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Perturbation based approximation methods are widely used in preliminary design

studies of thin-walled structures. In this work, postbuckling analysis of a variable angle

tow (VAT) composite plate is performed using the perturbation-based asymptotic nu-

merical method (ANM) which transforms the nonlinear problem into a set of well-posed

recursive linear problems. These linear problems are solved using a novel generalized

di�erential-integral quadrature method and the postbuckling solutions are sought over

a �nite load step size around the critical buckling point using asymptotic expansions.

The accuracy of the ANM in evaluating the initial postbuckling of VAT plates under

compression is investigated. Subsequently, a novel postbuckling optimization approach

based on ANM results is proposed for design of VAT laminates. The postbuckling fea-

tures obtained from ANM are used in an e�cient two-level optimization framework
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for design of VAT plates. At the �rst level, a globally convergent method of moving

asymptotes is adopted to determine the optimal lamination parameter distributions

that maximize the postbuckling performance of the VAT plate. At the second level,

a genetic algorithm is used to convert the optimal lamination parameter distributions

into realistic VAT layups. The optimization studies are performed for square VAT

plates for axial/bi-axial compression under di�erent in-plane boundary conditions.
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Nomenclature

a,b,h = Length, width and thickness of the plate (m)

u,v,w = In-plane and Out-of-plane displacement �eld (m)

Nx, Ny = Number of grid points along x, y directions

Tx, Ty = First-order derivative matrix operators

Txx, Tyy, Txy = Second-order derivative matrix operators

M = Integral quadrature matrix operator over a surface area Ω

N̄x, N̄y, N̄xy = In-plane stress resultants (N/m)

N
(k)
m (ū), N

(k)
n (v̄) = B-spline basis functions varying along ū and v̄ directions

Mx,My,Mxy = Moment resultants (N-m/m)

r = Perturbation parameter

λc = Critical buckling load (N)

Pmn = Control points

V (p), V̄ (p) = Mixed and pure displacement solutions of the pth order problem

C(p) = Postbuckling load coe�cient of order p

K, Kg = Structural and geometrical sti�ness matrix of the plate structure

A,B,D = Laminate in-plane, coupling and bending sti�ness matrices

Γ0,1,2,3,4 = Matrices expressed as a function of material invariants

Γ
(τ)
mn = Lamination parameters at each pre-de�ned control point

µ, ν = Indices of the outer and inner iterations

α
(µ)
j , β

(µ)
j = Upper and lower moving asymptotes

θ(z̄) = Layup angle as a function of normalized through-the-thickness coordinate

ξA1,2,3,4 = In-plane lamination parameters

ξB1,2,3,4 = Coupling lamination parameters

ξD1,2,3,4 = Out-of-plane lamination parameters

εx = Axial end-shortening strain

Ξ = Knot vector
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I. Introduction

Modern composite manufacturing technologies based on tow steering provide enhanced freedom

to design e�cient light-weight composite structures where sti�ness varies continuously in the plane of

each lamina. In the design process of thin and slender variable angle tow (VAT) panels, it can often

be imperative to consider buckling as an important design constraint. Numerous works have been

reported to maximize the buckling performance of VAT laminates [1�3]. Interestingly, the optimal

sti�ness distributions for maximizing buckling eigenvalues oppose that for maximizing postbuckling

axial sti�ness (chapter 6 by Weaver in Ref. 4). Whilst buckling performance is a function of

bending sti�ness, postbuckling behavior is a function of membrane sti�ness of the composite panel.

Therefore, it is necessary to improve both the buckling and postbuckling performance for a better

structural response.

In the current design philosophy the operating limit load for primary aircraft structures can

be driven by buckling load. It is known that plate-like structures can carry loads in to the post-

buckling region without material failure. New design philosophies allow the operating load limit

to extend into the postbuckling regime that enables reduction of weight of laminated composite

structures. Thus, we need tools to accurately simulate the structural behavior in the postbuckling

regime. Incremental �nite element models are a reliable option for studying postbuckling response,

however computational e�ort required is signi�cant and not necessarily appropriate for optimization

studies. Therefore, new numerical tools which are quick and reasonably accurate for studying the

postbuckling response of VAT laminates are required in initial design studies.

Much work has been reported on semi-analytical modeling methods for studying the postbuck-

ling behavior of structures. Stein [5] proposed a perturbation approach to model the initial post-

buckling behavior of isotropic plates under di�erent in-plane boundary conditions. Later, Chandra

and Raju [6] extended Stein's approach for an orthotropic plate. Harris [7] developed a closed-form

expression to determine the initial postbuckling sti�ness of orthotropic composite plates. Pandey

and Sherbourne [8] derived expressions for initial postbuckling sti�ness of composite plates and used

them for optimization studies. Zhang and Shen [9] employed the perturbation approach similar to

Stein [5], but employed Airy's stress function to derive the closed-form asymptotic postbuckling
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solutions for plates under axial and biaxial compression. Recently, Wu et al. [10] enhanced Zhang

and Shen's work for composite plates and derived explicit closed-form expressions for both the end

shortening strain and maximum transverse de�ection as a function of material sti�ness and stress

resultants. The improved accuracy of their postbuckling solution is mainly due to the selection of

perturbation parameter based on in-plane stress resultant instead of maximum transverse displace-

ment. Rahman et al. [11] used a �nite element perturbation approach to study the postbuckling

behavior of VAT plates. In their approach, the postbuckling solutions were computed by expanding

the load and displacement �elds around the buckling load up to second order �elds. This approach

resulted in reasonably accurate solutions very close to the buckling point and exhibits erroneous so-

lutions for a �nite load step in the postbuckling regime for straight �ber as well as VAT plates. This

problem can be overcome by including higher order asymptotic �elds in evaluating the postbuckling

response of VAT plates. Damil and Potier-Ferry [12] proposed an asymptotic numerical method

(ANM) which is a combination of a perturbation technique and a �nite element method to solve

the postbuckling problem of elastic structures. ANM transforms the nonlinear problem into a set

of well-posed recursive linear problems solved using �nite element method. ANM allows a generic

approach to compute the higher order asymptotic solutions up to any order and provides reasonably

accurate initial postbuckling solution. Azrar et al. [13] applied ANM to compute the postbuckling

behavior of elastic plates and shells. Cochelin et al. [14] used ANM along with Padé approximants

to improve the range of convergence of the postbuckling solution of plate and shell structures. In

this work, the ANM approach is used to solve the postbuckling problem of VAT laminates under

compression loading. A novel generalized di�erential-integral quadrature method is used instead of

�nite element method to solve the recursive set of linear problems obtained using ANM.

The design and optimization problem of VAT composite laminates poses many di�culties in

terms of the non-convexity of the objective function, the number of design variables and the man-

ufacturing constraints of tow placement. Ghiasi et al. [15] discussed various optimization methods

and their essence in solving the design optimization problem of VAT laminates. Wu et al. [16]

employed a genetic algorithm to determine the optimal VAT con�guration for maximizing the post-

buckling performance. Henrichsen et al. [17] used Koiter's asymptotic method along with continuous
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�ber angle optimization for optimizing the postbuckling performance of VAT plates. Diaconu and

Weaver [18, 19] employed a two-level optimization strategy for the postbuckling design of long sym-

metrical and unsymmetrical composite plates. Wu et al. [20] extended the two-level optimization

framework to design VAT laminates with improved buckling performance. In this work, the two-

level optimization strategy is adopted to design VAT laminates for maximizing their postbuckling

performance.

The main objective of this paper is to extract postbuckling parameters of composite plates

using ANM and subsequently use them as input to an optimization framework for design of VAT

laminates. At the �rst step, the nonlinear postbuckling problem of VAT plates is converted into a

set of linear problems using ANM. The resulting linear problems are solved using the generalized

di�erential-integral quadrature method (GDIQM). Usage of GDIQM enables the C1 continuity

requirements of a Kirchho�-Love plate to be modeled more simply than with �nite element methods.

The numerical implementation of the GDIQM is done in a MATLAB software environment to

compute the initial postbuckling solution of VAT plates. Padé approximants are then used to expand

the ANM perturbed solutions so as to increase the range of validity of the postbuckling solution

around the buckling point. The accuracy and the range of validity of the initial postbuckling solution

computed using ANM for simply supported symmetric VAT plates under compression is investigated

for di�erent in-plane boundary conditions. Next, a two-level optimization strategy is used for

maximizing the postbuckling performance of VAT laminates based on ANM results. In the �rst

optimization level, lamination parameters are used as design variables to perform the postbuckling

optimization. In this work, the optimization study is restricted to orthotropic VAT laminates which

are de�ned using four lamination parameters (ξA,D1,2 ). B-splines are used to de�ne the lamination

parameter distribution over the domain of the plate and the distributions are speci�ed using a set of

control points and a knot vector. The lamination parameters are not independent and are connected

by a set of nonlinear constraints to de�ne the feasible region [21]. The nonlinear constraints of the

lamination parameters were enforced on the control points by employing the convex-hull property

of the B-splines [20]. The gradient-based, globally convergent method of moving asymptotes is

adopted to determine the optimal lamination parameter distributions of the VAT plate. In the
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second optimization level, a genetic algorithm converts the optimal lamination parameters into

realistic VAT layups. The postbuckling optimization studies are carried out for simply supported

square VAT plates under axial/bi-axial compression for di�erent in-plane boundary conditions.

The paper is organized as follows. In Section 2, the formulation of the ANM approach in solving

the postbuckling of VAT plates is presented. Section 3 presents the numerical implementation of

the generalized di�erential-integral quadrature method to perform postbuckling analysis of VAT

laminates. In Section 4, the lamination parameters and the nonlinear constraints that governs

their feasible region is presented. In Section 5, the two-level optimization framework employed for

design of VAT laminates including globally convergent method of moving asymptote and genetic

algorithm is discussed. Section 6 presents the optimization results of VAT laminates for maximizing

the postbuckling performance is presented.

II. Asymptotic Numerical Method

The postbuckling problem of elastic structures is usually solved using a predictor-corrector

algorithm based on the Newton-Raphson method or the Riks arc-length method. This approach

can be successful in solving the nonlinear problem, but its main limitation is the high computational

time involved, which makes it unsuitable for optimization studies. An alternative approach is to rely

on perturbation methods for solving the postbuckling problem, which provide accurate solutions near

the buckling load and requires less computational e�ort. In Koiter's perturbation method [23, 24],

the displacement and loads are expanded up to second order displacement �elds which provide

qualitative results describing the postbuckling stability and imperfection sensitivity of the structure.

The postbuckling solutions based on Koiter's approach are valid near the buckling point and are

not reliable remote from it. The range of validity of Koiter's approach around the buckling point

can be increased by considering cubic and higher order displacement �elds. In the present work, the

nonlinear postbuckling problem of VAT laminate is solved using a perturbation approach termed the

asymptotic numerical method (ANM) proposed by Damil and Potier-Ferry [12]. The ANM solution

is sought by means of considering asymptotic expansions higher than second order displacement

�elds for better accuracy and wider range of validity. In the ANM approach, the nonlinear problem
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is converted into a series of well-posed recurrent linear problems by using asymptotic expansions of

the displacement and stress resultant �elds about the critical buckling load [13, 14].

In symmetric VAT panels, sti�ness (A,D matrices) varies with x − y coordinates and the

constitutive equation in partial inverse form is given by,
ε

M̄

 =

 A∗(x, y) 0

0 D(x, y)



N̄

κ

 (1)

where N̄ , M̄ are the stress and moment resultants, A∗ = A−1 is the compliance matrix and D is

the bending sti�ness matrix. Based on Kirchho�-Love plate theory, the nonlinear mid-plane strains

ε and curvatures κ are de�ned as

ε = εL + εNL,

εL =


u,x

u,y

u,y + v,x


, εNL =



1
2w

2
,x

1
2w

2
,y

w,xw,y



κ =


−w,xx

−w,yy

−2w,xy



(2)

where u, v, w are the displacements. The Hellinger-Reissner [25] mixed variational energy form of

the plate is used for asymptotic expansions and is given by

L
(
Uα,W, N̄

)
=

∫
Ω

ε : N̄ − 1

2
N̄ : A∗ : N̄ +

1

2
κ : D : κ dΩ− λP (Uα,W ) (3)

where Uα = {u, v} are the in-plane displacements, W = {w} is the out-of-plane displacement in the

transverse direction and A : B represent the inner product of tensors (A,B). De�ning the mixed

unknown vector

U =


Uα

W

N̄


,

the governing equation of the model can be obtained by taking variation of the energy functional
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Eqn. 3 with respect to U and is given by,

δ (L (U)) = 0, ∀δU,

〈〈L(U), δU〉〉+ (λ− λc) 〈〈L′(U), δU〉〉+ 〈〈Q(U,U), δU〉〉 = 0 ∀δU,
(4)

where λc is the critical buckling load, 〈〈., .〉〉 is a scalar product, 〈〈L(U), δU〉〉, 〈〈L′(U), δU〉〉 are

linear operators and 〈〈Q(U,U), δU〉〉 is a bi-linear operator. The operators in Eqn. 4 are expressed

as

〈〈L(U), δU〉〉 =
∫
Ω

N̄ : δεL + (εL −A∗ : N̄) : δN̄ + κ : D : δκdΩ + λc
∫
Ω

N̄0 : δεNLdΩ,

〈〈L′(U), δU〉〉 =
∫
Ω

N̄0 : δεNLdΩ,

〈〈Q(U,U), δU〉〉 =
∫
Ω

εNL : δN̄ + N̄ : δεNLdΩ

(5)

Using the implicit function theorem, the unknown U and the load parameter λ can be expanded

into a series in parameter r,

λ− λc =
∞∑
p=1

C (p) rp,

U = U0 +
∞∑
p=1

rpV (p)

(6)

with V (p) orthogonal to V (1) for p ≥ 2,

〈〈V (p), V (1)〉〉 = 0, p ≥ 2 (7)

The principle of ANM is to compute successively a number of vectors V (p) and coe�cients C(p)

up to a given order n. The polynomials λ(r, n), U(r, n) are approximations of the exact solution

branch. Substitution of Eqn. 6 into Eqn. 5 results in a set of linear problems in V (p), C(p) given

by

〈〈L(V (p)), δU〉〉 = 〈〈F (p), δU〉〉 ∀δU

〈〈L(V (p)), V (1)〉〉 = 0

C(p− 1) = 1
〈〈L′(V (1)),V (1)〉〉 ×

[
−
p−2∑
k=1

C(k) 〈〈L′(V (p− k)), V (1)〉〉 −
p−1∑
k=1

〈〈Q(V (k), V (p− k)), V (1)〉〉
]

(8)

The force term F (p) is de�ned as

〈〈F (p), δU〉〉 =
∫
Ω

FUα (p)δW,α + F N̄αβ(p)δN̄,αβdΩ

FUα (p) = −
p−1∑
k=1

(C(r)N̄0
αβ + N̄k

αβ)W,β(p− k)

F N̄αβ(p) = −
p−1∑
k=1

1
2W,α(k)W,β(p− k)

(9)
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The next step is to convert the linear mixed variable problem given by Eqns. 8, 9 into linear dis-

placement problems and the details of the conversion are given in the work by Azrar et al. [13]. For

�at plate-like structures loaded by in-plane forces, the fundamental solution is a pure in-plane elas-

ticity problem with no transverse de�ections. The �rst bifurcation is symmetric and the associated

problem is a pure bending deformation. For plates, Eqn. 6 can be simpli�ed into

λ− λc = C(2)r2 + C(4)r4 + C(6)r6 + ....

U − U0 = r


0

W (1)

0


+ r2


Uα(2)

0

N̄αβ(2)


+ r3


0

W (3)

0


+ r4


Uα(4)

0

N̄αβ(4)


+ ....

(10)

where r is the perturbation parameter. The coe�cients C(p) are zero when p is odd. Similarly,

V (p) is in-plane displacement when p is even and out-of-plane displacement if p is odd. The ANM

solution given by Eqn. 10 coincides with the exact solution for small values of the parameter r

because the terms rn are close to zero for r < 1. But beyond a critical point r > 1, the terms

rn grow rapidly and the ANM solution starts to diverge. This problem is overcome by using Padé

approximation[14] to de�ne the displacement and load �elds given by,

λ− λc =
n∑
k=1

fk(r)Ck

U − U0 =
n∑
k=1

fk(r)Uk

fk = Pk(r)
Qk(r)

(11)

where fk are the Padé approximants. Therefore, usage of Padé approximation in the asymptotic

expansions increases the radius of convergence of ANM solutions when compared to using polynomial

expansions. The set of linear displacement problems in Eqn. 9 are solved using a generalized

di�erential-integral quadrature method explained in the next section.

III. Generalized di�erential-integral quadrature method

Di�erential quadrature method (DQM) has been successfully applied to solve the partial dif-

ferential equations that governs the buckling and postbuckling behavior of VAT laminates [26, 27].

The DQM approach is based on the approximation of a derivative using a weighted linear sum of the

function values at discretised grid points in the domain. In this work, the generalised di�erential-
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integral quadrature method (GDIQM) is applied to solve di�erent order linear variational integral

expressions of the postbuckling problem obtained from the ANM approach. The di�erential and

integral operators present in the linear problems (Eqn. 11) are approximated using weighting ma-

trices and solved for the unknowns V̄ (p), C(p). The GDIQM advances on the quadrature rule

proposed by Shu et al. [28, 29]. White et al. [30] introduced the GDIQM approach to solve the

integro-di�erential postbuckling equations of VAT laminates derived using Koiter's approach. The

postbuckling response of laminates were limited to the quadratic expansion displacement �elds and

resulted in good agreement in the vicinity of the buckling point. In current work, as a novelty,

GDIQM is used to solve a set of linear problems (Eqn. 9) obtained using ANM for computing the

postbuckling response over a �nite load step around the buckling point.

A. Di�erentiation weighting matrix

Assume that both the independent variables (x, y) and dependent variables F (x, y) have been

discretised and assembled into a grid (x, y)i and Fi respectively, where i is the nodal index ranges

between i = 1..NxNy. The terms Nx, Ny represent the number of grid points along x and y

directions. The standard generalized di�erential quadrature [28] equation is,

∂Fi
∂x

=

NxNy∑
i=1

T xikFk with k = 1..NxNy (12)

where T xik represents the weighting coe�cient matrix of the �rst order derivative. Making the grid-

point variables, Fi, the components of the vector F, the �rst-order partial derivative is written in

matrix form as,

∂

∂x
F = TxF,

∂

∂y
F = TyF, (13)

where Tx,Ty are the �rst-order derivative matrix operators along x and y directions. Similarly, we

can de�ne second-order partial derivatives as,

∂2

∂x2
F = TxxF,

∂2

∂y2
F = TyyF,

∂2

∂x∂y
F = TxyF (14)

where Txx,Tyy,Txy are the second-order derivative matrix operators.
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B. Integration weighting matrix

Given a simple 1D function f (x), inde�nite integration weighting coe�cients for an arbitrary

grid spacing can be calculated using the Moore-Penrose pseudo inverse operation [31]. This is

written as

(∫
f dx

)
i

≈ jxikfk + c with jx = (Tx)
+

; i, k = 1..N (15)

where c is a constant of integration and ()
+
is the Moore-Penrose pseudo inverse operation. Eqn

15 is used to calculate weighting coe�cients for de�nite integration. These are calculated by simply

subtracting the numerical value of the inde�nite integrals at i = 1 and N . Hence:

∫ lx

0

f dx ≈ wxkfk with wxk = jxNk − jx1k (16)

where wxk are the elements of the integration vector wx. In the two-dimensional case eqn. 16 is

written:

∫ lx

0

∫ ly

0

F (x, y) dxdy ≈ wxyF (17)

The vector wxy is assembled for a particular grid-point numbering scheme using eqns. 15 and 16.

The integral of a product of two functions F (x, y) and G (x, y) can be calculated approximately

by constructing a matrix, M = diag (wxy), such that

∫ lx

0

∫ ly

0

F (x, y)G (x, y) dxdy ≈ FTMG

where M is the integral quadrature matrix operator acting on a function de�ned over a surface area Ω

C. Computation of V̄ (p) and C(p) using GDIQM

Applying GDIQM to Eqn. 9 then,

[K − λcKg]V̄ (p) = [F̄ (p)] (18)

where [K] is the sti�ness matrix of the plate structure, [Kg] is the geometric sti�ness of the structure

and V̄ (p) is the solution of the pth order problem. In addition, the orthogonality condition between
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V̄ (p) and V̄ (1) should be added to obtain a unique solution. This condition is enforced using a

Lagrange multiplier approach given by K − λcKg Ḡ∗

Ḡ∗t 0



V̄ (p)

µ

 =


F̄ (p)

0

 (19)

where µ is the Lagrange multiplier and Ḡ∗ = [K]V̄1. The solutions V̄ (p) was then used to evaluate

the postbuckling coe�cients C(p). The generality of GDIQM when compared with DQM allows

di�erent types of boundary conditions to be implemented e�ectively with less numerical e�ort. The

postbuckling problem of VAT laminates under di�erent in-plane boundary conditions is studied

using GDIQM and the equations are given in the Appendix.

IV. Lamination Parameters

The sti�ness matrices A(x,y),B(x,y) and D(x,y) are expressed as a linear combination of

lamination parameters and material invariants [32]. In the present study, only specially orthotropic

VAT laminates are considered. In other words, there is no in-plane and out-of-plane coupling

(B = 0), no shear-extension coupling (A16 = 0, A26 = 0) and no �exural-twisting coupling (D16 =

0, D26 = 0). As a result, two in-plane and two out-of-plane lamination parameters are su�cient to

de�ne the sti�ness matrices as,



A11

A22

A12

A66


= h



1 ξA1 ξA2 0 0

1 −ξA1 ξA2 0 0

0 0 −ξA2 1 0

0 0 −ξA2 0 1





U1

U2

U3

U4

U5


(20)



D11

D22

D12

D66


=
h3

12



1 ξD1 ξD2 0 0

1 −ξD1 ξD2 0 0

0 0 −ξD2 1 0

0 0 −ξD2 0 1





U1

U2

U3

U4

U5


(21)
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where U1, U2, U3, U4, U5 are material invariants [33]. The four lamination parameters are de�ned

by,

ξA1,2 =

∫ 1

−1

[cos(2θ(z̄)) cos(4θ(z̄))] dz̄

ξD1,2 =
3

2

∫ 1

−1

[cos(2θ(z̄)) cos(4θ(z̄))] dz̄

(22)

where θ(z̄) is the layup function in the thickness direction of the plate.

A. Feasible Region of Lamination Parameters

For variable angle tow (VAT) composites, lamination parameters are continuously varying with

respect to the x and y coordinates. The corresponding nonlinear constraints for lamination pa-

rameters should be satis�ed for all x, y. By not satisfying the constraints either gives rise to an

unstable optimization process or could result in a physically infeasible optimal lamination con�g-

uration. Hence, an accurate boundary de�nition of the feasible region of lamination parameters is

vital to the optimization of VAT laminates. The feasible region of the four lamination parameters

(ξA,D1,2 ) are well-bounded by a set of closed-form expressions [22], which are derived from Bloom�eld

et al.'s [34] and Wu et al.'s work [20],

5(ξA1 − ξD1 )2 − 2(1 + ξA2 − 2(ξA1 )2) ≤ 0 (23)

(ξA2 − 4tξA1 + 1 + 2t2)3 − 4(1 + 2|t|+ t2)2(ξD2 − 4tξD1 + 1 + 2t2) ≤ 0 (24)

(4tξA1 − ξA2 + 1 + 4|t|)3 − 4(1 + 2|t|+ t2)2(4tξD1 − ξD2 + 1 + 4|t|) ≤ 0 (25)

where t = [−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1]. These 23 equations in Eqns. 23-25 are

able to bound the feasible region of the four lamination parameters (ξA,D1,2 ) with reasonably good

accuracy. Hence, our approach requires much less computational e�ort in a optimization process

than the convex hull approach [35], which employs 37, 126 linear equations to approximately bound

the feasible region.
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V. Optimization framework for design of VAT panels

The design of VAT panels is a challenging task as one has to determine the optimal layup at

each x, y cooordinate of the plate. The postbuckling design criteria of VAT composite plates are

based on the minimization of the end shortening strain εx or the maximum postbuckling transverse

displacement Wmax for a given compressive load.

A. First-Level Optimization

1. B-spline spatial variation of lamination parameters

In the case of a symmetric VAT plate, the distribution of lamination parameters (ξA,D1,2 ) in terms

of the B-spline is given as,

x(ū, v̄) =
∑
mn

B(x)
mnN

(k)
m (ū)N (k)

n (v̄)

y(ū, v̄) =
∑
mn

B(y)
mnN

(k)
m (ū)N (k)

n (v̄)

ξA,D1,2 (ū, v̄) =
∑
mn

Γ(τ)
mnN

(k)
m (ū)N (k)

n (v̄)

(26)

where ū and v̄ are the parametric directions of the B-spline basis functions, B
(x)
mn and B

(y)
mn represent

the location of each pre-de�ned control point Pmn along x and y axes, Γ
(τ)
mn is the assigned value

of a particular lamination parameter at each Pmn and τ denotes di�erent lamination parameters.

The B-spline basis functions varying along ū and v̄ directions are N
(k)
m (ū) and N

(k)
n (v̄), respectively

and k represents the order (k− 1 degree) of the piece-wise polynomial determined by a knot vector

(Ξ). The optimal design is sought by adjusting the values of the lamination parameters (ξA,D1,2 ) at

the chosen control points along the plane of the plate.

2. Globally convergent method of moving asymptote

The optimization problem of VAT plates for maximizing the postbuckling performance using

lamination parameters is formulated as,
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min εx(Γ(τ)
m ) or Wmax(Γ(τ)

m )/h

s.t.: − 1 6 Γ(τ)
m 6 1

gi(Γ
(τ)
m ) 6 0

(27)

where εx is the end shortening strain, Wmax is the maximum postbuckling transverse displacement,

h is the thickness of the laminate, Γ
(τ)
m is a vector form of lamination parameters at each Pmn,

gi(Γ
(τ)
m ) are nonlinear constraint functions that de�ne relations between the four di�erent lamination

parameters, given by Eqns. 23-25.

In the proposed design framework, the globally convergent method of moving asymptote devel-

oped by Svanberg employs a successive convex approximation technique to solve the optimization

problem. The objective functions and nonlinear constraints are replaced by a sequence of approxi-

mations (subproblems) based on gradient information, and these subproblems are created and solved

iteratively until a desired convergence is achieved. Also, approximations of the objective function

and nonlinear constraints in a local region are convex separable and conservative with respect to

each design variable (lamination parameters). In the GCMMA method, the axial end-shortening

strain/maximum transverse displacement and the nonlinear constraints in (27) are approximated as

[36],

f̄
(µ,ν)
i (Γ) =

n∑
j=1

(
p

(µ,ν)
ij

α
(µ)
j − Γj

+
q

(µ,ν)
ij

Γj − β(µ)
j

)
+ r

(µ,ν)
i (28)

where µ and ν respectively denote the indices of the �outer� and �inner� iterations, α
(µ)
j and β

(µ)
j

are the upper and lower moving asymptotes, respectively. For each design variable, the values of

p
(µ,ν)
ij , q

(µ,ν)
ij are associated with the positive and negative sensitivity, as well as the upper and

lower moving asymptotes, respectively. The di�erence between the objective function and the

approximation formula for the original design when each outer iteration begins is denoted by r
(µ,ν)
i .

For the detailed expression of each variable in Eq. (28) refer to the work of Svanberg[37].

B. Second-Level Optimization

In the second level optimization process, the objective is to construct a realistic VAT layup that

has lamination parameter distributions that closely match the optimal lamination distributions

16



obtained in the �rst-level optimization. The spatial variation of �ber angles for each VAT layer and

the stacking sequence of the laminate needs to be determined. The problem of converting lamination

parameters into VAT layups is quite complex [38] as there are no unique relationships between them.

To accomplish this task, a genetic algorithm is employed to determine a VAT laminate con�guration

that closely matches the target lamination parameters. For each VAT layer, the nonlinear variation

(NLV) of �ber orientations is de�ned based on a set of M1 ×N1 pre-selected control points in the

plate domain. Lagrangian polynomials are used to interpolate the prescribed �ber angles at the

control points and construct a nonlinear distribution of �ber angles, given by the following series

form,

θ(x, y) =

M1−1∑
m=0

N1−1∑
n=0

Tmn
∏
m 6=i

(
x− xi
xm − xi

)
∏
n6=j

(
y − yj
ym − yj

) (29)

where the term Tmn is equal to the �ber angle at the control point (xm, yn). It is observed that

three to �ve control points along each direction are usually su�cient to obtain converged �ber angle

distribution results for a VAT panel. Furthermore, this �ber angle de�nition gives a continuous,

smooth distribution for the �ber orientations, which are suitable for conversion into practical tow

trajectories when manufacturing constraints are considered.

The �tness function is expressed as a mean value of the least square distance between the

obtained lamination parameters and the target lamination parameters evaluated at a large number

of points in the VAT plate. The optimization problem is formulated as,

min ∆ξ =
1

Np

∑
j

∆ξj

∆ξj =

[
2∑
i

wAi

(
ξAi − ξ̃Ai

)2

+

2∑
i

wDi

(
ξDi − ξ̃Di

)2
]

(j)

ξA,D1,2 ←
[
T k1 , · · · , T kn , · · · , T kN

]
s.t.: − π/2 6 T kn 6 π/2

(30)

where T kn is the �ber angle at the control point for the kth ply. wAi and wDi are the weights to

distinguish the relative importance between ξA1,2 and ξD1,2. The term Np is the total number of grid

points and is chosen to be 1000 ∼ 2000 in total for a two dimensional variation.
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VI. Results

This section presents the numerical results of the two-level optimization strategy for postbuck-

ling design of VAT panels subjected to axial/bi-axial compression under di�erent in-plane bound-

ary conditions. Three cases of in-plane boundary conditions are considered in this work and the

schematic diagram is shown in Fig. 1. The plate is subjected to uniform compression along the

edges (x = ±a2 : u = ∓∆x

2 ) and in case A the transverse edges are free to move (stress free N̄y = 0),

in case B the transverse edges are constrained (v = 0) and in case C the transverse edges are free

to move and constrained to be straight. For the bi-axial case, the ratio of the compression loading

Ny/Nx was chosen to be 0.2 and the schematic diagram of the loading is shown in Fig. 2. The

postbuckling results are normalized with respect to the corresponding solutions of a homogeneous

quasi-isotropic laminate. The equivalent Young's modulus Eiso, Poisson's ratio νiso and bending

sti�ness Diso of a homogeneous quasi-isotropic (QI) laminate are given by [8],

Diso =
Eisoh

3

12(1− ν2
iso)

, νiso =
U4

U1
, Eiso = U1(1− ν2

iso) (31)

where U1, U2, U4 are material invariants[33]. This normalization provides the designer with a useful

measure to quantify the improvement of the optimal VAT laminate over a quasi-isotropic laminate.

At �rst, the accuracy of ANM in computing the postbuckling behavior of VAT plates under

compression is analyzed and compared with ABAQUS FE results. Next, �rst level optimization was

performed using GCMMA for obtaining optimal lamination parameter distributions that maximize

the postbuckling performance of VAT panels under compression. Subsequently, the second level

optimization was carried out using a genetic algorithm to convert the lamination parameters into

realistic �ber angle distributions in the plane of the plate. Finally, the postbuckling performance of

optimized VAT panel designs were compared with optimal straight �ber layups and the mechanics

behind their improvement is discussed. The stress resultant distributions of an optimal VAT panel

design corresponding to bi-axial loading was investigated in detail to explain the mechanics behind

their improved postbuckling performance.

18



A. ANM results of VAT laminates

The accuracy and the range of validity of the postbuckling solution determined by the ANM

approach is investigated for di�erent in-plane boundary conditions as it is crucial for the optimization

study of laminates. As a part of the numerical study, the ANM approach was applied to solve the

postbuckling problem of symmetric VAT plates with linear �ber angle variation subjected to axial

compression. The generalized di�erential-integral quadrature method implemented in MATLAB

was then used to solve the linear problems obtained using ANM. The material properties for each

lamina are given by E1= 163 GPa, E2=6.8 GPa, G12= 3.4 GPa, ν12= 0.28 with lamina thickness

t=0.131 mm and number of laminae, n=16. The VAT plate with linear angle variation along the x

direction is given by

θ(x) = φ+
2(T10 − T00)

a
|x|+ T00 (32)

where φ is the angle of rotation, T00 is the �ber orientation angle at the control point x = 0, y = 0,

and T10 is the �ber orientation angle at the control point x = ±a/2, y = 0 (see Fig. 1). The non-

uniform grid distribution given by the Chebyshev-Gauss-Labotto points are used for the computation

of weighting matrices and is given by

Xi =
1

2
[1− cos( i− 1

N − 1
π)], i = 1, 2, ....N (33)

where N is the number of grid points. The asymptotic expansions of the unknown load and dis-

placement was limited to �ve terms in order to get reasonable accuracy over a �nite load step size

near the buckling point. The GDIQM was applied to solve �ve linear problems and the correspond-

ing solutions were used to obtained the expansion coe�cients of the asymptotic solutions. Padé

approximants were then used in the asymptotic expansions of the ANM postbuckling solutions to

improve the radius of convergence around the buckling point.

In order to validate the ANM results, �nite element modeling of the VAT panels was carried

out using ABAQUS. The S4 shell element was chosen for discretization of the VAT plate structure.

To achieve good accuracy, a mesh size of 40 × 40 was selected for square VAT plates. Using the

linear �ber angle de�nition, �ber orientation was evaluated at the centroid of each element. The

material properties for elements were then de�ned using the �ber orientation information. Prior
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to the buckling analysis, in-plane analysis of the VAT laminates under compression was carried

out to compute the stress resultant distributions. The in-plane analysis results were then used in

the buckling analysis for evaluating the critical buckling load coe�cient. The postbuckling of VAT

plates was then performed using buckling analysis results. The imperfection function required for

nonlinear FE analysis was chosen to be the �rst buckling mode shape. The imperfection magnitude

was taken to be one percent of the plate thickness and the arc length parameters required for Riks

analysis were adapted to the particular VAT con�guration analyzed. All plates considered in this

study were considered to be simply supported.

The normalized postbuckling results of VAT plates with linear �ber angle variation for case A

and case B obtained using ANM and FE approaches are shown in Figs. 3, 4 respectively. The

results in Figs. 3 and 4 shows that the ANM results match the FE solutions over a �nite radius

around the buckling load for both the cases. Also, the postbuckling results computed using ANM

exhibit a �nite radius of convergence and the solution starts diverging beyond that point.

B. First level optimization-Optimal Lamination parameters

At the �rst level of optimization, optimal lamination parameter distributions for maximizing

postbuckling performance of square VAT plates with all edges simply supported are presented. The

optimal VAT laminate con�guration which minimizes end-shortening strain or maximum transverse

displacement may be di�erent when the level of axial load (Nx) is changed. The length and width

of the plate are a = 0.5 m, b = 0.5 m, respectively. In each optimization run, all the control

points are uniformly distributed across the plate domain and uniform quadratic B-spline basis

functions are used for constructing the variation of lamination parameters. Due to the symmetry

of the buckling problem in terms of boundary conditions, geometry and loadings, the lamination

parameter distribution is designed to be doubly symmetric, that is ξA,D1,2 (x, y) = ξA,D1,2 (|x|, |y|).

Hence, the lamination parameters are de�ned only at the control points on the quarter of the plate

and symmetry conditions were then used to de�ne the lamination parameter distributions in other

quadrants of the plate model.

Initially end-shortening is minimized by �nding optimal lamination parameters using a value
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of Nx to be 2.5N iso
x . The end-shortening strain εx of the VAT panel is normalized with critical

buckling strain εisox . Fig. 5 shows the convergence trends of the �rst-level optimization process,

for the boundary conditions of case C, using di�erent numbers (5× 5; 7× 7 and 9× 9 ) of control

points to construct the lamination parameter distributions. Correspondingly, the total number of

design variables are 100 (25 × 4), 196 (49 × 4) and 324 (81 × 4). All control point distributions

exhibit rapid convergence within a few iterations (around 15). It is observed that, with an increase

of the number of control points, reduction of end-shortening axial strain is obtained. The curves for

the 7 × 7 and 9 × 9 control points are nearly coincident when the optimization process converges.

This also shows that the full design space can be achieved approximately by increasing the number

of control points. It was observed that, for all cases, 7 × 7 control points for the B-splines to

de�ne the sti�ness variation, is su�cient to yield converged postbuckling optimization results. The

optimal variations (7 × 7 control points) of the four lamination parameters are plotted in Fig. 6,

for case C. The contour plots of the lamination parameters in Fig. 6 exhibit smoothness without

notable discontinuity and require fewer number of design variables compared to �nite element based

design approach [1]. Similarly, for the case A, case B and bi-axial loading, the optimal lamination

parameter distributions results are shown in Figs. 7-9 respectively. For the cases C and A, the

value of lamination parameter distributions ξA1,2 (Fig 6 and 7) near the top and bottom regions of

the VAT plate are closer to one and this leads to placement of 0o �bers responsible for sti�ening of

the panel in the axial direction to take the compression load. For case B and bi-axial loading, the

lamination parameters in the central region of the plate are ξA1 ≈ 0 and ξA2 ≈ 1 which corresponds

to a combination of 0o and 90o plies. This lamination parameter distribution ξA1,2 (Fig 8 and 9)

leads to the improvement of axial and transverse membrane sti�ness and enhances the postbuckling

performance of VAT plates. Fig. 10 shows the prebuckling and postbuckling stress resultants

distribution of the VAT panel corresponding to the optimal lamination parameter distribution of

bi-axial loading. The N̄x distribution in Figs. 10a, 10d shows redistribution of the applied axial

compression load from the center towards the edges of the panel and leads to the improvement of the

buckling and postbuckling performance. The N̄y distribution (Fig. 10e) in the postbuckling regime

indicates the presence of tensile stress state at the center of the panel which aids in resisting the
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compression load in transverse direction and also contributes to the improvement of postbuckling

sti�ness of the plate.

C. Second level optimization-Optimal VAT layups

In the second level of optimization, conversion of the optimal lamination parameters into realistic

variations of �ber orientation angles (or the tow trajectories) is performed. For a VAT laminate,

the stacking sequence and spatial variation of �ber angles for each layer is required. A 3× 3 control

points grid is chosen on the quarter of each VAT design layer for de�ning the �ber angle variation

in the plane of square plate thereby de�ning a quadratic variation in the �ber angle. The weights

wAi , w
D
i were assumed to be identical for the lamination parameters ξA1,2 and ξD1,2, respectively. The

stacking sequence is �xed to be a 16-layer symmetric laminate [±θ1/ ± θ2/ ± θ3/ ± θ4]S with four

VAT design layers (θ1(x, y), θ2(x, y), θ3(x, y), θ4(x, y)) for the cases A, B and C. Figs. 11-13 show the

spatially nonlinear varying �ber angle distributions of the optimal VAT layers for minimizing the

end-shortening strain of the square VAT plate under di�erent in-plane boundary conditions cases

C, A and B, respectively. The VAT layups (Figs. 11, 12) of case C and A show 0o �ber along

the top and bottom edge of the panel that support the applied compression load and improves the

overall sti�ness of the laminate. The VAT layups (Fig. 13) in case B predominantly show �ber

angles closer to 0o across the panel to support the axial compression load. A VAT layup (Fig.

13b) in case B shows 90o �ber angle at the center of the panel to support the compressive load

in the transverse direction due to in-plane boundary condition (v = 0). For the bi-axial case, an

anti-symmetrical stacking sequence with specially orthotropic properties ([B]=0, A16 = A26 = 0,

D16 = D26 = 0) is considered. The stacking sequence was chosen to be a 32-layer anti-symmetric

orthotropic laminate [±θ1/ ∓ θ1/ ± θ2/ ∓ θ2/ ± θ3/ ∓ θ3/ ± θ4/ ∓ θ4]AS with four VAT design

layers θ1(x, y), θ2(x, y), θ3(x, y), θ4(x, y) to suppress the deleterious e�ect of D16 = D26 = 0 on the

postbuckling behavior. The optimal �ber angle distribution of the VAT layers that minimizes εx

for the bi-axial case is shown in Fig. 14. Compared to other cases, the VAT layups (Fig. 14) for

bi-axial loading show predominantly 0o �ber around the central region of the panel and also the

�ber angles along the top and bottom are not aligned completely with the loading direction. A VAT
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layup (Fig. 14c) show 90o �ber angle at the center of the panel to sustain the applied transverse

compression load. The lamination parameter distribution for optimal VAT layup corresponding

to bi-axial loading is shown in Fig. 15. The lamination parameter distribution shown in Fig. 15

matches up to 80 percent of the distribution shown in Fig. 9. This di�erence of the optimal VAT

layup lamination parameter distribution with the optimal solution from the �rst level of optimization

leads to a reduction in buckling and postbuckling performance. However, it is observed that 7 × 7

control points grid is su�cient to approximately match 95 percent of the optimal LP distribution

shown in Fig. 9.

A direct GA search approach requires many (population size × the number of generations)

postbuckling evaluation runs for the design of VAT plates. The computational e�ort increases

considerably when many layers and control points are used. Nevertheless, this issue is avoided in

the two-level optimization strategy. For the cases considered, less than 15 iterations are required

to achieve the optimal lamination parameter distribution for the theoretically possible maximum

postbuckling performance of VAT laminates. The subsequent process of retrieving realistic layups

from the resultant lamination parameters requires little computational e�ort even when the design

space is extended.

D. Optimization results

The postbuckling results comparing the performances of the optimal VAT laminate and straight

�ber laminate design when normalized with a homogenous QI layup for the di�erent in-plane bound-

ary conditions (case C, case A, case B) are shown in Figs. 16-18 respectively. The end-shortening

strain for a �xed axial compression load (2.5Niso) gives a direct measure of the e�ective structural

sti�ness, which is a function of the pre-buckling and postbuckling sti�nesses of the laminate. Figs.

16-18 shows that the postbuckling performance of the optimal lamination parameters distributions

attains the theoretical possible limit that can be achieved for the square VAT under compression.

The optimal postbuckling design results for the VAT and straight �ber laminates are summarized in

Table 1. For the optimal design of straight-�ber (constant sti�ness) laminates, the layer angles for

the laminate con�guration are restricted to 5o �ber angle increment from −90o to 90o. From Table
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1, the layup [±45/06]s gives the minimum end-shortening strain (εx) for both case A and case C.

The performance of the optimal VAT layup is better than the optimal straight �ber design for all

three cases studied and an improvement of 22% was observed for case C compared to the straight

�ber laminate [±45/06]s. For case B, the VAT layup shown in Fig. 13 consists of �ber angles de�ned

at control points closer to 0o, 90o and resembles the optimal straight �ber layup [902/06]s design. In

addition, the improvement of 5.9% in postbuckling performance of optimal VAT layup over straight

�ber design [902/06]s for case B is not as signi�cant when compared to other cases. For the bi-axial

loading case (Ny/Nx = 0.2) , the postbuckling results comparing the performances of the optimal

VAT laminate and straight �ber laminate are shown in Fig. 19. The optimal straight �ber con�g-

uration that minimizes εx is given by the layup [±50/ ∓ 50/ ± 10/ ∓ 10/08]AS . The optimal VAT

laminate exhibits a 8.8% improvement over the optimal straight �ber layup. The stress resultant

distribution in the pre-buckling and post-buckling regime for the optimal VAT layups corresponding

to bi-axial loading is shown in Fig. 20. The N̄x distribution of VAT plate in the pre-buckling and

post-buckling regime clearly shows the redistribution of the applied load towards the edge of the

plate. The magnitude of N̄y distribution in the postbuckling regime shows a tensile stress state

which resists the applied compression load in the transverse direction and also aids in improving

the postbuckling sti�ness of the plate. For the optimal straight �ber layup of bi-axial loading, the

prebuckling stress resultant distributions are found to be constant across the plane of the laminate

and the postbuckling stress resultant distributions are shown in Fig. 21 which exhibits similar pat-

terns to optimal VAT layup. As seen in Figs. 20, 21 the optimal VAT layup exhibits a greater

degree of stress resultant redistribution compared with straight �ber layup and this is responsible

for their superior buckling and postbuckling performance. The postbuckling design results of VAT

panels for minimizing the maximum transverse displacement under axial compression is given in the

supplementary material submitted along with this paper.

VII. Conclusion

In this work, a perturbation approach namely, the asymptotic numerical method was used to

solve the postbuckling problem of VAT laminates under axial compression. The ANM approach was
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Table 1 Optimum design for minimizing end-shortening strain εx

Cases Nx/N
iso
x Optimum layups εx/ε

iso
x Improvement (%)

case A, Str �b 2.5 [±45/06]s 2.91 -

case A, VAT 2.5 VAT Layup (Fig. 12) 2.64 10.4

case B, Str �b 2.5 [902/06]s 2.17 -

case B, VAT 2.5 VAT Layup (Fig. 13) 2.05 5.9

case C, Str �b 2.5 [±45/06]s 2.71 -

case C, VAT 2.5 VAT Layup (Fig. 11) 2.22 22.1

Bi-axial, Str �b 2.5 [±50/∓ 50/± 10/∓ 10/08]AS 2.97 -

Bi-axial, VAT 2.5 VAT Layup (Fig. 14) 2.73 8.8

then successfully implemented using a generalized di�erential-integral quadrature method to solve

the nonlinear postbuckling problem of VAT laminates in a computationally e�ective way suitable

for optimization studies. The postbuckling results of VAT plates obtained using the ANM approach

match FE solutions over a �nite load step size around the buckling point for di�erent in-plane

boundary conditions. Usage of Padé approximation in the ANM approach further increased the

range of convergence of the postbuckling solution of VAT plates.

A two-level optimization framework was applied to perform the postbuckling optimization of

VAT composite plate under axial/bi-axial compression. Optimal lamination parameter distributions

obtained using GCMMA gave insights into the in-plane sti�ness distribution of VAT plates for max-

imizing the postbuckling performance under di�erent in-plane boundary conditions. Furthermore,

GA was applied to convert the optimal lamination parameters to nonlinear �ber distributions across

the domain of the plate and provides an understanding on the placement of �ber paths to improve

the postbuckling performance. The optimal laminate layups for straight �ber and VAT laminates

were determined by minimizing the end-shortening strain in the postbuckling regime. From the

optimization results, it is concluded that VAT laminates demonstrate improved buckling and post-

buckling performance over constant sti�ness laminates. In the future, the two-level optimization

framework will be applied to design VAT plate and shell structures with sti�eners and cut-outs for

improved postbuckling performance.
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VIII. Appendix

The ANM approach converts the postbuckling problem of VAT plates into a set of linear prob-

lems and the GDIQM numerical formulation of the di�erent order problems are presented as follows.
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A. Zeroth order analysis of VAT laminates

The zeroth order analysis corresponds to the prebuckling problem of VAT plates and the GDIQM

implementation written in matrix form is given by, Kuu Kuv

Kvu Kvv



u0

v0

 =


Fu0

Fv0

 (34)

Kuu =

∫
Ω

∂
′

∂x
A11

∂

∂x
+
∂

′

∂y
A66

∂

∂y
dΩ = A11T

x′
MTx +A66T

y′MTy

Kuv = Kvu =

∫
Ω

∂
′

∂x
A12

∂

∂y
+
∂

′

∂y
A66

∂

∂x
dΩ = A12T

x′
MTy +A66T

y′MTx

Kvv =

∫
Ω

∂
′

∂y
A22

∂

∂y
+
∂

′

∂x
A66

∂

∂x
dΩ = A22T

y′MTy +A66T
x′

MTx

(35)

where U0 =


u0

v0

 represents the zeroth order solution and Fu0, Fv0 represents the forces applied

along the x and y directions. The terms Tx,Ty represent the �rst-order derivative matrix oper-

ator and their transposes are given by Tx′
,Ty′ respectively. The term M represent the integral

quadrature matrix operator over a surface area Ω.

B. First order analysis of VAT laminates

The �rst order analysis which corresponds to the buckling problem of VAT plates is governed

by the bending behavior of the plates. The eigen value buckling problem in standard matrix form

is

[Kww − λcKg]w = 0 (36)
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Kww =

∫
Ω

∂2
′

∂x2
D11

∂2

∂x2
+
∂2

′

∂y2
D22

∂2

∂y2
+ 2

∂2
′

∂x2
D12

∂2

∂y2
+ 4

∂2
′

∂x∂y
D66

∂2

∂x∂y

+ 4
∂2

′

∂x2
D16

∂2

∂x∂y
+ 4

∂2
′

∂y2
D26

∂2

∂x∂y
dΩ

= D11T
xx′

MTxx +D22T
yy′MTyy + 2D12T

xx′
MTyy + 4D66T

xy′MTxy

+ 4D16T
xx′

MTxy + 4D26T
yy′MTxy

Kg =

∫
Ω

∂
′

∂x
N̄0x

∂
′

∂x
+
∂

′

∂y
N̄0y

∂
′

∂y
+ 2

∂
′

∂x
N̄0xy

∂
′

∂y
dΩ

= N̄0xT
x′

MTx + N̄0yT
y′MTy + 2N̄0xyT

x′
MTy

(37)

where Kg represents the geometric sti�ness matrix and N̄0x, N̄0y, N̄0xy represents the prebuckling

stress resultants. The terms Txx,Tyy,Txy represent the second-order derivative matrix operators.

C. Second order analysis of VAT laminates

The second order analysis corresponds to computation of the postbuckling displacement �eld Kuu Kuv

Kvu Kvv



u2

v2

 =


Fu2

Fv2

 (38)

Fu2 = −1

2

∫
Ω

∂
′

∂x
A11

∂w1

∂x

2

+
∂

′

∂x
A12

∂w1

∂y

2

+
∂

′

∂x
A66(

∂w1

∂x

∂w1

∂y
+
∂w1

∂y

∂w1

∂x
)dΩ

= −1

2
(A11T

x′
M(Txw1)2 +A12T

x′
M(Tyw1)2 +A66T

x′
M(Txw1T

yw1 + Tyw1T
xw1))

Fv2 = −1

2

∫
Ω

∂
′

∂y
A12

∂w1

∂x

2

+
∂

′

∂y
A22

∂w1

∂y

2

+
∂

′

∂y
A66(

∂w1

∂x

∂w1

∂y
+
∂w1

∂y

∂w1

∂x
)dΩ

= −1

2
(A12T

y′M(Txw1)2 +A22T
y′M(Tyw1)2 +A66T

y′M(Txw1T
yw1 + Tyw1T

xw1))

(39)

where U2 =


u2

v2

 is the second order displacement �eld. The second order stress resultant N̄αβ

is obtained by the constitutive relationship
N̄2x

N̄2y

N̄2y

 =


A11 A12 A16

A12 A22 A26

A16 A26 A66




u2,x + 1

2w
2
1,x

v2,y + 1
2w

2
1,y

u2,y + v2,x + w1,xw1,y

 (40)
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D. Third order analysis of VAT laminates

The third order displacement �eld w3 is obtained by solving Kww − λcKg G∗

G∗t 0



w3

µ

 =


Fw3

0

 (41)

where G = [Kww]w1 and µ is a Lagrange multiplier. The force vector Fw3 is computed by the

expression given by

Fw3 =

∫
Ω

− ∂
′

∂x

[
(N̄0xC(2) + N̄2x)

∂w1

∂x
+ (N̄0xyC(2) + N̄2xy)

∂w1

∂y

]

− ∂
′

∂y

[
(N̄0xyC(2) + N̄2xy)

∂w1

∂x
+ (N̄0yC(2) + N̄2y)

∂w1

∂y

]
dΩ

= −[(N̄0xC(2) + N̄2x)Tx′
M(Txw1) + (N̄0xyC(2) + N̄2xy)Tx′

M(Tyw1)

+ (N̄0xyC(2) + N̄2xy)Ty′M(Txw1) + (N̄0yC(2) + N̄2y)Ty′M(Tyw1)]

(42)

The constant C(2) is computed by

C(2) =

∫
Ω

N̄αβ(2)w1,αw1,βdΩ∫
Ω

N̄αβ(0)w1,αw1,βdΩ
(43)

Fig. 1 Geometry and boundary conditions.
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Fig. 6 Optimal lamination parameter distribution for minimizing εx of a square simply-

supported plate subjected to case C (a)ξA1 (b)ξA2 (c)ξD1 (d)ξD2
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Fig. 7 Optimal lamination parameter distribution for minimizing εx of a square simply-

supported plate subjected to case A (a)ξA1 (b)ξA2 (c)ξD1 (d)ξD2
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Fig. 8 Optimal lamination parameter distribution for minimizing εx of a square simply-

supported plate subjected to case B (a)ξA1 (b)ξA2 (c)ξD1 (d)ξD2
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Fig. 9 Optimal lamination parameter distribution for minimizing εx of a square simply-

supported plate subjected to bi-axial loading Ny/Nx = 0.2 (a)ξA1 (b)ξA2 (c)ξD1 (d)ξD2

35



0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

×104 0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

(a) (b) (c)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

×104 0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

(d) (e) (f)

Fig. 10 Stress resultant distributions for the optimal lamination parameter corresponding
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Fig. 15 Lamination parameter distribution for optimal VAT layup (Fig 9) corresponding to

bi-axial loading Ny/Nx = 0.2 (a)ξA1 (b)ξA2 (c)ξD1 (d)ξD2
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Fig. 20 Stress resultant distributions for the optimal VAT design corresponding to bi-axial

loading Ny/Nx = 0.2 (a)N̄x (Prebuckling state) (b)N̄y (Prebuckling state) (c)N̄xy (Prebuckling

state) (d)N̄x (Postbuckling state at 2.5 Nx
iso) (e)N̄y (Postbuckling state at 2.5 Nx

iso) (f)N̄xy

(Postbuckling state at 2.5 Nx
iso)
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Fig. 21 Stress resultant distributions for the optimal straight �ber design corresponding to

bi-axial loading Ny/Nx = 0.2 (a)N̄x (Postbuckling state at 2.5 Nx
iso) (b)N̄y (Postbuckling state
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iso) (c)N̄xy (Postbuckling state at 2.5 Nx
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