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SUMMARY

Immune evasion is a hallmark of cancer. Losing
the ability to present neoantigens through human
leukocyte antigen (HLA) loss may facilitate immune
evasion. However, the polymorphic nature of the
locus has precluded accurate HLA copy-number
analysis. Here, we present loss of heterozygosity
in human leukocyte antigen (LOHHLA), a computa-
tional tool to determine HLA allele-specific copy
number from sequencing data. Using LOHHLA, we
find that HLA LOH occurs in 40% of non-small-
cell lung cancers (NSCLCs) and is associated with
a high subclonal neoantigen burden, APOBEC-
mediated mutagenesis, upregulation of cytolytic
activity, and PD-L1 positivity. The focal nature of
HLA LOH alterations, their subclonal frequencies,
enrichment in metastatic sites, and occurrence as
parallel events suggests that HLA LOH is an im-
mune escape mechanism that is subject to strong
microenvironmental selection pressures later in
tumor evolution. Characterizing HLA LOH with
LOHHLA refines neoantigen prediction and may
have implications for our understanding of resis-
tance mechanisms and immunotherapeutic ap-
proaches targeting neoantigens.

INTRODUCTION

Immune evasion represents a hallmark of cancer (Hanahan and

Weinberg, 2011). The majority of cancer immunotherapies,

including immune checkpoint blockade therapy, aim to coun-

teract immune evasion by shifting the balance in favor of immune

activation, enabling T cell-mediated cancer cell elimination

(Schumacher and Schreiber, 2015). However, only a subset of
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patients benefit from immunotherapies, emphasizing the need

to identify the genomic and molecular determinants underpin-

ning immune evasion.

Recent work has highlighted the importance of cancer-specific

neoantigens in determining cytolytic and T cell activity as well as

predicting efficacy of immune checkpoint inhibition (Brown et al.,

2014; Rizvi et al., 2015; Rooney et al., 2015; Snyder et al., 2014;

Van Allen et al., 2015). A critical step in neoantigen presentation

and cytolytic T cell response is governed by class I human leuko-

cyte antigen (HLA), which presents intra-cellular peptides on the

cell surface for recognition by T cell receptors. Each individual’s

genome contains up to six distinct HLA class I alleles, encoded

by three genes (HLA-A, HLA-B, and HLA-C), located on the ho-

mologous paternal and maternal chromosome 6.

Downregulation of HLA genes may result in reduced antigen

presentation and thus facilitate immune evasion. HLA downregu-

lation, characterized by immunohistochemistry ormonoclonal an-

tibodies, has been found to be prevalent across a range of cancer

types and has also been linked to poor outcome (Campoli and

Ferrone, 2008; Hicklin et al., 1999; Hiraki et al., 2004; Mehta

et al., 2008). Loss of either thematernal or paternal HLA haplotype

may also impact upon the efficacy of immunotherapy. An

intriguing report documented loss of heterozygosity (LOH) at the

HLA locus, with loss of HLA-C*08:02 in the resistant lesion from

a tumor treated with tumor-infiltrating lymphocytes composed

of T cell clones targeting KRAS G12D (Tran et al., 2016). Because

the presence of the HLA-C*08:02 allele was required for presen-

tation of the KRAS G12D neoantigen and tumor recognition by

T cells, its loss was proposed to directly enable immune evasion.

However, the impact of loss of an HLA haplotype on anti-

tumor immunity, clonal expansions, and neoantigen prediction

has not been systematically explored as the polymorphic nature

of the HLA locus prevents alignments of sequencing reads to the

human reference genome and inference of copy number. To this

end, we developed LOHHLA (loss of heterozygosity in human

leukocyte antigen), a computational tool permitting allele-spe-

cific copy number estimation of the HLA locus from next-gener-

ation sequencing data. Building upon previous work imputing
ª 2017 The Francis Crick Institute. Published by Elsevier Inc. 1259
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:nicholas.mcgranahan.10@ucl.ac.uk
mailto:charles.swanton@crick.ac.uk
https://doi.org/10.1016/j.cell.2017.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2017.10.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/


HLA haplotype specific alignment

LOHHLA methodA

B C D

HLA allele input
Tumor purity
Tumor ploidy

Tumor .bam
Normal .bam

HLA allele specific logR and BAF

HLA-A 

HLA-B 

HLA-C 

HLA-A 

HLA-B 

HLA-C 

HLA allelic logR

HLA B-allele frequency

0 500 1500 2500 3500
−3
−2
−1

0
1
2
3

HLA genomic position

Lo
g 

R
at

io

HLA-A*24-02-01
HLA-A*01-01-01

0 500 1500 2500 3500

0

1

0.5

HLA genomic position

B
-a

lle
le

 fr
eq

ue
nc

y

HLA haplotype specific copy number inference

HLA-A 

HLA-B 
HLA-C 

HLA allele specific copy number

0 500 1500 2500 3500

1
0

2
3

HLA genomic position

C
op

y 
nu

m
be

r

HLA allele alignment

HLA-A*01-01-01 normal 

HLA-A*01-01-01 tumor 

Normal reads

Tumor reads

HLA-A*24-02-01 normal 

HLA-A*24-02-01 tumor

ASCAT versus LOHHLA
(P=1.36e-115, rho=0.70)

Allelic imbalance Loss of heterozygosity

LOHHLA exclusive ASCAT exclusiveCommon

14034 8 5821 9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

LOHHLA raw minor

A
S

C
AT

 ra
w

 m
in

or

HLA-A*24-02-01
HLA-A*01-01-01

HLA-A*24-02-01
HLA-A*01-01-01

Figure 1. Outline and Validation of LOHHLA for Inference of HLA Class I Allele-Specific Copy Number in Tumors

(A) Schematic of the LOHHLA algorithm.

(B) Comparison of minor allele copy number for ASCAT and LOHHLA.

(C) Venn diagram illustrating LOHHLA and ASCAT comparison for inference of allelic imbalance at HLA locus.

(D) Venn diagram illustrating LOHHLA and ASCAT comparison for inference of LOH at HLA locus.

See also Figures S1 and S2.
HLA haplotypes from sequencing data (Shukla et al., 2015; Szo-

lek et al., 2014) and utilizing previously published datasets (Bras-

tianos et al., 2015; Jamal-Hanjani et al., 2017), we endeavored to

address the prevalence and timing of HLA LOH in lung cancer

and its potential impact on tumor evolution, neoantigen presen-

tation and metastasis.

RESULTS

Inferences of HLA LOHand Imbalance in Tumor Samples
Using LOHHLA
In order to determine allele-specific copy number, themajority of

copy-number tools rely on the relative coverage and variant

allele frequency of single nucleotide polymorphisms (SNPs) in

the tumor and matched normal across the genome or exome

(Carter et al., 2012; Favero et al., 2015; Ha et al., 2014; Shen

and Seshan, 2016; Van Loo et al., 2010). However, inferring

copy number status at the HLA locus is problematic due to

poor coverage and the polymorphic nature of the region. SNPs

cannot readily be identified at the HLA locus using sequencing

data that has been aligned to the human reference genome,

as reads that are highly polymorphic will not align and will there-

fore be discarded. Indeed, despite being one of the most poly-
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morphic regions of the human genome, an average of <1

(mean 0.84, range 0–7) informative heterozygous SNP in the

three HLA class I genes was identified in 96 patients where

copy-number analysis was possible from the TRACERx cohort

(Jamal-Hanjani et al., 2017) using the state-of-the-art SNP caller

Platypus (Rimmer et al., 2014). These data suggest that conven-

tional copy-number calling algorithms are not suited to directly

infer haplotype-specific copy number of the HLA locus.

We reasoned that, by leveraging the reads that map specif-

ically to an individual’s germline HLA alleles rather than the hu-

man reference genome, it would be possible to accurately deter-

mine HLA haplotype-specific copy number. To achieve this, we

developed the computational tool LOHHLA (Figure 1A). Imple-

mentation of LOHHLA relies upon five steps. First, tumor and

germline reads that map to the HLA region of the genome and

chromosome 6, including contigs, are extracted. Second, tumor

and germline HLA allele-specific .bam files are generated by

aligning reads to patient-specific HLA alleles (obtained from

HLA serotyping or an inference tool, e.g., Polysolver [Shukla

et al., 2015] or Optitype [Szolek et al., 2014]). Third, polymorphic

sites between homologous HLA alleles are identified. Fourth, tu-

mor coverage relative to germline (logR) and b-allele frequencies

(BAF) are inferred at each HLA locus, making use of identified



polymorphic sites. Finally, HLA allele-specific copy number

is determined for each HLA gene, accounting for stromal

contamination.

To the best of our knowledge, no other computational method

currently exists to infer haplotype-specific copy number of the

HLA locus, and as such, there is no gold-standard with which

we can compare LOHLA copy-number estimation or inference

of which HLA haplotype is subject to loss. Therefore, to test

the accuracy of HLA copy-number estimation, we made the

assumption that genomic segments adjacent to the HLA locus

will often exhibit the same copy-number profile as the HLA locus

itself, which holds for caseswithout a highly focal HLA event (Fig-

ure S1D). We therefore used ASCAT (Van Loo et al., 2010) to es-

timate the frequency of allelic imbalance and LOH in the genomic

regions surrounding the HLA locus in 288 TRACERx non-small-

cell lung cancer (NSCLC) exomes from 96 patients (Jamal-Han-

jani et al., 2017) and compared these to LOHHLA copy-number

estimation. Notably, given that ASCAT is not designed to infer

which HLA haplotype is subject to loss or imbalance, for this

analysis, we could only compare whether ASCAT and LOHHLA

exhibited concordant copy-number profiles not whether concor-

dant haplotypes were predicted to be lost.

We observed a highly significant relationship between the

minor and major allele copy-number estimates obtained from

LOHHLA and ASCAT (p = 1.36e-115, rho = 0.70, Spearman’s

rank test; Figures 1B and S1A), supporting the utility of LOHHLA

to accurately estimate copy number and LOH.We found concor-

dant allelic imbalance estimates in 246/288 tumor regions (Fig-

ures 1C, S1B, and S1C). Thirty-four additional allelic imbalance

events in tumor regions were uncovered using LOHHLA while

only 8 tumor regions exhibited evidence of allelic imbalance us-

ing ASCAT and not LOHHLA. In many cases, the discrepancies

between ASCAT and LOHHLA could be explained by the fact

that ASCAT cannot directly infer haplotype-specific copy num-

ber at the HLA locus, and thus, the copy number of either the

50 or 30 adjacent segment is erroneously assumed to cover the

HLA locus (Figure S1D).

Concordant LOH inference, where either the maternal or

paternal allele was deleted, was observed in 258/288 tumor

regions, with additional LOH defined by LOHHLA identified in

21 tumor regions, while 9 tumor regions were identified as

harboring a lost haplotype by ASCAT and not LOHHLA (Figures

1D and S1C).

To further validate LOHHLA using an approach independent

of exome sequencing, we performed PCR-based fragment anal-

ysis of highly polymorphic stretches of DNA in close proximity to

the HLA locus in 82 tumor regions from 27 tumors (Figure S2).

Tumor regions analyzed were either predicted to have all loci

(HLA-A, HLA-B, and HLA-C) subject to LOH, or no loci affected.

Supporting the utility of LOHHLA to accurately classify LOH, we

observed significant differences in normalized allelic ratio be-

tween tumors classified as exhibiting LOH, allelic imbalance

without LOH, or no observable imbalance (p = 1.07e-19 [LOH

versus no imbalance], p = 4.57e-05 [LOH versus allelic

imbalance]; Figure S2). Furthermore, the distinction between

these three categories was clearer using LOHHLA than the

copy-number tools ASCAT (Van Loo et al., 2010), Sequenza

(Favero et al., 2015), or TITAN (Ha et al., 2014) (Figure S2).
Taken together, these data suggest that LOHHLA is able to

accurately infer both allelic imbalance and LOH in tumor sam-

ples. While it may be possible to infer whether the HLA locus is

subject to allelic imbalance and/or LOH in the majority of cases

using copy-number tools such as ASCAT (Van Loo et al.,

2010), LOHHLA provides additional sensitivity and specificity

to detect these aberrations, even if they are highly focal.

Crucially, LOHHLA also infers specifically which HLA allele ho-

molog is subject to loss at each of the three HLA genes, which,

to the best of our knowledge, is currently not possible with other

tools.

Prevalence and Timing of HLA Imbalance and Loss
across NSCLC
HLA mutations, which have the ability to disrupt neoantigen-

MHC binding, have been previously described in many cancer

types, including NSCLC (Shukla et al., 2015). However, despite

being linked to cancer and immune escape, mutations in HLA

genes are infrequently detected (Lawrence et al., 2014; Shukla

et al., 2015). In our cohort of 90 lung adenocarcinoma or lung

squamous cell carcinoma TRACERx patients, only tumors from

three patients were found to harbor nonsynonymous mutations

in HLA genes using Polysolver (Shukla et al., 2015) (Figure 2A).

One lung adenocarcinoma tumor had also acquired a mutation

in b-2 microglobulin (B2m), which is vital for MHC class I expres-

sion and peptide binding stability. No further mutations

predicted to disrupt antigen presentation or the MHC class I

complex were identified in this cohort. Likewise, a broader study

of 174 lung squamous cell and 223 lung adenocarcinoma

patients from TCGA only classified 8% and 5% of tumors as

harboring HLA mutations, respectively (Shukla et al., 2015).

In 36/90 (40%) of NSCLCs LOHHLA identified HLA LOH,

where either the maternal or paternal allele was lost, resulting

in HLA homozygosity. Just as HLA mutations occur more

frequently in lung squamous cell carcinomas (Shukla et al.,

2015), we also observed an enrichment for HLA LOH in this his-

tological subtype (p = 0.004, 19/31 [61%] of lung squamous cell

carcinomas versus 17/59 [29%] of lung adenocarcinomas) (Fig-

ures 2A and 2B). The high frequency with which HLA LOH occurs

and the possibility of previously antigenic peptides no longer

being presented on the lost allele suggests that HLA LOH has

the capacity to be a more prevalent mechanism of immune

disruption than HLA or B2M mutations.

To investigate whether HLA allele-specific loss was an early

event in the tumor’s evolution, present clonally in every cancer

cell, or whether it was present subclonally, in only a subset of

cancer cells, indicating an occurrence later in evolution and

potentially in response to a shift in the equilibrium between im-

mune recognition and evasion, we utilized the high-depth and

multi-region nature of the TRACERx dataset. In this cohort of

early stage NSCLC tumors, HLA LOH appeared to frequently

occur subclonally in both histological subtypes, with 13/17

lung adenocarcinoma and 9/17 lung squamous cell carcinomas

exhibiting loss of anHLA allele in a subset of cancer cells (Figures

2C and 2D). Clonality of the HLA LOH event could not be deter-

mined for two lung squamous cell carcinoma patients with only a

single region available for copy-number analysis. Phylogenetic

analysis permitted us to map HLA LOH events to probable
Cell 171, 1259–1271, November 30, 2017 1261
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Figure 2. Frequency and Timing of HLA LOH in NSCLC

(A) The total number of lung adenocarcinoma and lung squamous cell carcinoma TRACERx patients exhibiting an HLA non-synonymous mutation, HLA allelic

imbalance (AI), or LOH at the HLA locus is shown.

(legend continued on next page)
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subclones from the tumor’s evolutionary tree (Figures 2E and 2F)

(Jamal-Hanjani et al., 2017). These data suggest that selective

pressure from the immune system may increase during tumor

development and also that without multi-region sequencing,

the prevalence of HLA LOHmay be significantly underestimated.

To shed further light on the timing of HLA LOH in NSCLC tumor

evolution, we obtained sequencing data for 37 NSCLC primary

tumors with matched brain metastases (Brastianos et al.,

2015). Consistent with data from early stage NSCLC, we identi-

fied HLA LOH in 17/37 (46%) tumors and found that the LOH

event occurred subclonally in 11/17 (65%) cases in which it

occurred (Figure 2G). Furthermore, when we compared primary

and metastatic samples taken from the same patient, we

observed a trend toward enrichment of HLA LOH in brain

metastases compared to the matched primary tumor (p = 0.08,

McNemar’s test), with seven patients harboring HLA LOH in

the metastatic sample alone and only one patient where the

converse was observed, with HLA LOH in the primary tumor

alone (Figure 2H). These results support the notion of HLA LOH

occurring later in cancer evolution and indicate that there may

be selection for immune evasive mechanisms in late stage

disease.

HLA Loss Is under Positive Selection in NSCLC
Given the relevance to immune evasion and high incidence of

both clonal and subclonal LOH in HLA genes, we asked whether

HLA LOH was significantly more frequent than expected by

chance. Taking the frequency of LOH in every tumor into ac-

count, we simulated the expected frequencies of both focal

and arm-level events. The observed incidence of focal, but not

arm-level, HLA LOH occurred at a significantly greater frequency

than expected by chance (Figures 3, p < 0.001, and S3). Indeed,

we observed a clear peak in focal LOH centered around the HLA

locus for both histological subtypes. This peak was more pro-

nounced when restricting the analysis to subclonal LOH (Fig-

ure S3). Thus, while chromosomal instability may lead to LOH

at the HLA locus, facilitating immune escape, the high preva-

lence of HLA LOH, beyond that expected by chance, suggests

it is subject to significant positive selection in tumor evolution.

Moreover, in keeping with a strong selective pressure later in

tumor evolution, in four tumors we observed losses of HLA hap-
(B) Proportion of HLA allelic imbalance (AI) and HLA LOH identified in NSCLC by

(C and D) Pie charts show the timing of HLA LOH events using multi-region info

Events at individual HLA A/B/C loci were considered clonal if they were found in ev

regions. A patient sample was considered to have clonal HLA LOH if all of the

carcinoma patients with only a single region available for copy-number analysis

(E and F) Phylogenetic trees for each lung adenocarcinoma (E) and lung squamou

the most likely timing of the HLA LOH event. Homozygous HLA alleles, where HLA

tree (nodes) are indicated as clonal (blue) or subclonal (red). In cases where the

additional gray subclone was included.

(G) Number of NSCLC patients from Brastianos et al. (2015) with paired primary/b

LOH in both the primary tumor and brain metastasis (green), HLA LOH only in the p

HLA LOH identified consistently across HLA loci in both the primary tumor and e

inconsistent HLA loci subject to LOH or those with HLA LOH identified in only a pr

(H) Timing of the HLA LOH events. Clonal HLA LOH events occur in both the prima

events either arise in the brain metastases (blue) or have occurred in a subclone

increase in HLA LOH is observed in the brain metastases samples as compared to

brain metastases samples exhibiting no HLA LOH (73% to 57%).
lotypes occurring as distinct events on separate branches of the

tumors’ phylogenetic trees, indicative of parallel evolution with

convergence upon HLA loss (Figure 3C). Of note, in all four cases

where we observed parallel evolution, the same alleles were

subject to loss on distinct branches, suggesting that loss of

these alleles specifically may have been required for subclonal

expansions. We also noted that in certain cases (e.g.,

CRUK0051) only one HLA gene was subject to allele-specific

loss, implying a selective benefit of perturbations to neoantigen

presentation associated with that gene specifically.

Taken together with the recently described significant muta-

tion frequency in HLA genes across tumors (Lawrence et al.,

2014; Shukla et al., 2015), these data implicate HLA LOH as a

common mechanism of immune evasion in lung cancer evolu-

tion. Furthermore, these data suggest that the immune system

acts as a strong selection pressure during branched tumor

development.

It is also notable that while HLA LOH was identified in 36 tu-

mors, we did not identify any tumors exhibiting homozygous de-

letions of HLA. Concordant with this observation, the variant

allele frequencies of mutations that have been identified in HLA

genes are indicative of a heterozygous state (Shukla et al.,

2015). These data support the notion that a single copy of an

HLA haplotype may be mandatory to avoid NK-mediated target

cell lysis (Moretta et al., 2014).

HLA Loss Reflects Immune Editing and Is Associated
with an Enrichment of Subclonal Mutations
Conceivably, if one of the homologous chromosomes harboring

the HLA haplotypes were subject to copy-number loss, the

number of putative neoantigens presented to T cells would be

reduced. Thus, we hypothesized that loss of an HLA haplotype

may be permissive for subclonal expansions and would be asso-

ciated with an elevated mutation/neoantigen burden.

We first compared the number of non-synonymous mutations

and neoantigens present in tumor samples with andwithout LOH

at the HLA locus, without taking into account timing or clonal

nature of the HLA LOH event. While overall, we observed a sig-

nificant increase in the number of non-synonymous mutations

(Figure 4A) and neoantigens (Figure S4A) in tumor samples

exhibiting any HLA LOH, this did not remain significant when
sub-type. Enrichment significance was tested using a Fisher’s exact test.

rmation for lung adenocarcinoma (C) and lung squamous cell carcinomas (D).

ery region considered and subclonal if they were found in only a subset of tumor

individual loci lost in that tumor occurred clonally. Two lung squamous cell

are not shown.

s cell carcinomas (F) showing evidence of HLA LOH have been annotated with

LOH is not possible, are indicated by an asterisk. Clones on the phylogenetic

HLA LOH event did not map to a possible clone on the phylogenetic tree, an

rain metastasis sequencing data available exhibiting no HLA LOH (gray), HLA

rimary tumor (red), or HLA LOH only in the brain metastasis (blue). Patients with

very brain metastases were considered to have clonal HLA LOH. Patients with

imary or brain metastasis sample were considered to have subclonal HLA LOH.

ry tumor sample and the brain metastases (green), whereas subclonal HLA LOH

of the primary tumor that does not seed the brain metastasis (red). Overall, an

the primary tumor (27% to 43%) and a corresponding decrease is observed in
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Figure 3. HLA LOH Reflects Selection in NSCLC

(A and B) Frequency of focal LOH in lung adenocarcinoma (A) and lung squamous cell carcinoma (B). Focal LOH is defined as <75%of a chromosome arm. Arrow

indicates location of HLA locus. Horizontal dashed line depicts significant focal LOH at p = 0.05, using simulations. Clonal LOH is shown in blue, with subclonal

LOH shown in red. Chromosome arm LOH and focal subclonal LOH is shown in Figure S3.

(C) Parallel evolution of HLA LOH, with allele-specific HLA loss shown on phylogenetic trees.

See also Figure S3.
the subtypes were considered separately (NSCLC p = 0.016;

lung adenocarcinoma p = 0.07; lung squamous cell carcinoma

p = 0.82, Wilcoxon test). However, we observed only 3/36

tumors with HLA LOH that exhibited a low mutational burden

(as defined by the lowest quartile of NSCLC mutation burden),

compared to 21/54 tumors without HLA LOH.

When we considered the clonal nature of mutations, we found

that among tumors with HLA LOH there was a significant in-

crease in the number of subclonal, but not clonal, non-synony-

mous mutations (Figures 4B and 4C) (NSCLC p = 0.008; lung

adenocarcinoma p = 0.01; lung squamous cell carcinoma

p = 0.6, Wilcoxon test) and neoantigens (Figures S4B and

S4C). This observation is consistent with HLA LOH frequently

occurring as a branched, subclonal event and indicates that

HLA LOHmay allow for the accumulation of potentially antigenic

subclonal mutations. Consistent with this, we found that when

HLA LOH occurred as a clonal event, on the trunk of a tumor’s

phylogenetic tree, this was significantly associated with both

an elevated clonal (NSCLC p = 0.002; lung adenocarcinoma

p = 0.01; lung squamous cell carcinoma p = 0.29, Wilcoxon

test) and subclonal (NSCLC p = 0.03; lung adenocarcinoma

p = 0.004; lung squamous cell carcinoma p = 0.89, Wilcoxon

test) non-synonymous mutation and neoantigen burden (Figures

4B, 4C, S4B, and S4C).

When we considered HLA LOH events at the region-level, we

also observed a significant increase in subclonal mutations be-
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tween tumor regions exhibiting HLA loss compared to tumor

regions from patients without any evidence for HLA LOH (Fig-

ure S4D; NSCLC p = 1.9e-05; lung adenocarcinoma p = 0.009;

lung squamous cell carcinoma p = 0.07). Interestingly, even in

tumor regions without HLA LOH, but evidence for HLA LOH in

other regions from the same tumor, we observed a significantly

higher burden of subclonal mutations compared to tumor

regions derived from tumors without any evidence for HLA

LOH (Figure S4D). Thus, while HLA LOH may allow for subse-

quent subclonal expansion, a tumor with a high mutational

burden may be under increased selective pressure for the HLA

LOH event.

We next considered the specific cancer subclones in which

HLA LOH events occurred, allowing us to more directly assess

the impact of HLA LOH on non-synonymous mutation and neo-

antigen burden in cancer cells (Figure S4E). In tumors with sub-

clonal HLA LOH, we directly compared the mutational burden of

the cancer subclone harboring HLA loss with its sister subclone,

descended from the same ancestral cancer cell, but without HLA

loss. Among the 36 tumors exhibiting anyHLA LOH,we identified

19 instanceswhere the eventwas subclonal and not on a terminal

node for which a comparison between sister subclones could be

made. Subclones with HLA LOH consistently showed a higher

non-synonymous mutational burden than their counterparts

without HLA LOH, regardless of histological subtype (Figure 4D;

NSCLC p = 4e-04; lung adenocarcinoma p = 0.018; lung
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Figure 4. Non-synonymous Mutational Burden Associates with HLA LOH, and Neoantigens More Frequently Bind the Lost Allele

(A) The total number of nonsynonymous mutations is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous cell

carcinomas (magenta). Tumors were classified as having: no HLA LOH; any HLA LOH event, without taking into account the timing of the event; or clonal HLA

LOH. The lowest total non-synonymousmutation quartile is indicated by the dashed red line and the proportion of tumorswith a total non-synonymousmutational

burden greater or less than that is indicated by the pie charts for each HLA LOH classification group.

(B) The number of clonal non-synonymous mutations is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous

cell carcinomas (magenta).

(C) The number of subclonal non-synonymous mutations is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung

squamous cell carcinomas (magenta). All p values are calculated using an unpaired Wilcoxon test.

(D) The number of non-synonymous mutations found in the clone harboring the HLA LOH event compared to the number of non-synonymous mutations in its

sister clone, descended from the same ancestral cancer cell, but without HLA LOH. The p value is calculated using a paired Wilcoxon test.

(E) The number of subclonal neoantigens predicted to bind to either the lost HLAallele or the kept HLA allele is indicated for all NSCLC tumors exhibitingHLALOH, all
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(F) The total number of mutations predicted to result in a binder to the lost allele is shown for all patients with at least one HLA LOH event. The mutation clonality is

also indicated as either clonal (light blue) or subclonal (light red).

See also Figure S4.
squamous cell carcinoma p = 0.008). Indeed, there were only 2/

19 instances of the subclone with HLA LOH having fewer non-

synonymous mutations than its sister subclone without HLA
LOH. This result suggests that HLA LOH may contribute to

the observed increase in subclonal non-synonymous mutations

among tumors harboring HLA LOH.
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While therewere only three instances of lowmutational burden

in tumors harboring an HLA LOH event (Figure 4A) and an in-

crease in mutation burden in subclones harboring HLA LOH

was observed in both cancer types, we noted that a significant

increase in subclonal non-synonymous mutation burden in tu-

mors with loss of an HLA allele compared to those without

HLA LOH was only observed among the lung adenocarcinomas.

These data suggest that while HLA LOH may allow for acquisi-

tion of subclonal mutations in lung squamous cell carcinomas,

there are likely to be additional mechanisms contributing to the

observed high subclonal mutational burden in tumors without

HLA LOH in this subtype.

To address whether a particular mutational process contrib-

utes to the subclonal mutational burden present in tumors with

HLA LOH, we interrogated the mutational signatures present in

each tumor (Alexandrov et al., 2013; Rosenthal et al., 2016).

Among lung adenocarcinoma tumors that exhibited any HLA

LOH, we observed a significant increase in the APOBEC

mutagenic signatures (Signature 2 and Signature 13) (NSCLC

p = 0.03; lung adenocarcinoma p = 0.003, lung squamous cell

carcinoma p = 0.63, Figure S4F); however, no other signature

found in this cohort (Signatures 1A, 4, and 5) appeared to differ-

entially contribute between groups.

Only neoantigens binding to the kept HLA alleles will be pre-

sented to the immune system. We reasoned that if HLA LOH

reflects cancer immune-editing one would expect to observe

an enrichment of subclonal neoantigens predicted to bind with

high affinity to the lost HLA alleles compared to the kept HLA

alleles. We therefore investigated tumors with six distinct HLA

alleles and loss of one HLA haplotype (HLA-A, HLA-B, and

HLA-C) in at least one tumor region (n = 20; 9 lung adenocarci-

nomas and 11 lung squamous cell carcinoma). Consistent with

LOH at the HLA locus representing immune editing and facili-

tating accumulation of subclonal neoantigens, we observed a

significant enrichment for subclonal neoantigens predicted to

bind to the lost HLA alleles compared to the kept alleles (Fig-

ure 4E) (NSCLC p = 0.0083; lung adenocarcinoma p = 0.29;

lung squamous cell carcinoma p = 0.02, paired Wilcoxon

test). In one extreme example, tumor CRUK0020, a lung adeno-

carcinoma, we observed a total of 1,220 mutations predicted to

yield neoantigens, of which 92% were predicted to bind to lost

HLA alleles.

To determine more generally the impact HLA LOH might have

on which neoantigens are presented to the immune system, we

identified neoantigens predicted to bind to lost alleles in the full

cohort of 36 patients exhibiting any HLA LOH (Figure 4F). We

found that all patients harbored mutations predicted to bind

to a now lost HLA allele, highlighting the potential impact HLA

LOH could have on the targeting of putative neoantigens in

a clinical setting, such as through personalized neoantigen vac-

cine approaches (Ott et al., 2017; Sahin et al., 2017).

HLA Loss and Immune Phenotype
Next, to investigate whether HLA loss might be associated

with an immune replete tumor microenvironment, we performed

immunohistochemistry analysis to determine the expression of

PD-L1 on both tumor and immune cells. PD-L1 is a ligand to

the immune inhibitory receptor PD1 and its expression may
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reflect a cancer adaptive immune response to an active immune

system.

We found tumors exhibiting clonal HLA LOH were character-

ized by significantly elevated PD-L1 staining of immune cells

compared to tumors without any HLA LOH (p = 0.029, Cochrane

Armitage test), and a trend was observed for elevated PD-L1

staining on tumor cells (p = 0.14, Cochrane Armitage test). These

data are consistent with the notion that HLA LOH may facilitate

immune escape in response to an active immune microenviron-

ment (Figures 5A and 5B).

To further validate our findings in a larger cohort with RNA-

seq data, we obtained 383 lung adenocarcinomas and 309

lung squamous-cell carcinomas samples from TCGA (Campbell

et al., 2016).

In keeping with results from the TRACERx cohort, we found

HLA LOH was highly prevalent in lung squamous-cell carci-

nomas (133/309) and lung adenocarcinomas (118/383) tumors

and significantly enriched in lung squamous cell carcinomas

compared to adenocarcinomas (p = 0.001, Fisher’s exact test)

(Figure S5A). Additionally, we again observed a significantly

higher non-synonymous mutation burden in lung adenocarci-

nomas tumors exhibiting HLA LOH (p = 0.0001, Wilcoxon test),

regardless of whether the HLA LOH affected a single locus

(p = 0.002, Wilcoxon test) or all three HLA loci (p = 0.003, Wil-

coxon test) (Figure S5B), a factor we could now consider due

to the increased sample size from TCGA.

Previous work has identified immune signatures indicative

of immune activity and/or immune cell infiltrates (Davoli et al.,

2017; Li et al., 2016; Rooney et al., 2015). By using these signa-

tures, we were able to further investigate whether HLA loss was

associated with a specific immune phenotype. Consistent with

the immunohistochemistry results, in both lung adenocarcinoma

and lung squamous cell carcinomas harboring HLA LOH, we

identified a significantly elevated cytolytic activity score, which

measures the levels of two genes upregulated upon CD8+

T cell activation, granzyme A (GZMA) and perforin (PRF1) (Roo-

ney et al., 2015) (Figure 5C). In lung adenocarcinoma with HLA

LOH at all three loci, we observed an increase in abundance of

CD8+ T cells and expression profiles associated with improved

checkpoint blockade response (Herbst et al., 2014; Li et al.,

2016; Piha-Paul et al., 2016; Ribas et al., 2015; Rooney et al.,

2015; Tumeh et al., 2014). Additionally, we identified an increase

in NK cells, suggesting that HLA LOH alone may interrupt

inhibitory NK cell/MHC interactions (Figure 5C). Differential

expression analysis between tumors with and without LOH

confirmed an increase of PD-L1 and effector molecules such

as granzymes-A, -B, and -H, as well as STAT1 and interferon

(IFN)-g, in lung adenocarcinoma with HLA LOH but not lung

squamous cell carcinoma (Table S1).

These data suggest that lung tumors with HLA loss have a

more active immune predatory microenvironment and disruption

of antigen presentation may act as a mechanism to evade the

immune system.

DISCUSSION

Losing the ability to present productive tumor neoantigens could

facilitate evasion from immune predation. An integral part of
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See also Figure S5 and Table S1.
neoantigen presentation is the HLA class I molecule, which pre-

sents epitopes to T cells on the cell surface. Thus, loss of an HLA

allele, resulting in HLA homozygosity, may be a mechanism of

immune escape (Figure 6).

However, the polymorphic nature of the HLA locus precludes

accurate copy-number calling using conventional copy-num-

ber tools. Here, we present LOHHLA, a computational tool to

systematically evaluate the prevalence and importance of HLA

loss in lung cancer evolution using next-generation sequencing

data (Figure 1).

We evaluated the performance of LOHHLA using two inde-

pendent methods. We found LOHHLA LOH and allelic imbal-

ance estimates were consistently in agreement with those

inferred from adjacent genomic segments using the state-of-

the-art copy-number tool ASCAT (Van Loo et al., 2010). PCR-

based fragment analyses of polymorphic stretches of DNA vali-

dated the accuracy of LOHHLA using an approach independent

of exome sequencing. Importantly, LOHHLA is able to deter-

mine which specific HLA haplotype is subject to copy-number
loss, which is not possible using conventional copy-num-

ber tools.

Using LOHHLA, we find that HLA loss occurs in 40% of

early-stage NSCLCs. The focal nature and high frequency,

beyond that expected using simulations, suggest HLA LOH

is strongly selected for in NSCLC evolution. The subclonal

frequency of HLA loss, occurring in a subset of cancer cells,

on the branches of the tumors’ phylogenetic trees, suggests

it is often a later event in tumor evolution and that the

local, region-specific, immune microenvironment may act as

a key selective force in shaping branched tumor evolution.

In keeping with these results, in four early stage tumors, we

observed evidence for parallel evolution of HLA allele-specific

loss, and in a cohort of primary NSCLC tumors with matched

brain metastasis (Brastianos et al., 2015), we detected

HLA LOH in 47% of cases, occurring subclonally in the major-

ity of cases (11/17) and preferentially at the metastatic

sites (Figure 3H). These results support the notion that escape

from immune predation represents a significant constraint
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to tumor evolution. These observations have parallels with

HIV evolution whereby patients with homozygous HLA

alleles exhibit more rapid progression to AIDS compared to

patients with heterozygous HLA alleles (Martin and Carrington,

2013).

In both lung adenocarcinomas and lung squamous cell carci-

nomas, subclones harboring HLA LOH were associated with a

significantly elevated non-synonymous mutation/neoantigen

burden compared to subclones descended from the same

ancestral cancer cell but without HLA LOH. Tumors with HLA

LOH were found to exhibit an enrichment of neoantigens pre-

dicted to bind to the lost HLA alleles and were associated with

significantly elevated PD-L1 staining on immune cells and RNA

signatures of immune activation. These data suggest that loss

of HLA alleles, under the selective pressure of immune preda-

tion, may be permissive for subclonal expansions and result in

previously antigenic mutations becoming effectively invisible to

the immune system.

The high mutational load and low levels of HLA expression

in lung squamous cell tumors (McGranahan et al., 2016), even

in tumors without HLA LOH suggests alternative mechanisms

of immune evasion and/or disruption of neoantigen presentation

through other mechanisms (e.g., mutations to B2M or NLRC5)

(del Campo et al., 2014; Yoshihama et al., 2016). In this regard,

we note that LOHHLA could be extended to perform haplo-

type-specific copy number on any genomic segment that has

been subject to haplotyping. For instance, if HLA class II typing

has been performed, LOHHLA can be implemented to assess

the extent to which loss of HLA class II occurs in tumor evolution

and which haplotype is subject to loss.

Further work is warranted to explore the extent to which HLA

LOH represents a pan-cancer immune evasion mechanism.

Immunohistochemistry analysis has documented loss of HLA

expression in many cancers (Campoli and Ferrone, 2008; Hicklin

et al., 1999; Mehta et al., 2008), however, the extent to which

allele-specific loss of HLA molecules is a pervasive mechanism
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of immune evasion in tumor evolution across cancer types re-

mains unclear. Furthermore, as more data pre- and post-therapy

emerges, it will be possible to investigate the extent to which

HLA LOH represents a common mechanism of resistance within

the context of checkpoint blockade (and other immune-targeted)

therapies.

Our results may also have implications for vaccine- and T cell-

based therapeutic approaches, specifically targeting neoanti-

gens, with up to 92% predicted neoantigens in one tumor found

to bind the lost haplotype. Indeed, consistent with the findings of

Tran et al. (2016), these findings support the notion that taking

into account HLA LOH might help determine which set of

predicted neoantigens are more likely to elicit an effective

T cell response.

In conclusion, LOHHLA enables accurate estimation of haplo-

type-specific HLA loss from sequencing data, revealing that HLA

LOH is a common feature of NSCLC, facilitating immune escape

and subclonal genome evolution.
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kur, V., Tadmor, A.D., Luxemburger, U., Schrörs, B., et al. (2017). Personalized
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

TRACERx 100 Jamal-Hanjani et al., 2017 N/A

Oligonucleotides

Primer, D6S2852: Forward: TTCAGTGAATCATGAGCATG https://genome.ucsc.edu D6S2852_ FAM_F

Primer, D6S2852: Reverse: TGCAAGTGCTCAATGCAGCC https://genome.ucsc.edu D6S2852_R

Primer, D6S2872: Forward: CACAGCAGGAAAGGGTTGAC https://genome.ucsc.edu D6S2872_HEX_F

Primer, D6S2872: Reverse: CCATGAAAAAGTCTGTCCCG https://genome.ucsc.edu D6S2872_R

Primer, D6S248: Forward: TTGCAGTGAGCCGAGATCAA https://genome.ucsc.edu D6S248_FAM_F

Primer, D6S248: Reverse: GACAATATCAAAAAGAACTGCCAAA https://genome.ucsc.edu D6S248_R

Primer, D6S1022: Forward: AAAGTGAGACTCCGCCTCAT https://genome.ucsc.edu D6S1022_HEX_F

Primer, D6S1022: Reverse: CACCTCAGCCTCTTTGGTAG https://genome.ucsc.edu D6S1022_R

Antibodies

Anti-human PD-L1 rabbit monoclonal antibody Ventana, Tucson, AZ SP142

Deposited Data

TRACERx raw and analyzed data Jamal-Hanjani et al., 2017 EGAS00001002247

TCGA NSCLC data Campbell et al., 2016 https://gdc.cancer.gov

Software and Algorithms

Samtools Li and Durbin, 2009 http://samtools.sourceforge.net/

GATK McKenna et al., 2010 https://software.broadinstitute.

org/gatk/

ASCAT Van Loo et al., 2010 https://www.crick.ac.uk/peter-van-

loo/software/ASCAT

Novalign Novocraft http://www.novocraft.com

Polysolver Shukla et al., 2015 http://archive.broadinstitute.org/

cancer/cga/polysolver

netMHCpan-2.8 Hoof et al., 2009; Nielsen

et al., 2003

http://www.cbs.dtu.dk/services/

NetMHCpan-2.8/

netMHC4.0 Andreatta and Nielsen, 2016; Hoof

et al., 2009; Nielsen et al., 2003

http://www.cbs.dtu.dk/services/

NetMHC/

LOHHLA This paper https://bitbucket.org/mcgranahanlab/

lohhla
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Charles Swanton (charles.

swanton@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The TRACERx 100 cohort comprises the first 100 patients prospectively analyzed by the lung TRACERx study (https://clinicaltrials.

gov/ct2/show/NCT01888601, approved by an independent Research Ethics Committee, 13/LO/1546) and mirrors the prospective

100 patient cohort described in Jamal-Hanjani et al. (2017).

The clinical details of the cohort are described in detail in Jamal-Hanjani et al. (2017). In total, 38 patients were female, while 62were

male. The median age at diagnosis was 68 (range, 34-85).
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METHOD DETAILS

LOHHLA (Loss Of Heterozygosity in Human Leukocyte Antigen) algorithm
As input, LOHHLA requires: a tumor and germline BAM; patient-specific HLA calls, either predicted by an HLA inference tool (e.g.,

POLYSOLVER [Shukla et al., 2015] or Optitype [Szolek et al., 2014]) or through HLA serotyping; the HLA fasta file location; purity and

ploidy estimates. (For implementation of LOHHLA in this manuscript, ASCATwas used to estimate tumor purity and ploidy, while HLA

inference was performed using POLYSOLVER, see below.)

To call HLA LOH, LOHHLA relies upon five computational steps:

Step 1: extract HLA reads

First, tumor and germline reads thatmap to theHLA region of the genome (chr6:29909037-29913661, chr6:31321649-31324964, and

chr6:31236526-31239869) as well as chromosome 6 contigs (chr6_cox_hap2, chr6_dbb_hap3, chr6_mann_hap4, chr6_mcf_hap5,

chr6_qbl_hap6, chr6_ssto_hap7) are extracted using samtools view. Unpaired mates from this step are removed and the output is

converted to FASTQ format.

Step 2: create HLA allele specific BAM files

For each of the patient’s heterozygous HLA alleles, a patient-specific reference fasta is created. The FASTQ files generated in the

previous step are used to generate HLA specific BAMfiles,using similar mapping parameters to those previously published that allow

for reads to map to multiple HLA alleles (Shukla et al., 2015). Post-alignment filtering is subsequently performed such that reads

whosemates map to a different allele are discarded, as well as any reads that contain more than one insertion, deletion, or mismatch

event compared to the reference HLA allele. For each filtered tumor/germline HLA allele-specific BAM file, coverage is then calcu-

lated using samtools mpileup.

Step 3: determine coverage at mismatch positions between homologous HLA alleles

For each HLA locus, a local pairwise alignment is performed between the two homologous HLA alleles, using the R Biostrings pack-

age. From the pairwise alignment, all of themismatch positions between the two homologs are extracted. The HLA-specific coverage

calculated in Step 2 is then used to determine differences in coverage at each of the mismatch positions. An additional file is also

generated containing the coverage at every mismatch position, counting each read only once, as to avoid over-counting reads

that span more than one mismatch position.

Step 4: obtain HLA specific logR and BAF

LogR across each HLA gene is then obtained by binning the coverage across both homologous alleles at 150 base pair intervals, for

both tumor and normal. For each bin, the tumor/normal coverage ratio is multiplied by the multiplication factor, M, corresponding to

number of unique mapped reads in the germline, divided by the number of unique mapped reads in the tumor region.

The BAF, corresponding to the coverage of HLA allele 1 divided by the coverage of HLA allele 1 + coverage of HLA allele 2, is sub-

sequently calculated at each polymorphic site.

Step 5: determine HLA haplotype specific copy number

Finally, at each polymorphic site, an estimate of the major and minor allele copy number is obtained using the following equations:

Allele 1=
r� 1+BAF3 2logR 3 ð2ð1� rÞ+ r3jÞ

r

Allele 2=
r� 1� 2ðBAF � 1ÞlogR 3 ð2ð1� rÞ+ r3jÞ

r

where r = tumor purity and j = tumor ploidy, which are input at
 the start. The logR value from the corresponding bin in which the

polymorphic site was found to reside is used as well as the BAF of the polymorphic site.

For each bin, the median Allele 1 and Allele 2 copy number is then determined. To estimate copy number of Allele 1, the median

value across bins is calculated. Likewise, to estimate the copy number of Allele 2, the median value across bins is calculated.

A copy number < 0.5, is classified as subject to loss, and thereby indicative of LOH. To avoid over-calling LOH, we also calculate

a p value relating to allelic imbalance for each HLA gene. This p value corresponds to the pairwise difference in logR values at

mismatch sites between the two HLA homologs, adjusted to ensure each sequencing read is only counted once. Allelic imbalance

is determined if p < 0.01 using the paired Student’s t-Test between the two distributions.

TRACERx 100 Cohort
TRACERx samples considered were obtained from (Jamal-Hanjani et al., 2017). Four patients were excluded due to homozygosity

at all three HLA loci or too few mismatch positions between HLA alleles. Lung adenocarcinoma and lung squamous cell carcinoma

tumors were considered for downstream analyses. Seven tumors were classified as having a separate histology. Of these, one

carcinosarcoma exhibited HLA LOH and three adenosquamous carcinomas, one carcinosarcoma, one large cell carcinoma, and

one large cell neuroendocrine tumor did not.
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TRACERx mutation and copy number data
TRACERx mutation data was obtained from Jamal-Hanjani et al. (2017). In brief, mutations were called using VarScan2 (Koboldt

et al., 2012) and MuTect (1.1.4) (Cibulskis et al., 2013). To estimate whether mutations were clonal or subclonal, a modified version

of PyClone was implemented (Roth et al., 2014). ASCAT (Van Loo et al., 2010) segmented copy number data, purity and ploidy

estimates were obtained from Jamal-Hanjani et al. (2017).

To compare LOHHLA to additional tools, we also implemented Sequenza (Favero et al., 2015), and TITAN (Ha et al., 2014). In both

cases, default settings were used. For TITAN, the purity estimates from ASCAT were used as input.

Comparison of ASCAT and LOHHLA
In order to compare ASCAT and LOHHLA we treated each tumor region as a separate sample, and ran it through the LOHHLA pipe-

line with default settings. Note, for this analysis we used all TRACERx samples available, including NSCLCs that were not classified

as lung adenocarcinomas or lung squamous cell carcinomas.

Given that it was not possible to directly infer the copy number of the HLA alleles using ASCAT, the segment overlapping the HLA

locus was used. In twenty-five tumor regions from seven tumors no segment overlapped the HLA locus, and in these cases, the

closest genomic segment was used.

To compare our allelic imbalance estimates, we considered a tumor region to be concordant if ASCAT predicted allelic imbalance

across the locus and at least one HLA gene using LOHHLA was found to harbor allelic imbalance. Likewise, for LOH, we considered

ASCAT and LOHHLA estimates to be concordant if ASCAT predicted a minor allele of 0 and this was also predicted for at least one

HLA gene.

Conversely, allelic imbalance estimates were classified as discordant if allelic imbalance was predicted in any HLA gene

using LOHHA and not with ASCAT. Similarly, LOH was classified as discordant if any HLA gene using LOHHLA was classified as

exhibiting a minor allele of 0 and no LOH was identified using ASCAT.

Fragment analysis validation of LOHHLA results
Allelic imbalance was validated using four polymorphic Sequence-Tagged Site (STR) markers located on the short arm of chromo-

some 6, close to the HLA locus - (D6S2852, D6S2872, D6S248 and D6S1022). 20ng of patient germline and tumor region DNA was

amplified using the PCR. The PCR comprised of 35 cycles of denaturing at 95C for 45 s, followed by an annealing temperature of 55C

for 45 s and then a PCR extension at 720C for 45 s. PCR products were separated on the ABI 3730xl DNA analyzer. Fragment length

and area under the curve of each allele was determined using the Applied Biosystems software GeneMapper v5. When two separate

alleles were identified for a particular marker, the fragments could be analyzed for allelic imbalance using the formula (Atumor/Btumor)/

(Anormal/Bnormal). The output of this formula was defined as the normalized allelic ratio.

HLA Type, HLA Mutations, and Predicted NeoAntigen Binders
The HLA type for each sample was inferred using POLYSOLVER (POLYmorphic loci reSOLVER), which uses a normal tissue BAM file

as input and employs a Bayesian classifier to determine genotype (Shukla et al., 2015). HLAmutations in each tumor region were also

assessed using POLYSOLVER.

Novel 9-11-mer peptides that could arise from identified non-silent mutations present in the sample (Jamal-Hanjani et al., 2017)

were determined. The predicted IC50 binding affinities and rank percentage scores, representing the rank of the predicted affinity

compared to a set of 400,000 random natural peptides, were calculated for all peptides binding to each of the patient’s HLA alleles

using netMHCpan-2.8 and netMHC-4.0 (Andreatta and Nielsen, 2016; Hoof et al., 2009; Nielsen et al., 2003). Putative neoantigen

binders were those peptides with a predicted binding affinity < 500nM or rank percentage score < 2%.

Mapping HLA LOH to phylogenetic trees and identification of parallel evolution
LOH events detected in every tumor region tested were considered to be clonal events and mapped to the trunk of the phylogenetic

tree. For heterogeneous LOH events, the regional copy number of the HLA allele lost was used in conjunction with the patient tree

structure and subclone cancer cell fractions in a quadratic programming approach, using the R package quadprog, to determine the

best placement of the LOH event.

This was achieved by solving a quadratic programming equation:

minð � d^T b+ 1=2b^T D bÞ
with the constraints:
A^T b> =bvec:

The LOH event was tested at each branch. For each possibility, the phylogenetic tree was broken into two, one containing all

clones after the LOH event and the other consisting of the remainder of the tree. A 2xn matrix, where n is the number of regions

sampled, was constructed containing the regional sum of the cancer cell fractions for each subclone in the subtree and the regional

sum of cancer cell fractions from subclones in the remaining tree. The regional cancer cell fraction matrix was multiplied by the
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transpose of itself to generate a 2x2 matrix for input (Dmat) into the quadprog function, solve.QP. The vector to be minimized (dvec)

was obtained by multiplying the LOHHLA calculated HLA allele copy number for each region by the transpose of the regional cancer

cell fractionmatrix. Finally, the solve.QP function was called withDmat and dvec, using a constraint matrix, Amat, such that all results

had to be positive and a constraint vector, bvec, such that the estimated copy number of HLA allele for the remaining tree was at least

0.5. The errors between observed and predicted copy number values from placing LOH event on each branch were output and the

solution providing the least error was selected.

Each mapped event was inspected and events that did not fit the phylogenetic tree or had large error values, either indicating

the presence of an additional subclone or multiple independent HLA LOH events, were manually adjusted. Patients CRUK0013,

CRUK0061, CRUK0082, and CRUK0084 had HLA LOH events that did not fit the current phylogentic tree, so additional nodes (indi-

cated in gray) were included to contain the HLA LOH event. Patients CRUK003, CRUK0032, CRUK0051, andCRUK0062 hadmultiple

independent HLA LOH events which were manually mapped.

Assessing significance of focal and arm-level LOH
In order to assess whether HLA LOH occurred more than expected by chance, we considered whether each LOH event was focal or

arm-level in nature. In brief, to classify LOH as arm-level or focal, we focused on the minor allele frequency across the genome. First,

any segments (as predicted by ASCAT) with identical minor allele copy numbers were merged. Subsequently, segments that

spanned > = 75% the length of a given chromosome arm, were classified as ‘arm-level’, while segments that were < 75% were

considered focal.

To assess the significance of focal events, for each tumor, the proportion of the genome subject to focalminor allele losswas deter-

mined. This value was assumed to reflect the probability for focal minor allele loss in each tumor. Based on this probability, we gener-

ated an aberration state (loss or no loss) for each sample separately and determined the proportion of samples exhibiting loss. We

repeated this process 10,000 times to obtain a background distribution reflecting the likelihood of observing losses given the prob-

ability of loss in each sample. A p value reflecting the likelihood of observing the level of minor allele loss seen at the HLA locus was

determined by counting the percentage of simulations showing a higher proportion loss than that observed.

The same procedure was conducted for arm-level events, using the observed frequency of arm-level allele specific loss in

each tumor.

Mutational signature analysis
Mutational signatures were estimated using the deconstructSigs R package (Rosenthal et al., 2016). Signature 1A, 2, 4, 5, 13 were

considered.

Assessing whether neoantigens preferentially bind to loss HLA alleles
To assess whether neoantigens preferentially bind to lost HLA alleles, we focused on tumors exhibiting six distinct HLA alleles (i.e., no

homozygosity for any allele in the germline) and loss of one HLA haplotype (HLA-A, HLA-B and HLA-C) in at least one tumor region.

Neoantigens (as defined above), were ranked according to IC50 binding scores. Duplicate mutations were removed to ensure each

neoantigen reflected the highest binding score (lowest IC50 value) for any given mutation. We further filtered the mutation list to only

include subclonal mutations (defined as previously described (Jamal-Hanjani et al., 2017)) occurring in the tumor regions harboring

loss events (> 5% VAF). The number of subclonal neoantigens binding to each haplotype was then determined for each tumor.

A paired wilcoxon test was used to compare the number of subclonal neoantigens binding to the lost haplotype compared to the

kept haplotype.

PD-L1 immunohistochemistry
Formalin-fixed, paraffin-embedded (FFPE) tissue sections of 4-um thicknesswere stained for PD-L1with an anti-humanPD-L1 rabbit

monoclonal antibody (clone SP142; Ventana, Tucson, AZ) on an automated staining platform (Benchmark; Ventana) with the Opti-

ViewDAB IHCDetection Kit and theOptiView Amplification Kit (VentanaMedical Systems Inc.) in a GCP-compliant central laboratory

(Targos Molecular Pathology GmbH). PD-L1 expression was evaluated on tumor cells and tumor-infiltrating immune cells. For tumor

cells the proportion of PD-L1-positive cells was estimated as the percentage of total tumor cells. For tumor-infiltrating immune cells,

the percentage of PD-L1-positive tumor-infiltrating immune cells occupying the tumor was recorded. Scoring was performed by a

trained histopathologist [according to previously published scoring criteria (Herbst et al., 2014)].

Analysis of TCGA mutation data
TCGA tumor andmatched germline exome sequencing BAM files for both lung adenocarcinoma (LUAD, n = 397) and lung squamous

cell carcinoma (LUSC, n = 350), were obtained from the Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) via https://

cghub.ucsc.edu. The data was processed as previously described (Jamal-Hanjani et al., 2017).

RNA-seq expression analysis using TCGA
RNA-sequencing data was downloaded from the TCGA data portal. For each LUAD and LUSC sample, all available ‘Level_30

gene-level data was obtained. Previously defined measures of immune infiltration and activity were used to compare the immune
Cell 171, 1259–1271.e1–e5, November 30, 2017 e4
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microenvironment between tumors exhibiting HLA LOH at all HLA loci and those without any evidence for HLA LOH (Davoli et al.,

2017; Li et al., 2016; Rooney et al., 2015). Additionally the expression level of PD-L1, CTLA4, and an IFN score were compared

(Herbst et al., 2014; Piha-Paul et al., 2016; Ribas et al., 2015; Tumeh et al., 2014). Significance was determined using a Wilcoxon

test and FDR correction. To determine the degree of change between the HLA LOH groups, a ratio of the medians was calculated.

For differential expression analysis, the raw RNA-seq read counts were used as input into the R package DESeq2 for analysis. An

FDR cutoff of 0.05 was used to determine genes significantly differentially expressed.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis was performed in the R statistical environment version > = 3.2.1. All statistical tests were two-sided and statistical sig-

nificance was determined if p value was less than 0.05, unless otherwise stated. Comparisons were made using the Fisher’s exact

test Figure 2B, as described above for Figure 3, unpaired Wilcoxon test for Figures 4A–4C, and paired Wilcoxon test for Figures 4D

and 4E.

DATA AND SOFTWARE AVAILABILITY

Code to run LOHHLA is available at https://bitbucket.org/mcgranahanlab/lohhla.
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Figure S1. Comparison of LOHHLA and ASCAT, Related to Figure 1

(A) Plot illustrating comparison of ASCAT major copy number and LOHHLA major copy number.

(B and C) Summary of concordant and discordant tumor regions in terms of allelic imbalance (B) and LOH (C).

(D) Schematic illustrating howASCAT cannot directly infer HLA copy number or which HLA allele is subject to loss. By contrast, LOHHLA uses SNPs covering HLA

genes to directly infer HLA copy number.
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Figure S2. Validation of LOHHLA Using Fragment Analysis, Related to Figure 1

(A) Area under the curve of each allele using the Applied Biosystems software GeneMapper v5 for germline and tumor regions R1 and R2 in CRUK0010.

(B) Normalized allelic ratio determined using the formula (Atumor/Btumor)/(Anormal/Bnormal). Notably, region R1 shows clear evidence of allelic imbalance and likely

LOH, while region R2 appears similar to germline.

(C–H) Normalized allelic ratio for tumor regions showing either LOH and allelic imbalance; no LOH but allelic imbalance; or no LOH or allelic imbalance classified

by LOHHLA (C), ASCAT (D), TITAN (E and G) and Sequenza (F and H). Tumor purity, as assessed by ASCAT is depicted for each tumor region, p values

correspond to Wilcoxon rank sum test.
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Figure S3. Arm-Level and Focal Subclonal LOH across the Genome, Related to Figure 3

(A and B) Arm-level LOH across the genome for lung adenocarcinoma (A) and lung squamous cell carcinoma (B). Arm-level LOH is defined as > 75% of a

chromosome arm. Arrow indicates location of HLA locus. Horizontal dashed line depicts significant focal LOH at p = 0.05, using simulations. Clonal LOH is shown

in blue, with subclonal LOH shown in red.

(C and D) Focal subclonal LOH across the genome for lung adenocarcinoma (C) and lung squamous cell carcinoma (D). Focal LOH is defined as < 75% of a

chromosome arm. Arrow indicates location of HLA locus.
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Figure S4. Neoantigen and Regional HLA LOH Associations, Related to Figure 4

(A) The total number of neoantigens is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous cell carcinomas

(magenta). Tumors were classified as having: no HLA LOH; any HLA LOH event, without taking into account the timing of the event; subclonal HLA LOH; or clonal

HLA LOH. The lowest total neoantigen quartile is indicated by the dashed red line and the proportion of tumors with a total neoantigen burden greater or less than

that is indicated by the pie charts for each HLA LOH classification group.

(B) The number of clonal neoantigens is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous cell carcinomas

(magenta).

(C) The number of subclonal neoantigens is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous cell car-

cinomas (magenta).

(D) The number of subclonal non-synonymous mutations is plotted for tumor regions from tumors without any indication of HLA LOH, for tumor regions without

HLA LOH from a tumor with other regions harboring HLA LOH, and for tumor regions containing an HLA LOH event. All p values are calculated using an unpaired

wilcoxon test.

(E) Schematic of the clones considered for the comparison performed in Figure 4D. Here, the cancer subclone harboring HLA loss (purple) is shown with its sister

subclone, descended from the same ancestral cancer cell, but without HLA loss (green).

(F) For each lung adenocarcinoma (blue) and lung squamous cell carcinoma (purple) tumor, the relative contributions of APOBEC mutational signatures are

shown. p values are calculated using an unpaired wilcoxon test.



Figure S5. Frequency and Association with Mutational Burden of HLA LOH in TCGA, Related to Figure 5

(A) The total number of TCGA patients exhibiting an allelic imbalance or LOH at the HLA locus is shown.

(B) The total number of nonsynonymousmutations is plotted across different categories of HLA LOH for lung adenocarcinoma (light blue) and lung squamous cell

carcinomas (magenta). Tumors were classified as having: no HLA LOH; any HLA LOH event; or HLA LOH at all three HLA loci. The lowest total non-synonymous

mutation quartile is indicated by the dashed red line and the proportion of tumors with a total non-synonymous mutational burden greater or less than that is

indicated by the pie charts for each HLA LOH classification group.


	Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution
	Introduction
	Results
	Inferences of HLA LOH and Imbalance in Tumor Samples Using LOHHLA
	Prevalence and Timing of HLA Imbalance and Loss across NSCLC
	HLA Loss Is under Positive Selection in NSCLC
	HLA Loss Reflects Immune Editing and Is Associated with an Enrichment of Subclonal Mutations
	HLA Loss and Immune Phenotype

	Discussion
	Supplemental Information
	Consortium
	Acknowledgments
	IntroductionImmune evasion represents a hallmark of cancer (Hanahan and Weinberg, 2011). The majority of cancer immunothera ...
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	LOHHLA (Loss Of Heterozygosity in Human Leukocyte Antigen) algorithm
	Step 1: extract HLA reads
	Step 2: create HLA allele specific BAM files
	Step 3: determine coverage at mismatch positions between homologous HLA alleles
	Step 4: obtain HLA specific logR and BAF
	Step 5: determine HLA haplotype specific copy number

	TRACERx 100 Cohort
	TRACERx mutation and copy number data
	Comparison of ASCAT and LOHHLA
	Fragment analysis validation of LOHHLA results
	HLA Type, HLA Mutations, and Predicted NeoAntigen Binders
	Mapping HLA LOH to phylogenetic trees and identification of parallel evolution
	Assessing significance of focal and arm-level LOH
	Mutational signature analysis
	Assessing whether neoantigens preferentially bind to loss HLA alleles
	PD-L1 immunohistochemistry
	Analysis of TCGA mutation data
	RNA-seq expression analysis using TCGA

	Quantification and Statistical Analysis
	Data and Software Availability



