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Stem cells have received much attention
recently for their potential utility in regener-
ative medicine. The identification of their
differentiated progeny often requires com-
plex staining procedures, and is challenging
for intermediary stages which are a priori
unknown. In this work, the ability of label-
free quantitative coherent anti-Stokes Raman
scattering (CARS) micro-spectroscopy to
identify populations of intermediate cell
states during the differentiation of murine
embryonic stem cells into adipocytes is
assessed. Cells were imaged at different days of differentiation by hyperspectral
CARS, and images were analysed with an unsupervised factorization algorithm
providing Raman-like spectra and spatially resolved maps of chemical compo-
nents. Chemical decomposition combined with a statistical analysis of their spatial
distributions provided a set of parameters that were used for classification analy-
sis. The first 2 principal components of these parameters indicated 3 main groups,
attributed to undifferentiated cells, cells differentiated into committed white pre-
adipocytes, and differentiating cells exhibiting a distinct protein globular structure
with adjacent lipid droplets. An unsupervised classification methodology was
developed, separating undifferentiated cell from cells in other stages, using a novel
method to estimate the optimal number of clusters. The proposed unsupervised
classification pipeline of hyperspectral CARS data offers a promising new tool for
automated cell sorting in lineage analysis.
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1 | INTRODUCTION

A significant challenge when investigating biological phe-
nomena is that biological systems exhibit complex dynamic
interactions with inter-celluar and intra-cellular states fluctu-
ating and changing to accommodate feedback from the sur-
rounding micro-environment in order to enable tissue

homoeostasis. To some extent, this complexity can be re-
created via growth of cells in in-vitro environments in order
to ask fundamental biological questions regarding the con-
trol of these processes [1, 2]. One class of cells which has
received much attention in recent years, primarily for their
potential utility in regenerative medicine applications, are
stem cells. Stem cells can be derived from a variety of tissue
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types at multiple developmental stages (such as embryonic,
foetal) and during adulthood (such as haematopoietic, mes-
enchymal stem cells and neural crest derived stem cells [3]).
Each stem cell type, normally loosely defined by its source
of origin, has its advantages and disadvantages. The desir-
able properties of stem cells, which tissue engineers aim to
exploit, are their ability to self-renew in-vitro (potentially
indefinitely, dependent on stem cell type) and their inherent
ability to transition through several intermediate or precur-
sor states (progenitor cells) to produce multiple specialised
cell types (differentiation). Stem cells and their differenti-
ated progeny are currently primarily identified based on a
combination of in-vitro morphology and marker profiles
(sometimes destructive). This represents a significant hurdle
for the discovery of novel stem cell types since it requires
that markers for cellular states have been pre-identified and
that these markers accurately reflect the cellular phenotype
[4, 5]. Furthermore, markers of intermediary stages of cellu-
lar differentiation are frequently lacking due to the heteroge-
neous nature of stem cell cultures, resulting from their
capacity to generate multiple cell types. Also, intermediate
cell states are often ill-defined as a result of current experi-
mental approaches which, while producing large volumes of
data, tend to average cell population behaviour (e.g. in
microarrays, proteomics and other high-throughput marker
discovery approaches). Generating well-defined markers
such as antibodies typically requires well-defined popula-
tions of intermediate cell states.

Destructive cellular staining procedures utilising vali-
dated fluorescently labelled antibodies against targets of
interest remains the mainstay method to visualise and assess
the localisation of proteins and other cellular constituents in
order to infer cellular state. Significant limitations of immu-
nofluorescent techniques are that generation of novel anti-
bodies is a time-consuming, technically demanding and
labour intensive task that still often utilises animals and
results in antibodies that are either not specific for the
intended target or bind to targets which bear no relevance
for the phenotype being investigated. Furthermore, fluores-
cence intensity readouts are not quantitative due to photo-
bleaching. Other classification techniques based on gene
expression profiling are equally invasive, as they require
destruction of the samples.

Label-free techniques, such as bright field or dark field
[6] and quantitative phase imaging [7], have been used for
cell sorting by extracting morphological features [6, 7], for
example, size, shape, granularity or phase metrics [7], for
example, dry mass, but are unable to separate its chemical
composition.

In order to overcome some of these limitations, we
sought to develop a label-free micro-spectroscopy platform
which could assess intermediary cell states through the iden-
tification of novel, non-destructive, markers of cellular phe-
notype by utilising chemically specific vibrational imaging

based on coherent Raman scattering (CRS) and the model
of mouse embryonic stem cells differentiating towards the
adipocytic lineage. In the last decade, CRS micro-
spectroscopy has emerged as a powerful technique which
overcomes limitations of spontaneous Raman and offers
high acquisition speed, compatibility with imaging living
cells, and intrinsic three dimensional spatial resolution [8].
CRS utilises the interference between two optical fields to
resonantly drive molecular vibrations in the focal volume,
and a third field to read out the Raman scattering. Due to
the coherent driving of the vibrational excitation, Raman
scattering by identical chemical bonds in the focal volume
constructively interferes, generating a signal enhancement
compared to spontaneous Raman.

To date, only a few studies of stem cell differentiation
using CRS micro-spectroscopy have been reported [9–13].
In Ref. [9], an increase of the protein:RNA ratio was found
after the differentiation of murine embryonic stem cells
(mESc), similar to what was observed in spontaneous
Raman studies [14]. The ability of CRS micro-spectroscopy
to detect lipid content and volume concentrations within
lipid droplets formed during adipogenesis was demonstrated
for adipose-derived stem cells in Refs. [10, 12]. Hofemeier
and co-workers used Raman and CARS micro-spectroscopy
to identify early signs of calcium deposition during osteo-
genic differentiation of human stem cells [13]. A hyperspec-
tral CARS investigation of adipogenic and osteogenic
differentiation of human mesenchymal stromal cells (MSCs)
in Ref. [11] showed an increase of the lipid (for the adipo-
genesis) and mineral (for the osteogenesis) content during
differentiation. Although promising, these works either stud-
ied differentiation into well-defined cell lineages with little
heterogeneity (as is the case for MSCs), or lacked the ability
to classify intermediate cell types in the absence of a priori
knowledge.

In the present work, we have investigated the heteroge-
neous differentiation of mouse embryonic stem cells using
hyperspectral coherent anti-Stokes Raman scattering
(CARS) micro-spectroscopy combined with an advanced
quantitative data analysis tool for unsupervised classifica-
tion analysis. Cells were imaged at 14, 16, 18, 20, 23 and
29 days of differentiation by hyperspectral CARS, and
images were analysed with an unsupervised factorization
algorithm providing Raman-like spectra and spatially
resolved maps of chemical components in vol:vol concen-
tration units [15–17]. Chemical decomposition into protein,
lipid and aqueous components combined with a statistical
analysis of their spatial patterns enabled us to extract a set
of parameters that were used for classification analysis. We
found 3 main clusters that were attributed to undifferen-
tiated cells, cells differentiated into committed white pre-
adipocytes (as discussed below) and intermediate differenti-
ating cells exhibiting a distinct protein globular structure
with adjacent lipid droplets.
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2 | MATERIALS AND METHODS

2.1 | Cell growth, differentiation and staining

IMT11 mouse embryonic stem cells [18] were maintained
and differentiated towards an adipogenic lineage as previ-
ously described [15, 19] on gelatin (0.1% v/v) coated glass
slides. Samples were fixed in 4% (w/v) paraformaldehyde at
14, 16, 18, 20, 23 and 29 days of differentiation and stored
in Phosphate buffered saline (PBS)/50 units/ml penicillin/
streptomycin prior to immunostaining. All time points were
immunostained concurrently with an anti Fatty Acid Bind-
ing Protein 4 (rabbit polyclonal IgG anti-FABP4, ab66682,
abcam, Cambridge, UK), a well described marker of adipo-
gensis [20] or with a secondary only control (fluorescein
isothiocyanate isomer 1 [FITC]-conjugated swine anti-rabbit
immunoglobulins, F0205, Dako, Cambridgeshire, UK)
where omission of the primary antibody acts as a control for
non-specific binding of the secondary antibody to the sam-
ple. Immunostaining was achieved via washing samples
3 times in PBS, blocked with blocking buffer comprising of
1% (w/v) BSA in PBS/tween (0.1% v/v) for 15 minutes and
staining with or without primary antibody (1:200, 0.7 mg/
ml) for 1 hour at 4�C. Samples were washed again 3 times
in PBS, secondary antibody diluted in blocking buffer
(1:200) and samples stained with secondary antibody over-
night at 4�C. Samples were subsequently washed 3 times in
PBS prior to CARS analysis.

2.2 | CARS micro-spectroscopy

CARS is a non-linear process, where a third-order signal is
emitted when two electromagnetic fields of different fre-
quency, historically called pump and Stokes, coherently
excite a molecular vibration resonant at their frequency dif-
ference. In our experiment, CARS hyperspectral images
have been acquired on a home-built multi-modal laser-
scanning microscope based on an inverted Nikon Ti-U. A
description of the set-up can be found in [21]. Briefly, pump
and Stokes beams for CARS excitation are obtained by
splitting a broadband (660-970 nm) laser beam from a 5 fs
Ti:Sa laser into the wavelength ranges of 660 to 730 nm
and 730 to 900 nm, respectively. Hyperspectral imaging is
achieved by spectral focussing [22–25]. In this technique,
the pump and Stokes pulses have equal linear chirp, so that
their frequency difference is constant. By changing the
delay between the two pulses, the frequency difference can
be tuned to record a CARS spectrum. The CARS signal is
collected in forward direction, discriminated by a pair of
band-pass filters (Semrock FF01-562/40) and detected by a
photomultiplier (Hamamatsu H7422-40). The vibrational
frequencies which can be addressed in our set-up are in the
range (1200-3800) cm−1 with a spectral resolution of
10 cm−1. The data discussed in this paper were taken over a
(2600-3700) cm−1 range with a 20 × 0.75 NA dry objective

and a 0.72 NA dry condenser. The excitation beam fill fac-
tor w0/(fNA) was 0.55, where w0 is the Gaussian waist
parameter of the excitation beam at the objective entrance
and f is the objective focal length [17]. The data were
acquired by scanning the spatial positions for each vibra-
tional frequency step, with a dwell time for each pixel of
10 μs. The measured spatial resolutions for the CARS inten-
sity (full-width at half-maximum [FWHM]) are 0.6 (1.1)
μm in the lateral (axial) direction. The measured spatial res-
olutions for the retrieved CARS susceptibility (FWHM) are
1.0 (4.4) μm in the lateral (axial) direction [17].

2.3 | Hyperspectral image analysis

The CARS hyperspectral images were analysed using the
methodology described in [15, 16]. Briefly, the CARS
intensity IC data are first de-noised using an unbiased singu-
lar value decomposition approach [15]. The data are then
normalised using the CARS intensity spectrum Iref mea-
sured in a reference material (glass) which does not show
vibrational resonances in the frequency range investigated
[15, 17]. This approach allows to correct for the spectrally
dependent transduction coefficient of the set-up and to refer-
ence the signal to a known response. The resulting CARS

ratio IC = IC=Iref is given by the absolute square χj j2 of the
complex susceptibility χ normalised to the reference mate-
rial susceptibility. In order to obtain χ, which is proportional
to the concentration of the chemical species present in the
focal volume, we retrieve χ in amplitude and phase using a
phase-corrected Kramers-Kronig method [15]. The obtained
spectra J χð Þ resemble spontaneous Raman spectra and can
be described as a linear combination of chemical compo-
nents with spatially dependent concentrations. To infer the
chemical components and their concentration maps, we use
the FSC3 algorithm (Factorization into Spectra and Concen-
trations of Chemical Components) on the retrieved hyper-
spectral susceptibility χ ωð Þ [15, 16]. We refer to the
resulting components as FSC3 components, and to their
spectra as FSC3 spectra.

In the factorization, the frequency range was reduced to
(2675-3200) cm−1 to limit the influence of the water com-
ponent which is dominating J χð Þ for frequencies above
3100 cm−1. All shown data have been factorised together to
provide a common spectral basis, and 5 components were
used. The factorization is unsupervised and starts from ran-
dom spectra and concentrations. No pure known compounds
are used to train the algorithm. To provide sufficient repeat-
ability of the FSC3, the knock-out approach [16] was used,
where multiple runs of the algorithm are performed and the
resulting factorization with the smallest error is selected. In
Ref. [15], we demonstrated that FSC3 is able to retrieve the
spectra and the concentration of chemical components in a
model system (lipid mixture) without pre-knowledge.
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3 | RESULTS AND DISCUSSION

3.1 | Hyperspectral CARS imaging and factorization

Representative results from hyperspectral CARS acquisition
and analysis (see also section 2) for cells at different stages
of differentiation are shown in Figure 1. The data analysis
pipeline retrieves the imaginary part of the CARS suscepti-
bility J χð Þ, providing a Raman-like spectrum [8], which is
then factorised into the superposition of chemical compo-
nents with spatially resolved concentration maps (see sec-
tion 2.3). Three major components corresponding to water,
protein and lipid were distinguished (see also in File S1
Figure S1, Supporting Information). The concentration
maps CL of lipids and CP of proteins are shown in Figure 1
using the sum concentration CS = CL + CP as brightness
and the lipid fraction ηL = CL/CS as saturation with a green
hue. In this scale, regions with high sum concentration of
proteins and lipids (i.e. dry mass) appear bright. The lipid
fraction is instead given by the colour saturation, that is, the
colour changes from white to green as ηL increases from
0 to 0.5. Regions with ηL > 0.5, indicative of lipid droplets,
are red.

The correlation between morphology and the number of
days in the differentiation medium was found to be not
strict. Even within a single plate, the morphology of the
cells was heterogeneous (more data are shown in the
Figure S2 in File S1). We also observed a low efficiency of
the differentiation protocol, with less than 1% of the cells
showing pre-adipocyte morphology containing large lipid
droplets. These findings are expected for pluripotent stem
cells undergoing differentiation and reflect the known limi-
tations of differentiation protocols [26, 27]. Samples pre-
pared under the same differentiation induction agents
showed clear expression of adiponectin (a marker for differ-
entiation into adipocytes). In Figure 1, we ordered the cells
according to the morphology and lipid concentration CL to
approximate the development through the sequential stages.
At early stages of differentiation (see Figure 1a,b), we
observe a small lipid concentration CL < 15% and a lipid
fraction ηL < 70%. At later stages, the lipid concentration
increases as small lipid droplets with ηL reaching unity form
in the proximity of globular structures (see, eg, Figure 1c,d)
dominated by proteic material.

For pre-adipocytes, identified by the presence of large
lipid droplets as shown in Figure 1e, such proteic structures
are not observed and CP is homogeneous in the cytosol.
The large size and the limited number of lipid droplets
observed in those cells indicate that they are pre-adipocytes
committed to differentiation into white adipocytes [28]. This
assignment is supported by the comparison between sponta-
neous Raman spectra (see Figure S4 in File S1) acquired on
mES cells-derived adipocytes and on white fat tissue. In
both cases, the fingerprint region spectra show the absence
of typical features observed in brown fat tissues, that is,

peaks between 1500 and 1600 cm−1 [29]. Cells showing
protein vesicles are unlikely to be beige [30] or brown
(pre)-adipocytes, since first, they do not show a significant
concentration of lipids in smaller lipid droplets, and second,
both beige and brown adipocytes are characterised by the
presence of a large concentration of mitochondria. From
measurements comparing CARS and fluorescence images
of human cells stained with MitoTracker, such large density
of mitochondria gives rise to small micron-sized structures
visible in the protein channel, much smaller than the vesi-
cles observed here.

3.2 | Cell classification

Fatty acid binding protein 4 (FABP4) is thought to be
responsible for the formation of adipocytes [31]. We

(a) (b)

(c)

(e) (f)

(d)

FIGURE 1 Mouse embryonic stem cells at different stages of
differentiation imaged using hyperspectral CARS and FSC3 factorization.
(a-e) sum concentration CS of protein and lipid (0 − M) as brightness, and
the lipid fraction ηL (0–0.5) as saturation of green, with ηL > 0.5 shown in
red (see colour bar). The italic label indicates the number of days in the
differentiation medium before fixation. The roman labels indicate M. The
scale bars indicate 20 μm. The dashed regions in (d) and (b) are used in
Figure 4 and Figure S15 in File S1, respectively. (f) FSC3 susceptibility
spectra for the protein component CP (black) and the lipid component CL
(red). The solid (dashed) lines refer to the imaginary part (mean value of
the real part over the spectral range, giving the non-resonant contribution to
the susceptibility), respectively
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therefore investigated FABP4 levels during the differentia-
tion of embryonic stem cells, and the extent to which they
correlate with the chemical composition measured by FSC3.
To this end, we immunostained cell samples at different
stages of differentiation and imaged them using widefield
fluorescence microscopy prior to CARS imaging (see Sup-
porting Information). We found that immunofluorescence
can be detected only for pre-adypocites where large lipid
droplets are already formed, while the signal observed in
undifferentiated cells seems to be dominated by autofluores-
cence and unspecific aggregation of the stain. We correlated
the immunofluorescence observed in the pre-adipocytes to
the chemical components individuated by FSC3 and found
no significant correlation, indicating that the expression
level of FABP4 is below the CARS detection limit.

Driven by the need to identify label-free markers for
early and intermediate stages of differentiation, we studied
the spatial distribution of the chemical components obtained
by the FSC3 analysis, and developed a methodology to use
these for classification analysis as detailed in the following.
Cells which were contained in the field of view and not
overlapping were segmented as individual objects using the
image analysis software CellProfiler. Statistical features not
explicitly depending on the cell size were calculated from
the concentration maps of the lipid and protein component
for each of those cells (see a list in Table S1 in File S1).
The distribution of each feature across the cell ensemble
was offset and normalised to have zero mean and unit vari-
ance, in order to allow relative comparison between the fea-
tures (a common procedure in classification analysis [32]).
To reduce the dimensionality, we applied principal compo-
nent analysis (PCA) to the normalised features and we
retained the principal components (PCs) with the largest
variance, carrying 90% of the total variance (in the present
case this resulted in 5 PCs, see also the dependence of the
variance as a function of the number of PCs shown in
Figure S11 in File S1). Note that the PCA is applied here
on the statistical features of the chemical concentration dis-
tribution, and not directly on the spectral domain data as
often done in Raman spectroscopy [33]. Figure 2 shows the
analysed cells vs the first two PCs. The first PC contains all
features except the average lipid concentration and its stan-
dard deviation (SD), while in the second component, those
two features are dominant (see Table S1 in File S1). A
visual inspection of Figure 2 shows most cells in the lower
left part. Two cells (indexes 19 and 20) are well separated
at large PC2—they are committed white pre-adipocytes,
having a large PC2 due to their large lipid content. A row
of cells towards larger PC1 are also distinguishable from
the main distribution. These contain the differentiating cells
with large protein globular structures (cells 33, 34 and 29).

To go beyond this visual inspection of the first two PCs,
we have developed an unsupervised classification method
based on hierarchical cluster analysis (HCA). We use the

first five PCs which are capturing the relevant information
as discussed above, and an Euclidean metric to calculate the
distance between pairs of cells in the PC space. Each cell is
represented by the PC vector describing its statistical fea-
tures, and the HCA clusters the cells by linking them, start-
ing with the pair of shortest distance. The obtained
dendrogram is shown in Figure 3. A dendrogram consists of
U-shaped lines that connect clusters in a hierarchical tree.
The height of each connection is given by the minimum dis-
tance between the corresponding cluster pair.

The dendrogram shows that the majority of cells have
similar features and can be grouped in a single cluster. A
few cells show distinctive properties and are progressively
separated in individual clusters. The estimation of the opti-
mal number of clusters is still a challenge in cluster analy-
sis. Several models have been proposed, either based on
measuring the intra- and inter-cluster distance [34, 35] or by
estimating the stability of the clustering method against ran-
dom sampling of the population [36, 37]. Considering the
limited number of cells in our investigation and the ten-
dency of HCA to isolate cells, the stability-based validation
methods were not found suitable for our data.

An indication of the number of clusters present in the
ensemble can be taken from the histogram of the distances.
The minima in this histogram identify distances for which
the clustering is most stable against perturbations of the fea-
tures, that is, a slight change in the statistical quantities
extracted from the cells will not affect the clustering. The
corresponding histogram of cluster distances in Figure 3
shows three minima. The first one corresponding to the
green arrows in the top of Figure 3 and in the bottom left of

FIGURE 2 Scatter plot of the first two PCs. The numbers inside the
symbols refer to the cell index of Figure 3. The symbol colour reflects the
affinity to a particular cluster (same coding as Figure 3)
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Figure 3, separates 2 committed white pre-adipocytes from
all other cells (ie, classifies cells into 2 clusters). The second
one (black arrows in the top and bottom left of Figure 3,
respectively) separates the group into 4 clusters: the com-
mitted white pre-adipocytes (1 cluster), 2 late-stage differen-
tiating cells (each forming 1 cluster) with large lipid peak
concentration and a large number of protein globules and all
other cells. The third minimum (red arrows in the top and
bottom left of Figure 3) separates the group into 9 clusters:
the committed white pre-adipocytes (now, each forming
1 cluster), the 2 late-stage differentiation cells (each forming
1 cluster), intermediate differentiating cells with fewer pro-
tein globular structures and lower lipid concentration (form-
ing 4 clusters mostly as individual cells) and all other
undifferentiated cells.

Determining the clusters by drawing a horizontal line in
the dendrogram corresponds to setting a lower limit for the

distance of the clusters, but in general it does not give infor-
mation on how well the clusters are separated. We therefore
introduce a new figure of merit (FOM) which quantifies
how well all clusters are separated from each other. This
FOM is calculated using the separation of each pair of clus-
ters by the hyperplane determined by a support vector
machine (SVM) classifier [38], see section S5 in File S1 for
details. For a given number of clusters, we evaluate the
FOM for each cluster selection from the HCA dendrogram
which contains all cells. Figure 3 bottom right shows the
resulting FOM as a function of the number of clusters and
the specific combination of clusters which is identified by
an index which increases with decreasing FOM. Pixels
above the maximum index are given in grey, while the
black pixels indicate cluster combinations which could not
be separated, resulting in a FOM of zero. The method
showed that the best classification occurs at 3 clusters,
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FIGURE 3 Results of the classification analysis. Top: Dendrogram obtained from HCA. The cells associated with the PCs of the extracted features are
shown as label of the dendrogram. The coloured frame indicates the affinity to the clusters corresponding to the combination with the highest calculated
FOM when 8 total clusters are considered (also indicated by the dashed magenta line). The other horizontal dashed line correspond to the combination with
the highest calculated FOM when 22 total clusters are considered. The coloured arrows indicate the minima of the histogram of cluster distances. Bottom
left: histogram of the frequency counts of cluster distance. Bottom right: the coloured map indicates the clustering FOM as function of the number of
clusters, and the cluster combination indexed with descending FOM. The value of the FOM is given on a logarithmic colour scale as indicated, with grey
representing no data and black representing zero FOM. The white line (axis on the right) shows the highest FOM (i.e., the FOM of the cluster combination
with index 1) as function of the number of clusters
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2 formed by the 2 committed white pre-adipocytes and all
other cells grouped in the third cluster. Increasing the num-
ber of clusters, a second maximum in the FOM is found at
8 clusters (shown by the dashed magenta line in the top of
Figure 3). The corresponding clustering is shown as
coloured frames of the images used as the labels of the den-
drogram. In this configuration, the majority of the cells at
an early stage of differentiation have been grouped in a sin-
gle cluster, while cells at later stage of development (includ-
ing the 2 committed white pre-adipocytes) form mostly
individual clusters. We have tested our FOM against com-
mon distance-based indexes and we found some similarity
in the results (see section S7 in File S1 for details). We also
verified that the defined FOM is robust against increasing
the number of PCs included in the analysis (see section S8
in File S1 for details). A third maximum is found for
22 clusters. The corresponding configuration is shown by
the blue horizontal dashed line in Figure 3. In this case, the
majority of cells occupy individual clusters, but still a large
part of cells in an early stage of differentiation is grouped in
a single cluster.

To put these results into context, we assigned the sym-
bol colour in Figure 2 according to the cluster membership
as given in Figure 3. A plot using as colour coding the
22 cluster configuration, indicated by the blue dashed line
in Figure 3, is shown in Figure S8 in File S1.

Summarising, we find that the unsupervised classifica-
tion on the basis of the spatial distribution of lipid and pro-
tein chemical components separates the cell ensemble into
undifferentiated cells of low protein and lipid content, and
differentiating cells of different types, with committed white
pre-adipocytes with large lipid droplets and low protein
content being most separated, followed by cells exhibiting
large protein globular structures.

3.3 | FSC3 lipid-protein correlation

In order to quantify in a statistically significant way the
observation of lipid droplets forming next to protein-rich
globules in differentiating cells, we calculated the average
protein distribution as a function of the distance r = |r − r0|
from the centre of lipid droplets r0 = (x0, y0) (zooms of the
regions corresponding to the areas indicated in Figure 1b,d,
are presented in Figure S15 in File S1 and Figure 4, respec-
tively). For each droplet, the distribution of the protein con-
centration around the LD is analysed (see sketch in
Figure 4) by evaluating the mean value of the protein con-

centration CP rð Þ and its SD ĈP rð Þ over the contour of the
quadrant s(r) of radius r centred at r0 (for details see section
S9 in File S1). The LD are then sorted according to their

effective radius rd =
ffiffiffiffiffiffiffiffiffiffiffi
AL=π

p
, where the lipid area AL was

obtained by spatially integrating the lipid concentration over
the LD mask. rd corresponds to the radius of a LD with the
same total lipid area but made of pure lipid. Lastly, the

mean values CP rð Þ� �
and ĈP rð Þ� �

outside of the droplet,
that is, for r > rd, were determined over the droplet ensem-
ble in logarithmically spaced ranges of rd, and are given in
Figure 4.

The protein concentration around lipid droplets is larger
for short distances to the droplet centre and reduces as the
distance increases, which confirms the hypothesis that the
LDs are localised in the proximity of the protein-rich globu-
lar structure. Interestingly, the concentration of protein in
the nearby globules increases with the effective size (i.e.,
the mass) of the lipid droplet. The average normalised SD
increases with the distance from the lipid droplet, showing a
more homogeneous protein environment in proximity of the
droplet than further away (similar results were obtained by
performing a full circular integration of the protein

FIGURE 4 Distribution of the protein concentration around lipid droplets. Left: sketch of the integration contours used to calculate CP rð Þ and ĈP rð Þ
around the lipid droplets, with the quadrant s(r) covering � π/4 around the direction d (see the supplementary information for details on the estimation of
d). The image is a zoom of the areas indicated in Figure 1d. The colour scale is shown on the left, with the brightness proportional to CS and the saturation

of the green hue equal to ηL. The scale bar represents 5 μm. Center and right: radial distribution of the protein concentration CP rð Þ� �
(center) and its relative

SD ĈP rð Þ� �
(right) around LDs as function of the effective LD radius rd. The red lines show rd = |r − r0|. Linear grayscale from minimum m to maximum

M as indicated
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concentration around the LDs instead of using a directional
quadrant, see section S10 and Figure S15 in File S1). The
results thus indicate that the position of LDs correlates with
the boundaries of protein-rich structures.

To understand the possible role of these proteic glob-
ules, we speculate in Figure 5 that they rise and decay dur-
ing differentiation and might be responsible for LD
formation. Starting with undifferentiated cells (Figure 5a),
which show a rather homogeneous lipid-protein composi-
tion of low protein concentration, protein-rich regions
develop outside of the nucleus, as exemplified in
Figure 5b. As the differentiation progresses the protein
structures are organised in globules (Figure 5c), which are
rich in protein. Notably, the lipid concentration inside these
globules increases, a sign of lipid assimilation and/or syn-
thesis. Eventually a sufficiently high lipid concentration is
reached such that lipid droplets emerge from these globules
(Figure 5d,e). The lipid droplets then fuse together and the
cell acquires the committed white pre-adipocyte morphol-
ogy (Figure 5f) showing large lipid droplets. These observa-
tions suggest that protein rich globules might be responsible
for the initial formation of lipid droplets during differentia-
tion into adipocytes, and that their presence, alongside that
of adjacent lipid droplets, might be used a label-free marker
of differentiation. Our interpretation suggests a model of
lipid droplet formation specific to the differentiation phase
towards adipocytes. It is however different to the prevailing
model [39, 40] that LDs form in the endoplasmic reticulum.
In the absence of a time course study on the same live cell,
this interpretation remains a hypothesis.

4 | CONCLUSIONS

We investigated mESc undergoing heterogeneous differenti-
ation towards adipocytes using label-free chemically specific
hyperspectral CARS micro-spectroscopy and our latest
advances in quantitative data analysis. Chemical decomposi-
tion into protein and lipid components provided spatially
resolved concentration maps. These maps were analysed on
a cell-by-cell basis to provide 11 descriptors for each cell.
PCA of the normalised descriptors captured 90% of the vari-
ance in 5 PCs. Visual inspection of the first 2 PCs allowed
to identify undifferentiated cells, cells differentiated into
committed white pre-adipocytes, and a second type of differ-
entiating cells exhibiting significant protein globular struc-
tures. Small lipid droplets were found to colocalize with the
protein structures in these cells. The first 5 PCs were used
for HCA. To select the depth along the hierarchical tree, we
introduced a novel FOM for the cluster separability based on
the distance between clusters determined by a SVM analysis.
The resulting clusters split the undifferentiated cells from the
differentiated ones, first separating the pre-adipocytes, and
then cells with protein globular structures. These results sug-
gest an analysis pipeline for automated cell sorting, generally
applicable to heterogeneous samples in the absence of a
priori knowledge of their cell types. Furthermore, research in
adipogenesis has reached worldwide biomedical importance,
after obesity, and associated diseases have become a modern
epidemic. Thus, our observation of a distinct chemical and
morphological phenotype of differentiating cells exhibiting
small lipid droplets next to large proteic globular structures

(a) (b)

(c) (d) (e) (f)

FIGURE 5 Sequence of chemical composition images of stem-cells during differentiation, including undifferentiated cells (a) and committed pre-
adipocytes (f). (b)-(e) show cells with increasing size of protein globules of increasing lipid content, and formation of lipid droplets in (d,e). The images
have CS as brightness, and ηL (0–0.5) as saturation of green, with ηL > 0.5 shown in red (see colour bar). The scale bar represents 10 μm
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shall stimulate further studies into the quantitative under-
standing of such complex process from embryonic stem
cells. The data presented in this work are available from the
Cardiff University data archive [41].
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