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Abstract

The dynamic shortest path problem with time-dependent stochastic disruptions consists of finding a route with
a minimum expected travel time from an origin to a destination using both historical and real-time information.
The problem is formulated as a discrete time finite horizon Markov decision process and it is solved by a hybrid
Approximate Dynamic Programming (ADP) algorithm with a clustering approach using a deterministic lookahead
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1. Introduction

The growth in economic output influences the volume of transportation activities. Within the EU-28 (European
Union’s 28 countries), about 2,200 billion ton-kilometers of goods were transported in 2014, with road transporta-
tion accounting for about three quarters (i.e., 74.9%) of this volume (Eurostat, 2016). The growing volumes of
road freight transportation contribute to congestion on road, which leads to delay, disruption, and other negative
impacts on the reliability of transportation. The direct impact of congestion, as transportation externality, refers to
increased travel times to other entities in the transportation system. Moreover, congestion could indirectly result
in increased fuel costs, air pollution, noise pollution and stress levels (Demir et al., 2015).

Congestion can be measured as the sum of recurrent and non-recurrent delay in a traffic network (Skabardonis
et al., 2003). The first category depends on the fluctuations in demand and the physical capacity of the road. The
second category depends on the nature of the incident, such as breakdowns, and accidents. As the uncertainty
in traffic networks increases due to recurrent and non-recurrent delays, a driver needs to take into account the
congestion by considering all traffic states that change the travel time with respect to disruption level.

Having real-time traffic information from Intelligent Transportation Systems (ITS) and taking into account the
stochastic nature of disruptions can significantly reduce time delays, congestion and air pollution. As a trade-off,
for networks with many disruption levels, computing dynamic routing decisions takes very long computational
time. In order to improve the speed of computation, real-life applications (e.g., navigation devices) require fast and
high quality algorithms as we intended to propose one in this paper. The problem at hand is named as dynamic
and stochastic shortest path problem in the literature and has been the topic of extensive research over the last
decades (see, e.g., Flatberg et al., 2005; Kumari and Geethanjali, 2010). The existing models in the literature can
be categorized into two: Adaptive routing recourse policies (see, e.g., Polychronopoulos and Tsitsiklis, 1996; Fu,
2001) and a Markov decision process (MDP) (see, e.g., Kim et al., 2005a; Thomas and White, 2007; Güner et al.,
2012).

In the domain of vehicle routing, the dynamic shortest path problem with anticipation using the MDP is
first studied by Kim et al. (2005a). Whenever there is a new information about disruption, their proposed
model considers the congestion dissemination and anticipates the route accordingly. For larger networks, as the
formulation becomes intractable, Kim et al. (2005b) proposed state space reduction techniques where the authors
identified the traffic data that has no added value in the decision making process. In another study, Güner
et al. (2012) considered the non-stationary stochastic shortest path problem with both recurrent and non-recurrent
congestion using real time traffic information. The authors formulated the problem as the MDP that generates a
dynamic routing policy. To prevent the state explosion, the authors limited the formulation to two-links-ahead
formulation where they only retrieve the state information for only two links ahead of the current location. At last,
Sever et al. (2013) formulated the dynamic shortest path problem with travel time-dependency using the MDP
formulation. The authors reduced the computational time by using different levels of real-time and historical
information.

For large-scale traffic networks with many disruption levels, obtaining the optimal solution faces the curses of
dimensionality, i.e., states, outcomes, and decisions (Powell, 2011). In order to deal with dimensionality problem,
we propose Approximate Dynamic Programming (ADP) approach for the investigated problem (see, e.g., Powell
et al., 2002; Powell and Van Roy, 2004; Simão et al., 2009). ADP is widely used in other applications and interested
readers are referred to Lam et al. (2007); Cai et al. (2009); Medury and Madanat (2013) and Hulshof et al. (2016). The
current empirical studies on traffic congestion show that highways can have more than two levels of disruption
which are specified according to the speed level and possible spill-back (Helbing et al., 2009; Rehborn et al., 2011).
However, increase in disruption levels leads to an exponential state- and outcome-space growth causing the well-
known curses of dimensionality. Therefore, it is necessary to propose efficient approximation techniques to deal
with many disruption levels in traffic networks.

In this paper, we formulate the dynamic shortest problem with time-dependent stochastic disruptions as the
MDP and propose the hybrid ADP algorithm with the clustering approach. The algorithm uses both a deterministic
lookahead policy and a value function approximation. To our knowledge, the hybrid ADP algorithm with the
clustering approach has not yet been thoroughly investigated for the dynamic shortest path problem. We propose
and compare several variations of ADP algorithms for networks with many disruption levels which are similar to
real-life traffic situations.

The scientific contribution of this study is twofold: ♣iq to propose the hybrid ADP with the clustering approach
for solving the dynamic shortest path problem in traffic networks with many disruption levels, and ♣iiq to test
various algorithmic variations of the hybrid ADP algorithm. The remainder of this paper is organized as follows.
Section 2 presents a mathematical foundation of the investigated problem. Section 3 introduces the MDP model
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followed by the introduction of the proposed ADP algorithm. Section 4 discusses the computational results when
applying the proposed algorithms to generated instances. Conclusions are stated in Section 5.

2. Mathematical formulation

Consider a traffic network represented by a directed graph consisting of a finite set of nodes and arcs. This
network can be represented as G ✏ ♣N,A,Avq, where N ✏ t0, ...,n✉ is the set of nodes (or intersections), A ✏ t♣i, jq :
i, j P N and i , j✉ is the set of directed arcs, and finally Av is the set of vulnerable arcs (i.e., Av ❸ A). The number
of vulnerable arcs is defined as R : R ✏ ⑤Av⑤. Each vulnerable arc, namely r P Av, can take any value from the
disruption level vector, Ur, whose dimension depends on a specific vulnerable arc. The travel time on an arc ♣i, jq
is assumed to follow a discrete distribution function on the positive integers based upon historical data and the
disruption level of the arc ♣i, jq. The real-time information about the disruption statuses of all vulnerable arcs is
obtained when reached at the next node. The objective of the investigated problem is to minimize the expected
travel time between an origin and a destination. The resulting problem is a finite horizon stochastic dynamic
optimization problem, which can be formulated as a MDP. In the following subsections, we describe the key
elements of the mathematical model, using the notations of Powell (2011).

2.1. State
Stage t represents the number of nodes that have been visited so far from the origin node. The system state St

at stage t is represented by the following two components, St ✏ ♣it, D̂tq, t ✏ 0, ...,T:

it The current node at stage t (it P N)

D̂t The disruption status vector which gives disruption statuses of all vulnerable arcs
at stage t.

The terminal stage T can be reached by arriving at the destination. Note that, at each stage, a realization of
the disruption vector D̂t is used. For each vulnerable arc, there can be Kr different types of disruption levels:
D̂t♣rq P Ur: Ur ✏ tu1,u2, ...uKr✉,❅r P Av.

Moreover, the initial state is defined as S0 ✏ ♣origin node, D̂0q, and the final goal state is defined as ST ✏
♣destination node, D̂Tq, where D̂0 and D̂T are the realizations of the disruptions for all vulnerable arcs at the initial
and final stage, respectively. We note that the goal state is absorbing and cost free.

2.2. Decision variable (action)
At the beginning of each stage t, a decision (or action) is to made based on the system state St ✏ ♣it, D̂tq. The

decision variable xt shows the next node to visit for a given state St. We note that each action (i.e., xt ✏ it�1) is an
element of the set of all possible actions (i.e., xt P Xπ♣Stq). The decision policy can be described as

Xπ♣Stq Decision function that determines the move decision xt at stage t
under policy π for a given state St

Π Set of possible policies. Each element π P Π corresponds to a different policy.

2.3. Exogenous information process
The disruption statuses of the vulnerable arcs may change as a vehicle proceeds to the next stage t � 1. The

exogenous information consists of the realization of the disruption statuses of all the vulnerable arcs. The system’s
exogenous information Wt�1 at the next stage t � 1 can be stated as

D̂t�1 ✏ Wt�1, (1)

where D̂t�1 denotes the disruption status realization that becomes known between stages t and t � 1.

2.4. Cost function
The cost function associated with the system state and decision variable can be calculated as the travel time

from the current node, it, to the next node, xt ✏ it�1 for a given realized disruption status. The cost function can
be formulated as

C♣St, xtq ✏ tit,xt
♣D̂tq, (2)

where tit,xt
is the travel time of the current arc for a given realized disruption status.
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2.5. Transition function

The transition function depicts the system state transition. At stage t, a decision is made and then the
exogenous information is observed. The system transits to a new state St�1 according to the transition function:
St�1= SM♣St, xt,Wt�1q. Note that “M” represents model as in Powell (2011). The state transition involves the
following transition functions:

it�1 ✏ xt, (3)

Dt�1 ✏ D̂t�1. (4)

The disruption status vector transits from D̂t to D̂t�1 according to a Markovian transition matrix. We note that
Dt�1 is the vector of random variables representing the disruption status of each vulnerable arc in the network
for the next stage. We define the transition matrix of a vulnerable arc r from stage t to t � 1 as Θr♣t⑤St, xtq. This
transition matrix is dependent on the state and the travel time of the current arc. The probability of being in the
disruption status of the next stage D̂t�1 depends on the travel time between it and it�1 given the disruption status
realization.

We note that the travel time given disruption status is a positive integer. Let pr
u,u✶ denote the unit-time transition

probability between any two disruption levels of the vulnerable arc r, pr
u,u✶ ✏ PtD̂t�1♣rq ✏ u

✶
⑤D̂t♣rq ✏ u✉. Θr♣t⑤St, xtq

is the transition matrix of the vulnerable arc r considering the travel-time-dependency given the current travel
time based on the disruption status realization, D̂t:

Θr♣t⑤St, xtq ✏

✔
✖✖✖✖✖✕

pr
u1,u1 pr

u1,u2 ... pr
u1,uKr

pr
u2,u1 pr

u2,u2 ... pr
u2,uKr

.

.

pr
uKr ,u1 pr

uKr ,u2 ... pr
uKr ,uKr

✜
✣✣✣✣✣✢

tit ,xt ♣D̂tq

(5)

The probability of having the new disruption status D̂t�1 for a given D̂t is then calculated as (Θr
u,u✶ ♣t⑤St, xtq, which

indicates the specific row and column index in the matrix Θr♣t⑤St, xtq). The probability can be calculated as

P♣D̂t�1⑤D̂tq ✏
R➵

r✏1

Θr
u,u✶ ♣t⑤St, xtq, (6)

where r is the counter for vulnerable arc(s), and R is the maximum number of vulnerable arc.
It is noted that we have autocorrelation for the travel time on the arc, but we do not have correlation between

travel times on neighboring links. Our model and approach will also work in a correlated situation; non-correlation
is not an assumption in that part.

2.6. Objective function

The objective is to minimize the expected total travel time from the origin node to the destination node and
can be calculated as

min
πPΠ

E♣
T➳

t✏1

C♣St,X
π♣Stqqq, (7)

where E♣..q represents the total expected cost of travel time from the beginning to the end of horizon T.

3. The approximate dynamic programming approach

In this section, we first discuss some key algorithmic issues that we have encountered in the design of ADP
algorithms. Then, we present several ADP algorithms specifically developed for the investigated problem.

If we discretize the continuous state space and transition function, the problem described in the previous
section becomes a discrete state MDP with a stochastic finite planning horizon. The optimization problem in
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equation (7) can be solved using the Bellman’s equation:

Vt♣Stq ✏ min
xtPXt

C♣St, xtq �
➳
St�1

P♣St�1⑤StqVt�1♣St�1q, (8)

VT♣STq ✏ 0. (9)

where Vt♣Stq is the value of being in state St, and VT♣STq is the value of being in stage T. Moreover, the decision
becomes the following:

x✝t ✏ arg min
xtPXt

C♣St, xtq � E♣Vt�1♣St�1qq. (10)

The MDP faces the curses of dimensionality (i.e., states, outcomes, and decisions) with the increase in the
number of disruption levels and the number of nodes. To solve large-scale problems with many disruption levels,
the backward dynamic programming approach for solving the Bellman’s equations becomes computationally
intractable. In the literature, several techniques such as state-reduction techniques (Kim et al., 2005b; Thomas and
White, 2007) and stochastic lookahead algorithms (Güner et al., 2012; Sever et al., 2013) are used to solve MDP
problems with reduced computational time. As an alternative to these two approaches, ADP can be used as a
powerful tool to overcome the curses of dimensionality, especially for complex and large scale problems as shown
in Powell (2011).

In this paper, we use the ADP approach with a value iteration. The essence of this approach is to replace
the actual value function Vt♣Stq with an approximation value function V̄t♣Stq. ADP proceeds by estimating the
approximate value V̄t♣Stq iteratively. For the investigated problem, this means that arcs are repeatedly traversed

to estimate the value of being in a specific state. Let V̄n✁1
t�1

♣St�1q be the value function approximation after n ✁ 1
iterations. Instead of working backward through time as in the traditional DP approach, ADP works forward in
time.

The optimization problem using the ADP approach can be rewritten as

v̂n
t ✏ arg min

xtPXt

C♣Sn
t , x

n
t q �
➳
St�1

P♣St�1⑤StqV̄
n✁1
t�1

♣St�1q. (11)

3.1. Key algorithmic issues in ADP

This section discusses the key algorithmic issues in the design of ADP algorithms to improve the solution time
while effectively solving the dynamic shortest path problem.

3.1.1. Post-decision state

The approximate value of being in state Sn
t at iteration n, V̄n

t ♣S
n
t q, contains the expectation over all possible

states at the next stage. We adopt the post-decision state variable as suggested by Powell (2011). We define the
post-decision state as Sx

t . It represents the state immediately after a decision at the current stage is made.

Sx
t ✏ SM,x♣St, xtq ✏ ♣xt, D̂tq ✏ ♣it�1, D̂tq. (12)

The post-decision state eliminates the expectation calculation in Bellman’s equation by using the deterministic
value of choosing an action given the current state St.

3.1.2. Value function approximation with the lookup table representation

We use the lookup table representation for the value function approximation. This means that for each discrete
state St, an estimate V̄t♣Stq is calculated. As we use a post-decision state, the value of being in the post-decision
state of the previous stage should be updated using v̂n

t :

V̄n
t✁1♣S

x,n
t✁1

q ✏ ♣1 ✁ αn✁1qV̄
n✁1
t✁1

♣Sx,n
t✁1

q � αn✁1v̂n
t . (13)

The equation (13) updates the state value using a weighted average of the current estimate and the estimate from
the previous iteration.
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3.1.3. Exploration and exploitation strategies

In the ADP algorithm, a value function is estimated by visiting states as the value of being in a certain state.
If an exploration strategy is used, states are visited to improve the estimates of the value of being in the state
regardless the decision gives the best value. However, if an exploitation strategy is applied, a decision that gives
the best value is performed. One of the challenges in ADP is to ensure a right balance between exploration and
exploitation strategies when making a decision for a given certain state. Using only exploitation strategy may
lead to stuck into a local optima by choosing the decision that appears to have the best value. On the other
hand, using only exploration strategy may lead to visit every state randomly, which may significantly increase the
computational time while leading to poor value estimates.

In the early iterations of the algorithm, the value of being in a state is highly dependent on the sample path and
the initial solution. Therefore, the exploration strategy should be used more often in the early iterations to improve
the quality of state values. For this purpose, we use a mixed of strategies in our algorithms as in Powell (2011).
To do this, a random probability of choosing the best action or choosing alternative actions is applied. We ensure
that the probability of choosing the best action increases as the state is visited more often. We use exploration rate,
ρt, for choosing the next best alternative as ρt ✏ b④n✶♣Stq. We should note that the exploration rate decreases with
the number of visits to the particular state, n✶♣Stq, and increases with the user-defined parameter b.

3.1.4. Initialization heuristics

Initial values play an important role in the accuracy of the approximate values and the computational per-
formance of the ADP algorithm. For this purpose, we investigate the effect of two initialization heuristics: A
deterministic approach and a stochastic two-arc-ahead policy with memoryless probability transitions DP♣2,Mq.

In the deterministic approach, initial state values are determined by solving a deterministic shortest path
problem, assuming that the probability of having a disruption is zero. In determining a route, only non-disruption
state, for all vulnerable arcs, is considered. In the transition probabilities of all vulnerable arcs, the non-disruption
state becomes an absorbing state in equation (5). Then, equations (8) - (10) are solved. Note that the output of this
initialization heuristic is independent of the disruption state.

As an alternative initialization heuristic, we applied the DP♣2,Mq heuristic as proposed in Sever et al. (2013).
In this heuristic, we have a real-time information of only two-arc-ahead from the current node. Therefore,

the state space of the current node it is modified as St ✏ ♣it, D̂
it
t q, where the disruption status of the current

node is D̂it
t ✏ tu

rit1

t ,u
rit2

t , ..,u
ritRit

t ✉. Moreover, rit is the vector of the vulnerable arcs that are in the two-arc-ahead
neighborhood of node it and Rit ✏ ⑤rit ⑤, Rit ↕ R. For the rest of the arcs, expected travel times are calculated. The
transition probability vector in equation (5) is no longer travel time-dependent and only a part of the transition
matrix with only the vulnerable arcs in the two-arc-ahead neighborhood is considered. We note that the output
from this initialization heuristic is dependent on the disruption state.

3.2. The generic ADP algorithm

In the generic ADP, we adopt the value function approximation algorithm with a post-decision state variable.
We use both exploration and exploitation strategies to update value function approximations. We now present
two types of ADP algorithm (i.e., single-pass and double-pass).

In the ADP algorithm with single-pass, updating the value function takes place as the algorithm progresses
forward in time. According to the Algorithm 1, in Step 2a, at stage t, an updated estimate of the state value of
being in state St is obtained. In Step 2b, the estimate of V̄n

t✁1
is updated by using the state value from the previous

iteration, V̄n✁1
t✁1

, and the current value estimate v̂n
t . Note that information is collected as the algorithm proceeds in

time due to the fact that the disruption transition rates for the future stage is dependent on the current travel time.
As an alternative method to the single-pass value iteration algorithm, a double-pass algorithm is also introduced

in Algorithm 2. This algorithm first steps forward in time by creating a trajectory of states, actions and outcomes
in Step 2. Then, the value function is updated by stepping backwards through the stages in Step 3. An update of
the value function is conditional on whether exploitation or exploration strategy is used. If it is an exploitation
strategy at stage t, then the value function of the state at stage t is updated. If it is an exploration strategy at stage t,
the value function is updated only if the explored action improves the value function compared to the exploitation
in Step 3b.

3.3. The hybrid ADP with the clusters

This section introduces the hybrid ADP with the clustering approach by using the deterministic lookahead
policy and the value function approximations. The state variable in our MDP formulation is a representation of
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Algorithm 1: ADP algorithm with single-pass

Step 0: Initialization
Step 0a: Initialize V̄0

t , ❅t by using the value from the initialization heuristic.
Step 0b: Set n=1.

Step 1: Choose a sample disruption vector with Monte Carlo simulation for n and for t ✏ 0, and initialize Sn
0
✏ ♣origin node, D̂n

0
q.

Step 2: Do for all t ✏ 0, ...,T ✁ 1 (where T is reached by arriving at the destination node)
Step 2a: Choose a random probability p and exploration rate ρt as ρt ✏ 0.2④n✶♣Stq

v̂n
t ✏ min

xtPN,xtPXt
C♣Sn

t , x
n
t q � V̄n✁1

t ♣xt, D̂
n
t q. (14)

The node xt that gives the optimal value is denoted as x✝n
t .

v̂n
t ✏

✧
solve Equation (14) for xt P N if p ➙ ρt,

solve Equation (14) for xt P N③x✝n
t o.w.

The node that is chosen is denoted as xn
t and becomes the next node to visit.

Step 2b: If t → 0, update V̄n
t✁1
♣Sx,n

t✁1
q using:

V̄n
t✁1♣S

x,n
t✁1
q ✏ ♣1✁ αn✁1qV̄

n✁1
t✁1

♣Sx,n
t✁1
q � αn✁1v̂n

t .

We use the harmonic stepsize: αn✁1 ✏
a

a�n✶♣Stq✁1
and n✶♣Stq is the total number of visits to state St.

Step 2c: Find the post-decision state: Sx,n
t ✏ ♣it�1, D̂

n
t q.

Step 2d: Find the next pre-decision state: Sn
t�1

✏ ♣it�1,W
n
t�1
q.

Step 3: Increment n. If n ↕ N go to Step 1. Note thatN denotes the pre-set maximum number of iterations.
Step 4: Return the value functions ♣V̄Nt q

T
t✏1

.

Algorithm 2: ADP algorithm with double-pass

Step 0: Initialization
Step 0a: Initialize V̄0

t , ❅t by using the value from the initialization heuristic.
Step 0b: Set n=1.

Step 1: Choose a sample disruption vector with Monte Carlo simulation for n and for t ✏ 0, and initialize Sn
0
✏ ♣origin node, D̂n

0
q.

Step 2: (Forward pass) Do for all t ✏ 0, 1, ...,T ✁ 1 (where T is reached by arriving at the destination node)
Step 2a: Solve:

v̂n
t ✏ min

xtPN,xtPXt
C♣Sn

t , x
n
t q � V̄n✁1

t ♣xt, D̂
n
t q. (15)

The node xt that gives the optimal value is denoted as x✝n
t .

v̂n
t ✏

✧
solve Equation (15) for xt P N if p ➙ ρt,

solve Equation (15) for xt P N③x✝n
t o.w.

The node xt that gives the optimal value is denoted as x✝n
t and x∆n

t if it is from the exploration.

Step 2b: If we choose exploration with x∆n
t compute:

V̄✝n
t✁1
♣Sx,n

t✁1
q ✏ ♣1✁ αn✁1qV̄

n✁1
t✁1

♣Sx,n
t✁1
q � αn✁1v̂✝n

t ,

v̂✝n
t ✏ C♣Sn

t , x
✝n
t q � V̄n✁1

t ♣x✝n
t , D̂

n
t q.

Step 2c: Find the post-decision state: Sx,n
t ✏ ♣it�1, D̂

n
t q.

Step 2d: Find the next pre-decision state: Sn
t�1

✏ ♣it�1,W
n
t�1
q.

Step 3: (Backward pass) Do for all t ✏ T ✁ 1, ..., 1
Step 3a: Compute v̂n

t using the decision xn
t from the forward pass:

v̂n
t ✏ C♣Sn

t , x
n
t q � v̂n

t�1. (16)

Step 3b: If t → 1, update V̄n
t✁1
♣Sx,n

t✁1
q using:

V̄n
t✁1♣S

x,n
t✁1
q ✏

★
♣1✁ αn✁1qV̄

n✁1
t✁1

♣Sx,n
t✁1
q � αn✁1v̂n

t if x✝n
t ,

♣1✁ αn✁1qV̄
n✁1
t✁1

♣Sx,n
t✁1
q � αn✁1v̂n

t if x∆n
t & V̄∆n

t✁1
♣Sx,n

t✁1
q ➔ V̄✝

n
t✁1♣S

x,n
t✁1
q.

We compute V̄∆n
t✁1
♣Sx,n

t✁1
q if we have explored at stage t with action x∆n

t :

V̄∆n
t✁1♣S

x,n
t✁1
q ✏ ♣1✁ αn✁1qV̄

n✁1
t✁1

♣Sx,n
t✁1
q � αn✁1v̂n

t ,

where the harmonic stepsize is αn✁1 ✏
a

a�n✶♣Stq✁1
and n✶♣Stq is the number of visits to the current state.

Step 4: Increment n. If n ↕ N go to Step 1. Note thatN denotes the pre-set maximum number of iterations.
Step 5: Return the value functions ♣V̄Nt q

T
t✏1

.

the nodes and the disruption statuses of the vulnerable arcs. When the network size and the number of disruption
levels increase, the number of states and estimated state values in the lookup table also increase. To reduce the
computational time while maintaining good solution quality for large size instances, we exploit the structure of
the disruption transition function in equation (5) which is travel time-dependent. The structure of the disruption
transition function shows within travel time between two nodes, the disruption statuses of the vulnerable arcs at
the next stage remain similar to the disruption statuses at the current stage. In other words, in a close neighborhood
of the current node, it, the disruption statuses of the observed vulnerable arcs at stage t do not change dramatically

7



as compared to those at stage t ✁ 1. This structure is a good motivation to cluster the nodes that are close to each
other. Using the clustering idea, we introduce a hybrid ADP algorithm with clusters. In this hybrid algorithm, we
first apply a deterministic lookahead policy within the cluster and estimate the cost outside the cluster until the
destination using value function approximations. Fig. 1 illustrates how a cluster is formed and the hybrid ADP
algorithm is performed.

“PLACE Fig. 1 ABOUT HERE”
The cluster of the current node it is formed by simply considering the nodes that are two-arc-ahead from the

node it and denoted as CLit . It is assumed that the disruption status D̂t stays the same within the cluster and a
deterministic lookahead policy within the cluster is applied. The lookahead policy consists of solving Dijkstra’s

algorithm (Dijkstra 1959) within the cluster. In this way, a shortest path from it until the next node i
CLit

t�1
in the cluster

CLit is obtained. The cost is determined by Dijkstra’s shortest path algorithm and is denoted as C̃t♣it, i
CLit

t�1
, D̂tq.

Then, the cost of outside the cluster from the node i
CLit

t�1
is estimated until the destination using value function

approximations. The next node to visit is found with the exploration and exploitation strategies as shown in
Algorithms 1 and 2. The current state value, V̄t♣Stq, is updated using the harmonic stepsize rule. Finally, the next
cluster consisting of the two-arc-ahead nodes of the next node is found and its value is updated. The algorithm
always go further towards the destination node.

3.3.1. Algorithmic variations in the hybrid ADP with clusters

This section discusses several algorithmic variations.

• The size of the cluster: Three different sizes are considered: ♣iq one-arc-ahead neighborhood, ♣iiq two-arc-ahead
neighborhood, and ♣iiiq three-arc-ahead neighborhood of the current node it. These variations are represented

as CLx, where x P t1, 2, 3✉. The deterministic lookahead policy is applied to obtain the cost C̃t♣it, i
CLit

t�1
, D̂n

t q

between the current node it and the next node i
CLit

t�1
, where i

CLit

t�1
is an element from these clusters. Note that the

hybrid ADP algorithms with clusters considering one-arc-ahead neighborhood is equivalent to the standard
ADP algorithm as presented in Algorithms 1 and 2.

• The update of the state values in a shortest path within the cluster: Another variation of the hybrid algorithm is to
decide whether to update the state values of the intermediate nodes on the shortest path. For each shortest

path consisting of nodes to travel until i
CLit

t�1
, we investigate whether updating the state values of the path

obtained from the lookahead policy improves our solution or not. For instance, the current node is it and i
CLit

t�1

is the next node by using the shortest path it Ñ z Ñ i
CLit

t�1
. If the state value of node it is updated but z is not

updated, we call this as “No-Update” NU. If the state value of node z is also updated, then we call this as
“Update” U. Note that in the hybrid ADP algorithms with the cluster size of one-arc-ahead neighborhood,
CL1, the shortest path consists of current node and decision node so the algorithmic design variation for
“Update” has no added value. Therefore, for consistency with other hybrid ADP algorithms, CL1 is denoted
with “No-Update”.

• The update of the state values: We study both single-pass and double-pass approaches to update the state
values. For the single-pass algorithm with CL2 and CL3 approach with or without updating the values of the
nodes on shortest path within the cluster (CL♣x,S,Uq, CL♣x,S,NUq and x P t2, 3✉), we use Algorithm 1. Similarly,
for the double-pass algorithm with CL2 and CL3 approach (CL♣x,D,Uq, CL♣x,D,NUq), we use Algorithm 2. For
both algorithms, the value function in Equations (14) and (15) becomes:

v̂✝n
t ✏ min

i
CLit
t�1

C̃t♣it, i
CLit

t�1
, D̂n

t q � V̄n✁1
t ♣i

CLit

t�1
, D̂n

t q.

3.3.2. A benchmark heuristic

For large instances, where the optimal solutions are not obtainable, we benchmark with the stochastic two-arc-
ahead policy DP♣2,Hq introduced in Sever et al. (2013), which is shown to perform only slightly worse than the
optimal algorithm.

In this policy, online information of the arcs that are two-arc-ahead from the current node is retrieved. Therefore,

the state space of the hybrid policy for any current node it is modified as St ✏ ♣it, D̂
i
tq, where D̂i

t ✏ tu
rit1

t ,u
rit2

t , ..,u
ritRit

t ✉
only include the vector of the vulnerable arcs that are in the two-arc-ahead neighborhood of node it and Rit ✏ ⑤rit ⑤.
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In this heuristic, we use the same travel time-dependent transition matrix in equation (5) except we only consider
the limited part of the transition matrix. For the vulnerable arcs outside the neighborhood, the time-invariant
probability distributions is calculated. We solve equations (8) – (10) using a backward recursion algorithm given
in Sever et al. (2013).

4. Computational results

This section presents results of extensive computational experiments performed to assess the performance of
three algorithms; ♣iq the hybrid ADP with clusters, ♣iiq the dynamic programming with stochastic two-arc-ahead
policy DP♣2,Hq, and ♣iiiq the optimal MDP. We first describe our test instances and evaluation methods in Section
4.1. In Section 4.2, we analyze several algorithmic variations. Finally, we compare the performance of the proposed
ADP algorithm with the DP♣2,Hq and the MDP algorithm in Section 4.3.

Throughout the experiments, we fix the parameters in the ADP algorithms based on our preliminary test
results. We set the constant in the harmonic stepsize rule to 5. We set the exploration rate as 0.2④n✶♣Stq, where
n✶♣Stq is the number of visits to state St. Moreover, we fix the total number of ADP iterations to N ✏ 100, 000.

4.1. Data and experimental setting

The algorithms presented in this paper are implemented in Java. All experiments are conducted on a personal
computer with an IntelCore Duo 2.8 Ghz Processor and 3.46 GB RAM. We generated our test instances based on
the following network properties.

Network size: The size of the networks ranges from 16 to 100 nodes. Each instance is designed such that the
origin-destination pairs are located from the top-left to the bottom-right corners.

Network vulnerability: The network vulnerability is defined as the percentage of vulnerable arcs in the
network. Instances with 50% and 80% of vulnerable arcs are considered as low and high network vulnerability,
respectively.

Number of disruption levels: The vulnerable arcs in a network include two, three or five disruption levels.
Note that the disruption levels also include the non-disrupted case where there is no disruption at all. For each
vulnerable arc the possible disruption levels are also kept the same.

Disruption rate: Disruption rate is defined by the steady state probability of having a disruption on a vulnerable
arc. A low probability of having disruptions is set to be in between r0.1 ✁ 0.5q and a high probability is set to be in
between r0.5 ✁ 0.9q.

Travel time: Travel time of each arc for the non-disrupted level is randomly selected beforehand from a discrete
uniform distribution U♣1, 10q. If there is a disruption, travel time for the non-disrupted level is multiplied by a
scalar depending on the disruption level.

We generated 48 different instance types with properties as shown in Table 1. For each instance type, we
randomly generate 50 replications and in total 2, 400 test instances.

“PLACE TABLE 1 ABOUT HERE”
Depending on the instance size, we use either exact evaluation or evaluation via simulation. When the optimal

MDP algorithm is computationally tractable within the one-hour time limit, we perform an exact evaluation. For
each algorithm, an exact value function of the resulting policy is computed by enumerating for all states via a
backward recursion. For test instances where the optimal MDP algorithm is not tractable within the one-hour
time limit, we evaluate the algorithm via simulation. For each instance, we simulate with a sample of size 5, 000
and compute the sample averages as the evaluated cost.

4.2. Algorithmic variations of the hybrid ADP algorithm with clusters

We now compare four algorithmic variations of the hybrid ADP algorithm with clusters; ♣iq initialization
heuristic, ♣iiq state value update with single-pass or double-pass, ♣iiiq update or no-update of the state values on
the shortest path within the cluster, and ♣ivq cluster size. A summary of algorithmic variations are given in Table
2. For presentation convenience, we use CrAlgorithms to denote the evaluated cost (or expected total travel time)
of the corresponding algorithmic design.

“PLACE TABLE 2 ABOUT HERE”
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4.2.1. An analysis of initialization heuristics

We first compare two heuristics for obtaining initial value function estimates: A deterministic approach, de-
noted as INITD, and a stochastic two-arc-ahead policy with memoryless probability transitions DP♣2,Mq, denoted
as INITS. To analyze whether there is a significant performance difference between these two initialization heuris-
tics, we applied a paired t-test with significance level of 0.05 as shown in Table 8 in the Appendix. In Fig. 2.a/b,
we report the mean and 95% confidence interval of the cost differences ∆I ✏ CrINITDs ✁ CrINITSs. Moreover, we
present the results with number of disruption levels K ✏ 2, 3 and network sizes N ✏ 16, 64.

“PLACE Fig. 2 ABOUT HERE”
Fig. 2 shows that the DP♣2,Mq initialization heuristic significantly outperforms the deterministic initialization

heuristic in most of the instances. Moreover, the significance increases with the number of disruption level and
network size. Therefore, in the rest of our experiments, we adopt the DP♣2,Mq as the initialization heuristic.

4.2.2. An update of the state value

In Table 3, we compare the single-pass and double-pass state value update approaches. The percentage cost

improvement is calculated as ∆SD♣%q ✏
CrSingle-passs✁CrDouble-passs

CrSingle-passs ✝ 100. For each combination of network size and

number of disruption level, we report the minimum, maximum, and mean of ∆SD over all test instances.
“PLACE TABLE 3 ABOUT HERE”

Table 3 shows that, on average, the double-pass approach slightly outperforms the single-pass approach with
cluster sizes CL2 and CL3. Table 9 in the Appendix shows the significance of the main effect. Furthermore, the
performance gap between single- and double-pass approaches reduces as the number of disruption levels and the
network size increase. However, the relative performance between single- and double-pass approaches remains
unclear for cluster size CL1. While we tentatively select the double-pass approach for cluster sizes CL2 and CL3,
we investigate both single- and double- approaches in the following experiments.

4.2.3. An update of the nodes on the shortest path

In the hybrid ADP algorithm with clusters, besides updating the state value of the node at the end of the
cluster, we can decide on whether to update the state values of the intermediate nodes on the shortest path within
the cluster. In Table 4, we present the comparison results between the above two approaches. The percentage

cost improvement is calculated as ∆UN♣%q ✏
CrNo-updates✁CrUpdates

CrNo-updates ✝ 100. For each combination of network size and

number of disruption levels, we report the minimum, maximum, and mean of ∆UN over all test instances.
“PLACE TABLE 4 ABOUT HERE”

Table 4 clearly shows that the update approach outperforms the no-update approach when we use the double-
pass state value update and we observe the opposite effect when we use the single-pass state value update. Table 9
in the Appendix indicates significant interaction between the single- versus double-pass and the update versus no-
update. We note that the update approach outperforms the no-update approach especially under the combination
of double-pass and cluster size CL2. This effect decreases with the number of disruption levels and increases with
network size. In the following experiments on cluster sizes, we investigate the combination of double-pass with
update approach.

4.2.4. The size of a cluster

In Table 5, we present the comparison results of three cluster sizes; ♣iq one-arc-ahead CL1, ♣iiq two-arc-ahead
CL2, and ♣iiiq three-arc-ahead CL3 neighborhood. The percentage cost improvement ∆CS is calculated relative to

CL1. For example, in row CL♣1✁2,D,NUq, we compute ∆CS♣%q ✏
CrCL1s✁CrCL2s

CrCL1s
✝ 100, where we use double-pass and

update of state values for the nodes on the shortest path within the cluster. Similar to the previous tables, we
report the minimum, maximum, and mean of ∆CS over all test instances.

“PLACE TABLE 5 ABOUT HERE”
Table 5 indicates that both CL2 and CL3 outperform CL1. And, the improvement increases with the number of

disruption levels and network size. On the contrary, we observe that CL2 outperforms CL3 in most of the cases in
Table 5. Table 9 also indicates the significance of the main effect of cluster size.

Based on our numerical experiments on the design variations of the hybrid ADP algorithm, we select the
CL♣2,D,Uq with value update of nodes on the shortest path within the cluster and double-pass approach for state
value update.
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4.3. A comparison of the algorithms

In this section, we analyze the CL♣2,D,Uq, the MDP, and the DP♣2,Hq. The comparison is done with respect to
their estimated total cost defined by the total travel time computed according to the relevant evaluation method.
We also provide the percentage gap of each algorithm with respect to the DP♣2,Hq. We show the average results
over all 2,400 test instances depending on the network size, the disruption rate and the network vulnerability.

Tables 6 and 7 provide a detailed analysis on the results. The first column of each table indicates the network
size. The second column states the disruption rate. The column “Performance” presents the total cost, the standard
deviation of the cost values and the percentage GAP with respect to the DP♣2,Hq. For each disruption level, we
also present the cost values obtained with three different algorithms. Note that negative sign in the percentage
gap means that the algorithm outperforms the DP♣2,Hq.

4.3.1. The CL♣2,D,Uq versus the DP♣2,Hq

Tables 6 and 7 show that the hybrid ADP algorithm with clusters considering two-arc-ahead neighborhood
CL♣2,D,Uq performs within ✁2.64% and 0.96% away from the DP♣2,Hq. As the network size becomes larger, the
significant difference between the CL♣2,D,Uq and the DP♣2,Hq decreases such that in large size networks the solution
quality of the CL♣2,D,Uq is higher than or equal to the DP♣2,Hq. For instance, in networks with low network
vulnerability and low disruption rate, the performance of the CL♣2,D,Uq relative to the DP♣2,Hq increases from
small to large networks by the following gap percentages: 0.43% to ✁0.48%, 0.41% to ✁0.26% and 0.22% to ✁0.94%
for 2, 3 and 5 disruption levels, respectively.

Moreover, as network vulnerability becomes higher, the performance of the CL♣2,D,Uq relative to the DP♣2,Hq
increases. For large and highly vulnerable networks, the CL♣2,D,Uq outperforms DP♣2,Hq for all disruption levels
and disruption rates. For large networks with low disruption rate, the performance increase of the CL♣2,D,Uq relative
to the DP♣2,Hq is even more significant as vulnerability increases from low to high: 0.33% to ✁2.64%, 0.39% to
✁1.01% and 0.96% to ✁1.00% for 2, 3 and 5 disruption levels, respectively.

In the networks with high disruption rates, in general the performance gap between the CL♣2,D,Uq and the
DP♣2,Hq diminishes when compared to the networks with low disruption rates. For instance, in Table 6, in small
networks with 2-disruption levels, the DP♣2,Hq outperforms the CL♣2,D,Uq by 0.43% (with significant difference)
in low disruption rate and by 0.21% (with no significant difference) in high disruption rate. This is because as
disruption rate increases, routing algorithms tend to make similar routing decisions considering more risk averse
arcs.

“PLACE TABLE 6 ABOUT HERE”
“PLACE TABLE 7 ABOUT HERE”

4.3.2. The CL♣2,D,Uq versus the optimal MDP

The comparison between the CL♣2,D,Uq and the optimal MDP is limited to the small and medium networks with
2-disruption levels where we can compute the optimal policy. Tables 6 and 7 present that as network size and
disruption rate increase, the performance gap between the CL♣2,D,Uq and the MDP decreases. For example, in low
network vulnerability and low disruption rate, the performance gap decreases from 0.72% to 0.48% for small and
large networks, respectively. On the other hand, as the network vulnerability becomes higher, the performance
gap between the CL♣2,D,Uq and the MDP increases. For instance, in small networks with low disruption rate, the
performance gap increases from 0.72% to 1.04% for low and high network vulnerability, respectively.

4.3.3. An analysis of computational time

Fig. 3 shows the computational time of the CL♣2,D,Uq and the DP♣2,Hq with respect to different network sizes
for a given disruption level. When the network size increases from small to large with 2-disruption levels, Fig.
3-(a) shows that the CL♣2,D,Uq is slower (still less than 0.1 minutes) than the DP♣2,Hq due to search in clusters and
update of the state values on the deterministic shortest path. As disruption level increases, the CL♣2,D,Uq mitigates
the effect of the network size increase better than the DP♣2,Hq with shorter computational time. Figures 3-(b)
show that when the network size increases, the computational time for the hybrid ADP algorithm increases at a
much slower rate than the DP♣2,Hq.

“PLACE Fig. 3 ABOUT HERE”
On the other hand, the computational time is mostly affected by the number of disruption levels as the state-

and outcome-space increases exponentially with the increase in disruption levels. Fig. 4 shows the computational
time of the CL♣2,D,Uq and the DP♣2,Hq with respect to different disruption levels. We observe that the CL♣2,D,Uq

computational time lower rate of increase as the number of disruption levels increases as shown in Fig. 4.(a)
and (d). The computational time of the DP♣2,Hq increases at a higher rate when the number of disruption levels

11



increases. However, as the network size increases with the increase in disruption level the difference between
the CL♣2,D,Uq and the DP♣2,Hq increases even more. This shows that the CL♣2,D,Uq mitigates the effect of state- and
outcome-space explosion when compared to the DP♣2,Hq.

“PLACE Fig. 4 ABOUT HERE”

5. Conclusions

We have studied a dynamic shortest path problem with travel time-dependent stochastic disruptions. In order
to deal with the complexity of the problem, we have proposed a hybrid Approximate Dynamic Programming
(ADP) with a deterministic lookahead policy and value function approximation. To further investigate the
performance of the proposed algorithm, a test bed of networks with different characteristics are created. In
our numerical analyses, we have shown that the hybrid ADP algorithm with the clusters of two- and three-
arc-ahead neighborhood significantly outperforms the standard ADP algorithm. The solution quality of hybrid
ADP algorithm is higher than or equal to the solution quality of the benchmark heuristic (DP♣2,Hq) when the
network size gets larger and the disruption level gets higher. Moreover, the computational time of the hybrid
ADP algorithm shows a lower rate of increase with respect to the increase in network size and disruption level.
Although DP♣2,Hq algorithm has relatively good solution quality, for large scale networks with many disruption
levels, the hybrid ADP algorithm becomes more attractive with reduced computational time.

Acknowledgements

This research was partially supported by The National Natural Science Foundation of China (NSFC) under
Project No. 71771137. The authors would like to thank the Editor-in-Chief and two anonymous reviewers for their
helpful comments.

References

Cai, C., Wong, C.K., Heydecker, B.G., 2009. Adaptive traffic signal control using approximate dynamic program-
ming. Transportation Research Part C: Emerging Technologies 17, 456–74.

Demir, E., Huang, Y., Scholts, S., Van Woensel, T., 2015. A selected review on the negative externalities of the freight
transportation: Modeling and pricing. Transportation Research Part E: Logistics and Transportation Review 77,
95–114.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 269–71.

Eurostat, 2016. Freight transport statistics. Technical Report. Luxemburg: European Commission.

Flatberg, T., Hasle, G., Kloster, O., Nilssen, E.J., Riise, A., 2005. Dynamic and stochastic aspects in vehicle routing-a
literature survey. Technical Report. SINTEF Applied Mathematics.

Fu, L., 2001. An adaptive routing algorithm for in-vehicle route guidance systems with real-time information.
Transportation Research Part B: Methodological 35, 749–65.
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Appendix

The paired t-test results and multivariate analysis are given in Table 8 and Table 9, respectively.
“PLACE TABLE 8 ABOUT HERE”
“PLACE TABLE 9 ABOUT HERE”
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Figure 1: The hybrid ADP with clusters

it O

Cluster

d

Value Function Approximation 

it
O

d

Deterministic Lookahead  Algorithm  

j
k

O

d

j

k

it+1

O

d

j

k

xt+1
l

it+1

Cluster

m

xt

18



F
ig

u
re

2:
C

o
m

p
ariso

n
b

etw
een

in
itializatio

n
h

eu
ristics

(a)
S

m
all

n
etw

o
rk

(N
✏

16)

CL(1,S,NU)

CL(1,D,NU)

CL(2, S, NU)

CL(2, S, U)

CL(3, S, U)

CL(3, S, NU)

CL(2, D, NU)

CL(2, D, U)

CL(3, D, NU)

CL(3, D, U)

‐1
,0
0

0
,0
0

1
,0
0

2
,0
0

3
,0
0

4
,0
0

5
,0
0

6
,0
0

7
,0
0

Mean difference and its confidence interval

K
=
2

K
=
3

(b
)

L
arg

e
n

etw
o

rk
(N
✏

64)

CL(1,S,NU)

CL(1,D,NU)

CL(2, S, NU)

CL(2, S, U)

CL(3, S, U)

CL(3, S, NU)

CL(2, D, NU)

CL(2, D, U)

CL(3, D, NU)

CL(3, D, U)

‐1
,0
0

0
,0
0

1
,0
0

2
,0
0

3
,0
0

4
,0
0

5
,0
0

6
,0
0

7
,0
0

Mean difference and its confidence interval

K
=
2

K
=
3

19



Figure 3: Computational time for different algorithms in instances with different network sizes
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Figure 4: Computational time for different algorithms on instances with different disruption levels
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Table 1: A summary of instance types

Number of Number of Disruption Number of
nodes vulnerable arcs rate disruption levels
N Low High Low High K

16 3 5 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5
36 5 7 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5
64 7 9 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5✝

100✝ 9 11 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5

✝ In the experiments in Section 4.2 where we analyze several variations of the ADP algorithm, we exclude network instances
with N ✏ 64 & K ✏ 5 and N ✏ 100.
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Table 2: A summary of algorithmic variations

Cluster size
One-arc-ahead Two-arc-ahead Three-arc-ahead

No-update Update No-update Update No-update Update

Single-pass CL♣1,S,NUq N/A CL♣2,S,NUq CL♣2,S,Uq CL♣3,S,NUq CL♣3,S,Uq

Double-pass CL♣1,D,NUq N/A CL♣2,D,NUq CL♣2,D,Uq CL♣3,D,NUq CL♣3,D,Uq
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Table 3: Comparison between the single-pass and the double-pass

K=2 K=3 K=5
Min ∆SD Max ∆SD Mean ∆SD Min ∆SD Max ∆SD ∆SD Min ∆SD Max ∆SD Mean ∆SD

CL♣1,☎,NUq –8.87% 11.16% 0.54% –7.85% 13.34% 1.22% –9.25% 14.41% 1.30%
CL♣2,☎,NUq –3.23% 10.77% 0.79% –3.84% 11.85% 0.48% –9.16% 8.71% 0.27%
CL♣2,☎,Uq –3.86% 12.24% 1.22% –3.09% 11.25% 0.47% –4.02% 7.81% 0.50%
CL♣3,☎,NUq –3.48% 12.99% 1.97% –29.28% 11.57% 1.16% –17.51% 10.62% 1.24%
CL♣3,☎,Uq –2.96% 18.17% 3.88% –4.02% 20.21% 2.61% –5.16% 14.51% 2.49%

(a) Small network (N=16)

K=2 K=3 K=5
Min ∆SD Max ∆SD Mean ∆SD Min ∆SD Max ∆SD ∆SD Min ∆SD Max ∆SD Mean ∆SD

CL♣1,☎,NUq –19.27% 11.94% –0.37% –4.59% 18.71% 1.69% –13.94% 13.35% 0.52%
CL♣2,☎,NUq –3.74% 5.36% 0.55% –3.51% 6.02% 0.27% –4.33% 12.05% 0.06%
CL♣2,☎,Uq –0.94% 14.33% 1.93% –1.86% 13.95% 0.32% –2.71% 11.88% 0.21%
CL♣3,☎,NUq –1.91% 9.18% 1.40% –4.80% 7.44% 1.13% –2.24% 10.01% 0.93%
CL♣3,☎,Uq –2.41% 17.54% 3.66% –2.91% 12.11% 1.65% –3.17% 8.72% 1.20%

(b) Medium network (N=36)

K=2 K=3
Min ∆SD Max ∆SD Mean ∆SD Min ∆SD Max ∆SD Mean ∆SD

CL♣1,☎,NUq –10.70% 7.24% –1.99% –6.84% 4.16% –0.90%
CL♣2,☎,NUq –6.72% 3.91% 0.06% –2.88% 5.87% 0.25%
CL♣2,☎,Uq –2.39% 4.26% 0.73% –5.50% 3.85% 0.10%
CL♣3,☎,NUq –5.47% 3.43% 0.37% –2.63% 4.70% 0.55%
CL♣3,☎,Uq –2.57% 7.80% 0.92% –4.94% 4.43% 0.61%

(c) Large network (N=64)
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Table 4: Comparison between no-update and update approaches

K=2 K=3 K=5
Min ∆UN Max ∆UN Mean ∆UN Min ∆UN Max ∆UN Mean ∆UN Min ∆UN Max ∆UN Mean ∆UN

CL♣2,S,☎q –10.08% 4.31% –0.28% –6.68% 12.45% 0.16% –15.16% 4.90% –0.26%
CL♣2,D,☎q –4.69% 9.42% 0.18% –1.98% 8.38% 0.15% –4.68% 6.52% 0.02%
CL♣3,S,☎q –21.87% 13.77% –1.94% –25.85% 6.70% –1.56% –26.48% 6.86% –1.26%
CL♣3,D,☎q –2.27% 11.70% 0.19% –4.05% 1.41% 0.03% –11.96% 17.78% 0.08%

(a) Small network (N=16)

K=2 K=3 K=5
Min ∆UN Max ∆UN Mean ∆UN Min ∆UN Max ∆UN Mean ∆UN Min ∆UN Max ∆UN Mean ∆UN

CL♣2,S,☎q –13.88% 4.15% –1.11% –1.97% 9.79% 0.31% –2.48% 3.50% 0.00%
CL♣2,D,☎q –1.08% 4.76% 0.36% –0.88% 5.96% 0.35% –1.56% 3.36% 0.14%
CL♣3,S,☎q –17.88% 6.68% –2.46% –11.29% 6.22% –0.58% –7.71% 5.72% –0.27%
CL♣3,D,☎q –1.44% 2.74% 0.02% –1.15% 2.70% 0.02% –3.31% 1.91% 0.02%

(b) Medium network (N=36)

K=2 K=3
Min ∆UN Max ∆UN Mean ∆UN Min ∆UN Max ∆UN Mean ∆UN

CL♣2,S,☎q –3.85% 2.98% –0.05% –33.04% 25.93% 0.11%
CL♣2,D,☎q –0.64% 5.94% 0.61% –0.69% 4.60% 0.26%
CL♣3,S,☎q –5.32% 2.24% –0.41% –3.76% 1.77% –0.07%
CL♣3,D,☎q –1.57% 10.17% 0.15% –0.67% 0.74% 0.01%

(c) Large network (N=64)
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Table 5: Comparison among cluster sizes

K=2 K=3 K=5
Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS

CL♣1✁2,D,Uq –6.28% 14.25% 1.93% –2.77% 13.11% 1.45% –11.79% 7.90% 1.43%
CL♣1✁3,D,Uq –6.74% 14.97% 1.74% –28.50% 12.78% 0.95% –18.86% 7.85% 0.77%

(a) Small network(N=16)

K=2 K=3 K=5
Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS

CL♣1✁2,D,Uq –0.54% 9.97% 3.14% –2.20% 11.37% 3.34% –3.50% 13.88% 4.28%
CL♣1✁3,D,Uq –1.18% 11.00% 2.92% –4.66% 11.00% 2.80% –5.20% 15.90% 3.84%

(b) Medium network (N=36)

K=2 K=3 K=5
Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS Min ∆CS Max ∆CS Mean ∆CS

CL♣1✁2,D,Uq –1.17% 13.14% 5.59% 1.99% 12.31% 5.97% 0.02% 13.27% 5.74%
CL♣1✁3,D,Uq –1.81% 15.71% 4.97% 1.12% 12.96% 5.86% 0.38% 12.45% 5.73%

(c) Large network (N=64)
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Table 6: The results on different network sizes with low network vulnerability

Network Disr. Performance K=2 K=3 K=5
size rate DP♣2,Hq MDP CL♣2,D,Uq DP♣2,Hq MDP CL♣2,D,Uq DP♣2,Hq MDP CL♣2,D,Uq

N=16 Low

Cost value 25.37 25.29 25.48 24.46 24.31 24.56 26.72 26.62 26.78
Std. 5.21 5.23 5.23 5.41 5.40 5.40 5.60 5.57 5.59
Min Gap(%) – -5.16% -0.03% – -12.73% -0.74% – -10.89% -9.99%
Max Gap(%) – 0.00% 4.62% – 0.00% 9.69% – 0.00% 3.83%
Mean Gap(%) – -0.29% 0.43% – -0.61% 0.41% – -0.37% 0.22%

N=16 High

Cost value 28.22 28.15 28.28 27.38 27.33 27.46 28.21 28.21 28.37
Std. 5.32 5.28 5.29 5.71 5.67 5.59 5.47 5.47 5.48
Min Gap(%) – -3.81% -3.72% – -2.50% -0.41% – -0.07% 0.00%
Max Gap(%) – 0.00% 3.66% – 0.00% 3.20% – 0.00% 4.67%
Mean Gap(%) – -0.25% 0.21% – -0.16% 0.31% – 0.00% 0.60%

N=36 Low

Cost value 39.48 39.41 39.61 39.59 39.42 39.68 40.20

N/A

40.68
Std. 6.38 6.39 6.36 6.13 6.03 6.21 7.54 7.77
Min Gap(%) – -1.36% -0.20% – -5.80% -5.48% – -2.46%
Max Gap(%) – 0.00% 5.05% – 0.00% 2.69% – 4.89%
Mean Gap(%) – -0.17% 0.32% – -0.45% 0.21% – 1.19%

N=36 High

Cost value 42.94 42.90 43.07 41.24 41.19 41.35 42.01

N/A

42.34
Std 6.26 6.27 6.24 6.28 6.17 6.41 5.38 5.73
Min Gap(%) – -1.14% -0.81% – -8.48% -3.26% – -3.15%
Max Gap(%) – 0.00% 2.98% – 0.00% 3.10% – 3.69%
Mean Gap(%) – -0.11% 0.30% – -0.14% 0.25% – 0.77%

N=64 Low

Cost value 54.88 54.46 54.69 53.23

N/A

53.07 53.46

N/A

53.33
Std. 6.84 6.55 6.62 6.22 6.07 6.15 6.36
Min Gap(%) – -3.96% -3.61% – -6.33% – -5.48%
Max Gap(%) – 0.00% 4.44% – 5.33% – 3.02%
Mean Gap(%) – -0.76% -0.33% – -0.31% – -0.24%

N=64 High

Cost value 56.89 56.63 56.90 55.38

N/A

55.47 56.30

N/A

56.15
Std. 7.31 7.17 6.99 6.15 6.23 6.16 6.32
Min Gap(%) – -2.72% -2.56% – -6.14% – -5.37%
Max Gap(%) – 0.00% 4.19% – 1.83% – 2.91%
Mean Gap(%) – -0.46% 0.03% – 0.17% – -0.27%

N=100 Low

Cost value 69.02

N/A

68.68 67.03

N/A

66.86 69.28

N/A

68.63
Std. 6.53 5.75 6.69 6.61 4.93 4.96
Min Gap(%) – -8.09% – -4.19% – -2.74%
Max Gap(%) – 3.10% – 3.80% – 0.00%
Mean Gap(%) – -0.48% – -0.26% – -0.94%

N=100 High

Cost value 73.01

N/A

71.34 69.86

N/A

70.08 73.89

N/A

73.17
Std. 7.22 6.31 6.43 6.88 4.58 4.17
Min Gap(%) – -11.28% – -0.70% – -4.33%
Max Gap(%) – 3.63% – 9.57% – 1.34%
Mean Gap(%) – -2.29% – 0.32% – -0.99%
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Table 7: The results on different network sizes with high network vulnerability

Network Disr. Performance K=2 K=3 K=5
size rate DP♣2,Hq MDP CL♣2,D,Uq DP♣2,Hq MDP CL♣2,D,Uq DP♣2,Hq CL♣2,D,Uq

N=16 Low

Cost value 26.56 26.38 26.65 26.70 26.38 26.81 28.12 28.39
Std. 5.39 5.38 5.41 5.26 5.17 5.36 5.95 6.46
Min Gap(%) – -5.43% -0.55% – -3.98% -2.85% – -2.89%
Max Gap(%) – 0.00% 3.02% – 0.00% 8.10% – 14.10%
Mean Gap(%) – -0.71% 0.33% – -1.22% 0.39% – 0.96%

N=16 High

Cost value 30.90 30.81 30.81 28.60 28.30 28.39 29.45 29.69
Std. 5.51 5.83 5.57 5.66 5.72 5.79 5.94 6.14
Min Gap(%) – -9.38% -7.39% – -8.89% -7.70% – -2.12%
Max Gap(%) – 0.00% 8.03% – 0.00% 2.30% – 5.44%
Mean Gap(%) – -0.29% -0.29% – -1.05% -0.73% – 0.82%

N=36 Low

Cost value 40.38 40.28 40.62 40.30

N/A

40.51 41.18 41.41
Std. 6.34 6.32 6.34 6.20 6.21 6.56 6.67
Min Gap(%) – -1.73% -0.05% – -3.85% – -4.10%
Max Gap(%) – 0.00% 2.37% – 6.15% – 6.59%
Mean Gap(%) – -0.24% 0.61% – 0.51% – 0.55%

N=36 High

Cost value 45.12 45.04 45.42 44.03

N/A

44.12 44.16 44.31
Std. 6.65 6.66 6.86 6.10 6.22 5.40 5.33
Min Gap(%) – -0.89% -0.39% – -4.39% – -1.76%
Max Gap(%) – 0.00% 3.48% – 9.23% – 4.83%
Mean Gap(%) – -0.16% 0.68% – 0.21% – 0.34%

N=64 Low

Cost value 57.01

N/A

56.87 54.21

N/A

53.91 54.42 54.03
Std. 6.34 6.53 5.61 5.83 6.63 6.79
Min Gap(%) – -7.47% – -8.54% – -8.98%
Max Gap(%) – 3.69% – 1.89% – 3.14%
Mean Gap(%) – -0.25% – -0.55% – -0.72%

N=64 High

Cost value 59.97

N/A

59.52 57.48

N/A

57.42 58.50 58.44
Std 7.70 7.08 6.07 6.52 7.48 8.02
Min Gap(%) – -7.73% – -0.68% – -2.85%
Max Gap(%) – 3.56% – 1.61% – 3.06%
Mean Gap(%) – -0.74% – -0.11% – -0.09%

N=100 Low

Cost value 71.62

N/A

69.73 71.20

N/A

70.48 70.66 69.95
Std. 6.81 5.74 4.51 4.58 5.23 4.98
Min Gap(%) – -9.76% – -2.82% – -4.12%
Max Gap(%) – 1.22% – -0.18% – 0.96%
Mean Gap(%) – -2.64% – -1.01% – -1.00%

N=100 High

Cost value 75.02

N/A

73.30 73.79

N/A

73.61 74.93 74.72
Std. 8.15 6.33 4.84 4.79 4.79 4.79
Min Gap(%) – -17.21% – -1.16% – -1.60%
Max Gap(%) – 0.55% – 0.83% – 0.14%
Mean Gap(%) – -2.29% – -0.25% – -0.29%
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Table 8: Paired t-test on initialization heuristics of the ADP algorithm

Small network Medium network Large network
K=2 K=3 K=2 K=3 K=2 K=3

t p-value t p-value t p-value t p-value t p-value t p-value

CL♣1,S,NUq 5.73 0.00 1.71 0.09 0.88 0.38 7.28 0.00 –4.41 0.00 7.63 0.00
CL♣1,D,NUq 7.61 0.00 4.05 0.00 2.88 0.00 13.83 0.00 –3.04 0.00 8.26 0.00
CL♣2,S,NUq 6.62 0.00 1.25 0.21 0.64 0.52 10.35 0.00 0.81 0.42 9.09 0.00
CL♣2,S,Uq 6.33 0.00 1.94 0.05 3.17 0.00 11.12 0.00 1.14 0.26 7.98 0.00
CL♣3,S,NUq 8.11 0.00 6.76 0.00 5.63 0.00 13.24 0.00 3.61 0.00 9.10 0.00
CL♣3,S,Uq 7.92 0.00 5.61 0.00 3.41 0.00 12.12 0.00 4.68 0.00 9.05 0.00
CL♣2,D,NUq 9.93 0.00 6.94 0.00 4.88 0.00 12.49 0.00 5.95 0.00 9.52 0.00
CL♣2,D,Uq 9.48 0.00 6.36 0.00 3.71 0.00 11.73 0.00 3.89 0.00 8.46 0.00
CL♣3,D,NUq 8.24 0.00 5.60 0.00 7.58 0.00 12.50 0.00 4.11 0.00 9.25 0.00
CL♣3,D,NUq 8.17 0.00 5.31 0.00 5.63 0.00 12.09 0.00 3.89 0.00 9.36 0.00
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Table 9: Multivariate analysis on ADP variations

Small network Medium network Large network
p-value p-value p-value

Factor Main Effect-Interaction K=2 K=3 K=5 K=2 K=3 K=5 K=2 K=3

Main effect

Single-Pass (S) - Double-Pass (D) 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.045
No-Update (NU) - Update (U) 0.000 0.000 0.001 0.000 0.666 0.595 0.138 0.448
Cluster size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Interaction

S-D * NU-U 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.962
S-D * Cluster size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NU-U * Cluster size 0.000 0.000 0.001 0.000 0.000 0.105 0.003 0.293
S-D * NU-U * Cluster size 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.293
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