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Review Article 

Frontiers in first principles modelling of electrochemical 
simulations 

Alberto Roldan 

∗

Computer simulations are a useful tool to describe physical 
and chemical processes. However, the state-of-the-art 
techniques lack practicality to simulate the dynamical 
movement of species while accounting for the electron 
exchange. This is the case of electrochemical processes, i.e. 
species in solution interact with the surface of the electrode 
and the solvent molecules arrange at the interface according to 

the field created by the electrode potential. Here we present 
the latest innovative methods and frontiers for the treatment of 
electrochemical simulations including microsolvation protocols 
implemented in the density functional theory framework. We 
also suggest alternative electronic structure mixed-force 
calculations to pioneer a more realistic simulation framework of 
reactive processes. 
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Introduction 

The characterisation of the interface between electrodes
and electrolytes lies at the heart of the electrochemical
processes. However, electrochemical information is com-
monly derived at a macroscopic level by measuring, for in-
stance, surface tension, work-function and interfacial ca-
pacitance [1] . Measurements revealing the atomic struc-
ture, such as STM, are not readily performed in aque-
ous electrolytes, and even if performed will not reveal the
structure of the solvent double layer at the interface. 

Recent advances in theoretical models, based on classical
Poisson–Boltzmann electrostatics from Gouy–Chapmann
www.sciencedirect.com 
and Stern, and the increasing computational power, fa-
cilitate the simulation of electrochemical interfaces us-
ing density functional theory (DFT) methods [2 

•] . These
have provided approximated insights of the potential-
dependence of specific catalytic reactions [3 

••,4] . Al-
though first principles simulations seem well suited, the
modelling of the electrochemical interface is far from triv-
ial to provide the required fundamental understanding of
the structure of the interface. The electrochemical solid–
liquid interface represents one of the frontiers in first prin-
ciples modelling due to the dynamism of the systems, i.e.
adsorptions on the electrode of solvent, electrolytes and
other species from the interface. 

Innovative experimental and theoretical techniques are
urgently required to decouple the many-body problem as-
sociated with it, where the structure and species on the
electrode and in the solution, as well as the potential ap-
plied, are key factors. Especial importance has been at-
tributed to the atomic scale computer simulations contri-
butions as they can provide access to the microscopic pro-
cesses occurring at electrode surfaces and probe the iso-
lated and collective effects of these critical factors on the
electrochemical interface [5,6] . 

Computational approach 

DFT enables theoretical elucidation of electron-
exchange reaction mechanisms on complex catalyst
surfaces [7–9] and nanoparticles [10,11] , making it now
possible to design efficient catalysts for various industrial
applications. The extension of this predictive power to
electrochemistry process is highly valuable. However, for
a detailed understanding of the electrochemical reaction
mechanism, it is of great importance to bridge the gap be-
tween the computer models and actual systems exposed
to realistic operating conditions. Resolving this issue is
not just a matter of adding more atoms to the simulations,
but it is a fundamental challenge. 

Theoretical methods have made exciting progress in
modelling and understanding electrochemical phe-
nomena. Methods such as Canonical Monte Carlo [12] ,
Wertheim–Lovett–Mou–Buff integral equation [13] ,
modified Poisson–Boltzmann [14] and molecular dy-
namics [15] have been successfully implemented. The
solid–liquid interface can now be approached with quan-
tum mechanics approaches. Similar to heterogeneous
phase reactions, the energy landscapes of electrochem-
ical reactions are influenced by the atomic structure of
Current Opinion in Electrochemistry 2018, 10 :1–6 
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Figure 1 

Schematic representation of an fcc metal electrode in (a) vacuum, (b) implicit solvent, (c) and (d) one and two layers of explicit H 2 O molecules and 
implicit solvation model. The solid lines indicate the local potential along the Z -axis. The dashed lines correspond to the Fermi energy, and the arrows 
point the difference �ref −�Fermi related to the point of zero charges of the electrode surface. 
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he electrodes and the presence of surrounding species 
(co-)adsorbates, promoters, poisons and solvents. In 

ddition, electrochemical processes are highly depen- 
ent on variations of the electric potential applied to 

he electrode, which also may alter the stability of reac-
ants, intermediates and products on surface reactions.
pecific mechanisms and pathways may be preferred 

r mitigated by tuning the electrode potential [16 

••] .
owever, it requires considering the complexities of 

n electrolyte in solution and potential reference for an 

ccurate description of the process. 

he advancement of electrochemical simulations accu- 
acy should involve a reliable method to model the elec-
rode/solution interface considering the operating condi- 
ions, such as concentration of species, pH and applied 

otential, and provide the relevant information of atomic 
tructure at the electrode surface and interface with the 

olution, the charge, and the number of electrolytes on 

he slab species. 

mportance of the solvation model 
he constraint of treating liquids, including their elec- 

ronic behaviour, requires intensive computational power 
o sample the thermodynamic variables of atomic con- 
gurations. Empirical models for describing bulk liquids 
17 

•] suitable for solid–liquid interfaces have been imple- 
ented with the DFT [18] . These models, represented in
igure 1 a and b, have made important advances towards

he reliable yet efficient treatment of electrochemical sys- 

ems. 

urrent Opinion in Electrochemistry 2018, 10 :1–6 
he continuum solvation model presents the advantages 
o neutralise the charge electrode-ions, essential for peri-
dic calculations [19] , and to define a meaningful absolute
eference value for potentials [20 

•] . These imply well-
efined calculations with a net charge per unit cell in the
olute and the electron chemical potential referenced to
ero at infinity. Despite accurate representation of molec- 
lar solvation energies [21] , these homogeneous solvation 

odels cannot represent directional interactions such as 
ydrogen bonds, crucial to describe the stabilisation of
dsorbed species. An alternative is to consider a metal–
olution interface explicitly, actually including the solvent 
22] . The resulting effect is a change in the Fermi energy
irectly influenced by local changes in the solvent and
co-)adsorbates electronic structure. This model enables 
he band structure alignment between different surfaces 
ith the same solution level (i.e. the potential zero de-
ned far from the surface or between periodic slabs). More

mportantly, it corrects the DFT energy with the long-
ange electrostatic interaction due to solvation. While ab-
nitio molecular dynamics are a viable solution [23 

••] ,
hey remain generally unaffordable. Static DFT calcula- 
ions, however, require a statistical average over a large
umber of atomic configurations to integrate over mean- 

ngful thermodynamics observables, i.e. interaction ener- 
ies and electronic structure properties for the predom- 
nant molecular arrangements under reaction conditions 
concentrations and temperature) [22,24] . Besides, it also
eeds a large simulation cell, and a number of molecules
xplicitly described to minimise finite size errors – ar-
ificial electron work-function values and molecular ar- 
angements due to size constraints [25] . These factors
www.sciencedirect.com 
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make the simulations prohibitively expensive computa-
tionally with the addition to being difficult to set up and
analyse. 

The combination of implicit and explicit solvation mod-
els, i.e. microsolvation as shown in Figure 1 c and d, min-
imise the computational requirements as it accounts with,
at least, an explicit solvation layer in addition to contin-
uum solvation in the rest of space that defines the solution
bulk and the reference potential. This is a more affordable
solution and combines benefits from previous solvating
models to describe the interface [16 

••] . 

Treatment of the applied potential 
External potentials play the central role in electrochem-
istry as it influences (co-)adsorption, reaction and des-
orption of species on the electrode [26] . Several com-
putational techniques implemented within DFT mod-
els provide an approach accounting for electric potential,
e.g. for calculating capacitance in metal–insulator–metal
[27,28] and carbon nanotube systems [29] , and for field
emission from metal surfaces [30] . These allow calculat-
ing the Helmholtz free energy and electrochemical po-
tential of specific microscopic configurations of the dou-
ble layer and adsorbates on the electrode surfaces [31,32] .

However, self-consistent DFT calculation involves a
fixed number of electrons and therefore additional frame-
works, such as canonical-ensemble, are required to inte-
grate the electron fluctuations within the simulation and
derive, for instance, reaction rates [33,34] . The combina-
tion of DFT fixed electron chemical-potential within a
canonical treatment of electrons is based on charged slab
models (by homogenous background charge [3 

••] , explicit
protons in the electrolyte [35 

•] , compensating plane of
charge [36] and others methods [20 

•,37] ). Canonical ap-
proaches implement the flux of electrons and mimic the
experimental condition on a surface [38,39] . For instance,
an external potentiostat can be included in molecular dy-
namics simulations to allow the exchange of electrons and
drive the process towards a chemical potential [6] . 

A different strategy is to perform constant charge elec-
tronic structure calculations and relate the slab poten-
tial to its work-function as outlined by Trasatti [40,41 

••] .
The main idea is to vary the dipole of the interface and
measure the corresponding change in the electron work-
function (an increase in the Fermi level), which corre-
sponds to a change in electrode potential [22] . The ref-
erence to the simulated potential is typically the standard
hydrogen electrode (SHE), which absolute position is rel-
ative to the vacuum level. The SHE can be measured
computationally from zero charge calculation of solvated
electrodes [42] . Although this method minimises system-
atic errors, experimental values are also a good approxi-

mation.  

www.sciencedirect.com 
Reaction energies at a fixed potential can be obtained by
plotting the energies as a function of the work-function
for initial and final states of structures with varying in-
terface dipoles. It is related to the fact that during re-
dox processes, the dipole at the interface changes locally,
which may have a significant effect on small simulation
cells [39] . An alternative approach is to employ increas-
ingly larger simulation cells and then extrapolate the re-
sult to the limit of the infinite area as the dipole varia-
tion is inversely proportional to the size of the electrode
simulated [43] . To retain the link between work-function
and energy, the solvent structure should remain practi-
cally constant as the structural arrangement of polar sol-
vents, e.g. water, leads to dipole and work-function vari-
ations but not necessarily to the energy. Besides consid-
ering the energy—work-function relationship one-to-one,
the main backward of fixed potential simulations is that
the pH also determines the interface’s structure and the
driving force. The restricted relaxation of the double layer
is also related to the pH, what constitutes additional com-
plexity for simulating electrochemical processes. 

The proton potential is related to the electrochemi-
cal environment, and it gets more significant as pH in-
creases because the protons are more stable at high pH
(higher configurational entropy). To facilitate its treat-
ment, the proton potential is often connected to the elec-
tron, μ(H 

+ + e 

−), see Equation (1 ). Nevertheless, recent
methods treat the combined proton–electron potential
and the electron potential (from the electrode) individ-
ually [44 

•] . 

 = φ − φSHE 

+ 

RT 

F 

ln (10) · pH (1)

Scope for development 
The methods outlined above provide approximations of
electrochemical experiments although it remains unclear
whether it is possible to treat the static properties of
the electrode/electrolyte interface and the dynamism of
species in electrochemical reactions in a unified, realis-
tic and practical simulation framework. Using standard
DFT calculation means keeping fixed the electrochem-
ical potential and the pH during the electronic structure
calculation, and the need of exploring several sizes of the
simulation cell and solvent arrangements leads to an un-
feasible protocol. The microsolvation of the surface and
ionic species speed this process by decreasing the num-
ber of explicit molecules considered during the simula-
tion, though an average of atomic configurations is still re-
quired to sample the energy landscape. 

Instead of assuming attributes for the interface structure
and then calculating the working conditions, the combi-
nation of DFT with canonical ensemble allows to include
the variation of applied potential and other observables
Current Opinion in Electrochemistry 2018, 10 :1–6 
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45,46] . For instance, a grand canonical ensemble would 

orrect energies derived from DFT by integrating the 

lectrostatic potential within the working volume over the 

pplied charge. 

 ( T =0 ) = E DF T + 

∫ q 

0 

〈
V 

〉
d Q + μq (2) 

 canonical mean-field microkinetic treatment of the 

FT results can incorporate an accurate description of 
he molecular interactions (adsorption and desorption) to 

he surface of heterogeneous electrodes, where the local 
otentials may differ from the average potential over the 

xposed surface [47] . 

he reaction dynamism can be accounted by molecular 
ynamics providing a fair sample of most of the ther-
odynamic constraints imposed on the interface struc- 

ure by the electrochemical environment. However, fully 

b-initio molecular dynamics implies considerable com- 
utational costs. Pioneering techniques to achieve reli- 
ble simulations are being developed. For instance, it is 
ow possible to account electrons and the movements of 
olvent and solvated species during a reaction by com- 
ining, in a single hessian matrix, accurate DFT and 

arametrised dynamic simulations [48–50 

•] . This setup 

nitially evaluates the system using precise static DFT,
.e. electronic structure and interatomic forces. It pro- 
eeds to solve the equations of motion with standard al-
orithms, which trajectories are corrected by the accurate 

nitial description. Hence, it allows coarsening the inter- 
als at which high precise forces are calculated, with the
dvantage of efficiency and enhanced sampling resolution 

51,52] . Upon reaching the required threshold between 

nteratomic forces, the last step is a precise DFT provid-
ng accurate electronic structure, i.e. the work-function 

ver an equilibrated electrode-solution interface. Fur- 
hermore, while parametrised potentials are constructed 

ommonly employing physical models of atomic interac- 
ions, innovative integration of adaptive potentials have 

aved a novel way to construct them. These potentials im-
rove their accuracy within the self-consistent calculation 

ollowing schemes such as artificial neural networks [53] ,
on-linear regression models [54] and others [48,54,55] .
ence, the size of the cell can be large enough to con-

ider negligible variation the dipole and constrictions in 

he solvent and solvated species. 

onclusion 

he development of computational techniques led to 

ethods to predict physical and chemical processes. Nev- 
rtheless, a realistic simulation of electrochemical re- 
ctions remains a grand challenge. It marks a frontier 
here the accuracy, efficiency and affordability of com- 
uter models are compromised. Previous methods have 

ramed the importance of (i) including an explicit solvent 
urrent Opinion in Electrochemistry 2018, 10 :1–6 
n the simulations, integrating the polarisability, (ii) the
ong-range stabilisation of species within the dynamic en-
ironment of reaction processes, and (iii) the exchange of
lectrons at the electrode-solvent interface. 

long with the microsolvation and integration of static
FT in canonical frameworks, we propose the assimila-

ion of dynamic and precise static calculations within a
ingle mixed-forces scheme. This is more efficient than 

b initio molecular mechanics while conserving the DFT 

ccuracy describing electronic structures. 
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