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Abstract
Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause func-

tional brain changes and are thought to modulate changes in the balance of cortical excitation and

inhibition. Animal research has shown this occurs primarily via the major metabolite of progester-

one, allopregnanolone, and its action as a positive allosteric modulator of the GABAA receptor. Our

study used EEG to record gamma oscillations induced in the visual cortex using stationary and

moving gratings. Recordings took place during twenty females’ mid-luteal phase when progester-

one and estradiol are highest, and early follicular phase when progesterone and estradiol are

lowest. Significantly higher (�5 Hz) gamma frequency was recorded during the luteal compared to

the follicular phase for both stimuli types. Using dynamic causal modeling, these changes were

linked to stronger self-inhibition of superficial pyramidal cells in the luteal compared to the follicu-

lar phase. In addition, the connection from inhibitory interneurons to deep pyramidal cells was

found to be stronger in the follicular compared to the luteal phase. These findings show that com-

plex functional changes in synaptic microcircuitry occur across the menstrual cycle and that

menstrual cycle phase should be taken into consideration when including female participants in

research into gamma-band oscillations.
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1 | INTRODUCTION

In healthy women, fluctuations in gonadal hormones lead to functional

changes in the brain over the course of each menstrual cycle. The

interaction of these hormones with the balance of cortical excitation

and inhibition has formed the basis of research attempting to charac-

terize changes across both the healthy menstrual cycle and menstrual

cycle linked disorders, such as catamenial epilepsy and premenstrual

dysphoric disorder (PMDD) (Bäckstr€om et al., 2014; Reddy, 2004). As

the primary mediator of cortical inhibition, the g-aminobutyric acid

(GABA) system and aberrant GABAergic inhibition has been implicated

in these menstrual cycle related disorders (Bäckstr€om et al., 2003).

Over the course of the menstrual cycle, changes in the GABA system

are modulated primarily by the major metabolite of progesterone, allo-

pregnanolone. Allopregnanolone, similar to benzodiazepines, produces

this change via its action as a potent positive allosteric modulator of

the GABAA receptor. This mechanism of action, in combination with

the readiness with which progesterone and its metabolites cross the

blood brain barrier (around 83% for progesterone (Pardridge & Mietus,

1979) has led to research into allopregnanolone’s use as a central

nervous system therapeutic agent (Limmroth, Lee, & Moskowitz,

1996; Pardridge & Mietus, 1979; Zhu, Wang, Bäckstr€om, &

Wahlstr€om, 2001). By binding to the neurosteroidal site on the GABAA

receptor allopregnanolone potentiates the effect of GABA, leading to

an overall increase in inhibition of neuronal excitability (Birzniece et al.,

2006; Majewska, Harrison, Schwartz, Barker, & Paul, 1986). The effectThe authors have no conflicts of interest to declare.
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of allopregnanolone on the balance of cortical excitation and inhibition

is beginning to become apparent in animal research (Smith, Shen,

Gong, & Zhou, 2007). However, in humans, there are limitations in

measuring functional changes in vivo, specifically in finding valid non-

invasive techniques, which has meant a major gap in understanding

remains.

Studies using magnetic resonance spectroscopy (MRS) have found

variations in levels of GABA both across the healthy menstrual cycle

and in atypical populations. The first of these studies reported finding

reduced GABA levels across the menstrual cycle in PMDD compared

to healthy controls (Epperson et al., 2002). Furthermore, Epperson

et al. (2002) found that GABA levels overall were increased in the luteal

phase compared to the follicular phase in healthy controls. The oppo-

site was found for participants with PMDD. Similar trends were found

in a study that compared smokers with healthy controls (Epperson

et al., 2005) indicating this effect was not specific to either group.

However, GABA concentration, as measured with MRS, only provides

a bulk concentration measurement and it is unclear how these meas-

ures directly index functional synaptic inhibition (Stagg, Bachtiar, &

Johansen-Berg, 2011). That said, these studies (Epperson et al., 2002,

2005) do give evidence for significant functional changes in the human

female GABA system over the course of the menstrual cycle.

A number of studies have also attempted to elucidate functional

changes in the GABA system that occur over themenstrual cycle. Neuro-

steroids have been linked to changes in tonic inhibition aswell as changes

in receptor density (Lovick, Griffiths, Dunn, & Martin, 2005; Maguire,

Stell, Rafizadeh, & Mody, 2005). Furthermore, direct evidence of allo-

pregnanolone influencing changes in GABAA receptor expression and

sensitivity has been found in animals (Lovick et al., 2005; Maguire et al.,

2005; T€urkmen, Bäckstr€om, Wahlstr€om, Andreen, & Johansson, 2011).

In humans, recent research using administered allopregnanolone indi-

cated reduced sensitivity in the luteal phase compared to the follicular

phase by showing reduced sedation in the luteal phase, measured using

saccadic eye movement (SEM) (Timby et al., 2016). However, earlier

research, also measuring SEMs, found no change in healthy participants

using midazolam (a GABA enhancing drug) and administered pregnano-

lone (Sundstrom et al., 1998; Sundstrom,Nyberg, & Bäckstr€om, 1997).

Neural oscillations recorded using EEG represent another noninva-

sive method of studying humans and have been related to GABAergic

inhibition. In particular beta oscillations have been linked to changes in

GABAergic inhibition (Whittington, Traub, Kopell, Ermentrout, & Buhl,

2000). Increased beta power has been shown with a number of GABA

enhancing drugs such as benzodiazepines (Hall, Barnes, Furlong, Seri, &

Hillebrand, 2010; Jensen et al., 2005); interestingly a relative decrease

in beta power in has also been found in the luteal phase (Feshchenko,

Veselis, & Reinsel, 1997; Solís-Ortiz, Ramos, Arce, Guevara, & Corsi-

Cabrera, 1994; van Lier, Drinkenburg, van Eeten, & Coenen, 2004).

Alpha oscillations have a well-known relationship with GABAergic inhi-

bition (Jensen & Mazaheri, 2010). However, the mechanisms by which

alpha is modulated by changes in GABA are less well established as the

modulations that occur are not always predictable (Jensen & Mazaheri,

2010; Lozano-Soldevilla, ter Huurne, Cools, & Jensen, 2014) and

though they have been correlated with changes over the menstrual

cycle, the results have been conflicting (Bazanova, Kondratenko, Kuz-

minova, Muravlyova, & Petrova, 2014; Br€otzner, Klimesch, Doppel-

mayr, Zauner, & Kerschbaum, 2014; Solís-Ortiz et al., 1994).

Visually induced gamma oscillations are an attractive approach for

understanding changes in cortical inhibition. Animal in vivo and in vitro

studies have established that both power and frequency of gamma

oscillations are intrinsically linked to changes in GABAergic inhibitory

processes (Bartos, Vida, & Jonas, 2007; Gonzalez-Burgos & Lewis,

2008). Buzsaki and Wang (2012) illustrate how changes in synchronic-

ity of gamma oscillations can be mediated by inhibitory GABAergic

interneurons exerting their control on large populations of pyramidal

cell firing. Via this model, increases in GABAergic inhibition leads to

synchronization of the previously stochastic firing of pyramidal cells.

Electrophysiological recording demonstrates a decrease in frequency

and an increase in gamma amplitude in response to increases in

GABAergic inhibition (Buzsaki & Wang, 2012; Gonzalez-Burgos &

Lewis, 2008). This is a useful model for both MEG and EEG recordings

of gamma oscillations, as both methods are particularly sensitive to

changes in local field potentials associated with cortical pyramidal cells

(Buzs�aki, Anastassiou, & Koch, 2012).

There is promising translation of this cellular model to noninvasive

human studies via induction of gamma oscillations in the visual cortex.

Visual gamma oscillations appear to be a highly robust biological trait

marker (Muthukumaraswamy, Singh, Swettenham, & Jones, 2010; Tan,

Gross, & Uhlhaas, 2016) that varies across age (Gaetz, Roberts, Singh,

& Muthukumaraswamy, 2012; Orekhova et al., 2015), and is strongly

genetically determined (van Pelt, Boomsma, & Fries, 2012). A number

of pharmaco-MEG studies have been able to show that they are con-

sistently and predictably modulated by changes in GABAergic inhibition

(Muthukumaraswamy, 2014). Drugs that increase GABAergic inhibition

via positive allosteric modulation including alcohol, and the benzodiaze-

pine lorazepam have been shown to lead to decreases in gamma fre-

quency and increases in gamma power (Campbell, Sumner, Singh, &

Muthukumaraswamy, 2014; Lozano-Soldevilla et al., 2014). Similarly,

tiagabine, a GABA reuptake inhibitor used in the treatment of epilepsy

has been shown to decrease the frequency but not modify the ampli-

tude of gamma oscillations (Magazzini et al., 2016). Furthermore, recent

research has linked gamma oscillations in the human primary visual cor-

tex (V1) to changes in GABAA receptor density (Kujala et al., 2015).

Recently, dynamic causal modeling of steady-state responses

(DCM-SSR) has been used to explain spectral data at the level of network

changes within prescribed generative neural mass models. DCM allows

inferences to be made about underlying microcircuitry of a cortical

response acting as a “mathematical microscope” (Moran, Pinotsis, & Fris-

ton, 2013). Of particular interest in analyses of visually induced gamma

oscillations is the ability to make inferences about intrinsic connectivity

between populations of superficial pyramidal cells and inhibitory inter-

neurons, potentially reflecting the neural dynamics underlying the gener-

ation of gamma oscillations (Buzsaki &Wang, 2012). Recently Shaw et al.

(2017) developed a customized canonical microcircuit model that better

reflects the synaptic physiology of V1 than the generic mass models

used in previous DCM work, in order to study visually induced gamma

oscillations which arise from V1. Using their model of V1, Shaw et al.
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(2017) were able to show significant modulation of parameter strength

when visually induced gamma activity was modified by tiagabine. Fur-

thermore, they were able to differentiate between laminar specific

events including localizing the generation of gamma oscillations to pri-

marily superficial layers through pyramidal-interneuron loops. The study

was also able to show model sensitivity to the effect of tiagabine on the

underlying time-constant ofGABAergic inhibition. As such, this approach

provides a potentially attractive method for understanding the changes

in the GABA system across themenstrual cycle.

The aim of this study was to quantify visual gamma oscillation

parameters over the course of the menstrual cycle in healthy women.

Furthermore, using the DCM approach developed by Shaw et al.

(2017), we sought to make inferences about functional changes in the

GABA system that may contribute to any changes found. The study

used EEG to record visually induced gamma oscillations in the early fol-

licular phase compared to the mid luteal phase, when hormones are at

their lowest compared to their highest levels.

2 | METHODS

2.1 | Participants and study design

Twenty females aged 21–23 years volunteered to participate in the

study and completed both study days. Participants were required to

have no history of neurological or psychiatric disorder including pre-

menstrual dysphoric disorder or any self-reported major menstrual

cycle related changes in mood. They were also required to not be tak-

ing any ongoing prescription medications or use hormonal forms of

contraception. This study was approved by the University of Auckland

Human Participants Ethics Committee. Participants provided informed

written consent prior to participation.

The study used a two-session crossover design. One session took

place during the follicular phase when estradiol and progesterone are,

on average, at their lowest point in the cycle while the other session

took place in the mid- luteal phase when estradiol and progesterone

are, on average, at their peak in the menstrual cycle (Bäckstr€om et al.,

2003; Genazzani et al., 1998). The order of sessions was counterbal-

anced. All study sessions began between 2 and 4 pm to control for

diurnal variations in neurosteroid levels (Tiihonen M€oller, Bäckstr€om,

S€ondergaard, Kushnir, & Bergquist, 2016).

Participants were tracked for 3 menstrual cycles leading up to their

first study date. This allowed the best estimate of cycle length to be

made. Based on the average menstrual cycle length of 28 days, the fol-

licular phase was defined as between days 1 and 5 of the menstrual

cycle; the luteal phase, was defined as between 20 and 25 of the men-

strual cycle. Several participants had considerably longer or shorter

cycles than 28 days. For these participants, the luteal study date was

adjusted accordingly. For this reason, blood samples were taken for

confirmation of correct cycle timing.

2.2 | Blood samples

For participants with an average cycle length, blood samples were

taken on the study day to test for progesterone and estradiol levels in

plasma. Participants with longer or shorter cycles came in for an addi-

tional sample the day before to confirm they were in the right phase.

Cycle timing was determined using the guidelines provided by local lab-

oratory guidelines (Lab Plus NZ, May 2016), who outline that plasma

concentration of estradiol is typically between 50–850 pmol/L in the

follicular phase, and 160–7701 pmol/L during the luteal phase. Proges-

terone is typically between 0 and 6 nmol/L in the follicular phase, and

6 and 80 nmol/L during the luteal phase. Due to the overlap in healthy

estradiol levels in either phase, finding greater levels of estradiol was

only used to support the decision that a participant within the luteal

phase, progesterone levels >6 nmol/L were used as the confirmation

of correct timing. Blood samples were collected using BD vacutainer®

PSTTM II tubes. Quantification of estradiol and progesterone concentra-

tion in plasma was carried out by LabPlus, Auckland Hospital, by

electrochemiluminescence immunoassay. Assays were performed

according to Roche Oestradiol III (2016) and Progesterone III (2015)

assay guidelines using a Roche Cobas 8000 analyzer (e602 module).

2.3 | EEG acquisition and paradigm

Continuous EEG was recorded using 64 channel Acticap Ag/AgCl

active shielded electrodes and Brain Products MRPlus amplifiers. Data

were recorded in Brain Vision Recorder (Brain Products GmbH, Ger-

many) with a 1,000 Hz sampling rate, and 0.1 lV resolution. FCz was

used as an online reference, AFz as ground. Electrode impedance

below 10 kX was achieved prior to recording.

Stimuli were displayed on an ASUS VG248QE computer monitor

with a screen resolution of 1,920 3 1,080 and 144 Hz refresh rate. TTL

pulses generated through the parallel port of the display computer pro-

vided synchronization of stimulus events with EEG acquisition. All stimuli

were generated byMATLAB (TheMathworks, Inc., Natick, MA) using the

Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

The stimuli for this task was a black and white annular grating with a

spatial frequency of 3 cycles per degree, subtending 168 of visual angle

(Figure 1a). The grating was presented at 90% contrast, in the centre of

the screen, on a grey background. A red dot provided a central fixation

point. Participants were seated 90 cm from the screen. There were two

conditions in this experiment (Figure 1a). In condition one, the stimuli

moved inwardly at a rate of 1.338 of visual angle per second. In condition

two, the stimuli were stationary. Each condition was presented 3 times

each in a block of 84 presentations, providing a total of 252 trials per con-

dition. In both conditions, the stimulus was on for between 1 and 1.1 s

(pseudorandomly jittered). Participantswere instructed to press the space-

bar as soon as the stimulus disappeared from the screen. If the response

was too slow the paradigm paused while participants were prompted to

“press space to continue.” Following a participant’s response, there was

then a 1 s intertrial interval. The order of blocks was counterbalanced.

Each block was separated by a forced 20 s break. Two participants only

received the moving grating condition, leaving 16 participants for the

static gratings analyses and 18 for themoving grating analyses.

2.4 | Data analysis

Data were first epoched into trials 20.5 s prestimulus and 1.5 s poststi-

mulus onset. The data were then baselined using the 500 ms
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prestimulus time window. Semi-automated artifact rejection was com-

pleted using the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffe-

len, 2011) as well as manually inspecting each trial for muscle and

electrical interference. ICA was run on the remaining data and artifact

components were visually identified and removed (mean number of

removed components was 3.2 out of a possible maximum of 64). The

average reference was then computed. A linearly constrained minimum

variance (LCMV) beamformer (Van Veen, Van Drongelen, Yuchtman, &

Suzuki, 1997) was applied with an 8 mm resolution and a broad 30–90

Hz bandpass filter using the template headmodel provided with field-

trip. The result was projected into the Montreal Neurological Institute

(MNI) coordinate system. The coordinate contributing the peak gamma

power intensity was selected and used to construct a virtual sensor

(Figure 1b,c).

2.5 | Quality control procedure for reliable peak

gamma frequency estimation

To estimate the peak frequency of gamma, a bootstrapping method

was used which is outlined in more detail, and compared with other

peak frequency estimation approaches, in Magazzini et al. (2016). The

method produces a metric of the peak frequency reliability as a form of

quality control (QC) (Magazzini et al., 2016) and was employed in the

current study to address the relatively lower signal-to noise ratio in

EEG visual gamma data compared to MEG (Muthukumaraswamy &

Singh, 2013) and to provide an objective measure of data reliability.

Using this method, a spectral analysis was first completed that used a

smoothed periodogram Fourier method (Bloomfield, 2004). For each

trial, the time series is demeaned and tapered with a Hanning window.

The raw periodogram was then computed for the baseline (2500 ms)

and sustained gamma (250–750 ms) time periods, and smoothed with

a Gaussian kernel. The single-trial spectra were averaged across trials

for the baseline and stimulus separately. From this, the amplitude spec-

trum was calculated as percent change from baseline. Bootstrapping

was performed with 10,000 iterations on the spectral data with a

frequency-window of 35–90 Hz. Trials were resampled with replace-

ment. Peak frequency was calculated as the greatest increase from

baseline of the average of the resampled single-trial data. The QC pro-

cedure provided a metric of reliability by calculating the frequency

width required to accommodate 50% of the bootstrapped frequencies

around the distribution mode. In this study a threshold of 61 Hz was

applied, meaning that if more than 50% of the iterations fell outside 1

Hz either side of the mode, the dataset was rejected. Note that the

standard deviation of the bootstrap estimates serves as an estimator of

the standard error. Moving gratings peak frequency estimation QC

passed all 18 data sets (Figure 4), indicating reliable gamma peaks could

be estimated for all participants. Peak frequency estimation QC for the

static grating task passed 9/16 data sets indicating, as expected

(Muthukumaraswamy & Singh, 2013), that the static grating produces a

lower signal-to-noise ratio than moving gratings (Figure 6). To comple-

ment the bootstrapped individual response spectra (Figures 4 and 6),

the original nonbootstrapped individual response spectra (showing

FIGURE 1 (a) An annular grating was used to induce visual gamma oscillations. For each trial the stimulus was on the screen for 1 s, and
off for �1 s. The task was a block design with 84 trials per block, the stimuli was either moving or stationary for each of the 6 blocks.
Participants were required to press the spacebar when the stimuli disappeared from the screen and were prompted if their response was
too slow. Following source localization, a virtual sensor of the peak gamma intensity was chosen. (b) A single participants peak gamma at

MNI coordinate 27 290 36. (c) The time–frequency spectrogram (obtained using Hilbert transformation of bandpass filtered data) of
gamma activity at this virtual sensor in relation to trial timing, exemplifying induced visual gamma activity and how it is time-locked to the
grating stimulus (in this case moving) [Color figure can be viewed at wileyonlinelibrary.com]
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stimulus induced gamma compared baseline) can be found in Support-

ing Information, Figure S1 for moving gratings and Figure S2 for static

gratings.

2.6 | Dynamic causal modeling

Dynamic causal modeling for steady-state responses (DCM-SSR) was

conducted using the methods of Shaw et al. (2017) which utilised a var-

iation on the canonical microcircuit neural model (CMC). DCM uses a

generative model comprising the neural-mass model as well as an

observation model, which when using EEG or MEG is typically a lead-

field weighting (Moran et al., 2009; Shaw et al., 2017). The neural mass

model for the CMC comprises 4 types of interacting cell populations.

For these the variation on the neural model employed by Shaw et al.

(2017) includes six types of parameter, including time-constants (T),

local (G), and extrinsic (A) synaptic connectivity strengths, exogenous

input (C) strength, delay (D), and presynaptic firing (S). Of particular

interest is the modulation of intrinsic or local connectivity (parameter

G) but also population time-constants (parameter T) (Figure 2), these

and an overall gain parameter (L) are allowed to vary all other parame-

ter types outlined above are fixed in the model.

Under this model, it was possible to characterize the local synaptic

connectivity between inhibitory interneurons and excitatory pyramidal,

and stellate cells (Figure 2). Two nonreciprocal excitatory connections

exist, one between L4 stellate to L2/3 pyramidal cells, the second

between L2 pyramidal to L5/6 pyramidal cells. Each population also

has an inhibitory, self-modulatory gain connection modeled by G1, G4,

G7, and G10. Reciprocal L2/3 pyramidal to interneuron connection are

modeled by the G11 and G12 parameters that correspond physiologi-

cally to the generators of gamma rhythm, according to the PING model

(Bartos et al., 2007; Tiesinga & Sejnowski, 2009; Whittington et al.,

2000). Although this model may be overly simplified in terms of the

true cytoarchitecture, mean-field models balance biological complexity

against computational estimability. Indeed, the model has been shown

to be sufficiently detailed enough to recapitulate variations in local con-

nectivity induced by subtle pharmacological manipulation (Shaw et al.,

2017).

Initial starting values for each of the model parameters were derived

by first fitting the CMC model to the mean spectral density across par-

ticipants and conditions. These values form the priors that are used in

the individual DCM-SSR fits for each of the individual datasets. G1, G3,

G10, and G13 were fixed as in the study by Shaw et al. (2017) where

these parameters were found to have little to no effect on the fitted

spectral density. Similarly, we also fixed T1 as it was found to have a

profound effect on model stability (Shaw et al., 2017). The output pro-

vided values of individual parameter strengths for each condition.

3 | RESULTS

3.1 | Blood sampling and cycle timing confirmation

All participants were confirmed to have progesterone and estradiol lev-

els in the range consistent with the follicular and luteal phases for each

study session day (Figure 3).

3.2 | Peak frequency not amplitude is modulated over

the menstrual cycle

Moving gratings peak frequency estimation QC passed all 18 data

sets meaning all participants were included in the subsequent

FIGURE 2 Adapted from Shaw et al. (2017). Depicts and describes the canonical microcircuit (CMC) used in the DCM procedure. Left:
Three-layer model, excitatory connections are shown in orange, and inhibitory (i.e., GABAergic) connections in purple. Grey arrows repre-
sent self-inhibition within each of the excitatory cell populations. Right: Descriptions of parameters that define the model, including their
prior values and their precisions (sigma) [Color figure can be viewed at wileyonlinelibrary.com]
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analyses (Figure 4). All Wilcoxon-signed rank tests were subjected

to false discovery rate (FDR) correction for multiple comparisons

(Benjamini & Hochberg, 1995). A Wilcoxon-signed rank test showed

that participants had significantly higher peak mean gamma fre-

quency in the luteal phase (M563.42 Hz, SD55.30 Hz) compared

to the follicular phase (M559.86 Hz, SD57.19 Hz; Z522.42,

p5 .032 FDR) (3.56 Hz difference) (Figure 5). The corresponding

peak amplitudes were also subjected to a Wilcoxon-signed rank

test. However, there was no significant difference in percent signal

change between peak amplitude for the luteal (M5111.01%,

SD566.51 Hz) and follicular phases (M595.72%, SD544.70%;

Z520.21, p5 .836 FDR) (Figure 5).

Peak frequency estimation QC for the static grating task passed

9/16 data sets to be included in subsequent analyses. As mention

above, this is expected (Muthukumaraswamy & Singh, 2013), as the

static grating produces a lower signal-to-noise ratio than moving

gratings (Figure 6). Despite the low numbers, consistent with the

finding for moving gratings, a Wilcoxon-signed rank test also

FIGURE 3 Plasma levels of progesterone and estradiol taken at the EEG recording to confirm cycle timing. The data indicate that 100% of
participants were in the correct phase at the time of testing [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Amplitude as a function of frequency for the moving grating stimulus type for each participant’s follicular and luteal sessions. In
these QC graphs, blue indicates spectra which were automatically classified as good and those colored red (nil) were classified as bad.
Graphs show relative change spectra (% change units) with shaded 95% confidence intervals [Color figure can be viewed at
wileyonlinelibrary.com]
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showed that participants had significantly higher peak mean gamma

frequency in the luteal phase (M558.16 Hz, SD53.95 Hz) com-

pared to the follicular phase (M552.41 Hz, SD53.00 Hz;

Z522.43, p5 .032 FDR) (5.75 Hz difference) (Figure 7). There was

also no significant difference in percent signal change of peak mean

amplitude for the luteal (M5114.49%, SD557.12%) compared to

the follicular phase (M5120.84%, SD571.19%; Z520.42,

p5 .836 FDR) (Figure 7).

3.3 | Hormone levels are not correlated with

frequency or amplitude

Spearman’s correlations were conducted to check for potential cor-

relations between change in amplitude between the luteal and follic-

ular phase, change in frequency, and estradiol or progesterone

(Figure 9). For moving gratings, no significant correlation was found

between progesterone (M528.66 nmol/L, SD515.76 nmol/L) and

frequency (M53.57 Hz, SD56.38 Hz; rs5 .388, p5 .111) or per-

cent signal change of peak mean amplitude (M515.29%,

SD549.94%; rs52.120, p5 .636). Similarly, no significant correla-

tion was found between estradiol (M5326.61 pmol/L, SD5217.28

pmol/L) and frequency (rs5 .442, p5 .066) or percent signal change

of peak mean amplitude (rs520.178, p5 .481). Similarly, for static

gratings, no significant correlation was found between progesterone

(M525.56 nmol/L, SD515.02 nmol/L) and frequency (M55.76 Hz,

SD55.40 Hz; rs5 .452, p5 .222) or percent signal change of peak

mean amplitude (M526.34%, SD541.04%; rs5 .218, p5 .574).

Simialrly, no significant correlation was found between estradiol

(M5354.22 pmol/L, SD5198.79 pmol/L) and frequency (rs50.617,

p5 .077) percent signal change of peak mean amplitude (rs5 .383,

p5 .308).

4 | DYNAMIC CAUSAL MODELING

4.1 | Cycle and mean parameter strength

A repeated measures ANOVA was run to explore the effects of men-

strual cycle phase (follicular versus luteal), and grating (moving versus

static) on the G (local connection) and T (time constant) parameters

(Figure 8). There was no significant phase by grating-type interaction

(F(1,10)50.38, p5 .866). However, because the primary purpose of this

analysis is to explore the effect of menstrual cycle phase on the param-

eters, the main effects are interpreted. A significant main effect of

menstrual cycle phase was found (F(1,10)54465.82, p5 .012). Two

parameters showed this main effect of phase. G7 (F(1,10)56.77,

p5 .026), and G9 (F(1,10)57.10, p5 .024). Comparison of estimated

marginal means shows that G7 is stronger in the luteal phase

(M51.33, SE50.056) than the follicular phase (M51.18, SE50.044).

G9 is stronger in the follicular (M52.11, SE50.028) than the luteal

phase (M52.03, SE50.029). No significant main effect of grating was

found (F(1,10)534.88, p5 .131).

5 | DISCUSSION

Using EEG to record visual gamma oscillations during the luteal and fol-

licular phases of the menstrual cycle, this study found significantly

FIGURE 5 Top: Grand-averaged time–frequency spectrogram for the follicular and luteal phases for the static grating stimulus type. Inten-
sity of color warmth indicates changes in power (%) from the baseline. Bottom: Individual participant frequency and amplitude results. Study
means show significantly higher peak mean frequency in the luteal compared to follicular phase. No significant differences were found for
amplitude. Error bars show standard error [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Amplitude as a function of frequency for the static grating stimulus type for each participant’s follicular and luteal sessions. In
these QC graphs, blue indicates spectra which were automatically classified as good and those colored red (P2 LUT, P4 FOL, P13 FOL, P14
LUT, P15 FOL, P16 LUT, and P18 LUT) were classified as bad. Graphs show relative change spectra (% change units) with shaded 95%
confidence intervals. Note P7 and P10 are missing as for these participants only the moving grating stimulus type was collected [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Top: Grand-averaged time–frequency spectrogram for the follicular and luteal phases for the moving grating stimulus type.
Intensity of color warmth indicates changes in power (%) from the baseline. Bottom: Individual participant frequency and amplitude results.
Study means show significantly higher peak mean frequency in the luteal compared to follicular phase. No significant differences were
found for amplitude. Error bars show standard error calculated as the standard deviation of the bootstrapped distribution [Color figure can
be viewed at wileyonlinelibrary.com]

8 | SUMNER ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


higher peak gamma frequency in the luteal phase compared to the fol-

licular phase. This result shows that endogenous modulation of gamma

oscillations can be reliably measured using EEG. Evidence of this ability

is important as the majority of existing work with gamma oscillations

has been completed using MEG. This is largely due to the relatively

poorer signal-to noise ratio of EEG and historical lack of advanced sig-

nal processing techniques to overcome this. However, EEG is both

cheaper and more widely available both at academic institutions and

hospitals than MEG, an important factor for future applications of this

research.

Making any detailed inferences about specific neurobiological

causes for our findings are complicated and limited by the observatio-

nal nature of the study design. However, the lack of any correlation

between peripheral measures of progesterone or estradiol and peak

gamma amplitude or frequency do not support the argument that abso-

lute neurosteroid concentrations are the key contributors to the effects

of menstrual cycle found in this study, as peripheral concentrations of

progesterone and estradiol have been found to be well correlated with

concentrations in the brain (Bixo, Bäckstr€om, Winblad, & Andersson,

1995; Wang, Seippel, Purdy, & Bäckstr€om, 1996). Although we did not

directly measure allopregnanolone levels, these are correlated with pro-

gesterone, particularly in the luteal phase (Wang et al., 1996). Instead,

because gamma oscillations in V1 have been correlated with GABAA

receptor properties such as density in human visual cortex (Kujala

et al., 2015), this suggests that receptor dynamics may be more

important.

In this study, we only found a change in gamma frequency and not

amplitude. This has been found in one other study on the effects of tia-

gabine on visual gamma oscillations (Magazzini et al., 2016). In our

case, this may have been due to EEG signal to noise ratio being gener-

ally lower than that of MEG (Muthukumaraswamy & Singh, 2013).

However, this is unlikely as the reliability of the peak frequency estima-

tion was as good as, or at least comparable to, the findings of Magaz-

zini et al. (2016), indicating high signal-to-noise ratio. It has also been

proposed that the neural mechanisms behind amplitude and frequency

of gamma can be differentially modulated, with frequency more linked

to the time-constant of inhibitory processes (Magazzini et al., 2016). To

support this, when the data for the tiagabine data as presented by

Magazzini et al. (2016) was subjected to DCM-SSR by Shaw et al.

(2017), it was found that individual variability in the time constant of

inhibitory interneurons was found to be significantly modulated by

gamma frequency but not amplitude. Furthermore, a contribution anal-

ysis was completed in Shaw et al. (2017) to determine the key parame-

ters contributing to gamma frequency. This was found to be parameter

G7; the self-inhibition of superficial pyramidal cells. By contrast, gamma

amplitude was found to be primarily determined by G11; the strength

of the inhibitory interneuron to superficial pyramidal cell connection.

However, it is also important to consider that, even using MEG, within-

subject test–retest reliability of visual gamma amplitude effects meas-

ured in sensor space are lower than that for frequency (Tan et al.,

2016). Therefore, replication of this study will be a key to confirming

whether indeed there is no effect of menstrual cycle on gamma

amplitude.

The pharmaco-MEG literature provides a number of examples

showing that increasing GABAergic inhibition via GABA enhancing

drugs leads to a decrease in gamma frequency (Campbell et al., 2014;

Lozano-Soldevilla et al., 2014; Magazzini et al., 2016). From this, it

could be speculated that our finding of relatively higher frequency in

the luteal compared to the follicular phase found in this study is inter-

pretable as reflecting greater GABAergic inhibition in the follicular

phase relative to the luteal phase. This might seem counterintuitive as

during the luteal phase endogenous allopregnanolone is higher, and

based on this one might then expect lower frequency gamma in the

luteal phase. However, if mechanisms for allopregnanolone tolerance

like those described in Lovick et al. (2005) in animals, become active

due to sustained exposure to allopregnanolone in the luteal phase, this

could create the paradoxical effect that we have observed. Consistent

with this idea, Timby et al. (2016) found in healthy human females

decreased sensitivity to administered allopregnanolone in the luteal

phase compared to the follicular phase and suggested that this may be

due to tolerance to allopregnanolone over the menstrual cycle. Further-

more, based on animal literature, the primary mediator of apparent

changes in GABAergic inhibition over the menstrual cycle is related to

upregulated expression of GABAA receptors containing a4 and d subu-

nits (Smith et al., 2007), and a potential decrease in sensitivity may rep-

resent a break down or modulation of a4 containing receptors found

(Lovick et al., 2005). If the mechanism for reported changes in GABAer-

gic inhibition are related to a4 receptors, this may also be accounting

for the conflict between the findings with administered benzodiaze-

pines and allopregnanolone (Sundstrom et al., 1997; Timby et al.,

2016).

While it is important to reconcile our findings with the existing

pharmaco-MEG literature, the argument of tolerance relies on the

assumption that while targeting the mid-luteal phase, the majority of

FIGURE 8 Left: Peak mean frequencies from the QC estimation
show significantly greater frequency in the luteal compared to
follicular phase for both moving (13.56 Hz) and static gratings
(15.75 Hz). Right: These are shown side-by-side with the signifi-
cant difference in estimated marginal means of the parameter
strengths for G7 and G9 in the follicular compared to luteal phase.
G7 is significantly stronger in the luteal phase and G9 is signifi-
cantly stronger in the follicular phase. Error bars show standard
error calculated as the standard deviation of the bootstrapped dis-
tribution [Color figure can be viewed at wileyonlinelibrary.com]
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tests took place during the later stages of the mid-luteal phase when

tolerance begins to take effect (T€urkmen et al., 2011). This is because in

the early half of the mid-luteal phase this argument becomes difficult to

reconcile with rodent findings of increased potentiation of GABAergic

inhibition during late dioestrus (comparable to the early- to mid-luteal

phase of human females) compared to during estrus, demonstrated by

measuring the peak amplitude of inhibitory post synaptic currents

(Maguire et al., 2005). However, one could potentially test hypotheses

around tolerance in an advancement of this study using administered

allopregnanolone similar to Timby et al. (2016). Even more informative

would be to focus on more specific subsections of the luteal phase (e.g.,

early-mid and late-mid halves of the mid-luteal phase).

In the current DCM analyses, we found several microcircuit param-

eters that were modulated by menstrual cycle phase; parameters G7

and G9. As explained above, G7 represents superficial pyramidal self-

inhibition and was increased in the luteal phase. Whereas G9 repre-

sents inhibitory interneuron connections to deep pyramidal cells and

was increased in the follicular phase. The previous contribution analysis

run by Shaw et al. (2017) determined four parameters with the greatest

contribution to beta and gamma peak amplitude and frequency by

FIGURE 9 Scatter plots of the difference between the follicular and luteal phase in gamma frequency, and percent signal change
correlated with the difference in plasma concentrations of estradiol and progesterone. Upper panel: Graphs of the moving gratings
condition show the correlation between plasma concentrations of progesterone and frequency (a), and progesterone and percent signal
change (b). Estradiol and frequency (c), and estradiol and percent signal change (d). Lower panel: Scatter plots for the static gratings
condition show the correlation between plasma concentrations of progesterone and frequency (e), and progesterone and percent signal
change (f). Estradiol and frequency (g), and estradiol and percent signal change (h). There were no significant effects of plasma
concentration of ether hormone on frequency or percent signal change [Color figure can be viewed at wileyonlinelibrary.com]
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testing a parameter’s sensitivity to variation in each respective spectral

feature, two of which are relevant here. Parameter G7 (self-inhibition

of superficial pyramidal cells) was the predominant determinant of

peak gamma frequency where increasing G7 leads to corresponding

increases in gamma frequency. This is entirely consistent with the cur-

rent results. From a neurobiological perspective, G7 as a self-inhibition

parameter is a “lumped” parameter that could subsume a variety of

potential gain-control mechanisms, including neuromodulation, recep-

tor cycling or receptor desensitization, any of which could be at play

across the endogenous menstrual cycle. Furthermore, any of these

mechanisms may feasibly be modulated by GABAergic changes. As has

already been mentioned, in response to increases in allopregnanolone,

the primary mediator of apparent changes in inhibition is upregulated

expression of GABAA receptors containing a4 and d subunits (Smith

et al., 2007). d-GABAA receptors are extrasynaptic mediators of tonic

inhibition and have been related to gain-control mechanisms (Semya-

nov, Walker, Kullmann, & Silver, 2004; Stell, Brickley, Tang, Farrant, &

Mody, 2003). They are also at particularly high density in layer 2/3

(Drasbek & Jensen, 2006), where G7 is modeled.

With respect to G9 representing inhibitory interneuron to deep

pyramidal cells, Shaw et al. (2017) found this parameter was positively

correlated with beta rather than gamma amplitude. G9 more directly

suggests modification of GABAergic interneuron system, although spe-

cifically in its laminar interaction with the deep pyramidal cells. Interest-

ingly, and in contrast to the above, this modification indicates that

there is greater inhibition in the follicular phase than luteal phase. This

is proposed to be in keeping with one of the unique actions of allopreg-

nanolone at endogenous levels. Below certain levels allopregnanolone

can produce a paradoxical effect and depress inhibition via polarity-

dependent action on Cl2 influx and efflux (Bäckstr€om et al., 2011; S.

Smith et al., 2007). However, d-GABAA receptors are more sensitive to

lower levels of allopregnanolone, and in the healthy menstrual cycle,

still produce an overall increase in GABAergic inhibition when allopreg-

nanolone levels increase endogenously (Belelli et al., 2009; Lovick

et al., 2005; Maguire et al., 2005; Smith et al., 2007). Research has

shown that there is reduced expression of d-GABAA receptors in layer

5 (Drasbek & Jensen, 2006) where parameter G9 is modeled. Rather,

tonic inhibition is modulated by a5-GABA receptors which allopregana-

nolone has a much lower affinity for Peng et al. (2009) but can also

produce a paradoxical effect (Burgard, Tietz, Neelands, & Macdonald,

1996; Smith et al., 2007). The reduced sensitivity to allopregnanolone

within layer 5 due to the absence of d-GABAA receptors may be lead-

ing to the opposing difference in inhibition found in the luteal com-

pared to the follicular phase.

Taken together, these modifications suggest a change in the lami-

nar functioning of the (visual) cortex across the menstrual cycle with

relatively less superficial pyramidal cell activity in the luteal phase and

relatively more GABAergic inhibition of deep-level activity in the follic-

ular phase. In invasive animal recordings, gamma rhythm activity pre-

dominates in the superficial layers whereas in deeper layers beta

oscillations are more dominant (Maier, Adams, Aura, & Leopold, 2010;

Xing, Yeh, Burns, & Shapley, 2012). From a theoretical perspective, this

may suggest alterations in hierarchical prediction coding mechanisms

where it has been suggested that superficial cells encode ascending

prediction errors while predictions are encoded by deep pyramidal cells

and then transmitted to lower levels of the cortical hierarchy (Bastos

et al., 2012; Friston, Bastos, Pinotsis, & Litvak, 2015). On the basis of

the present data alone, any argument we could make about prediction

coding mechanisms across the menstrual cycle would be speculative,

but we note that in the same experimental cohort, we recorded not

only resting-state EEG but mismatch negativity (MMN) data. The

MMN in particular specifically allows measures of hierarchical predic-

tive coding to be made—albeit typically in the auditory system (Garrido,

Kilner, Kiebel, et al., 2009; Garrido, Kilner, Stephan, & Friston, 2009).

As such, although it is beyond the scope of this work, it is possible that

in the near future we may be able to explicitly test these speculations

regarding predictive coding.

The interpretation above focuses heavily on the role of progester-

one, over estradiol, when considering the impact of receptor dynamics.

While estradiol does have an influence on the balance of excitation

and inhibition, studies have typically found that it is progesterone and

its inhibitory metabolites that are the primary driver of changes

observed in the mid-luteal phase, particularly when compared to the

early follicular phase (Epperson et al., 2002, 2005; Lovick et al., 2005;

Maguire et al., 2005). While administering oestradiol has been found to

recover reduced gamma power in ovariectomized rats (Schroeder et al.,

2017), to our knowledge, there is no literature isolating the effect of

estradiol on gamma oscillations during natural fluctuations, such as dur-

ing the menstrual cycle. There was also no effect of the menstrual cycle

on gamma power found in the present study.

Furthermore, using paired-pulse transcranial magnetic stimulation

(TMS) and motor evoked potentials as an indicator of cortical inhibition,

studies have found greater inhibition in the luteal compared to the fol-

licular phase, in contrast, during ovulation there is an increase in excita-

tion (Smith, Adams, Schmidt, Rubinow, & Wassermann, 2002; Smith

et al., 1999). Estradiol is known to have a depressive effect on

GABAergic inhibitory input (W�ojtowicz & Mozrzymas, 2010), and facili-

tate increased excitation by enhancing glutamatergic transmission

(Yokomaku et al., 2003). This suggests that while the excitatory effects

of estradiol are dominant during ovulation, it is the inhibitory effects of

progesterone that have the greatest influence during the luteal phase.

Unfortunately, TMS based metrics of inhibition have struggled to con-

sistently show an effect of menstrual cycle meaning there remains a

requirement for alternate methods of measuring changes (Hattemer

et al., 2007; Zoghi, Vaseghi, Bastani, Jaberzadeh, & Galea, 2015). Estra-

diol has been shown to be less influential on overall GABA levels, and

hence inhibition, than the effect of progesterone and its metabolites in

humans (Epperson et al., 2002, 2005). Furthermore, it is progesterone

and its metabolites that are more frequently implicated in menstrual

cycle related disorders such as PMDD (Bäckstr€om et al., 2014; Barth,

Villringer, & Sacher, 2015; Epperson et al., 2002; Girdler, Straneva,

Light, Pedersen, & Morrow, 2001; Reddy, 2004).

As well as providing a valuable tool for measuring functional

changes in the brain related to changes in balance of excitation and

inhibition, one of the most important impacts of our research is that it

shows that endogenous changes across the menstrual cycle
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significantly affect the EEG signal during visual gamma tasks. Our study

also makes clear that consideration of menstrual timing in women is

important if they are to be included in either healthy control or patient

studies. Where hormones are not accounted for as a potential source

of variation, in clinical (Rowland et al., 2013), pharmacological (Camp-

bell et al., 2014), and genetic research (van Pelt et al., 2012), true

effects may in fact be underestimated. Also of particular relevance is

repeated-measures research where recordings may take place at differ-

ent phases of the menstrual cycle. One way to overcome this would be

to ensure participants are all studied at the same phase of their men-

strual cycle. The follicular phase is by far the most straightforward to

verify as its initiation is signaled by the onset of menstrual bleeding.

Alternatively, females on oral contraception, while taking active hor-

mone pills will be at a predictable and constant stage in their cycle. Any

other form of hormonal contraception or therapy should also have its

specific impact on the menstrual cycle and gonadal hormones taken

into account. For example, modern contraceptive implants, such as

Implanon, can lead to increased irregularity of menstrual bleeding, so in

these cases, follicular phase would be again easier to estimate (Man-

sour, Korver, Marintcheva-Petrova, & Fraser, 2008).

5.1 | Strengths, limitations, and future directions

A key strength of this study was the rigorous cycle tracking and confir-

mation of cycle timing. Participants were tracked for three full cycles

prior to their first study date. Participants with any irregular cycle

lengths, despite often self-reporting regular cycles, came in the day

before a potential study date for a blood sample. The study date was

rescheduled if they were not in their luteal phase. This happened on a

small number of occasions. Within the average menstrual cycle there is

very common, and healthy, variance in intraindividual cycle length and

regularity (Fehring, Schneider, & Raviele, 2006). This leads us to the

conclusion that in studies without blood or saliva quantification of pro-

gesterone, it cannot be unequivocally stated that testing took place

during the luteal phase. Even counting back from menstrual onset after

the study, though successful in some cases, will not pick up on anovula-

tory cycles. Anovulatory cycles have no surge in hormones during the

luteal phase and can affect up to 38% of women aged 20–24 for at

least 1/3 cycles (Metcalf & Mackenzie, 1980). In addition, as already

mentioned, all study sessions began between 2 and 4 pm to control for

diurnal variations in neurosteroid levels (Tiihonen M€oller et al., 2016).

One of the limitations of this study was the apparent tradeoff

between moving and static gratings. Moving gratings produced the

cleanest data according to the QC thresholding. This leads to the great-

est number of useable datasets to take forward through data process-

ing. It has been reported previously that visually induced gamma

oscillation can hit a frequency ceiling at around 70 Hz and that moving

gratings tend to induce gamma at a frequency closer to 70 Hz than

static (Swettenham, Muthukumaraswamy, & Singh, 2009). This was

referred to as a potential saturation of the visually induced gamma

effect (Swettenham et al., 2009). The relatively smaller mean change in

gamma frequency between cycle phases for moving (3.56 Hz) com-

pared to static gratings (5.75 Hz) may be some indication of this

occurring in our data. A potential criticism of our data analysis may

come from the nature of the QC approach to analyzing visual gamma,

where data that do not contain robust gamma gets rejected. This

means that individuals that do not produce or record robust gamma

get rejected alongside poor-quality datasets. This raises questions

around whether results are representative of the general population, an

important point also echoed by Magazzini et al. (2016). However, all of

our participants passed QC for at least the moving stimulus, so this

effect appears to be representative for the majority of our participants

and therefore potentially the larger population of at least young

women.

It is a common criticism of MEG and especially EEG measurements

of high frequency oscillations that they can be highly contaminated by

electromyography (EMG) artifact (Whitham et al., 2007). There are sev-

eral features of our data that argue strongly against the likelihood that

the occipital gamma band increases observed reflect simply EMG

changes across the menstrual cycle. We note that we have followed

most of the best recommendations by Muthukumaraswamy (2013) to

avoid muscle artifacts. This included the use of ICA as well as beam-

forming for source localization which, as explained by (Muthukumar-

aswamy, 2013), allows for the positive identification of each individuals

peak gamma source as being attributable to visual cortex generation.

Typically systematic modifications of neck muscle will localize to a

bilateral source distribution (as well as showing broadband frequency

changes). Our results show typical peak frequencies for induced occipi-

tal gamma between 40 and 70 Hz and a typical bandwidth (Figures 5

and 7, as well as individual spectra in Figures 4 and 6). Furthermore,

because our results are computed relative to a prestimulus baseline,

this would imply that any EMG contamination must be occurring in a

boxcar similar to the stimulus frequency. This seems unlikely for muscle

movements. While this could conceivably occur for onset microsac-

cades (Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008), our

main analysis takes in the sustained period of induced gamma activity

beyond the time period where early onset saccades might be present.

Furthermore, onset saccades typically have much broader frequency

content than we observe here.

Attributing our findings to EMG activity also implies EMG activity

has relatively higher frequency during the luteal than the follicular

phase. To the best of our knowledge, there is no evidence to support

that this effect of the menstrual cycle occurs. The research around

menstrual cycle effects on muscle contractions in general is highly

inconclusive, however, where positive results are found, they indicate

that metrics of muscle activity including EMG, contraction strength,

and the like are strongest during ovulation, no difference is found

between the early follicular and mid-luteal phases when tested (Drake,

2001; Drake, Evetovich, Eschbach, & Webster, 2003; Jonge, Boot,

Thom, Ruell, & Thompson, 2001; Kossioni & Karkazis, 1993; Phillips,

Sanderson, Birch, Bruce, & Woledge, 1996; Sarwar, Niclos, & Ruther-

ford, 1996). Furthermore, when investigating EMG contamination, the

most commonly cited evidence is an increase in gamma power

(Whitham et al., 2007), which was not found in this study.

To explore the apparent changes in the GABA system further in

the future, it would be useful to record induced gamma oscillations at
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the very beginning of the luteal phase as well as the end to compare

changes over time. This may help disentangle and explain some of the

contradictory findings in the human literature as well as provide a

dimension of long-term changes that are not provided in studies of the

far shorter menstrual cycle of rodents (4 days). In addition, to exclude a

potential interaction of estradiol, a recording during ovulation when

progesterone levels are low and estradiol high may provide important

insight, especially because, as explained earlier, estradiol has an oppos-

ing depressive effect on GABAergic inhibitory input (W�ojtowicz &

Mozrzymas, 2010), as well as an excitatory effect via its effects on glu-

tamatergic transmission (Yokomaku et al., 2003). However, in terms of

the contribution of such an approach, the peak during ovulation is far

shorter than that of the luteal phase and may not capture the longer

term dynamics, instead offering an entirely unique piece of information.

As such, it would be difficult, if not impossible, to quantify the contri-

bution of progesterone and estradiol independently in studies of purely

endogenous changes in the mid-late luteal phase. Further potential

avenues for future research include investigating to what extent our

findings contribute to understanding GABA-related disorders such as

schizophrenia and epilepsy (Gonzalez-Burgos & Lewis, 2008; Reddy,

2004; Rowland et al., 2013). One particular possibility to consider is

the effect of changing sensitivity GABAergic drugs when administered

daily at a uniformed dose over the course of the menstrual cycle (as is

typical).

In conclusion, this study provides evidence for menstrual-cycle-

related changes in visual gamma oscillations. Increased gamma fre-

quency was found in the luteal compared to the follicular phase, thus

demonstrating endogenous synaptic modification of excitation–inhibi-

tion occurring across the menstrual cycle. Our findings also indicate

that there are complex functional changes within the cortical microcir-

cuitry across the menstrual cycle and exemplify the potential value of

DCM in elucidating the mechanisms behind these changes, in addition

to analyses of spectral data features.
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