
An investigation into two bin packing problems with ordering and

orientation implications

R. Lewis1, X. Song1, K. Dowsland2 and J. Thompson1

1Cardiff School of Mathematics,
Prifysgol Caerdydd/Cardiff University, Cardiff CF24 4AG, WALES.

email: lewisR9|songX6|thompsonJM1@cf.ac.uk
2Gower Optimal Algorithms Ltd,

5 Whitestone Lane, Newton, Swansea SA3 4UH, WALES.
email: k.a.dowsland@btconnect.com

September 30, 2011

Abstract

This paper considers variants of the one-dimensional bin packing (and stock cutting) prob-
lem in which both the ordering and orientation of items in a container influences the validity
and quality of a solution. Two new real-world problems of this type are introduced, the first
that involves the creation of wooden trapezoidal-shaped trusses for use in the roofing industry,
the second that requires the cutting and scoring of rectangular pieces of cardboard in the con-
struction of boxes. To tackle these problems, two variants of a local search-based approximation
algorithm are proposed, the first that attempts to determine item ordering and orientation via
simple heuristics, the second that employs more accurate but costly branch-and-bound proce-
dures. We investigate the inevitable trade-off between speed and accuracy that occurs with
these variants and highlight the circumstances under which each scheme is advantageous.

1 Introduction

Many problems arising in mathematics, computer science and operational research require the par-
titioning of a discrete set of entities into an exhaustive collection of mutually exclusive subsets,
subject to specific constraints. Though simple to define, such “grouping” problems often pose
significant challenges in practical settings because it is not always easy to judge whether the im-
posed constraints can be satisfied. Indeed many such problems including those concerning graph
partitioning (Hertz et al., 2008; Isomoto et al., 1993; Jensen and Toft, 1994; Nakano1 et al., 1995),
school and university timetabling (Lewis, 2008; McCollum et al., 2010), sports fixture scheduling
(de Werra, 1988; Kendall et al., 2010; Rasmussen and Trick, 2008), load balancing (Falkenauer,
1998), and frequency assignment (Aardel et al., 2002; Valenzuela, 2001), are known to be NP-hard
(Garey and Johnson, 1979; Karp, 1972), implying that we cannot hope to establish polynomially
bounded algorithms for solving them in the general sense.

An important class of grouping problem common in various commercial operations such as the
clothing and construction industries are packing and cutting problems. Such problems involve de-
termining the way in which a pre-defined set of “items” should be “packed” into “bins” (respectively
“cut” from “stocks”) such that wastage (or spare capacity) is minimised. In this paper we focus
on a subclass of these, what Wäscher et al. (2007) have termed fixed-dimension input-minimisation

1

problems: given a set of items I (where |I| = n), construct a set of “groups” S = {S1, S2, . . . , S|S|},
where: ∪

Si = I (1)

Si ∩ Sj = ∅ (for 1 ≤ i < j ≤ |S|) (2)

Si ∈ F (for 1 ≤ i ≤ |S|), (3)

such that the number of groups |S| is minimised.
In the above, each group Si ∈ S defines the items that will be packed into the same bin

(respectively, cut from the same stock), and conditions (1) and (2) specify that each item should
be assigned to exactly one of the |S| groups. Condition (3), meanwhile, indicates that each of
these groups should be feasible: thus the set F denotes the set of all feasible subsets of I. The
contents of F are affected by the constraints of the specific problem being considered, and will also
vary on an instance-by-instance basis. For non-trivial instances, F will also usually be too large to
be constructed directly since the number of possible groups (subsets) of items to be checked rises
exponentially with respect to n.

Perhaps the most widely known examples in this class of problem are the one-dimensional
stock cutting problem (SCP) and the one-dimensional bin packing problem (BPP). In both cases
each item j ∈ I has a size sj , and the aim is to partition the items into groups such that ∀Si ∈
S,

∑
j∈Si

sj ≤ C, where C is some constant defined as part of the problem. According to the
taxonomy of Wäscher et al. (2007) the main distinction between these problems is that in the BPP
the items are strongly heterogeneous (i.e. of many different sizes), whereas in the SCP items are
only weakly heterogeneous (that is, many items have the same size). Though rather subjective,
this difference is important to note as, historically, it has brought about quite different solution
approaches for the two problems (Falkenauer, 1998; Haessler and Sweeny, 1991; Liang et al., 2002;
Martello and Toth, 1990b; Lewis, 2009).

Although the SCP and BPP are both NP-hard (Garey and Johnson, 1979), it is noticeable that
the sub-problem of determining whether Si ∈ F in these cases is trivial, since we need only sum the
sizes of the items assigned to Si. The commutativity of this operation also implies that the order
in which items occur in a bin/on a stock is irrelevant since all of the |Si|! permutations of items
in a group will result in the same total. In many practical circumstances however, things can be
more complicated and factors beyond the total size of the items might also need to be considered
for determining membership of F . In this paper we will examine two such problems where both
the ordering and orientation of items is significant in the sub-problem of deciding whether Si ∈ F .
We will observe that in both cases these underlying sub-problems are NP-complete, adding an
extra degree of complexity to the grouping problem. Having noted these features we propose a
local search-based method for these problems and examine the effects of tackling the underlying
sub-problems using fast but approximate heuristics, and also using more accurate but expensive
branch-and-bound procedures.

The problems considered in this paper involve the creation of wooden trusses for use in the
roofing industry, and the cutting and scoring of rectangular pieces of cardboard for use in the
construction of packing boxes. In the next section we begin by describing the overall algorithmic
framework used for both of these problems. In Sections 3 and 4, we then conduct an analysis of
each problem in turn and describe the operators that are used in conjunction with this framework,
presenting empirical evidence on the subsequent performances. In general, we tend to refer these
problems as bin packing variants, since this seems the most appropriate classification according
to the taxonomy of Wäscher et al. (2007); thus we will often speak of items being “packed” into
“bins” (though in the real industrial processes, what is actually required is for items to be cut from

2

stocks). Finally, Section 5 concludes the paper and makes some suggestions for further work on
these new problems.

2 Algorithm Framework

The algorithmic framework we propose for both problems is based on a stochastic method that
was originally developed by Lewis (2009) for the BPP. We specifically choose this method as its
execution times are very fast, but yet it is still able to produce solutions of equal quality to those
achieved by other well-known packing algorithms such as the hybrid grouping genetic algorithm
of Falkenauer (1998) and the ant-based algorithm of Levine and Ducatelle (2003). The former
attribute is particularly useful because of the extra time that is consumed in determining groups’
membership of F , a task that inevitably has to be performed many times during a run.

The basic method starts by producing a feasible solution S (that is, a solution satisfying con-
ditions (1), (2), and (3) above) but where |S| is not limited. Further details on how this can be
achieved for each of our problems are given in Sections 3 and 4. During a run, attempts are then
made via two search operators to try and reduce |S| by shuffling items between groups, ensuring
that all groups in the solution remain feasible at all times. A single iteration of the algorithm
operates as follows. Given a solution S, e.g.

S ={{a, b, c}, {d, e, f}, {g, h}, {i}, {j, k}}

a small number of groups in S are first randomly selected and moved into a second set T , e.g.

S ={{a, b, c}, {g, h}, {i}}
T ={{d, e, f}, {j, k}}

The Local-Search procedure (fig. 1) is then applied to S and T . This is a modified version of
a procedure previously used with the BPP (Falkenauer, 1998; Levine and Ducatelle, 2003; Lewis,
2009) and is based on the concepts of dominance, defined by Martello and Toth (1990b). The idea
is that items are interchanged between groups in S and groups in T such that the number of items
in each group in S remains the same or decreases, while the total size of the items within these
groups increases. If this is achieved, then the groups in S can be said to have improved since the
amount of wastage in these groups will have decreased. Also the smaller items of the problem
(which could be easier to deal with as they might be used to “fill in gaps”) are moved into groups
in T . As is described in the pseudocode in fig. 1, the Local-Search procedure operates by first
attempting to (feasibly) swap a pair of items from some group in S with a pair of items from a
group in T (lines 2-7); next, attempts are made to swap a pair of items from a group in S with
a single item from a group in T (lines 8-13); finally single items from a group in S are swapped
with single items from a group in T (lines 14-19). This process is continued until an entire parse is
performed with no changes being made to any of the groups: thus the solution can be considered
at a local optima from the perspective of this search operator.

On completion of Local-Search, we will still have two sets S and T , though their contents
are likely to have changed, e.g.

S ={{a, e}, {g, k}, {i}}
T ={{b, c, d, f}, {h, j}}

3

Local-Search (S = {S1, . . . , S|S|}, T = {T1, . . . , T|T |})
(1) for g ← 1 to |S|
(2) foreach pair of items {i, j} ∈ Sg

(3) for h← 1 to |T |
(4) foreach pair of items {k, l} ∈ Th

(5) δ ← (A(k) +A(l))− (A(i) +A(j))
(6) if δ > 0 and ((Sg ∪ {k, l}) \ {i, j}) ∈ F and ((Th ∪ {i, j}) \ {k, l}) ∈ F
(7) Move items i, j from Sg to Th and move items k, l from Th to Sg

(8) foreach pair of items {i, j} ∈ Sg

(9) for h← 1 to |T |
(10) foreach item k ∈ Th

(11) δ ← A(k)− (A(i) +A(j))
(12) if δ > 0 and ((Sg ∪ {k}) \ {i, j}) ∈ F and ((Th ∪ {i, j}) \ {k}) ∈ F
(13) Move items i, j from Sg to Th and move item k from Th to Sg

(14) foreach item i ∈ Sg

(15) for h← 1 to |T |
(16) foreach item k ∈ Th

(17) δ ← A(k)−A(i)
(18) if δ > 0 and ((Sg ∪ {k}) \ {i}) ∈ F and ((Th ∪ {i}) \ {k}) ∈ F
(19) Move item i from Sg to Th and move item k from Th to Sg

First-Fit (S = ∅, π)
(1) for i← 1 to |π|
(2) found ← false
(3) for j ← 1 to |S|
(4) if Sj ∪ {πi} ∈ F
(5) Sj ← Sj ∪ {πi} /*Item inserted into an existing group*/
(6) found ← true
(7) break
(8) else j ← j + 1
(9) if not found

(10) Sj ← {πi} /*Create a new group for the item*/
(11) S ← S ∪ {Sj} /*Add this new group to the solution*/

Figure 1: The two main procedures used in the presented algorithms. Here the notation A(i) refers
to the area of an item i, and F denotes the set of all feasible groups (thus ∀Si ∈ S, Si ∈ F and
∀Ti ∈ T , Ti ∈ F). Note also that when First-Fit is called, the permutation π will contain all
items, and on completion S will be a complete and feasible solution.

At this point the groups of both S and T are used to produce a permutation of the n items
π = (π1, . . . , πn). This permutation is formed such that (a) items currently within the same group
are placed into adjacent positions in π, and (b) according to some (possibly random) ordering of the
groups. For example, ordering the groups by decreasing cardinality might lead to the permutation:

π =(b, c, d, f, a, e, h, j, g, k, i).

Finally, a new solution is constructed by feeding π into the First-Fit algorithm (fig. 1), com-
pleting a single iteration of the algorithm. First-Fit is a classical method for grouping problems
that operates by taking each item πj in turn (1 ≤ j ≤ n), placing it into the lowest indexed group
for which it is feasible, and creating new groups where necessary. First-Fit is useful here because
its execution often results in a solution that is quite different to the solution used to form π, thus
it can help the algorithm to escape the local optima achieved by Local-Search, bringing the
possibility of further improvements being made in a subsequent iteration. A second property that
also occurs for some types of problem is that First-Fit is guaranteed to produce a solution that

4

qjcjci

pi qi

b

i

pj

b

j

bi bj

Figure 2: (Left, middle): Example items with projections on the same side, and on alternate sides.
(Right): A simple roof truss formation.

has equal or fewer groups than its predecessor. The specific criterion that needs satisfying for this
to be true is:

Si ∈ F ⇒ ∀s ⊂ Si, s ∈ F . (4)

This condition is known to exist for many grouping problems including the BPP, SCP, and graph
colouring problem (Culberson and Luo, 1996; Lewis, 2009). It is also satisfied for the Truss Cutting
Problem considered in Section 3, though this cannot be said of the Box Cutting Problem, as we
discuss further in Section 4.

3 Problem A: The Truss Cutting Problem (TCP)

The first problem considered in this study arises in the roofing industry and was originally brought
to our attention due to an enquiry made to the software company of this paper’s third author. The
problem involves cutting large numbers of wooden trusses that are to be used in roof construction.
These trusses are of different sizes and are to be cut from wooden boards in such a way that
the number of boards used is minimised. Though similar to the classical BPP, this problem is
complicated by the fact that the trusses are trapezoidal in shape with their ends involving different
angles to be cut in either the “/” or “\” direction. This means that in addition to having to
decide which trusses to cut from which board, solution quality is also affected by the ordering and
orientations of the trusses.

The Truss Cutting Problem (TCP) can be more formally stated as follows: We are given
a set of rectangular bins of height H and width W , and a set I of n items (trusses). Each
item j ∈ I is defined as a trapezoid with height H and three further values: a “base width” bj ,
and two “projections” pj and qj that define the internal angles of each item. We assume that
max(bj |j ∈ I) ≤ W . It is also convenient to define a “central width” cj = bj − (pj + qj) for each
item and, in addition, the projections on an item can occur on the same side or alternate sides of
the trapezoid (see fig. 2). In all cases an item’s area A(j) is simply:

A(j) =
1

2
H(bj + cj). (5)

Figure 3 demonstrates the way in which the arrangement of such items in a bin can determine
the amount of inter-item wastage incurred (in our case we define “inter-item wastage” as the total
area of all triangular spaces between each adjacent pair of projections, plus the left- and right-most
triangles of waste, as shown in the figure). We see that the bottom example in the figure features
less inter-item wastage and, as a result, has a larger amount of contiguous unoccupied area on the
right side of the bin which might be used to contain further items.

5

Inter-item wastage

1 32
Left-most

triangles of

wastage Right-most

triangles of

wastage

1 3

3 1

2

2

Figure 3: Example of how items can be arranged in a bin to minimise inter-item wastage.

31 2

1 32

Figure 4: Illustrating how joins between items can be nested by flipping them on their horizontal
axes.

We also observe that items can be placed into a bin according to four orientations: they can
be “flipped” on none, either, or both of their vertical and horizontal axes. However, in terms
of minimising inter-item wastage we actually only need to consider two of these orientations –
specifically, we only need to decide whether each item should be flipped on its vertical axis. This
is proved, via contradiction, as follows:

Suppose |Si| items are positioned in a bin in a given order and with specified orientations on the
vertical axes. If the orientations of the items on their horizontal axes are such that the inter-item
wastage of this configuration is minimised, then it is clear that adjacent items will be aligned so
that they “nest”, as is the case with the item configurations in fig. 3. However, suppose that the
opposite is true and two adjacent pieces do not nest, as is the case with items 1 and 2 in the top
example of fig. 4. If we now take all items to the right of this join and flip them on their horizontal
axis, then observe that this join will now be nested and that inter-item wastage will have decreased,
with the rest of the arrangement remaining unchanged. Thus, the original orientation of the items
could not have been optimal.

The above observation implies that the task of arranging items in a bin thus involves (a)
determining the order of the items from left to right, and (b) deciding for each item j, whether
projection pj or qj should occur on the left. Adjacent items can then be nested (i.e. orientation on
the horizontal axes can be determined) according to this information. This also implies that the
wastage between any two projections pj and pk (w.l.o.g) is always 1

2H(|pj − pk|).
If we are to determine an effective method for the TCP, it is thus obvious that in addition to

requiring operators that decide which items to assign to which bin (such as the local search method
of Section 2), we also need to determine high-quality arrangements of these items within each bin.
Under our algorithmic operators, this is characterised by the task of determining whether a group
of items Si is a member of F . This task is related to what we call the Truss Sub-problem, which
we now examine in more detail.

6

p1 q1 p2 q2 p3 q3 p q(a) (b) (c)p1 q1 p2 q2 p3 q3 pz qz

p1 – 2 1 5 4 5 5

q1 – 1 2 2 1 2 2

p2 2 1 – 3 2 3 3

q2 1 2 – 4 3 4 4

p 5 2 3 4 0 0

p1 q1

p2 q2 1

1

3

(a) (b) (c)

1
p1 = 5 q1 = 2

2 p3 5 2 3 4 – 0 0

q3 4 1 2 3 – 1 1

pz 5 2 3 4 0 1 –

qz 5 2 3 4 0 1 –

q3p3

qzpz

0

2
p2 = 3 q2 = 4

3
p3 = 0 q3 = 1

(d) 1 23

Figure 5: Example conversion of a truss sub-problem to a TSP. A valid route (involving all −∞
arcs) represents a valid formation of the items. Here H = 2.

3.1 Examination of the Truss Sub-problem

Consider a problem where we have a group of truss items Si ⊆ I and we wish to determine the
order and orientation of all items in Si such that inter-item wastage is minimised. We now observe
that this problem can be naturally reduced to an instance of the NP-hard symmetric travelling
salesman problem (TSP). We perform this conversion by considering each of the 2|Si| projections
as a city, with the distances between each pair of cities being defined as the wastage between the
two associated projections. For projections on the same item, the inter-city distance is defined as
−∞, and it is also necessary to introduce two “dummy cities” pz and qz, which are used to represent
the left- and right-most triangles of wastage in a bin. The distances between dummy cities and any
other city pj (resp. qj) is simply 1

2Hpj (resp. 1
2Hqj) and the arc between the pair of dummy cities

is also set to −∞. Any Hamiltonian cycle that visits all cities exactly once and that traverses all
−∞ arcs is considered a “valid” route, and an optimal valid route for this model thus corresponds
to a configuration of items featuring minimal inter-item wastage.

An example distance matrix D for |Si| = 3 items (and thus 8 cities) is given in fig. 5(b). Fig. 5(c)
then shows an example of a valid route, with the labelled arcs indicating the inter-item wastage
incurred in the corresponding arrangement of items, shown in fig. 5(d). Specifically, there is one
unit of wastage between item 3 and 1, one unit between 1 and 2, and zero and 3 units of wastage
in the left-most and right-most triangles respectively. The total number of valid routes (and thus
distinct item arrangements) for |Si| items is (2|Si||Si|!)/2 which, for this example, is 24.

Definition 1.

The truss sub-problem asks: Given a bin of dimensions H × W , and given Si ⊆ I such that
A(Si) =

∑
j∈Si

A(j) ≤ HW , is Si ∈ F?

To answer the truss sub-problem we are interested in determining the existence of an item
configuration whose inter-item wastage is less than or equal to (HW − A(Si)).

1 Of course, this is
equivalent to the NP-complete decision variant of the corresponding TSP, where we are asked to
determine a valid route whose total distance (discounting −∞ arcs) is less than (HW −A(Si)).

Having noted the underlying intractability of the truss sub-problem, we now note two special
cases which are, in fact, polynomially solvable.

1Recall that if the inter-item wastage plus A(Si) is less than HW , then there will also be unoccupied area on the
right side of the bin, as is the case in fig. 3.

7

(a) (b)

15
3

z

1

(c)1

2

2
1 2 3

1

1 1

2

3 3

2
4

3

3

5 5

Figure 6: Resultant graph when all items are symmetric about their vertical axis. The bold lines
in (b) represent an optimal route and (c) shows the corresponding arrangement of the items.

3.1.1 Case 1: All projections are of size zero

In this case all items j ∈ Si will be rectangular in shape and so the wastage between any two items
(and in the left- and right-most triangles) will be zero. In the corresponding TSP model this means
that all non-(−∞) arcs have a distance of zero, implying that any valid route will be optimal (and
thus all arrangements of items in a bin are optimal). More generally, if the n items of the overall
TCP feature projections of zero, then the problem becomes equivalent to the one-dimensional BPP
and SCP.

3.1.2 Case 2: All items are Isosceles trapezoids and parallelograms

The second special case arises when pj = qj , ∀j ∈ Si (that is all items in a group Si are symmetric
about their vertical axes). In the corresponding TSP the destinations and distances of arcs ema-
nating from each pair of cities (pj , qj) will be identical; thus we can merge each pair into a single
city (see fig. 6). Now, if the |Si| items are sorted according to the sizes of their projections, the
resultant graph will be a special case of Euclidean graph in which all cities lie on a straight line.2

As demonstrated in fig. 6, for such graphs optimal routes can then be obtained by visiting each city
in the sorted order (in this case from top to bottom) and then returning to the initial (dummy)
city. From the perspective of arranging items, the equivalent strategy involves placing each item
into the bin in ascending order of projection sizes.

3.2 Addressing the Truss Sub-Problem

According to our algorithmic framework (Section 2) instances of the truss sub-problem will be
faced many times during a run, but for larger values of |Si| there may be instances that cannot be
solved in reasonable time. Thus an appropriate balance needs to be struck between efficiency and
accuracy. In our case, on being presented with a group of items Si (such that A(Si) ≤ HW) the
following tests are first carried out. If one of these tests solves the sub-problem, remaining tests
are not necessary.

• If |Si| = 1 then Si ∈ F (since we have assumed that max(bj |j ∈ I) ≤W).

2That is, if the distances between three successive cities a, b, and c are Da,b and Db,c respectively, then Da,c =
Da,b +Db,c.

8

• If A(Si) = HW , then in order for Si ∈ F to be true, an arrangement must exist in which no
wastage exists around any of the items. Thus for each projection on each item, there must
exist an equi-sized projection on some other item in Si. It is also necessary that there must
exist at least two projections on distinct items that are of size zero as otherwise we would be
guaranteed to incur wastage on one or both of the left- and right-most triangles in the bin.
If any of these conditions are not met then Si /∈ F .

• If HW − A(Si) < τmax then Si /∈ F . Considering the TSP model described above, the value
τmax is calculated by considering each pair of cities (pj , qj) and observing the value τj which
is the total of the shortest non-(−∞) arcs emanating from city pj and city qj respectively.
Each value τj thus represents the minimum amount of wastage that we can hope to exist on
the left- and right-hand side of a particular item j. Of course, it is impossible to pack all
items into a bin if τmax = max(τj |j ∈ Si) > HW −A(Si).

In our experience we have found that approximately half of the truss sub-problems encountered
during runs with our test problems are solved by these tests, though this proportion can alter for
different sorts of problem (see Section 3.5). When these tests are insufficient, our next step is to
try and fit the items into a bin. In our case this is carried out using a simple greedy method based
on the nearest neighbour strategy for the TSP: i.e. Starting at dummy city pz, at each stage move
to the nearest unvisited city, and once all cities have been visited, return to the first city pz. This
method is exact for the two special cases mentioned in Section 3.1, though in the general case this
is not so. Thus, if upon completion of this step the resultant inter-item wastage is larger than
HW − A(Si), a second greedy process is invoked that attempts to improve the arrangement by
reversing the orientation of some of the items. Specifically, the process considers each item in a bin
in turn from left to right and identifies whether rotating this item on its vertical axis will reduce the
total amount of inter-item wastage. If this is the case then the rotation of the item is performed.

In the first version of our algorithm (Algorithm A), if the greedy processes above have resulted
in an item configuration whose inter-item wastage is larger than HW − A(Si), then it is assumed
that Si /∈ F . However, it is possible that in many cases the opposite is true – thus in version B of
the algorithm more powerful methods are employed at this point. We achieve this using an integer
programming formulation for the TSP (given in Appendix A). Note that we do not necessarily
need to solve each sub-problem to optimality as we only need to know if there is a solution whose
objective function (eq. (8)) is less or equal to HW − A(Si). Thus, if we use a branch-and-bound
approach, we can stop the search when:

• the global lower bound exceeds HW −A(Si) (proving Si /∈ F);

• the global upper bound does not exceed HW −A(Si) (proving S ∈ F);

• a predefined CPU time limit for the process is reached.

If the final criterion above is met then it is assumed that Si /∈ F . Of course, this may not be the
case, but the assumption is necessary to avoid excessive run times, which could occur with larger
values of |Si|. In our case we found a time limit of two seconds to be sufficient in this regard.
We implement the above strategy with the optimisation software Xpress which uses the standard
branch-and-bound algorithm for integer programming based on linear programming relaxations.
Thus the upper bound used in the second criterion above corresponds to the best integer solution
to date and provides a valid arrangement of the items in a bin.

Due to the various overheads associated with calling and running Xpress, it makes sense to
invoke the B&B process only when necessary, which in our case is when the cheaper greedy methods

9

are unable to fit the items into a bin. In addition, we also find that performance can be considerably
improved by disallowing B&B to be used more than once with any particular subset of items. This
can be achieved by maintaining two sets X and Y during run time, the former that contains the
subsets of items that B&B has determined can be packed into a single bin (together with the
corresponding arrangement), and the second containing all subsets that B&B has found cannot be
packed into a single bin. In our implementation, these sets are stored as binary trees, allowing
elements to be added and searched-for in logarithmic time. Of course, during an extended run
it is possible that the cardinality of these sets may become very large; however, in practice many
groups of items considered during a run will have their membership of F confirmed or denied before
invocation of B&B has become necessary and are thus not added to X or Y. In addition, in many
TCPs it is also common to see multiple occurrences of items with the same dimensions (that is,
items of the same “type”). Thus with appropriate book-keeping, individual elements in X or Y
can actually be made to represent many different subsets of items in reality.

3.3 Problem Generation

To test our algorithm an instance generator was implemented that attempts to simulate the sort
of problems encountered in the roofing industry.3 We used this to produce a total of 1300 problem
instances with sizes ranging from n = 100 to 500. Within this set, two kinds of problem were
constructed: artificial (“a”) instances, where every item j ∈ I is composed of different dimensions,
and the perhaps more realistic (“r”) instances, where we see multiple occurrences of items with
the same dimensions (i.e. items of the same type). In all cases we used a bin size (board length)
of W = 4200mm which we have observed to be a standard industrial size.4 The item widths bj
were then each set between 300mm to 3600mm and were either selected uniform randomly from
this range, or so that a particular number of “large” items (2700-3600mm) and “small” items (300-
1800mm) were included. Projection sizes were then selected for the items such that end angles
occurred in the range 30◦ − 90◦ and it was assumed for all items j ∈ I that pj + qj ≤ bj . We also
ensured that at least one item in each instance featured a projection of size zero (that is, angle of
90◦).

One feature that we noticed early in our experiments with these instances was that their solu-
tions tended to feature fewer than three items per group on average. While this might actually be
the case in industrial settings, it does imply that the individual sub-problems encountered during
a run will be rather small, with the underlying TSPs tending to feature < 8 cities. In addition, we
also saw that the items in our simulated instances usually featured central widths much longer than
the total size of their two projections. Again, this seems to be the case in practical circumstances
because roof trusses are usually quite long and thin; however, this also suggests that the effects in-
duced by wastage occurring between projections could be proportionally small, making the overall
TCP similar to the classical BPP. To counter these features and thus gain a more comprehensive
understanding of our algorithm, we thus chose to modify our original set of instances to produce
two further sets. This was achieved by simply taking each item and setting the central width to
half and quarter of its original value. The main features of the “original”, “half”, and “quarter”
instance sets are listed in Table 1. Note that the number of different item types equals n for the
artificial “a” instances, but is around 20 in the “r” instances.

3A detailed specification of the generator together with the complete set of instances can be found online at
www.rhydlewis.eu/resources/trapBoxProbs.zip

4Note that bin height H is irrelevant in the solution process used here – thus, for simplicity’s sake we assume
H = 2, meaning that the wastage between two projections pj and pk (w.l.o.g) is simply 1

2
H(|pj − pk|) = |pj − pk|.

10

Table 1: Summary of Test Instances Used

Type, n Probs. Item Typesa TMinb Bestc Items per groupd TMin obtainede

orig., a, 100 20 100.00 44.65 46.35 2.166 0.000
orig., a, 200 20 200.00 90.70 94.75 2.117 0.000
orig., a, 300 20 300.00 134.70 138.95 2.162 0.000
orig., a, 400 20 400.00 177.75 182.60 2.195 0.000
orig., a, 500 20 500.00 222.55 228.00 2.195 0.000
orig., r, 100 240 20.19 38.66 42.15 2.581 0.171
orig., r, 200 240 20.31 75.50 81.88 2.655 0.058
orig., r, 300 240 20.05 115.10 125.24 2.602 0.017
orig., r, 400 240 20.65 154.44 168.17 2.577 0.004
orig., r, 500 240 19.60 193.03 210.75 2.595 0.000

half, a, 100 20 100.00 23.45 23.75 4.217 0.700
half, a, 200 20 200.00 47.45 47.85 4.184 0.600
half, a, 300 20 300.00 70.55 70.90 4.234 0.650
half, a, 400 20 400.00 92.95 93.60 4.276 0.350
half, a, 500 20 500.00 116.40 117.25 4.267 0.150
half, r, 100 240 20.19 20.52 20.77 5.076 0.758
half, r, 200 240 20.31 39.97 40.44 5.207 0.550
half, r, 300 240 20.05 60.80 61.70 5.128 0.333
half, r, 400 240 20.65 81.34 82.38 5.106 0.233
half, r, 500 240 19.60 101.75 103.16 5.133 0.154

quar., a, 100 20 100.00 13.00 13.10 7.647 0.900
quar., a, 200 20 200.00 25.80 26.05 7.690 0.750
quar., a, 300 20 300.00 38.40 38.60 7.785 0.800
quar., a, 400 20 400.00 50.60 50.75 7.886 0.850
quar., a, 500 20 500.00 63.30 63.60 7.872 0.700
quar., r, 100 240 20.19 11.48 11.55 9.070 0.925
quar., r, 200 240 20.31 22.14 22.30 9.360 0.846
quar., r, 300 240 20.05 33.62 33.88 9.271 0.742
quar., r, 400 240 20.65 44.80 45.07 9.280 0.738
quar., r, 500 240 19.60 56.05 56.51 9.289 0.554

aAveraged across all instances
bTMin= ⌈(

∑n
j=1 A(j))/HW ⌉, averaged across all instances

cNumber of groups used in the best run from either algorithm on each instance, averaged across all instances
dCalculated as n/Best, averaged across all instances
eProportion of instances where Best = TMin

3.4 Bounds for the TCP

It is also possible to specify bounds on the optimal number of groups χ needed for a particular
TCP instance. The most obvious of these is the theoretical minimum TMin = ⌈(

∑n
j=1A(j))/HW ⌉.

However, one problem with TMin is its tendency to underestimate χ when considering instances
involving large items, because in these cases there might be various groups that contain only one
or two items, perhaps resulting in rather a lot of (necessary) wastage. We thus also consider an
alternative method of lower bound generation which can be found by simplifying a TCP instance
problem to a corresponding BPP, and then solving this to optimality.

Consider the following:

Definition 2. Simplified Width. For each item j ∈ I with base width bj and projections pj and
qj, define the simplified width sj = bj −max(pj , qj).

Definition 3. Simplified Problem. Assume all items j ∈ I from the original TCP problem are
rectangular items with width sj and height H. The simplified problem is now a BPP applied to
these items using bin size W ×H.

Theorem 1. Let χ be the optimal (smallest) number of groups needed in a particular TCP instance,
and let χs be the optimal in the corresponding simplified problem. Then χs ≤ χ.

11

A proof of Theorem 1 can be found in Appendix B. Of course, one issue with this method of
bound generation is that the corresponding BPP, itself an NP-hard problem, needs to be solved to
optimality. In our case this was achieved using the complete branch-and-bound method of Martello
and Toth (1990a).5 However, such runs were seen to take up to 48hrs to complete on our machines
and so results were only collected for one problem instance in each class (i.e. 30 results in total).
We also found that the only instances where this bound was more accurate than TMin was for the
original “r” instances, whose solutions indeed seem to feature large amounts of wastage in some
groups.6

Table 1, contrasts TMin to the smallest number of groups found in our tests (described in
Section 3.5). In particular, we note that our methods have achieved TMin more regularly when
tackling instances featuring larger numbers of items per group, despite the fact that such problems
involve the solving of larger truss sub-problems. This suggests a further similarity to the BPP where
problems are usually observed to become easier when the number of items per group is increased
beyond ≈3 (Falkenauer, 1996; Martello and Toth, 1990b). This effect is lessened, however, for larger
n’s, perhaps demonstrating the reduced accuracy of this algorithm with larger problem instances.

3.5 Experimental Results

We tested both versions of our algorithm on the complete set of 3900 problem instances, using
a time limit of 600s.7 We experimented with various methods for producing initial solutions,
including those that attempted to build up feasible groups one-by-one by pairing the closest fitting
projections. Ultimately though, we found that best results in this regard were nearly always gained
by simply arranging the items in descending order of area and then feeding this permutation into the
first-fit algorithm. From this point onwards the algorithms then proceeded following the description
given in Section 2. In particular, in each application of Local-Search, T was constructed by
transferring each group Si ∈ S with probability (1/|S|). Also, before each application of First-Fit,
permutations were formed according to one of three heuristics: (a) Fullest First, where groups were
arranged in order of decreasing spare capacity; (b) Reverse Ordering, where groups were arranged
in the reverse order of their labelling in the previous solution; and (c) Random Ordering. These
heuristics were applied randomly with a ratio of 5:5:3 (respectively), which has been observed to
work well in research with related problems (Culberson and Luo, 1996; Lewis, 2009). We generally
found the algorithms to be quite insensitive to changes in these parameters, though our settings
are not claimed to be optimal.

A summary of the performance of Algorithms A and B is presented in Table 2 and, for illustrative
purposes, an example solution produced by our methods is given in fig. 7. We observe in the table
that the average number of groups used in the initial solutions of Algorithm B is always equal or
lower than those of A, with 18 of the 30 averages being significantly different at the 5% level. We
may well expect such a result since the inclusion of B&B will allow positive answers to be returned
in an increased proportion of sub-problems. Indeed, this characteristic is reflected by the larger
values in Algorithm B’s “Succ.” column, which shows that the proportion of sub-problems resulting
in a positive answer increases by an average of 5.2% across the instances. We also note that the
proportion of B&B applications reaching the 2s time limit averages less than 1% in all but one

5Fortran code available at www.or.deis.unibo.it/knapsack.html
6Note that upper bounds can also be generated using the same principles as the simplified problem: that is,

simply make each item j in the TCP a rectangle of height H and width bj , and then solve this BPP to optimality.
The number of groups returned by both versions of our algorithm were seen to be less than this upper bound in all
instances where the bound was generated.

7The algorithms were implemented in C++, and Algorithm B also used Fico Xpress optimiser version 20.00.05.
All experiments were conducted on 2.83GHz Windows PCs with 3.2GB RAM.

12

Table 2: Results Summary. Figures appearing in bold indicate lower sample means that passed a
two-tailed paired t-test at the 0.05 level

Algorithm A (without B&B) Algorithm B (with B&B)
Type, n Test Succ.a Init.b Endb Its.c Succ.d Init.b Endb Its.c Succ.e B&B Timeoutf

orig., a, 100 0.537 46.450 46.350 1,784,699 0.6097 46.400 46.350 965,932 0.6370 0.0000
orig., a, 200 0.535 94.950 94.750 810,708 0.5853 94.950 94.750 213,723 0.6115 0.0000
orig., a, 300 0.605 139.300 138.950 487,735 0.4687 139.250 139.100 13,523 0.5272 0.0000
orig., a, 400 0.627 183.150 182.600 323,038 0.4384 183.100 182.750 7,374 0.4842 0.0000
orig., a, 500 0.619 228.350 228.000 227,752 0.4135 228.350 228.100 3,946 0.4524 0.0000
orig., r, 100 0.469 42.529 42.163 1,722,828 0.5287 42.508 42.154 1,667,797 0.5650 0.0002
orig., r, 200 0.543 82.729 81.904 706,324 0.4071 82.696 81.875 691,108 0.4435 0.0001
orig., r, 300 0.540 126.483 125.279 425,008 0.3562 126.408 125.242 413,436 0.3941 0.0000
orig., r, 400 0.548 169.808 168.221 275,726 0.3315 169.692 168.175 272,406 0.3701 0.0000
orig., r, 500 0.568 212.804 210.825 197,003 0.3036 212.600 210.754 199,025 0.3392 0.0000

half, a, 100 0.480 24.100 23.750 258,913 0.4478 24.100 23.850 342 0.5214 0.0000
half, a, 200 0.628 48.600 47.850 90,732 0.2658 48.300 48.050 76 0.3133 0.0000
half, a, 300 0.687 71.700 70.900 48,323 0.1679 71.600 71.100 20 0.2131 0.0001
half, a, 400 0.732 94.650 93.600 29,205 0.1022 94.450 93.900 5 0.1088 0.0001
half, a, 500 0.746 118.250 117.250 23,557 0.0866 118.100 117.800 6 0.1180 0.0000
half, r, 100 0.459 21.300 20.796 406,413 0.3762 21.233 20.779 252,648 0.4531 0.0046
half, r, 200 0.595 41.425 40.475 157,806 0.1839 41.308 40.471 93,405 0.2376 0.0017
half, r, 300 0.642 63.167 61.729 88,112 0.1140 63.000 61.717 49,306 0.1502 0.0006
half, r, 400 0.652 84.263 82.463 65,900 0.0825 84.104 82.421 32,420 0.1162 0.0006
half, r, 500 0.666 105.663 103.250 52,818 0.0739 105.413 103.221 31,282 0.1017 0.0004

quart., a, 100 0.321 13.300 13.100 31,037 0.4519 13.200 13.100 10 0.5897 0.0000
quart., a, 200 0.511 26.400 26.050 12,099 0.2498 26.300 26.250 2 0.3472 0.0002
quart., a, 300 0.596 39.150 38.600 6,766 0.1357 39.100 38.800 1 0.2325 0.0009
quart., a, 400 0.599 51.400 50.750 3,128 0.1235 51.200 51.150 1 0.2298 0.0004
quart., a, 500 0.707 64.300 63.600 2,275 0.0377 64.200 64.200 1 0.1361 0.0011
quart., r, 100 0.280 11.779 11.554 51,877 0.4278 11.742 11.563 60 0.5075 0.0183
quart., r, 200 0.471 22.788 22.300 14,631 0.2021 22.729 22.317 1,898 0.2545 0.0075
quart., r, 300 0.542 34.533 33.879 9,602 0.1253 34.488 33.942 12 0.1608 0.0045
quart., r, 400 0.579 45.950 45.075 7,745 0.0913 45.875 45.200 181 0.1195 0.0031
quart., r, 500 0.638 57.579 56.517 5,855 0.0434 57.488 56.629 205 0.0625 0.0014

aProportion of truss sub-problems solved using the tests given in Section 3.2.
bNumber of groups in solution (mean of 1 run on each instance).
cMean of one run on each instance.
dProportion of greedy applications confirming Si ∈ F , averaged over all instances.
eProportion of greedy+B&B applications confirming Si ∈ F , averaged over all instances.
fProportion of B&B applications where the time limit of 2s was reached.

case, though there is indeed a slight increase in the quarter instances where larger sub-problems
(and thus larger TSPs) are being encountered.

One interesting feature of these results is the changes that occur in the “Test” and “Succ.”
columns for differing values of n. For larger n’s the choice of which items to assign to the same
group increases which, compared to smaller instances, seems to lead to less inter-item wastage
occurring in each bin. As a result, with larger instances it is less likely that further items can be
added to such groups, implying that the preliminary tests (Section 3.2) are more likely to make a
definite conclusion that Si /∈ F , and also implying that the chances of “success” (via the greedy or
greedy+B&B processes) will reduce. This effect is particularly prevalent with the quarter instances,
where the presence of many small items often causes very little wastage to be present in many bins.

Turning our attention to results achieved at the end of a run, different patterns start to emerge
with, surprisingly, Algorithm A often producing better results than B. This feature seems due to
two interacting factors: the number of items per group, and whether or not the instances are of
type “a” (where all items are different), or “r” (where multiple items of the same type occur).
Considering the number of items per group first, we see that as this value is increased Algorithm
A’s use of just the greedy routines will more often result in Si /∈ F being concluded (when the

13

Figure 7: Example solution for a quarter “r” instance with n = 100. Items of the same type are
labelled with the same number in the figure.

opposite is true), leading to sub-optimal configurations of items in bins. On the other hand, while
Algorithm B is more accurate in this regard, the underlying sub-problems being tackled by B&B
are larger, resulting in longer solution times. The upshot of this is that with more items per group,
Algorithm B completes fewer iterations of the overlying local search algorithm within the time limit,
resulting in a more limited search of the solution space. In conjunction with this, such effects on
Algorithm B are also exacerbated when tackling larger problems because combinations of the same
item types are less likely to be encountered. This reduces the advantages of using sets X and Y and
is particularly apparent with the “a” instances, where sub-problems are rarely solved by referencing
these sets. In contrast, when the number of items per group is small and item types are repeated,
then combinations of the same item types arise more frequently, allowing many sub-problems to be
solved in logarithmic time using X and Y. Indeed, for the original “r” instances we see that the
average number of iterations being completed by Algorithm B is always within 4% of A, ultimately
bringing better results.

To illustrate the effects of these factors on the two algorithms, fig. 8 shows best-so-far profiles
for four sets of problem instances with n = 500. For the “a” instances (top-left, bottom-left)
we see that Algorithm B’s use of B&B brings both slower progress and worse results at the time
limit, particularly for the quarter instances (bottom-left). On the other hand, for the original “r”
instances (top-right), although Algorithm B’s initial progress is slower, after ≈70s it shows superior
performance because sufficient information has been built up in X and Y to allow iterations to be
completed at a similar rate to Algorithm A. For the quarter “r” instances, we do not witness this
feature, though the figure suggests that this would eventually occur if the time limit was to be
sufficiently extended.

4 Problem B: The Box Cutting Problem (BCP)

The second problem considered in this paper concerns the issue of cutting and scoring rectangles of
cardboard in the construction of corrugated boxes. This problem was originally defined by Goulimis

14

 227.9

 228

 228.1

 228.2

 228.3

 228.4

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

 210.5

 211

 211.5

 212

 212.5

 213

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

 63.5

 63.6

 63.7

 63.8

 63.9

 64

 64.1

 64.2

 64.3

 64.4

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

 56.6

 56.8

 57

 57.2

 57.4

 57.6

 57.8

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

Figure 8: Best-so-far graphs using n = 500 for (respectively) original “a” instances, original “r”
instances, quarter “a” instances, and quarter “r” instances. Each line is the average across all
instances at each second.

15

bi(a)

pi qi

i

(b)

1 2 3

 6 (OK) < 6 (too small)
(b)

1 2 3

1 1 1425

2 1 3

 6 (OK) 6 (OK)

Figure 9: (a) Item dimensions for the BCP; and (b) Example of an infeasible and feasible arrange-
ment of three items using δ = 6.

(2004) who acquired the problem through an industrial contact. However, at the time of writing
we are unaware of any methods for this problem that have subsequently appeared in the literature.

As with the TCP, the box cutting problem (BCP) involves two-dimensional bins (long cardboard
strips) of dimensions H ×W , with items needing to be packed into these such that the number of
bins (strips) is minimised. In this case each item j ∈ I is rectangular in shape with height H and
width bj (with max(bj |j ∈ I) ≤ W). However, it is also required that items are scored from top
to bottom in two pre-determined places, allowing the cardboard to be folded along these lines at
a later stage. The locations of the scores on each item are defined by two values pj and qj which
mark the required distances of the scores from either end of the rectangle (see fig. 9(a)). For parity
with the previous section, we refer to these distances as “projections”.

In the industrial process described by Goulimis, when items are cut from the cardboard strips,
a pair of scores are simultaneously made to the left and right on the items being separated. These
scores are made by a device featuring two knives that cannot be placed too close together due to
their being mounted on a metal bar. This means that the distance between two successive scoring
points (i.e. the total size of two adjacent projections) needs to be above a minimum scoring distance
δ, which is stated by Goulimis to be about 70mm in the industrial application. To illustrate this
concept, fig. 9(b) shows two arrangements of 3 items using δ = 6. We observe that the first
arrangement of items is infeasible since the scoring gap between items 2 and 3 is less than 6;
however, the second arrangement is feasible since all scoring gaps are ≥ 6. Also note that the two
outermost projections are “free” as they are not subject to the scoring distance constraint (the
scores are made at a different time).

4.1 Examination of the Box Cutting Sub-problem

As with the TCP, it is clear that the ordering and orientation (on the vertical axis) of items in a
bin will influence whether the arrangement is feasible. This gives rise to the following sub-problem:

Definition 4.

The box sub-problem asks: given a bin of size H × W , and Si ⊆ I such that A(Si) ≤ HW , is
Si ∈ F?

16

(a) (b) (c)
p1 q1 p2 q2 p3 q3 z

p1 –1 0 0 0 0 0

q1 –1 0 0

p2 0 0 –1 0

(a) (b) (c)

1

25

–1

0

q1p1

1
0

p2 0 0 1 0

q2 0 –1 0

p3 0 –1 0

q3 0 –1 0

z 0 0 0 0 0 0
3

2
14

0q2

q3

p2

p3

z–1

–1
0

0

1 1

Figure 10: Example conversion of a box sub-problem to a TSP. In (c) the route shown has a total
distance of −|Si| = −3 and corresponds to the feasible configuration of the items in fig. 9(b)).

In similarity to the TCP, we observe that this sub-problem can also be reduced to a correspond-
ing TSP. This is achieved by again considering each projection as a city, with distances between
these being calculated as follows:

• distances between projections on the same item are set to −1;

• distances between projections on different items whose total size is less than δ are set to ∞;

• all other inter-city distances are set to zero.

It is also necessary to use one dummy city in this model which is to be connected to all other
cities using arcs of distance zero. Fig. 10 shows an example of this conversion using δ = 6 and
|Si| = 3. It is clear that Si ∈ F if and only if a Hamiltonian cycle of distance −|Si| exists (since
only routes of this distance represent a feasible configuration of the items). We also observe that a
larger value of δ here would see more arcs assuming distances of ∞, making the problem less likely
to be solvable. For example, increasing δ from 6 to 7 in fig. 10 results in distances of ∞ also being
assumed between p1 and p3, and p1 and q3, meaning that no Hamiltonian cycle of distance −|Si|
exists.

4.2 Addressing the Box Cutting Sub-Problem

Our method for the box sub-problem follows a similar strategy to the TCP algorithm: preliminary
tests followed by a greedy algorithm, and then finally a more sophisticated branch-and-bound
procedure (if desired). As before, let Si ⊆ I be a group of items such that A(Si) ≤ HW . In
addition, let v = (v1, v2, . . . , v2|Si|) be a vector of the items’ projections in ascending order of size.
The preliminary tests we conduct are as follows:

• If |Si| = 1 then Si ∈ F .

• If v3 ≥ δ/2, and v1 and v2 occur on different items, then Si ∈ F . In this case a feasible
arrangement of the items is guaranteed since we can place the two smallest projections, v1
and v2, in the outermost positions, and all other scoring gaps will be greater or equal to δ.

• If v3+v2|Si| < δ, then Si /∈ F . Assuming v1 and v2 are to be placed in the outermost positions,
if the next largest projection v3 is too small to be paired with the largest projection v2|Si|,
then obviously we cannot hope to find a feasible arrangement of the items.

17

As before, if these checks prove inadequate, a greedy heuristic is next applied that attempts to
place all items in Si into the bin. At each iteration this is done by considering the currently unplaced
items and choosing the one with the smallest feasible projection,8 breaking ties by selecting the
item that has the largest opposite projection. (The bottom arrangement in fig 9(b) is a result of
this process.) This heuristic has the effect of pairing projections whose combined sizes are “just
large enough”, encouraging the largest projections to be reserved for pairing with the smallest. It
also ensures that the smallest projection is placed on the leftmost position in the bin, eliminating
it from the sub-problem.

Similarly to our method for the TCP, if this greedy heuristic fails to find a feasible configuration
of the items, we also have the option of invoking more powerful methods for determining membership
of F . In our case this is again achieved with Xpress using the same formulation as Section 3
(Appendix A), but also with the added constraint that the returned solution must feature an
objective function (eq. (8)) of exactly −|Si|. As before, we also maintain sets X and Y during
runtime to ensure that the B&B procedure is not used more than once on a particular combination
of items types.

Finally, as mentioned in Section 1, one important observation of the box sub-problem is that
condition (4) is not satisfied. That is, if we have a set of items Si ∈ F , then the removal of one
or more of these items will not necessarily preserve feasibility (observe, for example, the effects
of eliminating item 1 from fig. 9). This feature is in contrast to the TCP and implies that an
application of First-Fit using a permutation formed in the manner described in Section 2 could
result in a solution that features more groups than a previous solution. In our case we do not
consider this to be a major problem as First-Fit still seems to be able to carry out its primary
purpose of escaping local optima. In experiments we also observed that the additional groups that
could result from this procedure were usually eliminated quite quickly by subsequent applications
of Local-Search. However, this is an interesting feature of the BCP and it would be interesting
for future research to investigate other possibilities here.

4.3 Experimental Results

Information regarding typical industrial item sizes and score distances is not readily available for
the BCP, and we are compelled to produce artificial problem instances at this point. For our
experiments, we took the well-known one-dimensional SCP instance “10a” from the work of Liang
et al. (2002), which involves n = 600 items of 36 types with

∑
j∈I A(j) = 25, 790. This is seen to

be a difficult problem and, by default, uses W = 120 and H = 1 resulting in approx. 2.8 items per
group in the known optimal of 215 groups. We then modified this instance by adding projections
to each of the 36 item types. This was achieved by randomly selecting pj and qj from the interval

[1,
bj
2], ensuring that the distance between these bj − (pj + qj) (i.e. the “central width” of the item)

was always greater than 10% of bj .
For our experiments two problem features in particular were considered: the number of items

per group, and the parameter α, which gives the proportion of projection pairs (from different
items) whose total size is > δ. The former can be controlled by simply altering W , while the latter
was controlled by making alterations to δ such that values for α from 0.0 to 1.0 (with increments
of 0.1) were determined. Obviously, if α = 0.0 then the number of groups required will be n, while
α = 1.0 implies that all projection pairs are > δ, making the BCP equivalent to the original SCP
instance.

8That is, the smallest projection that, when paired with the rightmost projection of the previously inserted piece,
results in a scoring distance ≥ δ. When selecting the first item to place into the bin, all projections are feasible and
so the smallest projection overall is selected

18

Table 3: Results Summary. Figures in bold indicate lower sample means that passed a two-tailed
paired t-test at the 0.05 level. TMin for W = 120, 240, and 360 = 215, 108, and 72 respectively.

Algorithm A (without B&B) Algorithm B (with B&B)
α, W Items per group Test Succ.a Endb Its.c Succ.d Endb Its.c Succ.e X , Y Usedf

0.0, 120 1.000 1.000 600.00 4,475 - 600.00 4,475 - -
0.1, 120 1.367 0.967 439.00 9,846 0.071 439.00 10,457 0.071 1.00000
0.2, 120 1.852 0.805 323.95 13,157 0.059 323.95 16,864 0.059 1.00000
0.3, 120 2.360 0.560 255.75 18,441 0.075 254.25 27,679 0.078 1.00000
0.4, 120 2.727 0.380 220.60 73,654 0.317 220.00 92,118 0.329 1.00000
0.5, 120 2.778 0.296 216.00 147,387 0.665 216.00 147,128 0.686 1.00000
0.6, 120 2.778 0.344 216.00 203,532 0.882 216.00 185,618 0.899 0.99999
0.7, 120 2.778 0.478 216.00 224,732 0.931 216.00 205,138 0.931 0.99999
0.8, 120 2.778 0.677 216.00 250,850 0.978 216.00 236,167 0.978 0.99998
0.9, 120 2.778 0.807 216.00 272,035 0.997 216.00 261,498 0.997 0.99992
1.0, 120 2.778 1.000 216.00 299,706 - 216.00 299,817 - -

0.0, 240 1.000 1.000 600.00 4,265 - 600.00 4,260 - -
0.1, 240 1.367 0.975 439.00 7,219 0.135 439.00 7,550 0.171 0.99997
0.2, 240 1.892 0.929 317.05 9,021 0.256 317.35 6,844 0.269 0.99997
0.3, 240 2.552 0.860 235.10 11,134 0.355 235.80 3,383 0.361 0.99988
0.4, 240 3.891 0.557 154.20 9,848 0.397 158.20 1,041 0.424 0.99849
0.5, 240 5.533 0.215 108.60 8,860 0.492 108.85 816 0.503 0.99733
0.6, 240 5.556 0.174 108.00 40,864 0.626 108.00 1,846 0.643 0.99469
0.7, 240 5.556 0.203 108.00 86,443 0.811 108.00 4,151 0.822 0.99112
0.8, 240 5.556 0.343 108.00 127,040 0.942 108.00 23,203 0.942 0.99710
0.9, 240 5.556 0.547 108.00 157,867 0.994 108.00 77,817 0.995 0.97842
1.0, 240 5.556 1.000 108.00 235,675 - 108.00 235,322 - -

0.0, 360 1.000 1.000 600.00 4,265 - 600.00 4,261 - -
0.1, 360 1.367 0.973 439.00 6,704 0.118 439.00 6,360 0.134 0.99979
0.2, 360 1.893 0.941 317.00 8,074 0.332 317.55 1,094 0.343 0.99878
0.3, 360 2.564 0.838 234.05 7,537 0.422 235.65 342 0.427 0.99757
0.4, 360 4.028 0.574 148.95 5,355 0.427 154.50 127 0.446 0.98789
0.5, 360 7.381 0.235 81.30 2,630 0.486 86.90 80 0.498 0.99127
0.6, 360 8.333 0.106 72.00 6,512 0.528 72.00 158 0.531 0.99642
0.7, 360 8.333 0.124 72.00 35,755 0.723 72.00 695 0.730 0.99208
0.8, 360 8.333 0.183 72.00 73,470 0.932 72.00 4,612 0.932 0.99745
0.9, 360 8.333 0.347 72.00 92,825 0.995 72.00 25,892 0.995 0.93601
1.0, 360 8.333 1.000 72.00 172,566 - 72.00 172,748 - -

aProportion of box sub-problems solved using the tests given in Section 4.2.
bNumber of groups in final solution (mean of 20 runs).
cMean of 20 runs.
dProportion of greedy applications confirming Si ∈ F , averaged over all runs.
eProportion of greedy+B&B applications confirming Si ∈ F , averaged over all runs.
fProportion of times the box sub-problem was solved using X or Y as opposed to running B&B

Table 3 shows the results gained from 20 runs of the two algorithms for various values of α
and W using the same experimental conditions as Section 3. For very low and high values of
α, the associated sub-problems are usually solved using the initial tests, resulting in similar or
identical performance of the two algorithms. As expected, we also observe that for low α-values
many groups are needed, while for large α-values (where nearly all combinations are feasible) the
problem is similar to the original problem instance. Indeed, for W = 240 and 360, TMin has been
achieved in all cases for α ≥ 0.6.

For more central values of α, where the tests are not usually sufficient for solving the sub-
problems, Algorithm B again offers a slight increase in the proportion of sub-problems resulting in
a positive answer (up to 3.4%), indicating a higher accuracy in this regard. However, the advantages
that B&B brings are again only apparent in cases where the number of items per group is small
(here, when W = 120). For the remaining cases, the larger sub-problems result in Algorithm B
completing far fewer iterations within the time limit, allowing Algorithm A to return significantly
better results. Note that these effects would also be accentuated were the number of item types to

19

 254

 256

 258

 260

 262

 264

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

 90

 100

 110

 120

 130

 140

 0 100 200 300 400 500 600

G
ro

up
s

(s
to

ck
s)

CPU Time (secs.)

Alg. A
Alg. B

Figure 11: Best-so-far graphs for (respectively) α = 0.3, W = 120 and α = 0.5, W = 360. Each
line is the average across all runs at each second.

be increased to approach n as the advantages of using X and Y would also lessen.
To further illustrate these features, fig. 11 shows best-so-far profiles for two combinations of W

and α. In the first case the sub-problems are small (average of 2.36 items per group), and Algorithm
B shows superior performance over time. On the other hand, the second example involves much
larger sub-problems (average of 7.38 items per group) hence B’s progress is significantly slowed,
allowing Algorithm A to produce the best results within the time limit.

5 Conclusions and Further Work

This paper has examined two new bin packing-based problems for which two fundamental questions
need to be considered: (a) which items should be assigned to each bin? and (b) how should the
items be arranged in each bin? It is apparent that when using an optimisation algorithm such
as ours, many instances of problem (b) will be faced during a run. However, our results indicate
that if too much effort is spent on trying to find optimal (or near optimal) arrangements, then
this can lead to inadequate amounts of effort being applied to problem (a), resulting in solutions
of poorer quality. Indeed, even under a rather generous time limit of 600s, we have generally
observed that simple greedy heuristics for approximating (b) have resulted in solutions superior to
those achieved via a more accurate but costly branch-and-bound method. On the other hand, we
have also seen that our use of sets X and Y for collecting information on previous applications of
branch-and-bound can be useful, particularly when many items in I are of the same type. Indeed,
if in a practical setting it is the case that only a limited number of different item types are ever
considered, it would be beneficial to simply save permanently the contents of X and Y, making
future runs of the algorithm far more efficient.

Perhaps the most obvious avenue of future research with these problems will be in the design
of improved methods for approximating/solving the underlying sub-problems, particularly if they
prove to be more accurate than our current greedy heuristics, but also less expensive than our
branch-and-bound technique. For instance, we could investigate whether commercial solvers (such
as Xpress and CPLEX) perform better with other integer programming formulations of the under-
lying TSP (see, for example, (Padberg and Sung, 1991)), or we could simply create new techniques
that exploit the very specific structures of the sub-problems. It would also be interesting to see

20

how other existing methods for the SCP and BPP might be adapted to these problems, including
metaheuristic approaches (Falkenauer, 1998; Leung et al., 1997; Levine and Ducatelle, 2003) and
others (Haessler and Sweeny, 1991; Roodman, 1986).

It would also be desirable for future research to examine methods that are more flexible with
regards to variants of this problem that might also arise in industry. For example, with the truss
cutting problem, in addition to minimising the number of bins needed to pack the n items, it
might be preferable for a solution’s wastage to occur in large contiguous blocks wherever possible,
because these “left-over” pieces of material might then be used in a future problem. One possibility
here would be to evaluate candidate solutions using a cost measure such as the one suggested by
Falkenauer (1998) for the BPP:

f =

∑
Si∈S(

A(Si)
HW)2

|S|
(6)

which, when being maximised, differentiates between solutions using the same number of bins by
favouring those that feature “extreme” (i.e. near-full and near-empty) bins. In addition, if different
sized bins are to be used in a particular problem, this means the algorithm will also be concerned
with deciding which sized bins should be used for the containing each of the items. Thus factors
relating to the variable sized bin packing problem will also be relevant here (Alves and Valerio de
Carvalho, 2007; Haouari and Serairi, 2009; Kang and Park, 2003).

One further aspect of the TCP is the question of how it might be classified according to accepted
taxonomies of packing and cutting problems. We noted in Section 1 that, according to Wäscher
et al. (2007), the TCP falls into the class of fixed-dimension input-minimisation problems. However,
what is less clear is whether the problem is best classified as a 1D or 2D problem. Note that the
height of items and bins in the TCP is fixed, meaning it can essentially be discounted by the
solution process. This might suggest that the problem is 1D, although it is clearly different to the
classical 1D BPP due to the item ordering and orientation considerations. Perhaps then it is better
to consider the TCP as a special case of 2D problem since this classification allows us to capture
the problem feature of inter-item wastage caused by the items’ projections.

Concluding, from our perspective it is slightly unfortunate that we were unable to get hold
of any real-world data sets for these problems, though our artificially generated instances have at
least allowed us to gauge the circumstances under which our proposed methods seem to succeed and
fail. To aid further investigation in this area we have posted the complete set of 3901 problem in-
stances online at www.rhydlewis.eu/resources/trapBoxProbs.zip. We invite other researchers
to download these for use in their own investigations.

References

Aardel, K. I., van Hoesel, S. P. M., Koster, A. M. C. A., Mannino, C., and Sassano, A. (2002). Models
and solution techniques for the frequency assignment problems. 4OR : Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1(4):1–40.

Alves, C. and Valerio de Carvalho, J. (2007). Accelerating column generation for variable sized bin-packing
problems. European Journal of Operational Research, 183:1333–1352.

Culberson, J. and Luo, F. (1996). Exploring the k-colorable landscape with iterated greedy. In Johnson,
D. S. and Trick, M. A., editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge, volume 26, pages 245–284. American Mathematical Society.

de Werra, D. (1988). Some models of graphs for scheduling sports competitions. Discrete Applied Mathe-
matics, 21:47–65.

21

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of heuristics, 2(1):5–30.

Falkenauer, E. (1998). Genetic Algorithms and Grouping Problems. John Wiley and Sons.

Garey, M. and Johnson, D. (1979). Computers and Intractability - A guide to NP-completeness. W. H.
Freeman and Company, San Francisco, first edition.

Goulimis, C. (2004). Viewpoint: Minimum score separation — an open combinatorial problem associated
with the cutting stock problem. Journal of the Operational Research Society, 55:1367–1368.

Haessler, R. and Sweeny, P. (1991). Cutting stock problems and solution procedures. European Journal of
Operational Research, 54:141–150.

Haouari, M. and Serairi, M. (2009). Heuristics for the variable sized bin-packing problem. Computers and
Operations Research, 36:2877–2884.

Hertz, A., Plumettaz, M., and Zufferey, N. (2008). Variable space search for graph coloring. Discrete Applied
Mathematics, 156(13):2551–2560.

Isomoto, K., Wakabayashi, S., Yoshida, N., and Miyao, J. (1993). A parallel algorithm for k-way graph parti-
tioning. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 76(3):23–
33.

Jensen, T. R. and Toft, B. (1994). Graph Coloring Problems. Wiley-Interscience, 1 edition.

Kang, J. and Park, S. (2003). Algorithms for the variable sized bin packing problem. European Journal of
Operational Research, 147:365–372.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. and Thatcher, J., editors,
Complexity of Computer Computations, pages 85–103. Plenum Press.

Kendall, G., Knust, S., Ribeiro, C., and Urrutia, S. (2010). Scheduling in sports, an annotated bibliography.
Computers and Operations Research, 37(1):1–19.

Leung, Y., Gao, Y., and Xu, Z. (1997). Degree of population diversity - a perspective on premature conver-
gence in genetic algorithms and its marcov chain analysis. IEEE Trans. Neural Networks, 8(5):1165–1765.

Levine, J. and Ducatelle, F. (2003). Ant colony optimisation and local search for bin packing and cutting
stock problems. Journal of the Operational Research Society, 55(12)(7):705–716.

Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling problems. OR
Spectrum, 30(1):167–190.

Lewis, R. (2009). A general-purpose hill-climbing method for order independent minimum grouping problems:
A case study in graph colouring and bin packing. Computers and Operations Research, 36(7):2295–2310.

Liang, K., Yao, X., Newton, C., and Hoffman, D. (2002). A new evolutionary approach to cutting stock
problems with and without contiguity. Computers and Operations Research, 29:1641–1659.

Martello, S. and Toth, P. (1990a). Knapsack Problems: Algorithms and Computer Implementations. Inter-
science Series in Discrete Mathematics and Optimization. John Wiley & Sons, Chichester-New York.

Martello, S. and Toth, P. (1990b). Lower bounds and reduction procedures for the bin packing problem.
Discrete Applied Mathematics, 28:59–70.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., L., D. G., Qu, R., and E.‘,
B. (2010). Setting the research agenda in automated timetabling: The second international timetabling
competition. INFORMS Journal on Computing, 22(1):120–130.

22

Miller, C., Tucker, A., and Zemlin, R. (1960). Integer programming formulations and traveling salesman
problems. Journal of the ACM, 7:326–329.

Nakano1, S., Zhou1, X., and Nishizeki1, T. (1995). Computer Science Today, chapter Edge-coloring algo-
rithms, pages 172–183. Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

Padberg, M. and Sung, T. (1991). An analytical comparison of different formulations of the travelling
salesman problem. Mathematical Programming, 52:315–357.

Rasmussen, R. and Trick, A. (2008). Round robin scheduling – a survey. European Journal of Operational
Research, 188:617–636.

Roodman, G. (1986). Near-optimal solutions to one-dimensional cutting stock problems. Computers and
Operations Research, 13:713–719.

Valenzuela, C. M. (2001). A study of permutation operators for minimum span frequency assignment using
an order based representation. Journal of Heuristics, 7:5–21.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of cutting and packing problems.
European Journal of Operational Research, 183:1109–1130.

A Integer Programming Formulation of the Truss and Box Cut-
ting Sub-Problems

The integer programming formulation of the underlying TSP for both the truss and box sub-
problems was based on the classical Miller-Tucker-Zemlin model (Miller et al., 1960). In either case
let D be a distance matrix of m cities, constructed in the manner described in Section 3.1 or 4.1.
Now let xij , (i = 1, . . . ,m, j = 1, . . . ,m) be a binary variable such that:

xij =

{
1 if arc (i, j) is included in the tour
0 otherwise.

(7)

The cost of a tour (total distance travelled) is calculated as:∑m
i=1

∑m
j=1 xijDij (8)

subject to: ∑m
j=1 xij = 1 ∀i∑m
i=1 xij = 1 ∀j

xii = 0 ∀i
(9)

Eq. (9) ensures that each of the m cities is visited exactly once in a tour. In addition, it is also
necessary to exclude the possibility of sub-tours (that is, the defined route must be a Hamiltonian
cycle); thus an additional integer variable ui (i = 1, . . . ,m) is introduced with constraints:

u1 = 1,
2 ≤ ui ≤ m ∀i ̸= 1,
ui − uj + 1 ≤ (m− 1)(1− xij) ∀i ̸= 1, ∀j ̸= 1.

(10)

Finally, we also define the constraint:

x2k,2k−1 + x2k−1,2k = 1 ∀k, (11)

23

(a)

31 2

31 2

s'3s'2s'1

s2s1 s3

p3p1

p2

q3q1

q2

(b)

Figure 12: Producing a simplified problem from the a corresponding TCP

(where k = 1, . . . , (m/2) and k = 1, . . . , ((m−1)/2) for the truss and box sub-problems respectively).
This specifies the number of −∞ arcs (respectively (−1) arcs) that are required for a tour to
correspond to a legal configuration of the items.

B Proof of Theorem 1

To prove Theorem 1 it is sufficient to show that for any feasible configuration of items in a bin in
the TCP, a corresponding feasible configuration of items exists in the simplified problem.

Assume the left- and right-most projections of an item j are of size pj and qj respectively. If
we were to eliminate the left-most projection of all items j, we would obtain simplified rectangular
items of width s′j = bj−pj and height H. Obviously, these simplified items could be feasibly packed
into an H ×W bin by simply using the same item-ordering as the original pattern (see fig. 12(a)).

However, in our case there are two possibilities for each item j: pj ≥ qj or pj < qj . In the
first case, we have s′j = bj − pj = bj − max(pj , qj) = sj , otherwise we have s′j = bj − pj ≥
bj − max(pj , qj) = sj . Thus, in any feasible solution of the TCP, the corresponding rectangular
items of width sj = bj −max(pj , qj) and height H can be packed into the same groups.�

Fig. 12(b) gives a small example. Note that since p3 ≥ q2, there is a gap between the simplified
widths s2 = b2 − max(p2, q2) = b2 − p2 and s3 = b3 − max(p3, q3) = b3 − p3. This indicates that
the simplified width of item 3 could in fact be larger than b3− p3. However, this is not the case for
all the items. Thus the simplified width is tight, which means no larger width can be used as the
simplified width in order to gain a lower bound of the original problem.

24

