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Abstract 

Slope instability is one of the most effective processes shaping the seafloor of continental 

margins. The end-product of slope instability, mass-transport deposits (MTDs), have been 

documented in the literature using diverse approaches. This paper tests a new methodology, applied 

to a region offshore Espírito Santo (SE Brazil), for the evaluation of MTDs’ occurrence on 

continental slopes. An MTD inventory was, in a first stage, made for a cropped region of SE Brazil 

using a high resolution three-dimensional (3D) seismic volume. This MTD inventory consists of four 

MTDs that were mapped and exported into a Geographic Information Systems (GIS) database. MTD 

favourability scores were then computed in a second stage using algorithms based on 

statistical/probabilistic analyses (Information Value Method), over unique terrain conditions, in a 

raster basis. Terrain attributes derived from the Digital Terrain Model (DTM) were used as proxies 

to several driving factors of MTDs, and as predictors in the models. As a result, three models are 

discussed independently in this paper, according to the different datasets used to interpret MTDs 

(Models 1, 2 and 3). The results were prepared by sorting all pixels according their favourability 

value, in descending order, with robustness and accuracy of the MTD favourability models having 

been evaluated by success-rate curves. The curves aided in the quantitative interpretation of the 

models expressing their goodness of fit to the interpreted MTDs. This work is important because the 

outputs resulting from the methodology confirm that this new method can be applied to submarine 

slopes. From the three models, Model 3 obtained the highest goodness of fit (0.862). Based on our 

results, a sensitivity analysis was undertaken and key predisposing factors were identified. The new 
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methodology in this work has the potential to become a very important and valid approach for the 

recognition of submarine slopes prone to failure on continental margins around the world. 

 

Keywords: Bivariate Informative Value Method, modelling, mass-transport deposits, offshore slope 

instability, statistic predictive models, Offshore Espírito Santo Basin (SE Brazil). 

 

1. Introduction 

Submarine slope instability is one of the main natural hazards affecting continental margins, and can 

result in direct and indirect damage to seafloor infrastructure (Dai et al., 2002). Submarine slope instability 

occurs when there is a significant reduction in the shear strength of continental slope sediments, usually at the 

location of a future basal glide plane, or shear zone (Varnes, 1978, Hampton et al., 1996, Alves and Lourenço, 

2010, Alves, 2015). The last few decades witnessed significant improvements in submarine landslide 

characterisation, and in the understanding of the local conditions leading to slope instability at small and large 

scales of observation (Nadim, 2006, Hough et al., 2011, Gilbert et al., 2013, Rodríguez-Ochoa et al., 2015). 

The development of new techniques such as 3D seismic interpretation has greatly contributed towards the 

understanding of submarine slope instability, and allowed the integration of geophysical and 3D-imagery in 

spatial analysis tools such as Geographic Information Systems (GIS). In fact the use of GIS techniques, thus 

far applied to onshore risk assessments, in the characterisation of offshore instability processes has improved 

our knowledge of the factors that trigger such catastrophic events (McAdoo, 2000). By combining 3D seismic 

datasets with GIS databases, one can explore the different tools used in GIS spatial analyses (Haneberg et al., 

2015), taking advantage of methodologies widely tested onshore.  

Offshore slope stability analyses have recently benefited from improvements in data acquisition, data 

processing and analytical techniques. Some of these improvements allow the computation of models 

representing the spatial distribution of the physical parameters that may influence the occurrence of mass 

movements (Urgeles et al., 2006, Micallef et al., 2007, Micallef, 2011, Li et al., 2014, Haneberg et al., 2015). 

Hence, susceptibility analyses are undertaken with the final aim of understanding the conditions and 
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parameters that favour the occurrence of mass movements in specific locations (Soeters and Van Westen, 

1996, van Westen et al., 2006, Thiery et al., 2007, van Westen et al., 2008). In their final stages, susceptibility 

analyses can identify regions where, under a set of favourable conditions, mass movements will likely occur. A 

great part of slope instability predictive studies uses statistical methods that cross-correlate predisposing 

factors with inventories of (past) events, within a GIS environment (van Westen et al., 1997, Carrara et al., 

1999, Piedade et al., 2010, Pereira et al., 2012, Borrell et al., 2016). Slope stability analyses are usually based 

on a deterministic approach, where the level of safety of a slope is quantified by a ‘safety factor’ (Nadim, 

2006). The factors that cause slope failure include predisposing, preparatory and triggering factors (Glade and 

Crozier, 2005).  

In this paper we use topography information from a palaeo-slope to build up a set of possible 

predisposing factors (e.g. Glade and Crozier, 2005, Pereira et al., 2012) that were present during slope failure 

in parts of the offshore Espírito Santo Basin, SE Brazil (Fig. 1). This was undertaken via integration of data 

from the interpreted 3D seismic volume into GIS using a statistical method, the Informative Value (IV) (Yin 

and Yan, 1988). As a result of our approach we aim at: (a) determining a set of predisposing factors that can 

reflect the natural conditions (exclusive from the topographic proxies) for the occurrence of mass-transport 

deposits (MTDs) on continental slopes; (b) performing a bivariate statistical model that integrates the mapped 

MTDs and the predisposing factors into GIS, with the ultimate step of compiling a predictive map of MTDs’ 

occurrence; (c) determining the favourability scores of predisposing factors that induce the occurrence of 

MTDs; (d) validating the statistical model applied using success-rate curves and by calculating the 

corresponding Area Under the Curve (AUC), and; (e) running a sensitivity analysis of the variables used for 

modelling in order to understand which variables influence the model in greater degree.  

In summary, this paper presents a new methodology to understand how the bivariate statistical model of 

Informative Value (IV) responds to marine mass movements using data derived from 3D seismic volumes. If 

results are considered positive, marine datasets can be used to improve the methodology and largely contribute 

for future submarine slope assessment and the understanding of palaeo-slope failure. 
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2. Regional setting of the Espiríto Santo Basin 

The Espírito Santo Basin is located along the SE continental margin of Brazil (Fig. 1). The basin is 

characterised by significant halokinesis, a result of a thick evaporite succession that having been accumulated 

in the region from Late Aptian to Early Albian (Fig. 2).  

Halokinetic movements played an important part in the Espírito Santo Basin’s evolution. Consequently, 

the very thick Tertiary sequence of the Espírito Santo continental slope is composed of a mixture of carbonate 

and clastic sediment (França et al., 2007). In such a context, mass-wasting events offshore Espírito Santo are a 

result of regional tectonic movements (Mohriak et al., 2008) combined with local instability phenomena 

related to halokinesis (Fiduk et al., 2004). 

The stratigraphic interval interpreted in great detail for this study, as characterised by França et al. 

(2007), corresponds to the N20-N60 sequence. In the studied continental slope, this sequence comprises strata 

of the Rio Doce, Caravelas and Urucutuca units which are, in places, eroded by submarine channels (Fig. 2). 

The three stratigraphic units comprise sandstones (Rio Doce Formation), calcarenites (Caravelas member), 

plus turbidite sands and marls (Urucutuca Formation). As the study area is located at the mid part of the 

continental slope, we expect sediments with a relatively high percentage of sand. In fact, MTDs and channel-

fill deposits are abundant throughout the basin after the Early Miocene. Seismic reflections in the N20-N60 

sequence are chaotic to continuous, and have described in detail in the literature (e.g. França et al., 2007).  

 

3. Methods and data  

 

3.1 MTDs inventory, data resolution and modelling strategy 

The interpreted seismic volume was acquired with a dominant frequency of 40 Hz, corresponding to 

vertical resolutions of ~15.6 and 19.35 m considering velocities of 3100 m/s and 2100 m/s for the deeper and 

shallower horizons, respectively. The frequency of the highest amplitude corresponds to the dominant 

frequency, which is obtained from the processing algorithm. For migrated data, horizontal resolution is equal 

to the bin size and is ~12.5 m for the interpreted volume (Barker et al., 1993, Fiduk et al., 2004). Bin-size and 

vertical resolution(s) were crucial for our depth-converted calculations.  
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For the purposes of this study, a seismic horizon at the base of multiple MTDs was mapped and later 

used as a proxy of the original topography (Fig. 3a, 3b). The horizon mapped corresponds to a high-amplitude 

seismic reflection (negative, in this case) at the boundary between the lower and upper Miocene strata (17-18 

Ma), and covers an area of approximately 756 km2. This topographic surface is also where the identified 

MTDs are placed (Fig. 3c). In this sense, the topographic surface is used in this work as a proxy Digital 

Terrain Model (DTM) representing the topography of a palaeo-slope over which the instability events 

occurred. Despite the fact that movements occurred just above this topographic surface, by our mapping 

process we assumed in our work that the surface was not significant affected by the downslope movement of 

the MTDs.  

Based on this mapped topographic surface, we computed seven (7) predisposing factors that were 

chosen based on: a) the dataset available, b) the relative applicability of GIS tools in the submarine 

environment (e.g. Micallef et al., 2007, Micallef, 2011, Lecours et al., 2016). We chose these predisposing 

factors to identify the natural conditions related to the topography at the time of slope failure, presumed to 

have occurred at the end of the Miocene. We must stress, at this point, that the seven predisposing factors are 

originated from a 3D high-amplitude seismic reflection used to compute a proxy of topography, excluding 

geologic layers and faults. The rationale of this paper consists of understanding how DEM-related factors – 

known to be predisposing of slope instability onshore - can be applied to submarine environments and 

specially, palaeo-slopes, and how valid is the approach taken in this work.  We recognise the importance of 

incorporating geological information in slope instability analyses (e.g. Borrell et al., 2016) but, considering the 

lack of borehole information in the study area, we considered appropriate to propose the DEM-related 

methodology developed in this work.  

In a final stage in our analysis, three different models were compiled using: i) model 1 (M1), which 

considers the total area of MTDs, ii) model 2 (M2), with 1/3 of the MTDs total length, and iii) model 3 (M3), 

with half of the MTDs’ length used in model 2. An attempt at constraining the probable rupture zone of the 

interpreted MTDs was undertaken by model 2 and model 3, whereas model 1 was compiled using the entire 

MTD area. Favourability scores were then calculated for each class of each predisposing factor (designed as 

independent variables) and for the three models. The models were validated through success-rate curves and 

corresponding AUCs. 
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 In order to check the validity of the correlation between independent variables used in the models, we 

computed multicollinearity (e. g. Van Den Eeckhaut et al., 2006, Bai et al., 2010, Melo & Zêzere, 2017), 

through Tolerance (TOL) and variance inflation factors (VIF). In detail, values of TOL < 0.2 and VIF >2 are 

indicator of multicollinearity.  

 

3.2 Predisposing factors  

We chose seven predisposing factors associated with the topography present at the time of the slope 

failure. The predisposing factors considered were elevation, slope gradient, profile curvature, planform 

curvature, flow direction, flow accumulation and slope over area ratio, which are considered in the models as 

independent variables. All the independent variables were computed within ArcGis Software. Binning was 

fixed for five of these factors - profile curvature, planform curvature, flow direction, flow accumulation and 

slope area over ratio - while elevation and slope degree were chosen by adapting the binning to the topographic 

characteristics of the palaeo-slope.  

The elevation range between the lowest and highest point of the topographic surface, after converting 

TWT depth into depth in metres, is considered 0 m at the lowest part of the study area and reaches a maximum 

of 650 m metres towards the upper part of the continental slope. Elevation is divided into seven classes, which 

are described in Table 1. Class E1 (0 – 100 m) and class E7 (600-700 m) cover the smaller portion (~ 8.2%) of 

the total area investigated. The rest of the study area is distributed homogeneously among the other classes. 

Class E3 (200-300 m) covers the largest area (22%) of the investigated slope (Fig. 4a).  

The slope gradient (in degrees) of the topographic surface is shown in Fig. 4b. The class limits were 

defined considering particular conditions of the continental slope, which is very smooth offshore Espírito 

Santo. Concerning the classification of the slope gradient variable, we did try diverse combinations of classes. 

Hence, we classified the slope gradient in eight distinct classes in order to discriminate the physical 

characteristics of the slope (see Table 1). Class S2 represents the bulk of total area investigated (43.5%) and 

has slope gradients between 1 and 2°. Class S1 represents 35.8% of the total area investigated and has a slope 

gradient of 0 – 1°. Approximated 13% of the study area comprises slope gradients varying between 2° and 3° 

(class S3). These three classes combined cover 92.1 % of the total area investigated (Fig. 4b). 
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The spatial distribution of profile curvature is represented in Fig. 4c. Profile curvature directly affects 

the acceleration or deceleration of mass-flows along a topographic surface. Profile curvature also relates to the 

convergence and divergence of mass-flows across a surface (Menno-Jan, 2013). Hence, this factor reflects the 

change in slope angle, and chiefly controls the change of velocity of mass flows transported down a 

continental slope (Clerici et al., 2010). Profile curvature is parallel of the maximum slope (Menno-Jan, 2013) 

and negative values indicate that the surface is convex upwards at a given cell. A positive profile indicates that 

the surface is concave upwards in that same cell, whereas zero values indicate that the surface is flat. The 

classes and the distribution of profile curvature in the study area, for the three classes mentioned above, are 

displayed in Fig. 4c. The classes are almost equally distributed in Table 1. The class PrC2 occupies a small 

portion (31.5%) of the study area. The two other classes each occupy ~34% of the study area.   

Planform (or plan) curvature is perpendicular to the direction of maximum slope. Positive values of 

planform curvature indicate that the surface is convex sidewards at a given cell. Negative values indicate the 

surface is concave sidewards, whereas zero values indicate the surface is flat (Fig. 4d). Planform curvature 

reflects the changes in aspect angle and controls the divergence (or convergence) of mass flows (Clerici et al., 

2010), which is related to the superficial and sub-superficial run-off flow on the slope. The spatial distribution 

of classes is displayed in Fig. 4d, where it is observed that 46.4% of the study area diverges, and 45.7% 

converge on the investigated slope, with 7.9 % of this latter being virtually flat (Table 1). The contours lines in 

Fig. 4d help identifying the forms of the three classes proposed. Both profile and planform curvature are 

calculate using ArcGis Sotfware,  

Flow direction is one of the keys to understand surface characteristics and the ability to determine the 

direction of flow between cells in a raster file (Jenson and Domingue, 1988). The topographic surface is the 

source of a raster showing flow out of which cell using eight-direction (D8) based model (Jenson and 

Domingue, 1988). The output raster classes are classified with cardinal direction of the flow.   

The two first classes FD1 and FD2 are covering an area of 28.6% and 28.5%, respectively. These values 

indicate that mass-flows have an east to southeast direction in 57% of the investigated area. In 17.7% of the 

study area, the flow direction is to the south, as represented by class FD3. This is followed by the northeast-

trending class FD8, which occupies 12.1% of the study area. The remaining 8.7% is occupied by mass-flows 

directed to the north, east and northeast, representing 4.9%, 2.5% and 1.3% of the study area, respectively (Fig. 

4e).  
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The final flow accumulation raster reflects the accumulated weight of all cells that are flowing into each 

downslope cell. In case of concentrate flow, the cells with high flow accumulation may indicate preferential 

streams channels, in opposite when flow accumulation is 0, it surely indicates local topographic highs (Jenson 

and Domingue, 1988). Flow accumulation is classified into six logarithmic classes that are represented 

spatially in Fig. 4f. The class FA3 covers the greatest percentage of the study area with a 41.5% coverage. This 

is followed by class FA1 with 22.4%. Classes FA2 and FA4 cover 16.2% and 15.2%, respectively. The last 

two classes, FA5 and FA6 cover together less than 5% of the total area.  

The slope over area ratio calculates the ratio of the slope to the specific catchment area or contributing 

area for each pixel, works as a variable proxy that reflects moisture retention, surface saturation zones and soil 

water contents. The final map is classified in a logarithmic scale into fixed classes, as represented in Fig. 4g. 

Class SAR4 is observed in 45.8% of the study area, followed by class SAR3 with 33.6% and SAR2 with 

15.7%. Class SAR1 and SAR4 occupied, respectively, 3.2% and 1.7% of the study area, Fig. 4g.   

 

3.3. Mass-transport deposits  

The interpretation of the four MTDs in the study area followed previously-established criteria to 

describe the internal character of remobilized material (e.g. Hampton et al., 1996, Frey-Martínez et al., 2006, 

Moscardelli and Wood, 2008, Bull et al., 2009, Gamboa et al., 2010, Omosanya and Alves, 2013). Internal 

reflections in the four MTDs show chaotic stratigraphy and imbricated blocks (e.g. Frey-Martínez et al., 2006). 

Their basal surfaces are shown as a high-amplitude seismic reflections below the chaotic reflections that form 

the MTDs (Frey-Martínez et al., 2006). The top of the MTDs is marked by a continuous high-amplitude 

reflection that overlies chaotic internal reflections (Fig. 3c).  

The four MTDs mapped in this work exhibit variable areas, volumes and slope locations, but the 

thickness of the remobilized material is quite uniform among all MTD population (Table 2). The location of 

the MTDs in the continental slope of Espírito Santo are shown in Fig. 5 together with the areas of each MTD 

later considered in models 1 to 3. For model 1, the total unstable area on the continental slope is about 133.8 

km2, i.e. 17.7% of the total study area. In model 2, the unstable area considered is 30.2 km2, 4% of the total 

area. Model 3 considered an unstable area of 11.1 km2, which corresponds to 1.47% of the total area (Table 3). 
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3.4. Data limitations of 3D seismic data 

The dataset used for the application of the proposed modelling strategy has limitations that need be 

considered in this sub-section. We used as input a high-resolution 3D seismic volume, which is considered an 

advantage in terms of accuracy and true imaging of geologically significant features. However, when 3D 

seismic data are converted into GIS there are uncertainties related to the conversion process, and from the fact 

that some geomorphologic features can be smoothed during this same conversion. The absence of well data in 

the basin was also an important limitation in our analysis. ODP Site 516 located in the Santos Basin (Fig. 1) 

was used to convert the data from two-way-travel-time (TwTT) to true depths in metres below the sea floor. 

Despite the latter ODP site, there was no sufficient spatial information to create geologic layers for modelling 

proposes.  

The MTD inventory in this work thus comprises four slope movements, which were considered valid 

for the purposes of this analysis. Despite the fact that this inventory is not large enough for data partition, it is 

nonetheless used to build the predictive model and to validate it (success-rates), providing us the data goodness 

of fit to the model. As the population of MTDs is relatively small in the study area, the different MTD 

typologies are not considered into the models and the four MTDs were entered in the same model. Although 

the MTDs are different in size and volume, we assume the mechanism of rupture and propagation are the same 

for the 4 inventoried MTD, which is a reason to not separate the inventory. This limitation in the population of 

MTDs will be under discussed later.  

 

4. GIS modelling 

4.1. Mapping of terrain units 

The evaluation of the likelihood of mass movements in a given area requires a preliminary selection of 

suitable terrain units (TMUs). These TMUs refer to a surface portion of the study area containing a set of 

ground conditions that differ from adjacent units across recognisable boundaries (e.g. Hansen, 1984, van 

Westen et al., 1997). 

The mapping of TMUs usually depends on the scale(s) that better represent the investigated phenomena. 

From a vast selection of terrain map unit categories (e.g. unique condition units, slope units, geo-hydrological 

units and topographic units) we used grid cells, which are preferentially used in GIS models. The study area is 

divided into regular areas (cells) with a predefined size, which became the mapping units of reference (Chung 
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and Fabbri, 1999, Clerici et al., 2002, Remondo et al., 2003). To each grid cell was given a value for each 

predisposing factor taken in consideration (e.g. slope gradient, curvatures). Each predisposing factor was 

computed into a raster file with a given cell size. The main conceptual limitation of grid cells is associated with 

the representation of continuous geological and morphological forms in a discrete way, as well as the 

representation of linear and area features - such as geological boundaries, landslide deposits, lithological units 

- using cells of predefined shapes and sizes (Guzzetti, 2005).   

For the present analysis, we chose a set of predisposing factors that can be computed into GIS in a raster 

format. Due to the size of the study area and mapped MTDs, terrain units (pixels) were fixed at 50 m in five of 

the seven predisposing factors. The exceptions were the profile and planform curvature, which were first 

computed with a pixel size of 250 m and subsequently converted into 50 m pixels for modelling.  

 

4.2 Informative Value 

In terms of modelling, the predisposing factors are named as independent variables while the MTD 

inventory is considered in the models as dependent variables. 

The Informative Value (IV) is a bivariate statistical method used to weigh each class of variables 

proposed (Yin and Yan, 1988). It describes quantitatively the relationship between each class of an 

independent variable (Xi) and a set of instability events on slopes through individual scores obtained by 

Equation 1. 

(Eq. 1) 

/
1

/
i i

i

S N
IV n

S N

   
   

with IVi – Information value of variable; Si – Number of pixels with instability events within variable Xi; Ni – 

Number of pixels with variable Xi; S – Total number of pixels with instability events; N – Total number of 

pixels of the study area.   

In Equation 1, the term S/N is the a priori probability. It is the probability for each pixel to contain an 

MTD without considering the independent variable. In parallel, Si/Ni is the conditional probability; it is the 

probability of an instability event to occur given the presence of variable Xi. A negative IVi means that the 

presence of the variable is favourable to slope stability. A positive IVi indicates a relevant relationship between 
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the presence of the variable and MTDs distribution; the higher the score, the stronger the relationship (Yin and 

Yan, 1988). An IVi equal to zero means no clear relationship between the presence of the considered variable 

and the occurrence of MTDs.   

The classes of each independent variable not containing MTDs have a conditioned probability of zero. 

In this case, IV cannot be obtained considering the log transformation in Equation 1, and therefore IVi was 

forced to be equal to the lowest IVi computed for classes of the corresponding independent variable. This 

procedure does not interfere with the computation of the models. The final models are calculated based on the 

following equation: 

(Eq. 2) 

 

Where: 

 n - number of variables; Xji - either 0 if the variable is not present in the pixel j, or 1 if the variable is present. 

The IV was calculated using three different partitions of the same MTD inventory such as:  

1. Model 1: includes the total area of MTDs.  

2. Model 2: includes 1/3 of the total length of the mapped MTDs.  

3. Model 3: includes half of the area used in model  

 

4.3 Model validation: Success-rate curves 

The performance of the predictive models was assessed through the computation of success-rate curves 

(Fabbri et al., 2002). Success-rates curves are based on the comparison between the final model and the spatial 

distribution of MTDs, and they are used to weigh the predictive variables expressing the goodness of fit of the 

MTDs used and the final model (Chung and Fabbri, 2003).  

Success-rate curves are prepared by plotting the cumulative percentage of the area most likely to fail 

(starting from the highest probability values towards the lowest) on the horizontal (x) axis, and the cumulative 

percentage of corresponding MTDs area on the vertical (y) axis. The steeper the curve, the more capable the 

model is to describe the distribution of MTDs in a given study area. The steepness of the curve also depends 

on the spatial distribution of instability events in the investigated area(s). In a situation when a large portion of 

the area is covered by instability, it is still possible to get steep curves (Chung and Fabbri, 1999).   

1

.
n

i

Ij Xji Ii
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The favourability values obtained for each pixel were sorted in descending order. Additionally, an Area 

Under the Curve (AUC) analysis was computed for each success-rate curve so one can quantify the 

performance of each model and compare results for the different success-rates. The higher is the AUC value, 

the better is the model (Bi and Bennett, 2003, Blahut et al., 2010, Pereira et al., 2012, Guillard and Zêzere, 

2012) the absolute AUC value is given by:   

(Eq. 3) 

  1
1 2

i i
i i

y y
AUC x x 



    
  

  

where x is the percentage of the study area predicted as susceptible by descending order, and y is the 

percentage of correctly classified landslide area belonging to the validation group. 

 

4.4 Sensitivity analysis 

A sensitive analysis of the variables was performed after the AUC calculations in order to understand 

which combination of factors most contributes to trigger unstable areas on the Espírito Santo continental slope.   

Each independent variable (predisposing factors) was crossed autonomously with the MTD inventory, 

generating an individual model for each variable. Thus, each individual model was validated by building a 

success-rate and respective calculation of AUC for each independent variable in the model. The results were 

ordered by growing range to rank and compare the importance of each variable into the final model. The 

ranking mentioned above was also taken into consideration throughout the sensitivity analysis.  

The finally sensitivity analysis was computed by adding a systematic way through the introduction of a 

new variable (V) considering the AUC obtained when crossing which variable independently. The models (M) 

obtained using from 2 to 7 predisposing factors, whereby M2 = V1 + V2; M3 = V1 + V2 + V3; M4 = V1 + V2 + 

V3 + V4) and Mn = f (V1 + V2 + V3 + V4 +…Vn). For each model obtained, AUC was calculated so to 

understand which variable combination obtains better predictive capacity (e.g. Guzzetti et al., 2006, Zêzere et 

al., 2008). 
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5. Results 

5.1 Multicollinearity diagnosis 

The multicollinearity diagnosis is summarized in Table 4. Based on the literature is considered 

multicollinearity when VIF is > 2 and TOL <0.2, whereby all the variable used in the models where 

considerably under of the stabilised minimums values. Slope over area ratio is presenting the highest value 

(1.70 VIF and 0.670 TOL), however we considered these values suitable to enter in the models since they were 

within the thresholds considered above.  

 

5.2 Weighting of variables  

The weighting of variables for the evaluation of favourability scores for MTDs is calculated applying 

the Informative Value (IV) bivariate statistical method, the methodology of which is described before. The 

weighting is prepared using three different partitions for the same MTDs inventory: 1) model 1, using the total 

area of MTDs inventory; 2) model 2 – using 1/3 of MTDs total length and; 3) model 3 – using half of the 

length in used in model 2. The area that each class occupies, in percentage, is shown in Table 1. Informative 

values for each class of each variable considering each model are summarized in the Table 5.  

5.3 Informative Value Scores (IV)  

Informative Value scores obtained from the three susceptibility models (models 1 to 3) are summarized 

in Table 5. In bold are highlighted the highest favourability scores for the occurrence of MTDs for each 

variable. The values in red are classes for which it was not possible to compute IV scores due the absence of 

MTDs pixels (Si = 0), a caveat resulting from its logarithmic transformation. The classes with higher IV scores 

i.e., that contribute more for the occurrence of MTDs in the study area, differ as a function of the total area 

considered in the three models performed (models 1 to 3).  

In model 1 we considered the total length (and area) of MTDs in the study area and, based on the IV 

scores obtained, it is possible to state that the occurrence of MTDs was conditioned by local factors. Local 

factors of importance include an elevation between 100 – 300 m (namely elevation classes between 100 – 200 

m), slope gradients between 1 and 2 degrees, and concave slope areas in both profile and plan curvature. 

Slopes that are most prone to the occurrence of MTDs are those flowing to SW and, secondarily, to S. In this 
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model, the critical flow accumulation for the occurrence of MTDs occurs in the class >1000 and the most 

MTD prone slope over area ratio of ~0 (Table 5).  

Model 2 was performed using 1/3 of the total MTDs length. Favourable conditions for the occurrence of 

MTDs occurrence change in model 2 when compared with model 1, as initially expected. In this case, the ideal 

conditions for the occurrence of MTDs are elevation ranging from 500 to 600 m and, to a lesser extent, 

elevation ranging between 300 and 400 m. Slope gradient ranges from 1 to 6 degrees, with the interval 

between 2-6° being the most favourable to the occurrence of MTDs. Concave slopes are prone to generate 

MTDs when considering the profile and plan curvature, as also recorded in model 1. The critical flow direction 

is S and SE, although NE-dipping slopes also appear as favourable to the occurrence of MTDs. The flow 

accumulation most likely for the occurrence of MTDs is >1000 and, to a lesser extent, class 100 – 1000. 

Regarding slope over area ratio two classes are highlighted in model 2: 0-0.00001 and 0.00001 to 0.0001 

(Table 5). 

Model 3 used only half of the length of the MTDs considered in model 2, but results show that 

preferential conditions for the occurrence of MTDs are similar to model 2. In model 3, perfect conditions for 

MTD occurrence are elevation between 500 and 600 m and to a less extent, elevation between 300 and 400 m. 

Slope gradient plays a major role in model 2, particularly within the class ranging between 2° and 6°. As with 

models 1 and 2, slope curvatures most prone to MTD occurrence are concave and their flow directions are 

essentially S and SE. A Flow accumulation class >1000 is the most favourable, while the class 0 is the most 

favourable regarding the slope over area ratio (Table 5).  

6. Data integration and predictive maps  

Predictive maps are the final output resulting from the integration of all the analytical steps previously 

described. Predictive maps represent the spatial distribution of the susceptibility of continental slopes for the 

occurrence of MTDs, considering the three models developed. The maps presented are computed based on the 

seven predisposing factors (variables) previously described. Thus, Fig. 6a was computed using the total area of 

MTDs, as considered in model 1. Fig. 6b was computed with inventory used in model 2. Finally, Fig. 6c is 

presented based on the outputs of model 3. The three models show a non-classified legend, sorted in 

descending order of favourability values. From a preliminary visual observation, there are clear differences 
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between the three maps. Nevertheless, one can observe the predominant impact of the same variables - 

elevation, slope gradient, profile curvature, flow direction, flow accumulation and slope over ratio - in the 

three models. 

6.1 Validation – Success-rates 

The AUC values range from 0-1, considering that the quality of the model increases towards a value of 

1. Models showing an AUC of 0.75 are “acceptable”, > 0.80 “very good” and >0.90 are considered “excellent” 

(Guzzetti, 2005). The success-rate curves for models 1 to 3 are displayed in Fig. 7. As previously mentioned, 

the success-rate measures the goodness of fit. Assuming the model is correct for the analysed area, model 1 

(dark blue line Fig. 7) was performed using the total area of the mapped MTDs and shows the lower goodness 

of fit. For model 1, AUC is 0.657 (66%). In model 1, 30% of the area classified as most favourable to the 

occurrence of MTD validates 50% of the MTDs. In order to validate all the MTDs is necessary to consider 

90% of the study area as it is shown in Fig. 7 where is visible that curves loose gradient.  

Considering model 2 (light blue line in Fig. 7), AUC shows the model to perform better in comparison 

to model 1. The goodness of fit for model 2 is 0.747 (75%). Considering 50% of the area classified as most 

favourable to the occurrence of MTDs, model 2 is valid for around 85% of the MTDs area. Yet, the whole of 

the MTD area is only validated when 90% of the study area is reached.  

The model 3 presents the highest goodness of fit, with an AUC of 0.862 (86%). The 30% of the area 

classified as most favourable to the occurrence of MTDs validates 90% of the MTD area, reaching a 100% 

validation with 55% of the total area.  

Through the AUC’s plots is observed that model 3 obtained the highest performance of the three models 

with 0.862 (Fig. 7). Considering the classification of Guzzetti (2005), this value plots within the “very good” 

class. Model 2 obtained 0.747 of AUC, which can be classified as “acceptable”, whereas model 1 recorded an 

AUC of 0.657, which is below an acceptable class.  

6.2 Sensitivity analyses 

Sensitivity analyses allowed us to outline which predisposing factors are key to explaining the spatial 

distribution of a dependent variable (e.g. the MTD). Sensitivity analyses assess the weight of different MTD 
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predisposing factors within a statistically-based model. Therefore, model 3 was chosen in this sub-section to 

run a sensitivity analysis, as it obtained the highest AUC value (0.862) from the three built models.   

Table 6 shows the hierarchy of predisposing factors with the highest contribution to the occurrence of 

MTDs in the study area. The hierarchy is selected through the AUC values for success-rates ran independently 

for each predisposing factor (Fig. 8). Through these analyses, we observe that elevation is the predisposing 

factor which most influences model 3, with 0.832 of AUC. It is followed by slope gradient, showing 0.616 of 

AUC and the flow direction with 0.584 (Table 6). At the bottom of the hierarchy appears a slope over area 

ratio showing an AUC of 0.493. Observing the curves in Fig. 6 is clear the contribution of the variable 

elevation where 35% of the total area validates almost the entire unstable area.  

The results obtained in the sensitivity analysis demonstrate that the independent variables considered do 

not correlate precisely with the distribution of MTDs. This is best demonstrated by the AUC range obtained, 

which varies from 0.493 (Slope over area ratio) to 0.832 (elevation). The ranking expressed in Table 6 was 

thus used to define the relative importance of the MTD predisposing factors that support the model. Successive 

models were performed adding one additional variable to the model at each step following the raking 

previously archived.  

The quality of MTDs predictive model demonstrates a slight tendency to improve with increasing numbers 

of variables, as shown by the AUC values in Table 7. This is particularly true until the model is run with 4 

variables, from which moment a maximum AUC of 0.861 is achieved. After that, the increment of variable 

does not increase the predictive performance of the model 3 (Table 7, Fig. 9). Success curves represented in 

Table 7 show that all models tend to behave similarly, whereby if we consider 30% of the area classified as 

most favourable to the occurrence of MTDs, the predicted results are similar in all models with a different set 

of variables (90%). This behaviour demonstrates the low sensibility of MTDs prediction to the increasing 

number of MTDs predisposing factors considered in our models. 

 

7. Discussion 
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7.1 Topographic surface, predisposing factors and modelling 

The rationale for the work presented in this paper was based on landslide susceptibility analyses 

undertaken onshore, which are part of the conceptual modelling of geological risk (e.g. van Westen et al., 

1997, Guzzetti et al., 2006, Thiery et al., 2007, van Westen et al., 2008, Blahut et al., 2010, Guillard and 

Zêzere, 2012, Pereira et al., 2012). Based on the conceptual model of risk, the existence of a topographic 

surface is crucial as a proxy of onshore Digital Terrain Models (DTM), from where we can compute a set of 

derived variables that can be used in GIS to assess slope movements. Therefore, the following step in our 

analysis was to map in seismic data a palaeo-surface that could reproduce seafloor topography, and could be 

used as a DTM. This concept was previously applied to marine studies (e.g. Micallef, 2011).  

The topographic surface mapped in this work was chosen based on two key aspects. The first was the 

necessity of mapping a high-amplitude, regionally significant seismic reflection that covers the entire study 

area. Secondly, we thought appropriate to map all different MTD bodies just above the interpreted seismic 

reflection (topographic surface). In our methodology, the topographic surface mapped thus becomes crucial to 

the analysis as it must represent seafloor topography before the instability event occurred. In other words, it 

must not only reflect the morphology associated with slope instability but also the terrain attributes which were 

present before the occurrence of the MTDs.  

In onshore studies, a DTM is used to analyse the topographic features that are favourable to slope 

instability. In a previous work, Clerici et al. (2010) discussed a better approach for susceptibility studies, 

pointing out that some factors such slope angle, aspect or curvature may be modified by the occurrence of 

slope instability events, so the morphology present when the topographic/bathymetric/seismic survey is 

acquired can be substantially different from the pre-instability conditions. In such a case, some authors 

suggested and agreed that the (predisposing) factors should be acquired in undisturbed areas, immediately 

surrounding the unstable areas (Clerici et al., 2002, Clerici et al., 2010) unless the morphometric parameters in 

those areas do not relate at all to the reality of pre-failure slope conditions. In 2007, Micallef et al. pointed out 

four morphometric maps used in the Storegga Slide using GIS terrain delivery attributes. The criteria to choose 

the variables to use into the bivariate is based on the mentioned studies that had proven to be capable to 

determinate area where the slope movement are more prone to occur. The variables are originated from 

exclusively the interpreted seismic volume - local information such as lithology were insufficient to interpolate 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

18 

 

and create a map containing its spatial distribution, due the inexistence of data wells over the study area, which 

is a pitfall for this study.  

The models in this paper were computed using three different areas of the same inventory. Clerici et al. 

(2010) pointed out that this kind of studies can identify the conditions under which the instability events are 

generated. This way, the favourability analyses had to be restricted to the areas from where the mass 

movement originated, i.e. the rupture zones. Other authors (Chung and Fabbri, 2005, Guillard and Zêzere, 

2012) stressed this same limitation, but concluded that modelling the favourability of slopes to the occurrence 

of mass movements using different landslide input data (e.g. the complete landslide area or the landslide 

depletion area) does not affect the final results. To confirm this latter postulate, the model used three different 

MTD zones obtained from the same inventory.  Based on this, the reason to model three distinct areas was to 

try getting close of what is believed to be the rupture zone and consequently to the area where the movement 

starts even without knowing exactly how much displacement it can present. The use of the total area (model 1) 

is not considered as the most correct approach for the majority of the authors because the predisposing factors 

are estimated also for the accumulation zone, which is affected by the arrival of depleted material from up-

slope source areas. In this case, the conditions present in the accumulation zone are erroneously considered to 

be prone to sliding (Clerici et al., 2010). 

Acknowledging the latter caveat, the data inventory was reduced to 1/3 of the total length in model 2, 

getting close to excluding the accumulation zones of the interpreted MTDs. This improved substantially the 

quality of model 2 when compared to model 1. However, the best performance was achieved by model 3 by 

constraining the probable rupture zone to half of the length considered in model 2. A sensitivity analysis was 

undertaken crossing each variable (predisposing factors) individually with the inventory of MTDs used in 

model 3 (which obtained the best predictive capacity), and the computation of success-rates and AUCs for 

each individual variable (Chung and Fabbri, 1999, Zêzere et al., 2008, Blahut et al., 2010, Pereira et al., 2012). 

The results demonstrated that the independent variables considered do not contribute equally to explain the 

distribution MTDs in the study area, showing AUCs ranging from 0.493 to 0.832 (Table 5). Moreover, 

according to the AUC records, elevation and slope gradient are the variables that better correlate with the 

spatial occurrence of MTDs, showing AUCs of 0.832 and 0.616, respectively. Elevation is not often used as a 

predisposing factor; yet some authors have considered elevation as a predisposing factor valid enough to be 

included in the models (e.g. Remondo et al., 2003, van Westen et al., 2008). In this analysis, elevation was 
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included on all the modelling sets, and is revealed as the variable with higher prediction performance in model 

3. Slope gradient is generally the variable that most contributes to explaining slope instability (e. g. Remondo 

et al., 2003, Piedade et al., 2010, Pereira et al., 2012), but its recorded in this work as showing less predictive 

capacity when compared to elevation (Table 5).  

The fact that elevation is the variable that most contributes to the models can be related to multiple 

factors such as local geology - different lithological facies that can be present in different elevations to favour 

to the occurrence of MTDs, which cannot be proved due to missing detailed lithological data. Salt tectonics is 

another important phenomenon playing an important role in shaping of the Espírito Santo Basin. Overburden 

accommodation space is responsible by the sediment remobilisation and deposition, which can be more 

frequent in specific elevation sets due the location of the fault or week sedimentological layers (Piedade, 

2016). Another reason that can explain the results obtained for the elevation variable is the influx of sediments 

coming from the shelf edge, acting as an 'external' force on the slope or constituting a weak layer prone to 

glide when triggered by an external factor. Hühnerbach and Masson (2004) documented, in the western Canary 

Islands, that the greatest number of submarine landslide headwalls occurs on the mid-slope, with a peak at 

1000 – 1300 m water depth, rather than at the shelf edge or upper slope as one might be expect. The results of 

predictive models obtained in this study for the Espírito Santo Basin are in line with Hühnerbach and Masson 

(2004) findings - the head scarp of the interpreted MTDs are located roughly at the same depth (Fig. 1). The 

last explanation that can be pointed out is related to a marked structural control of the salt and raft tectonics as 

pointed out at Piedade and Alves (2017).  

Onshore, slope gradient exerts a significant influence on mass movement’s distribution. Indeed slope 

gradient or slope angle has been proved to be the predisposing factor that more contribute to the occurrence of 

mass movements onshore (Zêzere et al., 2008, Piedade et al., 2010, Pereira et al., 2012, Guillard and Zêzere, 

2012). In the three models developed in the work, slope gradient is the second variable that contributes more to 

the predictive models (Table 6). Compared to elevation, the AUC of slope gradient is significantly reduced. 

Nevertheless, in the literature slope gradient is not the factor considered the most important for the occurrence 

of MTDs in offshore environments. Masson et al. (2006) refer that the largest submarine landslides occur in 

areas where specific aspects of the local geology and morphology are placed together to trigger slope failure. 

Continental slopes on which mass movements occur are typically of low gradients (1° to 5°) and gentle 

topography (Wilson et al., 2004, Hühnerbach and Masson, 2004, Masson et al., 2006). In the models presented 
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in this work, the slope gradient where most MTDs occur varies between 1° to 6°, and can be considered of low 

gradient. Model 3 achieved the best goodness of fit (Fig. 7), in which the headwall scarp domain of the MTD 

has a slope angle of 6º. However, when the others two models are considered the favourability scores for slope 

gradient are extended to areas of lower slope gradients. This is explained by the fact that the models with 

larger area and length (models 1 and 2) are already modelling part of the run-out areas of the MTDs (Model 2) 

or even the total area of run-out (model 1).  

Flow direction appears as the third most crucial parameter in the three models. Considering Table 6, the 

flow direction variable increases the predictive capacity of the models However, adding more variables to the 

models does not increase its predictive rate, meaning that the set of variables including elevation, slope 

gradient and flow direction is the most appropriate to assess the spatial distribution of MTDs in the study area.  

The other variables used in the model are showing a very little contribution for the final prediction 

values. It still clear that Elevation provides the greater contribution by the curve trend. The slope over ratio 

does not give any contribution to the model, been the worse variable within model 3. 

The ranking of variables was performed to understand which variables add more weight to the final 

model, but also to understand which are the best variable combinations. The capacity of the predictive models 

does not tend to improve with the increment on the number of variables within the model, as showed by the 

AUC distribution in Table 7. Thus, the models performed using four variables (elevation, slope gradient, flow 

direction and plan curvature) show the highest AUC (0.861). The results mean that the increment of variables 

in the MTD predictive models do not necessarily generate better success-rates.   

Knowing that, the results obtained by the validation exercise match the published literature. The 

validation exercise in this paper does not necessarily represent an improvement on the predictive capacity of 

the models, but success rates and AUC analyses help to discriminate the importance of each variable within the 

models considered in slope stability assessments undertaken using 3D seismic data. Despite the valid results in 

this work, we need to point out that due the small population of MTDs, the models presented here did not 

separately consider the different types of MTDs identified in the study area. In onshore studies, different types 

of slope movements have been modelled separately based on the assumption that different slope movements 

are caused by different natural conditions (van Westen et al., 2008, Pereira et al., 2012).  
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7.2 Applicability of the method to submarine slopes 

 

Theoretically and practically, the methodology proposed in this work has positive results on onshore 

studies, which has been extensively used and included in land management, urban planning and natural 

hazards prediction (Carrara et al., 1999, van Westen et al., 2003, Malamud et al., 2004, Pereira et al., 2012). 

Yet, the applicability of this method to submarine environments cannot simply be taken for granted. To apply 

statistical methods used on land to submarine environments, some assumptions must be made when collecting 

and integrating basic morphological data. This work proposes the acquisition of topographic/morphological 

information through the mapping of palaeosurfaces represented as high-amplitude seismic reflections on 3D 

seismic data. The results confirm that the methodology adopted constitutes a valid approach; it nevertheless 

needs to consider the resolution of the interpreted seismic volumes. Even when using high resolution seismic, 

topographic details can be partly lost by incorrect processing techniques and seismic artefacts (Marfurt and 

Alves, 2015) or simply by seismic vertical and horizontal resolution. The statistical bivariate analysis showed 

can be used in the assessment of offshore slopes and it may have better results if applied to seafloor data.  

Micallef et al. (2007) proposed the applicability of subaerial quantitative geomorphological techniques 

to submarine environments, opening an important research field in the direction of the rational and 

methodology presented in this paper, as well as, Dabson et al. (2016), recently discussed the use of 

geomorphologic features into multivariate submarine slope assessment models. Nevertheless, the work 

presented by Borrell, et al. (2016) used geologic features, as seafloor composition and fault for susceptibility 

assessment offshore, presenting a susceptibility map supported by this essential data, but not always available. 

It is also mentioned as a pitfall the limited available control factor maps. By taking into consideration the 

know-how derived from these studies, and together with the compilation of predictive models to explained 

landslides susceptibility, that this work took a step further by applying it to palaeo-MTDs offshore Espírito 

Santo, SE Brazil. The main advantage of the methodology is the possibility of understanding which variables 

(or predisposing factors) are capable of better predicting the location of future slope instability events. Which 

can be complete and add more valid information to the studies which only considered geologic features when 

in the future will be considered the models of palaeo-slopes.   
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Geographic information Systems (GIS) are very suitable for indirect landslide hazard assessments, in 

which all possible terrain factors contributing to slope instability are combined within a landslide inventory 

map using data integration techniques (van Westen et al., 2003). In addition, Chung and Fabbri (1999) 

developed statistical procedures and denominated it as ‘predictive modelling’, applying favourability functions 

on individual parameters. Using this statistical methods, terrain units or grid cells can be adjusted to new 

values representing the degree of probability, certainty, belief or plausibility that the respective terrain units or 

grid cells may be subject to a particular type of landslide in the future. van Westen et al. (2006) pointed out 

several drawbacks of this approach. One of these drawbacks is the fact that most methods simplify the factors 

that condition landslides by using only the variables that can be relatively easily mapped in an area, or derived 

from a DTM. Another problem also identified in the literature is related to the fact that each instability event 

(and type) will have its own set of predisposing factors and should be analysed individually. Different 

typologies need to be modelled separately. In this study, due the restriction of MTDs population (four cases), 

the models were computed not taking it into consideration, which can create more uncertainties to the results. 

For the same reason, the models were validated through the success-rate (same inventory to model and to 

validate), which assess the goodness of fit of the MTD to the final model. In case of larger inventory, the 

predictive-rates that use a different inventory to model run and validation, the result are more accurate in 

predicting where MTDs will occur in the future, under the same geomorphologic conditions.  

The bivariate statistical models, including the Informative Value presented in this paper, still limited 

from geomorphological point of view, even when applied to onshore studies. Its expert dependency is very 

high because its good performance strongly depends from the inventory quality. When applied to offshore the 

uncertainties are even higher, because it still dependent of the expert knowledge about geomorphologic 

process but also from seismic resolution and to produce a reliable mass movement inventory, which is crucial 

to model quality. This fact, is also important because statistical models are very sensitive to the number of cells 

(pixels, in this case) that overlap the variables, once again responding to a quality of the inventory, which 

should have as must movements as possible and separated by typology.  
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8. Conclusions 

The primary conclusion is that the new methodology presented within this study can be positively 

applied to offshore slope instabilities, as the goodness of fit of the models was favourable. However, detailed 

observations about the best ways to apply this method need to be point out: 

 

- The technique of mapping a depositional surface from a 3D seismic survey is a valid method and can 

be used as topographic database. The horizon needs to be a relatively high-amplitude reflection and should be 

possible to follow throughout the study area.  

- The data that can be extracted from a seismic volume must be carefully considered. Most mapping 

techniques are unable to extract very detailed morphological features, due the limitations in seismic resolution.  

- The bivariate statistic Informative Value (IV) method was revealed to be applicable to submarine 

environments. It was observed that models respond differently according the type and detail of MTD data 

provided to the model.   

- The three models compiled were assessed via the analysis of success-rates and computing the AUC. 

The assessment reveals that model 3, which contains the MTDs area of which is believed to be the closest of 

the rupture zone, shows a highest AUC of 0.86. According (Guzzetti, 2005), this value can be classified as 

“Very good”.  

- The model performed using the set designed by model 2 revels an AUC of 0.747, which following the 

classification above mentioned is on the lower threshold considering “acceptable”. The model performed using 

the total MTD area (model 1) reveals the poorest AUC (0.657). The results fit the expectations that modelling 

using the entire MTD body does not exactly reflect the predisposing factors at the rupture zone, where MTDs 

started. 

- Sensitivity analysis performed to the model which obtained the highest AUC (model 3), indicate that 

elevation and slope gradient are the most important variables in MTD initiation.  

- Elevation is the variable that most contributes to the explanation of the MTDs in the study area, which 

is clear by marking the zonation of MTD occurrence in the predictive models. 
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Figure Captions 

Fig. 1 – Location of the study area. Highlighting the seismic volume BES-100 used in this study. 

 

Fig. 2 – a) Correlation panel between the interpreted seismic units and stratigraphic information from the Espírito Santo 

Basin based on França et al. (2007). Velocity data for ODP Site 516 was taken from Barker et al. (1993). b) Schematic 

representation highlighting the study area on the continental slope of Espírito Santo Basin. Figure was modified from e.g. 

Fiduk et al. (2004); Omosanya and Alves (2013). SR e Syn-Rift sequence, T e Transitional sequence, ED e Early Drift 

sequence, LD e Late Drift sequence. The area of MTDs area is located in the proximal extensional domain (dashed square). 

Fig. 3 - a) Seismic profile highlighting the high amplitude reflector mapped as representing the palaeo topographic 

surface. The arrows are indicating the horizon mapped to compute the topographic surface; b) 3D view of the topographic 

surface with a selected inline and crossline, for context. It’s the result of the mapped seismic reflector in Fig. 4a and 4c) 

Seismic profile through the topographic profile of MTD 1. We highlight the reflector of the considered topographic surface 

which is exactly located beneath the basal reflector of the MTD 1 along its whole MTD.   

Fig. 4 -  Thematic layers showing the spatial distribution of the predisposing factors considered in the analysis, a) 

elevation; b) slope gradient; c) profile curvature; d) planform curvature; e) flow direction; d) flow accumulation and 

g) slope over area ratio 

Fig. 5 - Study area offshore Espírito Santo Basin (SE Brazil). The figure shows the location of four MTDs 

considered in the models. Different shades of grey show the areas of the MTD used for each model. The map shows 

also the elevation across the study area after depth-converting from time-depth to true-depth.  

Fig. 6 - Non-classified MTD predictive maps of offshore Espírito Santo basin (SE Brazil). a) Based on model 1 

MTDs group (computed considering the total area of MTDs); b) Based on model 2 (i.e. computed considering 1/3 of 

total MTDs length) and c) model 3 (computed with half of the area used before). The shape of the MTDs areas in 

each model are indicated for reference.  

Fig. 7 - Cumulative frequency diagram showing the cumulative MTDs occurrence (y axis) occurring in the study 

area classified as susceptible in descending order. Success rate curves of the final models, 1 (AUC= 0.657), 2 

(AUC=0.747) and 3 (AUC=0.862).  
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Fig. 8 - Frequency diagram showing the cumulative area to archive the success-rate curves related to the seven 

predisposing factors (variables) used into the model 3. The curves are showing how each variable correlate spatially 

with the MTD. 

Fig. 9 – Success rate curves corresponding to MTDs models obtained using from 2 to 7 predisposing factors 

selected according the sensitivity analysis (2 variables = E+S; 3 variables = E+S+FD; 4 variables = E+S+FD+PlC; 5 

variables = E+S+FD+PlC+FA; 6 variables = E+S+FD+PlC+FA+PrC; 7 variables= model 3). 
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Table 1 - Absolute and relative frequencies for each class of each variable for the seven 
independent variables (predisposing factors). 

Variable Class 

Code 

Class N. of 

pixels 

Area of the 

class (%) 

Elevation 

(m) 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

0-100 

100-200 

200-300 

300-400 

400-500 

500-600 

600-700 

9721 

48435 

66999 

52189 

57874 

53176 

15130 

3.2 

16.0 

22.0 

17.2 

19.2 

17.4 

5.0 

Slope 

gradient 

(º) 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

[0-1] 

]1-2] 

]2-3] 

]3-4] 

]4-5] 

]5-6] 

]6-7] 

]7-8] 

>8 

108560 

131386 

39530 

12232 

5377 

2751 

1651 

898 

1139 

35.8 

43.3 

13.0 

4.0 

1.8 

0.9 

0.5 

0.3 

0.4 

Profile 

curvature 

PrC1 

PrC2 

PrC3 

Convex 

Flat 

Concave 

4151 

3827 

4172 

34.2 

31.5 

34.3 

Platform 

curvature 

PlC1 

PlC2 

PlC3 

Concave 

Flat 

Convex 

5556 

959 

5635 

45.7 

7.9 

46.4 

Flow FD1 E 86791 28.6 
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direction 
FD2 

FD3 

FD4 

FD5 

FD6 

FD7 

FD8 

SE 

S 

SW 

W 

NW 

N 

NE 

86456 

53672 

13530 

7613 

3839 

14827 

36796 

28.5 

17.7 

4.5 

2.5 

1.3 

4.9 

12.1 

Flow 

accumulation 

FA1 

FA2 

FA3 

FA4 

FA5 

FA6 

0 

1 

1-10 

10-100 

100-1000 

>1000 

67875 

49210 

126086 

46277 

12739 

1337 

22.4 

16.2 

41.5 

15.2 

4.2 

0.4 

Slope over 

area ratio 

SAR1 

SAR2 

SAR3 

SAR4 

SAR5 

0 

0-0.00001 

0.0000-

0.0001 

0.0001-

0.001 

0.001-0.01 

9648 

47399 

101146 

138112 

4973 

3.2 

15.7 

33.6 

45.8 

1.7 
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Table 2 – Morphological characteristics of MTDs interpreted in the Espírito Santo Basin  

 Area 

(km
2
) 

Volume 

(km
3
) 

Max. Thickness 

(m) 

Location 

MTD 

1 
5. 251 0.128 ̴60 Sub-parallel to slope 

MTD 

2 
20.88 0.659 ̴65 Upslope to mid-slope 

MTD 

3 
87.180 3.163 ̴70 

Mid-slope to lower 

slope 

MTD 

4 
19.790 0.470 ̴80 Sub-parallel to slope 
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Table 3 - Unstable area in km
2
 and relative percentage for the three different models used and total area of 

the topographic surface for comparison. 

 

 

Unstable area 

(km
2
) 

Unstable area 

(%) 

Model 1  133.8 17.7 

Model 2 30.2 4 

Model 3 11.1 1.47 

Study 

area  
756 km

2
 100% 
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Table 4 – Multicollinearity diagnosis indexes for independent variables used in the models.  

Independent 

variables 

TOL VIF 

- Elevation  0.98

7 

1.0

13 

- Slope gradient 0.86

6 

1.1

54 

- Profile curvature 0.74

8 

1.3

38 

- Planform curvature 0.71

3 

1.4

02 

- Flow direction 0.97

7 

1.0

24 

- Flow accumulation 0.68

3 

1.4

65 

- Slope over area ratio 0.67

0 

1.7

00 
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Table 5 - Informative Value scores for each class of each variable for the three models proposed. 

 

  Informative Value 

Variable Class 

Code 

Model 

1 

Model 2 Model 3 

Elevation E1 

E2 

E3 

E4 

E5 

E6 

E7 

-2.527 

0.601 

0.286 

-0.495 

-0.118 

-0.237 

-2.527 

-3.393 

-3.393 

-0.542 

0.596 

-0.326 

0.877 

-3.393 

-1.868 

-1.868 

-1.868 

0.858 

-1.868 

1.171 

-1.868 

Slope 

gradient 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

S9 

-0.094 

0.128 

0.002 

-0.273 

-0.337 

-0.401 

-1.208 

-1.929 

-2.007 

-0.488 

0.136 

0.352 

0.182 

0.424 

0.577 

-0.075 

-0.937 

-0.869 

-0.586 

-0.004 

0.453 

0.643 

0.966 

1.209 

0.664 

-1.191 

-1.868 

Profile 

curvature 

PrC1 

PrC2 

PrC3 

0.035 

-0.113 

0.059 

-0.01 

-0.231 

0.182 

0.015 

-0.127 

0.090 

Plan 

curvature 

PlC1 

PlC2 

0.038 

-0.258 

0.095 

-3.393 

0.118 

-0.376 
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PlC3 0.0002 -0.044 -0.081 

Flow 

direction 

FD1 

FD2 

FD3 

FD4 

FD5 

FD6 

FD7 

FD8 

-0.192 

-0.015 

0.234 

0.509 

0.237 

0.067 

-0.141 

-0.219 

-0.207 

0.168 

0.211 

-0.688 

-0.731 

-0.209 

-0.117 

0.024 

-0.381 

0.120 

0.393 

-0.562 

-0.358 

0.352 

0.183 

-0.174 

Flow 

accumulation 

FA1 

FA2 

FA3 

FA4 

FA5 

FA6 

0.008 

0.004 

0.001 

-0.009 

-0.080 

0.342 

-0.130 

-0.080 

0.060 

-0.004 

0.129 

1.094 

-0.132 

-0.065 

0.088 

-0.023 

-0.117 

1.014 

Slope over 

area ratio 

SAR1 

SAR2 

SAR3 

SAR4 

SAR5 

0.196 

-0.052 

0.001 

0.018 

-0.596 

-0.175 

0.049 

0.016 

-0.003 

-0.324 

0.430 

-0.103 

-0.085 

0.065 

-0.364 
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Table 6 - Hierarchy of predisposing factors for MTDs occurrences, according to success rate curves 

and AUC (Area Under the Curve), regarding model 3.  

Ranki

ng 

Variable AUC 

1 Elevation 0.832 

2 Slope gradient 0.616 

3 Flow direction 0.584 

4 Plan curvature 0.542 

5 Flow accumulation 0.537 

6 Profile curvature 0.534 

7 Slope over area ratio 0.493 
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Table 7 - Area under the curve (AUC) of success rate curves corresponding to the model 3 obtained 

using from 2 to 7 predisposing factors 

 

Variable AUC 

2 variables (Variable Id: E+S) 0.8543 

3 variables (Variable Id: E+S+FD) 0.8603 

4 variables (Variable Id: E+S+FD+PlC) 0.8619 

5 variables (Variable Id: E+S+FD+PlC+FA) 0.8619 

6 variables (Variable Id: E+S+FD+PlC+FA+PrC) 0.8616 

7 variables (Variable Id: 

E+S+FD+PlC+FA+PrC+SAR) 

0.8615 
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Highligts  

- The use of 3D seismic dataset as source of information to GIS 

modelling;  

- GIS statistical modelling to the submarine slope instabilities  

- Understanding terrain conditions for submarine slope stability 

analyses; 

- Statistical/probabilistic analysis to understand the conditions and 

parameters that favour the occurrence of MTDs in a specific location.   
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