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Abstract	

	

This	 thesis	 contains	discussions	and	 results	pertaining	 to	 three	distinct	pieces	of	work,	 all	

related	by	an	underlying	theme:	the	use	and	development	of	computational	techniques	to	

discover	and	characterise	novel	metastable	materials.	

	

Zinc	oxide	is	a	cheap	and	abundant	material	with	many	potential	uses	in	the	electronics	and	

optics	 industries.	 However,	 its	 wurtzite	 ground	 state	 structure	 gives	 rise	 to	 a	 number	 of	

undesirable	properties.	Thus,	knowledge	of	how	to	stabilise	more	useful	metastable	phases	

is	desirable.	To	that	end,	the	mechanism	of	the	pressure-induced	phase	transition	between	

the	zincblende	and	rocksalt	polymorphs	of	the	compound	was	deduced	using	transition	path	

sampling.	Following	this,	a	novel	technique	combining	TPS	methods	with	metadynamics	was	

applied	to	classify	the	free-energy	landscape	relevant	to	the	transition	pathway.	This	provided	

further	information	relating	to	the	transition	that	would	have	been	impossible	to	determine	

using	path	based	analyses	alone.	

	

Water	ice	exhibits	a	wealth	of	structural	polymorphism,	with	at	least	eighteen	phases	known	

to	experiment	and	many	more	configurations	predicted.	However,	a	true	understanding	of	

the	transition	pathways	that	link	these	structures	remains	elusive.	Using	both	metadynamics	

techniques	 and	 a	 novel	 procedure	 known	 as	 rotational	 shooting,	 attempts	 to	 deduce	

pathways	between	different	phases	of	 ice	have	been	made.	The	results	presented	 include	

successful	 transformations	 between	 two	 crystalline	 phases	 of	 ice	 and	 several	 amorphous	

phases,	as	well	as	the	possible	elucidation	of	a	novel	ice	polymorph.	

	

Crystal	 structure	 prediction	 remains	 a	 challenge	 in	 materials	 science.	 Using	 a	 random	

structure	search	technique,	eight	novel	allotropes	of	carbon	and	three	novel	high-pressure	

polymorphs	 of	 zinc	 oxide	 have	 been	 found	 and	 subsequently	 characterised	 using	 density	

functional	 theory.	 Each	 of	 the	 materials	 displays	 its	 own	 unique	 array	 of	 properties,	

demonstrating	both	the	variety	exhibited	by	polymorphs	of	the	same	material	and	the	ability	

of	random	structure	prediction	techniques	to	predict	such	dissimilar	materials.	



CHAPTER	1	-	INTRODUCTION	
	

	 1	

Chapter	1	

Introduction	

	

“Science	requires	both	observation	and	comprehension.	Without	observation	there	are	no	

facts	to	be	comprehended;	without	comprehension,	science	is	mere	documentation”	

- Dennis	Rapaport,	“The	Art	of	Molecular	Dynamics	Simulation”	

	

	

With	 recent	 advancements	 in	 computer	 hardware	 and	 software,	 as	 well	 as	 the	 further	

understanding	of	advanced	scientific	concepts,	the	study	of	chemical	and	physical	systems	

using	 computational	 techniques	 has	 never	 before	 been	 so	 accessible	 nor	 so	 fruitful.	

Nowadays,	powerful	machines	can	be	purchased	or	built	at	little	expense,	allowing	for	the	

complete	 classification	 of	 hypothetical	 materials	 using	 any	 level	 of	 theory,	 ranging	 from	

classical,	 semi-empirical	 calculations	 to	 advanced,	 ab	 initio	 computations.	 Thus,	

computational	materials	science	now	has	the	ability	to	play	a	key	role	in	the	acquisition	of	

knowledge	 like	never	before;	not	only	can	 it	be	used	 to	emulate	and	model	experimental	

observations,	it	can	also	be	used	to	transcend	what	is	experimentally	known	in	the	form	of	

prediction	and	simulation.	

	

However,	the	efficacy	of	simulation	and	its	relationship	with	experimental	studies	is	often	a	

contentious	point	of	discussion.	Whilst	it	can	be	easily	demonstrated	that	simulation	has	no	

match	 in	 probing	 the	 essentially-invisible	 atomistic	 world	 in	 a	 vibrant	 and	 scientifically	

valuable	way,	 its	 accuracy	 and	 reliance	 on	 approximations	 is	 sometimes	 questioned.	 This	

perception	of	simulation	is	both	incorrect	and	unfair.	Of	course,	simulation	significantly	relies	

on	theory	and	its	associated	approximations,	but	so	too	does	experiment.	Indeed,	the	very	

equations	 utilised	 in	 both	 theoretical	 and	 experimental	 analyses	 rely	 on	 myriad	

simplifications,	 in	many	cases	 just	 to	allow	them	to	be	solvable	and/or	to	give	meaningful	

physical	 data.	 As	 such,	 simulation	 and	 theory	 cannot	 be	 used	 interchangeably,	 as	 both	

experiments	and	simulations	utilise	theory	in	order	to	advance	knowledge.		
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In	 addition,	 both	 simulations	 and	 experiments	 must	 be	 treated	 with	 rigorous	 levels	 of	

statistical	analysis	in	order	to	establish	the	integrity	of	the	results	and	ensure	the	accurate	

sampling	of	the	system	of	interest.	Additionally,	akin	to	experimental,	simulation	requires	the	

prediction	 and	 measurement	 of	 systems	 within	 a	 rigorous	 mathematical	 and	 scientific	

framework.	

	

As	such,	simulation	cannot	be	regarded	simply	as	an	extension	of	theory	–	it	must	be	regarded	

as	a	numerical	experiment	within	a	virtual	laboratory.	Simulation	and	experiment,	therefore,	

must	both	be	regarded	as	two	equally	valid	ways	of	utilising	theory	and	method	to	extend	

scientific	knowledge.	Both	methods	have	their	relative	advantages	and	disadvantages,	with	

the	primary	advantage	of	simulation	being	the	exquisitely	detailed	view	into	the	atomistic	

world	it	can	provide.	

	

Such	an	atomistic	view	can	give	unparalleled	information	about	the	underlying	properties	and	

behaviour	 of	 chemical	 systems.	 In	 particular,	 there	 is	 a	 constant	 need	 for	 new,	 high-

performance	 materials	 made	 from	 inexpensive	 elements	 and	 compounds	 to	 combat	 the	

problems	 of	 the	 modern	 world	 –	 namely,	 the	 issues	 associated	 with	 man-made	 climate	

change,	 energy	 consumption	 and	 storage,	 and	 the	 ever-expanding	 demand	 for	 natural	

resources	driven	by	the	global	economy.		

	

Accurate	and	efficient	atomistic	modelling	can	provide	detailed	insight	into	novel	materials	

prior	to	their	fabrication,	at	a	fraction	of	the	cost	and	risk	of	synthesising	and	testing	a	new	

hypothetical	material.	This	kind	of	efficient,	accurate	and	 inexpensive	analysis	of	chemical	

systems	 is	exactly	what	 is	 required	to	 face	these	contemporary	problems.	With	 increasing	

computational	power	and	scientific	knowledge,	 such	calculations	and	predictions	will	only	

become	more	powerful	and	more	accurate.	

	

With	this	in	mind,	this	thesis	represents	work	from	three	varied	but	connected	fields,	utilising	

cutting-edge	methods	to	look	at	well-known	materials	in	a	different	way,	in	order	to	push	the	

boundaries	 of	 current	 knowledge.	 Using	 an	 atomistic	 approach,	 this	 thesis	 details	 the	

incorporation	 of	 both	 existing	 techniques	 and	 the	 design	 of	 new	methods	 in	 an	 effort	 to	

contribute	to	the	rapidly	growing	field	of	computational	materials	science.	Thus,	the	ultimate	
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aim	 of	 this	 work	 is	 both	 to	 investigate	 the	 properties	 and	 behaviour	 of	 a	 wide	 range	 of	

relevant	metastable	materials,	and	to	contribute	to	the	‘tool	box’	of	techniques	available	to	

the	computational	materials	scientist.	

	

In	 Chapter	 2,	 an	 introduction	 to	 the	 theory	 of	 computer	 simulations	 is	 given.	 A	 detailed	

discussion	relating	to	the	two	levels	of	theory	used	in	this	work	–	namely,	classical	mechanics-

based	 force	 fields	 and	 density	 functional	 theory	 -	 are	 presented	 in	 detail,	 within	 an	

appropriate	historical	and	mathematical	context.	

	

Chapter	3	delivers	an	introduction	to	the	fundamental	techniques	of	molecular	dynamics	and	

geometry	 optimisations,	 the	 two	 core	 techniques	 utilised	 in	 this	 work.	 This	 includes	 a	

discussion	 on	 the	 important	 central	 principles,	 such	 as	 thermodynamic	 ensembles	 and	

numerical	integration	techniques.	

	

Chapter	4	presents	an	in-depth	discussion	of	the	two	advanced	methods	used	to	accelerate	

the	 sampling	 of	 rare	 events:	 metadynamics	 and	 transition	 path	 sampling.	 These	 two	

techniques	are	central	to	the	work	presented	in	this	thesis,	and	all	appropriate	manifestations	

of	the	two	procedures	are	presented	within	this	chapter.	In	addition,	a	short	section	detailing	

the	hardware	and	software	utilised	in	this	work	is	also	presented.	

	

Marking	the	beginning	of	the	presentation	of	this	work,	Chapter	5	reports	an	investigation	

into	the	pressure-induced	phase	transition	between	the	zincblende	and	rocksalt	structures	of	

zinc	oxide	(ZnO).	Zinc	oxide	is	a	common,	inexpensive	material	that	could	find	use	in	future	

electronics	and	optics	devices,	however	 its	potential	application	 is	hindered	by	the	 lack	of	

knowledge	 of	 how	 to	 transform	 this	 versatile	 material	 into	 its	 metastable	 zincblende	

polymorph.	A	review	of	current	knowledge	is	first	delivered,	followed	by	an	in-depth	analysis	

of	 the	deciphered	transition	pathways.	The	transformation	mechanism	 is	 first	explored	by	

using	 path	 sampling	 techniques.	 To	 capture	 all	 subtleties	 of	 the	 mechanism,	 a	 novel	

combination	 of	 transition	 path	 sampling	 and	 metadynamics,	 dubbed	metashooting,	 was	

subsequently	developed.	
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Chapter	6	involves	an	investigation	into	the	polymorphism	of	water-ice.	Despite	its	ubiquity,	

the	properties	and	behaviour	of	water	are	poorly	understood;	this	work	attempts	to	help	to	

characterise	 the	 elusive	 transitions	 between	 the	 condensed	 phases	 of	 water	 using	 both	

metadynamics	 and	 the	 novel	 rotational	 shooting	 technique.	 A	 detailed	 review	 of	 water	

modelling	 and	 phase	 transitions	 between	 condensed	 phases	 is	 presented	 prior	 to	 the	

discussion	 of	 the	 results,	 which	 includes	 a	 number	 of	 possible	 phase	 transitions	 and	 the	

elucidation	 of	 an	 unidentified,	 potentially	 novel	 polymorph	 of	water	 ice.	 This	 could	 have	

broad	ramifications	in	the	fields	of	biology,	geology	and	medicine,	amongst	others.	

	

The	final	results	section,	Chapter	7,	involves	a	detailed	investigation	into	the	generation	of	

novel	 crystal	 structures	 of	 carbon	 and	 zinc	 oxide	 using	 a	 random	 structure	 searching	

technique.	Eight	novel	carbon	allotropes	at	0	GPa	are	presented,	as	well	as	three	novel	ZnO	

polymorphs	 at	 high	pressure.	 Prior	 to	 the	discussion	of	 the	 results,	 once	 again	 a	detailed	

investigation	 into	 the	 literature	 is	 presented,	 detailing	 the	 various	 methods	 of	 crystal	

structure	prediction	and	the	latest	investigations	into	the	fields	of	carbon	and	zinc	oxide	bulk	

structure	elucidation.	The	polymorphs	presented	exhibit	a	range	of	electrical	and	mechanical	

properties,	some	of	which	may	be	suitable	for	future	fabrication	and	use.		

	

To	 conclude,	 Chapter	 8	 presents	 a	 broad	 overview	of	 the	 results	 described	 in	 this	 thesis,	

before	ending	with	some	appropriate	closing	statements	relating	to	the	work	delivered	and	

its	context	within	the	broader	field	of	computational	materials	science.	
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Chapter	2	

Theoretical	Background	

	

“If	in	other	sciences,	we	should	arrive	at	certainty	without	doubt	and	truth	without	error,	

it	behoves	us	to	place	the	foundations	of	knowledge	in	mathematics”	

–	Roger	Bacon	(1214-1292),	Opus	Majus,	c.	1267	

	

	

2.1. Classical	Potentials	

	

The	following	references	are	essential	to	the	content	within	section	2.1.[1-4]		

	

	

2.1.1. Introduction	to	Forcefields	

	

Interatomic	potentials	known	as	forcefields	are	often	employed	within	computer	simulations	

of	materials	 to	 calculate	 the	 potential	 energy	 of	 a	 system.	 In	 a	 forcefield,	 the	 electronic	

energies	of	atoms	are	supplied	as	a	parametric	function	of	the	nuclear	coordinates.	As	such,	

bonding	 information	 is	 provided	 explicitly	 by	 the	 parameters,	 which	 are	 usually	 fitted	 to	

experimental,	ab	initio	data	or	both.	

	

The	 basis	 of	 forcefield	 or	 molecular	 mechanics	 methods	 is	 that	 structural	 units	 within	

molecules	appear	to	behave	very	similarly	even	when	in	different	environments	(indeed,	this	

notion	of	functional	groups	 is	central	to	the	discipline	of	organic	chemistry).	Molecules	are	

thought	 of	 as	 being	 “balls”	 of	 different	 sizes	 attached	 to	 “springs”	 which	 have	 different	

lengths	and	levels	of	stiffness,	and	as	such	the	system	is	reduced	to	a	purely	classical	problem.	

As	a	result,	Newton’s	second	equation	of	motion	can	be	used	to	calculate	the	dynamics	of	the	

system.	

	

The	total	potential	energy	calculated	from	the	forcefield	can	be	expressed	as	the	sum	of	a	

number	of	contributions.	The	primary	contributions	can	be	broken	down	into	two	categories	
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–	 intramolecular	 contributions	 (including	 the	 bond	 lengths,	 angles	 and	 torsions)	 and	

intermolecular	 contributions	 (i.e.	 non-bonded	 interactions	 such	 as	 van	 der	 Waals	 and	

electrostatic	(or	Coulombic)	contributions	for	charged	systems).	Additional	terms,	such	as	out	

of	plane	bending,	coupling	between	intramolecular	interactions	and	many-body	interactions	

can	also	be	included.	The	total	potential	energy	can	therefore	be	generally	expressed	as:	

	

!"#$%&'(&)* = 	!-#.*/	 + 	!1.2)&/ +	!3(4&*$5)/ +	!637 +	!8)&%9	 + !:94&$				(!<	2.1)	

	

where	each	!	term	is	the	sum	of	all	contributions	of	that	type	within	the	system.	The	most	

computationally	expensive	components	of	the	potential	to	calculate	are	the	van	der	Waals	

(!637)	and	electrostatic	(!8)&%9	)	terms,	which	together	form	the	intermolecular	interaction	

terms.	The	exact	analytical	function	used	to	describe	each	of	these	contributions	varies.	For	

example,	the	simplest	function	to	describe	bonding	interactions	is	a	Taylor	expansion	around	

an	equilibrium	bond	length.	However,	this	is	often	insufficient	for	calculating	bond	lengths	in	

more	 complex	 systems,	 and	 such	 simple	 polynomial	 expressions	 do	 not	 encapsulate	 the	

correct	limiting	behaviour	of	bonding	systems.	As	such,	a	different	analytical	function	(such	

as	 a	Morse	 potential)	 could	 be	 used	 to	 closer	 approximate	 the	 correct	 behaviour	 of	 the	

interaction.	

	

	

2.1.2. Van	der	Waals	Interactions	(!637)	

	

The	first	of	the	intermolecular	interactions	terms,	the	!637	term	describes	the	short	range	

attraction	and	repulsion	between	atoms	that	are	not	bonded.	!637	becomes	extremely	large	

at	bond	lengths	approaching	zero	as	a	result	of	the	repulsion	between	electron	clouds	of	the	

two	atoms.	At	very	long	bond	lengths,	!637	tends	to	zero	as	the	two	atoms	are	not	physically	

close	enough	to	each	other	to	induce	a	strong	interaction.	However,	at	intermediate	distances	

there	 is	 an	 attraction	 caused	 by	 induced	 dipole-dipole	 interactions	 between	 the	 electron	

clouds	of	the	two	atoms.	This	attractive	interaction	varies	as	a	function	of	the	inverse	sixth	

power	of	the	distance	between	the	two	atoms.	
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The	most	 commonly	 used	 function	 to	 describe	 this	 interaction	 is	 the	 Lennard-Jones	 (L-J)	

potential,[5]	sometimes	referred	to	as	the	12-6	potential:	

	

!637(AB) = 	4D E
F

GH
−	 EF

J
	= 	D FK

F
GH
−	2 FK

F
J
				(!<	2.2)	

	

where	D	is	the	depth	of	the	potential	energy	well,	F	is	the	distance	between	the	two	atoms,	

E	is	the	distance	between	the	two	atoms	where	the	interatomic	potential	energy	is	equal	to	

zero	and	FK	is	the	distance	at	which	the	interatomic	potential	is	at	its	minimum	value	−D.	The	

parameters	E	and	FK	are	related	to	each	other,	as	FK = 2
L
ME.		

	

The	FNJ	term	corresponds	to	the	attractive	component	of	the	potential,	whereas	the	FNGH	
approximates	 the	 repulsion	 of	 overlapping	 electronic	 wave	 functions.	 The	 Lennard-Jones	

potential	finds	widespread	use	in	many	forcefield	calculations,	due	to	its	relative	simplicity	

(only	two	parameters	D	and	E	are	required)	and	fast	computation.	

	

Whilst	the	exponent	of	the	attractive	component	has	physical	justification,	the	exponent	of	

the	repulsive	component	is	chosen	purely	for	computational	convenience,	being	the	square	

of	 r-6.	 It	 is	 not	 possible	 to	 derive	 a	 function	 for	 the	 repulsive	 interaction.	 In	 theory,	 any	

exponent	 can	 be	 taken,	 with	 the	 conditions	 that	 the	 function	 tends	 towards	 zero	 as	 the	

distance	goes	to	infinity,	and	that	it	approaches	zero	faster	than	the	attractive	(FNJ)	term.	

	

However,	despite	its	computational	convenience,	the	FNGH	form	of	the	repulsive	component	

has	been	shown	to	be	quite	a	poor	description,	as	the	repulsion	at	low	values	of	F	tends	to	
infinity	much	too	steeply.	Quantum	mechanics	has	shown	that	electron	density	actually	falls	

off	approximately	exponentially	with	distance	from	the	nucleus.	As	the	repulsion	between	

two	atoms	is	caused	by	the	overlap	of	electron	clouds,	it	is	a	better	approximation	to	model	

the	 repulsive	 component	 of	 the	 potential	 as	 an	 exponential	 function.	 An	 example	 of	 a	

potential	that	utilises	an	exponential	function	for	the	repulsive	component	of	the	potential	is	

the	Buckingham	potential[6]	or	exp-r-6	potential:	

	

!637(-O%P) = 	QRN-$ − S
FJ 				(!<	2.3)	
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Buckingham-style	 potentials	 are	 therefore	 sometimes	 considered	 to	 be	 a	 more	 ‘natural’	

potential,	as	the	repulsive	term	is	modelled	more	closely	with	quantum	theory.	However,	this	

form	of	potential	has	its	own	drawbacks.	A	notorious	problem	with	this	potential	form	can	

lead	 to	 the	 so-called	 “Buckingham	Catastrophe”.	 As	 the	 exponential	 term	 converges	 to	 a	

constant	as	F	tends	to	zero,	the	FNJ	diverges	to	-∞.	This	means	that,	at	low	values	of	F,	the	
Buckingham	 potential	 can	 ‘turn	 over’	 and	 atoms	 become	 unphysically	 attracted	 to	 one	

another.	 Precautions	must	 therefore	 be	 taken	 to	 ensure	 that	 atoms	 (particularly	 charged	

systems)	defined	by	the	Buckingham	potential	must	not	ever	come	too	close	to	each	other	

during	a	simulation.	

	

A	third	type	of	potential,	the	Morse	Potential,[2]	has	been	used	extensively	in	the	inter-atomic	

interaction	modelling,	particularly	in	diatomic	molecules.	Few	details	of	the	Morse	potential	

are	reported	here,	as	it	was	not	used	extensively	in	this	work.	Such	potentials	generally	take	

the	form:	

	

!637(V#$/&) = 	W&(RNH5 $N$X − 2RN5 $N$X 	)				(!<	2.4)	
	

where	F	and	FK	are	once	again	the	instantaneous	and	equilibrium	distances	between	the	two	

atoms	respectively,	W& 	 is	the	depth	of	the	potential	energy	well,	and	Y	corresponds	to	the	
width	of	the	potential	energy	well,	which	is	related	to	the	force	constant	at	the	bottom	of	the	

potential	energy	well	ZK	by	the	relationship:	
	

Y = 	 ZK
2W&

				(!<	2.5)	

	

The	Morse	potential	is	slightly	more	accurate	than	the	Buckingham	potential,	which	in	turn	is	

slightly	more	accurate	than	the	Lennard-Jones	potential.	One	reason	for	this	more	accurate	

depiction	 of	 the	 atomic	 interaction	 is	 the	 use	 of	 three	 parameters	 in	 the	 Morse	 and	

Buckingham	 models,	 versus	 the	 two	 parameters	 used	 in	 the	 Lennard-Jones	 potential.	

Additionally,	much	of	the	discrepancy	in	these	potentials	originates	from	the	poor	modelling	
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of	the	repulsive	part	of	the	potential,	which	is	over-estimated	in	the	Buckingham	potential	

and,	as	mentioned	previously,	even	more-so	in	the	Lennard-Jones	model.	

	

Despite	 the	 additional	 accuracy	 conferred	 by	 the	 Buckingham	 and	 Morse	 models,	 the	

Lennard-Jones	potential	continues	to	be	the	most	popular	potential	model	used	in	computer	

simulations.	 Despite	 the	 use	 of	 three	 parameters	 in	 the	 Buckingham	 and	Morse	 models	

leading	to	a	more	accurate	interaction	model,	it	also	means	that	creating	such	potentials	can	

be	a	more	difficult	procedure.	Buckingham	and	Morse	potentials	also	take	around	four	to	five	

times	longer	to	compute	than	corresponding	Lennard-Jones	descriptions	due	to	the	presence	

of	exponential	 functions,	making	them	a	 less	desirable	choice	 in	computer	simulations.	As	

Lennard	 Jones	 functions	 are	 comprised	of	 values	of	F	 raised	 to	even	powers	 (and	FNGH	 is	
simply	the	square	of	FNJ),	the	computation	time	for	this	type	of	potential	is	much	quicker.	In	

addition,	 the	 failures	 of	 the	 repulsive	 component	 in	 the	 potential	 models	 are	 generally	

encountered	in	regions	of	very	small	bond	lengths	or	very	high	energies,	which	are	seldom	

realised	in	actual,	meaningful	calculations.	As	a	result,	the	Lennard-Jones	potential	form	gives	

comparable	 results	 to	 the	 more	 accurate	 potential	 functions	 in	 ‘real-world’	 calculations,	

whilst	being	much	quicker	to	compute.	

	

	

2.1.3. Electrostatic	Interactions	(!8)&%)	
	

The	 second	 intermolecular	 interaction	 term	 !8)&% 	 corresponds	 to	 the	 electrostatic	
interactions	 between	 atoms	 or	molecules	 in	 the	 system	described.	 This	 is	 created	 by	 the	

internal	distribution	of	electrons	in	molecules,	including	the	presence	of	partial	charges	and	

induced	dipoles.	In	its	simplest	form,	the	electrostatic	interactions	between	two	point	charges	

is	given	by	Coulomb’s	Law:	

	

!8)&%(\#O)#]^) = 	Z& 	
<(<_
F(_

				(!<	2.6)	
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where	<( 	and	<_ 	correspond	to	the	atomic	charge	of	species	a	and	b	respectively,	F(_ 	refers	to	
the	distance	between	species	a	and	b,	and	Z&	is	Coulomb’s	Constant,	which	is	approximately	

8.988	N	m
2
	C

-2
	and	is	expressed	by	the	formula:	

	

1
4cDK

				(!<	2.7)	

	

where	DK	is	the	vacuum	permittivity,	a	fundamental	constant	corresponding	to	the	ability	of	

a	vacuum	to	permit	electric	field	lines,	approximately	equal	to	8.85	x	10
-12
	C

2
	J
-1	
m

-1
.			

	

Whilst	simply	summing	the	Coulomb	contributions	for	each	site	is	appropriate	in	molecular	

and	non-periodic	systems,	this	method	is	not	appropriate	for	systems	with	periodic	boundary	

conditions.	This	is	because	summing	the	Coulombic	interactions	between	neighbouring	sites	

in	periodic	replicas	would	converge	very	slowly	and	the	final	solution	would	be	dependent	on	

the	order	of	the	summation,	potentially	requiring	an	infinite	number	of	summations.	As	such,	

periodic	systems	require	a	different	approach	to	calculate	the	electrostatic	potential	–	the	

most	 common	 of	 which	 is	 the	 Ewald	 summation,	 which	makes	 two	modifications	 to	 the	

simple	Coulomb	model.		

	

	

	

	

	

	

	

	

	

Figure	2.i:	Diagram	illustrating	the	‘Ewald’	method.	The	top	diagram	(grey)	shows	the	short-

range	component	of	the	summation,	with	vertical	orange	lines	illustrating	point	charges	and	

the	opposing	blue	curves	representing	the	spherical	Gaussians	of	opposite	charge.	The	

bottom	green	diagram	shows	the	‘long	range’	component,	with	the	compensating	charges.	

Illustration	concept	adapted	from	reference	2.	
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Firstly,	spherical	Gaussian	functions	of	opposite	charge	are	centred	on	each	ion,	in	order	to	

effectively	neutralise	the	charge	at	long	range.	This	combination	of	ionic	charges	and	

Gaussian	clouds	is	the	short-range	component	of	the	Ewald	summation	and	is	solved	in	real	

space.	The	second	modification	involves	another	superposition	of	Gaussian	functions	with	

the	same	charge	as	the	original	ion.	This	second	Gaussian	cloud	is	also	centred	on	the	

original	point	charges,	thereby	cancelling	out	the	effect	of	the	first	Gaussian	cloud	of	

opposite	charge.	The	potential	as	a	result	of	this	second	set	of	Gaussian	functions	is	

acquired	from	the	Poisson	Equation,[1]	which	is	then	solved	in	reciprocal	space	as	a	Fourier	

series.	This	long-range	component	is	transformed	to	short-range	in	reciprocal	space,	and	

what	was	a	potentially	infinite	Coulombic	summation	has	been	reduced	to	two	finite	sums	–	

one	in	real	space	and	one	in	reciprocal	space.	In	addition,	a	self-correction	term	is	also	

required,	as	a	result	of	Gaussian	clouds	acting	on	their	own	sites.	The	Ewald	summation	can	

therefore	be	summarised	as:	

	

!8)&% 8e5)* = 	!f + !A − !f&)'				(!<	2.8)	

	

where	!f	 corresponds	to	the	short-range	component	solved	 in	real	space,	!A	 is	 the	 long-

range	 component	 solved	 in	 reciprocal	 space,	 and	!f&)'is	 the	 self-energy	 correction	 term.	

Most	of	the	computation	involves	calculation	of	the	long-term	component,	as	in	general	the	

short-term	component	is	summed	easily.	More	completely,	the	Ewald	sum	is	written	in	full	

below,	with	!f,	!A	and	!f&)'corresponding	to	the	first,	second	and	third	terms	respectively:	

	

!8)&% 8e5)* =
1

2
Z& ′

i

_jG

i

(jG

<(<_
F( −	F_ + kl.

	RFmn
F( −	F_ + kl

2	E

+	
1

2oDK

RNp
qPq/H

ZH
<(R

(P.$s

i

(jG

H

−	Z&
1

2cE
<(
H

i

(jG

	
P	tK

				(!<	2.9)	

	

In	 the	above	 complete	expression,	F( 	 and	F_ 	 correspond	 to	 the	position	of	 ions	 a	 and	 b,	l	

represents	the	 length	of	the	supercell	utilised,	E	 is	the	standard	deviation	of	the	Gaussian	

distribution	and	o	is	the	volume	of	the	supercell.	Z	refers	to	the	vector	of	the	ions	in	reciprocal	
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space	(i.e.	after	undergoing	Fourier	transform).	The	′	in	the	!f	term	means	that	the	term	b =
a	is	not	included	when	k = 0.	RFmn	is	the	complementary	error	function,	and	is	defined	as:	

	

RFmn w ≡ 	1 − RFm w = 	 2c	 RN9q
y

z
{|				(!<	2.10)	

	

The	Ewald	summation	is	extremely	effective	at	summing	the	Coulombic	interactions	between	

point	charges	in	periodic	systems,[1,4]	as	both	summations	converge	quickly	in	their	respective	

spaces.	However,	a	number	of	requirements	are	implicit	 in	the	Ewald	method.	The	system	

must	be	overall	charge	neutral,	and	the	systems	under	scrutiny	must	have	perfect	periodic	

symmetry.	 In	 addition,	 the	 cut-offs	 of	 the	 short-	 and	 long-range	 components	 of	 the	

summations	must	 be	 defined	 carefully,	 as	 poorly	 chosen	 cut-offs	 can	 produce	 unwanted	

artefacts	in	the	simulation.	
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2.2. Density	Functional	Theory	

	

The	following	references	have	been	essential	for	the	completion	of	Section	2.2.[2,3,7-9]		

	

2.2.1. Beyond	Forcefield	Methods	

	

Forcefield	 methods	 involve	 the	 treatment	 of	 particles	 in	 a	 simulation	 as	 solid	 bodies	

connected	by	springs	which	interact	under	the	influence	of	an	external	potential.	While	this	

approximation	is	sufficient	for	a	wide	variety	of	systems,	there	are	intrinsically	more	involved	

aspects	of	atomistic	simulation	that	require	a	much	more	rigorous	mathematical	description.	

Many	 important	 properties	 and	 interactions	 arising	 from	quantum	effects	 are	 completely	

absent	in	forcefield-based	calculations	unless	they	have	been	defined	explicitly,	which	can	be	

a	non-trivial	and	system	specific	process.	

	

Ab	initio	(from	the	Latin	for	‘from	the	beginning’)	methods	allow	for	the	complete	description	

of	atomic	and	molecular	systems	using	mathematical	models	based	solely	on	first	principles.	

Such	models	aim	to	provide	solutions	to	the	time-independent,	non-relativistic	Schrödinger	

equation,	 which	 gives	 a	 fully	 quantum	 description	 of	 any	 physical	 system.[10]	 The	 time-

independent	form	of	the	Schrödinger	equation	is	expressed	as	the	simple	eigenequation:	

	

}~ �, | = !~ �, | 				(!<	2.11)	
	

!	 is	the	total	energy	of	the	state	under	scrutiny	and	}	 is	the	Hamiltonian	operator	of	the	

system,	 containing	 potential	 and	 kinetic	 energy	 terms.	~ �, | 	 is	 the	wavefunction	 of	 the	

quantum	 system,	 which	 contains	 complete	 information	 about	 the	 degrees	 of	 freedom	

available	to	the	system,	including	spatial	and	spin	coordinates.	From	the	wavefunction,	the	

probability	distributions	of	possible	measurements	may	be	derived,	from	which	all	physical	

properties	of	the	system	can	be	determined.	This	is	crucially	different	to	classical	methods	–	

properties	and	interactions	are	explicitly	defined	by	a	forcefield,	whereas	in	ab	initio	methods	

all	physically	relevant	information	can	be	derived	from	solutions	to	the	Schrödinger	equation.	
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2.2.2. Solving	the	Schrödinger	Equation	

	

Due	to	the	inherent	mathematical	complexity	of	Schrödinger	equation,	a	number	of	physically	

intuitive	approximations	must	be	applied	for	it	to	be	solvable	for	chemically	relevant	systems.	

An	essential	simplification	is	the	Born-Oppenheimer	approximation,	which	assumes	that	the	

coupled	motion	between	 the	nuclei	 and	electrons	of	 a	 system	can	be	neglected	and	 that	

nuclear	 and	 electronic	 dynamics	 can	 be	 separated.	 The	 electronic	 component	 of	 the	

wavefunction	can	then	be	solved	independently,	with	the	nuclei	fixed	in	position	exerting	a	

constant	external	potential.	However,	even	under	the	Born-Oppenheimer	approximation	the	

Schrödinger	equation	can	only	be	solved	for	hydrogenic	systems,	such	as	H,	He
+
	and	Li

2+
	due	

to	 the	 highly	 complex	 nature	 of	 electron-electron	 interactions	 –	 the	 so-called	many-body	

problem.		

	

A	number	of	techniques	have	been	developed	over	the	years	to	obtain	approximate	solutions	

to	 the	Schrödinger	equation	 for	 systems	with	many	 interacting	electrons.	Many	methods,	

such	as	Hartree-Fock	theory	and	its	later	variants	known	as	Post-Hartree	methods	(such	as	

Coupled	Cluster	and	Møller-Plesset	methods)
[11]

	involve	the	expansion	of	the	wavefunction	

in	 a	 series	 of	 Slater	 determinants.	 However,	 all	 of	 these	 so-called	 ‘wavefunction-based’	

techniques	are	computationally	expensive	and	are	impractical	for	systems	of	more	than	a	few	

atoms.	 A	 wavefunction	 for	 a	 system	 containing	Å	 electrons	 contains	 4Å	 variables,	 thus	
wavefunction-based	 methods	 become	 exponentially	 more	 complicated	 with	 increasing	

number	of	electrons.	As	such,	a	technique	that	did	not	become	increasingly	complex	in	this	

way	was	highly	desirable.	

	

	

2.2.3. Introduction	to	Density	Functional	Theory	

	

Arguably	 the	 most	 successful	 technique	 utilised	 in	 computational	 chemistry	 is	 Density	

Functional	Theory	(DFT),	which	has	enjoyed	considerable	popularity	for	decades	as	a	result	of	

its	ability	to	reasonably	model	a	wide	range	of	systems.	The	basis	behind	Density	Functional	

Theory	is	that	the	ground	state	electronic	energy	is	directly	related	to	the	electron	density	of	
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a	system.	As	the	electron	density	is	the	square	of	the	wavefunction	and	can	be	used	to	obtain	

the	Hamiltonian	operator	of	the	system,	it	can	be	used	to	solve	the	Schrödinger	equation	of	

the	system	under	study.		

	

Unlike	 in	 wavefunction-based	 methods,	 problems	 in	 Density	 Functional	 Theory	 do	 not	

become	 exponentially	more	 complex	with	 increasing	 numbers	 of	 electrons	 -	 the	 electron	

density	 has	 the	 same	 number	 of	 variables	 regardless	 of	 the	 system	 size.	 	 However,	 the	

functional	that	links	the	electron	density	with	the	energy	is	not	directly	known,	except	for	in	

the	case	of	a	free	electron	gas.	As	a	result,	a	number	of	assumptions	must	be	made	to	create	

a	suitable	functional	linking	these	two	functions.	Despite	this	deficiency,	many	of	the	standard	

functionals	 in	 Density	 Functional	 Theory	 are	 able	 to	 calculate	 physical	 properties	 to	 a	

reasonable	degree	of	accuracy,	and	research	is	constantly	underway	to	improve	the	rigour	of	

the	exchange-correlation	functionals	utilised	within	the	technique.	

	

	

2.2.4. The	Basis	of	Density	Functional	Theory	

	

Under	the	Born-Oppenheimer	approximation,	the	Hamiltonian	operator	utilised	in	the	many-

body	Schrödinger	equation	can	be	broken	up	into	three	components:	

	

}~ = o&z9 +	Ç +	É ~				(!<	2.12)	
	

where	o&z9	is	the	operator	corresponding	to	the	static	Coulomb	potential	exerted	by	the	fixed	

nuclei,	Ç	 is	 the	 kinetic	 energy	 operator	 for	 the	 electrons	 and	É	 is	 the	 interaction	 energy	
operator	acting	between	the	electrons	in	the	many-body	system.	The	general	form	of	these	

operators	is	given	by:	

	

	

o&z9 +	Ç +	É ~ = 	 o&z9 �( +
i

(
(− ℏH

2Ö(

i

(
ÜH) +	 É �(, �_

i

(á_
~				(!<	2.13)	
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where	 o&z9	 and	 É	 are	 the	 external	 potential	 energy	 and	 electron-electron	 interaction	
functions	respectively,	∇	is	the	Laplacian	operator	and	ℏ	is	the	reduced	Planck	constant.	The	
operators	Ç	and	É	are	so-called	universal	operators	–	i.e.	their	values	are	universal	for	any	
system	with	Å	electrons.	For	simplicity,	these	two	operators	can	be	combined	into	a	single	

operator	known	as	the	electronic	operator	â,	which	clearly	is	also	universal	for	any	system	

with	Å	electrons.	The	Hamiltonian	therefore	depends	only	on	the	external	potential	o&z9	and	
the	number	of	electrons	Å,	and	can	be	written	as:	
	

} =	o&z9 +	â				(!<	2.14)	
	

The	crux	of	Density	Functional	Theory	is	that	the	external	potential	o&z9	can	be	determined	

solely	 from	 the	 measurable	 quantity	 electron	 density	 ä,	 and	 that	 the	 electron	 density	
integrated	over	all	space	gives	the	number	of	electrons	Å:	
	

Å =	 ä � 	{�				(!<	2.15)	

	

If	Å	and	o&z9	are	known	for	a	system,	the	Hamiltonian	can	be	constructed	and	the	Schrödinger	

equation	solved.	As	such,	only	a	single	measurable	quantity	ä	 is	needed	to	determine	any	

physical	property	of	the	system	under	study.		

	 	

	

2.2.5. The	Hohenberg-Kohn	Theorems	

	

In	 the	 mid	 1960s,	 Pierre	 Hohenberg	 and	 Walter	 Kohn[12]	 proposed	 two	 theorems	 which	

demonstrated	that	the	many-body	wavefunction,	containing	3Å	position	variables,	could	be	
solved	 using	 the	 electron	 density	 functional,	 which	 contains	 only	 3	 variables.	 The	 two	
theorems	were	at	the	time	only	applicable	to	non-degenerate	ground	states	but	have	since	

been	extended	to	also	apply	to	degenerate	systems.	

	

Both	of	the	theorems	are	proved	using	the	variational	principle	–	a	mathematical	tool	used	in	

quantum	mechanics	invoking	the	selection	of	a	‘trial	wavefunction’	and	fixing	one	or	more	
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parameters	to	find	an	estimate	of	the	ground	state	energy	for	the	system	of	interest.	Energies	

computed	using	the	variational	principle	are	always	equal	to	or	higher	than	that	of	the	true	

solution,	 and	 thus	 any	 variations	 to	 the	 trial	wavefunction	which	 reduce	 the	 total	 energy	

means	that	the	new	approximate	energy	must	be	closer	to	the	real	solution.	

	

The	two	theorems	devised	by	Hohenberg	and	Kohn	are	as	follows:	

	

	

i. The	external	potential	o&z9 � 	is	a	unique	functional	of	the	electron	density	ä(�).		
	

The	 proof	 of	 this	 theorem	 proceeds	 by	 reductio	 ad	 absurdum.	 Consider	 a	 hypothetical	

scenario	of	two	systems	Q	and	ã.	Both	systems	have	different	external	potentials	o1	and	o-,	
leading	to	two	different	Hamiltonians	}1	and	}-	and	therefore	two	different	ground	state	
wavefunctions	~1	and	~-.	However,	in	this	fictitious	scenario	both	systems	have	the	same	

number	of	electrons	Å	and	the	same	electron	density	ä.	Starting	from	the	time-independent	

form	 of	 the	 Schrödinger	 equation	 for	 each	 system,	 using	 the	 variational	 principle	 the	

following	inequality	for	the	ground	state	energy	of	Q	is	obtained:	
	

!1K < 	 ~- }1 ~- = ~- }- ~- +	 ~- }1 − }- ~- 				(!<	2.16)	
	

As	both	systems	have	the	same	electron	density	ä =	ä1 = ä-,	the	above	can	be	re-written	in	
the	following	form:	

	

!1K < 	!-K +	 ä � o1 � −	o- � {�				(!<	2.17)	

	

An	analogous	inequality	for	!-K	is	obtained	if	the	subscripts	Q	and	ã	are	reversed:	
	

!-K < 	!1K +	 ä � o- � −	o1 � {�				(!<	2.18)	

	

Adding	the	two	inequalities	gives	the	obviously	unreasonable	result:	
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!1K +	!-K < 	!-K +	!1K				(!<	2.19)	
	

This	is	clearly	a	contradiction	and	indicates	that	it	is	not	possible	for	two	systems	with	two	

different	external	potentials	to	have	the	same	electron	density.	Thus,	the	external	potential	

is	determined	uniquely	by	the	ground	state	electron	density.	With	this	proof,	Hohenberg	and	

Kohn	showed	that	the	energy	functional	!	linking	the	external	potential	o&z9	and	the	electron	
density	ä	is	expressed	as:	
	

! ä � = 	 ~ } ~ = ä � o&z9 � {� + â ä � 				(!<	2.20)	

	

The	functional	â ä � 	is	known	as	the	universal	functional	whose	analytical	form	is	unknown	

but	is	equal	to	the	expectation	value	of	the	electronic	operator	â.		
	

â ä � = 	 ~ â ~ 				(!<	2.21)	
	

The	value	of	â	and	therefore	â ä � 	is	universal	for	any	system	with	Å	electrons.	As	stated	
previously,	this	shows	that	the	Hamiltonian	of	this	system	relies	only	on	the	external	potential	

energy	and	number	of	electrons.	Thus	both	the	external	potential	o&z9	and	the	wavefunction	
of	the	system	~	are	unique	functionals	of	ä	and	any	property	of	the	system	can	be	determined	

solely	knowledge	of	the	electron	density.	

	

	

ii. The	electron	density	that	minimises	the	total	energy	corresponds	to	the	ground	state	

density	

	

Consider	 a	 system	 in	 which	 the	 energy	 functional	! ä1 � 	 is	 defined	 using	 an	 external	

potential	o&z9	in	terms	of	a	second,	unrelated	electron	density	ä-.	
	

! ä1 � = ä- � o&z9 � {� + â ä- � 				(!<	2.22)	
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Once	again	from	the	variational	principle,	it	can	be	stated	that:	

	

~- â ~- +	 ~- o&z9 ~- > 	 ~1 â ~1 +	 ~1 o&z9 ~1 				(!<	2.23)	
		

In	 this	 scenario,	~1	 is	 the	 correct	 wavefunction	 which	 corresponds	 to	 the	 ground	 state	
electron	density	ä1.	This	can	then	be	rewritten	as	the	integrals:	
	

ä- � o&z9 � {� + â ä- � > ä1 � o&z9 � {� + â ä1 � 					(!<	2.24)	

	

This	can	then	clearly	be	written	in	terms	of	the	energy	functional:	

	

! ä- � > 	! ä1 � 				(!<	2.25)	
	

Thus,	 Hohenberg	 and	 Kohn	 showed	 that	 not	 only	 does	 the	 electron	 density	 uniquely	

determine	 the	 external	 potential	 and	 the	wavefunction,	 but	 that	 the	minimised	 electron	

density	corresponds	directly	to	the	ground	state	energy	of	the	system.	To	put	it	another	way,	

for	every	value	of	ä	the	functional	â ä � 	enforces	that	the	energy	functional	! ä � 	is	at	

its	 minimum	 for	 the	 ground	 state	 electron	 density	 of	Åelectrons	 under	 the	 influence	 of	
external	potential	o&z9.	
	

	

2.2.6. The	Kohn-Sham	Equations	

	

Despite	the	obvious	power	and	simplicity	of	Hohenberg	and	Kohn’s	proofs,	the	two	theorems	

alone	did	not	provide	a	practical	way	of	computing	the	ground	state	electron	density.	The	

complexity	of	the	universal	functional	â,	containing	the	terms	for	the	interacting	electrons’	

kinetic	energies	and	the	electron-electron	interactions,	still	hindered	the	ability	to	practically	

utilise	density	 functional	 theory.	However,	one	year	 later	 in	1965	Walter	Kohn	and	Lu	Jeu	

Sham	developed	 a	method	which	made	 such	 calculations	 both	 accurate	 and	 tractable.[13]	

Their	idea	was	to	reduce	the	problem	of	many-electrons	interacting	under	the	influence	of	a	
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static	external	potential	to	a	much	simpler	problem	of	non-interacting	electrons	affected	by	

an	effective	potential.	There	are	numerous	advantages	to	such	a	simplified	scheme:	

	

• As	 the	particles	are	non-interacting,	 the	electron	density	 can	be	 treated	as	a	 series	of	

single-particle	orbitals.	The	wavefunction	for	the	system	can	therefore	be	easily	solved	

exactly	using	Slater	determinants;	

	

• The	kinetic	energy	for	a	single-particle	system	is	directly	known;	thus,	the	kinetic	term	in	

the	universal	functional	is	significantly	simplified;	

	

• The	electron-electron	interactions	É	need	not	be	directly	computed,	again	significantly	

simplifying	the	universal	functional	â.	
	

Thus,	the	Kohn-Sham	equations	well	used	in	density	functional	theory	today	were	conceived.	

Consider	the	energy	functional	derived	from	Hohenberg	and	Kohn’s	theorems:	

	

! ä � = ä � o&z9 � {� + â ä � 				(!<	2.26)	

	

Kohn	and	Sham	defined	the	universal	functional	as	the	sum	of	three	terms:	

	

â ä � = ÇG& ä � + !é5$9 ä � +	!è\ ä � 				(!<	2.27)	
	

ÇG& 	is	the	kinetic	energy	functional	for	non-interacting	electron,	whilst	!é5$9	corresponds	to	
the	classical	electrostatic,	or	Hartree	energy,	of	the	electrons.	These	two	terms	are	known	

precisely	 and	 constitute	 the	 majority	 of	 the	 energy.	 The	 third	 term	 !è\ ,	 known	 as	 the	
exchange-correlation	 functional,	 is	 thus	 the	 only	 unknown	 quantity	 within	 the	 universal	

functional,	and	only	constitutes	a	very	small	part	of	the	energy.	It	is	defined	as:	

	

!è\ ä � = Ç ä � −	ÇG& ä � + É ä � −	!é5$9 ä � 				(!<	2.28)	
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where	Ç ä � 	is	the	real	kinetic	energy	functional	for	a	many-electron	system,	and	É ä � 	

contains	all	of	the	non-classical	electron-electron	interaction	terms,	including	exchange	and	

correlation	effects.	Thus,	the	exchange-correlation	function	contains	all	of	the	‘corrections’	

to	the	other	classical	and	approximate	components	of	the	universal	functional.	The	complete	

expression	for	the	energy	functional	is	thus:	

	

! ä � = ä � o&z9 � {� + ÇG& ä � + !é5$9 ä � +	!è\ ä � 				(!<	2.29)	

	

Applying	the	variational	principle	once	more	to	the	energy	expression	gives:	

	

ê! ä � = 	 o&z9 � {	 +
êÇG& ä �

êä �
+
ê!é5$9 ä �

êä �
+	
ê!è\ ä �

êä �
êä � = 0		(!<	2.30)	

	

These	partial	derivatives	are	denoted	as	potentials	corresponding	to	the	original	functionals,	

and	so	the	above	expression	can	be	rearranged	and	simplified	to:	

	

ê! ä � = 	
êÇG& ä �

êä �
+	o&z9 � 	+ oé5$9 � +	oè\ � êä � = 0				(!<	2.31)	

	

These	three	potential	terms	are	often	grouped	together	into	a	single	potential	known	as	the	

Kohn-Sham	potential	oëf:	

	

		oëf � = 	o&z9 � 	+ oé5$9 � +	oè\ � 				(!<	2.32)	

	

The	Kohn-Sham	potential	 is	 therefore	 an	effective	potential	which	 takes	 into	 account	 the	

‘true’	many-electron	behaviour	of	the	system	as	a	result	of	the	exchange-correlation	potential	

oè\ .	As	alluded	to	previously,	the	functional	for	the	kinetic	energy	of	non-interacting	electrons	

is	known	precisely	and	is	defined	as	a	series	of	Slater	determinants	for	each	orbital	í(:	

	

ÇG& ä � = 	 íî −
1
2
∇H íî

i

(jG

				(!<	2.33)	
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As	a	result,	it	is	now	possible	to	construct	a	Schrödinger-type	equation	in	terms	of	each	single-

electron	non-interacting	orbital	í( 	of	the	density	within	a	local	potential	field:	

	

−
1
2∇

H +	 	oëf � íî � = 	 D(í( � 				(!<	2.34)	

	

Within	this	framework,	the	electron	density	is	given	by	the	sum	of	the	square	of	the	individual	

orbital	wavefunctions:	

	

ä � = 	 í( �, ïñak H

/ó(.

i

(jG

				(!<	2.35)	

	

	

	

2.2.7. Solving	the	Kohn-Sham	Equations	

	

In	 Density	 Functional	 Theory	 based	 calculations	 the	 potential	o	depends	 on	 the	 electron	

density	ä	which	depends	on	the	wavefunction	~,	which	in	turn	depends	on	the	potential	o.	

As	 such,	 the	 Kohn-Sham	 equations	 must	 be	 solved	 iteratively	 using	 the	 so-called	 Self-

Consistent	 Field	 method,	 in	 a	 very	 similar	 way	 to	 Hartree-Fock	 and	 post-Hartree-Fock	

methods.	

	

To	begin,	a	set	of	trial	functions	are	defined	based	on	the	atomic	coordinates	of	the	system.	

These	basis	 functions	are	 then	combined	 to	 form	a	 linear	 combination	of	atomic	orbitals,	

which	act	as	the	initial	guess	for	the	calculation.	It	is	interesting	to	note	at	this	point	that	the	

Kohn-Sham	orbitals	 are	 not	mathematically	 the	 same	 as	Hartree-Fock	 or	 natural	 orbitals,	

however	 they	 still	 appear	 to	 accurately	 describe	 the	 system.	 From	 this	 initial	 guess	

wavefunction	~5,	a	guess	electron	density	ä5	is	generated,	which	gives	a	potential	o5	and	a	

Kohn-Sham	Hamiltonian	}5	 for	the	system.	The	Kohn-Sham	equations	can	then	be	solved,	

which	give	as	an	output	new	set	of	orbitals	~^	and	thus	a	new	electron	density	ä^	and	new	
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potential	ô .	The	process	is	repeated	until	the	input	and	output	electron	densities	are	equal,	

or	equal	to	within	a	tolerance.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	2.ii:	A	flow	chart	showing	the	general	procedure	of	a	Self-Consistent	Field	(SCF)	

Density	Functional	Theory	calculation.	The	procedure	iterates	until	the	input	and	output	

wavefunctions	and	electron	densities	are	equal	to	within	some	tolerance.	

	

	

	

	

	

Select	the	initial	guess	
wavefunction	

	
~.			k = 0	

Obtain	the	density,	potential	
and	Kohn-Sham	Hamiltonian	

	
}òëf. = }òëf[~.]	

Solve	the	Kohn-Sham	equations	
to	obtain	a	new	wavefunction	

	
}òëf. ~.õG = 	 D.õG~.õG	

Re-run	with	the	new	
wavefunction	

	
~. → ~.õG			k → k + 1	

	
	

	
Is	the	new	wavefunction	~.õG	
equal	to	(within	a	tolerance)	
the	old	wavefunction	~.?	

No	

Yes	

DFT	converged!	
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2.2.8. Exchange-Correlation	Functionals	

	

The	Kohn-Sham	equations	give	exact	solutions	to	compute	the	energies	for	a	given	density	if	

and	only	if	the	exact	form	of	the	exchange-correlation	functional	is	known.	Unfortunately,	the	

precise	form	of	the	functional	is	not	known,	save	for	in	a	very	select	few	model	systems	such	

as	the	free	electron	gas.	Although	it	constitutes	only	a	very	small	constituent	of	the	energy,	

the	 exchange-correlation	 functional	 is	 still	 a	 very	 important	 component	 and	 without	 an	

accurate	description	chemical	systems	cannot	be	suitably	described.	Fortunately,	even	very	

simple	approximations	for	the	exchange-correlation	term	give	very	good	results	for	a	wide	

range	of	systems.	

	

One	 of	 the	 simplest	 and	 most	 commonly	 employed	 methodologies	 in	 density	 functional	

theory	 to	estimate	 the	exchange-correlation	 functional	 is	 the	Local	Density	Approximation	

(LDA).	In	the	Local	Density	Approximation,	the	portion	of	exchange-correlation	energy	from	

an	infinitesimal	volume	in	space	{�	is	considered	to	be	equal	to	the	value	it	would	have	if	the	
whole	space	was	filled	with	a	homogenous	electron	gas	with	the	same	density:	

	

!è\A31 ä � = 	 ä � 	ùz% ä � 	{�					(!<	2.36)	

	

where	ùz% 	is	the	exchange-correlation	functional	in	an	homogenous	electron	gas	with	density	

ä � ,	 which	 is	 one	 of	 the	 few	 scenarios	 for	 which	 the	 exchange-correlation	 is	 known	

numerically.	 As	 such,	 the	 exchange-correlation	 potential	 within	 the	 Local	 Density	

Approximation	is	now	defined	as:	

	

oè\A31 ä � = ê!è\A31 ä � 	
{ä � = ùz% ä � 	+ ä � {ùz% ä �

{ä � 				(!<	2.37)	

	

The	Local	Density	Approximation	proves	exact	solutions	for	systems	with	very	slowly	varying	

electron	densities.	However,	in	real	systems	local	density	seldom	exists	and	electron	density	

fluctuates	 greatly.	 Because	 of	 this,	 Local	 Density	 Approximation	 has	 a	 tendency	 to	
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overestimate	the	exchange-correlation	energy.	Despite	this,	the	method	proves	surprisingly	

effective	at	predicting	the	properties	of	real	systems.	

	

There	are	numerous	ways	in	which	the	Local	Density	Approximation	can	be	improved	upon.	

One	such	improvement	is	to	include	the	first	derivative	of	the	electron	density	as	an	additional	

term	within	the	functional.	This	gives	a	more	accurate	picture	of	the	varying	nature	of	the	

electron	density.	Such	a	scheme	is	called	the	Generalised	Gradient	Approximation	(GGA)	or	

non-local	methods.	The	exchange	functional	within	the	Generalised	Gradient	Approximation	

is	therefore:	

	

!è\ûû1 ä � = 	 ä � ùz% ä � âè\ ä � , ∇ä � {�				(!<	2.38)	

	

where	âè\ 	 is	 called	 the	 enhancement	 factor	 and	 is	 the	 term	 that	 accounts	 for	 the	 non-

homogeneity	of	the	electron	density.	Unlike	in	the	Local	Density	Approximation,	numerous	

forms	 of	 Generalised	 Gradient	 Approximation	methods	 exist,	 each	 employing	 a	 different	

enhancement	 factor.	 Such	 methods	 include	 those	 of	 Perdew	 and	 Wang	 (PW91)
[14]

	 and	

Perdew,	Burke	and	Ernzehof	 (PBE).
[15]

	Generalised	Gradient	Methods	have	been	shown	to	

reduce	the	energy	overestimation	experienced	in	Local	Density	Approximation	calculations,	

and	as	such	are	considered	a	more	reliable	method	for	Density	Functional	Theory	calculations.		

	

Despite	the	marked	improvement	obtained	by	utilising	Generalised	Gradient	Approximation	

methods,	overestimation	of	the	exchange-correlation	energy	is	still	problematic,	particularly	

in	 systems	 with	 highly	 localised	 and	 correlated	 electrons.	Methods	 such	 as	meta-GGA
[16]

	

partially	solve	this	by	utilising	higher	derivatives	of	the	electron	density	to	further	account	for	

variations	in	the	density	thus	increasing	the	accuracy	of	the	exchange-correlation	energy.	In	

addition,	advanced	methods	also	exist	to	further	refine	the	energy	calculation,	including	the	

introduction	of	a	penalty	to	the	energy	term	in	the	form	of	a	Hubbard	parameter	(DFT+U),	or	

the	introduction	of	dispersion	corrections	to	account	for	Van	der	Waal	effects	(DFT-VdW).	
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2.2.9. Pseudopotentials	

	

	

	

	

Figure	2.iii:	Consider	the	above	hypothetical	system.	At	distances	close	to	the	nucleus,	the	

electronic	wavefunction	oscillates	rapidly	as	a	result	of	Coulombic	interactions	with	the	

positive	atomic	core.	The	pseudopotential	approximation	‘freezes’	the	core	electrons	by	

assigning	a	modified	effective	potential	described	by	a	much	smoother	wavefunction	with	far	

fewer	nodes.	After	the	core	cut-off	rc,	the	pseudo-wavefunction	has	the	same	form	as	the	

real	wavefunction.	As	only	the	valence	electrons	are	involved	in	most	chemical	processes,	

such	an	approximation	significantly	reduces	the	computational	cost	of	a	Density	Functional	

Theory	based	calculation	without	compromising	the	fidelity	of	the	results.	

	

	

The	 electrostatic	 force	 attracting	 protons	 and	 electrons	 to	 each	 other	 varies	 greatly	with	

distance.	Correspondingly,	 the	 form	of	 the	electronic	wavefunction	changes	with	distance	

from	the	atomic	nucleus	-	in	particular,	at	close	proximity	to	the	nucleus	the	wavefunction	

F%	

~5%9O5) 	

o5%9O5) 	

~ó/&O*#	

oó/&O*# 	

~ó/&O*# ≡ 	~5%9O5) 	
	

oó/&O*# ≡ 	o5%9O5) 	
	

F	

o(F)	
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oscillates	considerably.	As	such,	it	is	often	very	difficult	to	define	an	analytical	function	for	the	

wavefunction	which	describes	the	behaviour	of	the	system	for	all	distances	from	the	nucleus.	

In	 addition,	 complex	 functions	 with	 multiple	 nodes	 and	 turning	 points	 rapidly	 incur	

computational	expense.	

	

Fortunately,	 it	 is	 possible	 to	 simplify	 the	 problem	 as	 it	 is	 feasible	 to	 make	 a	 distinction	

between	 the	 core	 electrons	 and	 the	 valence	 electrons.	 Almost	 all	 chemical	 bonding	

phenomena,	 especially	 in	metals	 and	 semiconductors,	 are	 completely	 determined	 by	 the	

configuration	of	the	valence	electrons.	On	the	contrary,	the	strongly	bound	core	electrons	

seldom	play	 a	 role	 in	 chemical	 bonding,	 but	 are	 involved	 in	 the	 screening	 of	 the	 positive	

nucleus.	As	a	result,	it	is	reasonable	in	most	cases	to	approximate	the	coupled	nucleus	and	

inner	 electrons	 as	 an	 ionic	 core	 interacting	with	 the	 only	 the	 valence	 electrons.	 Such	 an	

interaction	 is	 deemed	 an	 effective	 core	 potential	 or	 pseudopotential	 and	 has	 found	

widespread	use	in	Density	Functional	Theory	calculations.	The	concept	was	first	described	by	

Hans	Hellman	 in	1934,[17]	however	pseudopotentials	were	 largely	 ignored	for	a	number	of	

decades,	despite	their	obvious	capabilities.	

	

Pseudopotentials	are	generated	in	a	four	step	process:	

	

1. Generate	an	accurate	‘true’	wavefunction	for	the	system	corresponding	to	the	all-

electron	 system.	 This	 can	 be	 achieved	 using	 Density	 Functional	 Theory	 or	 a	

different	method,	such	as	Hartree-Fock;	

	

2. Replace	valence	orbitals	with	a	set	of	pseudo-orbitals	which	have	no	nodes.	The	

orbitals	must	be	designed	such	that	they	behave	correctly	in	the	valence	region;	

	

3. Remove	core	orbitals	and	replace	with	an	effective	potential	characterised	using	

simple	expressions	such	as	Gaussian	or	polynomial	functions;	

	

4. Ensure	that	the	parameters	of	the	potential	are	fitted	such	that	solutions	to	the	

Schrödinger	 equation	 produce	 pseudo-orbitals	 which	 match	 the	 original	 ‘true’	

wavefunction	outside	of	 a	 cut-off	 radius	F%.	 “Hard”	 pseudopotentials	with	 very	
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small	 values	 of	 	 F% 	 give	 more	 accurate	 results	 but	 are	 more	 computationally	

demanding,	 as	 they	 require	 a	 much	 larger	 set	 of	 basis	 functions.	 “Softer”	

pseudopotentials	with	larger	values	of		F% 	are	cheaper	to	compute	with,	at	the	cost	

of	accuracy	and	transferability.	

	

One	method	of	generating	pseudopotentials	 is	to	construct	both	the	valence	and	effective	

core	potential	 regions	 from	Gaussian	 functions.	 The	quality	 of	 such	 an	effective	potential	

depends	strongly	on	both	the	number	of	electrons	approximated	and	those	treated	explicitly.	

A	 second	method	of	generating	pseudopotentials	 is	 to	use	a	plane-wave	basis	 set	 for	 the	

valence	component	of	the	potential,	and	a	simple	polynomial	or	spherical	Bessel	function	for	

the	core	component.	The	quality	of	such	pseudopotentials	depends	strongly	on	the	position	

of	the	core	radius,	i.e.	the	distance	from	the	nucleus	at	which	the	core-valence	boundary	(and	

hence	change	in	mathematical	description)	occurs.	

	

Arguably	 the	most	widely	 used	 type	 of	 pseudopotential	 is	 the	 so	 called	norm-conserving	

pseudopotential.[18]	In	such	an	effective	potential,	the	pseudo-wavefunction	must	have	the	

same	integral	as	the	original	wavefunction	between	zero	and	the	core	cut-off	F%:	
	

~ó/&O*#∗ F 	~ó/&O*# F 	{F	 =		
$†

K
~5%9O5)∗ F 	~5%9O5) F 	{F

$†

K
						am	F < F%				(!<	2.39)	

	

At	values	of	distance	from	the	nucleus	greater	than	the	core	cut-off,	the	pseudo-wavefunction	

is	forced	to	coincide	with	the	real	wavefunction:	

	

~ó/&O*# F = 	~5%9O5) F 							am	F ≥ F%				(!<	2.40)	
	

Another	type	of	effective	potential	used	is	the	ultra-soft	pseudopotential,[19]	where	the	first	

norm-conserving	 requirement	 is	 relaxed.	 Both	 norm-conserving	 and	 ultra-soft	

pseudopotential	allow	for	an	even	smaller	basis	set	of	functions	to	be	used,	thereby	reducing	

the	 computational	 expense	of	 the	 calculation	 involved.	Another	method	used	 to	 produce	

pseudopotentials	is	the	Projector	Augmented	Wave	method.
[20]	
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Chapter	3	

Methodology	I	

	

“I	can	calculate	the	motion	of	heavenly	bodies,	but	not	the	madness	of	people”		

–	Sir	Isaac	Newton	(1643	–	1727)	

	

	

Discussions	in	this	Chapter	are	largely	derived	from	the	following	sources.[1-7]		

	

3.1. Molecular	Dynamics	

	

3.1.1. Introduction	to	Molecular	Dynamics	

	

Following	the	success	of	the	Monte	Carlo	(MC)	method	utilised	by	physicists	since	the	final	

years	of	World	War	II,	the	notion	of	Molecular	Dynamics	(MD)	was	formulated	by	Berni	Alder	

and	 Thomas	 Wainwright	 in	 the	 late	 1950s,[8]	 and	 independently	 developed	 by	 Aneesur	

Rahman	 during	 the	mid	 1960s.[9]	 The	 technique	 involves	 the	 computer	 simulation	 of	 the	

physical	movements	of	objects	 (usually	atoms,	molecules	or	 fragments)	within	a	multiple-

body	 system.	 These	 simulated	particles	 are	 deemed	heavy	 enough	 such	 that	 they	 can	be	

approximated	 to	 behave	 as	 classical	 particles.	 As	 such,	 their	 movements	 are	 computed	

numerically	using	Newton’s	second	equation	of	motion	(EOM),	which	is	integrated	over	time	

for	each	interacting	object:	

	

!"
#$%&
#'$ = )&								+ = 1, 2…0			(23	3.1)	

	

where	!"	and	%&	are	the	mass	and	position	of	body	+	respectively.	The	forces	between	the	
objects	of	the	system	are	given	by	the	negative	derivative	of	a	potential	function	7:	
	

− #7
#%"

= )&			(23	3.2)	
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The	 potential	 function	7	 can	 be	 expressed	 using	 a	 wide	 range	 of	 levels	 of	 theory,	 from	

classical	interatomic	potentials	to	high-level	ab	initio	calculations.	Under	most	circumstances,	

the	level	of	theory	utilised	to	define	the	potential	function	is	dictated	by	considering	both	the	

size	of	the	system	of	interest	and	the	computational	power	available.	This	helps	to	establish	

a	reasonable	compromise	between	accuracy	and	tractability.	

	

As	a	result	of	the	large	number	of	particles	and	the	complexity	of	the	systems	scrutinised	in	a	

molecular	dynamics	calculation,	it	is	impossible	to	solve	the	equations	of	motion	and	hence	

deduce	 future	 states	 of	 the	 system	 analytically.	 Once	 the	 potential	 function	 has	 been	

described	and	the	forces	derived,	 the	EOMs	are	derived	over	discrete	time	 intervals	using	

numerical	techniques.	A	large	number	of	iterative	numerical	procedures	have	been	designed	

for	this	process,	such	as	the	Leapfrog	algorithm,	the	Verlet	algorithm,	and	the	principally	used	

Velocity	Verlet	algorithm.[4]	

	

In	a	typical	Molecular	Dynamics	simulation,	the	conditions	of	the	system	under	scrutiny	are	

set	by	defining	a	specific	 thermodynamic	ensemble.	Commonly	utilised	ensembles	 include	

the	Microcanonical	 ensemble	 (NVE),	 the	 Canonical	 ensemble	 (NVT)	 and	 the	 Isothermal-

Isobaric	ensemble	(NpT).	For	any	of	these	statistical	ensembles,	the	average	of	a	conserved	

variable	at	equilibrium	over	infinite	time	is	equal	to	the	average	over	the	statistical	ensemble.	

As	 such,	 the	 progression	 of	 a	 single	MD	 calculation	 over	 sufficient	 time	may	 be	 used	 to	

calculate	the	macroscopic	thermodynamics	properties	of	a	system.	This	concept,	known	as	

the	 ergodic	 principle,	 is	 central	 to	 molecular	 dynamics,	 as	 it	 allows	 computation	 of	

macroscopic	properties	from	time	averages	of	microscopic	configurations	within	a	simulation.	

	

	

3.1.2. Integration	of	the	Equations	of	Motion	

	

As	mentioned	previously,	 the	basis	of	molecular	dynamics	 is	 that	 the	nuclei	 of	 atoms	are	

approximated	 as	 classical	 particles,	 and	 as	 such	 their	 dynamics	 can	 be	 simulated	 using	

Newton’s	 Second	 Equation	 of	Motion.	However,	 as	 the	 particles	 in	 a	molecular	 dynamics	

simulation	are	under	the	influence	of	a	continuous	potential	and	their	motions	are	inherently	

coupled	together	(i.e.	it	is	a	many-body	problem),	the	equations	cannot	be	solved	analytically.	
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As	such,	 the	equations	of	motion	must	be	solved	numerically	and	a	number	of	algorithms	

have	 been	 developed	 to	 perform	 this	 task,	 all	 based	 on	 the	 concept	 of	 discretising	 the	

integration	into	small	time	steps.	Consider	a	set	of	particles,	which	are	found	at	positions	%9	
at	time	'	(for	the	remainder	of	this	section,	subscripts	on	labels	corresponding	to	positions,	

velocities	etc.	(e.g.	%")	denotes	this	property	after	+	time	steps).	Their	positions	%:	after	a	
small	time	step	∆'	can	be	determined	by	the	following	Taylor	expansion:	

	

%: = %9 +	
=%9
=' ∆' +	12

=$%9
='$ ∆' > +	16

=@%9
='@ ∆' A + ⋯				(23	3.3)	

	

The	velocities	C9,	accelerations	D9	and	hyper-accelerations	E9	(also	known	as	the	jerk)	of	the	
particles	are	expressed	here	as,	 respectively,	 the	 first,	 second	and	 third	derivatives	of	 the	

position	with	respect	to	time.	In	addition,	higher	derivatives	of	the	position	(the	affectionately	

and	somewhat	facetiously	named	jounce	(or	snap),	crackle	and	pop	for	the	fourth,	fifth	and	

sixth	derivatives	of	position	respectively)	are	also	present	in	higher	terms	of	the	expansion.	

However,	these	can	almost	always	be	ignored	and	so	the	expansion	is	usually	truncated	at	

this	point.	The	expansion	can	therefore	be	simplified	to:	

	

%: = %9 +	C9 ∆' +	12D9 ∆'
> +	16E9 ∆'

A + 	F ∆' G			(23	3.4)	

	

Just	as	the	above	expression	allows	us	to	calculate	the	positions	of	the	particles	one	time	step	

forward	in	time,	the	positions	of	the	particles	one	time	step	backwards	in	time	can	also	be	

calculated	simply	by	multiplying	each	∆'	term	by	−1:	
	

%I: = %9 −	C9 ∆' +	12D9 ∆'
> −	16E9 ∆'

A + 	F ∆' G				(23	3.5)	

	

All	of	the	integration	algorithms	used	in	molecular	dynamics	codes	assume	that	the	positions,	

velocities	and	accelerations	of	the	particles	in	a	simulation	can	be	estimated	in	this	way.	In	

general,	the	smaller	the	value	of	∆',	the	more	‘realistic’	the	trajectory	(up	until	the	limit	of	

precision	 in	 the	calculation	of	 the	 forces).	However,	a	smaller	 time	step	means	 that	more	

iterations	of	 the	molecular	dynamics	 integration	algorithm	must	be	calculated	 in	order	 to	
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simulate	the	time	scale	over	which	a	meaningful	chemical	or	physical	process	takes	place.	

Generally,	the	time	step	is	chosen	to	be	shorter	than	the	fastest	dynamic	process	of	interest	

in	the	simulation	(for	example,	the	vibrations	of	particular	chemical	bonds).	

	

There	 are	 three	 commonly	 used	 integration	 algorithms	 implemented	 within	 molecular	

dynamics	 codes,	 each	 with	 its	 own	 sets	 of	 advantages	 and	 disadvantages.	 The	 first	 such	

algorithm	 is	 the	 Verlet	 algorithm,	 which	 gives	 a	 framework	 in	 which	 the	 positions	 and	

accelerations	 (but	 not	 the	 velocities)	 of	 the	 simulated	 atoms	 after	 a	 time	 step	∆'	 can	 be	
computed.	 The	 Verlet	 algorithm	 is	 obtained	 simply	 by	 adding	 the	 two	 above	 equations	

together	to	obtain	the	expression:	

	

%: = 2%9 −	%I: +	D9 ∆' > + 	F ∆' G				(23	3.6)	
	

All	of	the	terms	with	∆'	raised	to	an	odd	power	are	therefore	cancelled	out,	meaning	that	

although	the	C9	and	E9	terms	have	disappeared	from	the	expression	it	is	still	correct	to	third-

order	 in	∆'.	 The	 acceleration	 of	 the	 particles	 can	 be	 calculated	 from	 the	 forces	 (i.e.	 the	

negative	of	the	potential	function):	

	

DK = 	
)K
! 	= − 1

!
LM
L%K

			(23	3.7)	

	

The	accelerations	must	be	computed	at	each	 time	step,	which	allows	 the	positions	of	 the	

particles	 to	 be	 propagated	 to	 generate	 a	 trajectory.	 The	 Verlet	 algorithm	 is	 very	 easy	 to	

implement,	is	computationally	inexpensive	and	is	quite	accurate,	meaning	that	it	has	been	

very	 popular	 in	 molecular	 dynamics	 codes.	 In	 addition,	 it	 allows	 for	 time-reversibility.	

However,	it	has	a	number	of	disadvantages,	the	principal	of	which	is	that	the	velocities	are	

not	explicitly	calculated,	which	are	needed	for	calculating	the	kinetic	energy	of	the	particles	

(and	 therefore	 the	 checking	 of	 the	 conservation	 of	 total	 energy	 during	 a	 simulation).	

Velocities	can	be	estimated	using	the	position	terms	within	the	mean	value	theorem:	

	

C9 = 	
%: −	%I:
2∆' + 	F ∆' $				(23	3.8)		
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However,	the	local	error	in	this	expression	is	of	order	F ∆' $,	as	opposed	to	F ∆' P	for	the	

integration	algorithm	itself.	In	addition,	the	above	estimation	only	gives	the	velocities	at	time	

'	and	not	at	time	' + ∆',	meaning	the	velocities	are	constantly	one	step	out	of	sync	with	the	

positions.	The	velocities	at	time	' + ∆'	can	however	be	approximated,	at	further	cost	to	the	

accuracy	of	the	propagation.	

	

As	a	result,	a	number	of	different	variants	have	been	created	to	overcome	the	issues	of	the	

Verlet	 algorithm.	 One	 of	 the	 most	 commonly	 used	 algorithms	 used	 in	 lieu	 of	 the	 Verlet	

method	is	the	Leapfrog	algorithm.	 In	the	Leapfrog	method,	the	Taylor	expansions	forward	

and	backwards	in	time	are	performed	with	half-time	steps	rather	than	full-time	steps,	and	the	

expressions	are	subtracted	from	each	other	instead	of	added.	Velocities	can	also	be	obtained	

by	an	analogous	expansion	of	the	Taylor	series.	This	gives	the	expressions:	

	

%: = %9 +	C:
$
∆'			(23	3.8)	

C:
$
= CI:$

+	D9∆'			(23	3.9)	

	

This	 algorithm	 is	 also	 correct	 to	 third	 order,	 and	 this	 time	 the	 velocities	 are	 calculated	

explicitly	 within	 the	 algorithm,	 which	 is	 useful	 for	 defining	 specific	 thermodynamic	

ensembles.	However,	the	positions	and	velocities	are	not	known	at	the	same	time	-	they	are	

out-of-sync	by	half	a	time	step.	

	

A	third	algorithm	allows	for	explicit	computation	of	the	positions,	velocities	and	acceleration.	

This	algorithm,	known	as	the	Velocity	Verlet	algorithm,	is	a	modified	Verlet	algorithm	and	is	

arguably	 the	 most	 popular	 used	 in	 molecular	 dynamics	 calculations.	 The	 Velocity	 Verlet	

algorithm	is	computed	as	a	series	of	steps:	

	

	

1. Calculate	 the	 positions	 at	 time	 ' + ∆'	 using	 the	 same	 expression	 as	 for	 the	

standard	Verlet	algorithm:	
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%: = %9 +	C9 ∆' +	12D9 ∆'
>			(23	3.10)	

	

2. Calculate	the	velocities	at	time	' + :
$ ∆':	

	

C:
$
= C9 +	

1
2D9∆'			(23	3.11)	

	

3. Derive	 the	 forces	and	accelerations	 from	the	expression,	again	 in	an	analogous	

way	to	the	initial	Verlet	algorithm:	

	

D: = 	
):
! 	= − 1

!
LM
L%:

			(23	3.12)	

	

4. Finally,	the	velocities	are	computed	at	one	full	time	step,	and	the	system	is	ready	

to	advance	to	the	next	time	step	of	the	procedure:	

	

C: = C:
$
+	12D:∆'			(23	3.13)	

	

Using	the	Velocity	Verlet	algorithm,	we	now	have	a	scheme	in	which	the	positions,	velocities	

and	accelerations	at	' + ∆'	can	be	calculated.	The	algorithm	itself	is	as	accurate	as	the	initial	

Verlet	algorithm,	but	the	velocities	are	known	explicitly,	which	makes	calculating	properties	

such	as	kinetic	energy	and	defining	thermodynamic	ensembles	much	more	straight	forward.	

In	addition,	as	the	algorithm	is	balanced,	its	form	remains	the	same	when	reversing	the	sign	

of	the	time	coordinate	'	-	thus	simulations	performed	with	the	velocity	Verlet	scheme	are,	in	

theory,	completely	reversible.	
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3.1.3. Calculating	properties	in	MD	Simulations	

	

3.1.3.1. The	Microcanonical	Ensemble	(NVE)	

	

A	 ‘natural’	MD	simulation	will	generate	a	microcanonical	ensemble	of	states,	 in	which	the	

number	of	particles	0,	the	volume	of	the	simulation	box	M	and	the	energy	of	the	system	2	
remain	constant.	As	a	result,	such	an	ensemble	is	often	referred	to	as	the	0M2	ensemble.	In	

this	scenario,	the	temperature	and	pressure	will	fluctuate	over	the	course	of	the	simulation.	

	

The	total	energy	of	an	0	particle	simulation	 is	simply	the	sum	of	the	kinetic	and	potential	

energies:	

	

2STSUV = 2WK"XSKY +	2ZTSX"SKUV =
1
2!KCK$ + M(%K)

[

K\:
			(23	3.14)	

	

As	 previously	 discussed,	 the	 potential	 can	 be	 evaluated	 at	 varying	 levels	 of	 theory,	 from	

forcefield	techniques	to	highly	accurate	and	expensive	ab	initio	methods.	It	should	be	noted	

that	as	the	atomic	forces	can	only	be	calculated	with	finite	precision	and	the	MD	integration	

is	discretised	into	small	time-steps,	the	total	energy	is	not	exactly	constant	even	in	an	0M2	
simulation.	 However,	 this	 numerical	 error	 can	 be	 kept	 under	 control	 by	 using	 a	 small	

integration	 time	 step,	 and	monitoring	 the	drift	 in	 the	 total	 energy	over	 the	 course	of	 the	

simulation.	

	

The	absolute	temperature	]	of	the	system	under	scrutiny	is	proportional	to	the	average	of	

the	kinetic	energy	 2WK"XSKY :	

	

] = 2 2WK"XSKY
+^_`a

			(23	3.15)	

	

where	`a	 is	 the	Boltzmann’s	 constant	 and	+^_	 corresponds	 to	 the	number	 of	 degrees	 of	

freedom.	+^_	is	computed	from	the	expression:	
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+^_ = 30 − +YT"			(23	3.16)	
	

In	the	above	expression,	+YT"	 is	the	number	of	constraints	 imposed	upon	the	system.	In	a	

standard	 molecular	 dynamics	 simulation,	 +YT" = 3	 corresponding	 to	 the	 conservation	 of	
linear	momentum.	However,	additional	constraints	(such	as	those	on	bond	lengths,	angles	

etc.)	that	limit	the	total	number	of	degrees	of	freedom	must	also	be	included	in	this	term.	

The	pressure	of	the	system	can	also	be	calculated	using	the	expression:	

	

b = 	0`a]M +	 1cM %K	.		)K
[

K\:
				(23	3.17)	

	

where	V	is	the	volume	of	the	computational	box	and	D	corresponds	to	the	dimensionality	of	

the	 system	 under	 scrutiny	 (usually	 equal	 to	 3).	 This	 second	 part	 of	 this	 is	 known	 as	 the	

pressure	virial.	It	is	worth	noting	here	that	the	virial	cancels	to	the	simple	equation	of	state	

for	a	perfect	gas	if	the	simulated	particles	are	non-interacting.	
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3.1.3.2. Non-Natural	Ensembles	

	

		 	

Name	 Symbol	

	

Equilibrium	

	

N	 P	 V	 T	 E	 µ	

Micro-Canonical	 0M2	 S	maximum	 X	 	 X	 	 X	 	

Canonical	 0M]	 A	minimum	 X	 	 X	 X	 	 	

Isothermal-Isobaric	 0b]	 G	minimum	 X	 X	 	 X	 	 	

Grand-Canonical	 dM]	 pV	maximum	 	 	 X	 X	 	 X	

	

Figure	3.i:	Table	summarising	the	various	conserved	quantities	for	four	different	ensembles	

	

Despite	0M2	being	the	natural	ensemble	generated	by	a	molecular	dynamics	simulation,	it	is	

possible	to	produce	other	statistical	ensembles,	such	as	the	canonical	 0M] ,	the	isothermal-

isobaric	(0b])	and	the	grand-canonical	(dM])	ensembles,	by	modifications	to	the	particles	

at	each	time	step.	This	is	extremely	beneficial,	as	true	chemical	and	physical	processes	often	

rely	on	constant	temperature	and	pressure	regimes	and	very	rarely	feature	constant	energy	

over	the	course	of	a	dynamic	process.	

	

The	 first	 method	 utilised	 to	 control	 temperature	 and	 pressure	 in	 molecular	 dynamics	

simulations	 was	 to	 simply	 apply	 instantaneous	 corrections	 to	 these	 variables	 by	 simply	

rescaling	 until	 a	 target	 equilibrium	 value	 was	 reached.	 However,	 such	 techniques	

detrimentally	perturb	the	dynamics	of	the	simulation	and	do	not	generate	a	true	canonical	

ensemble.	The	best	way	to	control	the	macroscopic	properties	during	a	simulation	is	to	couple	

the	 system	 it	 to	 a	 heat-bath	 (to	 control	 temperature)	 and	 a	 pressure-bath	 (to	 control	

pressure).	These	algorithms,	known	as	thermostats	and	barostats,	allow	both	the	regulation	

of	 the	 temperature	 and	 pressure	 of	 the	 system	 and	 the	 generation	 of	 the	 correct	

thermodynamic	ensemble.		
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3.1.3.3. Thermostats	

	

Numerous	 thermostats	have	been	developed	over	 the	years.	The	 first	 such	algorithm,	 the	

Andersen	 thermostat,	 involved	 rescaling	 the	 velocities	 of	 a	 set	 of	 particles	 by	 a	Maxwell	

distribution	at	random	time	intervals.[10]	This	allowed	the	generation	of	a	true	0M]	ensemble	

in	a	molecular	dynamics	simulation	for	the	first	time,	allowing	real	chemical	processes	to	be	

scrutinised	 using	 the	 technique.	 However,	 it	 could	 only	 be	 used	 to	 scrutinise	 time	

independent	 processes,	 and	 as	 such	 most	 interesting	 chemical	 processes	 could	 not	 be	

analysed	in	this	way.	In	addition,	the	algorithm	suffered	from	very	poor	efficiency	and	it	did	

not	have	an	associated	conserved	quantity	which	could	be	monitored	over	the	course	of	the	

simulation.		

	

Since	 the	 formulation	of	 the	Anderson	thermostat,	numerous	other	algorithms	have	been	

developed	to	allow	the	generation	of	true	canonical	ensembles	for	time	dependent	processes	

which	 are	 efficient	 and	 reliable.	 For	 example,	 one	 of	 the	 simplest	 and	widely	 used	 is	 the	

Berendsen	thermostat,[11]	which	rescales	the	velocities	of	the	system	by	a	scaling	factor	e	after	
every	time	step	∆':	
	

e = 	 1 +	∆'f
]9
] − 1

:
$
			(23	3.18)	

	

where	]	is	the	instantaneous	temperature,	]9	is	the	desired	temperature,	and	f	is	a	relaxation	
constant.	 This	 simple	 scheme	 has	 found	 widespread	 use,	 however	 it	 fails	 to	 produce	 a	

canonical	ensemble,	especially	in	very	small	systems.	

	

Arguably	the	most	widely	used	(and	indeed	the	algorithm	used	predominantly	in	this	work)	is	

the	Nosé-Hoover	method.[12,13]	In	this	method,	the	Equations	of	Motion	are	modified	slightly:	

	

LCg
L' =

)g	
! −	hSCS			(23	3.19)	

	

where	hg	is	a	frictional	coefficient	given	by	the	differential	equation:	
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Lhg
L' = 	

1
i +^_`a(]S −	]XjS)			(23	3.20)	

	

In	this	expression,	]S	 is	the	instantaneous	temperature	of	the	system	at	time	',	]XjS	 is	the	
requested	 temperature	 of	 the	 system	 and	 +^_	 is	 once	 again	 the	 number	 of	 degrees	 of	

freedom	in	the	system.	The	term	i	is	the	‘effective	mass’	of	the	thermostat,	and	is	given	by	

the	expression:	

	

i =	+^_`a]XjSfS$			(23	3.21)	
	

where	fS	is	a	constant	used	to	determine	the	time-scale	of	the	temperature	fluctuation	in	the	

thermostat.	The	value	of	fS	normally	falls	between	0.5	and	2.0	ps	–	too	high	a	value	leads	to	

very	ineffective	temperature	control,	whereas	too	low	a	value	will	cause	the	system	to	simply	

oscillate	about	its	equilibrium	value.		

	

This	 formalism	produces	 canonical	 ensembles	 for	most	 systems,	 however	 in	 certain	 small	

systems	(an	often	quoted	example	is	a	chain	of	harmonic	oscillators),	Nosé-Hoover	dynamics	

be	non-ergodic	and	therefore	not	generate	a	correct	0M]	ensemble.	A	modification	to	the	

original	 formalism	involving	coupling	the	thermostat	to	another,	or	a	chain	of	other	Nosé-

Hoover	thermostats,	allows	for	the	generation	of	a	true	canonical	ensemble	even	in	these	

small	systems.	Each	thermostat	is	regulated	by	its	own	thermostat,	which	in	turn	is	regulated	

by	another	thermostat,	and	in	the	limit	of	an	infinite	chain	of	thermostats	produces	entirely	

ergodic	dynamics.	Although	many	argue	that	this	‘spoils’	the	mathematical	simplicity	of	the	

Nosé-Hoover	method,	even	small	chains	of	such	thermostats	can	produce	almost	perfectly	

ergodic	dynamics	in	any	system.
[14]	

	

Another	type	of	thermostat	used	in	this	work	is	the	recently	developed	Canonical	Sampling	

through	Velocity	 Scaling	 (CSVR)	 thermostat.
[15]

	 This	method	 involves	multiplying	all	 of	 the	

velocities	of	the	particles	by	a	factor	k	which	is	calculated	by	enforcing	the	total	kinetic	energy	
be	equal	to	a	selected	value	of	kinetic	energy.		
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k = 	 2WK"lmnopl
2WK"mqlrms

			(23	3.22)	

	

This	is	different	to	simple	velocity	scaling	as	rather	than	using	the	average	value	of	the	kinetic	

energy,	instead	a	target	value	2WK"lmnopl 	is	selected	using	a	stochastic	procedure	with	the	aim	

of	producing	a	true	canonical	ensemble.	Between	the	rescaling	steps,	the	system	is	evolved	

normally	and,	assuming	that	the	corresponding	evolution	is	ergodic	within	the	microcanonical	

ensemble,	produces	an	overall	scheme	of	ergodic	dynamics	within	the	canonical	ensemble.	

	

	

3.1.3.4. Barostats	

	

Just	as	the	temperature	of	the	system	may	be	regulated	with	a	thermostat,	so	too	can	the	

pressure	be	controlled	with	a	barostat.	This	is	carried	out	in	a	very	similar	manner	to	that	of	

the	thermostat,	only	this	time	a	modification	is	made	to	the	equations	of	motion	allowing	the	

pressure	of	the	simulation	to	be	maintained	over	its	duration.	There	are	two	approaches	for	

this	–	one	allowing	only	for	isotropic	box	changes,	and	another	for	anisotropic	box	changes.		

	

The	former	approach	is	employed	by	using	scaling	methods	very	similar	to	the	thermostats	

previously	described.	For	example,	 in	 the	Berendsen	barostat,	 the	atomic	coordinates	and	

box	vectors	are	simply	rescaled	at	every	step	of	a	calculation.
[11]	

This	works	in	a	very	similar	

fashion	to	the	Berendsen	thermostat,	in	that	a	scaling	factor	is	applied	to	the	simulation	cell	

at	each	time	step:	

	

d = 	 1 +	t∆'f u9 − 	u
:
@
			(23	3.23)	

	

where	u	is	the	instantaneous	pressure,	u9	is	the	desired	pressure,	f	is	a	relaxation	constant	
and	 t	 is	 the	 isothermal	 compressibility.	 An	 anisotropic	 extension	 to	 the	 Berendsen	

thermostat	does	exist,	however	much	like	the	Berendsen	thermostat,	such	schemes	do	not	
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generate	 the	 correct	 ensemble	 and	more	 involved	 schemes	 are	 required	 to	 produce	 the	

correct	dynamics.	

	

Another	widely	used	implementation	of	pressure	control	is	the	Andersen	barostat,[10]	which	

unlike	 the	 Berendsen	 thermostat	 is	 not	 at	 all	 similar	 to	 its	 thermostat	 namesake.	 The	

Andersen	thermostat	is	better	compared	to	the	Nosé-Hoover	thermostat,	 in	that	it	evokes	

the	use	of	an	extra	degree	of	 freedom	in	the	 form	of	a	 fictitious	 ‘mass’	parameter.	 In	 the	

Andersen	barostat,	the	simulation	cell	 is	coupled	to	a	‘pressure-bath’,	which	replicates	the	

action	of	a	mechanical	piston	applying	pressure	to	the	system	of	interest.	The	volume	of	the	

cell	M	is	regarded	as	the	coordinate	of	the	piston	and	so	too	is	treated	as	a	free	parameter.	

The	piston	has	a	mass	value	i,	which	dictates	the	rapidity	of	simulation	cell	fluctuations.	Small	

values	of	the	piston	mass	lead	to	very	rapid	changes	in	the	box	size,	whereas	a	large	mass	

leads	to	only	small	adjustments	to	the	volume.	The	Nosé-Hoover[16]	and	Martyna-Tuckerman-

Klein[17]	barostats	are	widely	used	modifications	to	the	Andersen	barostat.	

	

In	order	 for	shape	and	size	changes	to	 the	box	not	 to	be	 isotropic,	 the	Parrinello-Rahman	

modification	 to	 the	 Andersen	 barostat	 is	 required.[18,19]	 When	 studying	 solid	 systems,	

anisotropic	 changes	 are	 generally	 required	 in	 order	 to	 observe	 phase	 changes,	 study	

transitions	and	to	simulate	the	formation	of	defects	and	internal	surfaces.	In	the	Parrinello-

Rahman	scheme,	the	simulated	system	is	once	again	coupled	to	an	external	pressure-bath	

and	controlled	by	a	fictitious	mass	parameter,	however	in	this	scheme	the	cell	may	adopt	an	

arbitrary	shape	which	can	be	described	by	the	independent	cell	parameters	v, w	and	x.	This	
allows	for	the	simulation	of	directional	pressure	or	strain,	as	well	as	 for	anisotropic	shape	

changes	to	the	simulation	cell.		

	

Both	the	Andersen	barostat	and	the	Parrinello-Rahman	modification	produce	isoenthalpic-

isobaric	ensembles	(0by).	Combining	these	barostats	with	a	numerical	thermostat	allows	

for	the	generation	of	a	true	isotheral-isobaric	(0b])	ensemble.	
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3.2. Geometry	Optimisations	

	

3.2.1. Introduction	to	Geometry	Optimisation	

	

Geometry	optimisation,	also	called	energy	minimisation	or	structural	relaxation,	is	the	process	

of	determining	an	arrangement	of	atoms	within	a	chemical	system	which	corresponds	to	a	

minimum	on	its	associated	potential	energy	surface,	according	to	the	level	of	theory	used	to	

describe	 the	 simulated	 material.	 Such	 configurations	 define	 the	 (meta)stable	 states	 of	 a	

system,	 and	 are	 physically	 meaningful	 as	 they	 correspond	 to	 atomic	 arrangements	 for	 a	

particular	composition	of	atoms	that	can	possibly,	or	already	do	exist,	in	the	natural	world.[2]	

	

Geometry	 optimisation	 procedures	 can	 be	 applied	 to	 a	wide	 range	 of	 simulated	 systems,	

ranging	 from	 the	 geometry	of	 a	 single	molecule	or	 ion	 to	 the	 arrangement	of	 atoms	 in	 a	

periodic	condensed	phase.	The	work	presented	within	this	thesis	deals	exclusively	with	the	

latter	problem,	although	the	basis	behind	the	methods	described	is	exactly	the	same	for	all	

types	of	simulated	chemical	system.	

	

The	crucial	idea	behind	geometry	optimisation	is	that,	given	a	set	of	vectors	corresponding	to	

the	 positions	 of	 the	 atoms	 %,	 one	 can	 define	 the	 energy	 as	 a	 function	 of	 the	 atomic	

coordinates	2 % .	The	problem	then	becomes	purely	mathematical,	 in	that	one	must	now	

find	the	values	of	%	which	minimise	the	function	2 % .	When	located	at	an	energy	minimum,	

the	first	derivative	of	the	energy	is	equal	to	zero,	and	the	matrix	of	the	second	derivative	(the	

Hessian	matrix)	is	positive	definite	–	i.e.	all	of	its	eigenvalues	are	positive.	

	

An	array	of	methods	has	been	developed	to	tackle	such	problems,	two	of	which	are	briefly	

discussed	 in	 the	 below	 section	 –	 the	 Steepest	 Descent	 method,	 and	 the	 more	 advanced	

Conjugate	 Gradient	 method.	 The	 latter	 is	 the	 method	 principally	 used	 in	 this	 work	 for	

structural	relaxations.	It	is	worth	mentioning	here	that	various	other	methods	of	geometry	

optimisation	exist,	many	of	which	are	much	more	sophisticated.	A	number	of	these	methods	

utilise	higher	derivatives	of	the	function	to	be	optimised,	for	example	the	Newton-Raphson	

method,	which	expands	the	function	to	second	order.	
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3.2.2. Steepest	Descent	method	

	

Steepest	descent	methods	involve	moving	the	system	in	the	direction	of	the	negative	gradient	

vector	z,	which	points	towards	the	direction	in	which	the	function	is	most	rapidly	increasing.	

Using	this	negative	gradient,	one	can	compute	a	new	position	based	on	the	old	configuration:	

	

%"{: = 	%" − 	kz&			(23	3.24)	
	

where	k	is	a	parameter	that	can	be	adjusted	accordingly.	If	k	is	chosen	to	be	small	enough,	

the	gradient	z&	will	always	be	 larger	than	or	equal	to	z&{|,	meaning	that	the	system	has	

moved	against	the	gradient	of	the	function.	If	the	gradient	vector	starts	to	increase	again,	the	

process	 restarts	 and	 a	 new	 negative	 gradient	 is	 computed	 from	 this	 new	 position,	

perpendicular	to	the	original	path.	This	process	iterates	until	the	nearest	 local	minimum	is	

reached.	

	

	

	

 
 
 
 
 
 
  
	

	

Figure	3.ii:	Schematic	of	the	steepest	descent	method,	showing	the	movement	of	the	system	

along	the	negative	of	the	gradient	vectors,	changing	paths	to	perpendicular	vectors	five	times	

over	the	procedure	before	finding	the	associated	minimum.	Image	inspired	by	figure	in	

reference	2.	

	

	

This	is	a	very	simple	and	effective	technique	to	reach	the	minimum	values	of	certain	functions.	

However,	the	steepest	descent	method	does	have	a	number	of	limitations.	Firstly,	the	true	
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position	of	the	minimum	is	never	actually	reached,	as	the	rate	of	convergence	decelerates	as	

the	algorithm	converges	upon	the	minimum	of	the	function.	Secondly,	the	zig-zagging	nature	

of	the	optimisation	path	is	highly	inefficient,	and	can	cause	problems	in	systems	with	complex	

energy	landscapes,	particularly	those	featuring	long	and	narrow	‘valleys’.	

	

	

3.2.3. Conjugate	Gradient	method	

	

The	conjugate	gradient	method	can	be	thought	of	as	an	improvement	to	the	steepest	descent	

method.	The	very	first	step	is	identical	to	the	steepest	descent	method,	in	that	the	system	

moves	along	the	negative	gradient	vector.	However,	subsequent	searches	are	based	along	

lines	that	contain	some	component	of	previous	searches,	i.e.	they	are	‘conjugate’	to	previous	

directions.	

	

}" = 	−z" +	t"}"I:			(23	3.25)	
	

}&	 corresponds	 to	 the	direction	of	 travel	 in	 the	 current	 path,	whereas	}&I|	denotes	 the	
search	direction	in	the	previous	step.	t	is	a	value	which	can	be	defined	in	a	number	of	ways,	

including	using	 the	 Fletcher-Reeves	method,	 the	Polak-Ribiere	method	 and	 the	Hestenes-

Stiefel	method.	For	practical	reasons,	the	Polak-Ribiere	parameterisation	is	the	method	that	

is	most	 often	used.

[2]

	 Regardless	 of	 the	method	of	 its	 parameterisation,	 the	t	 parameter	

removes	the	mandatory	requirement	that	the	next	search	direction	must	be	orthogonal	to	

the	previous	one,	significantly	increasing	the	efficiency	of	the	algorithm.	As	with	the	steepest	

descent	method,	the	algorithm	must	iterate	until	the	local	minimum	is	reached.	

	

The	conjugate	gradient	method	is	not	without	its	problems,	however.	Most	significantly,	the	

conjugate	 property	 only	 holds	 true	 for	 purely	 quadratic	 systems,	 and	 so	 occasionally	 the	

procedure	must	be	restarted	by	periodically	setting	t	 to	0.	However,	convergence	time	 is	

significantly	decreased	by	using	the	conjugate	gradient	method,	and	as	such	is	much	more	

prominently	used	than	the	steepest	descent	method	in	computational	materials	science.	
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Chapter	4	

Methodology	II	

	

“One	should	always	be	a	little	improbable”		

–	Oscar	Wilde	(1854-1900),	Phrases	and	Philosophies	for	the	Use	of	the	Young,	1894	

	

	

4.1. Introduction	to	Rare	Events	

	

Despite	 major	 advancements	 in	 both	 computational	 techniques	 and	 the	 development	 of	

computer	 hardware	 and	 software,	 there	 still	 exists	 a	 huge	 number	 of	 intrinsic	 problems	

resulting	from	the	difficulties	of	carrying	out	computer	simulations	of	physical	systems.		

	

One	 of	 the	 primary	 reasons	 for	 this	 results	 from	 the	 time-scales	 employed	 in	 molecular	

dynamics	simulations.	 Integration	time-steps	must	be	commensurate	to	the	time-scales	of	

the	fastest	events	of	interest	in	a	simulation.	This	is	generally	of	the	order	of	femtoseconds,	

and	as	such	molecular	dynamics	simulations	must	be	run	for	thousands	or	millions	of	steps	to	

simulate	a	meaningful	time	period	for	most	dynamic	processes.	Given	current	hardware	and	

methods,	simulations	can	be	run	in	the	order	of	nanoseconds	using	classical	potentials,	and	

in	 the	order	of	picoseconds	 for	advanced	ab	 initio	methods.	Events	 that	occur	over	 time-

scales	longer	than	this	(of	which	there	are	very	many)	are	therefore	impossible	to	observe	in	

this	way.	

	

Secondly,	 systems	 studied	 with	 simulation	 techniques	 such	 as	 molecular	 dynamics	 often	

feature	 very	 complex	 energy	 landscapes	 with	 multiple	 activation	 barriers,	 local	 energy	

minima	 and	 saddle	 points.	 Overcoming	 such	 barriers	 generally	 have	 an	 extremely	 low	

probability	and	as	such	systems	tend	to	linger	within	local	energy	minima	for	long	periods	of	

time.	A	standard	molecular	dynamics	simulation	will	therefore	fail	to	simulate	much	of	the	

phase	space	of	a	given	system	over	a	plausible	simulation	time	scale.	This	is	known	as	the	rare	

event	 problem	 and	 most	 dynamic	 physical	 and	 chemical	 processes	 (reactions,	 phase	

transitions,	protein	folding,	molecular	docking	etc.)	are	rare	(i.e.	non-equilibrium)	events.	
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Figure	4.i:	Schematic	showing	the	concept	of	a	‘rare	event’	–	in	this	case,	a	transition	

between	two	states	A	and	B.	The	system	spends	most	of	its	time	in	basins	A	and	B,	

fluctuating	due	to	thermal	energy,	and	transitions	between	basins	A	and	B	are	infrequent	and	

very	rapid.	Almost	all	interesting	processes	in	chemistry	and	physics	are	rare	events,	however	

they	are	notoriously	difficult	to	simulate.[1]	

	

An	example	of	a	rare	event	postulated	by	Dellago	et	al.	considers	a	single	water	molecule,	

which	has	an	approximate	life	time	of	ten	hours	before	dissociating	into	a	hydronium	cation	

and	a	hydroxide	anion.
[2]
	To	observe	the	ionisation	of	this	single	water	molecule	in	an	MD	

simulation	with	each	time	step	equating	to	1	fs,	one	would	have	to	simulate	to	the	order	of	

10
18
	steps	in	order	to	witness	just	ONE	dissociation	event.	If	each	simulation	step	were	to	take	

1	s	to	compute,	the	transition	would	not	be	seen	for	3	x	10
10
	years	–	about	twice	as	long	as	

the	current	estimated	age	of	the	universe.		

	

Clearly,	this	is	impossible	for	current	computational	systems,	and	extrapolating	this	to	larger	

systems	 would	 require	 even	 longer	 preposterous	 time	 scales	 to	 observe	 any	 events	 of	

interest.	As	such,	some	acceleration	is	required	to	observe	rare	events	in	the	simulations	of	

physical	systems.	Simply	increasing	the	temperature	or	time-step	utilised	in	the	simulation	
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works	to	some	extent,	however	this	often	spoils	the	true	dynamics	of	the	system.	To	combat	

this,	 numerous	 enhanced	 sampling	 techniques	 have	 been	 developed,	which	 aim	 to	 allow	

efficient	sampling	of	 the	phase	space	and/or	the	collection	of	 ‘true’	dynamics.	Two	of	 the	

more	recent	techniques	are	used	in	this	work:	metadynamics,	which	can	be	used	to	quickly	

sample	the	phase	space	of	a	physical	system,	and	transition	path	sampling,	which	can	be	used	

to	accurately	simulate	rare	events	in	exquisite	detail.	

	

	

4.2. Metadynamics	

	

The	discussion	in	section	4.2	relies	on	the	following	references.
[3-6]

		

	

	

4.2.1. Introduction	to	Metadynamics	

	

Metadynamics	is	a	technique	used	to	rapidly	explore	potential	energy	surfaces	in	the	space	

of	a	number	of	reaction	coordinates,	known	as	collective	variables	(CVs).	The	technique	was	

first	described	in	2002	by	Laio	and	Parrinello	as	an	extension	to	standard	molecular	dynamics	

and	is	designed	to	enable	a	simulation	to	quickly	escape	from	free	energy	minima.
[3]
		

	

In	a	metadynamics	simulation,	the	dynamics	in	the	space	of	the	chosen	collective	variable(s)	

are	 biased	 by	 a	 ‘history-dependent’	 potential.	 This	 potential	 is	 constructed	 as	 a	 sum	 of	

Gaussian	functions	along	the	trajectory	in	the	collective	variable	space.	As	the	system	evolves,	

more	Gaussian	functions	cumulatively	fill	the	local	energy	minimum,	discouraging	the	system	

from	returning	to	its	previous	state.	Filling	the	potential	energy	minima	with	Gaussians	in	this	

way	 has	 been	 described	 as	 analogous	 to	 filling	 holes	with	 sand	 or	water.	 Eventually,	 the	

system	is	forced	into	a	new	basin	of	attraction	by	overcoming	the	much	reduced	activation	

barrier	separating	the	two	energy	wells.	As	such,	the	underlying	potential	energy	surface	can	

be	quickly	explored	and	the	system	is	prohibited	from	returning	to	an	already	visited	state	in	

the	collective	variable	space.		
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Figure	4.ii:	An	example	of	a	one-dimensional	free	energy	surface	showing	the	progression	of	

a	metadynamics	simulation.	This	hypothetical	simulation	begins	at	the	metastable	basin	in	

the	centre	of	the	plot.	The	lines	correspond	to	the	time	evolution	of	the	sum	of	the	Gaussian	

functions	used	to	construct	the	bias	potential.	Eventually,	the	system	is	forced	out	of	the	

initial	basin	and	explores	other	free	energy	minima	in	the	space	of	the	collective	variable	x.[3]		

	

	

In	order	for	metadynamics	to	successfully	sample	the	phase	space	of	a	system,	it	is	imperative	

that	the	choice	of	collective	variable	used	be	appropriate.	The	collective	variable	must	be	able	

to	distinguish	between	the	initial,	final	and	intermediate	states	of	the	system,	and	it	must	be	

able	to	describe	the	events	of	importance	that	occur	in	a	system	appropriately.	The	choice	of	

the	collective	variable	also	affects	the	efficiency	and	quality	of	the	calculation.	In	addition,	

tuning	the	shape	of	the	Gaussian	functions	deposited	on	the	potential	energy	surface	is	also	

important.	 For	 example,	 the	 width	 of	 the	 Gaussian	 must	 be	 larger	 than	 the	 thermal	

fluctuations	in	the	system,	but	small	enough	to	acquire	good	resolution	and	avoid	overfilling	

of	the	energy	minima.	The	Gaussian	height	can	then	be	chosen	depending	on	the	width	of	

the	Gaussian,	and	the	magnitude	of	the	energy	barriers	of	interest	in	the	system.	
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In	 addition	 to	 ‘standard’	 metadynamics,	 a	 number	 of	 modified	 techniques	 have	 been	

developed.	 In	 well-tempered	 metadynamics,	 the	 height	 of	 the	 Gaussian	 function	 is	

periodically	 rescaled	 to	 ensure	 that	 the	 bias	 converges	 more	 smoothly.[7]	 In	 adaptive-

Gaussian	metadynamics,	the	widths	of	the	Gaussian	functions	are	allowed	to	vary	in	order	to	

more	efficiently	sample	basins	of	attraction	of	different	breadths.[8]	In	this	work,	the	standard	

form	 of	metadynamics	 and	 the	well-tempered	 and	 adaptive-Gaussian	modifications	 have	

been	extensively	utilised.	In	addition,	one	particular	scheme	of	metadynamics	developed	by	

Martonák	et	al	involves	using	the	simulation	cell	as	the	collective	variable.[9-11,13]	This	scheme	

too	has	found	extensive	use	in	this	work.	

	

	

4.2.2. The	Choice	of	the	Collective	Variable	

	

Arguably	 the	most	 involved	 step	 in	 a	metadynamics	 calculation	 is	 determining	 a	 suitable	

reaction	 coordinate	 to	 distinguish	 between	 the	 states	 of	 interest	 in	 a	 calculation.	 An	

appropriate	choice	of	reaction	coordinates,	known	as	collective	variables,	has	a	huge	effect	

on	the	efficiency	of	the	calculation,	and	the	accessibility	of	transition	and	intermediate	states.	

The	aim	is	to	identify	a	set	of	collective	variables	of	interest	that	correctly	describe	the	system	

which	are	intrinsically	difficult	to	sample,	as	they	are	separated	by	energy	barriers	that	are	

unlikely	to	be	surmounted	within	normal	molecular	dynamics.	Failure	to	determine	a	set	of	

collective	 variables	 that	 does	 not	 fully	 describe	 the	 system	 of	 interest	 can	 lead	 to	 poor	

sampling	of	the	phase	space	of	the	system,	as	well	as	 incorrect	characterisation	of	energy	

barriers	and	pathways	of	interest.	

	

Occasionally,	 choosing	 an	 appropriate	 collective	 variable	 can	 be	 straight	 forward	 –	 for	

example,	 in	 a	 simulation	of	 bond	 formation	 and	breaking,	 an	obvious	 choice	of	 collective	

variable	would	be	the	distance	between	the	two	atomic	sites	of	interest.	However,	in	most	

calculations,	the	choice	of	collective	variables	is	far	from	trivial	and	there	is	no	a	priori	recipe	

for	 their	 deduction.	 Collective	 variables	 must	 therefore	 be	 determined	 using	 chemical	

intuition,	 as	 well	 as	 trial	 and	 error.	 As	 a	 guideline,	 collective	 variables	 should	 satisfy	 the	

following	three	properties:	
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i. The	collective	variable	should	be	able	to	distinguish	between	initial	and	final	states	of	

the	calculation	and,	 if	appropriate,	all	of	 the	necessary	transition	and	 intermediate	

states;	

	

ii. The	 choice	 of	 the	 collective	 variable	must	 be	 able	 to	 describe	 all	 of	 the	 events	 of	

importance	that	are	relevant	in	a	transformation	pathway,	particularly	those	that	are	

‘slow’;	

	

iii. The	number	of	collective	variables	should	not	be	too	large	–	otherwise,	the	calculation	

will	become	prohibitively	expensive	and	will	take	a	very	long	time	to	characterise	the	

underlying	free	energy	surface.	

	

It	is,	however,	immediately	apparent	that	points	ii.	and	iii.	can	often	be	mutually	exclusive,	as	

characterising	all	of	the	necessary	reaction	coordinates	to	accurately	describe	a	system	may	

indeed	 invoke	 a	 large	 number	 of	 collective	 variables.	 Efforts	 are	made,	 therefore,	 to	 find	

collective	variables	that	are	indeed	truly	‘collective’	and	can	characterise	the	process	under	

scrutiny	using	the	smallest	number	of	variables	possible.		

	

Missing	 a	 relevant	 component	 of	 a	 collective	 variable	 within	 a	 simulation	 can	 lead	 of	

significant	 over-estimation	 of	 the	 energy	 barriers	 or	 even	 complete	 failure	 to	 sample	 the	

relevant	pathways.	One	way	to	visualise	this	is	to	consider	a	Z	shaped	two	dimensional	free	

energy	 profile.	 If	metadynamics	 is	 applied	 only	 to	 one	 of	 the	 collective	 variables,	 then	 a	

transition	will	be	observed	when	the	height	of	the	Gaussians	is	much	greater	than	the	barrier	

height,	thereby	significantly	overestimating	the	activation	energy.	This	behaviour	means	that	

the	true	underlying	free	energy	surface	will	never	be	accurately	ascertained.	
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Figure	4.iii:	A	hypothetical	Z-shaped	potential	in	the	space	of	two	collective	variables	(left).	

Imagine	a	scenario	where	metadynamics	is	applied	to	this	system,	however	only	one	of	the	

collective	variable	are	biased	(“CV1”)	while	the	second	(“CV2”)	is	neglected.	A	strong	

hysteresis	will	have	to	be	induced	before	observing	a	transformation.	This	leads	to	significant	

overfilling	of	the	initial	minimum	and	overestimation	of	the	energy	barrier	(right).[4]		

	

	

As	mentioned	previously,	a	priori	 identification	of	collective	variables	is	often	not	possible,	

however	the	choice	of	collective	variables	can	often	be	checked	a	posteriori.	Analysing	the	

deposition	of	Gaussian	functions	during	a	calculation	can	identify	 lacking	relevant	reaction	

coordinates,	 as	 simulations	with	poorly	described	 collective	 variables	 tend	 to	 show	highly	

hysteretic	 behaviour	when	 reconstructing	 the	underlying	 free	 energy	 surface.	 If	 all	 of	 the	

relevant	collective	variables	are	accounted	for,	the	free	energy	should	grow	‘smoothly’	and	

converge	when	all	of	the	different	basins	have	been	fully	explored.	

	

Quantities	used	as	collective	variables	include,	but	are	not	limited	to:	

	

• Geometric	variables,	such	as	bond	distances,	angles	and	torsions	between	atoms	or	

groups	of	atoms;	
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• Coordination	 numbers,	 including	 distance	 cut-offs,	 or	 more	 advanced	 switching	

functions,	as	well	as	Steinhardt	parameters;[12]		

	

• The	shape	and	dimensions	of	the	simulation	cell	itself;	

	

• The	potential	energy	of	the	system;	

	

• Path	specific	parameters,	such	as	using	the	root	mean	squared	displacement	(RMSD)	

or	construction	of	periodic	minimal	surfaces	to	distinguish	between	complex	states	of	

interest	in	a	one-dimensional	way;	

	

• Normal	modes,	by	preferentially	sampling	in	the	direction	of	‘slow’	or	‘soft’	modes	

within	a	system.	

	

Within	this	work,	a	number	of	different	collective	variables	have	been	used	for	metadynamics	

calculations,	including	coordination	number,	simulation	box	parameters,	distances	between	

atomic	sites	and	Steinhardt	parameters.	Whilst	the	implementation	of	the	calculations	varies	

depending	on	the	system	and	the	collective	variable	utilised,	a	very	general	description	of	the	

method	is	given	below.		

	

	

4.2.3. Implementations	of	Metadynamics	

	

4.2.3.1. ‘Standard’	Metadynamics	

	

During	a	metadynamics	simulation,	a	history	dependent	bias	potential	composed	of	Gaussian	

functions	is	constructed	within	the	space	of	the	chosen	collective	variable(s)	!(#).	The	sum	

of	 these	Gaussian	 functions,	which	 are	 added	 at	 every	&	molecular	 dynamics	 steps	 in	 the	

space	of	'	collective	variables,	gives	the	external	or	metadynamics	potential	(	acting	on	the	
set	of	collective	variables	at	time	):	
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( ! # , ) = 	 , -& exp 	−
! # − ! # -&

2

2452

6

5789:;<

				[>?	4.1]	

	

where	,	is	the	height	of	the	Gaussian	function	and	4	is	the	width	of	the	Gaussian	function.	A	

suitable	Gaussian	width	4	must	be	chosen	for	each	collective	variable.	Once	again,	there	is	no	

a	priori	recipe	for	determining	the	‘correct’	values	to	use	for	a	particular	system.	As	eluded	to	

previously,	the	choice	of	these	parameters	(as	well	as	the	frequency	of	Gaussian	deposition)	

greatly	affects	the	efficiency	and	accuracy	of	the	reconstruction	of	the	free	energy	surface.	

Large	Gaussians	mean	that	 the	 free	energy	 landscape	will	be	explored	rapidly	but	contain	

significant	errors,	whereas	smaller	Gaussians	will	create	a	more	accurate	 landscape	at	 the	

cost	 of	 a	 significantly	 more	 expensive	 calculation.	 The	 relationship	 between	 these	 two	

parameters	is	also	relevant	and	so	they	must	be	chosen	carefully.	Some	consider	it	a	good	

approximation	to	make	,	~	42,	whilst	others	follow	the	relationship	,	~	E4	with	E	usually	

equal	to	2,	3	or	4,	however	there	is	no	hard-and-fast	rule	about	this.	It	is	also	beneficial	to	fix	

4	 to	 correspond	 approximately	 to	 the	 variation	 seen	 in	 the	 collective	 variable	 during	 an	

unbiased	simulation.	It	is	also	considered	good	practice	to	ensure	that	4	is	much	larger	than	

the	thermal	variations	in	the	system	-FG.	

	

As	 the	 time	 evolution	 of	 the	 metadynamics	 calculation	 proceeds,	 the	 history	 dependent	

potential	forces	the	system	to	escape	from	its	initial	energy	well	and	towards	a	new	basin	of	

attraction.	The	system	eventually	leaves	the	initial	basin	before	relaxing	into	a	second	energy	

well	corresponding	to	a	different	(meta)stable	state.	This	process	can	be	continued	until	the	

entire	phase	space	is	sampled,	or	until	the	desired	intermediate,	transition	state	or	product	

has	been	found.[3]	

	

The	key	assumption	of	metadynamics	is	that,	in	the	long	time	limit,	( ! # , ) 	converges	to	

the	negative	of	the	free	energy	of	the	system	as	a	function	of	the	collective	variables:	

	

lim
<→	L

	( !, ) = 	−M ! + 	O				[>?	4.2]	
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The	 above	 equation	 shows	 that	 the	 free	 energy	 can	 be	 estimated	 using	 non-equilibrium	

dynamics,	and	is	in	no	way	derived	from	any	standard	formulations	of	the	free	energy,	as	is	

the	case	in	other	techniques	of	free	energy	surface	reconstruction.	

	

	

4.2.3.2. Well-Tempered	Metadynamics	

	

Within	standard	metadynamics,	the	Gaussian	functions	deposited	to	form	the	bias	potential	

are	of	uniform	height	over	the	course	of	the	simulation.	It	is	often	difficult	to	ascertain	when	

a	standard	metadynamics	simulation	has	concluded,	as	the	bias	potential	does	not	converge	

exactly	to	the	value	of	the	free	energy,	but	oscillates	around	the	real	value	with	an	average	

error	proportional	to	the	square	root	of	the	rate	of	Gaussian	deposition	&.	Accuracy	can	be	
gained	by	reducing	the	value	of	&,	with	the	consequence	of	much	longer	simulation	times	to	

quantify	the	underlying	free	energy	surface.		

	

One	of	the	modifications	to	the	original	method	designed	to	alleviate	these	issues	allows	the	

height	of	the	Gaussians	to	be	decreased	over	the	course	of	the	simulation.	This	is	known	as	

well-tempered	metadynamics.[7]	The	height	of	the	Gaussian	is	decreased	over	the	simulation	

according	to	the	equation:	

	

, -& = 	,P	Q#R −	((! # -& , -&)
-F∆G

				[>?	4.3]	

	

where	,P	is	the	Gaussian	height	at	the	start	of	the	calculation.	The	term	∆G	is	a	temperature	

term	and	 can	be	used	 to	 regulate	 the	extent	of	 the	 free	energy	exploration.	With	 such	a	

rescaling	of	the	Gaussian	height,	the	metadynamics	bias	converges	more	smoothly	in	the	long	

time	limit	to	the	exact	solution,	rather	than	oscillate	about	the	true	value.	However,	in	this	

case	 the	bias	potential	 does	not	 completely	 compensate	 the	 free	energy	 in	 the	 collective	

variable	space.	In	a	well-tempered	metadynamics	simulation,	the	free	energy	is	estimated	as:	

	

lim
<→	L

	( !, ) = 	− ∆G	
G + ∆G M ! + 	O				[>?	4.4]	
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In	this	case,	G	is	the	temperature	of	the	system.	It	is	interesting	to	note	the	two	limiting	cases,	

where	∆G = 0	and	∆G = 	∞.	For	∆G = 0,	the	bias	is	equal	to	zero,	which	corresponds	to	a	
standard	molecular	dynamics	calculation.	At	∆G = 	∞,	the	deposition	rate	is	constant	and	the	

original	metadynamics	relationships	are	found.	In	the	array	of	 intermediate	cases	found	in	

well-tempered	 metadynamics,	 the	 simulation	 samples	 an	 ensemble	 at	 the	 higher	

temperature	 of	G + ∆G,	 but	 the	 calculated	 free	 energy	 surface	 corresponds	 to	 the	 target	
temperature	G.	
	

	

4.2.3.3. Adaptive	Gaussian	Metadynamics	

	

There	also	exists	a	scheme	of	metadynamics	 in	which	the	width	of	 the	Gaussian	4	 can	be	
changed	over	the	course	of	the	simulation.	This	is	incredibly	useful	in	system	where	the	local	

properties	of	the	free	energy	surface	vary	greatly	in	different	regions	of	the	collective	variable	

space.[8]	There	are	two	prescriptions	for	adaptive	Gaussian	metadynamics:	The	first	confers	

changes	to	the	width	of	the	Gaussian	functions	according	to	the	mean	square	displacement	

of	the	collective	variables	within	a	particular	time	interval.	The	second	involves	altering	the	

Gaussian	width	based	on	the	change	in	mean	square	displacement	of	the	collective	variables	

as	a	result	of	a	geometric	change	in	the	microscopic	coordinates.	The	two	methods	are	known	

as	dynamically	adapted	and	geometry	adapted	Gaussians,	respectively.	

	

Once	 again,	 the	 free	 energy	 estimator	must	 be	modified	when	 using	 this	 technique.	 The	

equation	corresponding	to	the	free	energy	when	using	Adaptive	Gaussian	metadynamics	is:	

	

lim
<→	L

	( !, ) = 	−M ! − G lnX !, ) + O 				[>?	4.5]	

	

In	this	case,	X !, ) 	corresponds	to	the	accumulated	histogram	detailing	the	variance	of	the	

collective	variables	up	to	time	).	This	estimator	works	regardless	of	the	changes	to	the	size	of	

the	 Gaussians	 and	 can	 be	 utilised	 to	 estimate	 the	 free	 energy	 using	 either	 dynamically	

adapted	or	geometry	adapted	Gaussian	functions.	
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4.2.3.4. Using	the	Simulation	Cell	as	the	Collective	Variable	

	

The	metadynamics	procedures	designed	by	Martonák,	Laio	and	Parrinello	have	shown	to	be	

excellent	candidates	for	modelling	structural	phase	transitions	and	deserve	extra	discussion	

as	their	methodologies	have	been	used	extensively	 in	this	work.[9-11]	 In	the	Martonák	et	al	

schemes	of	metadynamics,	the	three	edges	of	the	cell	Z,	[	and	O	are	used	as	the	collective	
variables,	arranged	as	a	3	x	3	matrix:	

	

ℎ = (Z, [, O)				[>?	4.6]	
	

In	 small	 simulation	cells,	ℎ	 is	 simply	an	 integer	value	of	 the	unit	 cell	^,	meaning	 that	 this	

quantity	 is	 excellent	 at	 distinguishing	 between	 different	 shapes	 and	 sizes	 of	 the	 cell.	 In	

addition,	this	quantity	can	be	simplified	further	as	only	six	variables	are	required	to	describe	

it	properly	-	the	parameters	ℎ28,	ℎ_8	and	ℎ_2	determine	the	global	orientation	of	the	box	and	

can	thus	can	be	eliminated	by	the	correct	rotation	to	the	system.	

	

Applying	metadynamics	to	the	simulation	cell	is	a	very	effective	method	of	inducing	structural	

change.	 First-order	 phase	 transitions	 are	 usually	 accompanied	 by	 sensible	 changes	 to	 the	

simulation	cell,	and	 thus	such	a	method	 is	very	appropriate	 to	 instigate	such	a	 rare	event	

within	the	system.	

	

In	 the	 original	 Martonák	 et	 al	 scheme,	 the	 simulation	 starts	 from	 an	 equilibrated	 box	 ℎ	
containing	 the	 system	of	 interest	 at	 temperature	G	 and	pressure	R.	 These	 conditions	 are	
usually	chosen	to	correspond	to	the	temperature	and	pressure	at	a	phase	boundary	within	

the	system	being	studied.	The	system	is	then	propagated	using	molecular	dynamics	and	the	

pressure	tensor	R	 is	evaluated	for	the	relaxed	system.	The	pressure	tensor	can	be	used	to	

calculate	the	first	derivative	of	the	free	energy	of	the	system:	

	

− `a
`ℎ5b

= 	( (R − R)
ℎ 5b

				[>?	4.7]	

	



CHAPTER	4	–	METHODOLOGY	II	

	

	 59	

where	(	is	the	volume	of	the	system	and	is	calculated	as	the	determinant	of	ℎ.		The	value	of	
collective	variable	ℎ<	is	then	perturbed	to	ℎ<d	by	the	expression:	
	

ℎ< = ℎ<d +	 e
<

e< 				[>?	4.8]	

	

where	e<	is	the	‘driving	force’	and	contains	the	history	dependent	Gibbs	potential	– `a</`ℎ	
with	a	Gaussian	added	to	the	potential	a(ℎ)	at	every	previous	value	of	ℎd	to	forbid	the	system	

from	returning	to	its	previous	state.	With	this	new	value	of	ℎd,	the	coordinates	of	the	system	

are	rescaled	in	order	to	fit	into	the	new	box,	and	the	process	is	repeated.		

	

The	overall	metadynamics	potential	builds	up	over	multiple	iterations	of	the	procedure	and	

its	analytical	form	is	very	similar	to	that	discussed	previously.	Eventually,	substantial	changes	

to	 the	 shape	 and	 size	 of	 the	 box	will	 lead	 to	 the	 current	 atomic	 configuration	 becoming	

unfavourable	and	the	positions	of	the	atoms	in	the	system	will	be	forced	to	radically	alter.	At	

this	 point,	 a	 phase	 transition	 to	 a	 different	 allotrope	or	 polymorph	of	 the	material	 under	

scrutiny	will	be	observed.	

	

However,	 Martonák	 et	 al	 have	 since	 modified	 this	 metadynamics	 procedure.
[13]

	 This	

improvement	takes	the	Gibbs	free	energy	up	to	its	second	term	and	invokes	the	use	of	the	

Hessian	matrix	i:	
	

a ℎ = 	a ℎP + 12 ℎ −	ℎP ji(ℎ −	ℎP)				[>?	4.9]	

	

where	ℎP	is	the	value	of	the	matrix	ℎ	at	time	=	0.	The	Hessian	i	is	given	by:	
	

i5b = 	
`2a(ℎ)
`ℎ5`ℎb lm

				[>?	4.10]	

	

This	 quantity	 is	 calculated	 from	 variations	 to	 the	 matrix	 ℎ	 during	 a	 constant	 pressure	
simulation.	If	the	configuration	is	stable,	at	equilibrium	the	eigenvalues	n5	of	matrix	ℎ	will	be	
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positive	and	real.	The	equilibrium	matrix	can	also	be	diagonalised	by	an	orthonormal	matrix,	

denoted	o.	Within	this	new	methodology,	a	new	set	of	coordinates	is	defined	according	to	

the	equation:	

	

!5 = 	 n5 o5b(ℎb −	ℎbP)
b

				[>?	4.11]	

	

By	constructing	the	new	collective	variable	in	this	way,	the	energy	well	becomes	spherical	in	

nature…	

	

a ℎ = 	a ℎP + 12 !52
5

				[>?	4.12]	

	

…	and	the	first	derivative	of	the	Gibbs	potential	with	respect	to	the	new	coordinates	is	given	

as:	

	

`a
`!5

= 	 `a
`ℎb

o5b
b

1
n5

				[>?	4.13]	

	

	

The	metadynamics	procedure	in	the	space	of	the	new	!	coordinates	may	now	proceed	in	the	

same	fashion	as	the	original	scheme.	

	

The	advantage	of	this	modified	scheme	is	that	the	new	collective	variables	!	bring	all	of	the	
degrees	of	freedom	of	the	six-dimensional	ℎ	quantity	into	the	same	energy	scale	and	thus	

symmetrises	the	underlying	shape	of	the	energy	basin.	This	is	advantageous	as	one	can	easily	

imagine	a	situation	in	the	initial	scheme	where	certain	modes	of	deformation	of	the	matrix	ℎ	
are	favoured	over	others	–	for	example,	the	energy	required	to	squeeze	the	box	and	reduce	

its	volume	is	significantly	greater	than	the	energy	required	to	squeeze	the	box	in	one	direction	

and	elongate	in	another.	This	arises	from	the	fact	that	in	the	original	scheme	the	underlying	

basins	are	highly	anisotropic	in	shape	and	sampling	of	the	underlying	energy	landscape	would	

be	far	from	optimal	using	a	symmetrical	Gaussian.	Using	the	modified	scheme,	the	underlying	
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energy	basins	are	spherical	in	nature	and	the	the	degrees	of	freedom	in	the	collective	variable	

are	now	equalised	in	energy,	meaning	far	more	configurations	can	be	visited	without	over	or	

under	filling	the	energy	landscape.	

	

The	 general	 procedure,	 therefore,	 for	 the	 modified	 Martonák	 metadynamics	 scheme,	 is	

shown	overleaf.	
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Figure	4.iv:	Flowchart	showing	the	procedure	followed	by	the	Martonák	metadynamics	

driver.	The	procedure	continues	indefinitely	and	may	be	stopped	at	any	time.	Eventually,	the	

system	moves	away	from	the	original	configuration	towards	a	new	one.	The	driving	force	is	

the	modification	to	the	size	and	shape	of	the	simulation	cell	during	the	metadynamics	step	–	

the	coordinates	move	in	response	to	this	during	the	molecular	dynamics	step.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Metadynamics	step	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

NVT	Molecular	Dynamics	step	

Start	the	procedure	with	an	

initial,	equilibrated	structure	

with	coordinates	pP	and	box	
parameters	ℎP		

Read	the	initial	box	vectors	

ℎ<	and	atomic	coordinates	

p<5q5<5rs 	

	

Equilibrate	the	system	with	

molecular	dynamics	and	obtain	

the	average	pressure	tensor	R⃗< 	

Write	the	output	of	the	

molecular	dynamics	simulation:	

	ℎ<, p<u5qrs 	and	R⃗< 	

Read	in	the	box	vectors	ℎ<,	the	
atomic	coordinates	p<u5qrs 	and	

the	pressure	tensor	R⃗< 	

	

Calculate	the	new	box	matrix	

ℎ<v8.	Obtain	p<v85q5<5rs 	by	
rescaling	p<u5qrs 	to	the	new	box	

Write	the	output	of	the	

metadynamics	step:	

	ℎ<v8	and	p<v85q5<5rs 	
	

) + 1 → )	
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4.3. Transition	Path	Sampling	

	

Information	 in	 this	 section,	 relating	 to	 the	 transition	path	 sampling	methodology	 and	 the	

underlying	theoretical	principles,	are	obtained	from	the	following	references.[2,14,15]		

	

	

4.3.1. Introduction	to	Transition	Path	Sampling	

	

In	 complex	 systems,	 with	 high	 correlation	 between	 various	 degrees	 of	 freedom,	 the	

underlying	 energy	 landscape	 becomes	 very	 complex.	 Such	 landscapes	 are	 topologically	

‘rough’	with	countless	features	of	the	order	of	-FG	and	therefore	innumerable	saddle	points	

and	transition	states.	As	such,	it	is	not	possible	to	systematically	calculate	the	landscape	for	

such	 a	 system	 and	 determination	 of	 a	 relevant	 set	 of	 points	 for	 a	 dynamic	 trajectory	 is	

essentially	impossible.	The	approach	one	must	take	is	to	determine	an	ensemble	of	transition	

paths	which	link	the	two	basins	of	attraction.	From	this	ensemble	of	potential	trajectories,	we	

can	 then	 characterise	 their	 relative	 probabilities	 and	 hence	 deduce	 the	 most	 plausible	

pathways	for	a	given	physical	 transformation.	This	 is	achieved	by	transition	path	sampling	

(TPS).[2]	

	

  

  

 

 

 

 

 

Figure	4.v:	A	schematic	of	a	simple	energy	landscape	corresponding	to	a	system	with	only	a	

small	number	of	atoms	(left)	compared	to	a	coarser	and	more	complex	surface	

corresponding	to	a	more	realistic	system	(right).	The	system	on	the	left	has	only	one	pathway	

linking	basins	A	and	B,	whereas	the	system	on	the	right	displays	numerous	feasible	pathways	

between	A	and	B.	A	single	transition	pathway	for	the	system	on	the	right	is	therefore	

characteristic,	and	instead	an	ensemble	of	pathways	must	be	generated.[2]	
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Consider	an	ensemble	of	all	the	trajectories	of	a	system	corresponding	to	a	particular	length	

of	time.	Nearly	all	of	these	trajectories	will	sample	microstates	in	or	around	one	of	the	basins	

of	interest.	However,	a	very	small	number	of	these	trajectories	will	cross	from	one	basin	to	

another.	 Transition	 path	 sampling	 provides	 a	 means	 to	 sample	 such	 rare	 events	 by	 the	

systematic	generation	and	statistical	analysis	of	trajectories	within	the	intermediate	region.	

This	 set	of	 trajectories	 is	known	as	 the	 transition	path	ensemble.	Because	 the	 trajectories	

accumulated	from	transition	path	sampling	are	truly	dynamic,	 it	 is	also	possible	to	extract	

kinetic	data	from	transition	path	sampling	simulations	as	well	as	the	reaction	mechanism	and	

relevant	intermediates	and	transition	states.		

	

Transition	path	sampling	can	be	thought	of	as	a	modified	Monte	Carlo	procedure	acting	in	

trajectory	space.	The	rationalisation	 for	 the	methods	used	 in	 the	 technique	deserve	some	

consideration,	and	are	discussed	in	the	following	section.	

	

	

4.3.2. Importance	Sampling	

	

In	a	standard	Metropolis	Monte	Carlo	procedure,	a	 random	walk	 in	configuration	space	 is	

biased	 to	 ensure	 that	 the	 procedure	 visits	 configurations	 and	 pathways	 based	 on	 their	

probability.[14]	The	probability	distribution	R # 	is	given	by	the	relationship:	

	

R # ∝ 	 Q
xy(z)
9{j 				[>?	4.14]	

	

In	the	canonical	ensemble,	((#)	corresponds	to	the	potential	energy	for	the	configuration	#.	
Configurations	with	 lower	energies	 are	 therefore	 given	a	 larger	weighting,	whereas	 those	

with	prohibitively	high	energies	are	assigned	less	importance.	During	the	random	walk,	the	

configuration	#	 is	displaced	by	a	randomly	chosen	step	to	generate	a	new	configuration	|.	
The	new	configuration	|	is	then	accepted	or	rejected,	depending	on	its	energy	relative	to	#.	
Configurations	that	are	 lower	 in	energy	than	#	are	automatically	accepted,	whereas	those	

higher	in	energy	are	accepted	or	rejected	according	to	a	probability	distribution.	Using	this	

procedure,	the	system	is	quickly	driven	to	sample	only	relevant	regions	of	the	configuration	
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space.	The	walk	can	be	initiated	from	any	starting	configuration,	 including	those	with	very	

low	probabilities,	but	the	procedure	will	still	quickly	move	towards	relevant	regions	of	the	

configuration	 space.	 This	 important	 feature	 of	 Monte	 Carlo	 procedures	 is	 known	 as	

importance	sampling.		

	

This	technique	can	also	be	generalised	to	trajectory	space	–	this	is	the	crux	of	the	transition	

path	sampling	methods.	In	any	ergodic	system,	any	pathway	that	links	two	basins	A	and	B	

within	a	specific	time	is	characterised	by	a	certain	probability.	The	Monte	Carlo	walk	can	be	

applied	in	trajectory	space	to	force	the	system	to	visit	only	relevant	regions	of	the	trajectory	

space	–	i.e.	those	corresponding	to	the	rare	event	of	a	phase	transition.	The	process	can	then	

sample	 the	 transition	 path	 ensemble	 and	 ultimately	 determine	 those	 pathways	 with	 the	

highest	probability.	From	this,	 statistical	analysis	of	 the	 transition	can	be	undertaken,	and	

structural	 and	 mechanistic	 details	 of	 the	 most	 plausible	 transition	 pathways	 can	 be	

characterised.	

	

	

4.3.3. Path	Probability	

	

Consider	a	trajectory	of	length	G	denoted	by	#(G).	For	the	purposes	of	molecular	dynamics	

and	hence	transition	path	sampling,	it	is	convenient	to	envisage	the	trajectory	as	a	discretised	

sequence	of	states:	

	

# G ≡ {#P, #∆<, #2∆<,#_∆< …	#j}				[>?	4.15]	
	

where	∆)	 corresponds	 to	 the	 time	 increment	separating	each	of	 the	states.	Each	of	 these	

states	#	 contains	a	complete	set	of	variables	which	describe	 the	system.	For	a	Markovian	

process	–	a	process	whose	future	depends	solely	on	the	conditions	of	the	present	state	–	the	

state	#<	will	evolve	into	the	state	#<v	∆<	with	probability	R(#< → 	#<v	∆<).	It	then	follows	that	
the	probability	of	 the	whole	dynamical	 trajectory	 can	be	expressed	as	 the	product	of	 the	

probability	of	the	discretised	time-slices:	
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Å # G = 	Ç(#P)		 R(#5∆< → 	# 5v8 ∆<)
É

57P
				[>?	4.16]	

	

where	X	is	the	total	number	of	discretised	states,	given	by	the	relationship:	

	

X =	 G∆) − 1				[>?	4.17]	

	

The	first	term	Ç(#P)	corresponds	to	the	distribution	of	states	at	the	starting	points	for	the	
trajectories.	This	distribution	is	determined	by	the	ensemble	of	the	system	under	scrutiny.	

	

In	transition	path	sampling,	only	the	reactive	trajectories	corresponding	to	the	rare	event	(the	

transition	between	the	two	basins	A	and	B)	are	of	interest.	As	such,	the	path	ensemble	can	

be	restricted	to	contain	only	trajectories	beginning	in	region	A	at	) = 0	and	ending	in	region	
B	and	) = G:	
	

ÅÑF[# G ] ≡ 	ℎÑ #P 	Å # G 	ℎF(#j)				[>?	4.18]	
	

ÅÑF # G = 	Ç #P ℎÑ #P 	 R(#5∆< → 	# 5v8 ∆<)
É

57P
ℎF(#j)				[>?	4.19]	

	

where	ℎÑ	and	ℎF	are	population	functions	of	basins	A	and	B	respectively.	ℎÑ	and	ℎF	are	equal	
to	1	if	the	system	within	basin	A	or	B	respectively,	and	equal	to	0	otherwise.	Whether	or	not	

a	state	resides	within	a	basin	is	determined	by	the	order	parameter,	which	is	discussed	later.	

As	 a	 result,	 non-reactive	 pathways	 that	 do	 not	 link	 basins	 A	 and	 B	 are	 given	 a	 statistical	

weighting	of	zero	and	paths	connecting	the	two	basins	have	a	non-zero	probability	which	is	

dependent	 on	 the	 probability	 of	 the	 dynamic	 pathway	 ÅÑF # G .	 The	 transition	 path	

ensemble	is	therefore	the	weighted	selection	of	reactive	trajectories	linking	basins	A	and	B	of	

a	particular	length	from	the	ensemble	of	all	possible	pathways.	
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4.3.4. Sampling	the	Transition	Path	Ensemble	

	

As	 described	 above,	 transition	 path	 sampling	 corresponds	 to	 importance	 sampling	 of	

trajectories,	analogous	to	the	importance	sampling	of	configurations	seen	in	standard	Monte	

Carlo	techniques.	Whereas	a	standard	Monte	Carlo	procedure	takes	place	 in	configuration	

space,	transition	path	sampling	takes	place	in	trajectory	space.	This	random	walk	in	trajectory	

space	 is	 then	 biased	 such	 that	 the	 weight	 of	 a	 particular	 pathway	 in	 the	 transition	 path	

ensemble	dictates	how	often	this	path	is	visited.	In	addition,	paths	that	are	not-reactive	(i.e.	

that	do	not	visit	the	two	basins	of	interest)	have	a	zero-weighting	and	are	therefore	excluded).	

		

The	random	walk	in	the	space	of	the	trajectories	is	achieved	following	a	two-step	procedure:	

	

1. From	an	initial	trajectory	#Ös6 G 	with	a	weight	ÅÑF[#Ös6 G ] ≠ 0,	i.e.	the	trajectory	
is	reactive,	generate	a	new	trajectory	#qáà G 	.	This	first	step	is	called	the	trial	move,	

as	 at	 this	 time	 it	 is	 unknown	whether	 or	 not	 the	 new	 trajectory	 #qáà G 	will	 be	
accepted	or	rejected;	

	

2. Accept	 or	 reject	 the	 new	 path	 #qáà G 	depending	 on	 an	 acceptance	 probability	
balanced	by	the	frequency	of	the	reverse	move.	This	second	stage	is	known	as	the	

detailed	balance	step,	and	implies	that	the	following	condition	must	be	true:	

	

ÅÑF #Ös6 G â #Ös6 G → 	#qáà G = 	ÅÑF #qáà G â #qáà G → 	#Ös6 G 				[>?	4.20]	
	

Here,	 the	term	â #Ös6 G → 	#qáà G 	corresponds	to	the	probability	of	moving	from	the	

initial	path	to	the	newly	generated	path.	This	in	turn	is	given	as	the	product	of	two	quantities:	

	

â #Ös6 G → 	#qáà G
= Åäáq #Ös6 G → 	#qáà G 	×	Åråå #Ös6 G → 	#qáà G 				[>?	4.21]	

	



CHAPTER	4	–	METHODOLOGY	II	
	

	 68	

where	Åäáq	corresponds	to	the	probability	of	generating	the	new	path	and	Åråå 	refers	to	the	
probability	 of	 the	 path	 being	 accepted.	 Substituting	 this	 into	 the	 previous	 equation	 and	

rearranging	gives	the	expression:	

	

Åråå #Ös6 G → 	#qáà G
Åråå #qáà G → 	#Ös6 G = 	ÅÑF #

qáà G Åäáq #qáà G → 	#Ös6 G 	
ÅÑF #Ös6 G Åäáq #Ös6 G → 	#qáà G 	 				[>?	4.22]	

	

We	know	that	Åråå #Ös6 G → 	#8 G 	cannot	exceed	1.	Therefore,	we	use	the	Metropolis	

rule	to	satisfy	the	above	expression:	

	

Åråå #Ös6 G → 	#qáà G = min 1, ÅÑF #
qáà G Åäáq #qáà G → 	#Ös6 G 	

ÅÑF #Ös6 G Åäáq #Ös6 G → 	#qáà G 	 				[>?	4.23]	

	

However,	as	we	know	that	the	initial	trajectory	is	reactive,	we	also	know	that	the	population	

functions	of	basins	ℎÑ(#PÖs6)	and	ℎF(#jÖs6)		are	equal	to	one.	Therefore,	we	can	re-write	the	
above	expression	to	include	the	population	terms	for	the	new	trajectory	#qáà G :	

	

Åråå #Ös6 G → 	#qáà G

= 	ℎÑ #Pqáà ℎF #jqáà 	×min 1, Å #qáà G Åäáq #qáà G → 	#Ös6 G 	
Å #Ös6 G Åäáq #Ös6 G → 	#qáà G 	 	

[>?	4.24]	
	

Now	it	is	evident	that	only	reactive	trajectories	are	accepted,	as	any	trajectories	that	do	not	

start	 and	end	 in	basins	A	and	B	 respectively	will	 receive	a	 value	of	0	 for	 their	population	

functions,	rendering	the	entire	probability	weighting	equal	to	zero	for	that	trajectory.	
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4.3.5. The	Shooter	Algorithm	

	

As	shown	previously,	transition	path	sampling	is	the	realisation	of	two	processes:	the	first	is	

the	dynamics	of	the	system,	which	takes	place	in	the	phase	space	of	the	system	#.	The	second	
is	the	path	sampling	step,	taking	place	in	the	space	of	the	trajectories	#(G).	However,	one	
requires	a	method	of	how	to	realise	this	procedure	in	practice.		

	

There	are	many	ways	 in	which	one	can	generate	new	 trajectories	 from	existing	ones,	but	

perhaps	 the	most	effective	method	 is	 the	shooter	 algorithm.	 In	a	shooting	move,	a	 single	

phase	space	point	#:Ös6 	is	selected	from	somewhere	along	the	course	of	the	initial	trajectory	

#Ös6 G .	The	momenta	of	the	atoms	within	this	frame	#:Ös6 	are	modified	and	from	this	novel	

state	#:qáà	the	new	trajectory	#qáà G 	can	be	generated	by	propagating	forwards	to	time	

) = G	and	backwards	to	time	) = 0	using	molecular	dynamics.	By	redistributing	the	atomic	

momenta	at	 time	&	and	 integrating	 forwards	and	backwards	 in	time,	a	new	trajectory	has	

been	generated.	

	

The	generation	probability	for	the	forward	trajectory	Åäáq<→ 	beginning	at	time	&	and	ending	at	
time	G	is	given	by	the	following	expression:	
	

Åäáq<→ #Ös6 G → 	#qáà G = 	 R(#5∆<qáà → 	#(5v8)∆<qáà)
j/∆<x8

57:/∆<
				[>?	4.25]	

	

This	generation	probability	is	the	same	as	the	dynamical	path	weight	for	this	segment	of	the	

new	trajectory.	The	generation	probability	for	the	reverse	segment	of	the	trajectory	Åäáq←< 	from	

time	&	to	time	0	is	obtained	from	the	inverted	small	time	step	probability:	

	

Åäáq←< #Ös6 G → 	#qáà G = 	 R(#5∆<qáà → 	#(5v8)∆<qáà)
:/∆<

578
				[>?	4.26]	
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Thus,	the	total	generation	probability	is	a	combination	of	the	probability	of	obtaining	the	state	

#:qáà,	and	the	two	generation	probabilities	for	the	forward	and	backward	segments	of	the	

new	trajectory.	This	can	be	combined	to	give:	

	

Åäáq<→ #Ös6 G → 	#qáà G

= Räáq #:Ös6 → 	#:qáà 	× R(#5∆<qáà → 	#(5v8)∆<qáà)
j/∆<x8

57:/∆<

	

×	 R(#5∆<qáà → 	#(5v8)∆<qáà)
:/∆<

578

				[>?	4.27]	

	

This	is	the	general	expression	for	the	shooting	algorithm.	This	generation	probability	can	now	

be	used	to	determine	the	acceptance	probability	of	any	shooting	move.	

	

However,	in	practice	a	number	of	simplifications	are	made	to	greatly	streamline	the	shooting	

algorithm.	If	the	modification	to	the	dynamics	carried	out	by	the	shooting	moves	conserves	a	

stationary	 distribution	 (i.e.	 conserved	 quantities,	 such	 as	 total	 momentum	 and	 angular	

momentum	remain	unchanged),	two	assumptions	can	be	made.	Firstly,	the	quantities	R	and	

R	 are	 related	 by	 microscopic	 reversibility.	 Secondly,	 we	 assume	 that	 the	 generation	

probabilities	from	the	old	to	the	new	trajectory,	and	vice	versa,	are	equal	to	one	another.	This	

simplifies	the	acceptance	expression	to	the	following:	

	

Åråå #Ös6 G → 	#qáà G = 	ℎÑ #Pqáà ℎF #jqáà 	×min 1,
R(#:qáà)
R(#:Ös6)

	 				[>?	4.28]	

	

Thus,	in	order	to	evaluate	the	acceptance	probability	Åråå,	one	only	needs	to	know	the	relative	

weights	of	the	phase	space	points	#:Ös6 	and	#:qáà,	and	whether	or	not	the	path	begins	and	

ends	in	regions	A	and	B	respectively,	giving	unity	values	to	the	population	functions	ℎÑ	and	

ℎF.	As	such,	an	algorithm	which	generates	a	symmetrical	modification	to	the	selected	point	

in	phase	space	#:Ös6,	as	well	as	preserving	conserved	quantities	needs	to	be	considered.	Thus,	

the	procedure	of	the	shooting	algorithm	is	as	follows:	
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i. Select	a	phase-space	point	#:Ös6 	from	the	old	trajectory	#Ös6 G ;	
	

ii. Modify	the	momenta	of	the	atoms	within	this	configuration.	This	is	achieved	by	adding	

a	 random	 displacement	 `Ç	 from	 a	 one-dimensional	 Gaussian	 distribution.	 This	

displacement	must	be	symmetrical	with	respect	to	the	backward	move;	

	

iii. Enforce	constraints	on	the	system	to	ensure	there	is	no	change	to	the	total	linear	and	

angular	momentum.	This	is	often	achieved	by	ensuring	these	quantities	are	equal	to	

zero;	

	

iv. Assess	the	probability	of	the	modification	as	min 1, è(zê
ëíì)

è(zêîïñ)
	 ;	

	

v. Accept	 or	 reject	 the	 new	 configuration.	 Should	 the	move	 be	 rejected,	 restart	 the	

procedure	from	step	2.	If	the	move	is	accepted,	rescale	the	atomic	momenta	in	order	

to	conserve	the	total	energy	of	the	system;	

	

vi. Propagate	the	system	forwards	and	backwards	in	time;	

	

vii. Assess	the	reactivity	of	the	new	trajectory.	

	

viii. Should	the	path	not	start	in	basin	A	and	end	in	basin	B,	reject	the	trajectory	and	restart	

the	procedure	from	step	1	using	the	original	configuration.	If	the	path	is	successful,	

accept	the	new	trajectory	and	restart	from	step	1	using	the	new	configuration.	

	

	

There	 are	 evidently	 numerous	 checkpoints	 at	 which	 it	 is	 determined	 whether	 or	 not	 a	

shooting	move	has	been	successful.	Firstly,	 the	 ratio	of	 the	 two	weight	 functions	
è(zêëíì)
è(zêîïñ)

,	

before	any	molecular	dynamics	propagation	has	taken	place,	must	be	evaluated.	Whether	or	

not	the	new	configuration	#:qáà	is	accepted	depends	the	ratio	of	the	two	weight	functions:	
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• If	the	value	of	è(zê
ëíì)

è(zêîïñ)
> 1,	the	configuration	is	automatically	accepted	

• If	the	value	of	è(zê
ëíì)

è(zêîïñ)
< 1,	a	random	number	z	is	selected	between	0	and	1.	If	the	ratio	

of	the	probability	weights	is	greater	than	z,	the	configuration	is	accepted.	

	

If	the	value	of	the	weight	ratios	is	less	than	z,	the	shooting	move	is	aborted	and	attempted	

again.	 If	 the	procedure	 is	 successful	 at	 this	 stage,	 the	 system	 is	propagated	 forwards	and	

backwards	in	time.	Should	the	forward	and	reverse	trajectories	not	reach	the	two	basins	of	

interest,	the	trial	move	is	rejected	and,	once	again,	the	procedure	is	restarted	from	the	old	

path.	However,	should	the	two	trajectory	segments	reach	basins	A	and	B,	the	trajectory	is	

accepted	and	any	further	shooting	moves	are	initiated	from	the	new	trajectory.	By	doing	this	

iteratively,	one	can	sample	 the	 trajectory	space	 in	an	 iterative	 fashion,	until	 the	subset	of	

trajectories	with	the	highest	probabilities	have	been	found.	

	

The	shooting	algorithm	works	so	efficiently	because	of	the	vast	variety	of	paths	in	trajectory	

space,	allowing	subsequent	trajectories	to	be	quite	different	to	preceding	ones.	However,	one	

must	ensure	that	the	shooting	algorithm	modifies	the	momenta	of	the	atoms	appropriately,	

as	(for	deterministic	dynamics)	the	degree	of	divergence	from	the	old	path	to	the	new	path	

is	 dependent	 on	 the	 magnitude	 of	 modification	 to	 #:Ös6.	 Very	 small	 modifications	 to	

momenta	will	 leave	 the	 path	 relatively	 unchanged,	 whereas	 very	 large	modifications	will	

completely	alter	the	trajectory	and	its	path	may	no	longer	lead	to	basins	A	and	B.	As	such,	an	

appropriate	momentum	modification	is	required,	which	is	often	dependent	on	the	size	and	

nature	 of	 the	 system.	As	 a	 rule	 of	 thumb,	 it	 is	 advisable	 for	 40-60%	of	 trajectories	 to	 be	

accepted,	and	the	rest	rejected.	This	ensures	an	optimal	sampling	of	the	trajectory	space.	
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Figure	4.vi:	Schematics	showing	possible	outcomes	of	a	shooting	move.	A	random	time-slice	

#:Ös6 	is	chosen	along	an	initial	reactive	trajectory	(solid	black	line),	and	its	momentum	

distribution	modified	from	Ç	to	Çdaccording	to	the	shooting	algorithm	(a).	This	generates	a	

new	trajectory	(dashed	black	line)	from	the	old	configuration.	Should	the	new	configuration	

pass	the	probability	tolerance	and	the	new	trajectory	visit	basins	A	and	B,	the	move	is	

accepted	and	this	new	path	becomes	the	starting	trajectory	(b).	If,	however,	the	momentum	

modification	causes	the	trajectory	to	diverge	away	from	one	or	both	of	the	basins	of	interest,	

the	path	is	rejected	(c).	Both	the	forward	and	the	reverse	trajectories	end	in	basin	A,	leaving	

basin	B	unvisited	by	the	path.[16]	
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4.3.6. The	Order	Parameter	

	

Now	 that	 the	 procedure	 for	 generating	 new	pathways	 and	 assessing	 their	 probabilities	 is	

known,	all	that	remains	is	a	procedure	to	distinguish	between	the	basins	of	attraction	A	and	

B.	This	final	point	is	discussed	below.	

	

Transition	 path	 sampling	 does	 not	 require	 any	 a	 priori	 knowledge	 of	 the	 transition	

mechanism.	 As	 such,	 it	 is	 not	 necessary	 to	 define	 a	 reaction	 coordinate,	 unlike	 in	

metadynamics	where	a	set	of	collective	variables	must	be	defined	prior	to	the	start	of	the	

calculation.	 However,	 it	 is	mandatory	 that	 the	 two	 basins	 of	 interest	 in	 a	 transition	 path	

sampling	calculation	be	distinguishable.	Otherwise,	there	would	be	no	way	of	determining	

whether	 or	 not	 a	 path	 had	 been	 successful	 (i.e.	whether	 or	 not	 the	 population	 functions	

ℎÑ #Pqáà 	and	ℎF #jqáà 	are	equal	to	1).	

		

One	way	to	do	this	is	to	define	an	order	parameter	which	can	be	used	to	differentiate	between	

the	initial	and	final	states	of	interest.	Unlike	a	collective	variable,	the	order	parameter	need	

not	 represent	 some	 physical	 process	 along	 the	 transformation	 –	 instead,	 it	 must	 simply	

discriminate	between	the	different	basins	of	attraction	on	the	pathway.		

	

However,	akin	to	finding	a	good	collective	variable	in	metadynamics,	finding	a	suitable	order	

parameter	 for	 transition	 path	 sampling	 is	 not	 always	 a	 trivial	 pursuit.	 A	 suitable	 order	

parameter	generally	has	the	following	characteristics:	

	

i. The	order	parameter	must	uniquely	distinguish	between	the	initial	and	final	states	of	

a	system,	and	there	can	be	no	overlap	of	its	value	between	basins	A	and	B.	If	certain	

values	of	the	order	parameter	correspond	to	both	basins	A	and	B,	the	transition	path	

sampling	procedure	would	wrongly	collect	‘successful’	trajectories	when	the	pathway	

is	not	reactive;	

	

ii. The	order	parameter	must	be	able	to	tolerate	equilibrium	fluctuations	of	the	order	of	

-FG	within	the	basins	of	attraction,	in	order	to	correctly	characterise	the	transition	
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path	ensemble.	The	regions	of	the	two	basins	A	and	B	defined	by	the	order	parameter	

must	therefore	be	large	enough	to	accommodate	such	fluctuations.	

	

Examples	of	order	parameters	used	in	transition	path	sampling	calculations	include,	but	are	

not	limited	to,	coordination	spheres	and	geometric	parameters.	

	

	

4.3.7. Summary	of	the	Path	Sampling	Procedure	

	

With	the	knowledge	of	how	to	generate	new	trajectories	and	how	to	assess	their	probability,	

and	 the	 ability	 to	 distinguish	 between	 the	 two	 configurations	 of	 interest	 using	 the	 order	

parameter,	transition	path	sampling	allows	for	the	generation	and	scrutiny	of	hundreds	of	

different	 trajectories	 from	 a	 single	 (or	 multiple)	 initial	 configurations.	 This	 procedure	 is	

carried	 out	 iteratively	 until	 convergence	 upon	 the	 most	 probable	 sub-set	 of	 trajectories	

linking	two	basins	of	attraction.	With	this	information,	one	can	analyse	these	most	probable	

pathways	and	make	intuitive	analyses	about	the	structure,	mechanism	and	energetics	of	a	

phase	transition.	The	entire	procedure	can	be	summarised	in	the	flow	chart	below:	
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Figure	4.vii:	Flowchart	showing	the	transition	path	sampling	procedure	using	the	shooting	

algorithm.	The	procedure	is	generally	iterated	until	the	algorithm	converges	upon	the	most	

probable	subset	of	trajectories	linking	basins	A	and	B.	The	procedure	can	be	stopped	at	any	

time	and	in	general	is	repeated	until	enough	mechanistic	data	has	been	obtained	from	the	

de-correlated	trajectories	produced	by	the	method.	

	

	

When	one	has	obtained	the	most	probable	subset	of	transition	pathways	from	the	transition	

path	ensemble,	a	detailed	analysis	of	the	relevant	transition	states	and	intermediates	along	

the	pathway	can	be	made.	

Generate	an	initial	trajectory	
#5q5<5rs(G)	and	define	a	
suitable	order	parameter	

Select	a	time-slice	#:Ös6	
from	the	starting	trajectory	

#Ös6(G)	at	time	&	
	

Shoot	the	old	frame	#:Ös6	
	to	generate	the	new	
configuration	#:qáà	

	

Is	
è(zêëíì)
è(zêîïñ)

	greater	than	1,	or	

greater	than	the	value	of	z	?	

Propagate	the	new	
configuration	forwards	and	

backwards	in	time	with	MD	to	
generate	#qáà(G)	

Does	#qáà(G)	start	in	basin	A	
and	end	in	basin	B?	

Use	the	new	configuration	as	
the	starting	point	for	the	next	

iteration	
	

	EQô → öõ'	

Yes	

No	

No	

Yes	
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4.4. Hardware	and	Software	

	

4.4.1. Hardware	

	

The	 work	 contained	 within	 this	 thesis	 was	 completed	 using	 a	 wide	 variety	 of	 computer	

systems,	ranging	from	personal	 laptops	to	high	performance	supercomputing	centres.	This	

section	briefly	describes	the	machines	used	to	carry	out	the	work.	

	

A	considerable	portion	of	the	work	was	completed	on	local	machines	within	the	Leoni	group.	

The	group	owns	a	number	of	high-end	desktop	computers,	each	equipped	with	8	to	32	Intel	

CPUs.	All	of	the	machines	operate	under	either	the	OpenSUSE	or	Ubuntu	operating	systems.	

Local	 machines	 tended	 to	 be	 used	 for	 background	 jobs	 or	 tasks	 that	 required	 constant	

supervision.	

	

A	great	deal	of	the	work	contained	within	this	thesis	was	computed	using	Cardiff	University’s	

Raven	 service,	 operated	 by	 Advanced	 Research	 Computing	 at	 Cardiff	 (ARCCA).	Within	 its	

primary	MPI	parallel	partition,	Raven	consists	of	2048	cores	Intel	Sandy	Bridge	processors	(2.6	

GHz,	with	4	GB	per	core	and	8	cores	per	processor).	In	addition	to	this,	Raven	also	boasts	864	

cores	Intel	Westmere	processors	(2.8	GHz,	with	3	GB	per	core	and	6	cores	per	processor)	for	

serial	or	high	throughput	jobs.	The	entire	cluster	contains	8	TB	of	memory,	with	over	150	TB	

of	file	storage.	Raven	operates	under	a	Linux	operating	system.	Tasks	carried	out	on	Raven	

tended	to	be	jobs	of	intermediate	expense,	running	on	32-64	cores	each	with	a	wall	time	of	

up	to	72	hours.
[17]	

	

In	addition	to	Raven,	this	project	has	also	made	use	of	High	Performance	Computing	(HPC)	

Wales’	infrastructure.	HPC	Wales	was	a	service	dedicated	to	providing	parallel	computing	to	

researchers	within	Welsh	universities	and	industries,	with	a	number	of	distributed	clusters	

across	Wales.	 However,	 the	 HPC	Wales	 project	 is	 no	 longer	 active,	 and	 has	 been	 largely	

superseded	by	the	Supercomputing	Wales	initiative.
[18,19]	
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Finally,	 the	 project	 described	 within	 this	 thesis	 made	 extensive	 use	 of	 the	 UK	 national	

supercomputing	 service	 ARCHER.	 The	 ARCHER	 machine	 consists	 of	 the	 Cray	 XC30	 MPP	

supercomputer,	with	external	login	and	post	processing	nodes,	as	well	as	the	associated	file	

systems.	ARCHER	boasts	4920	computer	nodes,	with	each	node	containing	two	12-core	Intel	

Ivy	Bridge	processors,	giving	a	total	of	118,080	cores.	Each	of	the	computing	nodes	has	either	

64	GB	or	128	GB	of	memory,	 and	 its	 /work	 file	 system	has	4.4	PB	of	 storage	available	 to	

users.
[20]	

ARCHER	was	utilised	to	carry	out	the	most	expensive	calculations,	with	up	to	512	

cores	being	utilised	for	some	jobs,	with	a	maximum	wall	time	of	24	hours.	ARCHER	is	funded	

by	the	Office	of	Science	and	Technology	through	the	EPSRC’s	High	End	Computing	Scheme.
	

	

	

4.4.2. Software	

	

Numerous	 programs	 and	 scripts	 were	 utilised	 throughout	 this	 work.	 However,	 three	

programs	deserve	explicit	recognition	in	this	work,	as	well	as	the	tools	used	for	visualisation.	

	

4.4.2.1. cp2k	

	

cp2k	is	a	software	package	that	can	be	used	to	‘perform	atomistic	simulations	of	solid,	liquid,	

molecular,	periodic,	material,	crystal	and	biological	systems’.	cp2k	provides	a	framework	for	

modelling	chemical	and	physical	systems	within	an	impressive	list	of	methods,	ranging	from	

classical	forcefields	and	semi-empirical	methods,	to	density	functional	tight	binding	(DFTB),	

up	to	density	functional	theory	(DFT).
[21]	

The	program	has	been	used	extensively	in	this	work	

to	carry	out	molecular	dynamics	and	geometry	optimisations,	however	it	can	also	be	used	for	

Monte	Carlo	calculations,	as	well	as	for	vibrational	analysis	and	transition	state	optimisations.	

cp2k	is	used	in	Chapters	5	and	6	of	this	work.	

	

4.4.2.2. SIESTA	

	

The	developers	of	the	Spanish	Initiative	for	Electronic	Simulations	with	Thousands	of	Atoms	

(SIESTA)	describe	it	as	both	a	‘method	and	its	computer	program	implementation	to	perform	
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efficient	 electronic	 structure	 calculations	 and	ab	 initio	molecular	 dynamics	 simulations	 of	

molecules	and	 solids’.	 The	SIESTA	method	utilises	density	 functional	 theory	with	 localised	

basis	sets	and	norm-conserving	pseudopotentials.	The	tool	can	carry	out	electronic	structure	

calculations	 either	 by	 the	 standard	 diagonalisation	 methods,	 or	 by	 using	 linear-scaling	

algorithms	in	order	to	efficiently	carry	out	ú(X)	calculations.[22,23]	SIESTA	 is	utilised	for	the	
calculation	of	the	optimised	structures,	electronic	band	structures,	projected	density	of	states	

and	phonon	spectra	in	Chapter	7	of	this	work.	The	majority	of	the	calculations	in	this	work	

have	been	completed	using	the	standard	diagonalisation	methods.
	

	

	

4.4.2.3. plumed	

	

plumed	 is	a	plugin	that	 implements	a	 large	number	of	enhanced	sampling	techniques	and	

collective	 variables	 (CVs).	 plumed	 can	 be	 used	 for	 umbrella	 sampling	 and	 numerous	

implementations	 of	 metadynamics.	 The	 plugin	 interfaces	 with	 a	 number	 of	 molecular	

dynamics	codes,	including	cp2k.	plumed	also	provides	a	number	of	scripts	to	reconstruct	the	

free	energy	profile	 from	the	bias	potential	deposited	during	a	simulation.
[24,25]	plumed	has	

been	used	extensively	in	this	work,	and	features	heavily	in	both	Chapters	5	and	6	of	this	thesis.
	

	

	

4.4.2.4. Visualisation	Packages	

	

A	number	of	excellent	tools	exist	for	the	visualisation	of	structures.	The	two	used	in	this	work	

are	the	Visual	Molecular	Dynamics	(VMD)[26,27]	and	Visualisation	for	Electronic	and	Structural	

Analysis	(VESTA)[28]	suites.	VMD	has	been	used	throughout	this	work	to	visualise	and	render	

the	large	periodic	structures	seen	in	Chapters	5	and	6.	VESTA	has	been	used	to	manipulate	

and	visualise	the	unit	cells	of	structures,	and	has	been	used	to	render	the	images	of	resultant	

structures	seen	in	Chapter	7.	
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Chapter	5	

Phase	Transitions	of	Zinc	Oxide	

	

“Change	is	always	and	everywhere	at	work.	It	strikes	through	cause	and	effect,	and	leaves	

nothing	fixed	and	permanent.”		

–	Marcus	Aurelius	(121-180),	Meditations	

	

	

5.1. Introduction	

	

Zinc	 Oxide	 (ZnO)	 is	 an	 extremely	 versatile	 and	 useful	 compound,	 which	 exhibits	 an	

extraordinary	 array	 of	 practical	 properties.	 A	 naturally	 occurring	 compound,	 zinc	 oxide	 is	

found	in	nature	as	the	mineral	zincite,	which	ordinarily	takes	on	a	red-yellow	hue	resulting	

from	presence	of	first	row-transition	metal	ion	impurities	within	its	structure.	However,	the	

overwhelming	 majority	 of	 zinc	 oxide	 utilised	 by	 industry	 today	 is	 synthesised	 via	 three	

processes,	which	are	responsible	for	the	production	of	over	100,000	tons	of	the	material	per	

annum.[1]	 The	 synthesised	 product	 finds	 use	 in	 the	 production	 of	 rubbers,[2,3]	 plastics,[4]		

pigments,[5]	cements,[6]	 ointments	 (especially	 sun	 lotion)[7]	and	 lubricants,[8]	amongst	other	

applications.[9]		

	

	

	

	

Figure	5.i:	A	photograph	of	a	sample	of	powdered	zinc	oxide.[10]	Despite	its	mundane	

appearance,	this	innocuous	material	boasts	a	wealth	of	fascinating	physical	properties.	
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Zinc	oxide	is	a	type	II-VI	semiconductor,	and	exhibits	a	wide,	direct	band	gap	of	approximately	

3.37	eV	(corresponding	to	a	near-UV	frequency).	This	makes	pure	zinc	oxide	a	colourless,	clear	

compound.	In	addition	to	its	optical	transparency	and	wide	band	gap,	 it	also	features	high	

electron	 mobility	 and	 strong	 room-temperature	 luminescence,	 giving	 it	 very	 desirable	

characteristics	for	use	in	contemporary	electronic	and	optics	applications.[9]	Some	potential	

emerging	applications	of	zinc	oxide	include	use	in	the	production	of	light	emitting	diodes,[11]		

transistors,[12]	 piezoelectrics,[13]	 liquid	 crystal	 displays,[14]	 chemical	 sensors,[15]	 and	

spintronics.[16]	

	

Research	 into	 zinc	 oxide	 began	 in	 earnest	 during	 the	 1930s,	 with	 investigation	 into	 the	

material	peaking	during	the	1970s	and	1980s.	The	majority	of	this	research	was	centred	on	

bulk	zinc	oxide,	which	led	to	extensive	characterisation	of	the	properties	and	curiosities	of	

the	 material.[17]	 However,	 interest	 in	 the	 compound	 waned	 when	 structures	 of	 reduced	

dimensionality	became	fashionable,	with	a	great	deal	of	interest	shifted	away	from	zinc	oxide	

and	onto	pure	and	aluminium-doped	derivatives	of	gallium	arsenide	(GaAs).		

	

Since	the	turn	of	the	twenty-first	century,	however,	zinc	oxide	has	once	again	come	into	focus,	

with	the	emphasis	now	on	the	application	of	the	material	in	contemporary	applications.	This	

renaissance	in	zinc	oxide	research	has	opened	the	door	to	many	new	possible	uses	for	the	

material,	and	now	considerable	work	is	being	undertaken	to	unlock	the	full	potential	of	this	

familiar	 compound.	 Some	 contemporary	 research	 avenues	 into	 zinc	 oxide	 include	

investigating	epitaxial	growth	of	the	material,[18]	the	various	nanostructures	 it	can	form,[19]	

and	the	formation	of	zinc	oxide	quantum	dots[20]	and	wells.[11]		

	

This	work	aims	to	help	to	further	understand	the	phase	behaviour	of	the	material,	in	order	to	

gain	a	greater	fundamental	understanding	of	zinc	oxide,	with	the	ultimate	goal	of	helping	to	

tap	into	its	lucrative	potential	as	a	material	for	use	in	the	electronics	and	optics	industries.	

Prior	to	this,	a	brief	introduction	to	the	structure	of	zinc	oxide	is	given,	followed	by	a	review	

of	literature	describing	the	phase	behaviour	exhibited	by	the	compound.	
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5.2. Structure	of	Zinc	Oxide		

	

Under	ambient	conditions,	zinc	oxide	crystallises	in	the	hexagonal	wurtzite	structure	(B4	type,	

Hermann-Mauguin	space	group	P63mc).[21]	First	elucidated	by	Bragg	in	1920[22]	shortly	after	

the	 discovery	 of	 X-ray	 diffraction,	 the	 wurtzite	 structure	 consists	 of	 two	 hexagonal	 close	

packed	sub-lattices	of	Zn2+	and	O2-	ions,	with	each	Zn2+	tetrahedrally	coordinated	to	four	O2-	

anions	and	vice	versa.	Wurtzite	zinc	oxide	exhibits	 lattice	constants	of	a	=	3.250	Å	and	c	=	

5.207	Å,	giving	a	c/a	ratio	of	~1.60	(compared	to	the	ideal	value	for	a	hexagonal	crystal	of	

1.633).[9,17,23,24]		

	

	

	

	

	

Figure	5.ii:	Schematics	of	three	experimentally	known	crystal	structures	of	zinc	oxide:	the	

stable	wurtzite	(B4,	P63mc,	left);	the	metastable	zincblende	(B3,	F43m,	right);	and	the	high-

pressure	rocksalt	(B1,	Fm3m,	centre)	phases.
[25-27]

		

	

	

The	P63mc	 space	group	exhibited	by	wurtzite	 results	 in	 the	 structure	having	no	 centre	of	

inversion,	which	gives	rise	 to	 the	piezoelectric	effect	 (the	ability	 to	accumulate	an	electric	

charge	 in	 response	 to	mechanical	 strain	 or	 pressure)	 exhibited	 by	 ambient	 zinc	 oxide.	 In	

addition,	the	experimental	bond	lengths	of	wurtzite	ZnO	show	an	asymmetry	along	the	[001]	

axis,	exhibiting	a	shorter	bond	length.	This	c-axis	orientated	stacking	leads	to	the	induction	of	

a	macroscopic	 polarisation,	 producing	 an	 internal	 electric	 field.	 This	 is	 one	 of	 the	 central	

reasons	as	to	why	zinc	oxide	has	not	yet	found	widespread	use	in	 industry	–	such	internal	

fields	are	highly	disruptive	and	undesirable	in	electronics	and	optics	devices.[9,24]		
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Unlike	many	 other	 type	 II-VI	 semi-conductors,	 zinc	 oxide	 preferentially	 crystallises	 in	 the	

wurtzite	configuration,	likely	as	a	result	of	the	highly	ionic	nature	of	the	Zn
2+	
-	O

2-
	interaction.	

However,	zinc	oxide	is	also	expected	to	be	able	to	adopt	a	second	polymorphic	phase,	which	

is	very	close	in	energy	to	the	ground	state:	the	cubic	zincblende	or	sphalerite	form	(B3	type,	

Hermann-Mauguin	space	group	F43m).	Unlike	in	zinc	sulphide	or	zinc	selenide,	the	zincblende	

form	of	zinc	oxide	is	metastable	under	ambient	conditions,	having	a	higher	energy	than	the	

more	 ionic,	hexagonal	wurtzite	structure.	However,	 the	Zn-O	 interaction	 in	the	zincblende	

form	 of	 zinc	 oxide	 is	 more	 covalent	 in	 nature,	 immediately	 making	 it	 a	 more	 practical	

contender	for	use	in	semiconducting	devices.
[9]
		

	

	

 

 

	

	

	

	

	

	

Table	5.iii:	The	thermodynamically	stable	phase	of	type	II-VI	semiconductors,	with	ZnO	

highlighted.	Here,	WZ	corresponds	to	wurtzite,	ZB	to	zincblende	and	RS	to	rocksalt.	Note	that	

most	of	the	sulphides,	selenides	and	tellurides	are	stabilised	by	zincblende	structures,	

however	the	magnesium	compounds	and	all	of	the	oxides	form	either	wurtzite	or	rocksalt	

configurations	as	a	result	of	their	much	higher	degree	of	ionicity.[24]		

	

Like	wurtzite,	the	zincblende	polymorph	features	tetrahedral	coordination	and	no	centre	of	

inversion.	However,	the	zincblende	form	could	be	superior	for	use	in	electronics	applications,	

as	 it	 does	 not	 exhibit	 spontaneous	 polarisation.
[28]

	 In	 addition,	 the	 cubic	 variety	 features	

	 O	 S	 Se	 Te	

Mg	 RS	 RS	 RS	 WZ	

Zn	 WZ	 ZB	 ZB	 ZB	

Cd	 RS	 WZ	 ZB	 ZB	

Be	 WZ	 ZB	 ZB	 ZB	
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higher	 electron	 drift	 velocities	 and	 lower	 carrier	 scattering,	 as	 a	 result	 of	 its	 higher	

crystallographic	symmetry.	Zincblende	has	also	been	shown	to	exhibit	much	higher	doping	

efficiencies,	adding	to	its	attraction	as	a	material	for	use	in	electronics	and	optical	devices.	

Moreover,	 cubic	 zinc	 oxide	 has	 the	 potential	 to	 be	 integrated	 into	 existing	 zincblende	

semiconductor	 infrastructure	 (such	 as	 3C-SiC	 technology),	 further	 increasing	 the	

attractiveness	of	the	prospect	of	using	zinc	oxide	in	such	devices.[29]		

The	third	experimentally	known	configuration	of	zinc	oxide	crystallises	in	the	NaCl-like	rock-

salt	 structure	at	high	pressures	of	 approximately	10	GPa.[27,30]	Whilst	 this	phase	has	been	

known	 for	 over	 half	 a	 century,	 it	 has	 not	 found	 any	 widespread	 use	 as	 a	 result	 of	 the	

conditions	required	for	it	to	exist.	Despite	this,	the	rocksalt	analogue	could	too	find	a	number	

of	potential	uses.	Ambient	ZnO	tends	to	exhibit	n-type	character,	likely	due	to	interstitials	and	

oxygen-vacancies	 within	 the	 wurtzite	 crystal	 structure	 giving	 an	 uneven	 distribution	 of	

charges.[9,31]	However,	with	a	wide,	indirect	band	gap	of	2.45	eV,	the	rocksalt	phase	would	be	

very	suitable	for	p-type	doping.	As	such,	trapping	the	rocksalt	form	at	ambient	conditions	is	

of	great	interest.[32] 

In	addition,	a	second	very	high-pressure	polymorph	which	adopts	the	caesium	chloride	(CsCl,	

B2	type)	structure	has	been	predicted	but	not	yet	experimentally	observed.[9]		

It	is	plausible	that	the	main	reason	that	zinc	oxide	has	not	found	extensive	use	in	electronics	

and	optics	is	due	to	the	inherent	difficulty	of	the	synthesis	and	stabilisation	of	its	more	useful	

zincblende	and	rocksalt	forms,	as	well	as	the	lack	of	knowledge	about	how	any	transformation	

to	 sphalerite	occurs.	 Zincblende	can	be	grown	 in	an	epitaxial	 fashion	on	 cubic	 substrates,	

however	this	process	is	non-trivial	and	poorly	understood.	The	external	conditions	required	

to	drive	the	transition	between	the	two	low	pressure	regimes	are	very	ambiguous,	and	it	is	

not	 even	 conclusively	 known	whether	 or	 not	 a	 direct	 wurtzite-zincblende	 transformation	

exists.[29]		

Thus,	full	comprehension	of	the	transformations	linking	the	different	polymorphs	would	be	

desirable,	with	 the	motivation	 that	 it	may	be	possible	 to	 transform	ambient	wurtzite	 to	a	

more	useful	form.	
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5.3. Formation	and	Transformations	of	the	Polymorphs	of	Zinc	Oxide		

	

5.3.1. The	Wurtzite	to	Rocksalt	transformation	

	

The	phase	transitions	undertaken	by	zinc	oxide	have	been	under	scrutiny	for	a	very	long	time.	

In	 particular,	 a	 great	 amount	 of	 attention	 has	 been	 paid	 to	 determining	 the	 conversion	

mechanism	between	the	ambient	wurtzite	phase,	and	the	high-pressure	rocksalt	phase.		

The	first	indication	of	a	zinc	oxide	phase	transition	was	first	reported	by	Bates	et	al	in	1962.[27]	

Bates	et	al	reported	that	the	new	high-pressure	polymorph	existed	with	a	‘sodium-chloride	

form	in	the	100-kilobar	pressure	range’,	and	estimated	that	the	new	high	pressure	rocksalt	

phase	had	a	lattice	parameter	of	4.280	Å	and	a	theoretical	density	of	6.912.	This	considerable	

drop	in	volume	(approximately	17%)	favoured	a	greater	ionic	interaction	between	the	zinc	

and	oxygen	ions,	explaining	the	formation	of	the	rocksalt	phase	at	relatively	modest	external	

pressure.	

It	was	 not	 until	 2000	 that	 subsequent	work	 indicated	 that	 the	 pressure	 of	 transition	was	

actually	considerably	lower	(at	around	6	GPa).
[33]

	The	confusion	arose	perhaps	because	of	the	

notable	hysteresis	present	in	the	transition,	which	has	since	been	extensively	characterized:	

Energy-Dispersive	X-ray	diffraction	(EDXD)	experiments	have	shown	that	the	transition	occurs	

from	wurtzite	to	rocksalt	at	9.1	±	0.2	GPa	with	complete	transformation	at	9.6	GPa,	with	the	

two	phases	coexisting	 in	 the	 interim.	For	 the	decreasing	pressure	 transformation,	 rocksalt	

begins	 to	 transform	 to	 wurtzite	 at	 pressures	 as	 low	 as	 1.9	±	 0.2GPa.[34]	 Other	 situ	 X-ray	

diffraction	 and	 Mössbauer	 spectroscopy	 observations	 have	 also	 demonstrated	 this	 large	

hysteresis	 in	 the	 phase	 transition.
[35]

	 Additionally,	 experiments	 have	 repeatedly	

demonstrated	 the	metastable	nature	of	 the	B1	phase,	with	 large	 fractions	of	 the	 rocksalt	

phase	being	retained	when	pressure	is	released.
[30,36]

		

Considerable	mechanistic	analysis	of	the	rocksalt	to	wurtzite	transition	has	been	previously	

studied.		Boulfelfel	et	al	used	transition	path	sampling	to	deduce	a	mechanistic	pathway	for	

the	transition,	and	showed	that	the	mechanism	proceeds	via	a	rich	series	of	transition	states	

and	intermediates.
[32]	

Additionally,	two	five-coordinate	intermediate	structures	can	be	visited	
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–	a	tetragonal	and	a	hexagonal	structure	–	which	were	shown	to	compete	with	one	another	

in	the	mechanism.	

	

 
	

Figure	5.iv:	The	two	five-coordinate	intermediates	elucidated	by	Boulfelfel	et	al.	The	

tetragonal	iT	(I4mm,	left)	and	the	hexagonal	iH	(P63/mmc,	right)	were	shown	to	compete	

against	one	another	in	the	transformation.	Whereas	the	iT	was	only	found	at	the	interface	

between	wurtzite	and	rocksalt,	the	iH	structure	sometimes	dominated	the	entire	system	

under	study.	Despite	this,	this	complete	iH	phase	was	shown	not	to	be	crucial	to	the	

transformation.[32]		

	

The	work	of	Boulfelfel	and	Leoni	explained	on	the	atomistic	level	a	number	of	puzzling	facets	

to	this	transformation,	including	the	presence	of	numerous	coexisting	phases	and	modes	of	

deformation.	It	also	showed	that	the	competition	between	the	two	five-coordinate	phases	

directly	resulted	in	the	presence	of	persistent	rocksalt	defects	at	low	pressure,	long	after	the	

transition	had	taken	place.	This	may	explain	why	large	regions	of	the	rocksalt	structure	remain	

after	the	high-to-low	pressure	phase	transition	has	taken	place.	

Although	the	 level	of	detail	shown	in	the	work	of	Boulfelfel	et	al	was	groundbreaking	and	
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aptly	demonstrated	the	worth	of	transition	path	sampling	methods,	the	presence	of	the	two	

possible	pathways	had	been	speculated	for	many	years	before	this;	however,	prior	to	this	

atomistic	analysis,	their	competitive	nature	and	pressure	dependence	was	unclear.		

For	 example,	 in	 2004,	 Saitta	 and	 Decremps	 first	 discussed	 the	 competitive	 nature	 of	 the	

‘tetragonal’	and	‘hexagonal’	routes,	and	their	work	concluded	that	semiconductors	involving	

d-electrons,	such	as	ZnO,	preferred	the	‘tetragonal’	path.[37]	However,	other	work	seemed	to	

contradict	 this	–	notably	 the	experimental	work	of	Liu	et	al,	which	utilised	high	resolution	

angular	dispersive	X-ray	diffraction,	seemed	to	indicate	that	the	‘hexagonal’	pathway	was	the	

more	favoured	for	zinc	oxide	at	lower	pressures.[38]		

	

	

Figure	5.v:	Potential	Energy	Surfaces	(PES)	for	the	wurtzite	to	rocksalt	transition,	from	the	

work	of	Cai	and	Chen	at	ambient	pressure	(a,	top	left),	the	transition	pressure	(b,	top	right)	

and	15	GPa	(c,	bottom).	The	dashed	lines	correspond	to	the	two	possible	pathways	–	the	

‘tetragonal’	and	the	‘hexagonal’	paths,	which	compete	in	the	transition	pressure	regime.
[39]

	

	
Subsequent	work	 showed	 that	 the	 true	 nature	 of	 the	 intermediate	 phases	was	 far	more	

complex	by	showing	that	the	two	mechanisms	were	actually	competing	with	each	other,	and	

that	the	formation	of	either	the	tetragonal	or	hexagonal	intermediate	depended	greatly	on	

external	pressure,	 temperature,	and	 local	coordination	 features.	A	notable	example	 is	 the	
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2007	ab	initio	work	of	Jin	Cai	and	Nanxian	Chen,	which	further	added	weight	to	the	arguments	

of	directly	competing	pathways	between	the	two	intermediates.	Cai	and	Chen’s	work	seemed	

to	show	that	the	pathways	were	not	system	dependent	but	condition	dependent	-	the	so-

called	‘tetragonal’	path	was	favoured	at	low	pressures,	whereas	higher	pressures	appeared	

to	 favour	 the	 ‘hexagonal’	 path.	At	 the	 transition	pressure,	however,	 the	 two	mechanisms	

were	in	direct	competition	with	one	another.
[39]

		

It	 is	 therefore	 immediately	 apparent	 that	 the	 phase	 transition	 is	 very	 non-trivial.	 Indeed,	

much	debate	still	rages	about	its	precise	nature,	and	work	is	still	being	published	to	attempt	

to	unravel	the	minutia	of	this	elusive	mechanism.	

	

5.3.2. The	Rocksalt	to	Caesium	Chloride	transformation	

	

As	 alluded	 to	 previously,	 the	 caesium	 chloride	 type	 (B2)	 geometry	 has	 been	 postulated.	

However,	this	is	yet	to	be	experimentally	verified	and	it	is	suggested	that	very	high	hydrostatic	

pressures	are	required	to	access	this	phase.	Density	Functional	Theory	has	predicted	that	this	

phase	 transition	 should	 occur	 at	 260	 GPa	 (LDA)	 or	 256	 GPa	 (GGA),
[40]

	 however	 classical	

calculations	 have	 placed	 the	 transition	 much	 higher	 at	 352	 GPa.
[41]

	 In	 addition,	 X-ray	

diffraction	studies	have	shown	that	the	rocksalt	phase	is	stable	even	at	200	GPa,
[42]

	indicating	

that	it	is	extremely	stable	over	a	wide	range	of	pressures	and	that	the	caesium	chloride	phase	

is	unlikely	to	find	any	practical	use	in	the	near	future.	

	

5.3.3. Formation	of	Zincblende	ZnO	

	

Most	efforts	to	form	sphalerite	zinc	oxide	have	been	devoted	to	studying	its	epitaxial	growth	

on	 other	 cubic	 substrates.	 Thin	 layers	 of	 metastable	 zincblende	 can	 be	 grown	 on	 cubic	

substrates,	but	growth	of	a	single	crystal	zincblende	is	a	very	complex	process.	One	of	the	

main	reasons	for	this	is	the	lack	of	other	zincblende	materials	with	a	similar	lattice	constant	

to	zinc	oxide.	Lattice	constant	discrepancies	cause	the	formation	of	defects	that	propagate	
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along	 the	 direction	 of	 growth,	 causing	 complex	 formation	 behaviour	 and	 hindering	 the	

capability	of	single	crystal	epitaxial	development.[29]		

	

	

Figure	5.vi:	Lattice	constant	vs.	band	gap	energies,	plotted	for	a	selection	of	II-O	and	II-VI	

compounds.	Note	that	zinc	sulphide	and	selenide,	along	with	most	other	II-VI	

semiconductors,	have	very	similar	lattice	constants	to	GaAs.	Conversely,	ZnO	has	a	much	

smaller	lattice	constant,	similar	to	that	of	6H-SiC,	which	is	hexagonal.	This	lack	of	compatible	

cubic	growth	substrates	makes	zincblende	ZnO	epitaxy	a	difficult	process.[29]		

	

To	 counter	 this,	 most	 growth	 techniques	 utilise	 zinc	 sulphide	 thin	 layers,	 which	 act	 as	

interlayers	or	nucleation	layers.	The	presence	of	ZnS	reduces	the	mismatch	between	lattice	

constants,	 and	acts	 as	 a	nucleation	 site	 for	 the	deposited	ZnO.	 For	example,	Ashrafi	et	al	

produced	epilayer	ZnO	utilising	metal-organic	molecular	beam	epitaxy,	where	zincblende	ZnO	

was	grown	on	ZnS-GaAs	using	plasmas	of	diethyl	zinc	and	molecular	oxygen.[43]		

Kim	et	al	produced	cubic	zinc	oxide	using	a	sol-gel	deposition	process	on	a	number	of	different	

substrates.	 Kim	 et	 al	 also	 indicated	 that	 the	 presence	 of	 hexagonal	 impurities	 could	 be	

removed	 by	 high-temperature	 annealing,	 giving	 a	 pure	 zincblende	 crystal.[44]	 Lee	 et	 al	

successfully	grew	a	mixture	of	hexagonal	and	cubic	zinc	oxide	on	an	Al2O3	substrate	by	the	
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direct	oxidation	of	thin	layers	of	ZnS.[45]	However,	others	have	tried	this	method	(such	as	Yoo	

et	al,	using	a	silicon	base	substrate)	without	success.[46]	In	the	case	of	Yoo	et	al,	it	is	believed	

that	the	oxygen	diffuses	into	the	ZnS	matrix	via	interstitial	sites,	bonding	with	the	ZnO	and	

changing	the	underlying	cubic	framework,	ultimately	to	that	of	the	stable	wurtzite.		

	

	

Figure	5.vii:	Atomic	resolution	transmission	Electron	Micrograph	(TEM)	image	of	cubic	ZnO	

and	ZnS	deposited	on	top	of	GaAs	substrate	The	phase	boundary	between	the	two	zinc	

compounds	is	evident,	as	well	as	the	considerably	smaller	lattice	constant	for	the	ZnO	

material.	Defects	are	indicated	by	the	arrows;	however,	they	are	much	fewer	in	number	than	

would	be	present	without	the	ZnS	interlayer.	The	lattice	constant	for	the	ZnO	was	shown	to	

be	4.47	Å,	as	a	result	of	tetragonal	distortion	caused	by	strain	in	the	ZnO/ZnS/GaAs	

system.[43]		

 

 

However,	all	of	these	growth	processes	are	still	very	poorly	understood.	As	such,	knowledge	

of	a	direct	phase	transition	to	the	zincblende	form	of	ZnO	would	be	highly	desirable.	

Unfortunately,	hypothetical	phase	transitions	between	the	wurtzite	and	zincblende	phases	

have	also	proven	to	be	much	more	elusive	than	transitions	from	the	ground	state	to	the	high	

pressure	 rock	 salt	 phase.	 The	 reason	 for	 this	 is	 likely	 due	 to	 the	 extremely	 small	 energy	

difference	per	atom	between	wurtzite	and	zincblende	ZnO,	which	is	of	the	order	of	~50	meV	

per	atom	according	to	ab	initio	calculations.[29]	Thus,	it	is	difficult	to	find	conditions	where	the	
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zincblende	 phase	 is	 substantially	 more	 favoured	 than	 the	 ground	 state.	 This	 would	

significantly	benefit	from	knowledge	of	phase	nucleation	and	growth,	and	how	this	affects	

polymorphic	selection.		

A	notable	example	came	in	2008	when	Wu	et	al	presented	evidence	of	a	pressure	induced	

phase	transition	between	wurtzite	and	zincblende	ZnO,	based	on	the	calculation	of	Gibb’s	

free	energy	with	increasing	temperature	and	pressure.[47]	Wu	et	al	showed	that	a	hypothetical	

phase	transition	between	the	two	phases	should	occur	at	a	pressure	lower	than	30	GPa	at	

300K,	 with	 an	 activation	 barrier	 of	 0.386	 eV	 /	 atom.	 The	 group	 also	 postulate	 that	 the	

transition	path	may	involve	the	formation	of	a	transient	orthorhombic	structure	in	order	to	

overcome	 the	 energy	 barrier.	 Sadly,	 no	 such	 transformation	 has	 yet	 been	 proven	 by	

experiment.	

	
5.3.4. Summary	

	

It	is	apparent	from	reviewing	the	literature	that,	although	a	great	deal	of	progress	has	been	

made	to	classify	the	phase	transition	linking	the	hexagonal	ground	state	and	the	high	pressure	

rocksalt	forms,[32-38]	very	little	is	conclusively	known	about	other	transformations	to	and	from	

different	polymorphs	of	zinc	oxide.	In	particular,	there	is	still	a	considerable	lack	of	knowledge	

about	the	formation	and	stabilisation	of	the	cubic	zincblende	polymorph,	which	would	be	an	

extremely	useful	material	for	use	in	future	electronics	and	optics	devices.[29,43-46]		

The	ultimate	goal	of	this	work	 is	to	contribute	to	the	knowledge	of	how	to	transform	zinc	

oxide	into	a	more	useful	form.	The	wurtzite	to	rocksalt	transformation	has	been	extensively	

studied,	 and	 continues	 to	 be	 a	 competitive	 area	 of	 scrutiny.	 The	 direct	 transformation	

between	the	wurtzite	and	zincblende	forms	has	proven	to	be	very	complex,	as	a	result	of	the	

two	phases’	proximity	in	energy	to	one	another.	The	remaining	pathway,	and	the	one	that	is	

virtually	 unexplored,	 is	 that	 between	 the	 cubic	 zincblende	 and	 the	 high-pressure	 rocksalt	

phase.	Whilst	 the	merit	 of	 such	 a	 transformation	may	 not	 be	 directly	 obvious,	 it	 is	 quite	

apparent	that	if	one	could	easily	transform	from	the	ground	state	to	rocksalt,	and	then	from	

rocksalt	 to	zincblende,	a	prescribed	 route	between	 the	ambient	and	more	desirable	cubic	
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forms	of	zinc	oxide	could	be	established.	The	elucidation	of	such	a	procedure	could	have	clear	

implications	for	the	future	use	of	cubic	zinc	oxide	in	electronic	devices.	

	

Thus,	the	work	contained	within	this	chapter	is	an	attempt	to	elucidate	the	pressure-induced	

phase	transition	between	zincblende	and	rocksalt	zinc	oxide	using	transition	path	sampling	

methodologies.	In	order	to	achieve	this,	the	following	order	of	work	was	undertaken	and	will	

be	discussed:	

	

1. The	deduction	of	the	transition	pressure	for	this	transformation;	

2. The	creation	of	a	suitable	transition	model,	and	elucidation	of	an	appropriate	dynamical	

intermediate;	

3. Discussion	of	the	order	parameter,	and	justification	of	its	use;	

4. Analysis	 of	 transition	 path	 sampling[48,49]	 results,	 including	 full	 characterisation	 of	 the	

reaction	pathway.	

	

In	 addition,	 a	 novel	 combination	 of	 the	 path	 sampling	 shooting	 algorithm	 and	

metadynamics[50]	algorithms	will	be	discussed,	which	has	been	developed	to	quantitatively	

analyse	 the	 transition	 pathway,	 as	 well	 as	 accurately	 describe	 the	 transition	 states	 and	

intermediates.	This	method	of	‘metashooting’	will	be	discussed	in	detail	in	the	second	part	of	

this	results	section,	and	will	be	central	to	the	analysis	of	the	transition	pathway.	
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5.4. Determination	of	the	Transition	Mechanism	

	

5.4.1. Methodology	

	

Presented	 below	 are	 computational	 details	 relating	 specifically	 to	 the	 application	 of	 TPS	

methods	in	this	work.	

	

The	 mechanism	 deduced	 by	 transition	 path	 sampling	 methods	 critically	 depends	 on	 the	

number	of	atoms	used	in	the	simulation	box.	Simulation	cells	with	a	very	small	number	of	

atoms	are	unlikely	to	demonstrate	any	meaningful	instances	of	growth	and	nucleation	(due	

to	the	artificial	enhancement	of	such	events	by	periodic	images),	whereas	very	large	systems	

would	be	prohibitively	expensive	to	calculate.	Thus,	it	was	decided	that	the	work	would	be	

carried	out	using	2,400	atom	systems,	corresponding	to	1,200	Zn-O	pairs.	System	sizes	of	this	

order	are	widely	used	in	the	literature[32]	and	are	a	good	compromise	between	mechanistic	

fidelity	and	computational	efficiency.	 In	addition,	using	simulation	cells	of	a	similar	size	to	

past	work	allows	for	direct	comparison	with	the	literature.	

	

!"#$(&'()) = 	-./&0 − 2
34 				[!6	5.1]	

	

	 	 -	/	eV	 ;	/	Å-1	 2	/	eV	Å6	

Zn2+	 Zn2+	 0.0	 0.0	 0.0	

Zn2+	 O2-	 529.70	 0.3581	 0.0	

O2-	 O2-	 9547.96	 0.21916	 32.0	

	

Table	5.viii:	The	parameters	utilised	from	the	work	of	Binks	et	al	in	this	work.[51]	The	form	of	

the	Buckingham	potential	is	shown	above.
[52]

	Note	that	the	charges	of	the	zinc	and	oxygen	

utilised	in	the	work	were	+2	and	-2	respectively.	

	

All	 calculations	 were	 carried	 out	 using	 the	 cp2k	 package	 within	 the	 isothermal-isobaric	

ensemble,	with	a	flexible	simulation	cell	(<=>)	and	periodic	boundary	conditions	in	the	?,	@	
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and	 A	 directions.	 Molecular	 dynamics	 integration	 was	 performed	 using	 a	 velocity	 Verlet	

scheme	with	a	time-step	of	0.2	fs	to	ensure	good	time-reversibility.	Inter-atomic	interactions	

between	the	zinc	and	oxygen	atoms	were	described	using	a	Buckingham-style	potential	from	

the	work	of	Binks	et	al,	whose	parameters	have	been	widely	used	to	model	zinc	oxide	and	

have	been	shown	to	accurately	represent	a	number	of	critical	parameters.[51]		

	

Long	range	electrostatic	effects	were	accounted	for	using	an	Ewald	summation.	Temperature	

and	 pressure	 were	 controlled	 by	 using	 Nosé-Hoover	 chains.[53-56]	 Time	 constants	 for	 the	

thermostat	and	barostat	algorithms	were	chosen	such	that	temperature	and	pressure	was	

efficiently	regulated,	but	that	the	trajectories	proceeded	reversibly.	

	

5.4.2. Results	and	Discussion	

	

5.4.2.1. Determination	of	the	Transition	Pressure	

	

In	order	to	determine	a	mechanism	for	the	pressure-induced	phased	transition	between	two	

polymorphs	by	transition	path	sampling,	one	must	first	ascertain	the	pressure	at	which	that	

transition	will	occur	–	i.e.	the	pressure	at	which	both	polymorphs	A	and	B	can	coexist	with	

equal	 probability.	 This	 is	 done	by	 simply	 generating	 an	 enthalpy	 vs.	 pressure	 plot	 for	 the	

phases	of	interest.		

Using	the	potential	of	Binks	et	al,	a	series	of	short	molecular	dynamics	calculations	on	the	

2400	 atom	 systems	were	 run	 using	CP2K	 within	 the	 isothermal-isobaric	 ensemble	with	 a	

flexible	 cell	 (<=>).	 The	 systems	were	 equilibrated,	 and	post-equilibration	mean	 values	 of	

external	 pressure,	 volume,	 potential	 energy	 and	 kinetic	 energy	 were	 recorded.	 The	 total	

energy	of	the	system	B	is	simply	the	sum	of	the	potential	energy	C	and	the	kinetic	energy	>:	

B = C + >				[!6	5.2]	

The	enthalpy	F	can	then	be	calculated	using	the	equation:	

F = B + =C				[!6	5.3]	
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where	=C	is	the	pressure	multiplied	by	the	volume	for	a	particular	calculation.	

	

Figure	5.ix:	Enthalpy	vs.	Pressure	plot	for	the	wurtzite	(WZ,	orange),	zincblende	(ZB,	blue)	and	

rocksalt	(RS,	green)	phases	of	zinc	oxide.	The	zincblende-rocksalt	crossover	occurs	at	around	

9.8	GPa,	which	was	thus	taken	to	the	transition	pressure	for	the	phase	transition.	Note	how	

close	in	enthalpy	the	wurtzite	and	zincblende	structures	are,	especially	at	low	pressures.	No	

direct	wurtzite-zincblende	crossover	occurs	at	any	positive	value	of	pressure.	

	

Obtaining	this	quantity	over	a	range	of	pressure	gives	a	straight	line	plot	for	each	system,	and	

the	crossover	point	between	two	sets	of	data	corresponds	to	the	transition	pressure.	In	this	

work,	the	transition	pressure	for	the	zincblende-rocksalt	transformation	was	determined	to	

be	at	around	9.8	GPa.	
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5.4.2.2. The	Geometric	Trajectory	

	

It	is	imperative	to	have	an	initial	trajectory	linking	the	two	basins	of	interest	(in	this	case,	the	

zincblende	and	 the	wurtzite	 configurations	of	 zinc	oxide),	 upon	which	one	 can	derive	 the	

starting	configuration	for	the	iterative	path	sampling	procedure.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.x:	Snapshots	of	the	two	defined	starting	configurations,	zincblende	(top	far	left)	and	

rocksalt	(bottom	far	left),	as	well	as	a	number	of	intermediates	generated	from	the	geometric	

trajectory.	The	intermediate	configurations	are	generated	by	interpolation,	giving	a	

continuum	of	possible	configurations	between	the	two	defined	structures	used	in	the	model.	

	

There	are	a	number	of	ways	in	which	one	can	generate	an	initial	trajectory,	which	need	not	

be	representative	of	a	plausible	mechanistic	pathway	in	any	way	–	its	only	requirement	is	that	

it	 links	 the	 initial	and	 final	configurations	of	 the	transition	event.	However,	 it	 is	extremely	

desirable	 for	 a	 first	 trajectory	 to	 proceed	 via	 a	 plausible,	 albeit	 geometric/collective	

transformation	mechanism,	 as	 such	 an	 initial	 pathway	 is	 likely	 to	 require	 far	 fewer	 path	
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sampling	 iterations	 before	 decorrelation	 from	 the	 initial,	 disfavoured	 regime	 towards	

relevant	mechanistic	details.	

	

The	initial	trajectory	used	in	this	work	was	generated	using	a	geometric-topological	approach,	

based	on	 the	 transformation	of	periodic	nodal	 surfaces	 (PNS).	The	atomic	coordinates	are	

mapped	 non-linearly	 from	 zincblende	 and	 rocksalt	 configurations,	 according	 to	 a	 set	 of	

particular	 modes	 of	 deformation	 defined	 within	 the	 model,	 to	 derive	 a	 dense	 set	 of	

interpolated	intermediates.	This	is	achieved	by	calculating	a	periodic	nodal	surface	wrapped	

around	 the	 two	 limiting	 structures,	 with	 one	 species	 placed	 on	 the	 ‘positive’	 side	 of	 the	

surface,	and	the	other	on	the	‘negative’	side.	The	surface	is	chosen	such	that	it	develops	in	a	

way	corresponding	to	the	encoded	transformation	and	deformation	modes.	This	means	that	

the	entire	transformation,	as	well	as	any	 intermediate	configurations,	can	be	defined	by	a	

single	parametric	expression.	Thus,	any	point	along	this	modelled	trajectory	may	be	extracted	

and	 used	 as	 a	 starting	 structure.	 Full	 details	 of	 the	 method	 can	 be	 found	 in	 the	

literature.[32,57,58]		

	

Such	 a	 method	 gives	 a	 respectable	 initial	 trajectory,	 with	 a	 great	 deal	 of	 intermediates	

residing	along	the	transition	pathway.	This	is	beneficial	for	a	number	of	reasons:	

	

• Starting	configurations	with	very	high	energies,	levels	of	strain,	or	other	undesirable	

properties	can	be	easily	avoided,	thus	significantly	reducing	the	number	of	iterations	

required	by	the	path	sampling	procedure	before	initial	trajectory	decoherence;	

	

• Independent	 transition	path	 sampling	 calculations	may,	 if	desired,	be	 started	 from	

very	different	initial	pathways,	or	from	a	number	of	different	starting	configurations	

along	the	same	pathway;	

	

• The	transformation	and	deformation	modes	encoded	into	the	model	can	be	modified	

at	will.	This	means	that	specific	 features	may	be	deliberately	encoded	(or	avoided)	

into	 the	 initial	 pathway.	 This	 can	have	a	number	of	 advantages	 -	 for	 example,	 if	 a	

particular	process	is	known	to	occur	within	the	transformation	mechanism,	it	can	be	

encoded	in	to	the	initial	path	in	order	to	greatly	reduce	the	number	of	transition	path	
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sampling	iterations	required.	Additionally,	a	direct	appreciation	of	the	favourability	of	

a	 particular	 model	 can	 be	 ascertained,	 by	 monitoring	 the	 conservation	 or	

disappearance	of	 its	overall	transition	motifs	whilst	the	path	sampling	procedure	 is	

being	performed.	

	

	

5.4.2.3. Finding	a	Dynamical	Transition	State	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	5.xi:	Snapshots	of	dynamical	transition	state	0.37075	(centre),	derived	from	the	

geometric	model.	Using	molecular	dynamics	within	the	isothermal-isobaric	ensemble	at	the	

transition	pressure,	propagation	of	this	intermediate	forwards	and	backwards	in	time	gave	

the	rocksalt	(right)	and	zincblende	(left)	configurations	of	zinc	oxide,	respectively.	

	

Using	this	 initial	 trajectory,	and	the	single	parametric	expression	required	to	generate	 the	

interpolated	intermediates,	it	was	then	necessary	to	find	a	suitable	transition	state	that	linked	

the	 two	 basins	 of	 attraction,	 zincblende	 and	 rocksalt.	 Intermediates	 were	 systematically	

generated	 and	 propagated	 using	 molecular	 dynamics	 within	 the	 <=>	ensemble.	 A	 true	

dynamical	transition	state	is	one	that,	upon	molecular	dynamics	propagation,	arrives	at	one	

−K	
9.8	GPa	

+K	
9.8	GPa	
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of	the	basins	of	attraction	when	propagated	forwards	in	time,	and	the	other	when	propagated	

backwards.	 This	 is	 the	 point	 from	 which	 the	 transition	 part	 sampling	 algorithm	 may	 be	

initiated.		

	

From	 the	 function	 used	 to	 define	 the	 states	 (with	 zincblende	 at	 0	 and	 rocksalt	 at	 1),	 the	

intermediate	0.37075	yielded	a	dynamical	mid-point	which	was	subsequently	used	in	the	path	

sampling	calculations.	

	

	

5.4.2.4. Defining	the	Order	Parameter	

	

	

	

Figure	5.xii:	Two	illustrations	of	a	small	section	of	cubic	zinc	oxide,	based	around	a	central	

oxygen	atom	(red)	and	taken	from	two	different	perspectives.	The	atoms	are	coloured	

according	to	which	shell	of	the	coordination	sphere	they	reside	within,	with	respect	to	the	

central	atom.	The	first	three	shells	of	the	coordination	sphere	of	the	central	are	shown	–	the	

first	(green),	the	second	(magenta)	and	the	third	(blue).	Zincblende	has	a	first,	second	and	

third	coordination	number	of	4,	12	and	24	respectively.	
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One	of	the	few	strict	prerequisites	of	a	transition	path	sampling	calculation	is	that	the	initial	

and	 final	configurations	of	 the	system	must	be	strictly	defined,	 in	order	 that	 they	may	be	

distinguished	from	one	other	with	absolutely	no	confusion	(i.e.,	there	is	no	overlap	of	their	

respective	 basins	when	projecting	 onto	 the	 order	 parameter).[48]	 Thus,	 the	 path	 sampling	

calculations	 require	 an	 order	 parameter	 to	 distinctly	 classify	 the	 zincblende	 and	 rocksalt	

phases	 of	 zinc	 oxide,	 as	 well	 as	 any	 intermediate	 configurations	 that	may	 arise	 over	 the	

iterations	of	the	procedure.	

	

One	of	the	most	commonly	used	order	parameters	in	path	sampling	calculations	(and	indeed,	

one	of	the	most	popular	collective	variables	used	in	metadynamics)	in	the	solid	state	is	the	

average	coordination	number	of	the	system.	The	coordination	sphere	is	a	set	of	integers:	

	

{MN, MP …	MR … }	
	

where	each	number	MR 	corresponds	to	the	number	of	neighbours	separated	from	the	central	

atom	by	T	bonds.	This	quantity	can	be	calculated	for	all	atoms	in	a	system,	collated,	and	the	

mean	value	taken	to	give	the	average	coordination	number	of	the	whole	system.	For	example,	

the	first	three	shells	of	the	coordination	spheres	of	the	three	phases	of	zinc	oxide	are:	

	

zincblende	 	 4, 12, 24 	

wurtzite	 	{4, 12, 25}	
rocksalt	 	{6, 18, 38}	

	

Thus,	the	average	first	coordination	number	(1st	CN)	of	zincblende	and	rocksalt	are	4	and	6,	

respectively.		

	

In	this	work,	the	1st	CN	of	the	system	was	defined	as	the	order	parameter,	with	a	nearest	

neighbour	cut-off	of	2.7	Å	–	easily	long	enough	to	find	all	adjacent	contacts,	but	not	distant	

enough	 to	 detect	 centres	 within	 higher	 coordination	 shells.	 During	 the	 transition	 path	

sampling	calculations,	the	coordination	spheres	of	each	atom	were	calculated	up	to	the	third	

shell,	but	only	the	1st	CN	was	utilised	to	dictate	the	progress	of	the	path	sampling	calculations.	
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The	2
nd
	and	3

rd
	CNs	were	recorded	simply	to	gain	insight	into	the	underlying	details	of	the	

transition	pathways.	

	

The	reasons	that	only	the	first	coordination	number	was	used	were	twofold:	

	

• Utilising	higher	coordination	spheres	increases	the	likelihood	of	noise	caused	by	local	

disorder	and	defects,	which	can	wrongly	lead	to	the	categorisation	of	a	‘successful’	

trajectory	as	a	‘failure’.	It	is	desirable	for	the	trajectory	to	evolve	in	the	most	‘natural’	

way	possible,	without	any	influence	from	a	poorly	constructed	order	parameter	being	

exerted	on	the	calculation;	

	

• Using	the	first	coordination	shell	only	means	there	is	no	discrimination	between	the	

zincblende	and	wurtzite	phases	of	zinc	oxide.	As	the	system	is	starting	from	a	pure	

cubic	structure,	it	was	deemed	interesting	to	see	whether	or	not	the	system	would	

stay	within	this	regime,	or	move	towards	one	more	stabilised	by	the	ground	state.	

	

It	is	important	to	note	here	that	using	the	first	coordination	number	as	the	order	parameter	

exerts	 absolutely	 no	bias	 on	 the	 calculations.	 The	 variation	 in	 the	order	 parameter	 arises	

simply	 as	 a	 result	 of	 the	 application	 of	 the	 transition	 pressure	 to	 the	 system.	 Hence,	

monitoring	the	first	coordination	sphere	does	not	force	the	system	to	evolve	in	any	particular	

way	 over	 the	 course	 of	 the	 path	 sampling	 iterations.	 This	 is	 one	 of	 the	 details	 that	

distinguishes	 the	 order	 parameter	 used	 in	 path	 sampling	 calculations	 from	 the	 collective	

variables	utilised	in	metadynamics.	

	

	

5.4.2.5. Transition	Path	Sampling	Results	

	

5.4.2.5.1. Analysis	of	Data	

	

For	the	mechanistic	analysis,	snapshots	of	the	structures	have	been	colour	coded	depending	

on	their	local	coordination	sphere,	whereas	in	others	have	been	coloured	simply	according	to	
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species	 type.	 These	 analysis	 schemes	 are	 referred	 to	 as	 the	 Coordination-Coloured	 and	

Species-Coloured	 schemes,	 respectively.	 In	 the	Coordination-Coloured	scheme,	 zinc	cations	

have	 been	 drawn	 as	 large	 spheres,	 whereas	 oxygen	 anions	 are	 displayed	 as	 the	 smaller	

globes.		Species	have	been	coloured	according	to	their	local	coordination	number.	

	

	

Colour	 Corresponding	Species	/	Bond	

Red	 6	coordinate	(RS)	

Green	 5	coordinate	(iT	/	iH)	

Dark	Blue	 4	coordinate	(WZ)	

Light	Blue	 4	coordinate	(ZB)	

Purple	 4	coordinate	(neither	pure	WZ	nor	ZB)	

White	 Not	4,	5	or	6	coordinate	(defect)	

Black	 Zn-O	Bond	

	

Table	5.xiii:	The	colour	code	used	to	depict	both	the	zinc	and	oxygen	atoms	in	different	

coordination	environments	within	the	Coordination-Coloured	scheme.	Zn2+	and	O2-	are	

depicted	by	large	and	small	spheres	respectively.	

	

Coordination	analysis	was	calculated	by	measurement	of	the	number	of	nearest	neighbour	

sites	within	the	1st,	2nd	and	3rd	coordination	spheres	of	every	zinc	and	oxygen	atom,	using	2.6	

Å	as	the	cut-off	 for	nearest	neighbour	searching	(taking	periodic	boundary	conditions	 into	

account).	It	is	noted	here	that,	as	only	a	small	amount	of	5-coordinate	is	usually	found	at	the	

interface	 between	 other	 phases,	 distinguishing	 between	 iT	 and	 iH	 using	 this	 method	 is	

essentially	 impossible.	 Where	 necessary,	 discrimination	 between	 the	 two	 different	 five-

coordinate	phases	has	been	carried	out	by	analysing	 the	angles	between	 the	 five-bonded	

neighbours	to	the	central	atomic	site.	

	



CHAPTER	5	–	PHASE	TRANSITIONS	OF	ZINC	OXIDE	

	

	 105	

In	 the	 Species-Coloured	 scheme,	 atoms	 are	 simply	 labelled	 according	 to	 their	 type	 with	

appropriate	van	der	Waals	radii	–	zinc	atoms	are	labelled	grey,	whereas	oxygens	are	labelled	

red.	Bonds	linking	the	two	species	are	shown	as	red-grey	lines.	

	

	

5.4.2.5.2. Overview	

	

Once	the	dynamical	trajectory	and	an	order	parameter	had	been	defined,	the	path	sampling	

procedure	was	initiated	in	order	to	generate	the	transition	path	ensemble.	The	following	data	

are	a	statistical	analysis	of	the	converged	subset	of	trajectories,	corresponding	to	the	likely	

pathways	of	transformation	between	the	two	configurations	of	interest.	

	

One	of	the	advantages	of	initiating	the	process	from	a	reasonable	starting	trajectory	is	that	it	

takes	 very	 few	TPS	 iterations	 for	 the	 system	 to	move	away	 from	 the	 initial,	 unfavourable	

regime	to	a	more	probable	one.	This	process	is	known	as	trajectory	decorrelation.	In	fewer	

than	 50	 path	 sampling	 iterations,	 the	 procedure	 steered	 the	 trajectory	 away	 from	 the	

collective	motion	encoded	by	the	geometric	model	and	towards	a	regime	which	features	a	

number	 of	more	 nucleation	 events.	 The	 trajectories	 continued	 to	 evolve	 until	 no	 further	

major	mechanistic	changes	were	observed	-	known	as	trajectory	convergence,	this	occurred	

after	several	hundred	iterations	of	the	path	sampling	procedure.	Subsequently,	very	many	

successful	trajectories	were	analysed	and	described.		

	

The	analysis	seemed	to	show	two	different	pathways	of	transformation:	

	

• The	 first	 trajectory	 type	 proceeded	 by	 an	 abrupt	 change	 in	 coordination	 sphere,	

followed	by	a	gradual	transformation	to	the	final	product.	This	route	could	also	be	

split	into	two	categories	–	one	which	proceeded	to	the	four-coordinate	product,	and	

another	in	which	the	material	could	enter	into	(and	stay	within)	an	intermediate	five-

coordinate	basin;	
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• The	second	type	followed	a	more	step-wise	route,	featuring	numerous	abrupt	changes	

to	the	average	coordination	sphere,	including	transition	through	a	predominantly	5-

coordinate	intermediate.		

	

Whilst	 both	 the	 forward	 and	 reverse	 trajectories	 showed	 instances	 of	 the	 two	 trajectory	

types,	 it	 was	 found	 that	 the	 first	 category	 of	 pathway	 was	 favoured	 for	 the	 high-to-low	

pressure	transition,	and	the	second	pathway	by	the	low-to-high	pressure	transition.		To	put	it	

another	way,	whilst	both	directions	of	the	transition	could	proceed	via	the	two	pathways,	

most	 of	 the	 successful	 iterations	 scrutinised	 tended	 to	 follow	 one	 particular	 transition	

scheme,	 depending	 on	whether	 or	 not	 it	 was	 the	 6-to-4	 coordinate	 or	 4-to-6	 coordinate	

transformation.	

	

In	 addition,	 both	 the	 ‘forward’	 and	 ‘backward’	 trajectories	 had	 a	 number	 of	 intriguing	

possibilities	and	derivative	paths,	depending	on	local	geometry	and	fluctuations	in	external	

conditions.	 Such	 competitive	 behaviour	 between	 possible	 transition	 routes	 has	 been	well	

described	previously,	and	is	both	supported	by	and	supports	the	wealth	of	literature	on	the	

nature	 of	 phase	 transitions	 involving	 intermediate	 schemes,	 nucleation	 and	 growth,	 as	

described	in	the	literature	review.	

	

	

5.4.2.5.3. The	‘High-to-Low	Pressure	Phase’	Transition	

	

	

The	 first	 indication	 of	 trajectory	 decorrelation	 from	 the	 initial	 geometric	 scheme	was	 the	

presence	of	 a	 distinctive	 shear	 along	 (300),	 preceded	by	 the	 rapid	 creation	of	 a	 ‘seed’	 at	

around	460	fs,	which	grows	orthogonally	to	the	sheer.	The	ZnO	motifs	that	compose	the	seed	

are	 primarily	 of	 a	 cubic	 geometry.	 The	 formation	 of	 this	 seed	 and	 shear	 accompanies	 a	

pronounced	initial	decrease	in	volume.	This	is	unexpected,	as	at	the	same	time,	numerous	

local	configurations	of	rocksalt	deform	into	hexagons,	which	rapidly	propagate	to	form	the	

seed.		
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The	composition	of	the	sheer	is	a	mixture	of	five,	six	and	higher-coordination	defects,	which	

certainly	contributes	to	the	overall	high-density	measurements	seen	here.	However,	the	seed	

is	predominantly	four-coordinate	in	nature,	shifting	between	zincblende,	wurtzite	and	low-

coordination	 defects.	 The	 outer	 edge	 of	 the	 seed	 is	 surrounded	 by	 the	 five-coordinate	

intermediate,	 corresponding	 to	both	 the	 iT	and	 the	 iH	 structures,	 depending	on	 the	 local	

geometry.	This	can	clearly	be	seen	in	image	iii)	of	Figure	5.xiv,	presented	overleaf.	

	

These	seed	and	shear	structures	contain	an	extraordinary	wealth	of	coexisting	ZnO	structures,	

including	zincblende,	wurtzite,	rocksalt,	tetragonal	and	trigonal	bipyramidal,	as	well	as	other	

localised	defects	 caused	by	 the	 rapid	 shearing	 and	 initial	 compression.	 It	 is	 therefore	 not	

surprising	that	the	exact	nature	of	the	seed	plays	a	significant	role	in	the	next	stage	of	the	

transition.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

i)		 ii)	

iii)	

0	ps	 0.46	ps	

0.5	ps	
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Figure	5.xiv:	(previous	page)	Coordination-Coloured	illustrations	showing	how	the	rapid	

compression	forces	the	pure	rocksalt	structure	(i,	top	left)	to	form	a	small	region	of	four-

coordinate	ZnO,	which	is	predominantly	cubic	in	nature	(ii,	top	right).	The	strain	caused	by	

the	cubic	deformation	region	causes	the	structure	to	buckle	in	the	(300)	plane,	creating	a	

distinctive	shear	made	of	distorted	four,	five	and	six	coordinate	ZnO	(iii,	bottom).	

	

For	a	time,	continued	propagation	is	accompanied	by	a	continued	decrease	in	volume.	In	a	

number	of	trajectories,	the	cubic	seed	migrates	around	the	system	for	some	time,	moving	

from	the	‘edge’	to	the	‘centre’	of	the	frame	and	occasionally	back	again.	Whilst	in	a	periodic	

system	such	geometric	descriptions	are	 largely	 irrelevant,	 it	does	 illustrate	 that	oscillation	

between	the	two	phases	can	occur	at	the	beginning	of	the	trajectory,	and	that	zinc	oxide	is	

able	to	rapidly	convert	between	four,	five	and	six	coordinate	material	any	time	after	this	initial	

volume	compression	at	the	transition	pressure.	

It	is	at	this	point	that	this	trajectory	type	may	proceed	in	two	different	ways,	depending	on	

the	rate	of	the	initial	compression	–	one	of	which	leads	to	trajectory	success,	and	the	other	

to	failure.	

Trajectories	 that	are	compressed	more	 rapidly	 (see	Figure	5.xvi)	 in	 the	early	 stages	of	 the	

transformation	tend	to	form	an	almost	entirely	5-coordinate	 intermediate,	denoted	RS-iH,	

within	the	first	picosecond	of	simulation,	with	the	presence	of	some	regions	of	rocksalt	and	

high-coordination	defects.	Such	unusual	defects	presumably	arise	from	an	inability	of	those	

regions	to	crystallise	in	an	orderly	way,	due	to	the	rapid	transformation	processes	that	take	

place	 once	 the	 cubic	 seed	 has	 undergone	 initial	 growth.	 However,	 such	 defects	 (and	 in	

particular	 the	 rocksalt	 ‘sandwiching’)	 may	 confer	 stabilisation	 to	 this	 five-coordinate	

intermediate	-	this	is	backed	up	by	the	fact	that	such	mixed	material	persist	for	a	very	long	

time	 (at	 least	 500	 ps!)	 in	 subsequent	 molecular	 dynamics	 simulations,	 indicating	 the	

metastability	of	this	mixed	phase.	

It	 is	 worth	 noting	 here	 that	 the	 presence	 of	 an	 energy	 basin	 which	 is	 not	 vital	 to	 the	

transformation	 that	 corresponds	 to	 a	 five-membered	 intermediate	 along	 the	 transition	

pathway	directly	correlates	with	previous	work	in	the	literature,	including	the	previous	work	
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of	Boulfelfel	et	al	in	their	studies	of	the	B4	–	B1	phase	transition	of	zinc	oxide.[32]	This	work	

does	also	show	conclusively	that	the	nature	of	this	intermediate	is	the	hexagonal	iH	form,	and	

that	this	metastable	intermediate	contains	no	trace	of	the	tetragonal	analogue.	

	

	

	

Figure	5.xv:	Species-Coloured	illustrations	of	the	almost	totally	5-coordinate	system	RS-iH		

(left),	which	is	occasionally	visited	when	a	trajectory	undergoes	significant	volume	

contraction	during	the	formation	of	the	cubic	seed.	5-coordinate	regions	are	highlighted	in	

orange,	whereas	rocksalt	regions	at	the	peripheries	are	highlighted	in	blue.	The	atomic	

arrangement	of	the	five-coordinate	material	here	consists	entirely	of	the	trigonal	bipyramidal	

type	(right),	giving	rise	to	the	hexagonal	iH	structure.	No	trace	of	the	tetragonal	form	is	found	

in	this	type	of	intermediate,	which	closely	agrees	with	the	previous	studies	of	Boulfelfel	et	al	

on	zinc	oxide.	

	

However,	it	is	also	hypothesised	that	the	metastability	of	the	iH	material	has	been	significantly	

over	 exaggerated	 in	 this	 work,	 as	 a	 result	 of	 the	 transition	 path	 sampling	 algorithm	

consistently	rejecting	such	trajectories	as	they	do	not	start	or	end	in	the	zincblende	basin.	It	

is	speculated	that	the	material	should	eventually	fully	transform	or	revert	back	to	the	rocksalt	

structure,	and	 that	 this	 represents	a	 transient	 intermediate.	Nonetheless,	an	 investigation	

into	whether	or	not	the	transformation	could	be	quenched	to	retrieve	the	five-coordinate	
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structure	would	be	an	interesting	future	pursuit.	

	

	

Figure	5.xvi:	Graph	to	show	the	difference	in	volume	over	the	first	10,000	steps	of	MD	for	

trajectories	that	proceed	from	rocksalt	successfully	to	the	four-coordinate	ZnO,	and	those	

which	visit	the	five-coordinate	basin.	Trajectories	that	visit	the	iH	structure	undergo	much	

greater	volume	contraction	at	the	formation	of	the	cubic	seed	motif.	

	

The	second	possibility,	which	occurred	in	trajectories	which	successfully	transformed	to	

four-coordinate	zinc	oxide,	involved	systems	in	which	the	initial	compression	was	not	as	

extreme	as	in	those	that	form	the	iH	intermediate.		

In	 such	 regimes,	 the	 system	containing	 the	 cubic	 seed	 still	 underwent	a	brief	decrease	 in	

volume,	but	the	compression	was	not	as	rapid	nor	as	considerable	as	in	trajectories	which	

proceed	to	an	almost	entirely	 five-coordinate	 intermediate.	Generation	of	volume	profiles	

over	 the	 first	 steps	 of	 representative	 trajectories	 shows	 that	 the	 volume	 decrease	 is	

significantly	 less	 marked	 for	 successful	 trajectories,	 compared	 to	 those	 that	 fall	 into	 the	
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metastable	iH	basin.	This	less-compressed	type	of	configuration	allows	for	the	trajectory	to	

proceed	via	a	transition	pathway	that	does	not	 include	a	complete	conversion	to	the	five-

membered	structure.	

	In	these	cases,	a	very	rapid	transferal	from	volume	compression	to	decompression	occurs,	

causing	rapid	expansion	of	the	cubic	seed	and	deformation	of	the	rocksalt	‘squares’	into	four-

coordinate	‘hexagons’	at	around	700	fs.		

Often,	 this	 proceeds	 via	 configurations	 that	 contain	 significant	 amounts	 of	 isolated	 5-

coordinate	intermediate.	This	5-coordinate	material	tends	to	be	iH	in	nature,	however	iT	has	

been	 documented	 in	 some	of	 the	 trajectories	 and	 is	 present	 in	 trace	 amounts.	 The	 four-

coordinate	material	seen	at	this	stage	has	a	cubic	geometry,	but	is	not	a	perfect	zincblende	

topology	as	a	result	of	the	manifold	defects	and	distortions	present	in	the	structure.	This	cubic	

structure	grows	and	relaxes	at	the	expense	of	the	denser	rocksalt	structure	for	the	remainder	

of	 the	 simulation,	 causing	 the	 volume	 of	 the	 material	 to	 steadily	 expand.	 There	 is	 a	

pronounced	shift	at	around	4	ps,	when	the	last	remaining	rocksalt	motifs	are	transformed.	

Thereafter,	 the	 decompression	 ultimately	 leads	 to	 the	 formation	 of	 an	 entirely	 four-

coordinate	zinc	oxide	material,	after	approximately	6	ps	of	simulation.	

Fascinatingly,	the	final	outcome	of	the	procedure	is	not	a	pure	zincblende	structure,	but	a	

mixed	hexagonal-cubic	phase	dominated	by	the	wurtzite	form.	In	all	successful	procedures,	

the	 final	material	consists	of	only	10-20%	zincblende,	with	 the	remainder	of	 the	structure	

formed	by	the	more	stable	hexagonal	form.	The	reason	for	this	is	likely	to	be	because	only	

the	 first	coordination	number	was	used	as	 the	order	parameter,	which	 is	 identical	 for	 the	

wurtzite	 and	 zincblende	 configurations.	 Thus,	 the	 more	 stable	 wurtzite	 was	 ultimately	

preferred	 by	 the	 transition	 path	 sampling,	 leading	 to	 a	 predominantly	 hexagonal	 final	

structure.		

Had	 the	 third	 coordination	 shell	 also	 been	 used,	 a	 trajectory	 forming	 a	 completely	 cubic	

structure	might	have	been	realised.	By	removing	this	bias,	it	is	believed	that	this	is	a	much	

more	plausible	transition	event	for	zinc	oxide	at	9.8	GPa	and	ambient	temperature.	Although	

the	aim	of	this	work	was	to	elucidate	a	phase	transition	linking	the	high	pressure	rocksalt	and	

metastable	zincblende	polymorphs,	this	transformation	represents	a	plausible	transition	at	
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ambient	temperature	and	the	pressure	of	transition.	In	addition,	such	mixed	structures	are	

themselves	very	interesting;	for	example,	materials	with	internal	interfaces	between	different	

phases	are	of	great	 interest	 in	electronics	and	thermoelectric	materials	as	a	result	of	their	

ability	to	conduct	electricity	but	scatter	phonons	at	the	inter-layer	boundaries.	

	

	

	

Figure	5.xvii:	Coordination-Coloured	illustration	showing	a	frame	of	the	final	zinc	oxide	

material	formed	by	the	transition.	Large	regions	of	hexagonal	wurtzite	(dark	blue)	can	be	

seen,	with	some	interpenetrating	regions	of	zincblende	(light	blue).	In	addition,	some	defect	

regions	of	uncharacterised	four-coordinate	(purple)	and	some	5-coordinate	remnants	(green)	

are	present,	which	rapidly	oscillate	in	and	out	of	existence	when	propagated	with	molecular	

dynamics.	

	

Coordination	analysis	of	 the	entire	6-to-4	trajectory	shows	an	abrupt,	step-wise	change	 in	

coordination	sphere	at	approximately	500	 fs,	 corresponding	 to	 the	 formation	of	 the	cubic	

seed	and	orthogonal	 sheer.	 The	 remainder	of	 the	 trajectory	 is	 characterised	by	 a	 gradual	

decrease	in	coordination	number,	corresponding	to	the	steady	transformation	of	rocksalt	into	

the	four-coordinate	form,	occasionally	via	the	hexagonal	5-coordinate	intermediate.	

	

6.40	ps	



CHAPTER	5	–	PHASE	TRANSITIONS	OF	ZINC	OXIDE	
	

	 113	

	

	

Figure	5.xviii:	Graph	showing	the	first,	second	and	third	coordination	spheres	over	the	course	

of	an	entire	successful	transformation	from	rocksalt	to	wurtzite-zincblende.	The	starting	

rocksalt	structure	suddenly	decreases	in	coordination	upon	the	formation	of	the	cubic	seed	

at	around	500	fs.	This	leads	to	the	gradual	decompression	and	transformation	to	four-

coordinate	ZnO,	often	via	isolated	pockets	containing	the	five-coordinate	intermediate,	with	

a	pronounced	shift	at	around	4	ps	when	the	last	rocksalt	motifs	are	transformed.		The	final	

structure	is	a	mixed	wurtzite-zincblende	system	after	approximately	6.4	ps	
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Figure	5.xix:	Coordination-Coloured	snapshots,	showing	the	complete	sequence	from	rocksalt	

to	the	mixed	zincblende-wurtzite	phase.	The	rocksalt	system	(i)	forms	the	cubic	seed	within	

the	first	500	fs,	with	subsequent	sheering	along	the	(300)	plane	(ii).	This	cubic	seed	grows	

orthogonally	to	the	sheer	over	the	next	300	fs	(iii	and	iv)	until	a	large	section	of	the	system	is	

occupied	by	four	and	five	coordinate	material	(v	and	vi).	Gradually,	all	of	the	rocksalt	motifs	

are	decompressed	to	form	hexagons	(vii	and	viii)	over	the	next	3	ps,	with	a	pronounced	

change	at	around	4	ps	when	the	last	rocksalt	motifs	are	eliminated.	This	eventually	results	in	

a	complete	four-coordinate	material	(save	some	defect	sites),	which	is	composed	primarily	of	

hexagonal	wurtzite	(ix).

0.00	ps	 0.58	ps	 0.70	ps	

0.88	ps	3.36	ps	3.94	ps	

4.74	ps	 5.64	ps	 6.40	ps	

i)		 ii)		 iii)		

iv)		v)		vi)		

vii)		 viii)		 xi)		
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5.4.2.5.4. The	‘Low-to-High	Pressure	Phase’	Transition	

	

A	typical	four-coordinate	to	six-coordinate	transition	occurred	via	a	slightly	different	pathway	

to	the	high-to-low	pressure	transformation,	 featuring	(on	average)	more	concerted	events	

along	the	course	of	the	transition.	This	could	go	some	way	to	explaining	the	notable	hysteresis	

observed	in	zinc	oxide	phase	transitions	and	the	role	of	the	five-membered	intermediate	in	

the	phase	transition.	

	

In	this	trajectory	type,	the	entire	starting	four-coordinate	material	is	first	briefly	distorted	into	

a	pseudo-cubic	geometry,	until	further	compression	forces	most	of	the	Zn-O	motifs	into	the	

five-coordinate	iH	structure.	However,	this	is	a	gradual	process	and	varies	from	trajectory	to	

trajectory,	dominating	up	to	the	first	4	ps	of	simulation	time.	Thus,	over	half	of	the	time	in	of	

this	transformation	is	spent	slowly	squeezing	the	system	until	it	can	transform	into	the	five-

coordinate	 iH,	 indicating	 the	 presence	 of	 a	 deep	 but	 fairly	 gently-sloping	 energy	 barrier	

separating	the	WZ-ZB	basin	and	the	intermediate	configurations.	

	

Unlike	in	the	successful	trajectories	from	rocksalt	to	the	four-coordinate	ZnO,	the	iH	regions	

in	this	configuration	are	relatively	long-lived,	and	it	appears	that	all	of	the	wurtzite-zincblende	

motifs	go	through	the	following	sequence	en	route	to	the	rocksalt	product:	

	

WZ-ZB	à	Distorted	4-coordinate	à	iH	à	Rocksalt	

	

This	 is	not	 the	same	as	 the	 reverse	 transition,	as	 in	 this	case	 iH	 regions	were	 formed	and	

quickly	 eliminated,	 with	 the	majority	 of	 the	 simulation	 time	 instead	 being	 dominated	 by	

coexisting	four-	and	six-	coordinated	motifs.	

	

Thus,	 for	 this	 trajectory	 route,	 it	 appears	 that	 local	 conversion	 to	 the	 iH	 intermediate	 is	

mandatory	and	time	consuming,	and	that	the	system	does	not	remain	in	this	configuration	

permanently.	However,	transient	iH	configurations	can	be	seen	for	approximately	2.5	ps	of	

the	simulation.	Once	again,	very	small	traces	of	the	tetragonal	intermediate	iT	are	present,	

but	by	far	the	predominant	intermediate	form	is	the	hexagonal	analogue.	
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Figure	5.xx:	Coordination-Coloured	cartoons	showing	the	transformation	from	a	mixed	

wurtzite-zincblende	system,	through	the	distorted	four-coordinate	structure	into	the	

hexagonal	five-coordinate	iH.	Following	this,	epitaxial	growth	of	rocksalt	converts	the	iH	5-

coordinate	sites	into	the	6-coordinate	NaCl-like	structure.		

	

Epitaxial	growth	of	the	rocksalt	structure	then	sweeps	across	the	system,	growing	from	the	

hexagonal	iH	intermediate	as	a	result	of	the	increasing	pressure.	This	appears	to	proceed	in	a	

step-wise	fashion,	with	three	distinctive	transformation	events	taken	place	during	the	final	

picosecond	of	the	simulation;	the	first	two	steps	involve	rapid	transformation	of	iH	motifs	to	

rocksalt,	whereas	the	final	event	involves	the	transition	of	the	cubic	island,	the	last	region	of	

four-	 and	 five-	 coordinate	 material,	 to	 six-coordinated	 ZnO.	 This	 final	 step	 is	 equal	 and	

opposite	to	the	first	step	in	the	reverse	mechanism,	and	completes	the	transformation	from	

the	wurtzite-zincblende	mixture	to	the	pure	rocksalt	final	product.	

0.30	ps	 1.76	ps	

2.92	ps	4.70	ps	

i)		 iI)		

iii)		iv)		
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It	is	evident,	in	terms	of	the	coordination	sequence,	that	this	is	a	much	more	stepwise	process	

than	 the	 rocksalt	 to	wurtzite-zincblende	 transition.	Passage	 through	a	predominantly	 five-

coordinate	 intermediate	 configuration	 can	 clearly	 be	 seen.	 However,	 unlike	 the	 ‘failed’	

trajectories	seen	in	the	reverse	transition,	this	corresponds	to	localised	regions	of	metastable	

iH	forming	before	the	system	transitions	to	rocksalt	through	a	number	of	rapid	growth	events.	

	

	
	

Figure	5.xxi:	Coordination	sequence	analysis	of	the	transformation	from	a	mixed	wurtzite-

zincblende	system	to	the	rocksalt	phase.	Gradual	compression	of	the	starting	material	causes	

individual	motifs	to	transform	to	rocksalt	via	the	iH	intermediate,	which	can	be	long	lived	in	

this	pathway.	The	final	segment	(1	ps)	is	associated	with	three	rapid	transformation	events,	

corresponding	to	quick	epitaxial	growth	of	rocksalt	at	the	expense	of	four-coordinate	and	iH	

ZnO.	
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5.5. Free	Energy	Calculations	

	

5.5.1. Introduction	to	“Metashooting”	

	

In	 order	 to	 better	 understand	 the	 competitive	 nature	 of	 different	 mechanisms	 on	 the	

potential	energy	surface,	the	free	energy	(FE)	was	evaluated	by	coarse-graining	the	potential	

energy	surface	onto	a	suitable	set	of	collective	variables.	Since	free	energy	calculations	are	

rare	in	mechanistic	investigations	of	solid-solid	transformations,	the	work	presented	here	is	

perhaps	the	most	novel	aspect	of	the	results	discussed	within	this	chapter.	

	

Free	 energy	 surfaces	 are	 commonly	 calculated	 and	 employed	 in	 many	 computational	

chemistry	and	physics	calculations.	Such	calculations	have	found	extensive	use	for	description	

of	biological	systems	(in	particular	peptide	calculations).[59,60]	However,	to	the	knowledge	of	

the	author,	no	such	calculations	have	yet	been	calculated	for	solid-solid	phase	transitions.	

The	reasons	for	this	include	that:	

	

• The	 energy	 barriers	 associated	 with	 a	 solid-solid	 phase	 transition	 are	 significantly	

higher	than	those	that	need	to	be	overcome	by	molecular	systems.	For	example,	the	

energy	barrier	associated	with	the	rotation	of	a	peptide	bond	is	in	the	order	of	101	kJ	

mol-1,	 whereas	 the	 barriers	 associated	 with	 a	 phase	 transition	 with	 a	 meaningful	

number	 of	 atoms	 can	 be	 many	 of	 magnitudes	 of	 order	 higher.	 This	 means	 that	

methods	 used	 to	 generate	 free	 energy	 profiles	 of	 this	 type	 are	 still	 prohibitively	

expensive;	

	

• Metadynamics	calculations,	and	their	 subsequently	associated	 free	energy	profiles,	

have	 found	 use	 in	 structure	 prediction;	 however,	 generated	 metatrajectories	

frequently	contain	fewer	details	compared	to	path-oriented	approaches	and	seldom	

show	 realistic	 trajectories	 linking	 two	 basins	 of	 interest.	 Thus,	 categorising	 a	

dynamical	 transition	 pathway	 in	 this	 way,	 including	 all	 transition	 states	 and	

intermediates,	could	be	prohibitively	expensive.	In	addition,	the	configuration	space	
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required	to	be	sampled	could	be	very	vast,	especially	for	systems	with	a	large	number	

of	atoms.	

	

As	such,	it	was	deemed	desirable	to	develop	a	method	that	efficiently	and	effectively	filled	

the	 underlying	 energy	 landscape	 over	 the	 course	 of	 the	 trajectory	 determined	 by	 the	

transition	 path	 sampling	 iterations.	 This	way,	 computing	 time	would	 not	 be	 expended	by	

filling	other	regions	of	the	configuration	space	that	had	no	relevance	to	the	transition,	as	any	

attempts	to	characterise	the	free	energy	would	only	occur	in	the	space	of	the	trajectory.	Thus,	

convergence	 of	 the	 problem	 could	 easily	 be	 monitored.	 In	 addition,	 mechanistic	 details	

acquired	 from	 the	 transition	 path	 sampling	 procedure	 would	 remain	 unspoiled	 by	 the	

metadynamics	 procedure.	 As	 the	 process	 is	 driven	 by	 the	 converged	 path	 sampling	

trajectories,	 the	 relevant	 basins	 to	 the	 transformation	 will	 be	 filled	 in	 a	 balanced	 way	 –	

starting	from	the	two	known	configurations,	and	finishing	with	the	characterisation	of	the	

relevant	transition	states	and	intermediates.	

	

To	this	end,	a	novel	combination	of	the	shooting	algorithm	from	the	transition	path	sampling	

procedure	and	metadynamics	was	developed,	tentatively	dubbed	metashooting.	The	general	

procedure	of	the	metashooting	algorithm	is	as	follows:	

	

i. Starting	 from	a	dynamical	midpoint	along	 the	TPS-converged	 trajectory,	 shoot	 the	

system	such	that	it	transforms	to	configuration	A;	

	

ii. When	residing	 in	basin	A,	apply	a	metadynamics	scheme	for	a	discrete	number	of	

steps,	in	order	to	partially	fill	the	as-yet	uncharacterised	energy	well;	

	

iii. Once	the	metadynamics	iteration	has	finished,	re-shoot	from	the	original	dynamical	

midpoint	 back	 to	 basin	 A	 –	 this	 time,	 on	 top	 of	 the	 biased	 potential.	 Thus,	 the	

trajectory	should	be	prohibited	from	returning	the	points	 in	configuration	space	in	

basin	A	now	disfavoured	as	a	result	of	the	applied	bias	potential.	Shooting	back	to	the	

basin	on	top	of	the	bias	potential	ensures	that	the	trajectory	still	remains	on	course	

and	 stay	 based	 on	 the	 true	 dynamics.	 In	 addition,	 this	 corrects	 the	 velocity	
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distribution	 such	 that	 it	 corresponds	 to	 a	 true	 TPS	 trajectory,	 not	 one	 artificially	

modified	by	the	metadynamics	run,	allowing	for	the	run	to	be	analysed;	

	

iv. Steps	 4-6	 are	 essentially	 a	 mirror	 repeat	 of	 steps	 1-3	 on	 the	 ‘other	 half’	 of	 the	

trajectory	and	with	any	bias	potential	accrued	from	the	previous	steps	carried	over.	

This	time,	starting	from	the	dynamical	midpoint	used	in	step	1,	shoot	the	system	such	

it	travels	along	the	trajectory	path	to	basin	B.	

	

v. When	residing	 in	basin	B,	apply	a	metadynamics	scheme	for	a	number	of	steps	to	

partially	fill	the	second	basin	of	attraction;	

	

vi. Once	again,	re-shoot	from	the	dynamical	midpoint	on	top	of	the	bias	potential	back	

to	configuration	B.	At	this	point,	shift	the	dynamical	midpoint	slightly,	such	that	the	

starting	point	of	the	procedure	is	not	static	and	is	not	‘pinned’	to	a	false	maximum.		

	

vii. Repeat	the	above	iterations	until	the	underlying	free	energy	profile	is	fully	converged.	

	

	

Repeated	 iterations	 of	 the	 metashooting	 algorithm	 enable	 the	 free	 energy	 landscape	

corresponding	only	to	the	courses	of	the	transition	path	sampling	derived	trajectories	to	be	

built	 up	 in	 a	 step-wise	and	equally	distributed	manner,	 and	 such	 that	 regions	around	 the	

transition	states	are	considered	at	the	end	of	the	analysis,	avoiding	any	potential	bias	that	

may	scramble	the	mechanistic	analysis.	

	

The	 algorithm	 should	 first	 fill	 up	 the	 two	 starting	 basins	 of	 attraction	 from	 the	 final	 TPS	

trajectories	(in	this	case,	the	wurtzite-zincblende	mixture	and	rocksalt).	Eventually,	visiting	

these	regions	should	become	discouraged	as	a	result	of	the	bias	potential	deposited	by	the	

metadynamics	scheme	(steps	2	and	5).	Towards	the	end	of	the	simulations,	the	free	energy	

should	be	characterised	for	the	connecting	regions	of	the	trajectory,	until	the	‘forward’	and	

‘backward’	steps	meet	in	the	central	region.	The	progress	of	this	can	be	monitored	by	viewing	

the	 history-independent	 Gaussian	 deposition,	 or	 constructing	 a	 histogram	 of	 how	 many	

Gaussians	have	been	deposited	over	the	CV	space	over	the	entire	procedure.		
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Eventually,	the	metashooting	algorithm	should	fully	characterise	the	central	and	peripheral	

regions	of	the	CV	space	over	the	course	of	the	trajectory.	Convergence	will	be	seen	in	a	similar	

way	 to	 a	 standard	metadynamics	 scheme	–	 that	 is,	 the	 underlying	 free	 energy	 landscape	

should	no	longer	significantly	change	with	further	iterations	of	the	procedure.	At	this	point,	

meaningful	 analysis	 of	 the	 intermediates,	 the	 transition	 states,	 and	 the	 energy	 barriers	

associated	with	each	process	can	be	carried	out.	

	

Measuring	 the	 free	energy	 landscape	 in	 this	way	 should	have	a	number	of	 advantages	 to	

traditional	‘path’	based	analyses	of	phase	transitions,	as	carried	out	in	the	previous	section.	

Firstly,	it	allows	for	a	complete	quantitative	analysis	of	the	underlying	thermodynamics	and	

kinetics	of	the	process;	measurement	of	activation	energy	and	change	in	free	energy	between	

different	steps	of	the	procedure,	as	well	as	the	starting	and	finishing	products,	can	be	trivially	

taken	from	the	plot.	Moreover,	intermediates	and	transition	states	that	are	vitally	important	

to	 the	 transformation	 will	 appear	 obvious	 along	 the	 reaction	 scheme.	 Such	 insight	 into	

trajectories	using	‘path’	based	analyses	of	transformations	only	is	not	trivial	–	indeed,	it	relies	

heavily	 on	 chemical	 and	 physical	 intuition,	 and	 it	 would	 be	 facile	 to	 miss	 important	

mechanistic	details	or	 intermediates	along	the	path.	Using	the	free	energy	analysis	on	the	

transition	path	sampling	trajectories	allows	for	quantitative	and	detailed	analysis	of	almost	

every	aspect	of	the	transition	pathway;	the	free	energy	landscape	can	be	thought	of	as	the	

surface	upon	which	trajectories	travel,	and	individual	characteristics	of	the	trajectories	are	

determined	by	which	regions	of	the	surface	are	visited.	

	

Such	detail	and	precision	is	achieved	here	using	path	sampling	and	metadynamics	methods	

in	conjunction,	in	a	non-trivial	way.	Without	the	shooting	element,	there	would	be	no	new	

trajectory	 generation	 nor	 any	 path	 sampling	 converged	 trajectories	 on	 which	 to	 apply	

metadynamics.	Without	metadynamics,	there	would	be	no	framework	for	the	deposition	of	

Gaussians	and	the	surveying	of	the	underlying	energy	landscape.	As	a	result,	metashooting	is	

laying	 the	 foundation	 for	 future	 routine	 investigation	of	complex	processes,	and	offers	an	

intriguing	new	paradigm	into	the	elucidation	of	phase	transitions	in	condensed	phases.	
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5.5.2. Methodology	

	

Details	 pertaining	 to	 the	molecular	 dynamics	 runs	 and	 how	 the	 atoms	 in	 the	 system	 are	

described	are	identical	to	those	described	in	5.4.1.	Information	specific	to	implementation	to	

the	metashooting	algorithm	are	described	in	this	section.	

	

Metadynamics	calculations	were	carried	out	using	the	plumed	plug-in,[61]	coupled	with	the	

cp2k	package.	As	the	procedure	had	not	been	attempted	previously	and	the	metadynamics	

parameters	for	a	solid-solid	transformation	between	1,200	pairs	of	atoms	was	unknown,	a	

great	 deal	 of	 experimentation	 was	 required	 in	 order	 to	 ascertain	 the	 correct	 variables	

required	for	both	an	efficient	and	precise	calculation.	Several	metadynamics	schemes	were	

tested,	 including	 the	 well-tempered[62]	 and	 multivariate-Gaussian[63]	 adaptations	 to	 the	

method,	 in	 addition	 to	 the	 standard	 implementation.	 Additionally,	 a	 great	 deal	 of	

experimentation	with	both	the	nature	of	the	collective	variables,	and	the	dimensions	of	the	

Gaussian	 functions	 projected	 onto	 their	 respective	 spaces,	 was	 required.	 In	 the	 end,	

metadynamics	within	 the	well-tempered	 scheme	was	used	without	 the	adaptive	Gaussian	

adaptation.	

	

The	collective	variables	utilised	in	the	metadynamics	runs	corresponded	to	the	first	and	third	

coordination	spheres	of	the	zinc	oxide	systems	-	similar	to	the	order	parameter	used	in	the	

transition	path	sampling	calculations.	The	coordination	sphere	in	plumed	is	defined	using	a	

switching	function,	in	order	for	the	variable	to	be	differentiable:	

	

^ 3 = 	
1 − 3 − _`

3̀
a
	

1 − 3 − _`
3̀

b 				[!6	5.4]	

	

where	3	 is	simply	the	distance	between	a	Zn-O	contact	and	_`,	3̀ ,	c	and	M	are	adjustable	
parameters.	The	switching	function	returns	a	value	between	0	and	1	for	each	contact.	Once	

the	coordination	value	between	0	and	1	 is	calculated	for	each	Zn-O	pair,	 the	coordination	

sphere	 average	 for	 the	 system	 is	 calculated.	 As	 both	 the	 first	 and	 third	 coordination	
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sequences	involve	coordination	between	a	zinc	and	an	oxygen	atom,	only	distances	between	

Zn-O	contacts	were	calculated	(i.e.	Zn-Zn	and	O-O	distances	need	not	be	calculated,	as	only	

coordination	 sequences	 to	 the	 order	 of	 even	 numbers	 require	 these	 quantities).	 The	

parameters	_`,	 3̀ ,	M	 and	c	 must	 be	 ‘tuned’	 in	 order	 to	 give	 the	 correct	 distribution	 of	

variables	–	i.e.	to	give	an	appropriate	first	and	third	coordination	sequence	for	zincblende,	

wurtzite	and	rocksalt	ZnO.		

	
	

CN	 de	 fe	 g	 h	

1st	 2.6	 0.1	 6	 12	

3rd	 5.3	 0.1	 6	 12	

	

Table	5.xxii:	The	parameters	used	to	calculate	the	first	and	third	coordination	spheres	for	the	

plumed	metadynamics	collective	variables.	

	
	
The	 values	 obtained	 for	 the	 third	 coordination	 sphere	 were	 slightly	 exaggerated	 for	

zincblende	 and	 wurtzite	 ZnO,	 but	 correct	 for	 rocksalt	 when	 using	 this	 plumed	 function.	

However,	this	had	no	bearing	on	the	integrity	of	the	final	result,	and	this	collective	variable	

will	hence	be	referred	to	as	the	pseudo-third	coordination	sphere,	in	order	to	distinguish	it	

from	the	true-third	coordination	sphere	based	on	a	purely	geometric	approach.	

	

Gaussian	functions	were	deposited	on	the	underlying	energy	landscape	every	500	simulation	

steps.	5	metasteps	were	calculated	on	each	side	of	the	trajectory	during	each	iteration.	This	

is	rapid	enough	to	efficiently	fill	the	basins	and	escape	energy	minima,	but	slow	enough	for	

the	system	to	evolve	by	molecular	dynamics.	The	height	of	the	Gaussians	was	set	at	1000	kJ	

mol-1	–	arguably	very	high,	but	this	was	necessary	due	to	the	extremely	deep	energy	wells	

associated	with	a	solid-solid	system	containing	2400	atoms.	The	Gaussian	widths	were	chosen	

in	accordance	with	the	variance	of	the	CV	in	an	unbiased	simulation	–	as	such,	these	were	set	

to	0.2	and	1.0	for	the	first	coordination	number	and	the	pseudo-third	coordination	number	

respectively.	The	well-tempered	‘bias-factor’	was	set	at	10000,	which	again	is	necessary	to	

escape	the	minima	and	re-scale	the	deposited	Gaussians	within	a	meaningful	time	frame.	
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5.5.3. Results	and	Discussion	

	

5.5.3.1. Overview	

	

Once	 the	 transition	 path	 sampling	 trajectory	 had	 converged,	 the	 free	 energy	 profile	 was	

constructed	using	the	metashooting	technique	as	described	in	5.5.1.	After	250	iterations	of	

the	metashooting	procedure,	the	free	energy	landscape	had	fully	converged,	showing	details	

of	the	mechanistic	process	including	important	intermediates,	transition	states	and	activation	

barriers.	 Running	on	32	 cores,	 on	 average	 three	metashooting	 iterations	were	 completed	

each	day	–	thus,	with	the	set	up	used,	the	entire	procedure	took	around	three	months	to	

converge	upon	the	final	energy	profile.	

	

The	results	of	the	metashooting	procedure	are	given	below.	The	evolution	of	the	free	energy	

landscape	according	to	the	metashooting	algorithm	is	first	discussed,	followed	by	an	analysis	

of	 the	 final	 profile	 generated	 by	 the	 procedure	 and	 its	 inexorable	 relationship	 to	 the	

underlying	mechanism	exhibited	by	the	transition	path	sampling	procedure.	

	

	

5.5.3.2. Evolution	of	the	Free	Energy	Surface	

	

The	first	few	iterations	of	the	procedure	accumulated	Gaussian	functions	only	within	the	two	

known	basins	 (zincblende-wurtzite	and	rocksalt).	A	small	 ‘shoulder-peak’	was	 immediately	

present	in	the	four-coordinate	basin,	as	a	result	of	the	oscillation	between	different	forms	of	

the	 low	coordination	material,	 including	zincblende,	wurtzite	and	other	 forms	which	were	

four-coordinate	in	the	first	coordination	sphere	but	whose	pseudo-third	coordination	sphere	

did	not	correspond	to	zincblende	nor	wurtzite.	

	

After	50	iterations,	a	notable	‘shoulder-peak’	was	evident	adjacent	to	the	rocksalt	basin,	and	

by	150	iterations	that	had	resolved	into	a	bona	fide	minimum	(labelled	on	the	plot	as	i-1).	By	

iteration	200,	a	second	minimum	centred	half-way	between	the	two	main	basins	appeared,	

which	had	fully	resolved	by	iteration	225	(labelled	i-2).	By	250	iterations,	the	plot	was	fully	
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converged	 –	 the	 energy	 barriers	 and	 positions	 of	 minima	 on	 the	 plot	 remained	 largely	

unchanged	with	any	further	iterations	of	the	metashooting	procedure.	

	

	

		

Figure	5.xxiii:	Sequence	of	plots	showing	the	free	energy	at	different	points	during	the	

metashooting	procedure.	Plots	a)	to	e)	demonstrate	the	development	of	the	free	energy	

surface	after	a	different	number	of	iterations	of	the	metashooting	algorithm.	Note	that	the	y-

axis	scale	is	not	the	same	in	each	graph	and	grows	larger	as	the	algorithm	proceeds,	as	a	

result	of	the	free	energy	landscape	deepening	from	the	deposition	of	Gaussians	during	the	

metadynamics	steps.	For	comparison	of	the	energy,	three	energy	plots	have	been	plotted	

together	in	f)	(bottom	right)	to	highlight	how	the	energy	minima	and	maxima	have	

progressed	over	the	course	of	the	metashooting	iterations.	
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Figure	5.xxiv:	Three-dimensional	plot	(above)	and	two-dimensional	contour	plot	(below)	of	

the	converged	free-energy	surface	for	the	transition	after	250	iterations	of	the	metashooting	

procedure.	Note	the	presence	of	the	two	main	basins	of	attraction	and	the	two	pronounced	

intermediate	basins,	as	well	as	three	transition	states.	
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The	evolution	of	the	profile	can	also	be	analysed	using	the	metatrajectories	obtained	from	

the	metadynamics	steps	of	the	procedure.	Mapping	these	trajectories	on	top	of	the	final	

free	energy	surface	gives	a	good	indication	of	the	spread	of	deposited	Gaussian	functions	

along	the	path	of	the	trajectory.	These	plots	also	help	to	show	that	after	250	iterations,	the	

profile	had	converged,	allowing	the	process	to	be	ceased.		

	

	
	

	

Figure	5.xxv:	An	example	of	20	meta-trajectories	from	step	5	of	Iterations	220-239	of	the	

metashooting	procedure.	One	can	see	that	the	extent	of	landscape	exploration	by	this	point	

is	quite	advanced,	and	that	the	metadynamics	runs	are	exploring	large	regions	of	the	energy	

landscape.	At	the	very	beginning	of	the	procedure,	such	trajectories	are	localised	within	their	

starting	basins,	whereas	towards	the	end	of	the	procedure	more	and	more	of	the	energy	

landscape	should	be	explored	during	each	metadynamics	run.	Only	in	the	final	stages	of	the	

procedure,	close	to	convergence,	are	the	regions	around	the	transition	states	affected.	

	

As	 with	 the	 transition	 path	 sampling	 and	 standard	 metadynamics	 procedures,	 the	

metashooting	procedure	iteratively	built	upon	the	underlying	process,	until	convergence	was	

achieved.	However,	unlike	if	the	system	was	surveyed	by	standard	metadynamics	alone,	only	

basins	relevant	to	the	transition	were	filled	and	convergence	could	easily	be	ascertained.		
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5.5.3.3. Analysis	of	the	Intermediates	and	Transition	States	

	
5.5.3.3.1. Overview	

	
Constructing	and	visualising	a	free	energy	surface	in	this	way	allows	for	clear	determination	

of	which	points	along	the	path	correspond	to	important	‘milestones’	of	the	trajectory.	There	

are	seven	points	of	interest	on	the	free	energy	surface	–	the	two	initial	basins	of	attraction	

(corresponding	 to	 wurtzite-zincblende	 and	 rocksalt),	 two	 intermediate	 basins	 and	 three	

maxima,	corresponding	to	transition	states.		

The	structures	and	roles	of	these	turning	points	in	the	transformation	can	be	ascertained	by	

obtaining	the	first	and	pseudo-third	coordination	numbers	of	the	turning	points	on	the	graph	

and	matching	these	up	to	structures	along	both	the	hundreds	of	trajectories	from	both	the	

‘plain’	TPS	runs	and	the	metashooting	trajectories.	It	stands	to	reason	that	these	regions	must	

play	an	important	role	in	the	transformation	mechanism.	However,	it	is	also	evident	that	the	

individual	regions	are	unlikely	to	correspond	to	a	single	configuration	only.	

	
	
Turning	point	 1st	CN	of	feature	CENTRE	 Pseudo-3rd	CN	of	feature	CENTRE	

RS	 5.98	 37.90	

TS-A	 5.75	 36.66	

i-1	 5.68	 36.21	

TS-B	 5.43	 34.86	

i-2	 5.15	 33.13	

TS-C	 4.87	 31.62	

WZ-ZB	 4.10	 29.22	

	

Table	5.xxvi:	Table	of	the	first	and	pseudo-third	coordination	spheres	corresponding	to	the	

centre	of	the	regions	defining	the	turning	points.	Note	that	larger	regions	may	be	composed	

of	numerous	configurations,	many	of	which	do	not	correspond	exactly	to	these	values.		
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The	RS	and	WZ-ZB	basins	need	not	be	identified,	as	the	nature	of	these	structures	is	evident.	

However,	 it	 is	 curious	 that	 the	wurtzite-zincblende	basin	 is	 centred	away	 from	 its	perfect	

values	of	4	and	28/29.	This	is	due	to	the	presence	of	higher-coordination	defects	present	after	

the	decompression	of	the	trajectory,	particularly	trace	amounts	of	five-membered	ZnO,	as	

seen	in	the	path	sampling	trajectories.	

	
	
	

5.5.3.3.2. The	Intermediate	Basins	i-1	and	i-2	

	
The	species	forming	i-1	correspond	to	the	metastable	configurations	occupying	the	‘shoulder-

peak’	 adjacent	 to	 the	 rocksalt	 basin.	 Every	 single	 trajectory,	 regardless	 of	 its	 prior	 path,	

congregates	at	i-1	before	proceeding	along	a	single	pathway	to	or	from	the	rocksalt	structure.	

This	 is	clearly	exhibited	 in	Figure	5.xxiv,	where	every	single	meta-trajectory	which	has	one	

end	point	within	the	rocksalt	basin	proceeds	through	this	channel	to	or	from	i-1.	Thus,	despite	

the	 small	 and	 shallow	 dimensions	 of	 the	 basin,	 it	 clearly	must	 play	 a	 central	 role	 in	 the	

transformation.		

	

Figure	5.xxvii:	Species	coloured	representation	of	a	configuration	corresponding	to	the	small	

minimum	i-1,	which	is	just	after	the	very	first	rocksalt	motifs	deform	into	hexagons	

(highlighted)	en	route	to	the	‘small’	cubic	seed.	

	

i-1	
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It	 transpires	 that	 i-1	 corresponds	 to	 small	 fragments	 of	 the	 ‘cubic	 seed’	 motif.	 	 The	 i-1	

structure	 is	 composed	almost	exclusively	of	 rocksalt,	however	 it	 contains	a	 component	of	

four-	and	five-	coordinated	zinc	oxide.	This	small	region	is	extremely	short	lived	but	present	

in	every	successful	trajectory	sampled,	thus	explaining	its	presence	on	the	free	energy	profile	

as	the	fundamental	seed	of	the	transformation.	

The	second	intermediate	region,	i-2,	is	a	deep	energy	well	placed	directly	between	the	two	

defined	basins	of	attraction.	Indeed,	it	appears	large	enough	to	be	defined	as	a	metastable	

phase	in	its	own	right.	i-2	corresponds	to	numerous	possible	states	which	occupy	this	basin,	

including	configurations:	

	
- Along	 successful	 trajectories	 where	 there	 is	 a	 coexistence	 of	 four,	 five	 and	 six	

coordinate	ZnO,	giving	an	overall	average	first	coordination	sphere	of	five;	

	

- Along	 successful	 trajectories	where	 the	 system	proceeds	 through	 a	 predominantly	

five-coordinate	intermediate;	

	

- Residing	in	the	RS-iH	structure	(as	described	in	chapter	5.4.2.5.3	of	the	path	sampling	

analysis).	

	
It	seems	likely,	therefore,	that	the	depth	of	this	basin	(and	hence	the	energy	barriers	

associated	with	it)	is	slightly	exaggerated.	This	is	because	it	corresponds	to	numerous	

possible	configurations	with	very	similar	average	values	of	coordination	which	have	all	

added	weight	to	the	free	energy	surface	at	these	values	of	the	collective	variables,	even	

though	not	every	configuration	is	realisable	in	every	trajectory.		

	

5.5.3.3.3. The	Transition	States	TS-A,	TS-B	and	TS-C	

	
TS-A	corresponds	to	the	region	visited	during	the	transformation	from	rocksalt	to	the	‘small’	

cubic	seed,	or	vice	versa.	The	configuration	associated	with	the	maximum	is	an	almost	entirely	
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rocksalt	structure	at	the	moment	of	the	deformation	of	the	first	(or	last)	rocksalt	motifs.	This	

can	easily	be	rationalised	–	the	first	few	Zn-O	sites	to	transform	from	six-	to	four-	coordinate	

must	 overcome	 an	 activation	 energy.	 The	 small	 minimum	 subsequently	 seen	 (i-1)	 must	

therefore	correspond	to	a	‘stretching-out’	of	the	Zn-O	bonds	to	produce	a	more	typical	four-

coordinate	geometry.		

TS-B	is	associated	with	the	formation	of	the	‘large’	cubic	seed	and	the	shear	seen	in	the	

(300)	plane,	as	seen	in	both	the	forward	and	reverse	mechanisms.	The	system	containing	

the	large	cubic	seed	corresponds	precisely	to	the	coordination	values	of	TS-B,	proving	that	

this	configuration	is	actually	an	energy	maximum.	This	is	again	likely	due	to	the	strained	

configurations	of	Zn-O	upon	initial	formation	of	the	seed,	but	also	due	to	the	formation	of	

the	shear	and	the	initial	compression	of	the	system.	

	

Figure	5.xxviii:	A	representative	configuration	corresponding	to	the	maximum	TS-B,	showing	

the	formation	of	the	‘large’	cubic	seed	(above)	accompanied	by	the	sheering	down	the	[003]	

direction,	which	prevailed	in	every	mechanism	observed.	

	

Thus,	the	formation	or	resorption	of	the	cubic	seed,	which	is	integral	to	every	converged	

transition	pathway	analysed,	is	actually	composed	of	two	steps;	one	which	forms	or	

destroys	the	first	few	motifs	of	four-coordinate	material,	and	another	more	substantial	step	

to	create	the	‘large’	cubic	seed.	These	two	processes	happen	very	rapidly	in	the	path	

sampling	trajectories	and	it	is	not	obvious	by	inspection	that	they	may	correspond	to	two	

TS-B	
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different	events.	When	mapped	onto	the	free	energy	surface,	the	disconnected	nature	of	

these	two	events	appears	very	clearly.	

However,	 TS-A	 and	 TS-B	 may	 also	 be	 both	 contributed	 to	 by	 the	 formation	 of	 the	 five-

coordinated	iH	structure	sandwiched	between	rocksalt	layers,	as	discussed	in	5.4.2.5.3.	Thus,	

once	again	it	is	not	possible	to	assign	a	single	configuration	to	the	maximum	observed.	

TS-C	is	an	interesting	case,	as	unlike	TS-A	and	TS-B	it	corresponds	to	a	very	‘gentle’	maximum,	

with	a	very	shallow	gradient	either	side	of	it.	This	again	corroborates	exactly	what	was	seen	

in	 the	 path	 sampling	 investigations	 –	 the	 system	 spends	 a	 great	 deal	 of	 time	 in	 a	 four-

coordinate	 state,	 or	 a	mixture	 of	 four-	 and	 five-	 coordinate,	 as	 a	 result	 of	 a	 slow,	 steady	

process	corresponding	to	a	gentle	energy	gradient.	

Like	its	associated	intermediate	basin	 i-2,	the	height	of	TS-C	in	the	observed	trajectories	is	

contributed	 to	 by	 a	 number	 of	 configurations,	 all	 of	 which	 contain	 some	 combination	 of	

rocksalt,	 four-coordinate	 ZnO	 and	 occasionally	 the	 iH	 intermediate.	 It	 appears	 that	 this	

maximum	 directly	 corresponds	 with	 the	 significant	 coordination	 change	 seen	 at	

approximately	4	ps	in	Figure	5.xviii	and	3	ps	in	Figure	5.xx.	

	

	
5.5.3.4. Energy	Barriers	

	
One	 of	 the	 greatest	 advantages	 of	 calculating	 a	 free	 energy	 surface	 using	metadynamics	

based	techniques	is	the	ability	to	simply	measure	energy	barriers	from	the	final	plot,	giving	

fundamental	insight	into	the	kinetics	of	the	transformation	involved.	From	the	converged	free	

energy	surface,	it	is	apparent	that	there	are	six	distinguishable	energy	barriers	associated	with	

the	pathway	–	three	for	the	WZ-ZB	à	RS	trajectory,	and	three	for	the	RS	à	WZ-ZB	trajectory.	

For	the	rocksalt	to	wurtzite-zincblende	pathway:	

	
!i = ∆!(kl → >l − -)				[!6	5.5]	
!n = ∆!(T − 1 → >l − ;)				[!6	5.6]	
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!o = ∆! 	T − 2 → >l − 2 				[!6	5.7]	

	

For	the	wurtzite-zincblende	to	rocksalt	trajectories:	

	

!q = ∆!(rs − s;	 → >l − 2)				[!6	5.8]	

!t = ∆!(T − 2	 → >l − ;)				[!6	5.9]	

!v = ∆! T − 1	 → >l − - 				[!6	5.10]	

	

The	total	energy	barriers	that	must	be	overcome	by	each	of	the	pathways	is	simply	the	sum	

of	 the	 three	 above	 values	 for	 the	 forward	 and	 reverse	 trajectories.	 These	 are	 not	

thermodynamically	relevant,	but	illustrate	the	difference	in	the	two	pathways	well:	

	

!xyx kl → rs − s; = 	!i +	!n +	!o				[!6	5.11]	

!xyx rs − s; → kl = 	!q +	!t +	!v				[!6	5.12]	

	

A	more	 useful	measure	 is	 the	 total	 overall	 activation	 energy	 for	 the	 forward	 and	 reverse	

processes,	which	corresponds	 to	 the	amount	of	energy	 required	 to	overcome	 the	highest	

energy	 barrier	 from	 the	 lowest	 energy	 starting	 configuration.	 In	 this	 case,	 the	 activation	

energies	correspond	to:	

	

	

!z(x kl → rs − s; = 	∆!(kl → >l − ;)				[!6	5.13]	

!z(x rs − s; → kl 	= 	∆! rs − s;	 → >l − ; 				[!6	5.14]	

	

However,	 small	 variations	 in	 the	 trajectories	 show	 that	 the	 system	 may	 proceed	 along	

different	pathways	and	thus	across	different	features	of	the	free	energy	plot.	This	will	lead	to	

different	 values	 for	 the	 total	 amount	 of	 energy	 overcome	 by	 individual	 trajectories.	 The	

following	quantitative	analysis	of	the	energy	differences	assumes	measurement	to	and	from	

the	centres	of	each	of	the	turning	points,	as	described	in	Table	5.xxv,	thereby	indicating	the	

energy	associated	with	a	transition	pathway	that	visits	all	maxima	and	minima.	In	reality,	such	

pathways	are	not	always	seen	and	each	individual	pathway	will	have	its	own	set	of	energy	
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values.	However,	it	is	stressed	that	every	trajectory	must	surmount	an	energy	barrier	at	least	

equivalent	to	the	activation	energies	presented,	as	successful	trajectories	must	overcome	the	

highest	energy	barrier	to	cross	to	the	other	side,	irrespective	of	the	path	taken.	

It	 is	 also	 apparent	 from	 inspection	 that	 the	 energy	 barriers	 for	 each	 stage	 of	 the	

transformation	are	very	different	for	the	forward	and	reverse	trajectories.	This	may	go	some	

way	to	explaining	why	there	are	different	pathways	associated	with	the	forward	and	reverse	

trajectories,	 and	 perhaps	 why	 there	 are	 such	 notable	 hystereses	 present	 in	 such	

transformations.	

	

	

	

	

Figure	5.xxix:	A	summary	of	all	the	energy	barriers	associated	with	the	profile.	The	activation	

energy	for	each	process	is	defined	as	the	energy	required	to	surmount	the	largest	barrier	

from	the	starting	basin.	The	total	energy	expenditure	(not	shown	on	this	diagram)	for	each	

transformation	is	the	sum	of	the	energy	to	surmount	each	barrier	along	the	course	of	the	

trajectory.		Note	that	these	barriers	correspond	to	movements	from	the	centres	of	each	of	

the	turning	points	–	there	will	be	considerable	variation	in	the	trajectories	that	move	across	

this	energy	landscape.	
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W
Z-
ZB
	à

	R
S	
Pa
th
w
ay
	

	 Energy	
/kJ	mol-1	

Energy	
/kJ	mol-1	pair-
1	

Energy	
/eV	pair-1	

Energy	
/kBT	pair-1	

	

	
!i 	
	

23	726.3	 19.8	 0.21	 7.9	

	
!n 	
	

10	376.6	 8.6	 0.09	 3.5	

	
!o	
	

10	483.8	 8.7	 0.09	 3.5	

	
!xyx kl
→ rs − s; 	
	

	
44	586.7	

	
37.2	 0.39	 14.9	

	
!z(x kl
→ rs − s; 	

	

32	565.9	 27.1	 0.28	 10.9	

	

	
!q	
	

	
20	447.0	

	
17.1	

	
0.18	

	
6.8	

	
!t	
	

	
13	085.9	

	
10.9	

	
0.11	

	
4.4	

	
!v	
	

	
1	357.0	

	
1.3	

	
0.01	

	
0.5	

!xyx rs
− s; → kl 	

	
35	069.9	

	
29.2	 0.30	 11.6	

	
!z(x rs
− s; → kl 	

	

23	049.1	 19.2	 0.20	 7.7	

	

Table	5.xxx:	Energy	barriers	associated	with	the	forward	and	reverse	trajectories.	The	total	

energy	spent	to	overcome	all	barriers	is	highlighted	in	orange,	whereas	activation	energies	

are	coloured	blue.	Note	the	discrepancy	in	the	barrier	heights	between	the	forward	and	

reverse	pathways.	The	values	are	measured	to	and	from	the	centres	of	the	turning	points	on	

the	energy	surface,	illustrating	a	hypothetical	trajectory	which	visits	all	maxima	and	minima.	

RS
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Z-
ZB

	P
at
hw

ay
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5.5.3.5. Change	in	Free	Energy	

	
The	change	in	free	energy	is	simply	the	difference	between	the	energy	values	of	the	rocksalt	

and	the	wurtzite-zincblende	basins,	or	the	difference	between	the	activation	energies	of	the	

forward	and	reverse	trajectories.	Ideally,	as	this	trajectory	was	carried	out	at	the	transition	

pressure	of	zincblende	and	rocksalt,	this	should	be	very	close	to	zero.	

	
Δ| = 	|IJ −	|$H/H&				[!6	5.15]	

	
However,	it	is	evident	from	inspection	of	the	plot,	as	well	as	of	the	energy	barriers,	that	Δ|	≠	
0	in	this	case,	but	rather:	

Δ| = 0.08	.C	

This	difference	in	the	free	energy	is	substantial,	corresponding	to	approximately	3.2	kBT.	

It	 is	speculated	that	one	contribution	to	this	difference	is	resultant	from	the	change	in	the	

four-coordinate	 starting	material	 caused	by	 the	path	 sampling	 calculations.	 The	 transition	

pressure	of	9.8	GPa	corresponded	to	the	conditions	at	which	the	enthalpy	of	pure	zincblende	

and	 rocksalt	 were	 equal.	 This	 new	 material,	 which	 is	 a	 combination	 of	 wurtzite	 and	

zincblende,	will	certainly	have	a	different	enthalpy	vs.	pressure	plot	and	hence	a	different	

cross-over	 point	with	 rocksalt.	 This	may	 explain	 the	 disparity	 between	 the	 values	 in	 free	

energy	seen,	and	accordingly	a	lower	transition	pressure	than	the	one	used	can	be	expected.	

However,	 if	 this	were	 the	only	 issue	 to	 consider,	one	would	have	expected	 the	 transition	

pressure	 to	 reside	 between	 the	 cross-over	 values	 of	 zincblende-rocksalt	 (9.8	 GPa)	 and	

wurtzite-rocksalt	(14.8	GPa),	depending	on	the	percentage	contributions	of	the	two	phases	

in	the	mixed	structure.	Thus,	the	four-coordinate	phase	would	have	been	lower	in	free	energy	

at	9.8	GPa,	which	is	not	what	is	seen	here.	It	 is	possible,	however,	that	this	may	be	a	very	

simplistic	 view,	 as	 the	 presence	 of	 defects	within	 the	 four-coordinate	 final	 structure	may	

contribute	 to	 the	 lowering	 of	 the	 transition	 pressure.	 In	 addition,	 a	 significant	 entropic	

component	 may	 play	 a	 role	 within	 these	 mixed	 phases,	 which	 is	 neglected	 in	 the	 initial	

enthalpy	 vs.	 pressure	 calculation	 but	 can	 clearly	 be	 considered	 using	 these	 free	 energy	
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methods.	An	 investigation	 into	these	 issues,	by	re-running	the	metashooting	procedure	at	

different	pressures,	 specifically	 the	pressure	 corresponding	 to	 the	mixed	material-rocksalt	

crossover	point,	would	be	useful	in	the	future	to	address	these	problems.	Hence,	the	entropic	

components	of	the	different	phases	could	be	fully	classified,	giving	another	layer	of	insight	

into	this	phase	transition.	

	

5.5.3.6. Mapping	the	Trajectories	

	

With	the	collected	data,	it	is	possible	to	map	the	trajectories	on	top	of	the	aggregated	free	

energy	surface.	This	is	achieved	by	once	again	taking	the	first	and	pseudo-third	coordination	

number	 for	 each	 frame	 of	 a	 trajectory,	 and	 plotting	 this	 on	 the	 underlying	 landscape	

generated	 by	 the	 final	 iteration	 of	 the	 metashooting	 procedure.	 All	 of	 the	 trajectories	

produced	by	the	metashooting	process,	as	well	as	those	by	the	original	path	sampling,	are	

true	dynamical	 trajectories.	Hence,	any	of	 the	collated	 runs	can	be	plotted	on	 the	energy	

surface	to	represent	a	possible	path	that	may	cross	it.	

	

	

	

42	

40	

38	

36	

34	

32	

30	

28	

26	

24	

3.0											3.5														4.0												4.5	 					5.0													5.5													6.0	 							6.5													7.0	

Ps
eu
do

-
3
r
d

	C
N
	

1
st

	CN	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

E
n
e
r
g
y
	/
	k
J
	m

o
l
-
1
	



CHAPTER	5	–	PHASE	TRANSITIONS	OF	ZINC	OXIDE	
	

	 138	

Figure	5.xxxi	(previous	page):	An	example	of	a	successful	trajectory	prior	to	any	deposition	of	

Gaussians	during	the	metashooting,	linking	the	wurtzite-zincblende	and	the	rocksalt	basins.	

The	trajectory	avoids	the	centre	of	the	five-coordinate	basin,	which	corresponds	to	the	iH	

configuration,	as	seen	in	the	mechanistic	analysis	in	5.4.2.5.3.	

	

The	visualisation	of	successful	trajectories,	such	as	the	one	seen	in	Figure	5.xxx,	demonstrates	

that	the	transformation	may	not	necessarily	take	the	lowest	energy	pathway,	but	can	take	

numerous	 possible	 routes.	 This	 corroborates	 with	 exactly	 what	 is	 seen	 in	 the	 variety	 of	

trajectories	seen	in	the	path	sampling.	Using	such	visualisations	allows	the	accurate	tracing	

of	 the	 course	 of	 each	 trajectory	 over	 the	 free	 energy	 landscape,	which	 in	 turn	 permits	 a	

detailed	structural	and	energetic	analysis	of	each	individual	trajectory,	if	required.	

Failed	 trajectories	 can	 also	 be	 plotted	 on	 the	 free	 energy	 surface,	 which	 allows	 for	

characterisation	of	why	such	pathways	were	unsuccessful.	In	addition,	such	diagrams	can	give	

additional	insight	into	the	‘failed’	configurations	-	for	example,	the	trajectories	which	fall	into	

the	five-coordinate	basin	prove	that	there	are	numerous	configurations	constituting	the	 iH	

intermediate,	corresponding	to	lower,	medium	and	higher-density	structures.	
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Figure	5.xxxii	(previous	page):	An	example	of	a	would-be	failed	trajectory	from	Iteration	209	

of	the	metashooting	procedure,	showing	a	failed	trajectory	in	which	rocksalt	transforms	into	

a	high-density	iH	structure	and	remains	stuck	in	this	basin.	

	

5.6. Conclusions	and	Future	Work	

	
Using	transition	path	sampling	methods,	a	phase	transition	characterised	by	a	sequence	of	

nucleation	and	growth	events	between	a	mixed	wurtzite-zincblende	and	rocksalt	has	been	

described.	 The	 path	 sampling	 procedure	 determined	 that	 the	 forward	 and	 reverse	

trajectories	 featured	 different	 preferred	 pathways,	 each	 with	 different	 competing	

intermediates	 and	 concerted	events.	Whilst	both	 the	 forward	and	 reverse	 transformation	

could	proceed	by	either	pathway,	there	appeared	to	be	a	preference	for	one	mechanism	over	

the	other	for	both	transformations.		

	

A	typical	high-to-low	pressure	trajectory	was	characterised	by	the	formation	of	a	cubic	‘seed’,	

followed	by	gradual	transformation	to	a	mixed	four-coordinate	product	via	coexisting	motifs	

of	rocksalt	and	wurtzite	ZnO.	Failed	trajectories	could	also	end	up	becoming	trapped	in	an	

intermediate	 five-coordinate	 basin,	 corresponding	 to	 a	 mixed	 rocksalt-5	 coordinate	

hexagonal	structure	denoted	RS-iH.	

	

The	 low-to-high	pressure	 transition	was	 characterised	by	 a	more	 stepwise	process,	which	

involved	transition	to	the	four-coordinate	mixture	via	local	motifs	of	the	hexagonal	iH	before	

transforming	to	the	final	rocksalt	product.		

	

Subsequently,	 the	 path	 sampling	 converged	 trajectories	 were	 analysed	 using	 the	 novel	

metashooting	 method	 –	 a	 combination	 of	 the	 shooter	 algorithm	 from	 transition	 path	

sampling	 and	 a	 well-tempered	 metadynamics	 scheme	 using	 the	 first	 and	 third	 average	

coordination	 spheres	 as	 the	 collective	 variables.	 The	 results	 presented	 show	 that	 the	

metashooting	 procedure	 is	 able	 to	 decipher	 the	 underlying	 free	 energy	 landscape	 of	 the	

transformation,	and	that	structural	information	about	the	nature	of	appropriate	maxima	and	
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minima	can	be	extracted	from	the	resultant	plot.	In	addition,	energy	barriers	and	changes	in	

free	energy	can	be	ascertained,	and	successful	and	failed	trajectories	visualised	on	the	final	

free	 energy	 plot,	 in	 order	 to	 gain	 a	 true	 understanding	 of	 the	 energetics	 and	 structural	

curiosities	inherent	within	each	individual	trajectory.	

	

There	are,	however,	a	number	of	points	here	that	would	be	beneficial	to	address	in	the	future.	

	

Firstly,	 the	 nature	 of	 the	 RS-iH	 intermediate,	 as	 found	 in	 both	 the	 path	 sampling	 and	

metashooting	analysis,	is	still	puzzling	and	ambiguous.	Previous	work	has	suggested	that	this	

phase	does	exist	along	the	reaction	coordinate,	but	is	not	necessary	for	the	transformation.	

This	 work	 directly	 corroborates	 that,	 however	 it	 is	 unclear	 as	 to	 why	 the	 material	 is	 so	

persistent	 in	 this	 work,	 nor	 why	 its	 associated	 basin	 is	 so	 deep	within	 the	metashooting	

scheme.		

	

This	could	be	a	consequence	of	the	parameters	used.	To	consider	this,	a	detailed	analysis	of	

the	iH	structure	using	a	different	parameterisation	or	a	higher	level	of	theory	(such	as	density	

functional	theory)	would	be	worthwhile	to	ascertain	the	mechanical	and	dynamical	stability	

of	this	structure.	

	

Alternatively,	the	phase	could	be	over-stabilised	due	to	repeated	path	sampling	trajectories	

rejecting	such	a	move,	when	ultimately	 it	may	have	led	to	a	successful	trajectory.	Had	the	

path	 sampling	 scheme	been	 allowed	 to	 propagate	 for	 a	much	 longer	 time	period,	 such	 a	

scheme	may	have	correctly	gone	on	to	transform	successfully.	Thus,	it	would	be	beneficial	to	

re-initialise	 the	 path	 sampling	 procedure	 from	 the	 first	 instance	 of	 such	 an	 intermediate	

appearing,	with	a	longer	simulation	run	time	to	allow	for	persistent	metastable	configurations	

to	evolve	appropriately.	

	

Despite	the	metashooting	procedure	being	successful,	there	are	a	few	modifications	which	

could	 lead	 to	an	 improvement	 to	 the	method.	 For	 instance,	 it	may	be	beneficial	 to	use	a	

different	set	of	collective	variables,	for	example	higher	coordination	sequences,	in	order	to	

better	distinguish	between	the	phases.	Using	 the	 first	and	 third	coordination	spheres	was	

convenient	in	this	case	as	it	was	an	identical	measurement	to	the	order	parameter	used	in	
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the	 path	 sampling	 calculations.	 However,	 it	 did	 mean	 that	 resolution	 between	 different	

configurations	and	pathways	was	often	poor.		

	

When	visualising	multiple	trajectories	on	the	free	energy	plot,	the	resultant	schemes	often	

showed	 very	 little	 difference	 between	 the	 paths	 of	 different	 trajectories,	 despite	 those	

pathways	being	markedly	different	when	visualised.	For	example,	a	scheme	which	followed	

the	 ‘high-to-low’	 pressure	 pathway,	 with	 coexisting	 wurtzite	 and	 rocksalt	 motifs,	 and	 a	

scheme	following	the	‘low-to-high’	pressure	pathway,	with	large	regions	of	iH,	could	barely	

be	differentiated	using	this	method	of	visualisation.	Additionally,	 instances	of	 iT	had	to	be	

distinguished	by	geometric	analysis,	rather	than	from	the	plot.	It	is	believed	that	running	this	

scheme	with	more	 sensitive	 collective	 variables,	 such	 as	 the	 third	 and	 fifth	 coordination	

spheres,	 would	 give	 even	 more	 detail	 about	 the	 different	 trajectories,	 intermediate	 and	

transitional	configurations	along	the	course	of	this	transformation.	

	

It	 is	 believed	 that	 the	 metashooting	 procedure	 could	 set	 a	 novel	 paradigm	 for	 future	

investigations	 into	 condensed	 matter	 phase	 transitions.	 Such	 a	 scheme	 could	 easily	 be	

transferred	 to	 another	 system,	 under	 any	 level	 of	 theory,	 to	 ascertain	 the	 underlying	

thermodynamics	and	kinetics	of	a	temperature	or	pressure-induced	phase	transformation.	

Such	an	analysis	is	only	possible	by	the	combined	use	of	path	sampling	and	metadynamics	

methodologies	 –	 neither	 of	 which	 alone	 would	 be	 able	 to	 produce	 the	 detailed	 scheme	

described	within	this	work.	
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Chapter	6	

Phases	of	Water	Ice	

	

“Water,	water,	everywhere…”	

–	Samuel	Taylor	Coleridge	(1772-1834),	The	Rime	of	the	Ancient	Mariner	

	

	

6.1. Introduction	to	Water	and	Ice	

	

6.1.1. Overview	

	

As	the	simplest	compound	of	the	two	most	abundant	chemically	active	elements	in	existence,	

water	is	undoubtedly	one	of	the	most	fascinating	and	mysterious	compounds	in	the	natural	

world.		

	

An	incredibly	prevalent	molecule,	water	covers	71%	of	the	Earth’s	surface
[1]
	and	is	present	in	

the	atmospheres	of	many	moons,
[2,3]

	planets
[4]
	and	stars

[5]
	throughout	the	galaxy.	It	is	able	to	

solvate	a	huge	number	of	salts	and	hydrophilic	organic	compounds,	resulting	in	its	famous	

moniker	as	the	“universal	solvent”.
[6]
	Water	is	amphoteric,	boasts	high	melting	and	boiling	

points	and	has	a	high	specific	heat	capacity,	and	can	also	exist	on	Earth	in	all	three	traditional	

states	 of	matter	 –	 solid,	 liquid	 and	 gas.
[7]
	 Biological	 systems	 have	 exploited	 its	 numerous	

qualities,	resulting	in	the	compound	being	the	main	constituent	of	most	living	organisms	on	

the	planet	and	essential	to	all	life	on	Earth.	

	

Yet	the	apparent	simplicity	of	water	belies	its	underlying	chemical	and	physical	complexity,	

as	 much	 is	 still	 not	 understood	 about	 this	 fundamental	 three-atom	 molecule.	 This	 is	

particularly	 shocking	 when	 taking	 into	 consideration	 that	 water	 is	 one	 of	 the	 most	

fundamental	and	(possibly)	the	most	abundant	non-elemental	molecule	in	the	Universe	and	

arguably	the	most	important	compound	to	humanity	and	the	entire	biosphere!	
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Figure	6.i:	A	familiar	cartoon	schematic	of	a	water	molecule,	with	the	central	oxygen	atom	in	

red	and	the	two	hydrogen	atoms	in	white.	The	experimental	O-H	bond	length	of	0.958	Å	and	

H-O-H	angle	of	104.45°	make	it	one	of	the	smallest	molecules	in	existence.	Despite	the	

evident	simplicity	of	the	molecule,	it	boasts	a	wealth	of	fascinating	physical	and	chemical	

properties	–	many	of	which	are	not	fully	understood.	

	

	

In	its	familiar	liquid	form,	water	is	a	tasteless,	odourless,	transparent	inorganic	solvent	which	

appears	 colourless	 in	 small	 amounts	 but	 takes	 on	 a	 distinctive	 blue-green	 hue	 in	 larger	

quantities.[8]	Indeed,	its	existence	as	a	liquid	at	ambient	pressure	and	temperature	is	one	of	

many	irregularities	exhibited	by	the	compound.	All	other	hydrides	of	elements	in	the	oxygen	

group	 form	 gases,	 as	 do	 hydrides	 of	 all	 the	 elements	 surrounding	 oxygen	 in	 the	 periodic	

table.[7]	Like	so	many	of	water’s	unusual	properties,	its	liquid	existence	at	ambient	conditions	

is	largely	due	to	its	strong	network	of	hydrogen	bonds,	formed	as	a	result	of	the	strong	dipole	

moment	 (approximately	 1.855	 D)[9]	 induced	 from	 the	 difference	 in	 electronegativities	

between	 the	 hydrogen	 and	 oxygen	 atoms.	 The	 effects	 of	 hydrogen	 bonding	 and	 other	

inductive	effects	as	a	result	of	water’s	dipole	moment	and	polarisability	mean	that	explaining	

the	behaviour	of	the	liquid	is	a	complex	task.	

	

In	the	solid	form,	water	exhibits	a	huge	wealth	of	polymorphs.	Current	work	suggests	that	

there	 are	 eighteen	 experimentally	 known	 crystalline	 forms	 of	 ice	 and	 several	 amorphous	

varieties	of	different	densities	accessible	at	different	temperatures	and	pressures,	as	well	as	

a	number	of	other	predicted	crystalline	forms	(many	of	which	adopt	similar	polymorphism	to	

silica,	such	as	the	formation	of	cubic	clathrate	structures).[10-29]		
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Figure	6.ii:		The	phase	diagram	of	water,	showing	its	rich	phase	behaviour	as	functions	of	

temperature	and	pressure.	The	golden	star	indicates	the	average	conditions	found	on	Earth,	

demonstrating	that	both	i)	solid,	liquid	and	gas	phases	are	accessible	under	ambient	

conditions,	and;	b)	that	the	ice	on	Earth	is	predominantly	of	the	Ih	type.[30]		

	

	

The	eighteen	known	structures,	which	all	 involve	water	molecules	hydrogen	bonding	with	

four	other	neighbours,	are	classified	both	by	their	crystalline	structure	and	their	degree	of	

proton	 ordering.	 The	 hydrogen	 atoms	 can	 be	 either	 ordered	 or	 disordered	 within	 the	

structure,	retaining	the	correct	molecular	and	crystalline	symmetry	by	obeying	the	Bernal-

Fowler	 rules	 (more	 commonly	 known	 as	 simply	 the	 “ice	 rules”).[31]	 Ice	 on	 our	 planet	 is	

comprised	almost	entirely	of	the	hexagonal	Ice	Ih	form,	with	small	amounts	of	cubic	Ice	Ic	in	

the	high	atmosphere.		
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Ice	

	

Proton	

Ordering	

	

	

Crystal	(space	group)	

	

Molecular	

Environments	

	

	

Density/	

g	cm-3	32	

	

Note	

Ih	[10]	 Disordered	 Hexagonal	(P63/mmc)	 1	 0.926	 a,b	

Ic	[11]	 Disordered	 Cubic	(Fd3m)	 1	 0.933	 	

II	[12]	 Ordered	 Rhombohedral	(R3)	 2	(1:1	ratio)	 1.195	 	

III	[13]	 Disordered	 Tetragonal	(P41212)	 2	(1:2	ratio)	 1.160	 c	

IV	[14]	 Disordered	 Rhombohedral	(R3c)	 2	(1:3	ratio)	 1.275	 d	

V	[15]	 Disordered	 Monoclinic	(C2/c)	 4	(1:2:2:2	ratio)	 1.233	 e	

VI	[16]	 Disordered	 Tetragonal	(P42/nmc)	 2	(1:4	ratio)	 1.314	 f	

VII	[17]	 Disordered	 Cubic	(Pn3m)	 1	 1.591	 g,h	

VIII	[18]	 Ordered	 Tetragonal	(I41/amd)	 1	 1.885	 	

IX	[19]	 Ordered	 Tetragonal	(P41212)	 2	(1:2	ratio)	 1.160	 c	

X	[20]	 Symmetric	 Cubic	(Pn3m)	 1	 2.785	 h	

XI	[21]	 Ordered	 Orthorhombic	(Cmc21)	 1	 0.930	 b	

XII	[22]	 Disordered	 Tetragonal	(I42d)	 2	(1:2	ratio)	 1.301	 i,j	

XIII	[23]	 Ordered	 Monoclinic	(P21/a)	 7	(all	unique)	 1.247	 e	

XIV	[23]	 Ordered	 Orthorhombic	(P212121)	 2	(1:2	ratio)	 1.294	 j	

XV	[24]	 Ordered	 Triclinic	(P1)	 2	(1:4	ratio)	 1.328	 f	

XVI	[25]	 Disordered	 Cubic	(Fd3m)	 4	(6:6:4:1	ratio)	 	 	

XVII	[26]	 Disordered	 Hexagonal	(P6122)	 1	 	 	

XVIII	[27]	 Disordered	 Orthorhombic	(PBcm)	 	 	 	

0	[28]	 Disordered	 Tetragonal	(P42/ncm)	 	 	 	

Metallic	[29]	 Symmetric	 Monoclinic	(C2/m)	 	 	 	

	

Table	6.iii:	Miscellaneous	data	pertaining	to	experimentally	observed	polymorphs	of	ice,	as	

well	as	a	selection	of	predicted	forms	(pale	grey	cells).[33]	Densities	correspond	to	

crystallographic	density,	where	reported.	Coloured	cells	in	the	‘Note’	column	correspond	to	

structurally	similar	polymorphs	with	differing	degrees	of	proton	ordering.	Data	collected	from	

reference	33	using	sources	from	references	10-32.	
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a	–	This	is	the	predominant	form	of	ice	on	planet	Earth	

b	–	Ice	XI	is	the	proton	ordered	form	of	Ice	Ih	

c	–	Ice	IX	is	the	proton	ordered	form	of	Ice	III.	Fortunately,	this	is	not	the	same	Ice	IX	as	reported	in	Kurt	

Vonnegut’s	novel	“Cat’s	Cradle”!	

d	–	Ice	IV	is	not	present	on	the	phase	diagram	as	it	is	metastable	within	the	phase	space	of	Ice	V	

e	–	Ice	XIII	is	the	proton	ordered	form	of	Ice	V	

f	–	Ice	XV	is	the	proton	ordered	form	of	Ice	VI	

g	–	Ice	VII	is	formed	of	two	interpenetrating	networks	of	Ice	Ic	

h	–	Ice	X	is	the	proton	symmetric	form	of	Ice	VII	

i	–	Ice	XII	is	not	present	on	the	phase	diagram	as	it	is	metastable	within	the	phase	space	of	Ice	V	

j	–	Ice	XIV	is	the	proton	ordered	form	of	Ice	XII	

	

	

	

6.1.2. The	Bernal-Fowler	Rules	

	

The	 Bernal-Fowler	 Rules,	 or	 simply	 the	 Ice	 Rules,	 are	 a	 series	 of	 rules	 which	 dictate	 the	

possible	 arrangements	 of	 atoms	 in	 the	 crystal	 structures	 of	water	 ice.	 Named	 after	 John	

Desmond	Bernal	and	Sir	Ralph	Howard	Fowler	who	first	conceived	the	principles	in	1933,	the	

Ice	Rules	govern	which	configurations	of	water	molecules	are	permitted	within	the	structures	

of	water	ice.
[31]

	The	main	principles	of	the	Ice	Rules	are	that:	

	

o Each	 oxygen	 atom	 within	 a	 water	 molecule	 is	 covalently	 bound	 to	 two	 hydrogen	

atoms,	thereby	maintaining	the	presence	of	discrete	H2O	units;	

	

o Every	 water	 molecule	 is	 arranged	 such	 that	 its	 two	 hydrogen	 atoms	 are	 directed	

towards	two	of	the	four	neighbouring	oxygen	atoms,	forming	a	tetrahedron;	

	

o Exactly	 one	 hydrogen	 is	 located	 between	 each	 O-O	 link.	 This	 hydrogen	 will	 be	

covalently	bonded	to	the	one	oxygen,	and	hydrogen-bonded	to	the	other.	
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These	rules	mean	that	every	oxygen	atom	in	an	ice	structure	interacts	with	four	hydrogen	

atoms	–	two	via	a	strong	covalent	chemical	bond,	and	two	via	a	weak	hydrogen	bond	–	leading	

to	 the	 formation	 of	 a	 periodic	 lattice.	 It	 enforces	 that	 two	 sites	 of	 like	 charge	 cannot	 be	

directly	adjacent	to	each	other,	for	example	two	protons	cannot	point	at	each	other.	In	reality,	

such	defects	do	occur	–	so	called	Bjerrum	defects	occur	when	an	O-O	link	either	contains	two	

protons	(a	doppelt-	or	D-defect),	or	no	protons	(a	leer-	or	L-defect).[34]	These	have	been	shown	

to	 cause	 numerous	 anomalous	 properties	 within	 the	 structure	 of	 ice,	 such	 as	 electrical	

polarization	 and	 local	 structural	 weaknesses.	 However,	 for	 the	 purpose	 of	 this	 work,	 all	

structures	 have	 been	 prepared	 such	 that	 the	 ice	 rules	 are	 strictly	 obeyed	 and	 systems	

exhibiting	Bjerrum	defects	have	not	been	utilised.	

	

	

	

	

	

Figure	6.iv:	Two	water	molecules	with	zero	protons	(L-defect,	left),	one	proton	(centre)	and	

two	protons	(D-defect,	right)	between	the	two	oxygens	sites.	Only	the	middle	configuration	is	

an	example	of	two	water	molecules	that	obey	the	Bernal-Fowler	Ice	Rules,	whereas	the	other	

two	are	disallowed	Bjerrum	defects.	

	

	

6.1.3. The	Structure	of	Water	Ice	

	

Presented	below	is	a	brief	discussion	of	the	structures	of	ice	exhibited	in	this	work	–	namely,	

Ice	Ih,	Ice	Ic	and	Ice	III,	as	well	as	a	short	introduction	to	the	amorphous	structures.	
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Figure	6.v:	Illustration	of	the	Ice	Ih	unit	cell.	In	this	depiction,	all	of	the	possible	hydrogen	

positions	are	shown.	In	reality,	each	of	the	hydrogen	atoms	has	an	occupancy	of	0.5	to	

maintain	the	H2O	stoichiometry,	and	their	arrangements	are	determined	by	the	Bernal-

Fowler	Ice	Rules.[10]		

	

	

By	far	the	most	common	form	of	ice	on	Earth,	and	the	form	with	which	we	are	exclusively	

familiar	 in	day-to-day	 life,	 is	 Ice	 I
h	(Hermann-Mauguin	space	group	P63/mmc,	analogous	to	

Lonsdaleite	or	b-tridymite).	The	structure	consists	of	a	hexagonal	lattice	whose	four-molecule	

unit	cell	has	dimensions	a	=	4.5181	Å	and	c	=	7.3560	Å,	giving	a	c/a	ratio	of	1.628	–	slightly	

smaller	than	the	ideal	value	for	a	hexagonal	cell.

[35]

	 It	forms	a	low	density	structure	with	a	

very	 small	 packing	 index	 (approximately	 ~1/3).	 This	 is	 very	 low	 compared	 to	most	 other	

packing	 arrangements,	 and	 much	 lower	 than	 the	 face-centred	 cubic	 structure	 of	 solid	

hydrogen	sulphide,	the	analogous	hydride	of	sulphur.	In	fact,	the	packing	arrangement	is	so	

low	that	individual	water	molecules	can	easily	reside	within	the	voids	of	the	structure.

[36]

	This	

is	the	reason	why	‘ice	floats	on	water’	–	the	liquid	form	is	actually	denser	(1.0	g	cm

-3

)	than	the	

Ice	I
h
	structure	(0.92	g	cm

-3

).

[32]

	This	is	a	very	atypical	physical	scenario	and	one	which	life	on	

Earth	has	exploited	to	great	advantage.	
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A	cubic	arrangement	of	Ice	I	also	exists	as	a	metastable	form	under	ambient	conditions	known	

as	Ice	Ic	(Hermann-Mauguin	space	group	Fd3m,	analogous	to	b-cristobalite).	This	polymorph	

is	formed	by	a	face	centred	cubic	lattice	with	unit	cell	parameters	a	=	6.358	Å	with	half	of	the	

tetrahedral	holes	filled.	As	with	Ice	Ih,	the	packing	index	is	very	low	(~1/3)	giving	it	a	very	low	

density	–	like	its	hexagonal	counterparty,	Ice	Ic	floats	on	liquid	water.[11]		

	

Ice	Ic	is	proposed	to	be	present	high	in	the	Earth’s	atmosphere,	and	elsewhere	in	the	Universe	

in	low	temperature	environments.	This	polymorph	of	ice	forms	from	water	vapour	at	around	

-80°C	at	ambient	pressure.[37]	Interestingly,	Ice	Ih	does	not	readily	transform	to	Ice	Ic	at	-80°C,	

but	the	reverse	is	true[38]	–	indicating	a	significant	hysteresis	in	the	phase	change	behaviour.		

	

The	third	form	of	Ice	scrutinised	in	this	work	is	the	tetragonal	Ice	III	polymorph	(Hermann-

Mauguin	space	group	P41212).[13]		

	

	
		

Figure	6.vi:	Schematic	of	the	Ice	III	unit	cell.	In	this	example,	the	H2O	stoichiometry	is	

presented	(i.e.	not	all	proton	positions	are	shown)	and	an	acceptable	hydrogen	distribution	

according	to	the	Ice	Rules	is	displayed.[13,39]	

		

From	the	phase	diagram,	Ice	III	can	be	formed	by	cooling	liquid	water	to	250	K	at	300	MPa.	It	

is	the	least	dense	of	the	high	pressure	polymorphs	of	ice,	with	a	density	of	only	1.16	g	cm-3
.
[32]	

It	also	occupies	only	a	very	small	region	of	the	water	ice	phase	diagram,	however	ice	III	can	
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also	 exist	 as	 a	 metastable	 polymorph	 within	 the	 ice	 II	 phase	 region	 if	 prepared	

appropriately.[40]		

	

Ices	I	and	III	have	a	triple	point	with	liquid	water	at	251.2	K	and	209.9	MPa.[41]	The	triple	point	

corresponds	to	the	point	on	the	phase	diagram	of	a	system	at	which	the	temperature	and	

pressure	 of	 the	 three	 phases	 are	 in	 equilibrium.	 Thus,	 all	 three	 phases	 coexist	 at	 the	

conditions	of	the	triple	point.	

	

There	also	exists	a	number	of	amorphous	and	 ‘glassy’-type	water	structures.	Of	particular	

note	are	the	three	experimentally	known	amorphous	 ices	–	 low	density	amorphous	(LDA),	

high	density	amorphous	(HDA)	and	very	high	density	amorphous	(VHDA)	ices.	Their	structures	

are	non-crystalline	and	poorly	defined	(there	likely	exists	numerous	types	of	each	amorphous	

ice	material);	however,	 the	three	amorphous	 ices	have	known	densities,	corresponding	to	

0.94,	1.13	and	1.26	g	mol-1	for	LDA,	HDA	and	VHDA	respectively.[42]	In	addition,	their	three	

radial	 distribution	 functions	 are	 very	 different,	 allowing	 to	 easily	 distinguish	 between	 the	

three	forms.	

	

	
	

Figure	6.vii:	Oxygen-oxygen	radial	distribution	plots[43-45]	for	the	three	experimentally	known	

amorphous	ices	–	LDA	(green),	HDA	(blue)	and	VHDA	(red).	Plot	taken	from	reference	43	

using	data	from	references	44	and	45.	
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6.2. Atomistic	Water	Models	

	

6.2.1. Introduction	

	

An	accurate	model	of	water	is	desirable	given	the	broad	range	of	applications	in	a	potential	

number	of	fields,	including	environmental	science,	biochemistry,	planetary	sciences,	geology	

and	 materials	 sciences.	 However,	 the	 complexity	 of	 the	 hydrogen	 bonding	 and	 other	

inductive	 effects	 in	water	make	 its	modelling	 an	 enormously	 complex	 task.	 Consider,	 for	

example,	the	liquid	phase	-	no	two	water	molecules	are	in	the	same	chemical	or	electronic	

environment	due	to	the	effects	of	differing	degrees	of	hydrogen	bonding	and	polarisation.	

Thus,	despite	a	great	deal	of	research	into	the	area,	a	universally	accurate	description	of	water	

is	not	currently	available.
[46-48]

		

	

Over	 the	 years,	 a	 huge	 number	 of	 water	 models	 have	 been	 developed
[41,46,47,49-56]	

in	 an	

attempt	to	emulate	the	complex	behaviour	of	water,	although	no	single	model	accurately	

replicates	 all	 of	 the	 intrinsic	 properties	 of	 water.	 Indeed,	 most	 water	models	 have	 been	

developed	to	accurately	fit	one	particular	physical	property	or	parameter	of	water,	such	as	

density,	melting	point	or	distribution	function.	Such	models	are	often	excellent	at	reproducing	

this	particular	parameterised	property,	but	are	often	then	disastrous	at	predicting	the	values	

of	other	parameters.	The	ultimate	goal	in	computational	water	studies	would	be	to	design	a	

universal	model	which	behaves	correctly	under	a	range	of	 thermodynamic	conditions,	but	

sadly	the	best	option	currently	 is	to	choose	a	model	which	best	fits	the	parameters	under	

scrutiny.	

	

The	first	realistic	model	for	water	was	developed	in	1933	by	Desmond	Bernal	and	Sir	Ralph	

Howard	Fowler,
[31]

	long	before	the	computer	era.	Bernal	and	Fowler’s	model	consisted	of	a	

series	of	point	charges	combined	with	a	rare-gas	like	repulsion-dispersion	term	centred	on	

the	oxygen	atom.	Such	a	model	was	used	as	the	starting	point	for	future	work	in	the	field,	and	

it	 would	 be	 nearly	 half	 a	 century	 before	 Jorgensen	 developed	 the	 !"#$	 model,
[57]

	 the	

precursor	to	the	ubiquitous	!"#3#	and	!"#4#	models.
[49]

	Since	then,	a	huge	number	of	water	



CHAPTER	6	–	PHASES	OF	WATER	ICE	
	

	 156	

models	 have	 been	 developed,	 using	 both	 empirical	 (i.e.	 based	 on	 an	 experimental	

observation)	and	ab	initio	methods	to	define	the	models.[47,56,58]	

	

Atomistic	water	models	 based	 on	 empirical	 parameterisation	 can	 be	 categorised	 in	 three	

ways:	

	

1. The	number	of	sites,	atomic	or	virtual,	used	to	describe	the	model.	This	usually	ranges	

between	three	and	six	sites;	

	

2. Whether	 or	 not	 the	 H-O-H	 framework	 is	 rigid	 (fixed	 bond	 lengths	 and	 angles)	 or	

flexible;	

	

3. Whether	or	not	the	effects	of	polarisation	are	included	within	the	model.	

	

This	 work	 utilises	 the	 !"#4#/"()	rigid	 body	 water	 model,[41]	 and	 so	 only	 this	 model,	 its	

predecessors	and	related	potentials	will	be	discussed.	
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Figure	6.viii:	Generalised	schematics	of	the	various	types	of	models	used	to	simulate	water	

molecules,	as	well	as	all	of	their	required	parameters.	In	this	nomenclature,	single	virtual	

sites	(blue)	have	been	denoted	+,	whereas	pairs	of	virtual	sites	designed	to	emulate	the	lone	

pairs	of	oxygen	(green)	have	been	denoted	,.	In	rigid	body	models,	the	distances	-./	,	-.0	,	

-.1	and	angles	2/./,	2/.0	,	2/.1	are	strictly	defined,	whereas	these	quantities	are	allowed	

to	vary	in	flexible-body	models.	Additional	advanced	effects,	such	as	polarisation,	can	also	be	

incorporated	to	these	models	with	further	parameters.	Three-body	rigid	models	(top),	such	

as	!"#3#,	are	amongst	the	simplest	and	most	utilised	models	in	computational	studies	of	

water.	The	addition	of	extra	parameters	often	(but	not	always!)	increases	the	accuracy	of	the	

model,	at	the	expense	of	longer	computing	times.	
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6.2.2. Transferrable	Intermolecular	Potential	(!"#M#)	Models	

	

The	Transferrable	Intermolecular	Potential	(!"#M#)	family	of	water	models	are	amongst	the	

most	 widely	 used	 computational	 descriptions	 of	 water	 and	 ice.	 In	 this	 generalisation,	 M	
corresponds	to	the	number	of	 ‘sites’	modelled	by	the	potential;	most	!"#M#	models	have	

three,	four	or	five	modelled	sites,	which	depict	both	real	and	virtual	atoms	within	the	model.	

These	sites	can	be	described	in	terms	of	Lennard-Jones	parameters	(to	describe	dispersion	

and	repulsive	effects)	and	Coulombic	interactions	(which	describe	the	electrostatic	effects).	

However,	the	van	der	Waals	and	Coulomb	terms	do	not	always	occupy	the	same	positions	in	

space	–	Certain	sites	may	be	represented	only	by	a	Lennard-Jones	type	interaction,	whereas	

another	may	be	depicted	by	only	a	point	charge.	The	distribution	of	these	terms	across	the	

water	molecule,	 as	well	 as	 their	 total	number,	depends	on	 the	exact	!"#M#	model	being	

utilised.	

	

In	 addition,	 all	 of	 the	 bond	 lengths	 and	 angles	 in	most	!"#M#	models	 are	 kept	 constant	

(meaning	 that	 they	 are	 rigid-body	models),	 but	 again	 these	 values	 can	 vary	 significantly	

between	the	different	depictions.	Certain	!"#M#	models	may	also	have	additional	terms	to	

account	for	more	advanced	effects,	such	as	polarisation.	Altogether,	this	means	that	there	

are	very	many	!"#M#	type	models	available	in	the	literature;	usually	each	model	has	been	

tuned	 to	 fit	 one	 parameter	 of	 water	 particularly	 well,	 and	 so	 one	must	 be	 careful	 when	

choosing	which	description	of	water	to	utilise	in	order	to	model	the	system	of	interest.	

	

The	simplest	of	the	!"#M#	models	is	the	ubiquitous	!"#3#	description.[49]	First	developed	in	
1983	by	William	Jorgensen	et	al,	this	extremely	basic	model	is	essentially	a	modified	version	

of	Bernal	and	Fowler’s	original	description	of	water.[31]	The	!"#3#	model	consists	simply	of	a	

Lennard-Jones	 centre	 at	 the	 oxygen	 site,	 and	 point	 charges	 at	 the	 atomic	 sites	 of	 both	

hydrogen	and	oxygen.		

	

In	the	original	model,	no	van	der	Waals	interactions	are	computed	for	the	hydrogen	atoms;	

however,	modifications	to	the	original	do	exist	where	Lennard-Jones	terms	are	also	present	

at	 the	two	hydrogen	sites	–	most	notably	 in	 the	CHARMM	forcefield.[59]	!"#3#	has	 found	
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widespread	use	in	computational	studies	of	water	as	a	result	of	its	reasonable	accuracy	for	

the	liquid	phase	and	light	computational	demand.	

	

	

	

	

	
!"#3#[49]	 !"#4#[49]	

!"#4# −

NO[53]	

!"#4#/

"()[41]	
!"#4#/

2005[51]	
!"#4#/

L[52]	
!"#5#[54]	

3	 	Å	 3.15061	 3.15365	 3.16435	 3.1668	 3.1589	 3.165	 3.120	

L	 	ST	U>VW5	 0.6364	 0.6480	 0.680946	 0.8822	 0.7749	 0.7732	 0.6694	

-./	 	Å	 0.9572	 0.9572	 0.9572	 0.9572	 0.9572	 0.9572	 0.9572	

-.0	 	Å	 -	 0.15	 0.125	 0.1577	 0.1546	 0.1505	 0.70	

2/./	 	°	 104.52	 104.52	 104.52	 104.52	 104.52	 104.52	 104.52	

2/.0	 	°	 -	 52.26	 52.26	 52.26	 52.26	 52.26	 109.47	

45	 +0.417	 +0.520	 +0.52422	 +0.5897	 +0.5564	 +0.5270	 +0.2410	

46	 -0.834	 -1.040	 -1.04844	 -1.1794	 -1.1128	 -1.054	 -0.2410	

Published	 1983	 1983	 2004	 2005	 2005	 2016	 2000	

Type	 a)	 b)	 b)	 b)	 b)	 b)	 d)	

	

	

Table	6.ix:	Parameters	for	and	schematics	of	a	selection	of	!"#M#	models	with	three,	four	

and	five	sites.	The	model	‘type’	corresponds	with	the	family	to	which	the	particular	model	is	

associated,	as	described	in	Figure	6.vii	and	summarised	above.	The	charge	46	is	located	at	

different	positions	in	the	model	depending	on	the	type	–	at	the	centre	of	the	oxygen	Y	for	

type	a),	on	the	single	virtual	site	+	at	the	bisector	of	the	HOH	angle	for	type	b),	and	split	

between	two	virtual	sites	,	occupying	‘lone	pair’	type	positions	for	type	d).	Most	of	the	work	

in	this	project	has	been	carried	out	using	the	!"#4#/"()	model	(highlighted),	which	belongs	

to	type	b)	(centre)	
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However,	it	was	well	known	(even	at	its	publication)	that	the	!"#3#	model	is	very	limited	in	

its	ability	to	predict	the	properties	of	water.	For	example,	Ice	Ih	at	the	freezing	point	under	1	

atmosphere	 of	 pressure	 is	 unstable	 when	 described	 by	 the	!"#3#	 model	 –	 instead,	 the	

potential	predicts	 that,	at	 standard	pressure,	water	 freezes	 to	 form	 Ice	 II.[60]	As	 such,	 it	 is	

immediately	apparent	that	!"#3#	cannot	predict	even	simple	phase	behaviour	of	water	in	

the	solid	phase.	Despite	this,	it	is	possibly	still	the	most	commonly	utilised	model	for	water	in	

research	today,	particularly	in	biochemical	simulations	where	liquid	water	is	only	required	as	

a	solvent.	

	

	

	
!"#3#	 !"#4#	

!"#4#
− NO	

!"#4#
/"()	

!"#4#
/2005	

!"#4#
/L	

!"#5#	 Z[\.	

Temperature	 of	

max.	density	/	℃	
-91	 -25	 +1	 +	22	 +5	 +4	 +4	 +3.984	

Melting	T	of	Ice	Ih	

/℃	
146.0	 232.0	 245.5	 272.2	 252.0	 240.0	 273.9	 273.15	

Density	 of	 Ice	 Ih	 at	

melting	

temperature	

0.947	 0.940	 0.936	 0.906	 0.921	 0.920	 0.967	 0.917	

Density	 of	 liquid	 at	

melting	

temperature	

1.017	 1.002	 0.992	 0.986	 0.993	 0.986	 0.987	 0.999	

∆`abcdefg	for	Ice	Ih		/	
kcal	mol-1	(298	K)	

0.3	 1.05	 1.05	 1.29	 1.16	 n/a	 1.75	 1.44	

Dipole	moment	/	D	

(298	K)	
2.347	 2.18	 2.32	 2.426	 2.305	 2.4345	 2.29	 2.95	

	

	

Table	6.x:	Various	physical	data	as	predicted	by	the	!"#M#	models	discussed	in	this	report.	

Notice	how	the	!"#3#	model	gives	very	poor	results	to	most	of	the	parameters	listed,	

whereas	the	four-site	models	tend	to	give	very	good	agreement	to	the	properties	for	which	

they	have	been	parameterised.	None	of	the	models	are	particularly	good	at	reproducing	all	

of	the	physical	properties	exhibited	by	the	experimental	substance.[41,46,49,51-54,60-62]		
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The	desire	for	a	more	accurate	of	water	that	retained	the	simplicity	of	an	M	site	rigid-body	
model	led	Jorgensen	et	al	to	simultaneously	develop	the	!"#4#	model.	This	is	a	four-body	

model,	created	by	the	addition	of	a	virtual	site	positioned	away	from	the	centre	of	the	oxygen	

atom	at	the	bisector	of	the	angle	2/./.	The	original	!"#4#	model	was	published	in	the	same	

paper	by	Jorgensen	et	al	in	1983[49]	and	has	proven	to	be	a	much	more	reliable	model	than	

its	three-body	counterpart
[63]

	–	but	not	without	its	limitations.
[58]		

	

At	the	turn	of	the	millennium,	a	five-body	model	dubbed	!"#5#	was	developed,	in	which	the	
bisecting	virtual	site	is	substituted	for	two	‘lone-pair’	type	charge	sites	situated	around	the	

central	oxygen	atom.	The	!"#5#	model	has	been	shown	to	be	in	excellent	agreement	with	

the	temperature	of	maximum	density,	the	melting	temperature	and	the	density	of	the	liquid	

water.	However,	as	is	so	often	the	case,	many	other	properties	are	poorly	emulated	by	the	

model	 (such	 as	 the	 actual	 values	 of	 density	 for	 the	 ice	 phases)	 and	 the	 additional	

computational	time	needed	to	model	the	additional	virtual	site	has	hindered	the	popularity	

of	five-site	rigid-body	models.
[54,58]

		

	

As	 a	 result,	 the	 four-site	 rigid-body	 models	 may	 appear	 to	 be	 the	 perfect	 compromise	

between	 quality	 and	 efficiency,	 as	 they	 emulate	 the	 features	 of	 water	 with	 reasonable	

accuracy	whilst	not	being	too	computationally	expensive.	This	has	led	to	the	desire	to	design	

more	 reliable	 four-body	potentials,	 based	on	 this	original	model	but	with	 the	parameters	

tweaked	 in	 order	 to	 be	 more	 accurate	 for	 certain	 applications.	 Numerous	 re-

parameterisations	of	the	!"#4#	potential	have	been	carried	out	since	the	conception	of	the	
original	potential,	usually	with	consideration	to	accurately	modelling	one	or	two	particular	

parameters.	Some	notable	examples	include:	

	

• The	!"#4# − NO	forcefield[53]	was	developed	for	use	with	Ewald	techniques,	which	
led	to	a	significant	improvement	in	the	enthalpy	of	vaporisation;	

	

• The	!"#4#/2005	model
[51]

	 is	 parameterised	 to	 successfully	model	 the	 stability	 of	

crystalline	phases	and	the	temperature	of	maximum	density;	
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• One	of	the	latest	examples	from	2016,	the	!"#4#/L	model,
[52]

	accurately	describes	

various	properties	of	water,	but	is	still	far	from	perfect.	It	shows	that	parameterisation	

of	 water	 models	 is	 not	 a	 finished	 project	 –	 in	 fact,	 new	 and	 more	 accurate	

parameterisations	are	still	being	developed	today.	

	

The	re-parameterisation	used	in	this	work,	!"#4#/"(),[41]	was	too	designed	specifically	with	
certain	properties	and	features	of	water	in	mind.		

	

	

6.2.3. !"#4#/"()	Model	

	

The	!"#4#/"()	model	was	developed	by	J.	L.	F.	Abascal,	E.	Sanz,	R.	García	Fernández	and	C.	

Vega	 in	 2005.	 This	 re-parameterisation	 of	 the	 classic	 four-body	 model	 was	 designed	

specifically	with	phase-coexistence	lines,	density	of	phases	and	the	melting	temperature	of	

Ice	Ih	in	mind.	As	such,	the	parameters	of	the	!"#4#/"()	model	give	rise	to	a	fairly	accurate	

phase	diagram	for	the	solid	phases	of	water,	with	all	major	phases	described	well	and	with	

only	a	small	offset	in	temperature	and	pressure	when	compared	to	experimental	values.
[41]

		

	

	

 
  

Figure	6.xi:	The	phase	diagram	for	experimental,	!"#4#	and	!"#4#/"()	water.	Note	the	very	
close	approximation	of	the	coexistence	line	between	Ice	Ih	and	the	liquid	phase,	as	well	as	the	

relatively	correct	distribution	and	prediction	of	crystalline	phases[41]	
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The	reasons	for	choosing	this	model	over	others	were	obvious.	Firstly,	this	is	the	only	rigid	

body	model	currently	in	the	literature	parameterised	specifically	for	use	with	solid	phases	of	

water.	As	the	overall	aim	of	this	project	is	to	find	a	phase	transition	between	two	or	more	

phases	of	ice,	this	seemed	like	the	logical	model	to	utilise.	Secondly,	as	the	model	belongs	to	

the	4-body	family	of	rigid	water	models,	it	is	intended	that	it	will	exhibit	the	advantages	of	a	

four-body	model	over	the	three-	or	five-	body	variants	–	that	is,	a	good	compromise	between	

simulation	time	and	computational	fidelity.	

	

	

6.3. 	Previous	Simulations	of	Ice	Phases	

	

Attempts	 to	 simulate	 transformations	 between	water	 and	 ice	 have	 been	made	 for	many	

decades.	 Despite	 this,	 there	 remains	 very	 few	 examples	 of	 successful	 simulations	 of	 the	

transitions	between	crystalline	ice	phases	using	atomistic	models.	The	main	reason	for	this	is	

due	to	the	vast	configuration	space	of	spatially	unrestricted	water,	resultant	from	the	many	

possible	combinations	of	hydrogen	bonding	orientations	within	the	solid	and	liquid	phases	of	

ice.	This	creates	a	vast	configuration	space	littered	with	local	minima.		

	

Thus,	a	great	deal	of	the	work	in	the	literature	aims	to	attack	the	problem	by	using	enhanced	

sampling	techniques	to	accelerate	sampling	of	the	configuration	space.	

	

The	majority	of	work	in	the	literature	relates	to	the	crystallisation	of	Ice	Ih	or	Ice	Ic	from	liquid	

water.	 This	 clearly	 has	 considerable	 relevance	 in	 a	 number	 of	 fields,	 including	 in	 biology,	

astronomy,	geology	and	medicine.	

	

Matsumoto	et	al	utilised	molecular	dynamics	within	the	hi!	ensemble	(without	the	use	of	

any	acceleration	 techniques)	 to	 instigate	 the	 freezing	of	supercooled	water	 to	 solid	 ice.[64]	

Matsumoto	et	al	report	the	crystallisation	of	‘perfect	honeycomb’	structure	of	water	ice	(the	

exact	phase	was	not	identified).		However,	the	authors	do	admit	that	their	reported	results	

were	only	one	of	many	attempts,	the	rest	which	resulted	in	failure.	In	addition,	the	technique	

only	works	for	supercooled,	low-density	variants	of	liquid	water,	and	required	over	250	ns	of	

simulation	time	before	any	crystallisation	processes	were	identified.	
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The	work	of	Matsumoto	et	al	 is	 the	only	example	of	work	known	 to	 the	author	of	an	 ice	

crystallisation	process	occurring	a	result	of	a	‘standard’	molecular	dynamics	calculation	with	

no	additional	bias.	Other	examples,	as	the	work	of	Svishchev	and	Kusalik	in	1994,[65]	impose	

external	 influences	 to	 promote	 the	 phase	 change	 –	 In	 this	 case,	 the	 application	 of	 a	

homogenous	static	electric	field,	which	leads	to	the	crystallisation	of	liquid	water	to	the	cubic	

Ice	Ic	polymorph	within	200	ps	of	simulation	time.	

	

In	2003,	Radhakrishnan	and	Trout	published	work	on	the	nucleation	of	Ice	Ih	using	an	umbrella	

sampling	 approach[66]	with	 two	 order	 parameters.	 Radhakrishnan	 and	 Trout	were	 able	 to	

crystallise	their	entire	simulation	system,	as	well	as	characterise	a	number	of	key	transition	

states	necessary	to	the	transformation.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.xii:	Snapshots	at	0.5,	0.75,	1.25	and	1.5	ns,	showing	the	crystallisation	of	the	

unspecified	ice	structure	from	the	work	of	Quigley	and	Roger.	This	was	achieved	by	using	a	

metadynamics	scheme	in	which	four	collective	variables	were	biased.[67]		
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More	 recently,	 metadynamics-based	 approaches	 have	 been	 extensively	 utilised.	 In	 2008,	

Quigley	and	Rodger	published	two	papers	on	a	scheme	to	instigate	crystallisation	by	applying	

a	metadynamics	scheme	in	the	space	of	four	collective	variables	–	the	Q4	and	Q6	Steinhardt	

parameters,
[68]

	a	tetrahedral	ordering	parameter	and	the	potential	energy	of	the	system.	By	

applying	 this	 scheme	 to	 water,	 they	 were	 successfully	 able	 to	 nucleate	 ice	 from	 liquid	

water.
[67,69]

		

	

In	one	publication,	Quigley	and	Rodger	report	the	growth	of	a	critical	nucleus	which	occurred	

within	the	first	500	ps	and	subsequent	expansion	over	the	next	1.5	ns	of	simulation	time.	The	

phase	in	this	work	was	not	formally	identified,	however	it	appears	to	be	composed	once	again	

of	Ice	Ic.
[67]

	In	another	work,	Quigley	and	Roger	showed	the	successful	growth	of	Ice	Ic	using	

their	metadynamics	scheme.
[69]

		

	

Work	continues	in	an	attempt	to	improve	the	metadynamics	schemes	already	developed	in	

an	attempt	to	further	the	ability	to	sample	the	configuration	space	of	ice.	Just	a	few	months	

before	the	publication	of	this	thesis,	Pipolo	et	al	published	a	novel	work	in	which	they	claim	

to	be	able	to	‘navigate	at	will	on	the	water	phase	diagram’,
[70]

	visiting	Ices	I	and	VII,	as	well	as	

the	liquid	phase,	a	number	of	amorphous	phase	and	a	hypothetical	crystalline	phase	‘Ice	Y’.	

Pipolo	et	al	defined	the	collective	variables	scheme	in	terms	of	permutation	invariant	vectors	

(PIVs),
[71]

	constructed	from	inter-atomic	Cartesian	distances.	A	similar	method	has	recently	

been	 employed	 by	 Pietrucci	 and	Martonák,	 who	were	 able	 to	 use	 the	 scheme	 to	 clearly	

differentiate	between	both	crystalline	and	amorphous	phases	of	ice.
[72]

		

	

Outside	 of	 the	 crystalline	 phases,	 there	 exists	 a	 wealth	 of	 literature	 pertaining	 to	 the	

transformations	between	the	different	amorphous	phases	of	 ice.	A	notable	example	is	the	

work	of	Martonák	et	al,	who	successfully	navigated	between	the	 low,	high,	and	very	high	

density	amorphous	phases	of	ice	using	molecular	dynamics	simulations	within	the	isothermal-

isobaric	ensemble.
[73]

	Another	example	is	the	work	of	Tse	et	al,	who	examined	the	Ice	Ih	to	

high-density	amorphous	ice	transformation.
[74]
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6.4. 	Summary	

	

From	the	literature,	it	is	clear	that	there	are	still	many	unanswered	questions	in	the	field	of	

atomistic	modelling	of	water	ice.	There	exists	a	considerable	number	of	structures	to	target,	

an	even	greater	number	of	water	models	 to	 represent	 their	 constituent	molecules,	 and	a	

number	of	advanced	tools	with	which	to	enhance	the	rate	of	configuration	space	sampling.	

Yet	despite	this,	accurate	and	efficient	modelling	of	the	condensed	phases	of	water,	and	the	

phase	transitions	that	 link	them,	 is	still	an	extremely	non-trivial	endeavour.	 It	 remains	the	

case	that	considerable	research	is	to	be	done	before	the	phase	space	of	water,	and	the	order	

parameters	linking	the	metastable	basins	it	supports,	are	fully	characterised.	

	

With	this	in	mind,	the	work	contained	within	this	chapter	represents	an	attempt	to	add	to	

scientific	knowledge	to	the	field	of	condensed	matter	phase	transitions	within	bulk	systems	

of	H2O.	Both	sections	of	this	work	make	considerable	use	of	metadynamics,	however	in	the	

two	sections	the	procedure	is	implemented	in	two	very	different	ways.		

	

The	 first	 results	 section	 of	 this	 chapter	 involves	 the	 use	 of	 the	 Martonák	 et	 al	

implementation[75,76]	 of	 metadynamics,	 in	 which	 modifications	 to	 the	 simulation	 cell	 are	

applied	to	the	system	in	order	to	instigate	structural	change	(see	chapter	4	for	further	details).	

This	is	coupled	to	a	technique	developed	in	this	work,	coined	rotational	shooting,	which	is	

designed	 to	perturb	 the	hydrogen	bonding	network	within	 the	system	and	 is	described	 in	

detail	in	the	next	section.		

	

The	 second	 component	 of	 the	 results	 discussion	 is	 dedicated	 to	 an	 investigation	 using	

metadynamics	within	the	plumed	plug-in.[77]	Having	taken	inspiration	from	previous	work,[69]	

the	metadynamics	scheme	was	applied	in	the	space	of	three	collective	variables:	the	global	

Q4	and	Q6	parameters,	and	a	tetrahedral	ordering	parameter.	These	parameters	and	their	

implementations	are	discussed	in	detail	prior	to	the	reported	results,	which	successfully	show	

the	occurrence	of	a	phase	transition	between	two	crystalline	states	of	water	ice.	
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6.5. Metadynamics	to	the	Cell	with	“Rotational	Shooting”	

	

6.5.1. Methodology	

	

6.5.1.1. The	basis	of	“Rotational	Shooting”	

	

	

The	rotational	shooter	is	a	technique	developed	and	used	in	this	work	in	an	attempt	to	find	a	

novel	way	 to	 form	a	perturbed	distribution	of	 interactions	between	water	molecules	 in	 a	

simulated	system,	with	the	ultimate	desire	being	to	instigate	a	phase	transition	between	ice	

configurations.		

	

In	 the	 original	 shooter	 algorithm	 used	 in	 transition	 path	 sampling	 calculations,[78,79]	 the	

velocities	of	the	atomic	centres	within	the	system	are	redistributed	under	strict	conservation	

of	momentum,	 in	order	 to	 simulate	 a	novel	 regime	of	 atomic	movements.	 The	 rotational	

shooter	 instead	modifies	 the	angles	between	pairs	of	water	molecules,	whilst	keeping	 the	

total	angular	momentum	constant.	The	procedure	for	rotational	shooting	is	as	follows:	

	

1. Choose	 a	 subset	 of	 the	water	molecule	 pairs	 in	 the	 system	 to	be	 involved	 in	 the	

procedure.	 This	 can	 range	 from	 one	 pair	 (two	molecules)	 to	 all	 molecules	 (for	 a	

system	with	an	even	number	of	water	molecules)	or	every	molecule	minus	one	(for	

an	odd	numbered	system).	

	

2. Randomly	 choose	 two	 water	 molecules	 j	 and	 =	 within	 the	 system	 of	 interest,	

defining	the	position	vectors	of	j	and	=	as	 the	centres	of	 the	oxygen	site	of	each	
water	molecule;	

	

3. Define	the	vector	k	between	the	two	water	molecules	j	and	=;	
	

4. Rotate	 the	 hydrogen	 atoms	 of	 water	 molecule	 j	 about	 vector	 k	 by	 an	 angle	 2	
degrees;	
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5. Similarly,	rotate	the	hydrogen	atoms	of	water	molecule	=	about	vector	k	by	an	angle	
– 2	(equivalent	to	360 − 2)	degrees;	

	

6. Repeat	steps	1	–	5	until	all	water	molecules	have	been	paired	and	rotated	by	±	2.	
Should	 the	 system	 contain	 an	 odd	 number	 of	 water	 molecules,	 leave	 the	 one	

remaining	water	molecule	un-rotated	by	the	procedure.	

	

	

	

	

	

	

	

	

Figure	6.xiii:	A	hypothetical	situation	corresponding	to	two	adjacent	water	molecules	j	and	
=,	with	O—H---O	arrangement	as	allowed	by	the	Ice	rules	(left).	The	two	molecules	are	

randomly	assigned	by	the	rotational	shooter	to	be	a	rotation	pair	and	are	thus	linked	by	the	

vector	k.	Remember	that	any	two	water	molecules	may	be	paired	and	they	need	not	be	

adjacent,	thus	k	can	be	long	or	short	depending	on	the	initial	positions	of	the	water	
molecules	chosen	to	be	j	and	=.	The	two	molecules	are	rotated	about	vector	k	by	an	angle	
of	2	and	360 − 2	degrees	respectively,	which	causes	a	break	the	hydrogen	bonding	network	

and	modifies	the	positions	of	the	protons.	This	creates	a	new	and	possibly	disfavoured	

configuration	which	may	lead	to	a	structural	change.	

	

	

All	water	polymorphs	are	four-coordinate	and	tetrahedrally	coordinated,	and	thus	the	exotic	

polymorphism	of	water	ice	is	caused	solely	by	proton	ordering	and	hydrogen	bonding.	The	

idea	behind	the	rotational	shooter,	therefore,	is	to	‘break’	the	hydrogen	bonding	network	and	

locally	redistribute	the	locations	of	protons	within	the	ice	structure,	in	order	to	instigate	some	

change	 to	 the	 structure.	 In	 this	 way,	 it	 is	 analogous	 to	 the	 regular	 shooter	 –	 i.e.,	 some	

k	
j
	

=
	

+2
	

−2
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conserved	quantity	within	the	system	is	redistributed	 in	order	to	generate	a	configuration	

that	would	not	typically	be	accessible	from	molecular	dynamics	simulations	alone.	

	

	

6.5.1.2. Computational	Details	

	

All	work	reported	in	this	section	were	carried	out	using	the	cp2k	package	within	the	canonical	

ensemble	(hi!).	Molecular	dynamics	calculations	were	performed	using	the	velocity	Verlet	

scheme,	with	an	integration	time-step	of	between	0.5	and	1.0	fs	(depending	on	the	particular	

scheme)	in	order	to	ensure	appropriate	time	reversibility.	Periodic	boundary	conditions	were	

implemented	in	the	n,	@	and	o	directions	for	all	of	the	systems	tested	in	order	to	simulate	a	

bulk	sample	of	ice.	

	

The	!"#4#/"()	rigid-body	model	was	used	to	describe	interatomic	interactions	between	the	

water	 molecules.
[41]

	 Long	 range	 electrostatic	 effects	 were	 accounted	 for	 using	 an	 Ewald	

summation.		

	

The	coupled	rotational	shooting/metadynamics	procedure	was	 initiated	from	two	types	of	

configurations,	 corresponding	 to	 a	 small	 120	 molecule	 Ice	 Ih	 system	 and	 a	 larger	 1200	

molecule	Ice	III	system.	This	allowed	for	the	testing	of	how	two	different	polymorphs	of	ice	

behaved	during	 the	 scheme,	 as	well	 as	 for	 an	 analysis	 of	 how	 system	 size	 and	 symmetry	

affects	 the	 procedure.	 All	 starting	 configurations	 were	 generated	 such	 that	 they	 strictly	

obeyed	the	Bernal-Fowler	ice	rules	and	exhibited	no	forbidden	Bjerrum	defects.	The	RATTLE	

algorithm	was	utilised	within	cp2k	to	impose	the	geometric	constraints	on	the	system.
[80]

		

	

In	all	of	the	water	work	presented,	the	simulation	temperature	was	controlled	by	using	the	

Canonical	Sampling	through	Velocity	Rescaling	(CSVR)	thermostat,	with	an	appropriate	time	

constant	chosen	in	order	to	facilitate	a	suitable	temperature	control	scheme.
[81]

		

	

The	parameters	used	 in	the	rotational	shooter	 (the	number	of	water	molecule	pairs	 to	be	

rotated	and	the	degree	of	rotation)	varied	between	each	simulation.	Water	pairs	were	chosen	
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at	random	for	each	rotation,	meaning	that	a	different	sub-set	of	water	molecules	received	

changes	to	their	orientations	each	time	a	rotational	shooting	move	was	implemented.		

	

In	 addition,	 the	 rotational	 shooter	 scheme	 was	 coupled	 with	 the	 Martonák	 scheme	 of	

metadynamics,	in	order	to	induce	changes	to	the	simulation	cell.[75,76]	The	motivation	behind	

this	was	to	introduce	a	‘collective’	change	alongside	the	‘random’	change	instigated	by	the	

rotational	shooting,	with	the	ultimate	goal	of	maximising	the	chance	of	instigating	a	structural	

change	 within	 the	 simulated	 system.	 For	 example,	 whilst	 rotational	 shooting	 causes	

perturbations	 in	 the	 local	 hydrogen	 bonding	 arrangement,	 the	 metadynamics	 driver	

concurrently	 changes	 the	 shape,	 size	and	 symmetry	of	 the	 simulation	 cell	 (and	hence	 the	

density),	 with	 the	 aim	 of	 facilitating	 a	 transformation	 event.	 Parameters	 for	 the	

metadynamics	 scheme	were	 also	 system	 dependent,	 and	 are	 reported	 on	 a	 case-by-case	

basis.	
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6.5.2. Results	and	Discussion	

	

6.5.2.1. Overview	

	

The	rotational	shooting	technique,	coupled	with	the	metadynamics	driver,	produced	a	great	

number	of	interesting	configurations	within	very	short	simulation	time	scales.	Unfortunately,	

no	 direct	 crystalline	 solid-solid	 transformations	were	 observed	 in	 this	way.	 However,	 the	

combination	of	the	two	methods	allowed	for	the	generation	of	trajectories	corresponding	to	

melting	 events,	 phase	 transitions	 between	 crystalline	 and	 amorphous	 phases	 and	 the	

coexistence	of	liquid	and	solid	phases,	as	well	as	the	generation	of	exotic	configurations,	from	

crystalline	Ice	Ih	and	Ice	III	phases.	Each	of	these	types	of	event	is	discussed	below.	

	

	

6.5.2.2. Melting	Events	

	

A	considerable	number	of	metatrajectories	with	rotational	shooting	produced	configurations	

that	corresponded	to	melted,	or	partially	melted	structures.	Liquid	configurations	could	be	

generated	from	both	Ice	Ih	and	Ice	III	configurations	–	this	is	expected,	as	the	simulations	were	

carried	 out	 at	 the	 triple	 point	 of	 these	 three	 phases	 for	 the	 !"#4#/"()	 model.	 Such	

trajectories	could	find	significant	use	in	the	modelling	of	the	melting	of	Ice	–	for	example,	by	

using	 the	 model	 to	 generate	 an	 initial	 trajectory	 for	 use	 in	 a	 subsequent	 path	 sampling	

investigation	of	the	transformation.	

	

	

Metastep-Rotation	0	
0	ps	

Metastep-Rotation	500	
250	ps	

Metastep-Rotation	620	
310	ps	
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Figure	6.xiv	(previous	page):	An	example	of	a	metatrajectory	showing	a	melting	event.	The	

initial	ice	III	structure	(left)	undergoes	partial	melting	(centre)	before	forming	liquid	water	

(right).	The	intermediate	structure	clearly	shows	regions	that	are	still	solid,	as	well	as	portions	

of	the	structure	that	have	fully	liquefied.	Such	observations	are	facilitated	by	joint	use	of	the	

metadynamics	and	rotational	shooting	techniques.	Only	O-O	contacts	are	shown	for	clarity.	

	

	

	
	

Figure	6.xv:	Oxygen-oxygen	radial	distribution	functions	for	the	initial	configurations	(Ice	III,	

blue)	and	the	final	configurations	(orange)	corresponding	to	the	melted	phase	from	the	

example	exhibited	in	Figure	6.xiv.	The	orange	plot	clearly	exhibits	the	distribution	function	of	

liquid	water,	and	has	been	offset	by	5.0	along	the	y	axis	for	clarity.	
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Melting	was	observed	in	simulations	where	the	metadynamics	parameters	were	‘strong’	

and	the	rotational	parameters	‘weak’	–	for	example,	systems	in	which	only	1-2%	of	the	

water	molecules	were	rotated	at	each	metastep.	In	the	represented	Ice	III	system	(Figure	

6.xiv),	melting	was	achieved	by	rotation	of	10	molecules	by	10°	each	metastep,	with	an	

external	pressure	of	50	KPa.	The	Gaussian	widths	and	heights	were	2.0	and	4.0	respectively	

and	deposited	every	500	simulation	steps.	The	system	temperature	was	set	at	219.4	K	(the	

triple	point	of	Ice	Ih,	III	and	liquid	water	for	the	model),	and	the	molecular	dynamics	

integration	time	step	was	1	fs.	

	

The	simulation	of	melting	events	in	this	way	is	undoubtedly	facilitated	by	the	combined	use	

of	 both	 the	 rotational	 shooting	 procedure	 and	 the	 Martonák	 metadynamics	 driver.	

Configurations	which	were	subjected	to	rotational	shooting	only,	without	a	corresponding	

volume	 change,	 tended	 to	 produce	 amorphous	 phases	 (the	 exact	 type	 of	 which	 was	

dependent	on	the	 initial	configuration).	Trajectories	that	were	subjected	to	metadynamics	

only	 transformed	 in	 a	 collective	 fashion	 after	 considerably	 longer	 periods	 of	 time,	 with	

resultant	trajectories	often	not	containing	any	‘local’	deformation	and	hence	nucleation	and	

growth	 events.	 Whilst	 such	 events	 need	 not	 necessarily	 accurately	 model	 a	 physically	

meaningful	growth	or	nucleation	process,	they	were	often	present	 in	trajectories	 in	which	

rotational	 shooting	 was	 also	 used	 and	 may	 represent	 more	 plausible	 transformation	

pathways	than	those	exhibited	solely	by	metadynamics.	

	

	

6.5.2.3. Amorphous	Phases	

	

The	 combined	 technique	was	 able	 to	 generate	 samples	of	 all	 three	of	 the	experimentally	

known	 amorphous	 ice	 structures	 –	 LDA,	 HDA	 and	 VHDA.	 The	 nature	 of	 the	 generated	

amorphous	 structure	was	 dependent	 on	 both	 the	 initial	 configuration	 and	 the	 rotational	

shooting	 /	metadynamics	 parameters	 utilised.	 The	 identities	 of	 the	 amorphous	 ices	were	

conclusively	 confirmed	 by	 plotting	 their	 radial	 distribution	 functions	 and	 densities,	 and	

comparing	them	with	the	plots	displayed	in	Figure	6.vii.	
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Low	density	amorphous	ice	could	be	generated	from	samples	of	Ice	Ih,	often	forming	mixtures	

with	liquid	water.	Such	configurations	were	generated	when	both	the	rotational	shooting	and	

metadynamics	parameters	were	modest	–	 for	example,	with	1-2%	of	the	molecules	 in	the	

sample	undergoing	rotation,	with	deposited	Gaussians	having	very	small	widths	and	heights	

for	the	system	size.	It	is	believed	that	breaking	the	hydrogen	bonding	network	in	this	way,	

whilst	not	affecting	the	density	of	the	system	too	much,	allowed	for	the	formation	of	the	low	

density	amorphous	ice	phase	from	the	starting	hexagonal	ice	structure.		

	

However,	it	is	difficult	to	truly	differentiate	between	the	liquid	and	amorphous	solid	phases	

using	 radial	 distribution	 measurements.	 In	 addition,	 the	 density	 of	 most	 of	 these	 final	

configurations	 measured	 at	 around	 0.97	 g	 cm
-3
	 –	 halfway	 between	 the	 liquid	 and	 the	

amorphous	 phase.	 Such	 configurations	 could	 represent	 a	 mixture	 of	 solid	 and	 liquid	

components,	 or	 a	 transition	 state	 between	 the	 amorphous	 and	 the	 liquid	 phases.	

Alternatively,	they	could	represent	a	variation	of	the	low	density	ice	structure,	or	be	resultant	

simply	from	an	overestimation	of	the	density	according	to	the	!"#4#/"()	model.	

	

Amorphous	 phases	 of	 higher	 density	 could	 also	 be	 generated,	 with	 the	 nature	 of	 the	

presented	phase	appearing	to	be	highly	dependent	on	the	initial	configuration.	The	high	and	

very	high	density	amorphous	phases	were	generated	only	from	initial	samples	of	Ice	Ih	and	

Ice	III,	respectively.	

	

High	 density	 amorphous	 ice	 (HDA)	 could	 be	 generated	 from	 Ice	 Ih,	 in	 simulations	 where	

reasonably	‘strong’	parameters	for	the	rotational	shooter	and	the	metadynamics	driver	were	

utilised.	

	

In	the	example	presented,	a	480	molecule	system	was	utilised.	HDA	was	produced	by	rotation	

of	~5%	of	the	molecules	at	each	metastep	by	30°	and	with	Gaussian	widths	and	heights	of	

0.05	and	0.5	respectively	being	deposited	every	500	simulation	steps.	A	lower	temperature	

of	100	K	was	used	in	this	example,	with	an	integration	time	step	of	0.5	fs.	The	density	of	the	

final	structure	(1.20	g	cm
-3
),	as	well	as	its	O-O	radial	distribution	plot,	unambiguously	confirms	

its	identity	as	the	high	density	amorphous	structure.	
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Figure	6.xvi:	A	high-density	amorphous	ice	configuration,	produced	from	an	initial	120	

molecule	Ice	Ih	structure	(top)	and	its	associated	O-O	radial	distribution	function	(bottom).	

With	a	density	of	1.20	g	cm-3	and	the	‘double	peak’	centred	around	4	Å	in	the	radial	

distribution	function	(similar	to	the	literature	data	presented	in	Figure	6.vii)	this	configuration	

can	be	conclusively	characterised	as	high	density	amorphous	(HDA)	ice.		

	

	

	

Similarly,	 very	 high	 density	 amorphous	 ice	 (VHDA)	 could	 be	 generated	 from	 initial	

configurations	 of	 Ice	 III,	 in	 systems	 with	 relatively	 ‘strong’	 rotational	 shooting	 and	

metadynamics	parameters.	
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The	example	presented	here	was	obtained	from	rotation	of	600	molecules	by	10°	at	each	

metastep,	with	an	external	pressure	of	100	KPa	with	Gaussian	widths	and	heights	of	3.0	and	

9.0	respectively.	Gaussians	were	deposited	every	500	simulation	steps,	each	of	which	equated	

to	1	fs.	Once	again,	the	radial	distribution	plot	and	density	(1.30	g	cm-3)	conclusively	confirms	

the	formation	of	a	very	high	density	amorphous	phase.	

	

	

		 	
	

	

	
	

Figure	6.xvii:	A	very	high-density	amorphous	ice	structure,	produced	from	the	large	Ice	III	

structure	(top).	The	O-O	radial	distribution	function	(bottom)	shows	similar	peaks	at	

approximately	3	Å	and	6	Å	as	the	literature	data	in	Figure	6.vii,	corresponding	to	the	VHDA	

structure.	A	density	of	1.30	g	cm-3	also	confirms	this	designation.		
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6.5.2.4. Non-typical	Events	

	

	

	

Figure	6.xviii:	An	example	of	an	atypical	ice	configurations	generated	by	the	rotational	

shooting	/	metadynamics	procedure	-	the	formation	of	an	internal	surface	by	shearing	caused	

by	rapid	lengthening	of	the	c	axis	of	the	simulation	cell.	Such	configurations	could	also	be	

very	useful	in	ice	modelling.	

	

	

The	 rotational	 shooter	method	 also	 gave	 rise	 to	 some	 very	 unusual	 configurations	 of	 ice	

Examples	included	systems	with	large	pores,	cavities	and	channels;	the	generation	of	shears	

and	internal	surfaces;	and	the	formation	of	two-dimensional	layers	of	water/ice	with	large	

inter-layer	gaps.	If	such	processes	represent	physically	meaningful	processes,	they	could	find	

use	in	the	modelling	of	catalysis,	carbon	dioxide/methane	sequestration,	and	environmental	

sciences.	

	

Unfortunately,	 there	 appears	 to	 be	 little	 correlation	 between	 the	 magnitude	 of	 the	

parameters	used	and	the	different	events	witnessed	from	the	procedure.	Despite	this,	the	

generation	 of	 such	 configurations	 remains	 interesting	 and	 potentially	 useful.	 Further	

investigation	to	determine	how	to	accurately	replicate	these	events,	as	well	as	assessing	their	

physical	viability,	would	be	beneficial	in	the	future.	
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6.6. Metadynamics	using	plumed	

	

6.6.1. Methodology	

	

6.6.1.1. Introduction	

	

The	 second	 part	 of	 this	 results	 chapter	 is	 dedicated	 to	 the	 investigation	 of	 the	 phase	

behaviour	of	 ice	using	metadynamics	without	the	rotational	shooting	 implementation	and	

with	a	different	set	of	collective	variables.	

	

To	ascertain	the	most	effective	order	parameters	to	use	for	this	work,	a	number	of	different	

collective	 variables	 were	 initially	 tested	 in	 order	 to	 determine	 which	 best	 captured	 the	

behaviour	of	 the	water	molecules.	The	prescription	ultimately	used	was	a	 combination	of	

three	collective	variables;	the	Q4	and	Q6	Steinhardt	Parameters,	and	a	tetrahedral	ordering	

Parameter.	 Both	 the	 Steinhardt	 parameters[82,83]	 and	 tetrahedral	 ordering[84]	 variables	 are	

implemented	within	the	plumed	metadynamics	plugin,	and	both	are	briefly	described	in	the	

following	section.[77]		

	

	

6.6.1.2. Steinhardt	Parameters	(Q4	and	Q6)	

	

Occasionally	the	difference	in	densities	between	different	solid	phases	(and	even	the	solid	

and	liquid	phases)	of	a	material	are	very	similar	to	one	another,	thus	differentiation	between	

different	phases	and	states	of	matter	can	often	be	difficult	using	coordination	number	alone.	

Steinhardt	parameters[68]	offer	an	intuitive	way	of	calculating	the	degree	of	ordering	within	

the	 first	 coordination	 sphere	 of	 a	 material	 by	 using	 a	 spherical	 harmonic	 function	 –	 a	

mathematical	expression	defined	on	the	surface	of	a	sphere.	Within	plumed,[82,83]	Steinhardt	

parameters	are	calculated	using	the	expression:	

	

4ca p = 	 1
3(-er)r

3(-er)sca(ter)
r

							[N4	6.1]	
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where	3	corresponds	to	the	switching	function	acting	on	the	distance	between	sites	p	and	w,	
ter 	corresponds	to	the	vector	linking	the	two	aforementioned	atoms	and	sca	corresponds	to	
the	spherical	harmonic	function.	The	degree	of	global	ordering	can	be	ascertained	by	taking	

the	norm	of	the	vector	quantity	produced	by	the	below	equation:	

	

xc p = 	 4ca p ∗4ca(p)
c

ay	Wc
							[N4	6.2]	

	

Using	spherical	harmonics	 in	 this	way	means	 that	atoms	coordinated	 to	a	central	 site	will	

‘point’	towards	similarly	values	regions	of	the	spherical	function,	meaning	that	highly	ordered	

phases	will	 give	 a	 large	 positive	 (or	 negative)	 value	 of	 the	 collective	 variable.	 Conversely,	

highly	disordered	phases	will	produce	values	closer	to	zero	according	to	the	function,	as	such	

configurations	where	atoms	are	orientated	towards	differently	valued	regions	of	the	spherical	

function	will	largely	cancel	out.	

	

The	value	of	V	determines	which	order	of	spherical	harmonics	is	to	be	utilised	for	the	collective	

variable.	 The	 possible	 number	 of	 orthogonal	 functions	 for	 a	 particular	 order	 of	 spherical	

harmonics,	given	by	value	of	U,	is	equal	to	±V.	Thus,	the	total	number	of	possibilities	of	U	is	

equal	 to	2V + 1,	which	accounts	 for	all	of	 the	possible	orthogonal	ways	 that	 the	spherical	
function	can	be	orientated.	For	example,	when	using	the	sixth-order	Steinhardt	parameter	

4{,	thirteen	different	configurations	of	spherical	harmonics	are	calculated	in	order	to	ensure	

that	only	the	ordering,	not	the	orientation,	of	 the	substituents	bound	to	the	central	atom	

affect	the	final	quantity	calculated	for	the	collective	variable.	

	

Whilst	 the	Steinhardt	parameters	are	generally	used	 to	distinguish	between	 the	 solid	and	

liquid	phases	of	a	material,	they	have	been	used	to	great	effect	in	the	modelling	of	solid-solid	

phase	 transitions.	 In	 particular,	 a	 considerable	 amount	 of	 literature	 uses	 such	 functions	

exactly	 for	 solid-solid	 phase	 transitions,	 including	 in	 water	 ice.	 Within	 plumed,	 they	 are	

referred	to	as	the	multi-collective	variables	Q4	and	Q6	for	the	fourth-order	and	sixth-order	

Steinhardt	parameters,	respectively.	
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6.6.1.3. Tetrahedral	Parameter	(TET)	

	

The	tetrahedral	ordering	parameter	incorporated	into	plumed	is	used	to	measure	the	degree	

to	which	the	first	coordination	sphere	around	a	central	atom	is	tetrahedrally	coordinated.[84]	

This	is	given	by	the	function:	

	

| p = 	 1
3(ter)r

3(-er)
r

ner +	@er	+	oer
7

ter7
+ ner −	@er	– 	oer

7

ter7
+ −	ner +	@er	−	oer

7

ter7

+	 −	ner −	@er	+	oer
7

ter7
							[N4	6.3]	

	

where	once	again	3	 corresponds	 to	 the	plumed	 switching	 function	acting	on	 the	distance	

between	atoms	p	and	w,	ter 	corresponds	to	the	vector	linking	atoms	p	and	w,	and	ner,	@er 	and	
oer 	correspond	to	the	x,	y	and	z	components	of	vector	ter 	respectively.		
	

Although	all	water	molecules	in	all	ice	phases	are	arranged	tetrahedrally,	small	variations	in	

the	degree	of	this	ordering	can	be	detected	using	this	multi-collective	variable.	In	addition,	it	

can	be	used	to	easily	classify	the	differences	between	solid,	liquid	and	melt	phases,	as	well	as	

between	crystalline	and	amorphous	solid	phases.	

	

	

6.6.1.4. Computational	Details	

	

All	calculations	contained	in	this	section	were	carried	out	using	the	cp2k	package	within	the	

canonical	ensemble	(hi!).	Molecular	dynamics	integration	was	performed	using	a	velocity	

Verlet	scheme,	with	a	time-step	of	2	fs.	Periodic	boundary	conditions	were	implemented	in	

the	n,	@	and	o	directions	to	emulate	a	bulk	crystalline	system.	

	

As	above,	the	!"#4#/"()	rigid-body	model	was	utilised	to	describe	interatomic	interactions	

between	 the	 water	 molecules.[41]	 1200	 water	 molecules	 were	 simulated	 in	 each	 system,	

corresponding	 to	 4800	 atomic	 sites	 (two	 hydrogens,	 one	 oxygen	 and	 one	 virtual	 site	 per	
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molecule).	 All	 starting	 configurations	 were	 generated	 such	 that	 they	 strictly	 obeyed	 the	

Bernal-Fowler	 ice	 rules,	 exhibiting	no	Bjerrum	defects.	 The	RATTLE	algorithm	was	utilised	

within	cp2k	to	impose	the	geometric	constraints	on	the	system.
[80]

	Long	range	electrostatics	

were	accounted	for	using	an	Ewald	summation.	

	

The	system	temperature	was	controlled	by	using	 the	Canonical	Sampling	through	Velocity	

Rescaling	 (CSVR)	 thermostat,
[81]

	 with	 an	 appropriate	 time	 constant	 chosen	 such	 that	 the	

temperature	was	effectively	regulated	but	not	overdriven.	The	simulation	temperature	was	

set	at	219.4	K,	corresponding	to	the	temperature	at	the	triple	point	of	 Ices	 I,	 III	and	liquid	

water,	as	described	by	the	!"#4#/"()	model.	

	

Metadynamics	 was	 implemented	 using	 the	 plumed	 plug-in,[77]	 coupled	 to	 the	 cp2k	 MD	

integrator.	 The	 standard	 implementation	 of	 metadynamics	 was	 utilised	 in	 this	 work,	 i.e.	

without	 the	 well-tempered	 or	 multivariate-Gaussian	 modifications.	 The	 Q4,	 Q6	 and	 TET	

collective	variables	were	utilised,	with	Gaussian	widths	of	0.3,	0.3	and	0.2	for	each	parameter,	

respectively.	The	Gaussian	heights	were	set	at	16	kJ	mol
-1
.	Gaussians	were	deposited	in	the	

space	of	the	collective	variables	every	500	time	steps,	corresponding	to	each	picosecond	of	

simulation	time.	This	combination	of	Gaussian	height	and	deposition	rate	allowed	for	the	bias	

potential	to	be	built	up	within	an	acceptable	time-frame	whilst	giving	the	system	enough	time	

to	evolve	appropriately	during	the	intervening	molecular	dynamics	propagations.	
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6.6.2. Results	and	Discussion	

	

6.6.2.1. Evolution	of	the	Metatrajectory	

	

The	metadynamics	with	plumed	approach	was	able	to	induce	a	solid-solid	phase	transition	

between	two	configurations	of	water	ice.	A	third	polymorph	appeared	as	a	transient	structure	

during	 this	 transformation,	 corresponding	 to	 a	 medium-density	 intermediate	 phase.	

Additionally,	 a	 number	 of	 amorphous	 regions	were	 generated	 over	 the	 procedure,	which	

appeared	to	play	a	crucial	role	in	the	transformation	between	Ice	III	and	the	cubic	Ice	Ic	phase.	

This	result	could	only	be	achieved	by	simultaneously	applying	the	bias	potential	in	the	space	

of	all	three	collective	variables	described	above.	

	

	

	
	

	

Figure	6.xix:	Two	representations	of	the	starting	Ice	III	structure.	As	previously,	only	oxygen-

oxygen	contacts	have	been	drawn	for	clarity.	

	

	

Initial	Gaussian	deposition	simply	caused	the	Ice	III	structure	to	fluctuate	within	its	associated	

energy	basin,	causing	local	distortions	and	oscillations.	However,	after	360	ps	of	simulation,	

the	system	began	to	transform	into	a	new	configuration.	Starting	from	a	small	seed	of	the	

Metastep	0	-	0	ps	
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new	material,	the	new	configuration	grew	at	the	expense	of	the	Ice	III	starting	structure	over	

the	next	200	ps	of	simulation.		

	

	

	

	

	

	

	

	

Figure	6.xx:	Evolution	of	the	meta-trajectory	between	metasteps	720	and	920.	Ice	III	

(highlighted	in	blue)	is	gradually	replaced	by	an	intermediate	phase	(highlighted	in	orange).	

The	intermediate	phase	had	a	coordination	number	intermediate	between	that	of	Ice	III	and	

Ice	Ic	

	

	

The	growth	of	the	new	material	continued	to	take	place	until	all	of	the	initial	Ice	III	motifs	had	

been	transformed.	By	metastep	550,	Ice	III	has	been	completely	eliminated	and	replaced	by	

the	second	crystalline	phase.	

	

This	new	configuration	of	ice	appears	to	have	a	coordination	sphere	intermediate	between	

that	 of	 Ice	 III	 and	 Ice	 Ic,	 and	 does	 not	 correspond	 to	 any	 of	 the	 eighteen-known	 phases,	

clathrate	phases	or	the	so-called	 ‘computer	 ice’	 Ice	0.	 Its	geometry	 is	defined	by	puckered	

Metastep	360	
360	ps	

Metastep	424	
424	ps	

Metastep	460	
460	ps	
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sheets	 of	 pentagonal	 rings	 (similar	 to	 that	 of	 the	 Cairo	 tiling),[85]	with	 every	 other	 water	

molecule	hydrogen	bonding	to	the	layer	above	or	below	it	 in	an	alternating	fashion.	Inter-

oxygen	distances	vary	considerably	during	the	simulation,	ranging	between	2.55	Å	and	2.95	

Å,	with	little	correlation	between	same-	and	inter-layer	O-O	contacts.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.xxi:	Representations	of	the	intermediate	polymorph	of	ice.	The	structure	bears	

resemblance	to	that	of	the	Cairo	tiling,	with	alternating	water	molecules	in	each	layer	

involved	with	same-layer	and	inter-layer	interactions.	The	puckered	layers	are	clearly	seen	in	

(a),	whereas	the	characteristic	pentagonal	tiling	is	displayed	in	(b).	

	

	

The	intermediate	species	persisted	within	the	simulation	in	its	entirety	for	approximately	160	

ps,	corresponding	to	the	same	number	of	additional	metasteps.	However,	at	metastep	600	

the	 system	 begins	 to	 undergo	 another	 change.	 At	 metastep	 640	 an	 abrupt	 modification	

occurs,	with	 two-thirds	of	 the	system	reverting	back	 to	 Ice	 III,	while	 the	 remainder	of	 the	

system	loses	its	crystallinity	to	form	an	amorphous	phase.	Over	the	following	nanosecond	of	

simulation,	the	reconstructed	ice	III	is	gradually	consumed	by	the	amorphous	phase,	which	

slowly	spreads	along	the	[010]	direction	until	the	ice	III	is	once	again	completely	consumed.	

	

Metastep	556	-	556	ps	
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Simultaneously,	 isolated	 regions	of	 the	amorphous	 ice	begin	 to	crystallise	 into	cubic	 Ice	 I,	

which	too	spreads	along	the	[010]	direction.	At	this	point	in	the	simulation,	pockets	of	Ice	Ic	

are	very	localised	and	largely	insignificant	to	the	overall	structure.	However,	it	can	be	seen	

that	for	large	periods	of	the	metatrajectory	between	metasteps	640	and	1200,	there	exists	

co-existing	motifs	of	Ices	Ic	and	III,	as	well	as	the	medium-density	amorphous	phase.	

	

	

	

	

	

	

	

	

	

	

Figure	6.xxii:	Illustrations	showing	the	partial	reconstruction	of	Ice	III	from	the	ice	

intermediate	phase	(shaded	in	orange).	Approximately	2/3	of	the	structure	regains	an	Ice	III-

like	topology	(blue),	with	the	remainder	dominated	by	an	amorphous	phase	(grey).	There	are	

also	trace	amounts	of	Ice	Ic	nestled	within	the	amorphous	phase.	

	

	

Local	motifs	of	Ice	III	persist	for	the	following	nanosecond	of	simulation	time,	however	most	

of	these	structures	are	subject	to	local	distortions	caused	by	the	surrounding	oscillations	in	

the	amorphous	phase.	At	this	point,	a	large	region	of	Ice	Ic	slowly	begins	to	crystallise	within	

the	 amorphous	 structure,	 and	 gradually	 replaces	 it	 by	 once	 again	 spreading	 in	 the	 [010]	

Metastep	600	
600	ps	

Metastep	680	
680	ps	

Metastep	760	
760	ps	
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direction.	By	metastep	1200,	there	is	no	trace	of	Ice	III	remaining	in	the	structure,	and	the	

system	is	dominated	by	amorphous	ice,	with	small	trace	of	cubic	Ice	Ic	present.	

	

The	 simulation	 continues	 for	 another	 4800	 metasteps,	 corresponding	 to	 a	 further	 4.8	

nanoseconds.	 However,	 very	 few	 structural	 changes	 occur	 during	 this	 considerable	 time	

frame,	with	the	exception	being	that	some	of	the	amorphous	ice	undergoes	crystallisation	to	

Ice	Ic.	The	final	structure	in	the	metadynamics	run	is	an	almost	entirely	Ice	Ic	structure,	albeit	

containing	 a	 substantial	 quantity	 of	 defects	 and	 some	 small	 regions	 corresponding	 to	 the	

amorphous	ice.	Further	metasteps	were	unable	to	alter	the	structure	reported	here.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Metastep	1140	
1.14	ns	

Metastep	2040	
2.04	ns	

Metastep	6600	–	6.6	ns	
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Figure	6.xxiii	(previous	page):	The	evolution	of	the	amorphous	phase	of	ice.	At	metastep	

1140,	a	clear	region	of	Ice	Ic	(labelled	green)	has	begun	to	form,	which	spreads	along	(010)	at	

the	expense	of	the	amorphous	ice.	This	continues	to	grow	for	the	next	5.46	ns	of	simulation	

time,	with	the	final	structure	at	metastep	6600	(after	6.6	ns	of	simulation)	consisting	

predominantly	of	Ice	Ic	but	containing	a	considerable	number	of	defects.	

	

	

	

It	is	curious	that	the	metadynamics	procedure	was	able	to	find	the	Ice	Ic	polymorph,	however	

showed	 no	 trace	 of	 ambient	 hexagonal	 Ice	 Ih.	 However,	 this	 is	 not	 entirely	 unexpected;	

previous	theoretical	work	has	suggested	that	cubic	ice	will	be	generated	preferentially	over	

the	ambient	hexagonal	form	in	certain	circumstances,[69]	one	of	which	is	if	the	simulation	cell	

corresponds	with	the	symmetry	of	Ice	Ic.	This	is	the	case	in	this	work,	as	the	simulation	cell	

did	not	exhibit	a	geometry	commensurate	with	hexagonal	symmetry.	

	

Thus,	the	results	of	the	metadynamics	simulations	presented	here	helps	to	corroborate	both	

the	 experimental	 and	 theoretical	 work	 that	 has	 been	 published	 in	 the	 past.	 However,	 it	

presents	 a	 novel	 solid-solid	 mechanism	 between	 two	 experimentally	 known	 crystalline	

phases	of	ice,	as	well	as	an	intermediate	phase	not	experimentally	known.	

	

Analysis	of	 the	radial	distribution	plots	during	key	moments	of	 transformation	gives	some	

insight	into	the	crystallinity	and	structure	types	present	during	the	transformation.	The	}..	
distribution	function	for	Ice	III	and	the	intermediate	structure	show	an	ordered,	crystalline	

behaviour	within	the	first	10	Å.	The	Ice	Ic/amorphous	distribution	function,	however,	shows	

considerable	long-term	disorder,	caused	by	the	many	defects	present	in	the	structure.	The	

double-peak	around	4	Å	is	similar	to	that	seen	in	high-density	amorphous	ice.	
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Figure	6.xxiv:	Oxygen-oxygen	radial	distribution	function	for	the	pure	Ice	III	polymorph	(blue),	

the	intermediate	polymorph	(orange)	and	the	final	product,	which	was	a	mixture	of	cubic	Ice	

Ic	and	amorphous	ice	(green).	The	plots	for	Ice	III	and	the	intermediate	phase	demonstrated	

the	ordered,	periodic	nature	of	these	structures.	The	Ice	Ic	curve,	however,	exhibits	some	

features	corresponding	to	a	crystalline	phase,	however	at	large	values	of	distance	clearly	

shows	amorphous	behaviour,	with	no	ordered	peaks	after	6	Å.	Both	the	Ice	Ic/amorphous	

and	intermediate	distribution	plots	bear	some	resemblance	to	the	radial	distribution	function	

of	high	density	amorphous	(HDA)	ice,	featuring	the	characteristic	‘double-peak’	at	

approximately	4	Å	seen	in	Figure	6.vii.	The	orange	and	green	plots	have	been	offset	along	the	

y	axis	by	5	and	10	respectively,	for	clarity.	
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6.6.2.2. Evolution	of	the	Collective	Variables	

	

It	is	clear	that	the	beginning	of	the	simulation,	the	system	is	very	responsive	to	the	application	

of	the	bias	potential	in	the	space	of	three	chosen	collective	variables.	The	amplitude	exhibited	

by	the	variation	in	each	of	the	CVs	increases	steadily	for	the	first	200	metasteps.	A	number	of	

pronounced	changes	can	be	observed,	which	can	be	attributed	directly	to	observed	events	

over	the	course	of	the	trajectory.	
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Figure	6.xxv	(previous	page):	The	variation	in	the	three	collective	variables	over	the	first	580	

metasteps	(580	ps)	of	the	simulation.	The	TET	parameter	in	particular	is	very	responsive	to	

the	metadynamics	procedure	at	this	stage,	being	able	to	distinguish	between	small	

fluctuations	in	the	initial	Ice	III	phase,	as	well	as	between	Ice	III	and	the	intermediate	

polymorph.	The	Q4	and	Q6	parameters	show	little	variation	when	the	system	resides	in	the	

Ice	III	basin,	however	shows	a	clear	change	after	the	transformation	to	the	intermediate	

phase.	

	

	

The	system	continues	to	respond	to	the	collective	variable	bias	for	the	next	400	metasteps,	

corresponding	 to	 the	 re-formation	 of	 the	 Ice	 III	 and	 subsequent	 replacement	 by	 the	

amorphous	 phase.	However,	 following	 the	 formation	 of	 this	 phase,	 the	 system	no	 longer	

reacts	to	the	action	of	the	metadynamics.	Instead,	after	approximately	980	ps	of	simulation,	

the	collective	variables	gradually	relax	into	their	final	basin,	corresponding	to	the	mixed	Ice	Ic	

/	amorphous	product.	

	

There	 are	 numerous	 possible	 reasons	 for	 this.	 Firstly,	 as	 the	 resultant	 phase	 is	 largely	

amorphous	in	nature,	it	is	possible	that	average	coordination	parameters	are	unlikely	to	have	

a	 significant	 global	 effect	 on	 the	 system.	 However,	 it	 is	 believed	 that	 the	 most	 likely	

explanation	for	this	loss	of	effectiveness	of	the	metadynamics	procedure	is	that	the	Gaussian	

dimensions	are	no	longer	appropriate	for	the	system	in	this	configuration.	To	combat	this,	

rescaling	of	the	widths	and	heights	of	the	Gaussian	would	be	necessary	at	this	point.	This	can	

be	 justified	 by	 looking	 at	 the	 variation	 in	 the	 collective	 variables.	 In	 particular,	 the	 TET	

parameter	 takes	 on	 a	 range	 of	 values	 over	 the	 last	 5	 ps	 of	 the	 simulation,	 despite	 ice	

configurations	not	appearing	to	alter	significantly.	

	

Thus,	there	is	a	clear	sequence	of	events	during	this	metatrajectory:	

	

Ice	III	à	Cairo-like	Intermediate	à	Ice	III/Amorphous	à	Amorphous	à	Ice	Ic/Amorphous	

	

This	raises	the	tantalising	possibility	that,	whilst	a	direct	phase	transition	between	Ice	III	and	

the	novel	intermediate	phase	is	possible,	a	transition	to	Ice	Ic	may	proceed	via	an	amorphous	
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intermediate.	A	possible	future	investigation	using	path	sampling	techniques	would	be	highly	

desirable	to	classify	this	transformation	further.	

	

	

	

	

	

	

	
	

	

	

	

Figure	6.xxvi:	Collective	variable	analysis	during	the	remainder	of	the	simulation.	Abrupt	

changes	are	seen	before	1	ns,	corresponding	to	the	reformation	of	Ice	III	and	the	formation	

of	the	amorphous	phase.	However,	after	this	the	CVs	appear	to	be	unresponsive	to	further	

metadynamics	iterations,	and	the	system	simply	‘relaxes’	into	the	Ice	Ic/amorphous	basin.	
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6.7. Conclusions	and	Future	Work	

	

Within	 this	 work,	 two	 distinct	 methods	 have	 been	 utilised	 in	 an	 attempt	 to	 disrupt	 the	

hydrogen	bonding	network	between	molecules	in	simulated	systems	of	water	ice,	and	hence	

endeavour	 to	 facilitate	 a	 phase	 transition.	 The	 first	 method,	 the	 rotational	 shooting	

technique,	was	developed	in	this	work	and	is	used	to	directly	break	the	hydrogen	bonding	

network	by	enforcing	a	change	to	the	orientation	of	a	sub-set	of	the	water	molecules	within	

the	system.	The	second	method,	metadynamics,	biases	the	entire	system	within	the	space	of	

a	defined	set	of	collective	variables,	in	order	to	induce	geometric	change	within	the	structure.	

	

The	 rotational	 shooter	 has	 demonstrated	 that,	 when	 coupled	 with	 Martonák-style	

metadynamics,	it	offers	a	powerful	tool	for	generating	atypical	configurations	of	water	ice.	

The	 rotational	 shooter	 was	 successfully	 able	 to	 generate	 configurations	 of	 the	 three	

experimentally	known	amorphous	phases,	as	well	as	‘melting’	events	leading	to	the	formation	

of	liquid	water.	The	densities	and	radial	distribution	plots	of	these	phases	bears	remarkable	

resemblance	 to	 those	 seen	 in	 previous	 theoretical	 and	 experimental	 studies.	 In	 addition,	

fissures	and	cavities	within	structures	of	 ice,	as	well	as	the	generation	of	 internal	surfaces	

which	 could	 have	 interesting	 implications	 for	 gas	 adsorption	 or	 catalysis.	 However,	 the	

method	can	be	unpredictable.	Whilst	the	method	certainly	facilitates	the	generation	of	novel	

and	surprising	effects,	greater	control	over	the	rotation	process	would	be	highly	desirable.	

One	possible	way	 to	achieve	 this	would	be	 to	 implement	 the	 rotation	as	a	 true	collective	

variable	within	 the	metadynamics	 framework	 (rather	 than	as	an	external	perturbation)	 to	

allow	for	a	more	systematic	approach	to	its	variation.	

	

Unfortunately,	 no	 direct	 solid-solid	 phase	 transition	 was	 observed	 using	 the	 rotational	

shooter	method	with	Martonák-style	metadynamics.	The	reason	for	this	is	likely	due	to	the	

low	 probability	 of	 a	 regional	 re-orientation	 of	 hydrogen	 bonding	 forming	 an	 ordered,	

crystalline	 phase	 –	 let	 alone	 the	 propagation	 and	 subsequent	 growth	 of	 that	 phase.	 It	 is	

speculated	that	inducing	a	phase	transition	in	this	way	is	possible,	albeit	unlikely	without	a	

systematic	 screening	 of	 sub-set	 sizes,	 angle	 ranges	 and	 metadynamics	 parameters.	
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Nevertheless,	 it	presents	a	useful	 tool	 for	generating	amorphous	phases	of	 ice,	as	well	as	

simulating	rare	configurations	which	feature	internal	surfaces	and	structural	defects.	

	

Using	metadynamics	with	plumed	to	bias	the	system	in	the	space	of	three	collective	variables	

–	 the	 Steinhardt	Q4	 and	Q6	 parameters,	 and	 a	 tetrahedral	 ordering	 parameter	 –	was	 an	

extremely	successful	approach	to	modelling	a	phase	transition	between	two	ice	phases.	Not	

only	was	able	to	model	a	solid-solid	phase	transition	between	Ice	III	and	(predominantly)	Ice	

I
c
,	it	also	forced	the	system	to	visit	an	intermediate	configuration,	which	did	not	correspond	

to	 any	 of	 the	 eighteen	 phases	 of	water-ice	 present	 on	 the	 phase	 diagram.	However,	 this	

approach	is	not	without	considerable	potential	for	improvement.	

	

Firstly,	whilst	the	metadynamics	scheme	presented	has	been	an	excellent	tool	for	finding	a	

number	of	ice	configurations,	it	does	not	give	any	definitive	evidence	of	how	these	phases	

transform	between	each	other.	The	results	reported	seem	to	suggest	a	pathway	between	Ice	

III	 and	 Ice	 I
c
	 via	 a	 series	 of	 crystalline	 and	 amorphous	 intermediates;	 however,	 such	 a	

conclusion	cannot	be	drawn	without	further	analysis	into	the	transformation	mechanism.	As	

alluded	 to	 previously,	 utilising	 transition	 path	 sampling	 methods	 (and	 potentially	 the	

metashooting	implementation,	as	described	in	chapter	4)	to	fully	classify	this	transformation	

would	be	a	very	interesting	and	worthwhile	future	project.	

	

Secondly,	there	remains	a	great	deal	of	scope	to	improve	the	collective	variables	utilised	in	

the	metadynamics	scheme.	Whilst	the	combination	of	the	Q4,	Q6	and	TET	collective	variables	

proved	to	be	effective	at	instigating	a	phase	transition,	there	is	little	doubt	that	they	did	not	

behave	optimally	in	this	situation.	Firstly,	in	the	case	of	the	two	Steinhardt	parameters,	their	

values	varied	very	little	over	the	course	of	the	whole	simulation,	returning	the	same	values	

for	 Ice	 III	as	 for	 the	mixed	 Ice	 I
c
/amorphous	phase.	 It	has	been	well	documented	that	 the	

global	 Steinhardt	 parameters	 have	 their	 shortcomings	 and	 are	 unable	 to	 fully	 classify	

transformation	processes	between	the	polymorphs	of	ice.	Despite	this,	it	has	been	previously	

reported	that	they	work	reasonably	well	with	additional	parameters	(such	as	the	tetrahedral	

order	parameter)	–	a	statement	which	is	fully	corroborated	by	the	results	presented	here.	All	

three	of	the	variables	clearly	played	a	role	in	the	metadynamics,	as	such	a	trajectory	was	not	

achievable	without	all	 three	collective	variables	working	 in	conjunction.	Nevertheless,	 it	 is	
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believed	that	there	is	considerable	scope	here	to	improve	the	collective	variables,	possibly	

with	the	scope	of	being	able	to	survey	much	more	of	the	water-ice	phase	diagram	by	using	a	

more	‘collective’	order	parameter.	

	

Related	to	the	previous	point,	there	also	exists	the	problem	of	the	collective	variables	losing	

responsiveness	 after	 the	 formation	 of	 the	 amorphous	 phase.	 This	 effectively	 halted	 the	

metadynamics	component	of	the	simulation,	meaning	that	the	system	remained	in	the	mixed	

Ice	Ic	/	amorphous	state.	Finding	a	collective	variable	set	up	which	would	continue	to	work	in	

such	an	amorphous	system	would	be	highly	desirable,	and	once	again	would	likely	increase	

the	viability	for	surveying	larger	regions	of	the	configuration	space.	Alternatively,	using	a	well-

tempered[86]	 or	 an	 adaptive-Gaussian	 scheme[87]	 may	 help	 here,	 as	 perhaps	 it	 is	 not	 the	

reaction	coordinates	that	are	at	fault,	but	the	values	corresponding	to	the	widths	and	heights	

of	the	Gaussians	deposited	within	their	respective	spaces.	

	

It	 is	clear	from	the	 literature,	and	from	this	work,	that	accurate	and	efficient	modelling	of	

water	 and	 ice	 still	 poses	 a	 significant	 challenge	 to	 the	materials	 science	 community.	 The	

ultimate	aim	for	water	simulation	(and,	indeed,	for	the	simulation	of	all	materials),	would	be	

to	find	a	global	collective	variable	which	is	able	to	differentiate	between	all	phases	and	allow	

navigation	across	the	configuration	space	of	a	material	at	the	will	of	the	user.	It	is	obvious	

that	no	such	order	parameter	has	yet	been	found	or	defined,	although	the	recent	works	using	

PIVs	seems	promising.[70-72]	Another	possibility	is	that	high-order	coordination	sequences	and	

more	 sophisticated	nearest	neighbour	methods,	 such	as	 the	 three	discussed	 in	 this	work,	

represent	a	step	in	the	right	direction.	However,	it	is	clear	that	the	prescription	defined	here	

is	not	a	perfect	one,	and	that	there	remains	work	to	be	done	before	computational	materials	

scientists	are	able	to	use	advanced	techniques	to	fully	survey	the	configurations	pace	of	water	

ice.		

	

Nevertheless,	 the	 work	 presented	 here	 represents	 a	 novel	 contribution	 to	 the	 field,	 and	

demonstrates	that	such	investigations	are	far	from	impossible.	Indeed,	by	using	both	novel	

and	existing	techniques,	it	is	possible	to	visit	numerous	crystalline	and	amorphous	structures	

of	ice	-	including	ones	that	are	not	yet	defined	on	the	ice	phase	diagram!	
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Chapter	7	

Crystal	Structure	Prediction	

	

“The	whole	is	greater	than	the	sum	of	its	parts”	

	–	Aristotle	(384-322	BC),	paraphrased	from	Metaphysics		

	

7.1. Introduction	

	

In	 computational	 materials	 science,	 crystal	 structure	 prediction	 corresponds	 to	 the	

elucidation	 of	 novel	 structures	 of	 crystalline	 solids	 by	 calculation.	 It	 can	 involve	 both	 the	

deduction	of	the	crystal	structure	and	chemical	bonding	between	atoms	within	a	system,	and	

how	this	 relates	to	the	macroscopic	properties	of	 the	material.	As	many	of	 the	properties	

exhibited	by	a	material	are	determined	by	its	crystal	structure,	knowledge	of	the	arrangement	

of	 its	 atoms	 allows	 for	 computation	 of	 many	 aspects	 of	 its	 behaviour,	 even	 before	 it	 is	

synthesised	in	the	laboratory.[1,2]	

	

	
	

Figure	7.i:	Hypothetical	MgO	structures	published	by	Christopher	Roberts	and	Roy	L.	Johnson,	

predicted	using	a	genetic	algorithm.[3]	The	number	underneath	corresponds	to	the	number	of	

Mg-O	units	in	the	simulation	cell.	
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However,	 despite	 this	 well-known	 structure-property	 relationship,	 the	 direct	 connection	

between	 certain	 structural	 motifs	 and	 the	 specific	 behaviour	 of	 a	 material	 is	 often	 not	

obvious.	In	addition,	the	properties	of	a	material	can	be	drastically	altered	simply	as	a	function	

of	the	position	of	the	atomic	coordinates.	For	example,	the	allotropes	of	carbon	exhibit	an	

incredible	range	of	properties,	just	as	a	result	of	varying	the	arrangement	of	the	same	atoms	

by	changing	the	external	conditions	such	as	temperature	and	pressure.	

	

Crystal	structure	prediction	is	an	extremely	new	field	of	materials	science,	having	only	really	

taken	off	in	the	opening	years	of	the	twenty-first	century.[4]	Until	very	recently,	it	was	widely	

believed	 by	 the	 scientific	 community	 that	 the	 structure	 of	 crystalline	 substances	 was	

completely	 unpredictable,	 and	 that	 it	was	 not	 possible	 to	 determine	 the	 configuration	 of	

atoms	in	a	material	just	from	knowledge	of	its	composition:	

	

“One	of	the	continuing	scandals	in	the	physical	sciences	is	that	it	remains	impossible	to	

predict	the	structure	of	even	the	simplest	crystalline	solids	from	knowledge	of	their	chemical	

composition”	–	John	Maddox,	1988[5]	

	

Fortunately,	 a	 great	 deal	 of	 progress	 has	 been	 achieved	 since	 the	 publication	 of	 this	

controversial	 statement.	 However,	 it	 still	 remains	 a	 significant	 challenge	 to	 predict	 the	

structure	of	solid	state	systems.	This	is	a	result	of	the	high-dimensionality	of	the	problem,	as	

well	as	the	many	(possibly	infinite)	energy	minima	present	on	the	vast	configuration	space	of	

a	chemical	system,	which	becomes	exponentially	more	complex	with	increasing	system	size.	

		

The	ultimate	aim	of	crystal	structure	prediction	techniques	would	be	the	ability	to	predict	the	

global	 minimum	 (and	 associated	 local	 minima)	 of	 any	 system,	 given	 its	 composition,	 its	

stoichiometry	and	the	thermodynamic	conditions	in	which	it	resides.	Unfortunately,	no	such	

method	 currently	 exists	 to	 fully	 classify	 the	 configuration	 space	 of	 a	 system.	 However,	

numerous	methods	have	been	developed	to	search	for	minima	on	an	energy	surface.	Such	

methods	 include	 random	 sampling	 techniques,[6,7]	 simulated	 annealing.[8]	 topological	

techniques,[9]	 accelerated	 molecular	 dynamics	 methods	 (e.g.	 metadynamics),[10,11]	 and	

evolutionary	algorithms.[12,13]	It	is	worth	discussing	these	techniques	in	turn,	and	highlighting	

the	contribution	they	have	made	to	this	exciting	field	of	materials	science.	
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7.2. Crystal	Structure	Prediction	Methodologies	

	

This	 introduction	 section	 is	 based	 largely	 on	 the	 comprehensive	 review	 at	 the	 following	

references.[1,2]	

	

7.2.1. Random	Sampling	Techniques		

	

Perhaps	the	simplest	way	to	predict	crystal	structures	is	to	use	random	sampling	methods.[14]	

As	 (meta)stable	 states	 coincide	 with	 configurations	 corresponding	 to	 energy	 minima,	

structure	prediction	in	this	way	is	simply	equivalent	to	minimising	the	energy	function	of	a	

random	system	with	respect	to	the	parameters	that	control	it	–	namely	the	atomic	positions.	

Hence,	this	is	achieved	by	geometry	optimisation	algorithms	such	as	the	conjugate	gradient	

technique,	which	find	the	local	minimum	associated	with	a	particular	configuration.	

	

One	 possible	 scheme	 to	 achieve	 random	 configuration	 searching	 follows	 the	 general	

procedure	set	out	below:	

	

i. Generate	a	configuration	of	atomic	positions	and	cell	vectors;	

ii. Apply	a	scheme	of	local	optimisation,	to	minimise	the	energy	of	the	structure;	

iii. Repeat	until	the	system	has	converged	upon	an	associated	energy	minimum.	

	

Such	a	scheme	for	crystal	structure	prediction	is	advantageous	as	it	is	fast	and	inexpensive	to	

implement.	 In	 addition,	 it	 has	 been	 shown	 that	 random	 sampling	 schemes	 can	 be	more	

efficient	at	sampling	the	configuration	space	than	‘grid’	based	searching	methods[15]	and	are	

particularly	effective	at	distinguishing	between	close	energy	configurations,	which	may	be	

very	different	in	terms	of	geometry.	This	results	from	the	fact	that	random	search	methods	

can	survey	the	entire	underlying	energy	landscape	of	a	system,	and	are	often	not	limited	to	

sampling	small	regions	of	the	configuration	space.	

	

However,	it	is	quite	clear	that	such	a	method	is	unlikely	to	be	the	most	efficient,	particularly	

for	increasingly	large	systems.	In	addition,	there	is	no	way	to	determine	how	many	runs	it	will	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	

	

	 203	

take	to	survey	the	whole	landscape	–	in	practice,	this	 is	 impossible	for	all	but	the	smallest	

systems.	In	addition,	only	crystal	structures	whose	unit	cell	contains	the	same	number	(or	a	

factor	of	 the	number)	of	atoms	used	 in	 the	original	 random	configuration	can	possibly	be	

found.		However,	despite	these	disadvantages,	it	remains	a	powerful	tool	in	the	search	for	

novel	crystal	structures	using	computational	techniques.	

	

One	of	the	more	recent	implementations	of	such	a	scheme	is	the	ab	initio	random	structure	

searching	 (AIRSS)	 technique	 developed	 by	 Chris	 Pickard	 and	 Richard	 Needs.[7]	Using	 their	

technique,	Pickard	and	Needs	have	successfully	utilised	AIRSS	to	study	the	structures	of	solids,	

surfaces	 and	 clusters	 in	 materials	 as	 diverse	 as	 high	 pressure	 aluminium,
[16]	

silane,
[17]

	

nitrogen
[18]	

and	iron,
[19]	

amongst	others.	

	

	

7.2.2. Simulated	Annealing	Techniques		

	

Analogous	 to	 the	 physical	 annealing	 used	 in	 industrial	 processes	 such	 as	 steel	 making,	

simulated	annealing	involves	the	modelling	of	a	cooling	process	in	order	to	encourage	molten	

atoms	to	crystallise.
[20]	

If	started	from	a	very	high	temperature	(i.e.	the	atoms	have	enough	

kinetic	energy	for	the	system	to	overcome	local	energy	barriers	with	a	high	probability),	the	

molten	 system	 under	 scrutiny	 can	 be	 gradually	 cooled	 to	 form	 an	 ordered,	 crystalline	

structure.	Alternatively,	if	the	procedure	is	initiated	at	a	low	temperature	or	is	cooled	rapidly,	

a	glassy	structure	with	defects	and	dislocations	will	be	generated.	

	

At	 each	 temperature	 simulated	 during	 an	 annealing	 process,	 the	 resident	 atoms	 are	

propagated	with	molecular	dynamics	or	Monte	Carlo	 iterations.	This	allows	 the	system	to	

relax	into	its	associated	local	minimum	at	each	iteration	of	the	procedure.	

	

However,	the	advantage	of	this	iterative	technique	is	that	if	carried	out	slowly	enough,	the	

system	will	ultimately	relax	into	the	global	minimum.	This	is	achievable	if	the	temperature	is	

rescaled	very	slowly	at	each	step,	allowing	for	the	system	to	populate	the	associated	local	

minimum	during	 each	 run.	 Clearly,	 the	procedure	will	 eventually	 culminate	 in	 the	 system	
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residing	in	the	deepest	basin	on	the	underlying	energy	landscape,	corresponding	to	the	global	

minimum.	

	

There	are	many	examples	of	structure	prediction	using	simulated	annealing,	including	using	

the	technique	on	binary	systems	such	as	boron	nitrides,[21]	as	well	as	much	more	complicated	

systems	such	as	proteins.[22,23]	

	

	

7.2.3. Metadynamics	for	Structure	Prediction	

	

	

Figure	7.ii:	Three	different	allotropes	of	germanium,	found	using	the	Martonák	

metadynamics	technique	of	structure	prediction	in	the	work	of	Selli	et	al.[24]	

	

	

Metadynamics	 can	be	an	excellent	 tool	 for	use	 in	 structure	prediction.	By	applying	a	bias	

potential	in	the	space	of	a	set	of	collective	variables,	one	can	force	the	system	to	explore	its	

associated	configuration	space,	whilst	at	the	same	time	preventing	it	from	returning	to	any	

previously	adopted	configurations.	In	particular,	the	Martonák	method	of	metadynamics[25]	

which	uses	 the	 cell	parameters	as	 collective	variables,	 is	 very	efficient	at	predicting	novel	

allotropes	and	polymorphs	of	systems	at	varying	pressures.	The	intricacies	of	both	standard	

metadynamics	and	the	Martonák	scheme	have	already	been	discussed	in	chapter	4,	and	so	

only	a	general	scheme	is	presented	here.	

	

To	initiate	structure	prediction,	one	must	first	take	a	random	or	a	known	configuration,	and	

relax	by	steepest	descent	or	conjugate	gradient	optimisation	such	that	the	system	enters	a	
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local	minimum.	 At	 this	 point,	 the	metadynamics	 driver	may	 be	 initiated.	 By	 alternatively	

applying	changes	to	the	shape	and	size	of	the	simulation	box	and	propagating	the	system	with	

molecular	 dynamics	 as	 described	 in	 chapter	 4,	 one	 can	 explore	 the	 underlying	 energy	

landscape	and	hence	visit	new	configurations	corresponding	to	different	local	energy	minima.	

However,	 similarly	 to	 the	 random	 structure	 prediction	 methods,	 only	 structures	 whose	

number	of	atoms	are	the	same	as	(or	a	factor	of)	the	number	of	atoms	in	the	metadynamics	

simulation	cell	can	be	found	in	this	manner.	

	

The	 Martonák	 scheme	 of	 metadynamics	 has	 been	 used	 to	 great	 success	 in	 structure	

prediction	work	in	both	organic	and	inorganic	systems.	One	notable	example	is	the	work	of	

Selli	et	al	on	the	prediction	of	novel	germanium	allotropes.[24]	

	

	

7.2.4. Topological	Techniques	

	

Topological	techniques	to	predict	novel	structures	have	found	great	success	in	the	prediction	

of	 large	 framework	 structures.	 Instead	 of	 using	 a	 geometric	model,	which	 represents	 the	

crystal	 structure	 as	 points	 in	 space	 corresponding	 to	 the	 coordinates	 of	 the	 atomic	 sites,	

topological	methods	focus	on	the	system	of	chemical	interactions	holding	the	atoms	in	place.	

By	considering	a	crystal	structure	as	an	infinitely	large	molecule,	one	can	consider	that	the	

chemical	bonds	 linking	 the	atomic	 sites	 form	an	 infinite	graph.	 The	graph	 is	 a	 topological	

space	 containing	 a	 set	 of	 points	 on	 which	 the	 topology	 is	 formed	 by	 pairing	 the	 points	

together.	Such	an	infinite	graph	is	called	a	net	and	deduction	and	enumeration	of	these	nets	

(and	 how	 they	 may	 be	 tiled	 with	 polyhedra)	 can	 be	 used	 to	 determine	 novel	 crystal	

structures.[9]	 The	 pioneering	 work	 on	 topological	 techniques	 for	 determining	 crystal	

structures	 was	 carried	 out	 by	 Wells,[26]	 however	 many	 have	 since	 added	 significant	

contributions	 to	 the	 field.	 Of	 particular	 relevance	 to	 this	 work,	 there	 has	 been	 a	 recent	

advancement	provided	by	Winkler	et	al,	who	have	developed	an	approach	based	on	graph	

theory	 and	quantum	mechanics	 in	 order	 to	 predict	 novel	 carbon	 allotropes.[27]	There	 also	

exists	a	number	of	algorithms	and	codes	for	determining	structures	by	their	topologies	–	a	

notable	example	is	ToposPro,	developed	by	Blatov,	Proserpio	et	al.[28]	
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7.2.5. Evolutionary	Techniques	

	

Genetic	algorithms	work	using	the	same	principle	as	Darwinian	evolution.	By	setting	up	an	

initial	 population	 of	 structures,	which	 can	 then	 ‘reproduce’	 and	 produce	 ‘offspring’.	 New	

structures	are	generated	which	contain	features	from	both	parent	structures,	passed	down	

by	a	‘crossover’	operator,	in	which	features	from	the	two	parents	are	combined	within	a	new	

structure.	In	addition,	a	‘mutation’	operator	(usually	in	the	form	of	a	Monte	Carlo	move	to	

displace	 a	 few	 atomic	 positions)	 instigates	 random	 change	 to	 offspring	 structures.	

Competition	 between	 structures	 is	 simulated	 by	 taking	 into	 account	 their	 energies	 and	

stabilities	within	the	virtual	conditions	set,	and	allowing	‘successful’	structures	to	survive	and	

propagate	to	pass	on	their	characteristics.	Ultimately,	similarly	to	nature,	the	algorithm	will	

eliminate	poorly	suited	structures,	and	select	for	configurations	which	are	best	adapted	to	

the	simulated	environment.		

	

There	are	numerous	ways	such	schemes	can	be	implemented.	Some	simulated	competition	

using	a	‘roulette-wheel’	type	system	or	instigating	random	‘tournaments’	between	different	

structures,	 in	 order	 to	 determine	 the	 best	 candidates	 in	 a	 given	 population.[29]	 Another	

method	 involves	 keeping	 only	 offspring	 structures	 and	 the	 ‘strongest’	 structure	 from	 the	

previous	generation.[30]	

	

It	is	easy	to	see	why	such	a	technique	for	structure	prediction	is	very	powerful	indeed,	as	the	

analogous	biological	process	has	taken	place	on	Earth	for	some	four	billion	years,	and	has	

produced	an	extraordinary	wealth	of	 lifeforms	each	best	suited	to	their	 local	environment	

and	 ecological	 niche.	 The	 motivation,	 therefore,	 is	 a	 well-designed	 structure	 prediction	

genetic	algorithms	could	be	as	successful	at	producing	systems	with	chemical	structures	finely	

tuned	for	the	simulated	thermodynamic	conditions.	

	

Genetic	algorithm	methods	have	been	used	to	great	effect	in	the	prediction	of	structures	of	

many	materials,	from	peptides[31]	to	nanoclusters	of	metal	oxides.[3]	
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7.3. This	Work:	Random	Structure	Searching	using	Random	Atomic	Placement	(RAP)	

	

The	 aim	 of	 this	 work	 was	 to	 generate	 novel	 crystal	 structures	 which	 had	 not	 yet	 been	

discovered	or	synthesised	 for	 the	system	under	scrutiny.	 it	was	desired	that	structures	be	

sought	 at	 any	 value	 of	 pressure	 and	 at	 any	 point	 in	 configuration	 space,	 i.e.	 no	 strict	

thermodynamic	or	boundary	conditions	(except	composition	and	stoichiometry)	be	imposed.	

In	addition,	it	was	desired	that	the	method	be	able	to	find	structures	that	do	not	represent	

the	global	minimum	of	the	system,	but	represent	higher-energy	metastable	configurations	

that	have	not	yet	been	found	for	the	element	or	compound	of	interest.	However,	the	ability	

to	obtain	the	global	minimum	(and	known	local	minima)	during	a	proportion	of	the	runs	is	

desirable,	as	 it	validates	the	parameters	being	used	to	describe	the	system,	as	well	as	the	

method	of	structure	prediction	being	utilised.	As	such,	it	was	decided	that	a	random	structure	

prediction	method	was	best	suited	to	the	work.	

	

The	 principle	 tactic	 used	 for	 structure	 prediction	 is	 a	 random	 sampling	 technique	 coined	

Random	Atomic	Placement	(RAP).	RAP	is	analogous	to	other	random	prediction	methods,	in	

that	a	set	of	box	vectors	are	generated,	followed	by	subsequent	population	of	the	cell	with	

randomly	positioned	atoms	from	which	the	system	of	 interest	 is	composed.	After	this,	the	

disordered	system	is	optimised	by	conjugate	gradient	relaxation	of	both	the	atomic	positions	

and	the	simulation	cell.	

	

There	are	numerous	facilities	within	the	RAP	scheme	which	allow	for	customisation	of	the	

initial	 configuration.	 Firstly,	 any	 number	 of	 atoms	 and	 atom	 types	may	 be	 generated	 per	

configuration,	such	that	stoichiometry	and	composition	can	be	finely	controlled.	This	means	

that	exotic	configurations,	which	feature	non-typical	stoichiometries	for	a	particular	chemical	

composition,	can	be	generated	with	ease.	Secondly,	box	vectors	are	designed	according	to	

the	van	der	Waals	radii	of	the	atoms,	and	the	number	of	such	atoms	included	in	the	system,	

to	 emulate	 an	 appropriate	 simulation	 cell	 size.	 This	 density	 parameter,	 as	 well	 as	 the	

minimum	distance	between	atomic	positions,	can	be	specified	by	the	user.	This	allows	for	

densely	or	sparsely	populated	initial	cells	to	be	created	at	will.	This	level	of	customisation	of	

the	box	parameters	and	the	inter-atomic	spacing	means	that	a	great	variety	of	initial	pseudo-

random	configurations	may	be	generated.	
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Prior	to	the	relaxation	step,	the	generated	configuration	may	be	altered	by	multiplying	the	

lattice	 constants	 by	 some	 value	between	0.5	 and	1.5.	 This	 can	be	 applied	 isotropically	 or	

anisotropically,	in	order	to	simulate	hydrostatic	pressure	or	directional	strain	on	the	system,	

be	it	positive	or	negative.	This	configuration	is	then	passed	to	an	external	molecular	dynamics	

integrator,	 where	 it	 undergoes	 an	 initial	 cell	 and	 geometry	 optimisation	 by	 conjugated	

gradient.	Following	this,	the	systems	are	reviewed	and	promising	structures	selected,	whilst	

very	 high	 energy	 configurations,	 or	 those	 with	 unphysical	 features	 (such	 as	 unfeasible	

coordination	sequences,	bond	lengths	or	angles),	are	reviewed	or	abandoned.	

	

Selected	 configurations	 at	 this	 point	 are	 subjected	 to	 a	 gamma-point	 analysis,	where	 the	

Hessian	matrix	is	calculated	as	a	preliminary	indicator	of	mechanical	stability.	Should	all	of	

the	eigenvalues	of	the	Hessian	matrix	(the	matrix	form	of	the	second	derivative	of	the	energy)	

be	returned	as	positive,	the	preliminary	structure	proceeds	onwards	in	the	procedure.	Viable	

structures	are	then	relaxed	once	again	within	the	external	molecular	dynamics	engine,	this	

time	more	rigorously	with	a	larger	basis	set	and	stricter	criteria	for	the	forces	acting	on	the	

atomic	 sites.	 Subsequently,	 the	optimised	 structures	 are	 analysed	 for	 their	 electronic	 and	

mechanical	properties	by	means	of	band	and	phonon	calculations	respectively.	Thus,	random	

structure	 prediction	 by	 the	 RAP	 method	 incorporates	 a	 complete	 method	 composed	 of	

discrete	steps,	 from	pseudo-random	structure	generation	through	to	highly	optimised	and	

characterised	potential	crystal	structures.	A	flow-chart	demonstrating	the	entire	procedure	is	

shown	overleaf.	
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Figure	7.iii:	Flow	chart	of	the	structure	prediction	and	analysis	procedure	using	the	Random	

Atomic	Placement	method.	The	initial	step	is	coloured	grey,	preparatory	steps	are	coloured	

blue,	optimisation	and	analysis	steps	are	coloured	orange.	The	entire	RAP	procedure	can	be	

used,	coupled	with	a	molecular	dynamics	integrator,	to	produce	fully	characterised	

structures	from	initial	pseudo-random	configurations	
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7.4. Carbon	Structure	Prediction	at	Ambient	Pressure	

	

7.4.1. Introduction	

	

Carbon	 is	 without	 doubt	 one	 of	 the	most	 fascinating	 and	 incredible	 elements	 in	 nature.	

Despite	being	the	fourth	most	abundant	element	in	the	Universe,	it	is	only	the	tenth	most	

common	element	on	planet	Earth,	found	in	only	180ppm	in	the	Earth’s	crust.[32]	Despite	this	

relative	 terrestrial	 lack	 of	 carbon,	 it	 is	 the	 fundamental	 element	 of	 all	 life	 on	 Earth	 (an	

argument	 some	 use	 to	 illustrate	 the	 assumed	 ubiquity	 of	 carbon	 as	 the	 basis	 for	 any	

hypothetical	extra-terrestrial	life).	This	is	likely	a	result	of	the	unique	ability	of	carbon	to	form	

four	strong	covalent	bonds	with	most	other	elements	(including	itself)	at	ambient	conditions,	

leading	 to	 the	 huge	 catalogue	 of	 diverse	 organic	 compounds	we	 know	 today.	Millions	 of	

organic	 compounds	 have	 catalogued,	 and	 this	 is	 but	 a	 tiny	 proportion	 of	 the	 number	 of	

possible	carbon-based	molecules	that	can	exist	under	ambient	conditions.[33]	

	

In	its	bulk	elemental	form,	carbon	exhibits	an	extraordinary	wealth	of	structural	allotropes.	

Over	280	predicted	forms	of	carbon	are	known,[34]	only	a	few	of	which	have	been	realised	in	

the	laboratory.	The	most	familiar	of	the	allotropes	of	carbon	–	graphite	and	diamond	–	are	

well	known	and	have	been	utilised	by	mankind	for	millennia.	Graphene,	consisting	of	a	single	

layer	of	graphite,	has	also	received	a	great	deal	of	public	and	scientific	scrutiny	in	recent	years.	

In	addition,	many	more	unusual	allotropes	of	carbon,	such	as	the	fullerenes	(including	Bucky-

balls)	and	nanotubes	are	 increasingly	commonly	 identifiable	 to	 the	general	public	and	are	

finding	uses	in	both	commercial	and	industrial	settings.	Many	other	more	exotic	forms	of	the	

element	have	also	been	predicted	to	exist	by	theoretical	materials	scientists.	New	allotropes	

of	carbon	are	still	regularly	being	found,	as	a	result	of	its	peculiar	ability	to	form	sp2,	sp3	and	

mixed	sp2-sp3	structures	with	itself	so	readily	at	ambient	conditions.		

	

The	first	half	of	this	results	chapter	is	dedicated	to	an	investigation	into	the	polymorphism	of	

elemental	carbon	using	the	Random	Atomic	Placement	method.	A	brief	outline	of	the	existing	

knowledge	of	the	structural	variety	of	carbon	will	be	presented,	followed	by	work	exhibiting	
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an	attempt	to	discover	and	hence	classify	novel	and	existing	allotropes	of	carbon	using	density	

functional	methods.	

	

	

7.4.2. Carbon	Allotropes	

	

7.4.2.1. The	Structures	of	Graphite	and	Graphene	

	

The	word	graphite	was	coined	by	Abraham	Gottlob	Werner	in	1789,	derived	from	the	Greek	

for	 ‘writing	 stone’.[35]	Prior	 to	 this,	 it	 had	been	 known	as	black	 lead	or	plumba	 due	 to	 its	

inherent	physical	similarity	to	lead(II)	sulphide.	Indeed,	the	misnomer	‘lead’	is	still	used	today,	

to	 refer	 to	 the	 graphite	 within	 pencils.	 In	 addition	 to	 the	 manufacture	 of	 these	 familiar	

drawing	and	writing	implements,	graphite	has	found	extensive	use	in	industry	as	a	refractory	

material	within	furnaces,	reactors	and	incinerators;	as	an	anode	material	within	batteries;	in	

steelmaking	processes;	and	as	an	industrial	lubricant.[36]	
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Figure	7.iv	(previous	page):	Three	different	representations	of	a	3x3	graphite	super-cell.	

Looking	down	the	a-axis	along	the	layers	(left)	and	c-axis	down	the	layers	(centre),	the	ABAB	

stacking	of	graphite	is	evident.		The	unit	cell	of	graphene	is	labelled	in	the	first	two	images	

but	is	omitted	from	the	right-hand	image,	which	is	present	to	clearly	show	the	honeycomb	

geometry	of	the	layers.[37]	

	

	
Graphite	is	a	layered	and	planar	structure	stacked	in	an	ABAB	configuration,	held	together	by	

van	 der	Waals	 forces.	 These	 interlayer	 interactions	 are	 relatively	weak	 and	 can	 easily	 be	

sheared	to	separate	the	layers	–	indeed,	this	is	the	method	of	action	in	a	pencil	‘lead’.	In	each	

graphite	 layer,	 the	 atoms	 are	 exclusively	 sp2	 hybridised	 and	 arranged	 in	 the	 well-known	

‘honeycomb’	 shaped	 formation,	 with	 average	 interatomic	 distances	 equal	 to	 1.42	 Å	 and	

interlayer	distances	approximately	3.35	Å.	This	intriguing	structure	has	hexagonal	symmetry	

and	has	the	Hermann-Mauguin	space	group	classification	+6-/''/.[38]	
	

The	 anisotropic	 electronic,	 thermal	 and	 acoustic	 properties	 of	 graphite	 can	 be	 readily	

explained	as	a	result	of	its	layered	geometry.	Electrons	and	phonons	within	the	material	can	

readily	move	along	the	graphitic	layers	in	the	ab	plane,	but	are	much	slower	to	move	between	

the	different	layers	along	the	c-axis.[39]	Thus,	many	of	the	properties	of	graphite	exhibit	two-

dimensional	character.	For	example,	graphite	is	an	excellent	conductor	of	electricity	along	the	

ab	plane,	due	to	the	delocalisation	of	0-electrons	along	the	honeycomb	layers.	Conversely,	

some	 forms	of	 graphite	 can	actually	be	used	as	 thermal	 insulators,	 although	graphite	 too	

shows	excellent	thermal	conductivity	along	the	plane	of	the	honeycomb	layers.	

	

Graphene	is	composed	of	a	single	honeycomb	layer	of	graphite,	and	can	be	thought	of	as	an	

infinitely	 large	 aromatic	 molecule	 formed	 of	 six-membered	 carbon	 rings.[40]	 This	 two-

dimensional	allotrope	has	been	the	subject	of	intense	scientific	and	public	attention	due	to	

its	vast	array	of	unusual	properties.		

	

Graphene	is	over	200	times	stronger	than	steel,	with	a	tensile	strength	of	over	130	GPa.[41]	It	

is	also	virtually	transparent	in	appearance	and	is	an	incredibly	effective	transporter	of	thermal	

energy.	Graphene	is	also	an	exceptional	conductor	of	electricity	–	it	is	actually	a	‘zero-gap’	
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semiconductor,	as	 the	valence	and	conduction	bands	meet	at	Dirac	points	 at	 six	different	

points	 near	 the	 edges	 of	 the	 Brillouin	 zone.[42]	 At	 ambient	 conditions,	 graphene	 has	 an	

electron	mobility	of	over	15	000	cm2	V-1	s-1	and	resistivity	of	10-6	W	cm.[43]	Intriguingly,	lithium-

coated	graphene	has	also	been	shown	to	be	superconducting,	as	has	the	single-layer	material	

when	in	the	presence	of	other	superconducting	compounds	such	as	PCCO.	The	combination	

of	these	properties	means	that	graphene	has	profound	potential	for	use	in	future	electronic	

devices,	 and	 much	 work	 still	 remains	 to	 be	 done	 to	 fully	 characterise	 this	 simple	 yet	

immensely	peculiar	material.[44]	

	
	

7.4.2.2. The	Structure	of	Diamond	

	

The	 word	 diamond	 originates	 again	 from	 a	 Greek	 word	 –	 this	 time	 for	 ‘unalterable’	 or	

‘unbreakable’,[45]	which	gives	an	insight	into	the	intrigue	of	diamond	for	thousands	of	years.	

Unlike	 its	 thermodynamically	 more	 stable	 counterpart	 graphite,	 diamond	 is	 composed	

entirely	of	 sp3	 tetrahedrally-arranged	 carbon	atoms	 forming	a	 three-dimensional	 covalent	

network.	The	interatomic	distance	in	diamond	is	1.54	Å	–	the	largest	known	for	regular,	single	

covalent	C-C	bonds.	

	

	

	

	

	

	

	

	

	

	

Figure	7.v:	Two	different	representations	of	the	diamond	structure,	featuring	one	unit	cell	

and	adjoining	atoms.	When	seen	down	the	a,	b	and	c	axes,	the	perspective	shows	‘squares’	

of	carbons	(left).	However,	when	tilted	one	can	see	the	true	sp3-hybridised,	tetrahedral	

covalent	nature	of	the	carbon	atoms	(right).[37]	
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The	 strong	 covalent	 bonding	 seen	 in	 diamond	 results	 in	 it	 being	 the	 hardest	 naturally	

occurring	 substance	 known,	 with	 a	 Mohs	 scale	 value	 of	 10	 and	 a	 Vickers	 scale	 value	 of	

10000HV,	or	around	100	GPa.	Actual	recorded	values	for	the	hardness	of	pure	diamond	vary	

considerably,	and	the	absolute	value	of	hardness	for	a	sample	of	diamond	depends	greatly	

on	its	purity	and	crystal	orientation.		

	

With	 a	 relatively	 wide	 band	 gap	 of	 5.5	 eV,[46]	 well	 into	 the	 ultraviolet	 region	 of	 the	

electromagnetic	spectrum,	pure	diamond	 is	an	electronic	 insulator	and	appears	colourless	

and	transparent.	 Impurities	within	the	diamond	structure	can	 impart	colour	to	the	crystal,	

and	 certain	dopant	 species	 can	 significantly	 alter	 the	electronic	 structure	–	 so	 called	blue	

diamonds,	 which	 contain	 boron	 and	 are	 semiconducting,	 are	 an	 example	 of	 this.[47,48]	

Diamond	also	has	a	very	high	refractive	index	and	optical	dispersion,	affording	the	material	

with	its	characteristic	 lustre.	 It	 is	also	worth	noting	that,	despite	the	large	band	gap	in	the	

pure	material,	 diamond	 is	 the	 best	 thermal	 conductor	 of	 any	 natural	 bulk	material,	 with	

thermal	conductivity	measurements	of	around	2200	W	m-1	K-1.[49]	

	

Diamond	 naturally	 crystallises	 in	 the	 eponymous	 diamond	 cubic	 crystal	 structure	 the	

Hermann-Mauguin	space	group	123'.	However,	a	less	stable,	hexagonal	variant	of	diamond	

known	 as	 Lonsdaleite	 is	 also	 known.[50]	 Named	 in	 honour	 of	 the	 British	 crystallographer	

Kathleen	Lonsdale,	hexagonal	diamond	was	first	synthesised	in	1966	and	is	thought	to	occur	

within	 the	 interior	 of	 astronomical	 bodies	 such	 as	 asteroids.	 Some	 data	 suggests	 that	

Lonsdaleite	 is	 even	 harder	 than	 diamond	 (up	 to	 58%	 harder),[51]	 however	 the	 little	

experimental	data	that	is	available	does	not	yet	corroborate	nor	disprove	this,	likely	as	a	result	

of	impurities	and	defects	present	within	the	synthesised	hexagonal	crystal	structure.		

	

The	mechanical	and	optical	properties	of	diamond	have	made	it	a	most	coveted	material	for	

use	in	jewellery	since	time	immemorial.	It	is	an	extremely	sought-after	commodity,	and	has	

played	a	significant	role	in	the	cultural	and	economic	history	of	humankind.	More	recently,	

its	 exceptional	 hardness	 has	 also	 seen	 it	 find	 use	 in	 a	 number	 of	 industrial	 applications,	

particularly	in	tools	used	for	cutting,	engraving	and	exerting	high	pressure.	
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7.4.2.3. Comparison	of	Graphite	and	Diamond	

	

	

	

	

Graphite	

(+6-/''/)	

	

	

Diamond		

(123')	

Hexagonal	crystal	system	 Cubic	crystal	system	

Completely	sp2-hybridised	 Completely	sp3-hybridised	

Excellent	conductor	of	electricity	*	 Poor	conductor	of	electricity	

Poor	conductor	of	thermal	energy	*	 Excellent	conductor	of	thermal	energy	

Very	soft	material	(Mohs	Scale	=	2)	 Very	hard	material	(Mohs	scale	=	10)	

Opaque	and	black	 Transparent	and	colourless	

Used	as	a	lubricant	 Used	as	an	abrasive	

	

*	Along	certain	crystallographic	directions		

	

Table	7.vi:	Table	summarising	the	differences	in	structure	and	property	between	graphite	

and	diamond,	symbolising	the	stark	variety	exhibited	by	carbon	allotropes.	

	

	

The	above	figure	exemplifies	the	stark	differences	in	property	that	are	exhibited	by	different	

atomic	 configurations	 of	 the	 same	 element.	 Graphite	 and	 diamond	 have	 very	 little	 in	

common,	 with	 the	 exception	 that	 they	 are	 composed	 solely	 of	 carbon.	 The	 huge	 variety	

displayed	here	is	likely	but	a	drop	in	the	ocean,	considering	that	there	are	so	many	predicted	

allotropes	of	carbon.	

	

There	also	exists	a	large	number	of	other	forms	of	elemental	carbon,	some	of	which	will	be	

discussed	in	the	following	section.	
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7.4.2.4. Fullerenes	and	Glassy	Carbon	

	

Fullerenes	is	the	broad	name	given	to	any	molecule	or	allotrope	of	carbon	that	forms	a	hollow	

geometric	 shape.	 IUPAC	 define	 fullerenes	 as	 “compounds	 composed	 solely	 of	 an	 even	

number	of	carbon	atoms,	which	form	a	cage-like	fused	ring	polycyclic	system”.[52]	The	most	

common	geometries	of	fullerenes	are	spherical	or	elliptical,	however	more	exotic	forms	have	

been	predicted	to	exist.	

	

	

	

	

	

	

	

	

	

Figure	7.vii:	A	single	molecule	of	Buckminster	fullerene	(C60),	the	first	known,	and	most	

widely	studied,	of	the	Bucky-ball	type	fullerenes.	

	

	

The	 best	 known	 examples	 of	 fullerenes	 are	 the	 so-called	Bucky-balls.	 The	 first	 and	most	

famous	example,	Buckminster	fullerene,	is	composed	of	sixty	carbon	atoms	arranged	to	form	

a	 sphere.	 The	 sphere	 is	 formed	 by	 alternating	 five-	 and	 six-	 membered	 carbon	 rings,	

analogous	 to	 the	geometry	of	a	 soccer	ball.	First	 synthesised	 in	1985	at	Rice	University	 in	

Houston,	the	molecule	is	named	after	the	American	architect	Buckminster	Fuller,	who	was	

famous	for	the	construction	of	geodesic	domes.[53]	Members	of	the	group	at	Rice	University	

ultimately	went	on	to	win	 the	Nobel	Prize	 for	 their	work	on	the	discovery	of	Buckminster	

fullerene,	as	well	as	other	members	of	the	fullerene	family.	

	

Other	 commonly	 encountered	 Bucky-ball	 fullerenes	 include	 C20	 (the	 smallest	 possible	

fullerene),	 C70	 and	C84.	 Theoretically,	 fullerenes	 can	 take	on	any	 formula	 according	 to	 the	

expression:	
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34%							) = 10, 12, 13, 14…	
	

Additionally,	the	number	of	geometric	possibilities	for	a	given	number	of	atoms	is	vast	and	

exponentially	 increases	with	).	 To	 exemplify	 this,	 for	 C60	 there	 are	 1812	 possible	 unique	

configurations	 for	 the	 Bucky-ball,	 however	 the	 Buckminster	 fullerene	 (a	 truncated	

icosahedron)	configuration	is	the	only	possibility	that	exists	where	no	five-membered	rings	

are	adjacent	to	one	another.	Coincidentally,	this	is	also	the	smallest	such	fullerene	for	which	

this	geometric	curiosity	is	possible.	

	

Interestingly,	 Bucky-ball	 type	 fullerenes	have	 found	extensive	use	 in	medical	 applications,	

including	as	contrast	agents	for	magnetic	resonance	imaging	(MRI)	and	x-ray	imaging,	and	as	

vehicles	for	drugs	and	gene	delivery.[54]	

	

So	called	‘glassy-carbon’	has	properties	intermediate	between	that	of	graphite	and	ceramic,	

with	a	relatively	high	hardness	(7	on	the	Mohs	scale),	low	density,	low	electrical	resistance	

and	significant	resistance	to	temperature	and	chemical	reaction.	Much	like	graphite,	it	finds	

significant	use	in	high	temperature	industrial	applications,	as	well	as	in	electronic	devices.[55]	

	

Unrelated	to	the	fullerenes,	another	type	of	carbon	materials	is	the	family	of	amorphous	

carbon	materials.	These	materials	are	a	mixture	of	sp2	and	sp3	hybridised	and	again	

correspond	to	a	huge	family	of	varied	materials.	Their	properties	can	be	tuned	to	essentially	

fill	the	vast	continuum	of	possible	properties	between	the	insulating,	hard	diamond	and	the	

soft,	conducting	graphite.	
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7.4.2.5. Carbon	Nanotubes	

	

Another	broad	range	of	carbon	allotropes	are	the	carbon	nanotubes.	These	are	composed	of	

a	 single	 sheet	 of	 graphene,	 folded	 at	 a	 specific	 angle.	Many	 of	 the	 general	 properties	 of	

graphene	(high	electrical	and	thermal	conductivity	and	significant	mechanical	strength)	are	

conferred	 to	 the	nanotubes,	but	 these	properties	 can	be	greatly	 tuned	by	 the	 size	of	 the	

‘rolling’	 angle,	 and	 the	 diameter	 of	 the	 aperture	 that	 the	 fold	 creates.	 The	 nature	 of	 the	

folding	can	be	determined	by	using	the	integers	'	and	),	which	correspond	to	the	number	

of	unit	cell	vectors	in	two	different	crystallographic	directions	of	the	graphene	lattice.
[56]	

This	

gives	rise	to	three	possibilities:	

	

Ø If	' = ),	the	nanotubes	are	known	as	armchair	nanotubes.	Armchair	nanotubes	tend	

to	be	metallic,	whereas	others	tend	to	be	semiconducting.	

Ø If	' = 0	and	) ≠ 0,	the	nanotubes	are	referred	to	as	zigzag	nanotubes.	
Ø For	any	other	combination	of	'	and	),	the	nanotubes	are	referred	to	as	chiral.	

	

As	a	result	of	their	highly	tuneable	properties,	extreme	mechanical	strength	and	relative	lack	

of	 expense	 to	 produce,	 carbon	 nanotubes	 have	 found	 extensive	 use	 in	 commercial	

applications	 and	 industry.	 In	 particular,	 carbon	 nanotubes	 are	 currently	 used	 in	 the	

construction	 of	 high-strength,	 high-performance	materials,	 such	 as	 in	 vehicles	 and	 sports	

equipment.		

	

However,	a	greater	number	of	unutilised	potential	for	carbon	nanotubes	still	exist,	and	the	

structures	could	find	possible	uses	in	electronic	devices,	as	optical	(fluorescent)	agents,	as	a	

gas	storage	and	filtration	material	(in	particular	H2	and	CO2),	as	a	solar	panel	material	due	to	

its	high	UV-absorption,	as	a	battery	anode	material,	as	a	filtration	material	and	in	textiles	and	

lubricants,	amongst	many	others.	Once	again,	this	firmly	reiterates	the	wondrous	variety	of	

properties	conferred	by	small	changes	to	the	structure	of	an	elemental	material.
[57]	
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Figure	7.viii:	2-dimensional	band	plots	(left)	and	density	of	states	(right)	of	(a)/(d)	a	sheet	of	

graphene,	(b)/(e)	a	semi-conducting	chiral	nanotube	and	(c)/(f)	a	metallic	armchair	nanotube.	

Notice	the	presence	of	the	Dirac	cones	at	the	edges	of	the	Brillouin	zone.	Darker	colours	

correspond	to	energies	further	away	from	the	Fermi	level	in	the	kx,ky	plane.	Yellow	lines	

correspond	to	the	permitted	wave-vectors	allowed	in	the	folded-up	graphene	sheets.[57]	

	

	

	

7.4.2.6. Even	More	Exotic	Allotropes…	

	

In	addition	to	the	vast	number	of	carbon	allotropes	already	synthesised,	there	exists	a	huge	

array	of	 theoretical	 structures	 that	are	yet	 to	be	conclusively	experimentally	 validated,	or	

which	 have	 only	 been	 created	 once	 or	 twice	 in	 the	 laboratory	 under	 extremely	 harsh	

conditions.	 There	 also	 exist	 a	 large	 number	 of	 polymorphs	 which	 await	 experimental	

validation.	Some	of	these	allotropes	are	described	below:	
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Bcc-carbon	–	In	1989,	Roy	Johnson	and	Roald	Hoffman	predicted	that	at	very	high	pressures	

(i.e.	above	1000	GPa),	diamond	transforms	into	a	body-centred	cubic	structure.[58]	Consisting	

of	 a	 cube	 of	 eight	 carbon	 atoms	 in	 the	 unit	 cell,	 this	 geometry	 is	 already	 known	 to	 be	 a	

constituent	of	a	high-pressure	metastable	allotrope	of	silicon.	This	allotrope	 is	believed	to	

have	 been	 synthesised	 in	 2008	 using	 pulsed	 laser	 induced	 liquid-solid	 interface	 reaction	

(PLIIR)	techniques;	

	

Bct-carbon	–	Another	super-hard	and	super-dense	form,	body-centred	tetragonal	carbon	was	

first	predicted	in	2010;[59]	

	

M-carbon	 –	 This	 monoclinic	 form	 of	 carbon	 features	 alternating	 odd-numbered	 rings	

consisting	of	pentagons	and	heptagons	and	was	discovered	using	ab	initio	methods	in	2006	

by	Oganov	et	al.[60]	In	2009,	it	was	then	shown	that	this	phase	corresponded	to	a	previously	

synthesised	structure	from	forty-six	years	prior.[61]	Subsequent	research	has	shown	that	M-

Carbon	is	formed	by	compression	of	graphite,	and	that	it	is	the	most	kinetically	likely	structure	

to	form	as	a	result	of	this	process;[62]	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.ix:	Cartoon	representation	of	a	unit	cell	of	M-Carbon,	a	hypothetical	super-hard	and	

super-dense	carbon	allotrope	predicted	by	Oganov	et	al	(space	group	32/').[60]	
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Q-carbon	–	Discovered	very	recently	in	2015,	Q-carbon	is	an	allotrope	composed	of	a	mixture	

of	sp2	and	sp3	hybridised	carbon.	Despite	its	amorphous	structure,	it	is	purported	to	be	harder	

than	diamond	by	10-20%,	due	to	dense	packing	resulting	from	its	‘melted’	structure.	Q-carbon	

is	also	reported	to	be	ferromagnetic,	with	a	Curie	temperature	of	approximately	500	K;[63]	

	

T-carbon	–	Another	recently	reported	form	from	2011,	T-carbon	is	formed	by	replacing	the	

carbon	atoms	in	a	diamond	structure	with	four	atoms	forming	a	tetrahedron.	With	a	much	

lesser	density	and	a	hardness	one	third-less	that	of	diamond,	this	semiconducting	phase	could	

have	interesting	uses	in	gas	storage	and	aerospace	applications;[64]	

	

Metallic	carbon	–	The	work	of	Correa	et	al	in	2005	demonstrated	using	ab	initio	methods	that	

carbon	at	very	high	pressures	exhibits	metallic	behaviour.	Their	work	predicts	that	carbon	at	

extreme	conditions	exists	as	a	low-coordinated	metallic	melt,	retaining	a	degree	of	covalent	

bonding	even	under	such	extreme	conditions.[65]	

	

Previous	 work	 by	 Selli	 et	 al	 predicted	 a	 number	 of	 novel	 carbon	 phases.[66]	 Selli	 et	 al	

discovered	four	possible	new	allotropes	of	carbon	by	the	simulation	of	the	cold	compression	

of	graphite	using	Martonák-type	metadynamics.[11]	This	work	established	 the	possibility	of	

coexisting	even-	and	odd-	numbered	ring	motifs,	a	previously	unknown	geometric	variation	

in	carbon	allotropes.	The	work	of	Selli	et	al	also	found	a	number	of	previously	known	phases,	

such	as	M-	and	W-	carbons,	showing	that	metadynamics	could	be	used	to	visit	both	existing	

and	novel	allotropes.	

	

	

	

Figure	7.x:	The	four	novel	phases	of	carbon	discovered	by	Selli	et	al	by	simulating	the	cold	

compression	of	graphite	using	the	Martonák	metadynamics	method.[66]	
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7.4.2.7. Summary	

	

The	examples	presented	within	the	above	discussion	are	but	a	small	subset	of	the	vast	array	

of	carbon	allotropes	predicted,	displaying	the	vast	wealth	of	configurations	that	this	

fascinating	element	can	exhibit.	

	

With	such	a	huge	configuration	space	and	wide	range	of	possible	structure	types	and	

properties,	novel	carbon	allotropes	could	find	a	considerable	number	of	potential	

applications.	For	example,	one	could	attempt	to	find	a	novel	super-hard,	transparent	phase	

analogous	to	diamond,	with	potential	uses	in	industrial,	optical	or	catalytic	processes.	

Alternatively,	one	could	search	for	a	novel,	electrically-conducting	two	dimensional	phase	

analogous	to	graphene,	which	could	find	use	in	high	performance	electronic	devices.	

Indeed,	there	exists	a	continuum	of	structures	and	properties	in	between	these	two	

extremes,	as	demonstrated	by	some	of	the	phases	described	above,	each	with	its	own	

potential	commercial	or	industrial	application.	Thus,	the	motivation	behind	the	quest	to	

search	for	additional	carbon	allotropes	with	novel	structures	and	useful	properties	is	

evident.	

	

	

7.4.3. Methodology	

	

As	described	previously,	this	work	used	a	random	structure	prediction	technique	described	

as	Random	Atomic	Placement	to	search	the	configuration	space	of	carbon.		Atomic	

configurations	were	generated	with	varying	numbers	of	sites,	randomly	distributed	within	

cubic	unit	cells	whose	dimensions	were	proportional	to	the	number	of	atomic	sites.	

Subsequently,	these	randomly	generated	systems	were	optimised	at	0	GPa	using	the	

conjugate	gradient	method	of	optimisation.	Promising	structures	were	then	tested	for	

mechanical	stability	by	calculating	the	Hessian	matrix	at	the	gamma	point	Γ	of	the	Brillouin	
zone.	Structures	which	featured	positive	eigenvalues	for	the	Hessian	matrix	were	subjected	

to	further	analysis,	including	more	rigorous	optimisation	and	subsequent	analysis	of	

electronic	and	mechanical	properties.		
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All	calculations,	including	the	optimisations	and	calculations	of	bands	and	phonon	structures,	

were	 completed	within	 the	 SIESTA	 package.[67]	Density	 functional	 theory	 (DFT)	within	 the	

generalised	gradient	approximation	(GGA)	with	the	Perdew-Burke-Ernzerhof	(PBE)	exchange-

correlation	 functional[68]	 were	 utilised	 for	 the	 optimisations	 and	 subsequent	 analyses.	 A	

norm-conserving	 Troullier-Martins	 pseudopotential[69]	 was	 utilised	 to	 describe	 the	 core	

states.	For	the	initial	relaxation	of	the	randomly	generated	configurations,	electronic	states	

were	expanded	 in	 a	 single-zeta	basis	 set.	 Follow-up	 calculations	 saw	 the	electronic	 states	

expanded	in	a	double-zeta	basis	set	with	additional	polarization	functions	for	the	2p	orbitals.	

Charge	densities	were	represented	by	a	finite	3-D	grid	in	real-space	with	a	cut-off	of	250	Ry.	

For	 electronic	 structure	 and	 phonon	 spectrum	 calculations,	 the	 systems	 were	 rigorously	

relaxed	 such	 that	 the	 forces	 acting	 on	 each	 atom	were	 less	 than	 0.01	 eV.	 Phonons	were	

calculated	using	the	supercell	method	as	implemented	within	SIESTA.	The	number	of	k-points	

was	 carefully	 chosen,	 depending	 on	 system	 size	 and	 the	 nature	 of	 the	 calculation	 being	

undertaken,	to	ensure	accurate	sampling.	
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7.4.4. Results	and	Discussion	

	

7.4.4.1. Overview	and	Efficacy	of	the	Random	Atomic	Placement	Method	

	

Over	two-hundreds	simulation	boxes	were	set	up,	containing	three,	four,	six,	eight	and	twelve	

carbons	 atomic	 units.	Many	 of	 the	 relaxation	 runs	 produced	 known	 structures,	 including	

graphite	and	diamond.	A	significant	number	also	produced	highly	implausible	structures,	with	

unusual	bond	lengths,	angles	and	coordination	sequences.		

	

However,	twenty-five	plausible	structures,	 including	graphite	and	diamond,	were	obtained	

from	the	random	structure	search.	Many	of	these	predicted	structures	already	correspond	to	

known	structural	types	of	carbon,	however	eight	of	the	presented	structures	are	novel	for	

carbon.	Of	the	twenty-three	structures,	excluding	diamond	and	graphite:	

	

• Four	of	 the	structures	consist	entirely	of	sp2	hybridised	carbons,	 forming	planar	 layers	

with	large	distances	separating	the	sheets;	

	

• An	additional	four	of	the	possible	configurations	are	3-D	carbons	formed	entirely	from	sp2	

hybridised	atomic	sites,	each	bonded	to	only	three	other	atomic	neighbours;	

	

• Two	of	the	potential	allotropes	consist	of	layers	of	sp2	and	sp3	carbons,	forming	puckered	

sheets	that	are	non-planar	but	still	feature	large	separations	between	the	layers;	

	

• A	further	six	structures	are	formed	of	a	mixture	of	sp2	and	sp3-hybridised	carbons,	forming	

3-D	molecular	‘sponge-like’	networks;	

	

• The	 final	 seven	 of	 the	 found	 structures	 are	 ‘diamond-like’,	 formed	 by	 covalent	 3-D	

networks	formed	exclusively	by	four-coordinated	carbon	atoms.	
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Index	 Crystal	(space	group)	 Dimensionality	
3-letter	

code	
Notes	

C1	 Tetragonal	(@4/''')	 3D	 crb	 	

C2	 Orthorhombic	(@''B)	 3D	 sra	 	

C3	 Tetragonal	(+4'')	 2D	 fes	 	

C4	 Orthorhombic	(3''')	 3D	 moc	 	

C6	 Tetragonal	(+4C22)	 3D	 unc	 	

C9	 Cubic	(123')	 3D	 dia	 Diamond	

C10	 Hexagonal	(+6-/''/)	 2D	 gra	 Graphite	

C11	 Monoclinic	(@1'1)	 3D	 	 New	Structure	

C12	 Orthorhombic	(+''')	 2D	 	 New	Structure	

C14	 Orthorhombic	(1222)	 3D	 	 New	Structure	

C15	 Hexagonal	(+6D22)	 3D	 eta	 	

C17	 Monoclinic	(@12/'1)	 3D	 	 New	Structure	

C18	 Orthorhombic	(+''B)	 3D	 jbw	 	

C19	 Orthorhombic	(+2'')	 2D	 	 	

C20	 Monoclinic	(312/'1)	 3D	 dme	 	

C21	 Orthorhombic	(32'')	 2D	 	 	

C22	 Monoclinic	(3121)	 3D	 	 	

C23	 Hexagonal	(+6E22)	 3D	 unj	 	

C24	 Trigonal	(F3')	 3D	 pcu-h	 	

C25	 Tetragonal	(+4'')	 2D	 mcm	 “Cairo	Tiling”	

C30	 Monoclinic	(312/'1)	 3D	 	 New	Structure	

C33	 Tetragonal	(+42')	 3D	 	 New	Structure	

C35	 Monoclinic	(312/'1)	 3D	 cbs	 	

C36	 Monoclinic	(+12/'1)	 2D	 	 New	Structure	

C38	 Monoclinic	(312/'1)	 3D	 	 New	Structure	
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Table	7.xi	(previous	page):	Data	summarising	the	twenty-five	carbon	phases	found	in	this	

work.	The	‘index’	number	corresponds	to	order	of	which	the	structures	were	first	found	using	

the	prediction	method.	Missing	integers	correspond	to	structures	that	were	later	determined	

to	be	equivalent	to	already	included	structures	by	symmetry.	Diamond	and	graphite,	the	two	

most	familiar	forms	of	carbon,	are	highlighted	in	green	and	red	respectively.	Allotropes	that	

have	not	yet	been	reported	for	carbon	are	highlighted	in	gold.	

	

	

The	following	data	shows	that	the	twenty-five	allotropes,	including	the	eight	novel	structures	

found,	feature	a	huge	variety	of	values	for	density	and	energy.	This	demonstrates	that	the	

Random	Atomic	Placement	method	is	able	to	find	carbon	phases	with	a	very	wide	range	of	

physical	 characteristics,	 from	 the	 planar	 and	 conducting	 graphite-like	 allotropes,	 to	 the	

covalent,	electrically	insulating	diamond-like	structures.	In	addition,	all	but	two	of	the	twenty-

three	phases	discovered	by	 the	method	were	within	1.0	 eV	of	 the	diamond	and	graphite	

structures.	This	kind	of	structure	searching	technique,	which	is	able	to	resolve	energetically	

similar	but	structurally	different	motifs	over	a	large	area	of	the	configuration	space,	is	exactly	

what	was	desired	when	designing	the	structure	prediction	procedure.		

	

Of	particular	 interest	 is	 the	density	vs.	energy	plot,	which	appears	 to	shows	three	distinct	

regions	–	a	favourable-sp3	region	(referred	to	here	as	the	Main	Sequence),	an	sp2	region,	and	

a	 prohibitive-sp3	 region.	 Overlaps	 between	 these	 regions	 correspond	 to	mixed	 structures	

containing	both	motifs	characteristic	of	those	regions	of	the	graph.		

	

Following	 this,	 the	 remainder	 of	 the	 discussion	 will	 focus	 exclusively	 on	 the	 eight	 novel	

allotropes.	All	of	the	data	presented	about	these	eight	carbon	structures,	unless	otherwise	

indicated,	is	taken	from	simulations	with	the	pressure	set	at	0	GPa.	

	

Figure	7.xii	(overleaf):	Plots	of	the	densities	(top)	and	energies	(bottom)	of	the	predicted	

carbon	phases	at	0	GPa.	Diamond	and	graphite	are	labelled	green	and	red	respectively.	

Previously	known	or	predicted	phases	are	labelled	in	blue,	whereas	novel	phases	from	this	

work	are	depicted	in	gold.	Note	the	wide	range	of	densities	exhibited	by	the	new	allotropes,	

and	that	all	but	one	of	the	novel	predicted	phases	are	within	1	eV	of	graphite.	
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Figure	7.xiii:	Plots	of	density	vs.	energy	for	the	twenty-five	carbon	phases	predicted	in	this	

work.	Many	of	the	structures	are	centred	along	the	diagonal	of	the	plot	(the	‘Main	Sequence’,	

indicated	by	the	green-edged	region),	which	appears	to	show	a	linear	relationship	between	

increasing	density	and	decreasing	energy	for	the	structures	observed.	The	exceptions	are	

those	centred	around	density	=	2	g	mol-1	which	correspond	to	low-energy	aromatic	or	

graphitic-like	phases	(red-edged	region),	and	high-energy	phases	at	high	density	

corresponding	to	disfavoured	bonding	configurations	(grey	region).	In	general,	configurations	

found	exclusively	in	the	red	and	green	regions	are	entirely	sp2	and	sp3	respectively,	whereas	

those	in	both	the	green-red	overlap	region	are	a	mixture	of	sp2	and	sp3,	either	forming	

sponges	or	puckered	layers.		All	data	is	recorded	at	0	GPa,	and	the	points	are	coloured	

according	to	the	scheme	discussed	previously.	

C1

C2

C3

C4

C6

DiaGra

C11

C12

C14
C15

C17

C18

C19

C20

C21

C22

C23

C24

C25

C30

C33

C35

C36

C38

-162.4

-162.2

-162

-161.8

-161.6

-161.4

-161.2

-161
1 . 5 2 2 . 5 3 3 . 5

En
er
gy
	/	
eV

	a
to
m

-1

Density	/	g	cm-3



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	
	

	 229	

	
	
	
	
	
	
	
	

7.4.4.2. The	Eight	Novel	Carbon	Structures	

	

7.4.4.2.1. Overview	

	

	

	

	

Figure	7.xiv:	The	eight	previously	unpredicted	structures	of	carbon	discovered	in	this	work.	

From	top	left	to	bottom	right:	C11,	C12,	C14,	C17,	C30,	C33,	C36	and	C38.	

	

	

The	eight	novel	allotropes	 found	 in	 this	work	account	 for	many	of	 the	different	classes	of	

carbon	 structures.	 Three	 of	 the	 structures	 correspond	 to	 diamond-like	 covalent	 networks	

formed	 exclusively	 by	 sp3	 bonding.	 Two	 of	 the	 structures	 are	 graphite	 or	 graphene-like	

forming	layers	of	exclusively	sp2	hybridised	carbon	atoms,	whilst	another	 is	an	entirely	sp2	

hybridised	molecular	network.	The	remaining	two	structures	are	composed	of	a	mixture	of	

sp2	and	sp3	bonding.	All	eight	of	the	structures	could	be	relaxed	at	0	GPa,	strongly	indicating	

that	 they	 are	 valid	 metastable	 configurations.	 The	 symmetries	 and	 some	 structural	 data	

pertaining	to	each	of	the	structures	is	summarised	in	Table	7.xv,	and	volume	vs.	energy	plots	

for	all	structures	(except	for	the	graphenic	structures)	are	given	in	Figure	7.xvi.	
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	 Crystal	(space	
group)	

Pearson	
Symbol	

Volume	
at	0	
GPa		
/	Å3	

atom-1	

Density	
at	0	
GPa	

/g	cm-3	

	
Energy	at	0	
GPa	(Diff.	w/	

Gra)	
/eV	atom-1	

	

Coord.	Sphere	

C11	
Monoclinic	

(@1'1)	
'G12	 6.927	 2.877	

-161.771	

(+	0.566)	

3.67,	8.67,	19.00,	

34.67,	53.00	

C12	
Orthorhombic	

(+''')	
H+6	 10.603	 1.879	

-161.878	

(+	0.459)	

3.00,	5.33,	8.33,	

11.33,	14.33	

C14	
Orthorhombic	

(1222)	
H124	 8.696	 2.291	

-161.609	

(+	0.728)	

3.00,	5.33,	9.33,	

16.67,	29.33	

C17	
Monoclinic	

(@12/'1)	
'G12	 6.481	 3.075	

-161.982	

(+	0.355)	

3.67,	9.33,	20.33,	

36.00,	56.33	

C30	
Monoclinic	

(312/'1)	
'S12	 9.068	 2.198	

-161.557	

(+	0.780)	

3.67,	7.33,	14.33,	

26.67,	42.67	

C33	
Tetragonal	

(+42')	
I+6	 6.773	 2.942	

-161.189	

(+	1.148)	

4.00,	9.33,	19.67,	

40.00,	62.33	

C36	
Monoclinic	

(+12/'1)	
'+8	 10.538	 1.891	

-161.713	

(+	0.624)	

3.00,	5.50,	7.50,	

10.75,	14.5	

C38	
Monoclinic	

(312/'1)	
'G16	 6.012	 3.315	

-162.108	

(+	0.229)	

4.00,	12.00,	26.5,	

46.75,	71.5	

Gra	
Hexagonal	

(+6-/''/)	
ℎ+4	 9.409	 2.118	

-162.337	

(±	0.00)	

3.00,	6.00,	9.00,	

12.00,	15.00	

Dia	
Cubic	

(123')	
/18	 5.749	 3.466	

-162.331	

(+	0.006)	

4.0,	12.0,	24.0,	

42.0,	64.0	

	

Table	7.xv:	Crystallographic	and	structural	data	relating	to	the	eight	novel	polymorphs	of	

carbon.	Note	the	wide	variety	of	predicted	structures,	ranging	from	low	density	sponges	to	

high-density	three	dimensional	structures.	Densities	for	C12	and	C36	are	reported	in	their	

graphitic	configuration	using	the	original	unit	cell	after	optimisation,	not	the	larger	cell	used	

in	subsequent	analysis.	
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Figure	7.xvi:	Volume	vs.	energy	(top)	and	pressure	vs	enthalpy	(bottom)	profiles	for	all	of	the	

non-planar	carbon	allotropes.	The	plots	for	graphite	and	diamond	have	also	been	included	

for	reference.	All	of	the	structures	could	be	stabilised	at	0	GPa	by	conjugate	gradient	

geometry	optimisation.	Computed	points	have	been	indicated	and	the	curves	extrapolated	

with	polynomial	and	linear	trend	lines	for	the	top	and	bottom	plots,	respectively.	
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7.4.4.2.2. sp2-layer	Carbons:	C12	and	C36	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xvii:	Structures	of	the	two	sp2-layer	structures	found,	C12	(left)	and	C36	(right),	as	

well	as	crystallographic	data	including	the	conventional	unit	cell	space	group,	lattice	

parameters	and	crystallographic	coordinates	with	Wyckoff	positions.	

	

	

C12	and	C36	are	both	two-dimensional	carbons,	consisting	of	planar	sheets	of	sp2-hybridised	

atoms.	 The	 structures	 generated	 were	 initially	 treated	 as	 layered	 materials,	 forming	 an	

infinite	crystal	in	every	direction	with	an	inter-layer	distance	analogous	to	graphite.	However,	

from	 inspection	of	 the	 initial	data	 it	was	clear	 that	each	planar	 layer	 could	be	considered	

graphenic	in	nature.	In	order	to	ensure	that	there	is	no	inter-layer	interaction	for	the	band	

and	phonon	analysis,	the	distance	between	layers	was	increased	to	15.4	Å	in	both	structures.	

	

KLM	

GNB/O	P*HQN:	STTT	

3	BIH'U	NO*	/OVV: 6	

B = 15.40	Å		Z = 3.76	Å		/ = 5.49	Å	

] = ^ = 	_ = 90	°	

31			4Q	(0, a, b)		0.000		0.308		0.162	

32			2c	(d, a, b)			0.000		0.000		0.342	

	

Kef	

GNB/O	P*HQN:	S	M/T	

3	BIH'U	NO*	/OVV: 8	

B = 5.08	Å		Z = 15.4	Å		/ = 5.04	Å	

] = 	_ = 90	°		^ = 72.52	°	

31			2'	(d, 0, b)		0.147		0.000		0.404	

32			2'	(d, 0, b)		0.119		0.000		0.138	

33			2'	(d, 0, b)		0.351		0.000		0.558	

34			2'	(d, 0, b)		0.813		0.000		0.163	
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The	 C12	 structure	 consists	 of	 four,	 six	 and	 eight	 sided	 rings,	 none	 of	which	 form	 perfect	

polygons	as	a	result	of	a	number	of	different	bond	lengths	within	the	structure.	The	shortest	

contact,	at	1.42	Å,	corresponds	to	the	C-C	bond	defining	the	edge	between	hexagonal	and	

octagonal	motifs,	while	the	longest	at	1.49	Å	defines	the	C-C	bond	forming	the	edges	between	

the	rectangles	and	hexagons.	This	 imparts	a	rather	distorted	geometry	to	the	rings,	with	a	

multitude	of	different	angles	away	from	the	values	expected	of	perfect	 four,	six	and	eight	

sided	 polygons.	 Of	 the	 twenty-five	 allotropes	 found,	 this	 structure	 was	 intermediate	 in	

energy,	at	+0.46	eV	atom
-1
	higher	in	energy	than	graphite	at	0	GPa.	

	

The	C36	structure	is	formed	by	four,	five	and	ten	membered	rings,	forcing	the	bond	lengths	

to	vary	even	more	than	in	C12.	The	longest	bonds	at	1.51	Å	are	C-C	interactions	forming	the	

vertex	between	the	four	and	five	membered	rings,	whereas	the	shortest	defining	the	edge	

between	the	pentagon	and	the	decagon	is	a	mere	1.40	Å.	With	a	slightly	higher	energy	than	

the	C12	structure,	this	allotrope	is	less	favourable	than	graphite	by	some	+0.62	eV	atom
-1
.	

	

The	band	structures	of	C12	and	C36	indicate	that	both	of	the	structures	are	expected	to	be	

metallic	 in	 nature.	 The	 projected	 density	 of	 states	 (PDOS)	 for	 both	materials	 also	 shows	

significant	 population	 of	 electronic	 states	 around	 the	 Fermi	 level,	 confirming	 the	metallic	

character	 of	 the	 allotropes.	 The	mechanical	 stability	 of	 C12	was	 confirmed	by	 the	 lack	 of	

imaginary	 frequencies	 in	 its	 phonon	 dispersion	 plot.	 However,	 a	 negative	 frequency	 was	

present	in	the	phonon	spectrum	of	C36,	indicating	that	this	structure	is	unstable.	
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Figure	7.xviii:	Electronic	band	structures	(left)	and	projected	density	of	states	(PDOS,	right)	of	

C12	(previous	page)	and	C36	(above).	The	green	line	denotes	the	Fermi	level,	and	red	and	

blue	plots	in	the	PDOS	represent	the	carbon	2s	and	2p	contributions	respectively.	Note	the	

bands	crossing	the	Fermi	level	and	presence	of	states	around	EF	in	both	plots,	confirming	

their	metallic	character.	

	

	

	
	
Despite	C36	not	returning	a	phonon	spectrum	with	all	positive	values,	 it	 is	believed	that	 it	

may	still	represent	a	novel,	plausible	structure	type	for	carbon,	which	may	be	mechanically	

stable	with	some	small	changes	to	the	geometry.	For	example,	initial	indications	show	that	

the	 three-dimensional	 analogue	 of	 this	 topology	 may	 represent	 a	 stable	 configuration.	

However,	further	investigation	is	necessary	to	confirm	this.	
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7.4.4.2.3. sp2-3D	molecular	carbons:	C14	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xx:	Structure	and	crystallographic	data	relating	to	C14,	the	only	structure	found	to	

be	conclusively	formed	by	a	three	dimensional	lattice	of	exclusively	sp2	hybridised	carbon	

atoms.		

	

C14	forms	a	complex	three	dimensional	structure	featuring	both	four-	and	twelve-	membered	

rings	of	carbon	centres.	When	viewed	down	the	b	and	c	axes,	the	structure	exhibits	striking	

spiralling	motifs,	with	 the	 two	 sets	of	 orthogonal	 helices	meeting	each	other	 at	 the	 four-

membered	rings.	C-C	distances	within	the	relaxed	structure	range	from	1.42	Å	to	1.50	Å,	giving	

it	a	similar	bond	distance	variation	to	the	layered	sp2	structures	discussed	previously.		

	

The	electronic	properties	of	 this	allotrope	are	most	 intriguing.	The	band	plot	 shows	 three	

instances	of	band	crossing	at	the	Fermi	level,	and	the	projected	density	of	states	shows	that	

there	is	a	very	small	(but	non-zero)	amount	of	2p	states	populated	at	EF.	The	collected	phonon	

dispersion	curve	(which	is	not	reported	here)	had	a	very	small	imaginary	component	around	

the	Γ	point.	However,	it	is	fully	believed	that	this	is	due	to	the	size	of	the	simulation	super-

cell,	and	that	the	structure	should	be	mechanically	stable.	

	

With	a	density	of	only	2.291	g	cm-3,	the	material	is	not	much	denser	than	graphite,	despite	

forming	a	three	dimensional	molecular	structure.	The	helical	carbon	structure	exhibited	down	
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the	b	 and	c	 axes	 creates	 large	pores	 through	 the	material	 parallel	 to	 the	direction	of	 the	

spiralling,	 explaining	 its	 low	density.	 It	would	 be	 interesting	 to	 investigate	 the	 adsorption	

properties	 of	 this	 material,	 with	 the	 possibility	 of	 utilising	 the	 pores	 to	 host	 guest	 gas	

molecules	for	storage	or	catalysis.	A	future	study	using	a	method	such	as	Grand	Canonical	

Monte	Carlo	could	be	extremely	worthwhile	on	this	material.	

	

	

	

	

Figure	7.xxi:	Electronic	band	structures	and	projected	density	of	states	(PDOS)	for	the	2s	and	

2p	functions	of	C14	(above),	a	three	dimensional	sp2	allotrope.	

	

	

The	phonon	dispersions	for	C14	are	not	reported	here,	as	there	was	a	negative	frequency	

centred	around	the	Γ	point	in	the	obtained	spectrum.	Sadly,	any	efforts	to	eliminate	this	

discrepancy	have	so	far	been	unsuccessful.	Nevertheless,	the	anomaly	is	believed	to	be	a	

numerical	issue,	and	not	a,	inherent	problem	with	the	structure	–	thus,	it	is	speculated	that	

C14	represents	a	mechanically	stable	configuration,	but	sadly	this	cannot	be	verified	at	this	

time.	
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7.4.4.2.4. sp2-sp3	mixed	carbons:	C11,	C17	and	C30	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xxii:	Illustrations	of	and	crystallographic	data	for	C11	(top),	C17	(centre)	and	C30	

(bottom).	All	three	of	these	structures	are	formed	of	a	mixture	of	sp2	and	sp3	carbons.	

	

	

The	three	mixed	sp2-sp3	carbons	are	quite	varied	in	character,	although	there	are	notable	

similarities	between	them.	Firstly,	they	all	crystallise	within	a	monoclinic	space	group.	
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Secondly,	they	all	contain	a	2:1	ratio	of	four-coordinate	and	three-coordinate	carbons,	

leading	to	a	first	coordination	number	of	3.667	for	all	three	of	the	structures.	Thirdly,	all	

three	materials	are	semiconducting	in	nature,	although	their	band	structures	are	quite	

dissimilar.	

	

C11	and	C17	are	both	fairly	dense	structures	and	are	both	intermediate	in	terms	of	the	

energy	ranking	of	the	twenty-five	found	polymorphs.	Both	also	exhibit	significant	variation	

in	C-C	bond	lengths,	with	both	C11	and	C17	exhibiting	interatomic	distances	between	1.37	Å	

and	1.62	Å.	However,	C11	has	a	much	more	‘open’	structure	than	C17,	containing	spiralling	

carbon	atoms	along	the	a-axis.	On	the	contrary,	C17	does	not	feature	spiralling,	but	instead	

forms	internal	four,	six,	eight	and	ten	membered	rings,	making	it	the	denser	of	the	two	

structures.	C17	is	also	the	more	energetically	favoured	of	the	two	structures.	

	

C30	is	the	least	dense	of	the	three	structures,	with	large	cavities	and	channels	running	along	

three	crystallographic	directions	of	the	structure.	Once	again,	the	structure	is	characterised	

by	 extreme	 variations	 in	 bond	 lengths,	 of	 the	 same	 order	 as	 C11	 and	 C17.	 The	 peculiar	

geometry	of	the	carbon	atoms	within	the	structure	leads	to	a	fascinating	topology,	containing	

three-,	four-,	eight-,	ten-	and	twelve-membered	rings.	The	large	pores	and	channels	in	this	

structure	also	make	it	an	interesting	putative	target	for	gas	storage	calculations.	However,	

the	 unusual	 topology	 of	 this	material	means	 that	 it	 ranks	 second	 in	 terms	 of	 the	 highest	

energy	of	the	eight	novel	structures	found.	

	

The	considerable	bond	lengths	observed	in	all	three	of	these	allotropes	do	raise	the	question	

of	 whether	 or	 not	 these	 longest	 interactions	 are	 ‘true’	 bonds,	 or	 whether	 or	 not	 these	

structures	would	be	better	categorised	as	sp2	molecular	structures.	However,	unlike	C14,	all	

three	allotropes	exhibit	atomic	sites	that	adopt	an	sp3-like	geometry	and	a	fourth	‘bonding’	

interaction	within	10%	of	a	standard	carbon-carbon	bond.	A	detailed	analysis	of	the	bonding	

in	these	structures	would	be	an	interesting	future	project	to	undertake.	
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Figure	7.xxiii	(previous	page):	Electronic	band	structures	and	projected	density	of	states	

(PDOS)	for	the	2s	and	2p	orbitals	of	C11	(top),	C17	(centre)	and	C30	(bottom).	The	C11	and	

C17	materials	are	both	indirect	narrow	gap	semiconductors:	C11	has	a	band	gap	of	1.60	eV	

from	!	to	Å0,	whereas	C17	has	a	smaller	gap	of	1.25	eV	between	!	to	Å.	C33	has	a	much	

larger,	direct	band	gap	of	2.00	eV,	also	at	the	!	high	symmetry	point.	The	projected	density	

of	states	also	corroborates	this,	starkly	showing	the	lack	of	populated	electronic	states	at	EF.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xxiv	

(right):		

Phonon	dispersion	

curves	of	C11	

(top),	C17	(centre)	

and	C30	(bottom).	

All	three	of	the	
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at	0	GPa	

	

Γ														Y													M													A													Γ														Y0											M0										A	

			L												M																				A																		Γ																					Y														V													Γ	

1600	

1400	

1200	

1000	

800	

600	

400	

200	

0	

Fr
eq

ue
nc
y	
/	c

m
-1
		

1600	

1400	

1200	

1000	

800	

600	

400	

200	

0	

Fr
eq

ue
nc
y	
/	c

m
-1
		

1800	
1600	
1400	
1200	
1000	
800	
600	
400	
200	

0	

Fr
eq

ue
nc
y	
/	c

m
-1
		

C11	

C17	

C30	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	

	

	 241	

	

	

	

	

	

	

	

	

7.4.4.2.5. sp3-3D	molecular	carbons:	C33	and	C38	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xxv:	Structures	and	crystallographic	information	relating	to	the	two	structures	

composed	entirely	of	sp3	hybridised	carbons	–	C33	and	C36.	

	

	

Despite	the	fact	that	the	final	two	structures	are	dense,	four-coordinated	and	exclusively	sp3	

hybridised	 allotropes	 of	 carbon,	 C33	 and	 C38	 are	 not	 at	 all	 alike	 and	 constitute	 the	 two	

‘extremes’	in	terms	of	energy	of	the	eight	novel	structures	elucidated.		

	

With	very	little	variation	in	bond	lengths,	which	come	in	at	a	healthy	range	of	between	1.55	

Å	and	1.59	Å,	the	four-coordinate	C-C	 interactions	of	the	C33	structure	at	first	seem	quite	

reasonable.	However,	it	is	immediately	evident	from	inspection	of	the	topology	that	C33	is	a	

highly	 unfavourable	 configuration.	 The	 carbon	 atoms	 in	 C33	 are	 arranged	 to	 form	 highly	
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distorted	six-membered	rings,	which	form	two	bonds	across	the	hexagonal	face	to	atoms	on	

opposing	sides	of	the	polygon.	Each	of	the	atoms	in	these	hexagons	is	joint	to	another	six-

sided	fragment	via	a	four-coordinate	carbon	with	a	heavily	distorted	see-saw	geometry.	Even	

with	the	relatively	dense	packing	of	the	atoms	and	completely	four-coordinate	nature	of	this	

allotrope,	it	is	still	a	significant	+1.15	eV	atom-1	higher	in	energy	than	graphite.	

	

On	the	contrary,	the	C38	structure	is	the	lowest	in	energy	of	the	eight	structures	found,	at	

only	+0.23	eV	higher	in	energy	than	graphite.	The	carbon	atoms	are	arranged	to	form	five-,	

six-,	seven-	and	nine-	membered	rings	within	the	structure,	with	most	of	the	C-C	bond	lengths	

corresponding	to	that	of	a	reasonable	single	covalent	interaction.	However,	one	of	the	‘bonds’	

forming	the	pentagonal	rings	in	the	structure	measures	a	significant	1.68	Å.	The	carbon	atoms	

associated	 with	 this	 bond	 are	 most	 certainly	 sp3	 hybridised,	 forming	 almost	 perfect	

tetrahedra.	Thus,	a	more	detailed	investigation	into	the	bonding	exhibited	by	this	allotrope	

would	 be	 very	 interesting	 to	 consider	 in	 the	 future,	 particularly	 into	 the	 nature	 of	 this	

elongated	bond.	

	

Both	 of	 these	 feature	 much	 larger	 band	 gaps	 of	 2.60	 eV	 and	 5.06	 eV	 for	 C33	 and	 C38	

respectively.	Additionally,	both	structures	exhibit	no	imaginary	frequencies	in	their	phonon	

dispersion	curves.	
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Figure	7.xxvi:	Band	structure	and	projected	density	of	states	for	C33	and	C38,	indicating	their	

insulating	nature.	
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7.4.5. Conclusions	and	Future	Work	

	

To	 summarise,	 twenty-five	 allotropes	 of	 carbon	 have	 been	 discovered	 using	 a	 random	

structure	searching	technique;	eight	of	which	were	deemed	to	be	previously	unreported	for	

carbon.	All	eight	of	the	novel	structures	can	be	stabilised	at	0	GPa.	Six	of	the	eight	returned	

phonon	spectra	with	no	imaginary	frequencies,	indicating	that	they	could	be	metastable	at	

ambient	 conditions.	 The	 physical	 properties	 exhibited	 by	 the	 eight	 new	 allotropes	 are	

extremely	 varied	 in	 nature,	 spanning	 the	 broad	 continuum	 between	 three-coordinate,	

conducting	 graphite	 and	 four-coordinate,	 insulating	 diamond.	 Of	 the	 eight	 structures	

described	in	this	work:	

	

• Two	are	four-coordinated,	three	are	three-coordinated,	and	three	are	a	mixture	of	

three-	and	four-	coordinated;		

• Two	are	insulating,	two	are	metallic	and	four	are	semiconducting;	

• Two	are	layered	in	nature,	whereas	the	other	five	form	molecular	structures;	

• All	but	one	falls	within	1.0	eV	atom-1	of	graphite.	

	

With	such	varied	properties,	should	any	of	these	allotropes	be	synthesised,	they	could	easily	

find	a	potential	industrial	or	commercial	use.	

	

There	is	considerable	scope	for	further	investigations	into	these	materials.	Perhaps	the	most	

obvious	 would	 be	 an	 investigation	 into	 how	 the	 phases	 reported	 in	 this	 work	 could	 be	

produced	from	known	structures	of	carbon,	as	well	as	into	the	external	conditions	that	would	

be	most	optimal	for	the	eight	allotropes.	For	example,	one	could	investigate,	using	transition	

path	sampling	methods,	the	transformation	mechanisms	between	the	novel	polymorphs	and	

existing	phases	of	carbon.	

	

Each	 allotrope	 also	 raises	 its	 own	questions,	 as	 already	 alluded	 to	 in	 the	 analysis	 of	 each	

material.	For	example,	a	comprehensive	bonding	analysis	into	the	sp2-sp3	mixed	structures	

would	be	useful	for	determining	the	nature	of	the	very	long	C-C	contacts,	whereas	a	much	

more	detailed	 investigation	 into	 the	 electronic	 properties	 of	 C14	would	 be	desirable	 as	 a	
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result	of	 the	 three	 crossing	bands	at	 the	Fermi	 level.	 Some	of	 the	materials	 are	also	very	

porous,	containing	large	cavities	and	channels	through	their	crystal	structures.	As	such,	an	

investigation	into	their	gas	storage	properties	using	Grand	Canonical	Monte	Carlo	could	be	

very	beneficial,	particularly	with	emphasis	on	H2,	CO2	and	CH4	selective	storage	and	release.	

	

With	 respect	 to	 finding	 additional	 allotropes,	 further	 iterations	 of	 the	 Random	 Atomic	

Placement	procedure	would	undoubtedly	lead	to	the	discovery	of	more	structure	types	for	

carbon.	 In	 addition,	 full	 automation	 of	 the	 procedure,	 or	 coupling	 with	 other	 structure	

prediction	methods	 such	as	 simulated	annealing,	may	 further	 increase	 the	efficacy	of	 the	

method.	

	

It	is	clear	from	the	literature,	and	the	work	presented,	that	the	field	of	carbon	crystal	structure	

prediction	is	still	an	incredibly	interesting	and	open	area	of	research.	To	date,	approximately	

500	allotropes	of	 carbon	have	been	 synthesised	or	predicted,	however	 it	 is	plausible	 that	

many	more	remain	to	be	discovered,	each	with	its	own	set	of	unique	properties	and	potential	

applications.	 It	 seems	 likely,	 with	 the	 arsenal	 of	 crystal	 structure	 prediction	 tools	 now	

available	to	computational	materials	scientists,	that	the	field	of	carbon	structure	prediction	

will	continue	to	be	fruitful	for	many	years	to	come.	
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7.5. Zinc	Oxide	Structure	Prediction	at	High	Pressure	

	

7.5.1. Introduction	

	

As	discussed	in	Chapter	5,	zinc	oxide	is	a	truly	fascinating	and	versatile	compound	with	a	great	

number	of	existing	and	potential	uses.	Existing	uses	 include	in	the	manufacture	of	rubber,	

plastics,	 ceramics	and	 lubricants,	but	novel	 and	 functionalised	 forms	of	 the	material	have	

great	potential	for	use	in	future	electronics	and	optical	devices.	A	detailed	introduction	to	the	

structure,	formation	and	uses	of	zinc	oxide	was	presented	in	Chapter	5.	

	

	

	

	

	

	

	

	

Figure	7.xxviii:	A	brief	reminder	of	the	three	experimentally	observed	polymorphs	of	ZnO	–	

wurtzite	(left),	rocksalt	(centre)	and	zincblende	(right)	

	

	

Zinc	 oxides	 is	 an	 excellent	 contender	 to	 be	 explored	with	 the	Random	Atomic	 Placement	

procedure.	This	is	because	zinc	oxide	both	already	exhibits	a	number	of	experimentally	known	

polymorphs	(wurtzite,	zincblende,	and	rocksalt)	which	are	very	close	in	energy,	and	is	also	

likely	 to	display	additional	structures	 in	 the	high	pressure	regime.	Other	crystal	prediction	

work	 has	 proven	 that	 exotic	 stoichiometries	 and	 configurations	 are	 possible	 at	 extreme	

pressure,	even	in	the	most	familiar	AB	compounds.	Thus,	it	can	be	expected	that	ZnO	should	

behave	 no	 differently.	 To	 consider	 this,	 a	 literature	 review	 of	 hypothetical	 zinc	 oxide	

polymorphism	follows.	
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7.5.2. Previous	Work	on	Bulk	ZnO	Crystal	Structure	Prediction		

	

Limited	 attention	 has	 been	 paid	 to	 the	 polymorphism	 of	 bulk	 zinc	 oxide.	 Rather,	 most	

academic	effort	has	concentrated	on	the	structure	and	properties	of	zinc	oxide	nanoclusters	

and	nanofilms,	as	well	as	into	the	functionalisation	of	ambient	zinc	oxide	(and,	of	course,	the	

wurtzite-rocksalt	phase	transition,	which	is	reviewed	extensively	in	Chapter	5).	

	

For	example,	Al-Sunaidi	et	al	used	genetic	algorithms	to	predict	possible	geometries	of	zinc	

oxide	clusters	containing	between	1	and	32	Zn-O	units.[70]	Similarly,	Trushin	et	al	used	density	

functional	 theory	 to	 assess	 the	 stability	 of	 the	 geometries	 of	 zinc	 oxide	 nanoclusters	

consisting	of	between	2	and	9	Zn-O	units.[71]	

	

Very	 little	 is	 currently	 known	 about	 the	 true	 extent	 of	 bulk	 zinc	 oxide	 polymorphism,	

especially	how	it	behaves	under	extreme	conditions.	Recent	literature	has	shown	that	even	

familiar	compounds	like	sodium	chloride	can	exhibit	incredibly	exotic	structures	and	bonding	

properties	at	high	pressures.	It	is	thus	likely	that	zinc	oxide	too	will	present	some	intriguing	

characteristics	under	extreme	conditions.	

	

Only	the	three	above	polymorphs	of	bulk	zinc	oxide	(wurtzite,	zincblende	and	rocksalt)	have	

so	far	been	realised	experimentally.	A	fourth	high-pressure	polymorph	with	caesium	chloride	

(CsCl)-type	topology	has	been	postulated,	but	not	yet	experimentally	verified.	There	is	great	

deal	of	ambiguity	regarding	the	pressure	range	at	which	this	CsCl-type	polymorph	is	expected	

to	exist	or	be	directly	competitive	with	the	rocksalt	phase.	Density	functional	theory	seems	

to	suggest	that	the	rocksalt	polymorph	is	favoured	up	to	260	GPa[72],	however	others	have	

suggested	very	different	values	for	the	transition	pressure.	

	

Analogous	to	experimental	work,	very	few	theoretical	studies	have	been	carried	out	to	search	

the	 configuration	 space	 of	 bulk	 zinc	 oxide	 outside	 of	 these	 four	 known	 polymorphs.	One	

notable	 exception	 is	 a	 recent	 set	 of	 papers	 on	 the	 polymorphism	of	 zinc	 oxide	 published	

Jansen	et	al.	The	most	comprehensive	of	these	(Zagorac	et	al)[73]	employ	structural	annealing	

to	search	for	minima	on	the	underlying	energy	 landscape.	Zagorac	et	al	showed	that	their	

technique	 found	 a	 great	 number	 of	 potential	 minima,	 including	 topologies	 shared	 with	
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germanium	telluride	(a-GeTe),	germanium	phosphide	(GeP),	nickel	arsenide	(NiAs),	tungsten	

carbide	 (a-WC)	 and	 beryllium	 oxide	 (b-BeO),	 as	 well	 as	 a	 number	 of	 distorted	 rocksalt	

configurations	corresponding	to	previously	uncharacterised	structure	types.	

	

	

	

		

Figure	7.xxix:	Three	of	the	hypothetical	phases	of	zinc	oxide	discovered	by	Zagorac	et	al,	

including	the	germanium	phosphide	(GeP)-type	structure	(a,	left),	the	nickel	arsenide	(NiAs)-

type	geometry	(b,	centre)	and	the	germanium	telluride	(a-GeTe)	structure	(c,	right).	

	

	

In	 addition	 to	 this	 work	 on	 the	 polymorphism	 of	 zinc	 oxide,	 Zagorac	 et	 al	 have	 also	

investigated	 polytipism	 in	 zinc	 oxide,	 and	 have	 shown	 that	 varying	 the	 stacking	 order	 in	

wurtzite	and	wurtzite-like	ZnO	can	have	a	profound	effect	on	the	electronic	properties	of	the	

material	without	 invoking	 the	need	 for	dopant	atoms.	This	 goes	 some	way	 to	explain	 the	

curious	properties	exhibited	by	certain	zincite-containing	minerals.[74]	

	

Aside	from	the	above	work,	there	appears	to	be	almost	no	literature	on	theoretical	studies	of	

the	polymorphism	of	bulk	zinc	oxide	at	high	pressure.	As	a	result	of	this	(and	taken	in	context	

with	 the	phase	 transition	work	between	zincblende	and	 rocksalt	ZnO	already	discussed	 in	

Chapter	5),	it	was	deemed	a	prime	target	for	random	structure	searching	techniques	at	high	

pressure.	
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7.5.3. Methodology	

	

Analogous	to	the	carbon	structure	prediction	work,	this	work	too	utilised	the	Random	Atomic	

Placement	 method	 to	 search	 for	 high-pressure	 polymorphs	 of	 zinc	 oxide.	 	 Firstly,	 atomic	

configurations	were	generated	with	two,	four	and	six	sets	of	zinc	oxide	pairs	(all	of	the	work	

presented	here	was	carried	out	using	a	1:1	stoichiometry	of	zinc	and	oxygen).	The	randomly	

generated	systems	were	then	relaxed	under	pressure	using	the	conjugate	gradient	method	

of	geometry	optimisation.	High	pressure	was	induced	by	multiplying	the	lattice	vectors	of	the	

generated	 cell	 by	 a	 factor	 of	 between	 0.5	 and	 0.8	 prior	 to	 the	 optimisation,	 in	 order	 to	

significantly	 constrict	 the	 system	 from	 its	 ambient	 size	but	without	 specifying	a	particular	

value	of	pressure	to	be	exerted.	

	

Promising	structures	were	then	further	optimised	at	the	pressure	obtained	due	to	the	volume	

contraction,	such	that	the	total	forces	acting	on	each	atom	were	less	than	0.01	eV.	An	initial	

test	for	stability	was	carried	out	by	calculating	the	vibrational	spectrum	at	the	gamma	point	

Γ	of	the	Brillouin	zone.	Prospective	zinc	oxide	structures	which	featured	positive	eigenvalues	
for	the	Hessian	matrix	were	subjected	to	further	analysis,	including	the	full	calculation	of	band	

structures	and	phonon	dispersion	curves	to	elucidate	electronic	and	structural	information.	

	

All	 of	 the	 below	 calculations,	 including	 the	 optimisations	 and	 calculations	 of	 bands	 and	

phonons,	were	completed	within	the	SIESTA	package,

[67]	

coupled	with	the	Random	Atomic	

Placement	 scripts.	 Density	 functional	 theory	 (DFT)	within	 the	 local	 density	 approximation	

(LDA)	with	the	Cerperley-Alder	(CA)

[75]	

parameterisation	was	utilised	for	the	optimisations	and	

analysis.	A	norm-conserving	Troullier-Martins	pseudopotential

[69]	

was	utilised	to	describe	the	

core	 states	 of	 the	 zinc	 and	 oxygen	 atoms.	 Phonons	 were	 calculated	 in	 SIESTA	 using	 the	

supercell	approach.	The	number	of	k	points	was	suitably	chosen	for	each	task	depending	on	

system	size	and	the	nature	of	the	calculation	being	undertaken.	For	the	initial	relaxation	of	

the	randomly	generated	binary	configurations,	electronic	states	were	expanded	in	a	single-

zeta	basis	set.	Follow-up	calculations	saw	the	electronic	states	expanded	in	a	more	rigorous	

double-zeta	basis	set	with	additional	polarization	functions	for	the	O	2p	and	Zn	4s	orbitals.	

Charge	densities	were	represented	by	a	finite	3-D	grid	in	real-space	with	a	cut-off	of	between	

200	and	300	Ry,	depending	on	the	system.		
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7.5.4. Results	and	Discussion	

	

7.5.4.1. Overview	

	

	

	

	

	

	

Figure	7.xxx:	The	five	hypothetical	polymorphs	of	zinc	oxide	predicted	using	the	Random	

Atomic	Placement	method	at	high	pressure.	Polymorphs	that	have	not	been	reported	

previously	for	zinc	oxide	by	Zagorac	et	al	are	highlighted	in	blue.		

	

	

From	 the	 random	 crystal	 structure	 prediction	 technique,	 nine	 zinc	 oxide	 structures	 were	

obtained	–	the	three	experimentally	known	structures,	the	high-pressure	caesium	chloride	

form,	and	an	additional	 five	promising	high-pressure	configurations.	Two	of	the	structures	

have	been	previously	predicted	for	zinc	oxide	in	the	work	of	Zagorac	et	al,	whereas	the	other	

three,	to	the	knowledge	of	the	author,	have	so	far	not	been	reported	as	possible	structure	

types	for	zinc	oxide.	

	

Three	of	the	five	polymorphs	generated	could	be	subsequently	optimised	at	0	GPa.	Four	had	

phonon	dispersions	with	no	imaginary	frequencies	at	their	respective	high	pressures.	All	five	

of	 the	 predicted	 structures	 correspond	 to	 known	 structural	 types.	 However,	 some	 of	 the	

D	

B	
C	

A	

E	
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predicted	topologies	are	very	rare	indeed,	being	found	in	only	a	handful	of	compounds.	The	

five	predicted	structures	of	zinc	oxide	found	in	this	work	are:	

	

• Structure	 A	 –	 a	 cubic,	 seven-coordinated	 structure	 analogous	 to	 RS	 with	 an	 FeSi-like	

distortion	(space	group	+2C3).	Can	be	stabilised	only	at	very	high	pressures	and	previously	
unreported	as	a	possible	structure	type	for	zinc	oxide;	

	

• Structure	B	 –	 a	 trigonal	 system	 (space	 group	F3'),	with	 alternating	 structural	motifs	

corresponding	 to	 the	 geometries	 of	 rocksalt	 and	 nickeline	 (NiAs).	 Of	 the	 polymorphs	

found,	this	had	the	lowest	energy.	Also	previously	unreported	for	ZnO;	

	

• Structure	C	–	a	body-centred	tetragonal	crystalline	structure	(space	group	@4C'2),	with	
an	atomic	arrangement	analogous	to	that	of	niobium	arsenide	(NbAs).	The	third	and	final	

novel	polymorph	found	in	this	work;	

	

• Structure	D	–	a	hexagonal	structure	(space	group	+6'2),	akin	to	the	structure	of	alpha	
tungsten	carbide	(a-WC).	Previously	predicted	by	Zagorac	et	al	 in	2014,	this	work	fully	

corroborates	their	findings	for	this	polymorph;	

	

• Structure	E	 –	a	 completely	nickel	arsenide	 (NiAs)-type	 system	within	an	orthorhombic	

crystal	setting	(space	group	3'/').	Also	previously	predicted	by	Zagorac	et	al	 in	their	

papers.[73]	However	in	this	work	this	configuration	could	not	be	stabilised	at	ambient	or	

high	pressure,	readily	transforming	to	the	50:50	rocksalt-nickeline	structure	B.	

	

Some	of	the	data	summarising	the	five	predicted	phases,	as	well	as	the	three	experimentally	

known	phases	of	zinc	oxide,	are	presented	in	Table	7.xxxii.	Following	this,	a	description	of	all	

five	 of	 the	 predicted	 structures	 in	 terms	 of	 their	 geometry	 and	 band/phonon	 curves	 is	

presented.	 Predictions	 about	 possible	 uses	 and	 routes	 of	 synthesis	 are	 discussed,	 where	

appropriate.	Data	for	each	polymorph	refers	to	the	pressure	of	discovery,	as	 indicated	for	

each	system.	
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	 Crystal	(space	
group)	

Pressure	
found	
/GPa	

Can	be	

relaxed	
at	0	
GPa?	

	

Volume	

at	0	GPa	
/	Å3	pair-

1	

Density	
at	0	GPa	
/g	cm-3	

	
Energy	
at	0	GPa	

(Diff.	w/	
WZ)	

/eV	pair-
1	

	

Coord.	
Sphere	

A	
Cubic	

(+2C3)	
909	 No	

N/A	–	structure	reverts	to	RS	at	

0	GPa	

7,	24,	55,	

98,	151	

B	
Trigonal	

(F3')	
177	 Yes	 20.1101	 6.71984	

-1933.18	

(+	0.21)	

6,	19,	41,	

72,	111	

C	
Tetragonal	

(@4C'2)	
232	 Yes	 19.9671	 6.76799	

-1932.99	

(+	0.40)	

6,	20,	43,	

76,	117	

D	
Hexagonal	

(+6'2)	
174	 Yes	 20.1823	 6.69580	

-1933.03	

(+	0.36)	

6,	20,	42,	

74,	114	

E	
Orthorhombic	

(3'/')	
168*	 No	

N/A	–	structure	reverts	to	B	at	0	

GPa	

6,	19,	42,	

74,	114	

WZ	
Hexagonal	

(+6-'/)	
N/A	 Yes	 24.6630	 5.47934	

-1933.39	

(±	0.00)	

4,	12,	25,	

44,	67	

ZB	
Cubic	

(143')	
N/A	 Yes	 24.6594	 5.48014	

-1933.35	

(+	0.04)	

4,	12,	24,	

42,	64	

RS	
Cubic	

(1'3')	
N/A	 Yes	 19.9267	 6.78170	

-1933.38	

(+	0.01)	

6,	18,	38,	

66,	102	

	

*	Despite	polymorph	E	being	found	in	the	search	and	included	in	the	data,	it	could	not	be	stabilised	even	at	high	

pressure,	returning	two	imaginary	phonon	frequencies	along	multiple	k-vectors	in	the	Brillouin	zone.	However,	

its	analysis	has	been	included	as	this	structure	is	reported	to	be	metastable	by	Zagorac	et	al.	

	

Table	7.xxxi:	Table	summarising	some	data	pertaining	to	the	five	discovered	configurations	of	

zinc	oxide,	compared	to	the	three	experimentally	known	phases.	Phase	labels	highlighted	in	

blue	correspond	to	previously	unreported	structure	types	for	ZnO,	postulated	in	this	work	as	

possible	metastable	forms	of	zinc	oxide	at	very	high	pressures.	
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Figure	7.xxxii:	Volume	vs.	energy	(top)	and	pressure	vs	enthalpy	(bottom)	plots	for	the	three	

predicted	zinc	oxide	polymorphs	that	could	be	stabilised	at	a	range	of	pressures,	compared	

to	those	of	wurtzite	(WZ)	and	rocksalt	(RS).	The	plots	of	materials	A	and	E	are	not	included,	

since	these	transform	into	rocksalt	and	B	respectively	when	relaxed	using	conjugate	gradient	

methods	at	the	lower	pressures	required	to	generate	the	above	plot.	
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7.5.4.2. The	Five	Predicted	Phases	of	ZnO	

	

7.5.4.2.1. Structure	A	–	NaCl-like	with	FeSi	distortion	

	

The	first	of	the	five	structures	discovered	using	the	Random	Atomic	Placement	technique	is	a	

cubic	polymorph	with	space	group	+2C3,	designated	structure	A.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xxxiii:	Structure	A,	showing	the	seven-fold	coordination	and	highly	symmetric	cubic	

configuration,	as	well	as	crystallographic	data	relating	to	the	unit	cell	of	the	novel	polymorph.	

	

	

This	highly	symmetrical	phase	was	found	initially	at	the	very	high	pressure	of	909	GPa,	well	

above	the	pressure	at	which	the	rocksalt	to	caesium	chloride	transition	is	expected.	As	a	result	

of	this	extreme	pressure,	this	form	of	ZnO	has	a	number	of	fascinating	geometric	properties.	

Strikingly,	 each	 zinc	 is	 bound	 to	 seven	 oxygens,	 and	 vice	 versa,	 giving	 a	 local	 distorted	

pentagonal	 bipyramidal	 molecular	 environment.	 At	 909	 GPa,	 six	 of	 these	 bonds	 are	

approximately	1.75	Å	in	length,	with	the	seventh	slightly	longer	at	1.87	Å.	The	structure	can	

be	thought	of	as	a	distorted	rocksalt	structure,	with	a	geometry	intermediate	between	that	

of	the	structures	of	rocksalt	and	iron	silicide	(FeSi).		This	seven-coordinate	form	of	zinc	oxide	

has	not	yet	been	reported,	and	nor	observed	in	any	collected	experimental	evidence.	

ÑÖÜ − àâäãåâãäç	é	

Pressure:	909	GPa	

GNB/O	P*HQN:	SMLe	

è)ê	Q)�IU	NO*	/OVV: 4	

B = Z = / = 3.30	Å	

] = 	^ = _ = 90°	

ê1		4B	(d, d, d)			0.663		0.837		0.163	

è)1			4B	(d, d, d)			0.163		0.837		0.336	
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Releasing	the	high	pressure	and	running	a	conjugate	gradient	relaxation	at	0	GPa	causes	the	

structure	 to	promptly	 revert	back	 to	 rocksalt	 zinc	oxide,	 indicating	 it	 is	 highly	unstable	 at	

ambient	 pressure.	 However,	 this	 material	 persisted	 when	 propagated	 at	 much	 lower	

pressures	than	909	GPa	–	The	system	was	also	able	to	be	relaxed	at	500,	400	and	300	GPa.	

	

The	electronic	band	structure	at	909	GPa	shows	an	indirect	band	gap	of	approximately	4.40	

eV,	meaning	that	the	material	has	a	larger	band	gap	than	the	known	zinc	oxide	polymorphs.	

In	addition,	all	of	the	phonon	frequencies	across	the	Brillouin	zone	are	positive,	 indicating	

that	the	structure	is	mechanically	stable	at	909	GPa.	

	

Although	 such	 pressures	 are	 presently	 far	 too	 high	 for	 any	 immediate	 application	 of	 this	

material,	it	is	not	inconceivable	to	imagine	scenarios	where	such	a	polymorph	of	zinc	oxide	

could	exist,	particularly	 in	 the	context	of	planetary	 sciences.	For	example,	 the	core	of	 the	

planet	Jupiter	experiences	pressures	of	up	to	4,500	GPa.	Thus,	it	is	quite	plausible	to	imagine	

that	this	polymorph	could	be	present	within	exoplanets	which	both	feature	high	levels	of	zinc	

and	oxygen	and	are	of	a	comparable	size	to	the	gas	giants	in	our	Solar	System.		

	

Alternatively,	this	material	could	exist	as	an	intermediate	or	transition	state	during	the	phase	

transition	between	six-coordinate	(RS)	and	eight-coordinate	(CsCl)	type	zinc	oxide.	It	would	

be	very	interesting	to	apply	the	transition	path	sampling	and	metashooting	procedures	(refer	

to	Chapter	5)	on	such	a	transition	in	order	to	determine	whether	or	not	this	could	be	a	viable	

intermediate	 for	 this	 transformation.	 However,	 its	 independent	 existence	 at	 909	 GPa	

indicates	that	 it	 is	a	bona	fide	phase	 itself,	and	not	 just	a	transient	state	 linking	two	more	

‘conventional’	polymorphs.	
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Figure	7.xxxiv	Electronic	band	structure	and	projected	density	of	states	showing	

contributions	from	zinc	and	oxygen	atoms	for	the	hypothetical	+2C3	structure	at	909	GPa.	
Oxygen	2s	and	2p	states	are	given	in	dark	red	and	pink	respectively,	whereas	zinc	4s	and	4d	

states	are	denoted	in	dark	and	light	blue.	The	band	plot	shows	an	indirect	band	gap	of	

approximately	4.40	eV	between	F	and	Γ.		
	

	
	

Figure	7.xxxv:	Phonon	dispersion	curves	of	the	hypothetical	+2C3	structure	at	909	GPa	
showing	no	imaginary	frequencies	across	the	Brillouin	Zone,	confirming	the	mechanical	

stability	of	the	seven-coordinate	polymorph	at	this	pressure	
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7.5.4.2.2. Structure	B	–	NaCl-NiAs	intergrowth	

	

The	second	high-pressure	zinc	oxide	structure	discovered	in	this	work	crystallises	within	the	

trigonal	space	group	F3'.	Present	at	the	much	lower	(but	still	very	high!)	pressure	of	177	

GPa,	 its	 six-coordinate	 geometry	 is	 an	 intergrowth	 of	 RS	 and	 NiAs-type	 topologies,	 with	

alternating	motifs	of	each	structure	type	present	throughout	the	system.	It	is	believed	that	

this	polymorph	is	also	novel	for	zinc	oxide.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xxxvi:	A	depiction	of	structure	B,	showing	the	mixed	rocksalt-nickeline	topology.	

Crystallographic	data	is	also	presented.	

	

	

Mixed	topology	materials	such	as	this	have	recently	gathered	significant	interest	because	of	

their	 potential	 uses	 in	 electronic	 devices.	 Most	 notably,	 layered	 materials	 are	 being	

increasingly	 considered	 for	 use	 in	 thermoelectric	 materials,	 with	 the	 idea	 being	 that	

alternating	layers	of	a	material	can	conduct	electricity	but	scatter	phonons	at	their	interfaces,	

leading	to	poor	thermal	conductivity.	This	increases	the	figure	of	merit	(ZT)	of	the	material	

and	hence	its	capability	as	a	thermoelectric	material.	

ÑÖÜ − àâäãåâãäç	ë	

Pressure:	177	GPa	

GNB/O	P*HQN:	F3' 	

è)ê	Q)�IU	NO*	/OVV: 6	

B = Z = 2.5557Å				/ = 14.4632	Å	

] = 	^ = 90°			_ = 120°	

ê1		3B	(0,0, b)			0.000		0.000		0.827	

ê2		3B	(0,0, b)		0.667		0.333		0.992	

è)1		3B	(0,0, b)			0.333		0.667		0.742	

è)2		3B	(0,0, b)			0.333		0.667		0.910	
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The	mixed	nature	of	the	material	means	that	there	are	three	distinct	Zn-O	bond	lengths.	At	

the	initial	pressure	of	177	GPa,	Zn-O	contacts	within	rocksalt	motifs	have	lengths	of	1.89	Å,	

whereas	in	nickel	arsenide	environments	they	are	longer	at	1.92	Å.	Zn-O	contacts	connecting	

the	two	different	topologies	are	intermediate	in	length,	at	around	1.9	Å	long.	

	

The	electronic	structure	of	this	material	at	177	GPa	shows	that	this	material	has	a	direct	band	

gap	of	3.18	eV,	making	it	a	fairly	wide	band-gap	semiconductor	with	a	gap	similar	to	that	of	

ambient	zinc	oxide.	The	phonon	spectrum	shows	no	imaginary	frequencies,	confirming	the	

high	pressure	stability	of	the	material	at	the	simulated	pressure.	

	

Unlike	 the	 previous	 structure,	 the	 structural	 integrity	 of	 this	 polymorph	 is	 retained	when	

relaxed	at	 zero-pressure.	Energy	calculations	at	0	GPa	showed	 that	 this	 structure	was	 the	

most	favourable	of	the	three	structures	that	could	be	relaxed	at	zero	pressure,	with	a	Zn-O	

unit	volume	and	density	very	 similar	 to	 that	of	 rocksalt	and	an	energy	only	0.2	eV	atom-1	

above	the	NaCl-type	configuration.	However,	phonon	dispersions	at	0	GPa	featured	several	

imaginary	frequencies,	indicating	its	instability	at	lower	pressures.	

	

	

	

	

Figure	7.xxxvii:	Electronic	band	structure	and	projected	density	of	states	for	polymorph	B	at	

177	GPa,	showing	a	large	gap	centred	at	the	Fermi	level.	
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Figure	7.xxxviii:	Phonon	spectrum	for	structure	B	at	177	GPa,	showing	no	negative	

frequencies.	The	undulations	seen	in	the	phonon	dispersions	are	almost	certainly	non-

physical,	resulting	from	insufficient	k-grid	sampling.	Nonetheless,	the	lack	of	imaginary	

frequencies	confirms	the	mechanical	stability	of	the	polymorph	at	177	GPa.	

	

	

	

7.5.4.2.3. Structure	C	–	NbAs-like	

	

The	 third	 structure	 determined	 by	 the	 random	 crystal	 structure	 search	 is	 another	 rare	

configuration	(and	as	yet	unknown	for	zinc	oxide),	crystallising	in	the	body-centred	tetragonal	

space	 group	 @4C'2.	 This	 structure,	which	was	 stabilised	 at	 232	GPa,	 is	 analogous	 to	 the	
structure	of	niobium	arsenide	(NbAs).	

	

Structurally,	the	system	can	be	described	in	terms	of	layers	that	are	shifted	along	either	the	

a	or	the	b	direction	with	respect	to	neighbouring	layers,	leading	to	an	overall	‘screw’	pattern	

along	the	c-axis.	Additionally,	the	structure	contains	no	centre	of	inversion.	At	the	reported	

pressure	of	discovery,	there	exists	a	slight	asymmetry	in	the	Zn-O	bonds,	with	half	of	the	Zn-

O	interactions	equal	to	1.875	Å	and	the	second	half	slightly	longer	at	1.884	Å.	
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Figure	7.xxxix:	An	illustration	of	the	niobium	arsenide-like	structure	C,	with	some	associated	

crystallographic	data.	

	

	

Unlike	 the	 true	 niobium	 arsenide	 compound	 (which	 is	 metallic),	 the	 Fermi	 level	 in	 this	

material	is	once	again	found	in	the	gap	between	the	highly	dispersed	conduction	bands	and	

the	localised	d-electron	band,	making	this	polymorph	a	semiconductor.	This	form	of	zinc	oxide	

has	an	indirect	band	gap	of	around	3.25	eV	(very	similar	to	the	gap	exhibited	by	wurtzite	ZnO),	

from	 the	 Σ	 point	 in	 the	 valence	 band	 to	 the	 Γ	 point	 in	 the	 conduction	 band.	 Phonon	

dispersions	 at	 the	 pressure	 of	 discovery	 confirmed	 the	 mechanical	 stability	 of	 the	 NbAs	

structure	at	232	GPa.	

	

At	0	GPa,	the	volume	and	density	of	this	material	are	almost	identical	to	rocksalt;	however,	it	

was	the	highest	 in	energy	of	the	three	zero-pressure	metastable	phases	reported,	with	an	

energy	 just	 shy	of	 0.4	 eV	atom-1	 greater	 than	ambient	 zinc	oxide	 at	 0	GPa.	However,	 the	

phonon	dispersion	curves	at	0	GPa	featured	numerous	negative	frequencies,	indicating	that	

the	structure	is	only	stable	at	high	pressure.	

ÑÖÜ − àâäãåâãäç	K	

Pressure:	232	GPa	

GNB/O	P*HQN:	@4C'2 	

è)ê	Q)�IU	NO*	/OVV: 4	

B = Z = 2.4804	Å				/ = 8.3296	Å	

] = 	^ = 		_ = 90°	

ê1		4B	(0,0, b)		0.000		0.500		0.052	

è)1		4B	(0,0, b)		0.500		0.000		0.132	
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Figure	7.xl:	Electronic	band	structure	and	projected	density	of	states	for	structure	C	at	232	

GPa,	showing	that	it	behaves	as	a	semiconductor	with	an	indirect	band	gap	of	3.25	eV.	

	

	

	
	

	

Figure	7.xli:	Phonon	dispersion	curves	for	structure	C,	confirming	the	mechanical	stability	of	

the	material	at	232	GPa.	
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7.5.4.2.4. Structure	D	–	a-WC-like	

	

	

	

	

	

	

	

	

	

Figure	7.xlii:	A	depiction	of	structure	D,	as	well	as	associate	crystallographic	data	for	the	unit	

cell	at	the	pressure	of	discovery.	

	

	

The	 fourth	 predicted	 high-pressure	 zinc	 oxide	 polymorph	 crystallises	 in	 a	 hexagonal	

configuration,	 analogous	 to	 the	 structure	 of	 alpha-tungsten	 carbide	 (a-WC).	 Found	 at	 a	

pressure	of	174	GPa,	the	structure	can	be	considered	as	a	simple	hexagonal	 lattice	of	zinc	

atoms	 forming	 layers	which	 stack	directly	on	 top	of	each	other,	with	oxygen	atoms	 filling	

exactly	one	half	 of	 the	 interstitial	 sites.	 This	 leads	 to	 a	 six-coordinate	 structure	with	 local	

trigonal	prismatic	geometry.	At	the	pressure	reported,	all	of	the	Zn-O	bonds	are	equivalent	in	

length	at	1.91	Å.	The	distance	between	zinc	atoms	in	each	hexagonal	layer	is	equal	to	2.52	Å,	

whereas	the	distances	between	the	zinc	layers	themselves	are	slightly	shorter	at	2.47	Å.		

	

The	phonon	dispersion	curves	for	this	material	at	174	GPa	confirm	its	dynamical	stability,	and	

electronic	structure	calculations	indicate	that	the	material	is	semiconducting,	with	an	indirect	

band	gap	of	approximately	3.5	eV	from	ò	in	the	valence	band	to	Γ	in	the	conducting	band.	

As	with	 structures	B	 and	C,	 this	 form	of	 ZnO	 could	 also	be	 relaxed	at	 0	GPa,	however	 its	

phonon	spectrum	once	again	featured	several	imaginary	frequencies	at	zero	pressure.	

	

ÑÖÜ − àâäãåâãäç	ô	
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This	 form	of	 zinc	oxide	has	been	 found	previously	 in	 the	work	of	 Zagorac	et	al,	who	also	

predicted	that	the	a-WC	structure	of	zinc	oxide	is	possible	at	very	high	pressure,	and	could	

be	an	important	intermediate	in	the	transition	between	rocksalt	and	caesium	chloride	type	

ZnO.	This	would	be	a	fascinating	future	project	to	undertake	with	the	transition	path	sampling	

and	metashooting	methodologies.	

	

	

	

	

Figure	7.xliii:	Electronic	band	structure	and	projected	density	of	states	at	174	GPa	for	

structure	D,	the	a-WC-like	phase	of	ZnO,	showing	an	indirect	band	gap	of	3.5	eV.	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xliv:	Phonon	dispersion	curves	for	structure	D	at	the	pressure	of	discovery,	

confirming	its	dynamical	stability	at	174	GPa.	
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7.5.4.2.5. Structure	E	–	NiAs-like	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.xlv:	Illustration	and	crystallographic	data	of	structure	E,	the	NiAs	analogue.	

	

	

The	fifth	and	final	of	the	five	polymorphs	discovered	is	analogous	to	the	nickel	arsenide	(NiAs)	

structure,	crystallising	in	the	orthorhombic	space	group	3'/'.	This	atomic	configuration	is	

common	for	many	transition	metal	sulphides	with	a	1:1	stoichiometry,	but	has	not	yet	been	

experimentally	realised	for	zinc	oxide.	

	

Structurally,	 it	 can	 be	 seen	 that	 the	 arrangement	 consists	 of	 a	 hexagonal	 close-packed	

arrangement	of	 zinc	atoms,	with	oxygens	 then	 filling	all	of	 the	available	octahedral	holes.	

Once	again,	the	coordination	number	of	the	atomic	sites	is	6.	The	layers	of	zinc	and	oxygen	

order	in	an	ACBCA	fashion,	meaning	that	unlike	in	the	rocksalt	configuration,	the	cationic	and	

anionic	sites	are	not	interchangeable.	Nickeline	arrangements	tend	to	occur	in	compounds	

with	a	significant	degree	of	covalent	nature	to	their	bonding.	In	addition,	the	metal	ions	in	

nickeline	systems	often	tend	to	be	slightly	closer	to	each	other	than	expected,	due	to	stronger	

metal-metal	interactions.	

	

This	structure	was	found	at	the	initial	pressure	of	168	GPa.	However,	two	bands	within	the	

calculated	phonon	dispersion	curves	were	imaginary	along	certain	k-vectors	of	the	Brillouin	

ÑÖÜ − àâäãåâãäç	ú	
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zone	at	this	pressure,	indicating	that	the	structure	is	not	mechanically	stable.		In	addition,	any	

attempts	to	relax	or	propagate	this	structure	at	0	GPa	saw	it	revert	back	to	structure	B	(the	

intergrowth	structure),	indicating	that	this	configuration	appears	not	to	be	stable	at	neither	

ambient	nor	high	pressures.	This	is	likely	a	result	of	the	significant	ionicity	exhibited	by	ZnO,	

and	hence	 its	unwillingness	to	adopt	configurations	more	usually	associated	with	covalent	

structures.	

	

Recall	that	the	intergrowth	RS-NiAs	structure	was	dynamically	stable	in	this	pressure	regime,	

and	could	also	be	relaxed	to	0	GPa	without	issue.	It	is	theorised	that	perhaps	a	50:50	ratio	of	

RS	(the	ultimate	ionic	configuration)	and	NiAs	is	sufficient	to	stabilise	the	structure,	but	that	

a	pure	NiAs	is	not	possible	for	the	highly	ionic	zinc	oxide.	

	

Zagorac	et	al	also	 found	the	NiAs	topology	 in	 their	structure	prediction	work.[73]	However,	

they	reported	that	the	NiAs	phase	was	metastable	at	both	ambient	and	very	high	pressures,	

which	directly	conflicts	with	the	findings	presented	here.	The	work	described	here	appears	to	

directly	contradict	this	result,	which	may	explain	why	NiAs-type	ZnO	has	never	been	found	

experimentally.	However,	given	that	the	structure	was	found	in	this	work	by	random	structure	

prediction,	as	well	as	by	others,	it	is	postulated	that	this	zinc	oxide	topology	may	be	possible,	

albeit	very	energetically	demanding,	under	certain	conditions.	
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7.5.5. Conclusions	and	Future	Work	

	

Five	potential	high-pressure	phases	of	zinc	oxide	have	been	discovered	in	this	work	using	the	

random	atomic	placement	method,	followed	by	geometry	optimisations	under	high	pressure.	

Four	of	the	structures	discovered	are	dynamically	stable	at	high	pressure,	and	three	of	these	

structures	can	be	geometry	optimised	at	0	GPa.	Three	of	the	structures	appear	to	be	novel	

for	zinc	oxide	and	have	not	been	previously	reported.	The	structures	have	thus	been	analysed	

for	 their	structural,	electronic	and	vibrational	properties,	giving	 insight	 into	the	conditions	

under	which	these	materials	could	exist,	as	well	as	their	possible	uses.	Despite	LDA	not	being	

a	 standard	 method	 of	 choice	 for	 ZnO	 DFT,	 it	 appeared	 to	 work	 very	 well	 in	 this	 work,	

producing	reasonable	structures	and	properties	at	all	of	the	pressures	tested.	

	

It	is	extremely	unlikely	this	study	has	exhausted	the	potential	high-pressure	structures	of	zinc	

oxide.	Indeed,	given	the	wealth	of	exotic	structures	exhibited	by	other	diatomic	compounds	

at	high	pressure,	it	seems	likely	that	this	work	has	merely	scratched	the	surface	of	the	high-

pressure	phase	behaviour	of	zinc	oxide.	Nevertheless,	it	presents	novel	work	in	the	form	of	a	

random	 structure	 prediction	 technique	 utilised	 at	 high	 pressure	 to	 find	 and	 categorise	 a	

number	of	novel	structural	types	for	zinc	oxide.	

	

An	appropriate	follow-up	to	this	work	would	be	to	study	the	plausibility	of	transforming	from	

ambient	 zinc	oxide	 (or	 the	 rocksalt	phase)	 to	one	or	more	of	 the	predicted	high	pressure	

phases.	This	could	certainly	be	achieved	using	the	transition	path	sampling	and	metashooting	

methodologies	discussed	previously,	as	the	initial	and	final	configurations	are	well	defined,	

as	are	the	order	parameters	differentiating	them.	However,	it	is	suggested	that	it	would	be	

advisable	to	use	higher	order	values	of	the	coordination	sphere	to	better	distinguish	between	

the	 different	 phases.	 As	 all	 but	 one	 of	 the	 newly	 discovered	 phases	 had	 the	 same	 first	

coordination	shell	(CN=6,	the	same	as	rocksalt)	and	this	could	prove	to	be	a	problem	when	

trying	to	discriminate	between	different	states	in	the	path	sampling	procedure.	Using	higher	

values	of	coordination,	such	as	the	3rd	and	the	5th,	enables	much	greater	resolution	of	the	

configuration	space	and	could	allow	for	mechanisms	to	be	determined	for	the	transition.	
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Figure	7.xlvi:	Coordination	number	plots	of	the	discovered	and	known	phases.	The	diagram	

on	the	left	shows	a	plot	of	1st	vs.	3rd	coordination	sphere	(the	same	collective	variable	set	up	

as	used	for	the	zinc	oxide	path	sampling	and	metashooting	procedure	in	chapter	5)	Most	of	

the	discovered	phases	are	found	at	1st	CN=6.	However,	when	plotting	higher	coordination	

numbers,	such	as	3rd	vs.	5th	(right),	the	structures	show	a	clear	linear	relationship.	

	

	

Given	 that	 compound	B	 is	both	 the	 closest	 in	energy	 to	 the	 rocksalt	 configuration	of	 zinc	

oxide,	and	is	the	least	dissimilar	in	terms	of	coordination	sphere	(RS	=	{6,	8,	18},	B	=	{6,	19,	

41}),	it	is	believed	that	this	would	be	the	best	target	to	search	for	both	experimentally	and	

theoretically.	

	

The	formation	of	the	a-WC	phase	in	this	work	corroborates	the	previous	findings	of	Zagorac	

et	al[73],	and	an	investigation	into	the	role	of	this	polymorph	in	the	rocksalt	to	caesium	chloride	

transition	 using	 the	 path	 sampling/metashooting	 techniques	 would	 too	 be	 fascinating.	
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Additionally,	 it	 would	 be	 fascinating	 to	 investigate	 whether	 or	 not	 the	 seven-coordinate	

structure	 A	 play	 any	 role	 in	 the	 transition	 from	 the	 six-coordinate	 rocksalt	 to	 the	 eight-

coordinate	caesium	chloride.	

	

However,	crucially	different	to	the	work	of	Zagorac	et	al,	the	nickeline	(NiAs)	phases	could	

not	 be	 stabilised	 at	 ambient	 or	 high	 pressures.	 Instead,	 this	 work	 suggests	 that	 a	 50:50	

mixture	of	nickeline	and	rocksalt	topology	produces	a	much	more	favourable	configuration	

for	 zinc	 oxide.	 Further	 investigations	 into	 the	 stability	 of	 the	 nickeline	 and	 intergrowth	

structures	would	 be	 a	 useful	 future	 project,	 in	 order	 to	 address	 the	 inconsistencies	 seen	

between	this	data	and	previous	work.	

	

Finally,	a	very	exciting	prospect	to	extend	this	work	would	be	to	design	a	more	 intelligent	

algorithm	 to	 search	 for	 high	 pressure	 zinc	 oxide	 structures,	 incorporating	 the	 random	

structure	searching	technique	presented	here	with	other	prediction	methods.	For	example,	

as	 there	 is	 a	 clear	 relationship	 between	 the	 3
rd
	 and	 5

th
	 coordination	 spheres	 of	 the	 ZnO	

materials,	one	could	perform	a	configuration	space	search	within	the	constraints	of	this	linear	

relationship,	 in	order	 to	 accelerate	 the	 search	 for	novel	 polymorphs.	 Indeed,	 this	 scheme	

could	foreseeably	be	extended	for	any	system,	assuming	that	such	a	relationship	exists	for	

higher	coordination	sphere,	or	some	other	‘global’	collective	variable.	Such	a	procedure	could	

be	used	to	efficiently	survey	a	constrained	configuration	space	for	a	range	of	systems,	in	order	

to	find	novel	allotropes	and	polymorphs	of	interest.	

	

	

	

	

	

	

	

	

	

	

	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	
	

	 269	

References	–	Chapter	7	

	

1. A.	R.	Oganov,	Modern	Methods	of	Crystal	 Structure	Prediction,	 John	Wiley	&	Sons,	

2011	

2. S.	M.	Woodley	and	C.	R.	A.	Catlow,	Nat.	Mater.,	2008,	7,	937-946	

3. C.	Roberts	and	R.	L.	Johnston,	Phys.	Chem.	Chem.	Phys.,	2001,	3,	5024-5034	

4. G.	R.	Desiraju,	Nat.	Mater.,	2002,	1,	77-79	

5. J.	Maddox,	Nature,	1988,	335,	201	

6. Y.	Wang,	J.	Lv,	L.	Zhu	and	Y.	Ma,	Comput.	Phys.	Commun.,	2012,	183,	2063-2070	

7. C.	J.	Pickard	and	R.	J.	Needs,	J.	Phys.	Condens.	Matter,	2011,	23.	53201	

8. S.	Kirkpatrick,	C.	D.	Gelatt	and	M.	P.	Vecchi,	Science,	1983,	220,	671-680	

9. V.	A.	Blatov	and	D.	M.	Proserpio,	in	Modern	Methods	of	Crystal	Structure	Prediction,	

ed.	A.	R.	Oganov,	John	Wiley	&	Sons,	2010	

10. R.	Martonák,	A.	Laio	and	M.	Parrinello,	Phys.	Rev.	Lett.,	2003,	90,	75503	

11. R.	Martonák,	A.	Laio,	M.	Bernasconi,	C.	Ceriani,	P.	Raiteri	and	M.	Parrinello,	Crystalline	

Materials,	2005,	220,	489-498	

12. A.	R.	Oganov	and	C.	W.	Glass,	J.	Phys.	Condens.	Matt.,	2008,	20,	64210	

13. A.	R.	Oganov,	A.	O.	Lyakhov	and	M.	Valle,	Acc.	Chem.	Res.,	2011,	44,	227-237	

14. W.	W.	Tipton	and	R.	G.	Hennig	in	Modern	Methods	of	Crystal	Structure	Prediction,	ed.	

A.	R.	Oganov,	John	Wiley	&	Sons,	2010	

15. R.	S.	Anderssen	and	P.	Bloomfield,	J.	Optim.	Theory	Appl.,	1975,	16,	383-398	

16. C.	J.	Pickard	and	R.	J.	Needs,	Nat.	Mater.,	2010,	9,	624-627	

17. C.	J.	Pickard	and	R.	J.	Needs,	Phys.	Rev.	Lett.,	2006,	97,	045504	

18. C.	J.	Pickard	and	R.	J.	Needs,	Phys.	Rev.	Lett.,	2009,	102,	125702	

19. C.	J.	Pickard	and	R.	J.	Needs,	J.	Phys.	Condens.	Matter.	Inst.	Phys.	J.,	2009,	21,	452205	

20. J.	C.	Schön	and	M.	Jansen,	in	Modern	Methods	of	Crystal	Structure	Prediction,	ed.	A.	

R.	Oganov,	John	Wiley	&	Sons,	2010	

21. K.	Doll,	J.	C.	Schön	and	M.	Jansen,	Phys.	Rev.	B,	2008,	78,	144110	

22. Y.	Okamoto	 in	Encyclopedia	of	Optimization,	eds.	C.	A.	Floudas	and	P.	M.	Pardalos,	

Springer	US,	2008	

23. Y.	Sakae,	T.	Hiroyasu,	M.	Miki	and	Y.	Okamoto,	J.	Comput.	Chem.,	2011,	32,	1353-1360	

24. D.	Selli,	I.	A.	Baburin,	R	Martonák	and	S.	Leoni,	Sci.	Rep.,	2013,	3,	1466	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	
	

	 270	

25. R.	Martonák,	A.	R.	Oganov	and	C.	W.	Glass,	Phase	Transit.,	2007,	80,	277-298	

26. A.	F.	Wells,	Acta	Crystallogr.,	1954,	7,	535-544	

27. B.	Winkler,	C.	J.	Pickard,	V.	Milman	and	G.	Thimm,	Chem.	Phys.	Lett.,	2001,	337,	36-42	

28. V.	A.	Blatov,	A.	P.	Shevchenko	and	D.	M.	Proserpio,	Cryst.	Growth	Des.,	2014,	14,	3576-

3586	

29. R.	L.	Johnston,	Dalton	Trans.,	2003,	0,	4193-4207	

30. N.	L.	Abraham	and	M.	I.	J.	Probert,	Phys.	Rev.	B.,	2006,	73,	224104	

31. J.	T.	Pedersen	and	J.	Moult,	Curr.	Opin.	Struct.	Bio.,	1996,	6,	227-231	

32. http://periodictable.com/Properties/A/CrustAbundance.v.html	 “Abundance	 in	

Earth’s	Crust	of	the	Elements”	-		Last	Accessed	28/09/2017	

33. N.	N.	Greenwood	and	A.	Earnshaw,	Chemistry	of	the	Elements,	Elsevier,	2nd	Edition,	

2012	

34. R.	Hoffmann,	A.	A.	Kabanov,	A.	A.	Golov	and	D.	M.	Proserpio,	Angew.	Chem.	Int.	Ed.,	

2016,	55,	10962-10976	

35. http://etymonline.com/index.php?term=graphite	 “Etymology	 of	 Graphite”	 -	 	 Last	

Accessed	28/09/2017	

36. https://minerals.usgs.gov/minerals/pubs/commodity/graphite/	 “Graphite:	 Statistics	

and	Information”-	Last	Accessed	28/09/2017	

37. R.	W.	G.	Wyckoff,	Crystal	Structures,	1963,	1,	7-83	

38. P.	Delhaes,	Graphite	and	Precurdors,	CRC	Press,	2000	

39. K.	S.	Krishnan	and	N.	Ganguli,	Nature,	1939,	144,	667	

40. K.	 S.	Novoselov,	A.	K.	Geim,	 S.	V.	Morozov,	D.	 Jiang,	 Y.	 Zhang,	 S.	V.	Dubonos,	 I.	V.	

Grigorieva	and	A.	A.	Firsov,	Science,	2004,	306,	666-669	

41. C.	Lee,	X	Wei,	J.	W.	Kysar	and	J.	Hone,	Science,	2008,	321,	385-388	

42. D.	R.	Cooper,	B.	D’Anjou,	N.	Ghattamaneni,	B.	Harack,	M.	Hilke,	A.	Horth,	N.	Majlis,	M.	

Massicotte,	 L.	Vandsburger,	 E.	Whiteway	and	V.	 Yu,	 ISRN	Cond.	Matt.	Phys.,	2012,	

2012,	501686	

43. J.	H.	Chen.	C.	Jang,	S.	Xiao,	M.	Ishigami	and	M.	S.	Fuhrer,	Nat.	Nanotechnol.,	2008,	3,	

206-209	

44. A.	K.	N	Geim	and	K.	S.	Novoselov,	Nat.	Mater,	2007,	6,	183-91	

45. http://en.wiktionary.org/wiki/diamond	 “Etymology	 of	 Diamond”	 -	 	 Last	 Accessed	

28/09/2017	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	
	

	 271	

46. F.	Occelli,	P.	Loubeyre	and	R.	LeToullec,	Nat.	Mater.	2003,	2,	151-154	

47. K.	Iakoubovskii,	and	G.	J.	Adriaenssens,	Diam.	Relat.	Mater.,	2002,	11.	125-131	

48. A.	T.	Collins,	Phil.	Trans.	R.	Soc.	Lond.	A.,	1993,	342,	233-244	

49. J.	R.	Olson,	R.	O.	Pohl,	J.	W.	Vandersande,	A.	Zoltan,	T.	R.	Anthony	and	W.	F.	Banholzer,	

Phys.	Rev.	B.	Condens.	Matter.,	1993,	47,	14850-14856	

50. C.	Frondel	and	U.	B.	Marvin,	Nature,	1967,	214,	587-589	

51. Z.	Pan,	H.	Sun,	Y.	Zhang	and	C.	Chen,	Phys.	Rev.	Lett.,	2009,	102,	55503	

52. https://goldbook.iupac.org/html/F/F02547.html	 “Fullerenes”	 -	 Last	 Accessed	

28/09/2017	

53. H.	W.	Kroto,	J.	R.	Heath,	S.	C.	Obrien,	R.	F.	Curl	and	R.	E.	Smalley,	Nature,	1985,	318,	

162	

54. G.	Lalwani	and	B.	Sitharaman,	Nano	LIFE,	2013,	3,	1342003	

55. J.	C.	Lewis,	B.	Redfern	and	F.	C.	Cowlard,	Solid-State	Electron,	1963,	6,	251-254	

56. E.	A.	Laird,	F.	Kuemmeth,	G.	A.	Steele,	K.	Grove-Rasmussen,	J.	Nygård,	K.	Flensberg	

and	L.P.	Kouwenhoven,	Rev.	Mod.	Phys.,	2015,	87,	703-764	

57. E.	Joselevich,	ChemPhysChem,	2004,	5,	619-624	

58. R.	L.	Johnston	and	R.	Hoffmann,	J.	Am.	Chem.	Soc.,	1989,	111,	810-819	

59. K.	Umemoto,	R.	M.	Wentzcovitch,	S.	Saito	and	T.	Miyake,	Phys.	Rev.	Lett.,	2010,	104,	

125504	

60. A.	R.	Oganov	and	C.	W.	Glass,	J.	Chem.	Phys.,	2006,	124,	244704	

61. Q.	Li,	Y.	Ma,	A.	R.	Oganov,	H.	Wang,	H.	Wang,	Y.	Xu,	T.	Cui,	H.	K.	Mao	and	G.	Zou,	Phys.	

Rev.	Lett.,	2009,	102,	175506	

62. S.	E.	Boulfelfel,	A.	R.	Oganov	and	S.	Leoni,	Sci.	Rep.,	2012,	2,	471	

63. J.	Narayan	and	A.	Bhaumik,	J.	Appl.	Phys.,	2015,	118,	215303	

64. X.	L.	Sheng.	Q.	B.	Yan,	F.	Ye,	Q.	R.	Zheng	and	G.	Su,	Phys.	Rev.	Lett.,	2011,	106,	155703	

65. A.	A.	Correa,	S.	A.	Bonev	and	G.	Galli,	Proc.	Natl.	Acad.	Sci.,	2006,	103,	1204-1208	

66. D.	Selli,	I.	A.	Baburin.	R.	Martonák	and	S.	Leoni,	Phys.	Rev.	B,	2011,	84,	161411	

67. J.	M.	Soler,	E.	Artacho,	J.	D.	Gale,	A.	García,	J.	Junquera,	P.	Ordejón	and	D.	Sánchez-

Portal,	J.	Phys.	Condens.	Matter,	2002,	14,	2745	

68. J.	P.	Perdew,	K.	Burke	and	M.	Ernzerhof,	Phys.	Rev.	Lett.,	1996,	77,	3865-3868	

69. N.	Troullier	and	J.	L.	Martins,	Phys.	Rev.	B,	1991,	43,	1993-2006	



CHAPTER	7	–	CRYSTAL	STRUCTURE	PREDICTION	
	

	 272	

70. A.	A.	Al-Sunaidi,	A.	A.	Sokol,	C.	R.	A.	Catlow	and	S.	M.	Woodley,	J.	Phys.	Chem.	C.,	2008,	

112,	18860-18875	

71. E.	V.	Trushin,	I.	L.	Zilberberg	and	A.	V.	Bulgakov,	Phys.	Solid.	State,	2012,	54,	859-865	

72. J.	E.	Jaffe,	J.	A.	Snyder,	Z.	Lin	and	A.	C.	Hess,	Phys.	Rev.	B.,	2000,	62,	1660-1665	

73. D.	Zagorac,	J.	C.	Schön,	J.	Zagorac	and	M.	Jansen,	Phys.	Rev.	B,	2014,	89,	075201	

74. D.	Zagorac,	J.	C.	Schön,	J.	Zagorac	and	M.	Jansen,	RSC	Adv.,	2015,	5,	25929-25935	

75. D.	M.	Ceperley	and	B.	J.	Alder,	Phys.	Rev.	Lett.,	1980,	45,	566-569	



CHAPTER	8	–	GENERAL	CONCLUSIONS	AND	CLOSING	STATEMENTS	
	

	 273	

Chapter	8	

General	Conclusions	and	Closing	Statements	

	

“Chemistry	means	the	difference	between	poverty	and	starvation,	and	the	abundant	life”	

- Robert	Brent,	The	Golden	Book	of	Chemistry	Experiments	(1960)	

	

	

Within	this	thesis,	three	distinctive	pieces	of	work	have	been	presented	which,	despite	the	

significant	 and	 obvious	 differences	 between	 them,	 are	 all	 related	 by	 a	 single	 underlying	

theme:	 the	 use	 of	 advanced	 computational	 techniques	 to	 investigate	 the	 properties	 and	

behaviour	of	metastable	systems.	Such	detailed	atomistic	analyses,	using	both	classical	and	

density-functional	 based	 techniques,	 give	 an	 unprecedented	 view	 into	 the	 underlying	

microscopic	structures	and	processes	ultimately	responsible	for	the	macroscopic	properties	

of	 materials.	 This	 is	 one	 of	 the	 true	 benefits	 of	 materials	 study	 and	 innovation	 using	

computational	techniques	-	without	simulation,	such	intrinsic,	thorough	and	vibrant	insight	

would	be	all	but	impossible	to	achieve.		

	

A	 detailed	 conclusions	 and	 future	work	 section	was	 presented	 at	 the	 end	of	 each	 results	

chapter.	Thus,	this	final	section	of	the	thesis	will	give	a	more	general	overview	of	the	work	

carried	out,	and	how	it	relates	to	the	‘wider	picture’	in	both	a	materials	science	and	simulation	

context.	

	

Firstly,	a	detailed	analysis	of	the	pressure-induced	phase	transition	between	a	mixed	wurtzite-

zincblende	system	and	the	high	pressure	rocksalt	phase	was	presented.	With	the	motivation	

of	using	metastable	zinc	oxide	as	a	material	for	use	in	electronic	and	optics	devices,	it	was	

thought	 to	 be	 extremely	 beneficial	 to	 understand	 the	 mechanisms	 of	 phase	 transitions	

between	the	different	forms	of	the	material.	Using	transition	path	sampling	methodology,	

several	 different	 pathways	 linking	 the	 two	 structures	 were	 elucidated	 with	 a	 number	 of	

opposing	 intermediates	 documented,	 including	 the	well-established	 competition	 between	

the	 iT	 and	 iH	 structures.	 	 Additionally,	 using	 a	 combination	 of	 metadynamics	 and	 path	

sampling	techniques	known	as	metashooting,	the	underlying	free	energy	landscape	for	the	
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transformation	 was	 generated.	 Upon	 this	 coarse-grained	 surface,	 trajectories	 could	 be	

mapped,	energy	barriers	could	be	quantitatively	ascertained,	and	the	nature	of	 important	

intermediate	and	transition	state	configurations	easily	extrapolated.	 It	 is	believed	that	the	

metashooting	 procedure	 has	 significant	 potential	 to	 become	 a	 routine	 tool	 in	 the	

computational	 study	 of	 condensed	matter,	 and	 that	 this	 investigation	 could	 establish	 an	

innovative	paradigm	for	future	studies	into	the	elucidation	of	solid-solid	phase	transitions.	

	

Following	 this,	 an	 extensive	 investigation	 into	 the	 phase	 behaviour	 of	 ice	 was	 discussed.	

Water	and	ice	are	extremely	important	to	our	everyday	lives,	and	an	accurate	understanding	

of	 their	 natures	 is	 fundamental	 to	 a	 huge	 range	 of	 disciplines,	 ranging	 from	biological	 to	

planetary	 sciences.	 The	 transformations	 between	 the	 eighteen	 experimentally	 known	

structures	of	water	 ice	 are	 currently	 very	poorly	understood.	 Two	 separate	 investigations	

were	carried	out;	the	first	utilising	metadynamics	coupled	with	a	new	technique	known	as	

rotational	shooting;	the	second,	using	metadynamics	without	rotational	shooting	in	the	space	

of	three	collective	variables	known	to	be	effective	in	the	simulation	of	water	and	ice.	The	first	

investigation	 produced	 transformations	 from	 crystalline	 phases	 to	 all	 three	 of	 the	

experimentally	defined	amorphous	phases	of	ice	and	the	liquid	state,	as	well	as	a	number	of	

more	 unusual	 events	 such	 as	 the	 formation	 of	 internal	 surfaces	 and	 cavities.	 The	 second	

investigation	demonstrated	a	possible	phase	transition	between	Ice	III	and	cubic	Ice	Ic	via	both	

an	amorphous	polymorph	and	an	as-yet	unidentified	structure,	somewhat	reminiscent	of	the	

Cairo	tiling	structure.	These	fascinating	insights	will	hopefully	go	some	way	to	classifying	the	

vast	 configuration	 space	 of	 condensed-matter	 water…	 whilst	 simultaneously	 they	

demonstrate	how	much	we	still	do	not	know	about	this	ubiquitous	and	essential	compound!	

	

Finally,	a	comprehensive	crystal	structure	search	for	novel	allotropes	of	carbon	and	new	high	

pressure	polymorphs	of	zinc	oxide	was	conducted	using	density	functional	theory.	The	field	

of	carbon	structure	prediction	is	continually	growing,	with	hundreds	of	allotropes	currently	

known	 or	 predicted.	 Zinc	 oxide	 presents	 a	 different	 story:	 literature	 pertaining	 to	 bulk	

structure	 prediction	 of	 the	 compound	 is	 scarce,	 with	 the	 broader	 scientific	 community	

focusing	more	on	 the	 functionalisation	of	wurtzite	and	synthesis	of	nanoparticles.	Using	a	

random	structure	prediction	technique	referred	to	as	random	atomic	placement,	eight	carbon	

and	five	zinc	oxide	novel	structures	were	elucidated,	each	of	which	had	unique	structural	and	
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electronic	 properties	 and	 thus	 potential	 applications.	 The	 rapid	 expansion	 of	 the	 field	 of	

crystal	structure	prediction,	coupled	with	the	desire	to	find	new	high-performance	materials	

to	address	the	problems	of	the	modern	world,	means	that	the	discovery	of	novel	structure	

types	for	such	common	materials	is	more	pertinent	now	than	ever	before.	

	

With	the	widespread	availability	of	both	powerful	hardware	and	efficient	software,	working	

together	within	a	rigorous	mathematical	and	scientific	framework,	the	scientific	community	

is	now	able	to	utilise	simulation	techniques	as	a	primary	means	of	materials	discovery	and	

innovation.	With	such	a	broad	range	of	methods	and	tools	available,	essentially	any	structure	

can	 be	 investigated,	 any	 transformation	 elucidated,	 or	 any	 property	 calculated	 within	 a	

numerical	laboratory,	without	the	need	for	prior	experimental	knowledge.		

	

The	work	 presented	 in	 this	 thesis	 hopes	 to	 demonstrate	 not	 only	 the	 conclusions	 drawn	

within	each	individual	chapter,	but	the	broader	perspective	that	simulation	techniques	are	

invaluable	to	future	investigations	in	materials	science.	No	other	range	of	techniques	can	give	

such	an	intrinsically	detailed	and	beautiful	view	into	the	atomistic	domain	that	largely	dictates	

the	properties	of	the	world	around	us.	With	ever-increasing	computing	power,	the	continual	

improvement	 of	 algorithms	 and	 techniques,	 and	 the	 inexorable	 expansion	 of	 scientific	

knowledge,	 it	 seems	 almost	 certain	 that	 the	 role	 of	 simulation	 will	 only	 continue	 to	

strengthen	in	the	years	to	come.	It	 is	hoped	that	the	presented	work	helps	to	corroborate	

these	 viewpoints	 by	 both	 demonstrating	 the	 worth	 of	 simulation	 techniques,	 and	 by	

promoting	further	investigations,	in	this	fascinating	field	of	scientific	discovery.	


