ORCA – Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/110870/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Burgess, Malcolm, Smith, Ken, Evans, Karl, Leech, Dave, Pearce-Higgins, James, Branston, Claire, Briggs, Kevin, Clark, John, du Feu, Chris, Lewthwaite, Kate, G, Nager Ruedi, C, Sheldon Ben, Smith, Jeremy, C, Whytock Robin, G, Willis Stephen and B, Phillimore Albert 2018. Tritophic phenological match-mismatch in space and time. Nature Ecology and Evolution 2, pp. 970-975. 10.1038/s41559-018-0543-1

Publishers page: https://doi.org/10.1038/s41559-018-0543-1

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 Tritrophic phenological match-mismatch in space and

- 2 time
- 3

5	
4	Malcolm D. Burgess ^{1,2*} , Ken W. Smith ³ , Karl L. Evans ⁴ , Dave Leech ⁵ , James W.
5	Pearce-Higgins ^{5,6} , Claire J. Branston ⁷ , Kevin Briggs ⁸ , John R. Clark ⁹ , Chris R. du
6	Feu ¹⁰ , Kate Lewthwaite ¹¹ , Ruedi G. Nager ¹² , Ben C. Sheldon ¹³ , Jeremy A. Smith ¹⁴ ,
7	Robin C. Whytock ¹⁵ , Stephen G. Willis ⁷ and Albert B. Phillimore ¹⁶
8	
9	1 RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL
10	² Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG
11	³ 15 Roman Fields, Chichester, West Sussex PO19 5AB
12	⁴ Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN
13	⁵ British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU
14	⁶ Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ
15	⁷ Department of Biosciences, Durham University, South Road Durham, DH1 3LE
16	⁸ 1 Washington Drive, Warton, Lancashire LA5 9RA
17	⁹ 15 Kirkby Close, Southwell, Nottinghamshire NG25 0DG
18	¹⁰ 66 High Street, Beckingham, Nottinghamshire DN10 4PF
19	¹¹ Woodland Trust, Kempton Way, Grantham, NG31 6LL
20	¹² Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr
21	Building, University of Glasgow, Glasgow G12 8QQ
22	¹³ Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS
23	¹⁴ School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, CF10 3AX
24	¹⁵ Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA
25	¹⁶ Institute of Evolutionary Biology, University of Edinburgh, The King's Buildings,
26	Edinburgh EH9 3FL

29

30 Increasing temperatures associated with climate change may generate 31 phenological mismatches that disrupt previously synchronous trophic 32 interactions. Most work on mismatch has focused on temporal trends, whereas 33 spatial variation in the degree of trophic synchrony has largely been neglected, 34 even though the degree to which mismatch varies in space has implications for 35 meso-scale population dynamics and evolution. Here we quantify latitudinal 36 trends in phenological mismatch, using phenological data on an oak-caterpillar-37 bird system from across Britain. Increasing latitude delays phenology of all 38 species, but more so for oak, resulting in a shorter interval between leaf 39 emergence and peak caterpillar biomass at northern locations. Asynchrony found 40 between peak caterpillar biomass and peak nestling demand of blue tits, great tits 41 and pied flycatchers increases in earlier (warm) springs. There was no evidence 42 of spatial variation in the timing of peak nestling demand relative to peak 43 caterpillar biomass for any species. Phenological mismatch alone is thus unlikely 44 to explain spatial variation in population trends. Given projections of continued 45 spring warming, we predict that temperate forest birds will become increasingly 46 mismatched with peak caterpillar timing. Latitudinal invariance in the direction 47 of mismatch may act as a double-edged sword that presents no opportunities for 48 spatial buffering from the effects of mismatch on population size, but generates 49 spatially consistent directional selection on timing, which could facilitate rapid 50 evolutionary change.

51

52 Temperature changes are impacting phenology¹, prompting concern that previously 53 synchronous trophic interactions may be disrupted and lead to negative impacts on 54 consumer fitness and demography²⁻⁴. Trophic asynchrony or mismatch appears to be 55 most prevalent in the food webs of seasonal habitats, such as deciduous forests and

aquatic systems⁵, where resource peaks are ephemeral. Most studies of natural variation
in mismatch and its impacts on the fitness and population trends of terrestrial
consumers are on temporal data. However, it is also possible for mismatch to vary in
space, if species respond differently via plasticity or local adaptation to geographic
variation in cues. The scarcity of studies addressing the spatial dimension of variation in
mismatch⁶ means that we have little evidence as to whether the insights into mismatch
estimated at one site can be extrapolated to others.

63

64 The degree to which mismatch varies in space has the potential to impact on both 65 population trends and evolution of consumer species on a meso-scale (Supplementary 66 Table 1). Consider the following latitudinal trends in the phenology of a consumer and a 67 resource, assuming that latitudinal variation in consumer phenology has a plastic basis⁷. 68 If all consumer populations, regardless of their latitude, experience the same magnitude 69 and direction of mismatch (Supplementary Table 1b), which impacts negatively on vital 70 rates, all consumer populations may decline in the short term. If populations of the 71 consumer possess additive variance for phenology, over longer time periods spatially 72 consistent directional selection arising from directional mismatch may facilitate 73 adaptation to reduce mismatch⁸, although the rate of evolutionary change will also 74 depend on the effect of mismatch on population size and the standing genetic variation. 75 In a second example (Supplementary Table 1c), if the consumer phenology varies less 76 over space than the resource phenology⁹, and this generates spatial variation in the 77 direction of mismatch, then in the short term there may be spatial buffering that limits 78 population declines. In this case the consequences of mismatch on one population may 79 be buffered by dispersal from a matched population elsewhere⁶. With gene flow, spatial 80 variation in the direction of selection may oppose the adaption of mismatched 81 populations to their local optima⁸.

Here, we use the well-studied tri-trophic deciduous tree-caterpillar-passerine bird food
chain, a highly seasonal system, to identify the extent to which consumer phenology
tracks resource phenology over time and space. The phenology of these three trophic
levels advance with warmer spring temperatures, though birds typically advance by less
than trees or caterpillars^{10,11}, causing bird-caterpillar mismatch to be most pronounced
in warm springs and associated with strong directional selection for earlier laying¹².

88

89 We estimate the spatial (latitudinal) and temporal (among year) trends in relative 90 phenology of consumer (caterpillar) and primary resource (oak) species, and the 91 synchrony of secondary consumer (bird) peak nestling demand and peak caterpillar 92 resource availability. Fig. 1 shows the distribution of sampling across Britain and among 93 years. We used 10073 observations of pedunculate oak (*Quercus robur*) first leafing for 94 the period 1998-2016. The timing of peak arboreal caterpillar community biomass was 95 inferred from frass captured in traps set beneath oak trees at sites across Britain for the 96 period 2008-2016¹³ (trap:years = 696). Bird phenology was calculated using first egg 97 dates (FED) from across Britain for the period 1960-2016, comprising 36839 blue tit 98 (Cyanistes caeruleus), 24427 great tit (Parus major) and 23813 pied flycatcher (Ficedula 99 *hypoleuca*) nests. The phenology of oak¹⁴ and all three bird species⁷ have been shown to 100 respond negatively to mean spring temperatures over time and space, in a manner that 101 suggests plasticity is responsible for the majority of the spatiotemporal variation and 102 that temperature may be the proximate or ultimate phenological cue. Here we show that 103 frass timing exhibits similar trends, correlating negatively with temperature over time 104 and space, albeit more shallowly and non-significantly over space (supplementary 105 materials).

106

107 Our focus is on the relationship between the phenology of interacting species¹⁵. Where
108 timing changes more in one species than the other, this is indicative of spatial or
109 temporal variation in the magnitude, and potentially direction, of mismatch. In Britain

110 latitude provides a major temperature cline along which phenology varies at large 111 scales¹⁶, therefore, the spatial component of our study addresses latitudinal trends in 112 relative phenology of species pairs. We also consider the relationship between the 113 timing of the consumer and resource as the major axis (MA) slopes estimated over time 114 (years) and space (i.e. among 50km grid cells after de-trending for the latitudinal 115 gradient in the phenology of each species). For the bird – caterpillar interaction we can 116 derive predictions in the timing of peak consumer demand and peak resource 117 availability which enables us to estimate the absolute departure from synchrony 118 (demand earlier or later than supply). 119 120 **Results and discussion**

121

122 Starting at the base of this food chain, for the average latitude (52.63°N) and year (in 123 terms of phenology) in our dataset, there is a 27.6 day interval between oak first leaf 124 and the peak caterpillar biomass. With increasing latitude the delay in oak leafing is 125 significantly steeper than that of the caterpillar peak (Fig. 2a, Supplementary Table 3a). 126 This results in a reduction of the predicted interval to 22 days at 56°N. After de-trending 127 for latitudinal effects, the spatial relationship between the phenology of these species is 128 poorly estimated (Table 1) and caterpillar phenology varies more over time than space 129 (Supplementary Table 3). Among years, the timing of oaks and caterpillars is strongly 130 positively correlated (Table 1a) and the MA slope does not depart significantly from 1 131 (Fig. 2b. Table 1b). This result is consistent with the caterpillar consumer perfectly 132 tracking the timing of the resource over time. This is consistent with earlier work 133 showing that oaks and one of their main caterpillar consumers – the winter moth – are 134 similarly sensitive to temperature¹⁷. The shortening of the time between first leaf and 135 peak caterpillar availability as latitude increases may result from the action of a third 136 variable, such as photoperiod acting on one or both species. Alternatively, it may

represent an adaptation of the life cycle of Lepidoptera species to the shorter spring andsummer period in the north⁶.

139

140 In the average year and at the average latitude, FEDs of blue tits (posterior mean ordinal 141 day 118.30 [95% credible interval = 116.83 - 119.85], Supplementary Table 3b) and 142 great tits (day 118.95, [117.20 –120.61], Supplementary Table 3c) are approximately 143 one month earlier than peak caterpillar availability (~day 148). However, peak demand 144 is when nestlings are around 10 days old^{18,19}, and once we allow for average clutch sizes 145 and incubation durations (see methods), we find that peak demand occurs soon after 146 peak resource availability, with mean peak demand-mean peak resource = 3.39 [-6.63 -147 8.86] days in blue tits and 2.01 [-3.99 – 7.71] days in great tits. Pied flycatchers also lay 148 earlier (day 135.04 [133.55–136.53, Supplementary Table 3d) than the peak caterpillar 149 biomass, but predicted peak nestling demand occurs 12.87 [6.69 – 19.40] days later 150 than peak caterpillar availability, suggesting substantial trophic mismatch in the 151 average UK environment.

152

153 With increasing latitude the phenology of caterpillars is delayed by ~ 1.3 days °N-1 and 154 the point estimates for the equivalent latitudinal trend in birds are from 1.67 – 1.93 days 155 °N⁻¹ (Supplementary Tables 3b-d). While the slope for birds is marginally steeper than 156 for caterpillars, such that birds in the north are slightly more mismatched, we have no 157 evidence for a significant latitudinal trend in mismatch (Fig. 3a-c). Moreover, the effect 158 size of any latitudinal trend in mismatch is small, as the point estimate of the magnitude 159 of change in the relative phenology of consumer – resource over the latitudinal range of 160 our data $(50 - 57^{\circ}N)$ is < 5 days in each case.

161

162 Across years, the timing of the caterpillar peak date and bird FED is strongly and

significantly positively correlated for all three bird species (Table 1a). The MA slope is

significantly <1 for all three bird species. This means that among years FED varies by

165 less than the timing of the caterpillar resource peak (Table 1b, Fig. 3d-f), which gives 166 rise to year-to-year variation in the degree of mismatch. For every 10-day advance in 167 the caterpillar peak, the corresponding bird advance is estimated to be 5.0, 5.3 and 3.4 168 days in blue tit, great tit and pied flycatcher respectively. In late springs (i.e. under 169 colder conditions) peak demand from blue tit and great tit nestlings is expected to 170 coincide with the peak resource availability, and pied flycatcher peak demand occurs 171 soon after the resource peak (Fig. 3d-f). When caterpillar phenology is earlier (i.e. 172 warmer springs), the peak demand of nestlings is predicted to be substantially later 173 than peak resource availability, rendering the nestlings of all three species mismatched, 174 and pied flycatchers most mismatched. For example, in the earliest year for which we 175 have caterpillar data (2011), at the average latitude the peak demand of the nestling 176 birds is predicted to occur 17.78, 11.74 and 27.03 days after the peak availability of 177 caterpillars. The patterns of temporal variation in mismatch we identify for these 178 species are very similar to those reported for great tits in the UK²⁰ and all three species 179 in the Netherlands¹⁵ and are likely to result from the caterpillars being more 180 phenologically plastic in response to spring temperatures (supplementary materials). 181 Warmer conditions also produce shorter duration food peaks¹³, which may strengthen 182 the selection against mismatched individuals. It is also possible that bird populations 183 may advance timings in response to temperature cues experienced after first lay date by 184 varying clutch size, laying interruptions or the initiation and duration of incubation²¹⁻²⁴. 185

One of our key findings is that in the average year there is little latitudinal variation in the magnitude of caterpillar-bird mismatch. Therefore, meso-scale geographic variation in mismatch in the average year is unlikely to buffer metapopulations from the negative consequences of mismatch, or explain spatial variation in population trends. Thus, more negative declines in population trends of insectivorous birds in southern Britain, driven by low productivity²⁵, do not appear to be caused by greater mismatch in the south than the north. Directional adaptive evolution is expected to be more rapid for connected

193 populations when selection pressures are spatially consistent compared to being 194 spatially variable⁸. This result also has the practical implication that insights into the 195 degree of mismatch in one location can be generalized to trends at different latitudes. In 196 the average spring, the timing of blue tit and great tit nestling demand is quite 197 synchronous with the peak resource, which is consistent with birds being able to track 198 spatial variation in optimal timing. Spatial variation in mismatch will still occur if there 199 is substantial year by site variation in spring temperatures, as would arise if the rate of 200 warming varies spatially.

201

202 Of the three bird species, migratory pied flycatchers showed the greatest mismatch with 203 caterpillar availability, the predicted peak nestling period being consistently later than 204 peak caterpillar timing. If pied flycatcher migration times are mediated by African 205 conditions²⁶⁻²⁸ or constraints en-route²⁹, this may limit their ability to advance their 206 arrival times, even if once they have arrived they are able to respond to spring 207 temperatures on breeding grounds ³⁰. However, pied flycatchers provision nestlings 208 with fewer caterpillars and more winged invertebrates compared to blue tit and great 209 tit³¹, so may be less dependent on seasonal caterpillar peaks.

210

211 Our study focuses on mismatch judged from population means within a year and site (or 212 in the case of oak leafing the first date in a population – see methods). There is of course 213 potential for some individuals within a population to be matched even when population 214 means are mismatched, and this could serve to reduce effects of mismatch on local 215 populations³². The residual variance for caterpillars and birds, which corresponds to 216 variance within a year and site, is >30 (Supplementary Table 3), which corresponds to 217 95% of individuals within a 5km grid cell and year being in the range \pm 10.74 days of the 218 population mean. All three of our focal bird species are able to inhabit woodland types 219 other than oak and such habitats may differ in the timing or ephemerality of the

220 caterpillar resource³³, which may have further impacts on spatial variation in

demography and selection.

222

223	While phenological mismatch is frequently raised as a potential impact of climate
224	change, there is an urgent need to compile evidence on the consequences of mismatch
225	for population trends across realistic spatial or ecological (e.g., habitat generalist)
226	settings. A Dutch study on pied flycatchers found that population declines were greater
227	in areas where the caterpillar peak (assumed to be a proxy for mismatch) was earlier ³⁴ ,
228	but the spatial relationship between mismatch and population trends remains largely
229	unstudied ³⁵ . Our study presents the first assessment of whether latitudinal variation in
230	mismatch exists, as is sometimes proposed as a mechanism whereby the adverse
231	impacts of climate change might be buffered, for example, more northern populations
232	being less adversely affected by spring warming compared to southern populations ³⁶ .
233	The lack of evidence we find for latitudinal variation in mismatch between birds and
234	their caterpillar resource suggests mismatch is unlikely to be a driver of spatially
235	varying population trends found in avian secondary consumers ³⁷ .
236	

237 Methods

238

239 **Phenology data.** We obtained pedunculate oak first leafing dates from the UK

240 Phenology Network (<u>https://naturescalendar.woodlandtrust.org.uk/</u>). As a quality

241 control step we excluded outliers (ordinal day $60 \le \text{leafing date} \ge 155$) and retained only

observations from individuals who submitted records in multiple years. Our data for oak

243 leafing differ from the other trophic levels in that they are of first dates within local

- 244 populations. First dates will be earlier than mean dates, but would only be biased if
- there is a trend (latitudinal or correlating with year earliness) in sampling effort,

246 population abundance or variance. We suggest that the first two are unlikely to pose a

247 problem^{14,38}, but we do not have the data to rule out the third source of bias.

249 Arboreal caterpillar biomass was monitored by collecting frass fall from traps set 250 beneath oak trees at 47 sites across Britain¹³. Frass was collected, sorted and the dry 251 weight obtained approximately every 5 days (mean = 4.63) during spring up until day 252 180 at the latest, from which we calculated a frass fall rate in g square m⁻¹ day⁻¹. For 253 traps where frass had been collected on at least five occasions during a spring we 254 identified the sampling period over which the rate of frass fall was highest and then 255 identified the start and end of this interval. Where the highest rate was found over two 256 or more separate periods then we allowed the peak frass interval to span the combined 257 period. At one site, Wytham Woods, the timing of peak frass was estimated 258 statistically³². For these estimates we assumed that the interval was the peak date ± 3 259 days.

260

261 First egg dates (FED) for blue tit, great tit and pied flycatcher were obtained from nests 262 monitored across Britain for the BTO Nest Record Scheme^{7,39}. Few nests were visited 263 daily, and so a minimum FED was calculated by combining information collected over 264 repeated visits before and after laying, including the date of previous visits with no eggs 265 present, clutch size, laying rate and incubation period. A maximum FED was calculated 266 as the date on which eggs were first observed minus the product of the number of eggs 267 and the maximum laying rate, i.e. one egg per day. We excluded observations where the 268 interval between minimum and maximum FED exceeded 10 days.

269

270 We imposed a 'population' structure on all observations by dividing Britain into 50km x

271 50km grid cells. To spatially match observations at a finer scale within these

272 'populations' and to address some of the spatial psuedoreplication of observations we

273 generated a smaller grid structure corresponding to 5km x 5km.

274

275 Analysis. All analyses were conducted in R⁴⁰. We assessed the degree to which 276 consumer species were able to track the phenology of resource/primary producer 277 species across space and time using a generalized linear mixed model⁴¹ with the 278 phenology of the two interacting species included as a bivariate Gaussian response^{6,42}. 279 With the exception of oak, the response was interval censored, meaning that an event 280 was considered to be equally likely to occur at any time within the given interval⁴³. The 281 model included the intercept and latitude as the only fixed effects for each of the 282 response variables, and 50km grid cell, 5km grid cell, year and residual as random 283 effects. For each random term we estimated the (co)variance components, with the 284 exception of the residual term for which we estimated variances but not covariance. For 285 caterpillars we also included trap as a random effect. Our ability to estimate covariances 286 between trophic levels depends principally on the replication of grid cells or years for 287 which we have data for both trophic levels. However, locations where we have data for 288 one trophic level inform our estimates of latitudinal trends, among grid cell variance and 289 year means for that level. Similarly, years for which we have data for only a single 290 trophic level inform our estimates of among year variance and grid cell means or that 291 level. Precise estimates of these means and variances inform our estimates of 292 relationships between the phenology of trophic level pairs. 293 294 We used parameter expanded priors for (co)variances across years and grid cells and 295 inverse-Wishart priors for the residual term. Models were run for 440,000 iterations, 296 with 40.000 iterations removed as burnin and sampling every 100. We assessed model 297 convergence via visual inspection of the posterior distribution trace plots and by 298 running a second chain and ensuring that the multivariate potential scale reduction 299 factor for fixed effects on the two chains was < 1.1⁴⁴. The effective sample sizes for all

300 focal parameters exceeded 1000.

301

The model intercepts estimate the mean phenology of each species at the average latitude in the average year. We used the (co)variance components estimated for grid cells and years to obtain correlation estimates between the two species over space (50km grid cells only) and years, respectively. We estimated the major axis rather than type I regression slope⁴⁵, because we were interested in the degree of phenological tracking, rather than the degree to which the phenology of one species predicts the phenology of another.

309

310 We considered the following bivariate models: (i) peak caterpillar date versus oak first 311 leafing date, (ii) each of the three bird species FED versus peak caterpillar date, and (iii) 312 each bird FED with oak first leafing date. For the bird versus caterpillar we compared 313 the predicted peak resource availability to the predicted peak consumer demand, which 314 we calculated as the predicted FED across latitudes or years plus mean clutch size which 315 varies little at the scale of our study⁴⁶, and incubation duration (both from BTO nest 316 record scheme http://app.bto.org/birdfacts/results/) and the 10 day duration between 317 hatching and peak nestling food demand^{47,48}. While the tree versus bird comparisons are 318 not trophic interactions, we consider them here because we anticipate that oak leafing 319 may be a proxy for peak caterpillar date, with the spatiotemporal replication of first 320 leafing observations greatly exceeding those of peak caterpillar. 321

322 Data availability

323

324 Supplementary materials are available in the online version of the paper. The data that

325 support the findings of this study are available at the following datashare repository:

326 <u>http://dx.doi.org/10.7488/ds/2215</u>. Correspondence and requests for materials and

327 data should be addressed to M.D.B.

328

329 **Code availability**

330	
331	Example R code is available at the following repository:
332	https://github.com/allyphillimore/birds_frass_oak.
333	
334	Acknowledgments
335	
336	We thank the many contributors of the UK Phenology Network and BTO Nest Record
337	Scheme, Jarrod Hadfield for statistical advice, Jack Shutt for helpful discussion and three
338	reviewers for their insightful comments on the manuscript. The UK Phenology Network
339	is coordinated by the Woodland Trust. The Nest Record Scheme is a partnership jointly
340	funded by BTO, JNCC and the fieldworkers themselves. A.B.P. was funded by a NERC
341	Advanced Fellowship (Ne/I020598/1). Figure artwork is by Mike Langman (rspb-
342	images.com).
343	
344	Author contributions
345	
346	M.D.B., A.B.P. and K.W.S. conceived the study. M.D.B led and coordinated the study, A.B.P.
347	analyzed the data and M.D.B and A.B.P wrote the manuscript with K.L.E. making
348	significant contributions. M.D.B., K.W.S., C.J.B., K.B., J.C., K.L.E., C.dF., R.G.N., B.C.S., J.A.S.,
349	J.S.R.C.W. and S.G.W collected frass data, K.L. provided oak leafing data, and D.L and
350	J.W.P-H. provided bird data. All authors commented on and edited the manuscript.
351	
352	Competing financial interests
353	
354	The authors declare no competing financial interests.
355	
356	References
357	

358	1	Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and
359		trophic levels. <i>Nature</i> 535 , 241-245, doi:10.1038/nature18608 (2016).
360	2	Cushing, D. Plankton production and year-class strength in fish
361		populations: an update of the match/mismatch hypothesis. Advances in
362		Marine Biology 26 , 249-293 (1990).
363	3	Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and
364		the match or mismatch between predator requirements and resource
365		availability. <i>Climate Research</i> 33 , 271-283 (2007).
366	4	Edwards, M. & Richardson, A. J. Impact of climate change on marine
367		pelagic phenology and trophic mismatch. <i>Nature</i> 430 , 881-884 (2004).
368	5	Donnelly, A., Caffarra, A. & O'Neill, B. F. A review of climate-driven
369		mismatches between interdependent phenophases in terrestrial and
370		aquatic ecosystems. International Journal of Biometeorology 55 , 805-817
371		(2011).
372	6	Phillimore, A. B., Stålhandske, S., Smithers, R. J. & Bernard, R. Dissecting
373		the contributions of plasticity and local adaptation to the phenology of a
374		butterfly and its host plants. <i>American Naturalist</i> 180 , 655 (2012).
375	7	Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D.
376		Passerines may be sufficiently plastic to track temperature-mediated
377		shifts in optimum lay date. <i>Global Change Biology</i> 22 , 3259-3272,
378		doi:10.1111/gcb.13302 (2016).
379	8	Bourne, E. C. et al. Between migration load and evolutionary rescue:
380		dispersal, adaptation and the response of spatially structured populations
381		to environmental change. Proceedings of the Royal Society of London B:
382		Biological Sciences 281 , 20132795 (2014).
383	9	Thackeray, S. J. <i>et al.</i> Trophic level asynchrony in rates of phenological
384		change for marine, freshwater and terrestrial environments. <i>Global</i>
385		Change Biology 16 , 3304-3313 (2010).
386	10	Both, C., Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate
387		change and unequal phenological changes across four trophic levels:
388		constraints or adaptations? <i>Journal of Animal Ecology</i> 78 , 73-83,
389		doi:10.1111/j.1365-2656.2008.01458.x (2009).
390	11	Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding
391		and improves synchrony of food demand and food availability in a boreal
392		passerine. <i>Global Change Biology</i> 17 , 3002-3009, doi:10.1111/j.1365-
393		2486.2011.02430.x (2011).
394	12	Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer
395		springs lead to mistimed reproduction in great tits (<i>Parus major</i>).
396		Proceedings of the Royal Society B: Biological Sciences 265 , 1867-1870
397		(1998).
398	13	Smith, K. W. et al. Large-scale variation in the temporal patterns of the
399		frass fall of defoliating caterpillars in oak woodlands in Britain:
400		implications for nesting woodland birds. <i>Bird Study</i> 58 , 506-511,
401		doi:10.1080/00063657.2011.616186 (2011).
402	14	Tansey, C. J., Hadfield, J. D. & Phillimore, A. B. Estimating the ability of
403		plants to plastically track temperature-mediated shifts in the spring
404		phenological optimum. <i>Global Change Biology</i> 23 , 3321–3334 (2017).
405	15	Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E.
406		Climate change and unequal phenological changes across four trophic
407		levels: constraints or adaptations? Journal of Animal Ecology 78, 73-83,
408		doi:10.1111/j.1365-2656.2008.01458.x (2009).

409	16	Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D.
410		Plasticity may be sufficient to track temperature-mediated shifts in
411		passerine optimum lay date. <i>Global Change Biology</i> 22 , 3259-3272
412		(2016).
413	17	Buse, A., Dury, S., Woodburn, R., Perrins, C. & Good, J. Effects of elevated
414		temperature on multi-species interactions: the case of Pedunculate Oak,
415		Winter Moth and Tits. <i>Functional Ecology</i> 13 , 74-82 (1999).
416	18	Lundberg, A. & Alatalo, R. V. <i>The Pied Flycatcher</i> . (T & A D Poyser, 1992).
417	19	Perrins, C. M. Tits and their caterpillar food supply. <i>Ibis</i> 133 , 49-54,
418		doi:10.1111/j.1474-919X.1991.tb07668.x (1991).
419	20	Charmantier, A. <i>et al.</i> Adaptive phenotypic plasticity in response to
420		climate change in a wild bird population. <i>Science</i> 320 , 800-803 (2008).
421	21	Cresswell, W. & McCleery, R. How great tits maintain synchronization of
422		their hatch date with food supply in response to long-term variability in
423		temperature. Journal of Animal Ecology 72, 356-366, doi:10.1046/j.1365-
424		2656.2003.00701.x (2003).
425	22	Eeva, T. & Lehikoinen, E. Polluted environment and cold weather induce
426	22	laying gaps in great tit and pied flycatcher. <i>Oecologia</i> 162 , 533-539
427		(2010).
428	23	Sanz, J. J. Effect of food availability on incubation period in the Pied
429	23	flycatcher (<i>Ficedula hypoleuca</i>). <i>Auk</i> 113 , 249-253 (1996).
429	24	Tomás, G. Hatching date vs laying date: what should we look at to study
430 431	24	
431 432		avian optimal timing of reproduction? <i>Journal of Avian Biology</i> 46 , 107-
	25	112, doi:10.1111/jav.00499 (2015).
433	25	Morrison, C. A., Robinson, R. A., Butler, S. J., Clark, J. A. & Gill, J. A.
434		Demographic drivers of decline and recovery in an Afro-Palaearctic
435		migratory bird population. <i>Proceedings of the Royal Society B: Biological</i>
436	20	<i>Sciences</i> 283 , doi:10.1098/rspb.2016.1387 (2016).
437	26	Both, C., G Bijlsma, R. & E Visser, M. Climatic effects on timing of spring
438		migration and breeding in a long-distance migrant, the pied flycatcher
439	07	Ficedula hypoleuca. Journal of Avian Biology 36 , 368-373 (2005).
440	27	Ouwehand, J. et al. Light-level geolocators reveal migratory connectivity
441		in European populations of pied flycatchers Ficedula hypoleuca. <i>Journal of</i>
442		Avian Biology 47, 69-83, doi:10.1111/jav.00721 (2016).
443	28	Ouwehand, J. & Both, C. African departure rather than migration speed
444		determines variation in spring arrival in Pied flycatchers. Journal of
445		Animal Ecology 86 , 88-97, doi:10.1111/1365-2656.12599 (2017).
446	29	Both, C. & te Marvelde, L. Climate change and timing of avian breeding and
447		migration throughout Europe. <i>Climate Research</i> 35 , 93-105,
448		doi:10.3354/cr00716 (2007).
449	30	Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on
450		breeding grounds are more important drivers of breeding phenology in
451		migrant birds than carry-over effects from wintering grounds. <i>Biology</i>
452		<i>Letters</i> 9 , doi:10.1098/rsbl.2013.0669 (2013).
453	31	Cholewa, M. & Wesolowski, T. Nestling food of European hole-nesting
454		passerines: do we know enough to test the adaptive hypotheses on
455		breeding seasons? Acta Ornithologica 46 , 105-116,
456		doi:10.3161/000164511x625874 (2011).
457	32	Hinks, A. E. <i>et al.</i> Scale-dependent phenological synchrony between
458		songbirds and their caterpillar food source. <i>The American Naturalist</i> 186 ,
459		84-97, doi:10.1086/681572 (2015).
		, , ()

460	33	Burger, C. <i>et al.</i> Climate change, breeding date and nestling diet: how
461		temperature differentially affects seasonal changes in pied flycatcher diet
462		depending on habitat variation. <i>Journal of Animal Ecology</i> 81 , 926-936,
463		doi:10.1111/j.1365-2656.2012.01968.x (2012).
464	34	Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and
465	01	population declines in a long-distance migratory bird. <i>Nature</i> 44 , 81-83
466		(2006).
467	35	McLean, N., Lawson, C., Leech, D. I. & van de Pol, M. Predicting when
468	55	climate-driven phenotypic changes affects population dynamics. <i>Ecology</i>
469		Letters 19 , 595-608 (2016).
409	36	Morrison, C. A., Robinson, R. A., Clark, J. A. & Gill, J. A. Spatial and temporal
471	30	variation in population trends in a long-distance migratory bird. <i>Diversity</i>
472		and Distributions 16 , 620-627, doi:10.1111/j.1472-4642.2010.00663.x
473	27	(2010).
474	37	Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent
475		population declines in Afro-Palaearctic migratory birds: the influence of
476		breeding and non-breeding seasons. <i>Diversity and Distributions</i> 19 , 1051-
477		1058, doi:10.1111/ddi.12084 (2013).
478	38	Phillimore, A. B., Stålhandske, S., Smithers, R. J. & Bernard, R. Dissecting
479		the contributions of plasticity and local adaptation to the phenology of a
480		butterfly and its host plants. <i>American Naturalist</i> 180 , 655-670 (2012).
481	39	Crick, H. Q., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its
482		value for science and conservation. <i>Bird Study</i> 50 , 254-270 (2003).
483	40	R: A language and environment for statistical computing (R Foundation
484		for Statistical Computing. URL http://www.R-project.org, Vienna, Austria,
485		2015).
486	41	Hadfield, J. D. MCMC methods for multi-response generalized linear mixed
487		models: the MCMCglmm R package. <i>Journal of Statistical Software</i> 33 , 1-
488		22 (2010).
489	42	Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in
490		spawning date between populations of common frog reveal local
491		adaptation. Proceedings of the National Academy of Sciences 107, 8292-
492		8297 (2010).
493	43	Hadfield, J. D., Heap, E. A., Bayer, F., Mittell, E. A. & Crouch, N. M. A.
494		Intraclutch differences in egg characteristics mitigate the consequences of
495		age-related hierarchies in a wild passerine. <i>Evolution</i> 67 , 2688-2700,
496		doi:10.1111/evo.12143 (2013).
497	44	Brooks, S. P. & Gelman, A. General methods for monitoring convergence of
498		iterative simulations. <i>Journal of computational and graphical statistics</i> 7 ,
499		434-455 (1998).
500	45	Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting
501	10	methods for allometry. <i>Biological Reviews</i> 81 , 259-291 (2006).
502	46	Evans, K. L., Leech, D. I., Crick, H. Q. P., Greenwood, J. J. D. & Gaston, K. J.
502	10	Latitudinal and seasonal patterns in clutch size of some single-brooded
505		British birds. <i>Bird Study</i> 56 , 75-85, doi:10.1080/00063650802648291
505		(2009).
505	47	Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and
500	77	blue tits (<i>Parus major</i> and <i>P. caeruleus</i>) in relation to caterpillar
507		development, and its consequences for nestling growth and fledging
509 510		weight. <i>Journal of Animal Ecology</i> 68 , 708-718, doi:10.1046/j.1365-
510		2656.1999.00318.x (1999).

48	Royama, T. Factors governing feeding rate, food requirement and brood size of nestling Great tits <i>Parus major</i> . <i>Ibis</i> 108 , 313-347 (1966).
Figure	e legends
Fig. 1	Number of years of data for each 50km grid cell used for each trophic level
and bi	ird species. a for oak, b for frass, with trapping locations indicated by dots, c for
blue ti	t, d for great tit and e for pied flycatcher.
Fig. 2	The relationship between latitude and the phenology of oak leafing and
peak o	caterpillar abundance (a) and the among year relationship between the
timing	g of the two trophic levels (b). In both panels the solid lines correspond to the
mean	prediction and the shaded areas correspond to the posterior distribution of
predic	tions under type I regression (a) and major axis regression (b). In a , dark green
shadeo	d area shows oak leafing and light green shaded area shows the caterpillar peak.
In b , d	ata points represent the posterior means for the best linear unbiased predictions
for yea	ars that have observations for both trophic levels. Dashed line corresponds to
unity;	this is plotted to illustrate the relative slopes. An offset intercept is expected
owing	to the growth and development of caterpillars.
Fig. 3	The relationship between latitude and mismatch (a – c) and the timing of
peak f	f rass versus first egg date among years (d – f) , with a and d for blue tits, b and e
for gre	eat tits and ${f c}$ and ${f f}$ pied flycatchers. In panels a – c mismatch is defined as the
timing	of peak avian demand minus the timing of peak frass availability, with peak
nestlir	ng demand calculated as being when nestlings are predicted to be 14 days old (see
metho	ds). In panels d – f datapoints represent the posterior means for the best linear
	Figure Fig. 1 and bi blue ti Fig. 2 peak of timing mean p predic shaded In b, d for yea unity; owing Fig. 3 peak f for gre timing nestlir

539 unbiased predictions for years that have observations for both birds and caterpillars.

- 540 Dashed line corresponds to unity. In d f the black line is the among year mean major
- axis slope and the red line is the predicted relationship between peak resource
- 542 availability and peak demand. Transparent gray lines represent the posterior
- 543 distribution of predictions.
- 544
- 545 **Table 1 | Correlation (a) and major axis slopes (b) of the phenology of higher**
- 546 **trophic level on lower trophic level in time (bold, upper right) and de-trended**

547 space (lower left). 95% credible intervals in parentheses.

(a)

(b)

- 548
- 549

	Oak leafing	Peak caterpillar	Blue tit FED	Great tit FED	Pied flycatchei FED
Oak leafing	-	0.69 (0.295 - 0.963)	0.754 (0.537 - 0.918)	0.808 (0.62 - 0.95)	0.719 (0.409 - 0.934)
Peak caterpillar	0.415 (-0.153 - 0.945)	-	0.724 (0.388 - 0.949)	0.691 (0.297 - 0.951)	0.834 (0.54 - 0.984)
Blue tit FED	0.665 (0.463 - 0.86)	0.485 (-0.028 - 0.963)	-	-	-
Great tit FED	0.713 (0.49 - 0.907)	0.534 (-0.012 - 0.966)	-		-
Pied flycatcher FED	0.547 (0.147 - 0.913)	0.306 (-0.498 - 0.959)	-	-	-

550

551

	Oak leafing	Peak caterpillar	Blue tit FED	Great tit FED	Pied flycatcher FED
Oak leafing	-	1.788 (0.497 - 3.896)	0.667 (0.409 - 0.935)	0.744 (0.485 - 1.023)	0.413 (0.228 - 0.621)
Peak caterpillar	3.008 (-13.635 - 20.407)	-	0.498 (0.189 - 0.775)	0.527 (0.154 - 0.88)	0.343 (0.2 - 0.521)
Blue tit FED	1.126 (0.675 - 1.626)	1.061 (-0.55 - 3.452)	-	-	-
Great tit FED	1.128 (0.7 - 1.639)	0.778 (-0.391 - 2.905)	-	-	-
Pied flycatcher FED	1.113 (0.174 - 2.814)	2.471 (-3.121 - 5.03)	-	-	-