edward Morley scribbled down in 1887 would eventually be among the most celebrated results in science. What they found — or rather, what they didn’t find — was a quandary for popular nineteenth century theories of light propagation. Michelson and Morley’s (1887) result foreshadowed not one but two revolutions in physics — special relativity and quantum theory — and eventually won Michelson the Nobel prize in physics.

It has been noted for decades that psychological science largely rests on the assertion of statistical differences using null hypothesis significance tests rather than resting on understanding sameness, patterns, or regularity (see e.g. Gigerenzer, Krauss, & Vitouch, 2004; Meehl, 1978; Sterling, Rosenbaum, & Weinkam, 1995). We present three historical vignettes involving null inferences (or lack thereof) in mature sciences. None of these inferences rest on significant differences from null hypothesis significance tests, but they are nevertheless examples of scientific progress. The first is Michelson and Morley’s null result;
the second, Mendel’s famous (and controversial) genetic experiments (Fisher, 1936; Mendel, 1866); and the third, the recent Nobel-prize-winning findings by the Laser Interferometer Gravitational-Wave Observatory (LIGO) team. Understanding how the scientific context supports null inferences is key to understanding why statistical nulls have traditionally been ignored in psychology.

Kuhnian paradigms and Normal Science

In the Structure of Scientific Revolutions, Kuhn (1962) offers a generally descriptive account of how all sciences appear to have changed over time. To the extent that these changes can be construed in terms of developmental progress, they follow from motivations that appear common among scientific enterprises: to generate understanding of a wide range of phenomena and to provide increasingly specified guides for further scientific research. Kuhn illustrates this general trajectory by identifying two stages of development.

The first of these stages is termed pre-paradigm and is marked by an absence of any unifying perspectives. At this stage, theories proliferate at the pace of observed effects, where these theories are little more than descriptions of a given phenomenon (e.g., when X is placed over a flame, Y occurs). Because these theories offer little regarding underlying mechanisms, they present no clear hypotheses beyond the replication of the original effect. They are essentially tautological, reflecting little in the way of general understanding of a phenomenon, and unable to produce novel predictions.

According to Kuhn, all scientific communities eventually acknowledge this limitation and gradually make their way to a standard phase of scientific inquiry. In the Normal Science phase, an underlying phenomenon is hypothesized to manifest in the various previously unrelated empirical phenomena (e.g., space-time or genes). This hypothesized unifying phenomenon lies at the core of a new paradigm, a broad nest of theoretical conceits that shape predictions for future observations. Increasingly specifying the nature of these conceits — theory articulation — guides the identification of novel effects (rather than the
Kuhn’s depiction of Normal Science progress does not rest on a particular epistemic school of thought (e.g., Popper, 1959). Rather, paradigms are understood to facilitate progress by motivational means, insofar as they represent progress narratives that encourage scientists to predict and accumulate paradigm-verifying effects (rather than perseverate on potentially falsifying anomalies, Popper, 1959 – see also the positive heuristic, Lakatos, 1970).

The motivational and verificationist realities of Normal Science have fundamental implications for how the “null hypothesis” is interpreted, and whether or not it is “accepted.” In a Normal Science setting, multiple explanatory paradigms offer competing accounts of demonstrated effects and differing predictions for what may be observed in the future. When hypotheses following from a given paradigm are not supported by the data, the null hypotheses can be readily accepted, as the observed “null” effect may offer support for a competing paradigm and represent an additional element of accumulated knowledge. Alternatively, Normal Science may be dominated by a single, broad explanatory paradigm that can account for the bulk of prior findings, and continues to make successful predictions for demonstrable effects. In this setting, scientists may be extremely reluctant to accept a null hypothesis that would challenge a paradigm that must be correct, insofar as it has been otherwise verified in dozens (hundreds) of prior experiments, and because there are no other options, meaning that the acceptance of the null could lead to a scientific crisis.

We discuss three examples of null effects demonstrated within the paradigmatic context of Normal Science. The first and the third are from nineteenth and twenty-first century physics, respectively; the second, from nineteenth- and twentieth-century biology. In each case, we emphasize the relationship of the statistical inference for or against a null hypothesis in the context of the relevant paradigm. Following this, we contrast the situation in Normal Science with that in present-day psychology.
For many centuries, there were two competing theories explaining the behavior of light. Emission theory, championed by Newton, held that light was made up of particles that moved in straight lines called rays. The opposing view, developed by Huygens, held that light was a wave. In the eighteenth century, the emission view was dominant. Emission theory is perhaps most consistent with our everyday observations of light; light appears to move in straight lines, as a particle would.

In the beginning of the nineteenth century the wave theory of light gained the upper hand among physicists due to the discovery of interference phenomena. When two waves of different phases meet, they cancel and reinforce one another in complicated patterns. Light behaves this way: when light is forced through slits, the light from one slit interferes with light from the other, and vice versa. Interference phenomena cannot be easily explained by an emission theory.

Expectations for light waves were built on other waves that people understood: waves in water or air. If light was a wave, it must be a wave in some medium. Whatever this medium is, it carries starlight above the earth and torchlight below it. It must be able to pass through solid matter as light moves through glass, and it must exist in a vacuum.

Wave-theorists gave this mysterious medium a name: the *luminiferous aether*.

Physicists thought that a sea of luminiferous aether existed throughout space, providing a fixed reference against which everything moves. As the earth revolves around the Sun, it is passing through the aether. Facts known at the time ruled out the idea that the aether was dragged along with the Earth; hence, the Earth must be moving through the aether at some speed.

But at what speed? This was the question Michelson and Morley sought to answer. Michelson had invented and refined an ingeneous experimental device now known as a Michelson interferometer. The 1887 version is shown in Figure 1, in both perspective view (A) and top-down view (B).
The basic idea behind the Michelson interferometer is that it light comes from a common source (Figure 1B, at a) and is focused by a lens. The light is split (b) and sent along two perpendicular paths, where each beam bounces back and forth between sets of mirrors. A final mirror along each path (e and e_i) sends each beam back the way it came. The beams are recombined at b and pass to the eyepiece (f). The lengths of the perpendicular paths can be made equal by carefully adjusting a mirror along one of the paths (e_i).

When Michelson looked into the eyepiece while he was sending white light into the interferometer, he saw a pattern of vertical dark and light bands, called “fringes”, formed by the interference between the various components of white light. After calibration, Michelson would rotate the stone table on which the interferometer was set. If one imagines the Earth — and with it, the interferometer — moving through the aether, this rotation changes how the two arms are moving with the aether “wind”. At some point in the rotation, one arm will be facing into the wind, and the other arm perpendicular to it; at another point, the opposite.

The light moves with the aether, but the interferometer itself moves with the Earth. If one arm is moving parallel to the aether wind and the other perpendicular to it, the light beams in the two arms move different distances. Any difference between the arms will cause the interference fringes to shift to one side by an amount that depends on the speed of the Earth’s motion through the aether. Based on the 30 km/s speed of the Earth in its orbit, Michelson and Morley expected the fringes to shift by a maximum of 0.4 fringe widths. This maximum shift would occur when one arm is facing into the aether wind and the other perpendicular to it. The minimum shift was 0, when both arms face into the aether wind at the same angle (see the top of Figure 2).

Michelson (or Morley) gave the table a slow but steady spin and measured the shift at 16 rotation angles, which worked out to once every 23 seconds. They repeated the process consecutively six times, at noon and in the evening, on three different days. The fringe shift measurements were detrended to remove the effects of ambient temperature changes, and
then averaged. Michelson and Morley expected a sine curve with amplitude 0.4 fringe widths; Figure 2 shows what they found.

There does not appear to be any discernable relationship between the angle of the table's rotation and the fringe shift. There was so little effect relative to the expected 0.4 fringe shifts that they did not show the expected effect in their figure at all; the maximum value in their figure is $\frac{1}{8}$ of the predicted value, because showing the predicted value in the figure would hide all the variability in the data. In spite of the smallness of the effect, Michelson and Morley did not directly "accept" the null. Instead, they say that

"[T]he displacement to be expected was 0.4 fringe. The actual displacement was certainly less than the twentieth part of this, and probably less than the fortieth part. But since the displacement is proportional to the square of the velocity, the relative velocity of the earth and the ether is probably less than one sixth the earth's orbital velocity, and certainly less than one-fourth... It appears, from all that precedes, reasonably certain that if there be any relative motion between the earth and the luminiferous ether, it must be small..." (Michelson & Morley, 1887, p. 341)

Indeed, this result would continue to be refined for decades using more precise interferometers, and at different times of the year.¹ Michelson and Morley's result is remembered as having established that there was no aether. Why is Michelson and Morley's result considered convincingly null, even though Michelson and Morley merely report an upper bound on the possible speed of the Earth moving through the aether?

A highly-sensitive experiment. Michelson and Morley's 1887 experiment was actually the second such experiment that Michelson published. Michelson (1881) presented similar results, but using a device 1/10 as sensitive.² Other researchers noted that even

¹A recent replication by Eisele, Nevsky, and Schiller (2009) used an interferometer 100 million times as precise as Michelson and Morley’s device. The result was still null.
²Michelson’s 1881 paper is a model of scientific transparency. A sizeable portion of the paper is taken up
HISTORICAL NULLS

before accounting for a calculation mistake, “[the fringe shift] to be measured...was already barely beyond the limits of the errors of experiment” and hence “the conclusion drawn...might well be questioned.” Thankfully, the 10-fold increase in sensitivity was possible due to a clever arrangement of mirrors. The resulting high sensitivity made for a more convincing null result.

A parametric manipulation. When we discuss null results in psychology, we often refer to a single effect that is not statistically significant. Michelson and Morley, however, were looking for a data pattern, rather than a single effect. The sine wave pattern expected due to the rotation of the table — a parametric manipulation of the size of the expected “effect” — did not present itself. The test of the theory was therefore much stronger than it would have been if only one rotational angle had been considered.

A theoretical expectation. The speed of the earth moving around the sun provided a value against which the null result could be compared. Michelson and Morley admit that it is possible that other motion might come into play besides the Earth moving around the sun — for instance, the sun moving through the galaxy — but to get such a null result, these motions would all have to add up just right to cancel out. This would be quite the coincidence, and so Michelson and Morley conclude that “chances are much against it.” They note, however, that repeating the experiment at longer time intervals would allow testing this possibility.

Competing paradigms. As previously mentioned, in the nineteenth century the wave theory of light was dominant, but was not the only theory. The competing emission theory had no need for aether. Emission theory continued to be modified to account for new evidence into the late nineteenth and early twentieth century (e.g. Ritz, 1908). describing various difficulties encountered in using his first experimental apparatus. Interestingly, although the first paper is based on results from a considerably less precise instrument, Michelson’s earlier conclusions are more definitive: “The interpretation of these results is that there is no displacement of the interference bands. The result of the hypothesis of a stationary ether is thus shown to be incorrect, and the necessary conclusion follows that the hypothesis is erroneous.”
Additionally, neither of the two major twentieth century theories in physics required the luminiferous aether. Einstein’s special theory of relativity (Einstein, 1905) made the aether redundant, and quantum electrodynamics (Feynman, 1985) accounted for all the wave properties of light without needing a propagation medium.

These four factors — the highly-sensitive experiment, the parametric manipulation of the expected effect, a result far below a theoretical expectation, and a competing theory able to account for the effect — combine to create the most important null result in the history of science. In making the luminiferous aether unnecessary, Michelson and Morley’s results allowed physics move forward without it.

Nuller than null: the case of Mendel and Fisher

Gregor Mendel, a monk of seemingly impeccable character, conducted his famous experiments on peas over the years from 1856 to 1863. The painstaking task of breeding thousands of plants and carefully classifying their offspring paid off when the resulting data provided evidence that genetic traits were passed on in discrete forms. Mendel’s evidence was close agreement of the data from his pea plants with his theory’s predictions (Mendel, 1866).

Although Mendel’s work on inheritance filled a key gap in nineteenth century biological understanding, it went largely unnoticed until the turn of the twentieth century when his results were rediscovered by several biologists (Piegorsch, 1990). The rediscovery sent ripples through the genetics community due to its theoretical importance. A small number of readers, however, noticed something else. Statistically speaking, the results were good; surprisingly good, in fact.

Should a good fit to a true theory be surprising? As Pilgrim (1984) puts it, “Mendel’s results agreed with his theory. Why shouldn’t they, since his theory was correct?” Fisher (1936) took a different view. He believed the results were too good, and that this was evidence of data falsification. Even worse, Fisher suggests that this possibly “contravene[s] the weight of the evidence supplied in detail by his paper as a whole” (p. 132). This is not to
say Mendel was wrong, but that his results — which we review subsequently — were not as
evidentiary as they might initially appear.

Mendel’s experiments considered seven traits of the garden pea plant. Pea plants, like
all living things, have visible traits called phenotypes that are defined by genes. For instance,
a pea plant’s seeds might be round or wrinkled, depending on its genes. These genes come in
pairs — one from each parent — and can be of different forms, called alleles.

A dominant allele can override a recessive allele such that an organism with both types
of allele will have the dominant trait. The round seed shape is dominant over the wrinkled
shape. This means a seed with one of each allele, called heterozygous, will be round. The
three possible genotypes and their corresponding phenotypes are shown in Figure 3.

Mendel theorised there was a 50% chance of a parent passing each of its two alleles to
its offspring. This leads to easily predictable genotypic ratios for the seed shape of offspring
from two heterozygous parents (shown in Figure 4).

The key to Mendel’s experiments were the ratio of phenotypes from crossings of
different plants. Mendel could infer that a plant was heterozygous if, as a seed, it was round,
yet some of its seeds were wrinkled. Wrinkled-seed offspring are a giveaway that the parent
plant must be passing on a recessive allele, and hence it must be heterozygous. As Figure 4
shows, if one crosses a heterozygous plant with itself, Mendel’s theory predicts that 75% of
the seeds should be round.

Table 1 shows the Mendel’s results from crossing heterozygous plants. Of 7324 seeds,
we would expect 5493 to be round. Mendel reports that 5474 were round, only 19 round
seeds from the number expected. Of course, the results of such experiments are variable; if
Mendel is right, the standard deviation of the number of round seeds of 7324 is

$$\sqrt{7324 \times .75 \times .25} \approx 37.$$
Mendel’s results are only half a standard deviation from the
theoretical value. By itself, this closeness is not enough to raise suspicion: there would be a
fair chance — 38% — of obtaining a closer result under Mendel’s theory.

In 1936, Fisher considered all of Mendel’s experiments. For every experiment, we can
Table 1
Seed totals, N, and counts of seeds with the dominant phenotype, y, for the seed shape and seed colour experiments taken from Mendel (1886); p is the theoretical proportion of seeds with the dominant phenotype predicted by Mendel’s theory; z is the number of theoretical standard deviations between the expected count and observed count.

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>N</th>
<th>y</th>
<th>Np</th>
<th>y - Np</th>
<th>SD(y - Np)</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>0.75</td>
<td>7,324</td>
<td>5,474</td>
<td>5,493.00</td>
<td>-19.00</td>
<td>37.06</td>
<td>-0.51</td>
</tr>
<tr>
<td>Colour</td>
<td>0.75</td>
<td>8,023</td>
<td>6,022</td>
<td>6,017.25</td>
<td>4.75</td>
<td>38.79</td>
<td>0.12</td>
</tr>
</tbody>
</table>

compute a deviation from the theoretical value, in standard errors. Because we are interested in the overall distance from the theoretical value, we square every deviation and sum them across all experiments. The result can be thought of as a squared distance, in standard errors, from the theoretical value. For round/wrinkled experiment considered above, we results were \(z_1 = 0.51 \) standard errors below the theoretical value. In a second experiment, Mendel found that 6022 of 8023 seeds contained yellow, rather than green, seed leaves. The expected proportion was 75%, or about 6017 yellow leaves. This observation is five above what was expected, a mere \(z_2 = 0.12 \) standard errors from the theoretical value.

We might think of the theoretical value like the bull’s eye of a target, as shown in Figure 5A. The natural metric of the target is given by the expected variability of the estimate of the proportion, the standard error. The figure shows the standard errors as circles around the bull’s eye. To assess how close our two experiments are to the bull’s eye, we work out the distance from the center to the point \((0.51, 0.12)\), the number of standard errors our two experiments are away from the theoretical. In the case of our two experiments, this can be found by the familiar Pythagorean theorem: \(\sqrt{0.28} \).

The distance by itself does not tell us whether the results are surprisingly close; to do
this, Fisher compared the observed values to the sampling distribution under Mendel’s
theory. If Mendel was right, the squared distance for two points has a \(\chi^2 \) distribution with
two degrees of freedom, as shown in Figure 5B. For each dimension (here, seed shape and
color) we expect to be somewhat off center. The more dimensions the greater the expected
distance, because each dimension contributes to the distance from the center. The expected
squared distance for two experiments is 2 (these are the degrees of freedom of the \(\chi^2 \)). The
observed squared distance is much smaller: .28. Our observed distance from the bull’s eye is
closer than what we would expect 87% of the time, if Mendel’s theory is correct. While far
from definitive, this seems close enough to cause some suspicion. But this analysis only
includes two of the 84 experiments reported by Mendel.

Fisher tabulated the results of all 84 Mendel’s experiments. For clarity of presentation,
in Figure 6 we have grouped the related results into the 16 series suggested by Edwards
(1986) (Table 2, pp. 306-308), ranging from 2 to 20 degrees of freedom.\(^3\) Notice how most of
the squared distances from the theoretical predictions seem to be on the low side, closer to 0
than what we would expect. Across all 84 of Mendel’s experiments, we would expect on
average a squared distance of 84. The observed squared distance is substantially less: 49.15.
To understand how small this value is, Figure 7 shows a \(\chi^2 \) distribution with 84 degrees of
freedom, the sampling distribution of the squared distance across all experiments assuming
Mendel’s theory. The observed distance is so small that we would expect 99.9% of such sets
of experiments to yield a larger distance. The experiments are very close to the theoretical
values.

So what? Is Weldon (1902) right when he says that Mendel’s results “admirably in
accord with his experiment” (p. 235)? Is Pilgrim (1984) right to wonder what the fuss is all

\(^3\)The two experiments we considered are series 1 in Figure 6. The results are not exactly the same as
shown in Figure 5B due to the fact that Edwards (1986) has removed data that were used in another series
in order to make the data in each experiment independent from the others. This also causes the overall test
of all 84 experiments to be different from that computed by Fisher, but the difference does not affect the
about that results closely agree with a theory? Or is Fisher right when he suggests that “most, if not all, of the experiments have been falsified so as to agree closely with Mendel’s expectations” (1936, p. 132)? Do results that agree too closely with a theoretical null actually undermine the evidence?

The last prominent statistician to weigh in on the debate was Edwards (1986), who said that

“If it were just a question of having hit the bull’s eye with a single shot we might conclude [...] that Mendel was simply lucky, but when a whole succession of shots comes close to the bull’s eye we are entitled to invoke skill or some other factor.” (Edwards, 1986, p. 303)

Of course “skill” cannot overcome the problem of inherent random variability. Both Edwards⁴ and more recently Franklin (2008) suggest that Fisher’s analysis has stood the test of time: Mendel’s results are too good to be true. Yet the controversy is largely unknown outside of statistical circles. Why?

Justified suspicion that a result is tainted does not mean it is wrong. We are in the lucky position a century and a half later of knowing that Mendel was right. Science is not always neat; biases will creep into even the most rigorous research, if only because it is scientific progress requires interpreting the results of experiments *post hoc* with incomplete information. As (Dobzhansky, 1967) wrote at the centennial of Mendel’s publication,

> “Few experimenters are lucky enough to have no mistakes or accidents happen in any of their experiments, and it is only common sense to have such failures

⁴Interesting and relevant to the modern debate over significance testing is the fact that even the likelihoodist Edwards was persuaded by Fisher’s logic, in spite of his skepticism of significance tests. He said that “[i]t may be helpful if I admit at this point that for many years I supposed that Fisher’s analysis was going to be able to be faulted because of its total reliance on the ‘repeated sampling’ logic of the X^2 goodness-of-fit test which I had come to mistrust, but a complete review of the whole problem has now persuaded me that his ‘abominable discovery’ must stand.” (1986, p. 310)
discarded. The evident danger is ascribing to mistakes and expunging from the record perfectly authentic experimental results which do not fit one’s expectations.” (Dobzhansky, 1967, p. 1588)

Luckily Mendel described his experiments in sufficient detail that they can be easily repeated. Doubt about any claim can be put to rest by rigorous replication of the procedure, provided that the theory is defined clearly enough to decide what a “replication” would be. Providing this clarity is one of the roles of a scientific paradigm.

Interpretation of results occurs in the context of scientific theory. This seems especially obvious in the case of Mendel, given that the null was derived from Mendel’s theory. But suppose Mendel were a fair-minded experimentalist, and we could travel back in time and confront him with Fisher’s findings? Should Mendel abandon his theory? Probably not. Although Fisher’s critique threatens the evidential force of Mendel’s experiments, Fisher (1936) himself points out that Mendel, or anyone else in the nineteenth century, could have derived genetic theory from three simple postulates (1936, pp. 123-124); he also believed that Mendel may have done so. Fisher thought it possible that Mendel’s experiments were a “carefully planned demonstration of his conclusions” (Fisher, 1936, p. 124), rather than their sole support. Mendel’s theory was strong enough to withstand Fisher’s critique of the evidence, in contrast to more recent psychological results subjected to similar scrutiny (see e.g. Simmons & Simonsohn, 2017).

Unbelievable nulls: LIGO and gravity waves

Michelson’s experiments using interferometers were not only important for their results; the Michelson interferometer is a tool that continues to be used in research. Michelson’s interferometers were about 1 meter wide. Modern interferometers range from palm-sized and small enough to fit in a satellite (Shepherd et al., 1993) to the immense Laser Interferometer Gravitational-Wave Observatory (LIGO). The LIGO project operates two interferometers,
The purpose of LIGO is not to find evidence for the luminiferous aether; rather, the LIGO team is hunting for gravitational waves. In Einstein’s general theory of relativity, gravity is the result of changes in the geometry of space-time: a mass, such as a star, bends space-time around it. When masses accelerate in certain ways — for example, black holes orbiting one another — these distortions are supposed to cause gravitational waves that propagate away from the source.

The search for gravitational waves serves two purposes: as a test of general relativity, and as new way of conducting astronomy. We can use gravity waves in much the same way as we use x-ray, visible-light, microwave, and radio astronomy to piece together a picture of the history of the universe. Unlike light, however, gravitational waves are difficult to detect, because they involve extraordinarily subtle effects as they pass.

This is where Michelson’s interferometer plays a key role. Laser light is split, shot down the 4 km length of the two arms, bounced back from precisely suspended mirrors. The laser light is recombined and passed to a detector. If the arms are the same length, the two recombined waves cancel; no laser light is detected. When a gravitational wave passes an interferometer, the two perpendicular arms will change lengths (Figure 8). If one arm is longer than the other, then the cancelation is imperfect and some of the light makes it to the detector. Space-time distortion from a passing gravitational wave shows up as fluctuations in the amount of laser light at the detector.

Because fluctuations can happen for reasons other than gravitational waves, LIGO uses multiple sites to crosscheck its results: one in Washington and one in Louisiana. LIGO also cooperates with the smaller, 3 km Virgo interferometer in Italy (Figure 9). The LIGO team looks for “unusual” events that occur across the detectors. Looking for correlations across

5 Even LIGO will soon be eclipsed: the European Space Agency plans three satelites that will form an gravitational-wave-detecting interferometer with arms 2.5 billion meters long, called the Laser Interferometer Space Antenna (LISA). Imagine Michelson’s astonishment if he learned that the fiddly instrument with which he struggled in a Potsdam cellar would one day be built on an interplanetary scale.
these sites allows noisy fluctuations in only one detector to be discounted.

LIGO’s first attempt at detecting gravitational waves in 2002 yielded a null result: that is, it was deemed consistent with background noise (LIGO Scientific Collaboration, 2004). Interestingly, this was expected; the first run was before the detectors were at full sensitivity. The introduction to the paper is worth quoting directly:

“The first detection of gravitational wave bursts requires stable, well understood detectors, well-tested and robust data processing procedures, and clearly defined criteria for establishing confidence that no signal is of terrestrial origin. None of these elements were firmly in place as we began this first LIGO science run; rather, this run provided the opportunity for us to understand our detectors better, exercise and hone our data processing procedures, and build confidence in our ability to establish the detection of gravitational wave bursts in future science runs. Therefore, the goal for this analysis is to produce an upper limit on the rate for gravitational wave bursts, even if a purely statistical procedure suggests the presence of a signal above background.” (LIGO Scientific Collaboration, 2004, pp. 102001–3)

Unlike Michelson’s conclusion from his 1881 experiment, the LIGO team was unwilling to accept the null on the basis of a noisy experiment; like Michelson and Morley’s 1887 experiment, the LIGO state their results in terms of placing an upper limit on a quantity of interest.\(^6\)

From the first failure followed more. Six additional runs over more than a decade would yield no evidence — at least none the team was willing to accept as inconsistent with background noise — of gravitational waves. LIGO became “advanced LIGO” as the team improved the sensitivity of their instruments. With each failure using a more sensitive

\(^6\)It is difficult to imagine a prominent psychology journal publishing a null result from an experiment whose purpose is to advance understanding of a methodology. Such a result would almost certainly be rejected as unimportant.
device, a new upper limit was established. The titles tell the story: “Upper limits on gravitational-wave bursts in LIGO’s second science run” (The LIGO Scientific Collaboration, 2005); “Upper limits on gravitational wave emission from 78 radio pulsars” (LIGO Scientific Collaboration, 2007); “Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data” (LIGO and Virgo Collaboration, 2014). This work spawned about 100 papers from 2004 to 2016, characterizing the instruments, algorithms and their improvements, or presenting data from their science runs.

Finally, in 2016 the team published a paper announcing the detection of gravitational waves from the merger of two black holes (LIGO Scientific Collaboration and Virgo Collaboration, 2016). We are more interested in what happened in the years before the detection. Why were the LIGO team unwilling to accept the null and hence the possibility that there were no gravitational waves? What was the difference between Michelson and Morley’s situation in the late 19th century and the LIGO team’s situation in the early 21st? We believe there are several.

The prospect of more sensitive experiments. The LIGO team was constantly improving their instruments, and knew that more sensitive tests were just around the corner.

Strong theoretical expectations and low sensitivity The LIGO team knew early on that their instruments were not sensitive enough to detect many gravitational wave events of interest, should they exist. Unlike Michelson and Morley, LIGO’s null results were not unexpected from the theory.

No theoretical rival. Einstein’s general theory of relativity has withstood numerous tests over the past century. There is no rival to the theory that could take its place should gravitational waves not exist. Plunging a field into crisis is not something to be taken lightly, particularly at the expense of such a well-established theory.

These three conditions made the acceptance of the null hypothesis difficult, even on the basis of multiple “failed” LIGO runs. Luckily, the persistence paid off. Since the 2016 detection, the team has made several new detections. The ability to consistently detect and
characterize gravitational waves has the potential to usher in a new era of gravitational wave astronomy, which would not have happened if the team had accepted the null and given up.

Conclusion

In these three examples, a type of statistical null was rejected or accepted in relation to pragmatic considerations of what would facilitate the accumulation of scientific knowledge. Michelson and Morley’s result, for instance, appeared more compelling because an alternative to wave theory could account for the result. On the other hand, there is no alternative to general relativity, so the lack of gravitational waves would throw physics into crisis. Fisher noted that Mendel could have derived his predictions from three simpler theoretical postulates, rather than from the data themselves. In all three cases, the evidential value of the data was considered along with higher-level theoretical concerns within a theoretical paradigm. The experiments were not meant to show an isolated effect; rather, they were tests or demonstrations of aspects of a broad theory.

In contrast, paradigmatic research programs — with concordant null hypotheses — have become scarce in the contemporary field of psychology. The paradigmatic progress exemplified by these three examples would not be possible within psychology’s current research landscape, which closely aligns with the Kuhnian description of a Pre-paradigm Science. This was not always true; in the mid twentieth century, psychological theorising had coalesced into several broad paradigmatic perspectives (e.g., Cognitive Dissonance Theory, Festinger, 1957). However, the subsequent decades saw psychology transform back into a discipline more clearly characterized by a pre-paradigm population of micro-theories. Often, these micro-theories consist solely of the described effect, followed by the word “theory” or “model”, resulting in empty restatements. Insofar as they can be construed as unfalsifiable, one might call them pseudo-theories (Fiedler, 2004). To the extent that these descriptive theories are arrived at entirely post-hoc, they can constitute entire pseudoscience disciplines (Lakatos, 1970).
Consider the facial feedback hypothesis (Strack, Martin, & Stepper, 1988), in which feedback from the face is assumed to modulate emotion. Wagenmakers et al. (2016) recently attempted to replicate the 1988 study, obtaining a null result across several labs and thousands of participants. In Normal Science, this might lead to a paradigmatic crisis or new boundary conditions, either of which could be construed as progress. Instead, Wagenmakers et al. (2016) simply claim a failure to replicate, leaving Strack (2016) to offer a series of post hoc reasons why it might not have replicated. It is not clear what was learned from the episode, because the facial feedback hypothesis is not strongly linked to a broader paradigm positing boundary conditions and mechanisms; it is a label for an effect. When an effect stands on its own, rather than in relation to a paradigm, the implications a null result has for the progress of psychological science are unclear.⁷

On the surface, psychology espouses the same standards of hypothesis testing as most mature sciences: a Popperian (1959) emphasis on falsificationism predicated hypotheses derived from explanatory paradigms. These typically constitute clear predictions that distinguish the underlying explanatory accounts of distinct paradigms, allowing for the specification and testing of theoretical boundary conditions which illuminate the cases in which a particular paradigm may be more or less explanatory compared to its rivals (McGuire, 2013). Within the context of psychology, theoretical boundary conditions necessarily take on a different character, given that “theories” are often little more than descriptions of phenomena, with “boundaries” that cannot extend beyond descriptions of individual effects.

When falsification can no longer be tethered to the boundary conditions of explanatory paradigms, Popperian null hypothesis testing shifts to the reliability of individual effects; if an effect does not replicate as predicted, it has been “falsified” (Ferguson & Heene, 2012).

⁷This is not to say that null results are not important outside of Normal Science; it is just to say that their interpretation depends on having a paradigmatic background against which to understand them. Science is more than a catalog observations, but such a catalog may be a crucial ingredient to a developing scientific paradigm.
Accordingly, the historical emphasis on theory-framed hypothesis testing has been replaced by the statistical significance of hypothesized effects (e.g., Benjamin et al., 2018; Open Science Collaboration, 2012, 2015; Simmons, Nelson, & Simonsohn, 2011) where these predictions are increasingly tested against a pre-registered hypothesis for predicted outcomes. In a Normal Science setting, experimental hypotheses follow from predictions that themselves follow from well-developed theories, obviating the need for the pre-registration of the hypothesis. Moreover, replacing paradigmatic falsifiability with replicability of effects discourages researchers from attending to the paradigmatic principles that allow for contextualized assessments of the evidential value of a given of replication “failure” (Stroebe & Strack, 2014). This further entrenches, rather than opposes, the pre-paradigm nature of much of psychological science (also see Fiedler, Kutzner, & Krueger, 2012).

Acting within Normal Science, all three groups of experimenters we have highlighted — Michelson and Morley, Mendel, and the LIGO team — are celebrated for their careful experimentation. Michelson invented multiple iterations of his device to reduce the noise in his measurements. Mendel grew thousands of pea plants across 84 experiments to demonstrate his theory. The LIGO team invested a decade honing their experimental skills before finding a single gravitational wave. This attention to detail is possible when scientific progress is not defined by arguments over individual effects and statistical significance, but is rather guided by work within, or opposing, a broad paradigm. If psychology reasserts itself as a Normal Science, only then will it become a field unified by wide-ranging theoretical perspectives in which evidence for statistical regularities are valued at least as much as significant differences.
References

Wagenmakers, E.-J., Beek, T., Dijkhoff, L., Gronau, Q. F., Acosta, A., R. B. Adams, J., ...

Figure 1. Michelson and Morley’s device (1887, fig. 3 and 4 from the manuscript). A: Perspective drawing of the device without its wooden cover. The surface was about 1.5m square. B: Schematic of the table surface. Light emitted from the light source a through a lens hits a beam splitter b and is sent along one of two perpendicular paths. The light is then reflected back and forth by mirrors at d and d_i (and opposite), until they are reflected back by mirror e or e_i. They pass back though the beam splitter and part of both beams is sent to an eyepiece at f. The mirror e_i is finely adjustable so that the two beams can be equated in length. An extra beam splitter c is used to ensure that both beams move through the same amount of glass.
Figure 2. The data from Michelson and Morley’s experiment, as presented in the manuscript. The top series shows the average of the detrended noon runs, and the bottom the detrended evening runs. The y axis is the amount of shift in fringes. The dotted curve shows the expected pattern at 1/8 the expected amplitude of 0.4. In the schematic above, the point marked “a” represents the light source on the sketch of the instrument.
Figure 3. All possible genotypes and corresponding phenotypes for the seed shape trait. Seed shape has two possible alleles (round and wrinkled) and the round allele is dominant. Icons for the genotypes (black-and-white) and phenotypes (solid black) are shown here and used in subsequent figures. The circle denotes the round allele and the star, the wrinkled allele.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygous</td>
<td>◌ Round</td>
</tr>
<tr>
<td>Homozygous</td>
<td>◌ Round</td>
</tr>
<tr>
<td>Dominant</td>
<td>◌ Round</td>
</tr>
<tr>
<td>Homozygous</td>
<td>◊ Wrinkled</td>
</tr>
<tr>
<td>Recessive</td>
<td>◊ Wrinkled</td>
</tr>
</tbody>
</table>

Figure 4. An example of Mendelian genetics with two heterozygous parents (left and top of each square). Inside the squares are the four crossings of the two alleles from each parent. A: The genotype of each possible cross. B: The phenotype of each possible cross. Although 50% of the alleles correspond to the wrinkled phenotype, only 25% of the resulting plants will be wrinkled due to the wrinkled allele’s recessiveness.
Figure 5. A: Calculating the distance, in standard errors, of a pair of estimates (red circle) from the theoretical values (center of the bull’s eye). Diamonds on the axes show the individual observations in each experiment. B: The distribution of the squared distance, assuming two points. The expected squared distance is 2, as shown by the triangle on the bottom axis. The probability of getting a smaller squared distance than the one observed is about .13, assuming Mendel’s theory. The shaded region shows the middle 50% of the distribution.
Figure 6. Results from Edwards’ (1986) sixteen groupings of Mendel’s 84 experiments, along with theoretical distributions. The series are sorted by deviation from expectation, and scaled by expectation (degrees of freedom) in order to visually align all the results. Shaded regions show the middle 50% of the distributions.
Figure 7. Theoretical distribution across all 84 experiments. The red line indicates the observed total squared distance 49.15 (calculated from Edwards’ 1986 data). There is a 99.9% chance that a random value from this distribution would be larger than 49.15. The shaded region shows the middle 50% of the distribution and its expectation is indicated by the triangle on the bottom axis.

Figure 8. How gravitational waves distort the length of the two perpendicular arms of the LIGO Michelson interferometers.
Figure 9. Locations of the Laser Interferometer Gravitational-Wave Observatory (LIGO) sites in the United States, and the Virgo interferometer in Italy.