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Tensor Analysis and Fusion
of Multimodal Brain Images
This paper presents a general framework for tensor analysis of single-modality

model inversion and multimodal data fusion using neuroimaging

data as an example.

By Esin Karahan, Pedro A. Rojas-López, Maria L. Bringas-Vega,

Pedro A. Valdés-Hernández, and Pedro A. Valdes-Sosa

ABSTRACT | Current high-throughput data acquisition technol-

ogies probe dynamical systems with different imaging modal-

ities, generating massive data sets at different spatial and

temporal resolutionsVposing challenging problems in multi-

modal data fusion. A case in point is the attempt to parse out

the brain structures and networks that underpin human cogni-

tive processes by analysis of different neuroimaging modalities

(functional MRI, EEG, NIRS, etc.). We emphasize that the mul-

timodal, multiscale nature of neuroimaging data is well re-

flected by a multiway (tensor) structure where the underlying

processes can be summarized by a relatively small number of

components or ‘‘atoms.’’ We introduce Markov–Penrose

diagramsVan integration of Bayesian DAG and tensor network

notation in order to analyze these models. These diagrams not

only clarify matrix and tensor EEG and fMRI time/frequency

analysis and inverse problems, but also help understand multi-

modal fusion via multiway partial least squares and coupled

matrix-tensor factorization. We show here, for the first time,

that Granger causal analysis of brain networks is a tensor re-

gression problem, thus allowing the atomic decomposition of

brain networks. Analysis of EEG and fMRI recordings shows the

potential of the methods and suggests their use in other scien-

tific domains.

KEYWORDS | Autoregressive processes; Bayesian models;

Bayesian statistics; EEG/fMRI; electroencephalography; Grang-

er causality; magnetic resonance imaging; multidimensional

systems; multimodal data; N-PLS; PARAFAC; tensor decompo-

sition; tensor network

I . INTRODUCTION

Without doubt this is the era of ‘‘big data.’’ Technological

advances in data acquisition technology are spurring the

generation of unprecedented massive data sets, thus posing

a permanent challenge to data analysts. Recent interna-

tional efforts are marshalling the use of a bewildering array
of different technologies to acquire high-throughput mul-

timodal information about real-world systems. Examples of

the systems and modalities probed are the Internet [1],

geophysical data [2], and the human genome [3].

The human brain is today perhaps the most challenging

biological object under study and has been pushed recently

to the forefront of public awareness [4]–[6]. This interest

stems from the fact that identification of the brain struc-
tures involved in cognitive processes would not only yield

essential understanding about the human condition, but

would also provide leverage to deal with the staggering

global burden of disease for brain disorders [7]. The chal-

lenge of data sets stems from the fact that the brain is a

highly nested set of interacting dynamical systemsVfrom

the subcellular level to the whole system. In turn, each

level is actively being probed with an impressive arsenal of
different measurement and imaging modalities. Some ex-

amples of system level measurements are high precision

postmortem anatomy [8], diffusion weighted imaging
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(DWI) [9], [10], functional magnetic resonance imaging
(fMRI) [11], electroencephalography (EEG) [12], and

near-infrared spectroscopy (NIRS) [13]. These are just

some of the techniques that are rapidly populating pub-

licly available databases (see, for example, those listed at

www.incf.org). For an overview of the methods provid-

ing data see [14].

In this review, brain information will serve as an ex-

ample of the complexities encountered in analyzing big
data multimodal sets, as well as to illustrate possible strate-

gies (tensor models) to cope with these issues. These ap-

proaches, of course, may be applied to other knowledge

domains.

Typical issues that arise when analyzing neuroscience

data are as follows.

• Brain data are highly multidimensional and multi-

modal. Each imaging modality is always an indirect
measurement of the underlying dynamical systems

that are of interest. Thus, we are required not only

to solve multiple inverse problems (one for each

measurement modality) but also to carry out multi-

modal fusion.

• Each modality is recorded at different spatial and

temporal resolutions and reflects different physio-

logical processes. This poses challenging problems
for multimodal data fusion.

• To compound the complexity of brain data, the

analysis is not only required to identify specific

components and functions of the system but also to
elucidate their interactions (i.e., to identify pat-

terns of brain connectivity). This objective derives

from consensus that neural computations are not

the activity of relatively isolated neural masses but

rather the coordinated activity of dynamically

changing networks that involve huge amounts of

neurons [15].

Though the methods we describe here for inverse
problems and multimodal fusion are quite general, we will

confine examples and detailed discussions to two types of

brain imaging modalities: EEG and fMRI [blood oxygen

level dependent (BOLD)]. The choice of these is based on

their common physiological basis and complementarity as

we will explain shortly.

As can be seen from Fig. 1, both types of measurements

arise from neural activation which produces, on the one
hand, primary current densities ðGÞ that are reflected on

the scalp as EEG ðVÞ, and, on the other hand, as a vaso-

active feedforward signal (VFFS, h) that produces a rush of

blood rich in oxy-hemoglobin that is measurable as a local

BOLD signal ðBÞ with magnetic resonance imaging being

the best known method of fMRI. The physical models de-

scribing the generation of V and B from G and h are

known as the respective forward problems.
It is precisely due to the effect of these forward models

that we must solve modality-specific inverse problems in

order to uncover the underlying brain activation and

Fig. 1. Neural origin of EEG and the BOLD signals. Neural activity in a cortical patch (amplified to the right of the figure) generates two streams

of events. On the one hand, it induces an ensemble of postsynaptic potentials (EPSPs) that creates primary current density G in gray matter.

The second stream of events is the emission of h, a vasoactive feedforward signal (VFFS), that triggers a delayed and sluggish increase

in blood flow resulting in an excess of oxy-hemoglobin which produces the BOLD signal B (fMRI). As shown in the left part of the figure,

the cortical patch is embedded in a volume conductor (the head). As a consequence, G is projected at electrodes (V1 and V2) placed at the

scalp as determined by the lead field matrix K, which encapsulates the effects of the volume conductor. The generation of V is further

specified by the use of the Markov–Penrose notation defined in this review [Fig. 4(d)]. Modified from [23]. A detailed model concerning the

generation of B can be found in Fig. 4(e).
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connectivity. In the case of EEG, the objective is to over-
come the spatial smearing of G that is due to volume con-

duction. For the EEG frequency ranges often studied, the

quasi-static approximation [16] guarantees that both forward

and inverse problems are linear. EEG frequency compo-

nents, or rhythms, have been found to be important bio-

markers of normal and abnormal brain states. A review of the

basic facts about brain oscillations can be found in [17].

In the case of fMRI, the inverse problem compensates
for the temporal blurring of the BOLD signal produced by

the hemodynamic response function. Strictly speaking, the

BOLD forward and inverse problems are nonlinear [18].

Nevertheless, a useful first approximation is to linearize

these equations (see [19] for a recent example).

Thus, in this review, we will be dealing with a dual set of

linear forward and inverse problems. It is not a coincidence

that much of the EEG and fMRI analysis literature reads as
exercises in the matrix analysis of ill-posed linear inverse

problems. This has been beneficial due to the large and

rapidly expanding toolkit of matrix-based method analysis.

As we will show in Section III, the indeterminacies of ma-

trix decompositions have required additional assumptions

in order to obtain well-defined models tuned to the data.

One such approach is independent component analysis

(ICA) which has become quite popular in both EEG and
fMRI analyses [20]–[22].

Coming back to the generative models depicted in

Fig. 1, it is clear that EEG and fMRI have complementary

strengths. EEG inverse solutions have low spatial resolu-

tion, while BOLD is weak in temporal granularity. Thus,

these modalities seem ideally matched for image fusion in

order to create a brain mapping modality that simulta-

neously has high spatial and temporal resolution [23]–[25].
As with the modality-specific inverse problems, a majority

of the modeling strategies for this type of fusion are based

on matrix methods [24], [26]–[29]. In particular, ICA

methods for EEG/fMRI fusion are also very popular and

have been recently reviewed in [30].

An alternative to purely matrix-based EEG/fMRI in-

verse solutions and fusion methods is to take full advantage

of the inherent structure of the multimodal brain data,
which many times is actually recorded as a multidimen-

sional array or a tensor. It was recognized early [31] that

tensors could be, under mild conditions, uniquely decom-

posed, a property applied with great advantage to the anal-

ysis of EEG in the seminal work of [32] and [33]. Following

this lead, tensor-based data analysis has been vigorously

developed in the past few years [34]–[37]. The applications

to neuroimaging data seem quite promising and have been
extensively reviewed in [38]–[41]. Of course, tensor meth-

ods have penetrated many fields. Several examples of their

use in multimodal fusion outside brain science can be

found in [42].

Rather than replicating the material covered in the ex-

cellent reviews mentioned above, our purpose here is to

illustrate how tensor methods can enrich the statistical

methodology underlying EEG/fMRI electrophysiological
inverse solutions, brain connectivity, and image fusion. In

order to do so, we integrate and generalize the work initiated

in [23] and [43]–[49]. To facilitate visual representation of

models, we introduce the Markov–Penrose diagram (the

M–P diagram), a combination of Penrose diagrams with

notation from the theory of directed acyclic graphs (DAGs)

that we use to represent Bayesian tensor models and clarify

inferential steps.
We will proceed as follows. We set down the basic

definitions and notations for tensors and their operations in

Section II. This will allow us to review matrix-based EEG/

fMRI analysis methods in Section III and to argue for the

need of multilinear approaches to the field. We then apply

the ideas and notations of Section II successively to the

EEG analysis (Section IV), brain connectivity (Section V),

and EEG/fMRI fusion (Section VI). We introduce non-
linear extensions of tensor methods in Section VII. We

discuss algorithms in Section VIII, where we mention

software packages for tensor-based problems. Finally, in

Section IX, we present some conclusions.

II . TENSOR DIAGRAMS
AND OPERATIONS

Tensors are a generalization of vectors and matrices to

higher dimensions, being embodied in different program-

ming languages as multidimensional arrays. The order of a
tensor is the number of its dimensions. We refer the reader

to Tables 1 and 2 for a summary of the tensor notation and

operations used in this review.

A. Penrose Diagrams
Tensor objects and operations may be represented by

Penrose diagrams (the P diagram) that were inspired by

Penrose’s original work in [50] on theoretical physics and

later adapted, with modifications, for tensor networks. Ex-

amples of P diagrams can be found in [41], [51], and [52].

Expressions in usual mathematical notation for vectors,

matrices, and tensors as well as their corresponding
Penrose diagrams are shown in Fig. 2(a)–(c). In this type

of diagram, tensors are denoted as nodes and each di-

mension is depicted as a line (link) leaving the node. The

model order of a tensor can be read off from its Penrose

diagram as the number of dangling lines. Note that any

tensor may have any number of additional ‘‘singleton’’ or

virtual one-element dimensions (e.g., X 2 RI1�I2�����IN is

the same tensor as X 2 RI1�I2�����IN�1�����1). Tensors
which have random values as elements are shown as circu-

lar nodes. Other nodes with special properties are depicted

in Fig. 2. Those with constant/deterministic elements are

shown as rectangular nodes [Fig. 2(d)]. If all of the ele-

ments of a tensor are nonnegative, this property (or for that

matter any other relation) is depicted within the node

outline [Fig. 2(e)]. A tensor with orthogonality imposed on
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a given dimension will be shown with a rectangular box on

that dimension [Fig. 2(f)].

Any junction between lines of two or more tensors

denotes an operation between them that may result in a

lower order tensor. A list of tensor operations used in this
review, though of course there are many more, is given in

Table 2. P diagrams of the related tensor operations are

given in Fig. 3.

For clarity, we sometimes emphasize a particular ten-

sor, the result of several operations, by surrounding it with

triangular or rectangular shapes, as shown in Fig. 3(e).

Note that the dimensionality of the resultant tensor will be

clear from the lines leaving the shape.

B. Markov–Penrose Diagrams
Missing from the usual P diagrams are the concepts of

probabilistic dependency. Probabilistic graphical models

are extremely useful for making the conditional depen-

dence in a statistical model explicit [53], in particular di-

rected graphical models (DAGs) or Bayesian networks for

graphical models.

We emphasize the need for probabilistic models which

includes prior distributions in order to deal with the issues

arising from high dimensionality of tensorial models, such
as indeterminacy. In this review, we consider a Bayesian

approach, in which we represent entities of our model ac-

cording to probabilistic functions and define probabilistic

relations between them in a Bayesian network fashion. In

this way, we can interpret the results of fitting the variables

of these models as maximum a posteriori (MAP) estimates,

thus linking both Bayesian and tensorial frameworks.

A junction between the links of two tensors in a P
diagram signifies undirected arithmetic operations [as in

Fig. 3(a)]. By contrast, an arrow between two variable

nodes in a DAG signifies directed conditional dependence.

To specify statistical models for tensors we need both

types of links. To summarize, P diagrams are useful for the

visualization of tensors and tensorial operations whereas

DAGs are useful for showing the probability models.

This has prompted us to define a notation that incor-

porates both types of links, as shown in Fig. 4(a)–(c). Here

a directed arrow denotes a conditional probabilistic depen-

dency between tensors.

Functional penalties �ðxÞ on nodes (such as those that
will be described in Section III) are depicted inside a spe-

cial box shape node from which an arrow is directed to the

constrained node. Note that this implies that the node va-

riable is distributed as pð�ðxÞÞ ¼ C expð��ðxÞÞ [see

Fig. 4(c)].

To contrast DAG with the M–P diagram refer to

Fig. 4(d) and (e) that displays two different graphical re-

presentations for the forward-matrix-based models that
will be introduced for EEG and fMRI in Section III. It is

clear that the DAG notation is operation blind; we can see

the dependence between variables, but not the actual

arithmetic. In M–P notation, we can show the same con-

ditional dependence structure as in DAG notation, but we

can also infer the formula for the model in this graph using

the Penrose notation for operations.

There are other types of decompositions that might be
applied to these models, such as Tucker decompositions

[36], that are easily shown with this notation but, for rea-

sons of space, will not be included in this review.

Note that the inclusion in some DAG-type arrow of an

error term " indicates measurement noise. Of course, in

reality, these can be drawn from any probability distribu-

tion but, for ease of exposition, as in the matrix case, will

be considered as a tensor of adequate dimensions contain-
ing identically and independent Gaussian variates.

The close formal affinity between certain types of ten-

sor networks and graphical models studied in the machine

learning community has already been pointed out in [41,

Table 2]. Critch [54] and Critch and Morton [55] also

highlight the similarities between particular types of ten-

sor networks (depicting matrix product states) with hidden

Markov models. Nevertheless, the links in these two types
of structures are of a fundamentally different mathemat-

ical nature, and a distinctive notation was not considered.

Table 1 Tensor Concepts
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Table 2 Tensor Operations
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Note that we will be concentrating our analysis on lin-

ear tensor models for the sake of simplicity. There is a

rapidly growing field of nonlinear methods for tensor

analysis which can be incorporated into our framework. We

give some examples when appropriate and outline a tensor

approach to nonlinear neural mass models in Section VII.

III . MATRIX-BASED EEG/fMRI ANALYSIS

There is a huge literature on the physiological origin of

EEG and fMRI. The interested reader can consult [56]–

[58] for recent reviews on EEG, as well as [59] for fMRI.

Equally large is the work dedicated to neurovascular
coupling and EEG–fMRI fusion [60], [61]. The known

facts have generated many different types of models. We

here only choose, for purpose of illustration, the simplest

models for the studied phenomena in order to illustrate

matrix and tensor techniques. Of course, current biophy-

sical modeling of these phenomena varies from the simple

model we use for illustration to those based on nonlinear

random differential equations and neural masses [62],
[23]. Of great theoretical and practical use is the family of

DCM [63], [64]. In fact the field is now moving toward

neural field models whose mathematical underpinning are

random partial evolution equations. We will touch upon

these in Section VII.

We now formalize the EEG forward and inverse prob-

lems outlined in Section I and presented in Fig. 1. Both

EEG and fMRI are vector valued time series, collected into
matrices (i.e., space � time).

Let us represent the recorded EEG by the matrix

V 2 RIE�IT , where IE denotes the number of electrodes in

the recording sensor array placed on the scalp, and IT

denotes the total number of observations obtained during

the recording epoch. The sampling rate of EEG is typically

in the range of around 1 kHz.

BOLD measurements are available for all brain voxels in
an image, but we will assume that standard preprocessing

Fig. 2. Penrose diagrams. (a)–(d) Graphical depictions of tensors of

different orders (i.e., the number of dimensions) as circles, when

referring to unobserved variables, and squares, when denoting

constant tensors. The symbol used to denote the tensor is contained

in a circle or a square. Note that the number of dimensions of a tensor

is shown as the lines that leave it. When necessary, the number

of elements of a dimension will be indicated besides the link that

denotes it. Singleton dimensions (dimensions with only one level) are

shown as dashed lines with number 1. (e) Nonnegativity and other

relations for tensor elements indicated with the usual mathematical

notation in a circle or a square. (f) Orthogonality constraints are shown

as squared bars on the orthogonal dimensions.

Fig. 3. Tensor operation with Penrose (P) diagrams. (a) and (b)

Graphical definitions of the contraction operator of X 2 RI�J�K with

Y 2 RK�L giving Z 2 RI�J�L�K . This operation is denoted with a

black dot in a junction between the lines representing the dimension K

on both tensors. See Table 2 for a detailed formulation. (a) P diagram.

(b) Three-dimensional representation of contraction of the same

tensors. (c) and (d) Graphical definitions of the tensor concatenation

operator is exemplified between two tensors of the identical number of

dimensions and elements per dimension with at most one mode being

different, in this case concatenationX1 2 RI�J1�K andY2 2 RI�J2�K gives

Z 2 RI�ðJ1þJ2Þ�K . As can be noted, the resulting tensor preserves all the

dimensions of the original except by the differing dimensions which are

augmented with their sum. We have defined two types of operators for

concatenation: the first is a binary operator, defined for two tensors,

and the second is the concatenation operation on a set of tensors. See

Table 2 for a detailed formulation. (c) On the left, we have the P diagram

for the concatenation operator on a set of tensors, in this case X 1 and

X2, which are indexed by the m variable as noted in the lower right side

where we define the limits of the indexed set. It is to be noted that in this

operation the dimension in which concatenation occurs is the one

showing the set index, in this case Jm, and outside of the bracket denoting

the operation, the name of the dimension changes to J ¼
P2

m¼1 Jm.

Mathematical formulation is shown on the right. (d) 3-D visual

representation of the binary concatenation. (e) Tensors resulting from

an operation involving other tensors can be surrounded by shapes (e.g.,

triangles, squares) to highlight the resulting tensor, rather than its parts.
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techniques have allowed us to project this activity to a more
restricted space. This can be either a standard 2-D grid

distributed on the cerebral cortex, or a larger set defined for

a 3-D grid that spans cerebral cortex and thalamus. The

distinction between the two cases will be clear from the

context but in both cases with a total number of voxels ICx.

This activity is sampled at much slower rates than EEG

(typically in the order of 1 Hz) which results in a total

number of observations IT� � IT . We therefore denote
the recorded fMRI by the matrix B 2 RICx�IT� . For a list

of dimensions of matrices and tensors refer to Table 3

and for the EEG/fMRI related matrices and tensors used

in this review to Table 4.

We also assume for EEG and fMRI recorded concur-
rently that the time samples for the fMRI are obtained at

integer multiples of those for EEG.

A. Matrix EEG Inverse Problem
The discretized version of the forward problem for

EEG is

V ¼ KGþEV (1)

where G 2 RICx�IT denotes the primary current density
defined over the same cortical grid as fMRI and sampled at

Table 3 Dimensions of Matrices and Tensors

Fig. 4. Markov–Penrose (M–P) diagrams. (a) An arrow between two tensors denotes probabilistic causality between them. (b) If we add an

E circle to the arrow, we indicate additive error term. (c) If the emitter of the arrow is a probabilistic density function, this denotes a prior

distribution for the variable it is pointing to. This is quite similar to the usual DAG notation. (d) Usual DAG diagrams [53] for the generative models

of EEG (left) and its equivalent version in the M–P notation (right). The M–P diagram explicitly states that EEG matrix V is the contraction of the

lead field matrix K with the primary current density matrix G corrupted by sensor noise Ev . This example model also includes a prior probability

distribution for G. (e) Similar DAG and M–P diagrams for the generative model of the BOLD signal. Here the vasoactive feedforward signal G is

contracted with the hemodynamic response function H (temporal convolution) producing the BOLD signal B. A prior for G is also shown.
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the same time points as EEG. K 2 RIE�ICx is the lead-field

matrix which summarizes volume conduction effects in the

head.1 We will henceforth assume that the sensor error

EV 2 RIE�IT is a matrix with entries that are identically
distributed zero mean Gaussian variates. Since we are

modeling only sensor noise, this has been found to be a

good approximation. This assumption allows us to measure

the fit of models to the data by means of the Frobenius

norm k � k2
2.2

Estimation of G, also known as electrophysiological

source imaging (ESI), is a well-known ill-posed problem.

Therefore, a solution by naive minimization of the func-

tional kV�KGk2
2 is not possible and, in fact, it does not

have a unique solution. Uniqueness may be obtained by

adding prior anatomical and physiological information to

the problem formulation.

According to this approach, estimation of G involves

finding the argument Ĝ that minimizes the following aug-

mented functional:
1Note that this is a linear operator under the quasi-static approxima-

tion for Maxwell’s equations [172].
2Correlated or non-Gaussian error terms can easily be dealt with, but

would complicate model expressions unnecessarily.

Table 4 EEG and fMRI Related Matrices and Tensors

Ĝ ¼ arg min
G

kV�KGk22 þ �ðGÞ: (2)
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The penalization term �ðGÞ applied in ESI is generally
a combination of different matrix norms. Let us consider

some examples.

• One of the best known examples of source imaging

is LORETA [65], in which the penalization takes

the form �ðGÞ ¼ kLGk2
2, which encourages esti-

mation of spatially smooth sources on the cortex.

• Another variant is VARETA [66], which uses the

penalty term �ðGÞ ¼ kLGk1 with an L1-norm to
impose both spatial smoothness and sparseness.

• More recently in [49], the following penalty term

was proposed: �ðGÞ ¼ �1kGk1 þ �2kLGk2
2. This

penalty achieves an optimal balance between spa-

tial sparsity and smoothness of cortical sources by

data-driven hyperparameters �1 and �2.

A comparison of these and other types of source imag-

ing may be found in [48]. In that same paper, spatio–
temporal orthogonal nonnegative independent component

analysis (STONNICA) was proposed as a solution for the

EEG inverse problem. This model not only illustrates more

complex penalty terms, but also shows how additional

constraints might be useful to find interpretable sources. A

tensor extension is described in Section IV.

STONNICA is different in two ways from usual appli-

cations of ICA to EEG source localization [20].
1) It is based on a variant of ICA for which compo-

nents are forced to be orthogonal and nonnegative

(ONN–ICA) [67].

2) STONNICA identifies the components in source

space directly (ICA tomography). By contrast,

other types of ICA source/localization first carry

out ICA in sensor space and then localize the

extracted components (tomography of ICA).
The parameter estimates for this model are obtained as

M̂V; T̂V

� �
¼ arg min

MV;TV

�
1

2
kV�KMVTVk2

2

þ �1kMVk1 þ �2kLMVk2
2

�

s.t. MT
VMV ¼ I; MV � 0 (3)

where MV 2 RICx�R is the spatial signature or cortical dis-

tribution of the ONN–ICA components. The ONN condition

is equivalent to specifying spatially nonoverlapping EEG
sources. This requirement, in addition to the smooth Lasso

type constraints [44], [46], [49], results in the identification of

sparse isolated clustered components that were used to iden-

tify distinct cognitive processes involved in face processing.

B. Matrix fMRI Inverse Problem
As mentioned before, the generation of the BOLD signal

from the VFFS is best described by a set of nonlinear differential

equations [18]. Therefore strictly speaking, the forward and

inverse fMRI problems should be solved using neural mass

models based on nonlinear random differential equations, as
reviewed in detail in [23]. But this would detract from our

objective of simplicity in illustrating matrix and tensor techniques.

We will, therefore, resort to a useful linear generative

model for the BOLD signal, which is the convolution of the

vasoactive feedforward signal �ðg; tÞ at point g of the cor-

tical grid with the hemodynamic response hðtÞ

bðg; tÞ ¼
Z

hðt� �Þ�ðg; tÞd� þ "bðg; tÞ: (4)

If this continuous time model is discretized over time
at the IT� sampling times of the fMRI and the convolution

operation stated as a matrix product, the resulting fMRI

forward model is

B ¼ hHþ EB (5)

where h 2 RICx�IT is the vasoactive feedforward signal

matrix and H 2 RIT�IT� is the hemodynamic response ma-

trix. Note that H is obtained by subsampling rows from the

general square symmetric Toeplitz matrix fhðti�tjÞg1�i;j�IT

defined at the finer time resolution.

Using similar procedures as those outlined in the dis-

cussion of ESI, the deconvolution of the fMRI may also be

stated as an inverse problem

ĥ ¼ arg min
h

kB� hHk2
2 þ �ðhÞ: (6)

Glover [68] was the first to propose this type of de-

convolution using a Wiener filter, that is, �ðhÞ ¼ khk2
2.

Later Valdés-Sosa et al. [23] proposed the use of the penalty

�ðhÞ ¼ khLk2
2 (a ‘‘LORETA-style’’ inverse problem) in the

context of EEG/fMRI fusion, a topic which we now turn to.

C. Matrix-Based EEG/fMRI Fusion
From an examination of (2) and (6) it is clear that in

order to carry out EEG/fMRI fusion a link must be estab-

lished between G and h. A first attempt was carried out in

[69], where both quantities were assumed to be proportional

to each other. Under these conditions, a form of matrix EEG/

fMRI fusion procedure was developed that was formulated as

Ĝ¼arg min
G

kV�KGk22 þ �kB�GHk22 þ �ðGÞ: (7)

Using LORETA-type penalties, this method was capable

of accurately localizing separate components of the

somatosensory evoked magnetic response. Also note that

this was the first formulation of a symmetrical type of EEG/
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fMRI fusion, since neither modality has a priori priority
over the otherVtheir relative weight is determined by the

data chosen constant �. Symmetrical data fusion approaches

use complementary information of both modalities to esti-

mate the common source of neural activity [69], [70] where-

as in asymmetrical fusion methods one modality is given

priority to guide the other one. A review can be found in [71].

Another type of matrix-based fusion is extracting the

features of two modalities such as contrast maps for fMRI
and averaged time courses of EEG and apply fusion meth-

ods to second level statistics to reveal the between subject

variance [25]. For example, in joint ICA, data feature

matrices are concatenated and decomposed by assuming

that the data sets share the same mixing matrix/modulation

profiles but different source components. In [72], the

temporal data feature matrix of EEG ðVÞ constituted by

the average ERP time courses over subjects and contrast
maps of fMRI over subjects ðBÞ are jointly decomposed to

find the temporal ðTVÞ and spatial components ðMBÞ as

VjB ¼ AðTVjMBÞ

s.t. �ðTVÞ ¼
YR

r¼1

� TVðr; :Þð Þ

�ðMBÞ ¼
YR

r¼1

� MBðr; :Þð Þ

where A is the common modulation profile of subjects and

R is the number of components of ICA.

D. Beyond Matrix-Based Methods
As we have just discussed, matrix-based methods have been

very useful for EEG/fMRI inverse solutions and their fusion.

Nevertheless, many EEG and fMRI data sets and model

constructs are not best represented as matrices. Consider a

set of EEG spectra recorded on a common set of sensors, for

a number of subjects, for different experimental conditions.

This is actually the data that can be arranged as a multidi-

mensional array (channel, frequency, subject, condition).
Instead of reshaping the data into matrices for use with

more standard methods, tensor decomposition leverages

the natural format of the data in order to discover hidden

structures (see [73]). It is therefore not surprising to see

the increasing number of applications of tensor methods in

the analysis of brain data [39], [74].

IV. TENSOR EEG ANALYSIS

A. Parallel Factor Analysis of Scalp EEG
One of the main advantages of tensor-based analyses is

the ability to represent large multidimensional arrays in

terms of much simpler structures. The best known such

representation is the canonical decomposition or parallel

factor analysis decomposition (PARAFAC), a tensor equiva-
lent to principal component analysis. As mentioned before,

for tensors of order equal or larger than 3, this decom-

position is unique under rather mild conditions [31], [36].

For the sake of concreteness, we will illustrate

PARAFAC in the context of time/frequency decomposi-

tions of EEG, which naturally lead to three-way tensors.

Calculating the wavelet or Gabor spectrum for each channel

Vði; :Þ, i ¼ 1; . . . ; IE, yields a matrixSTði; :; :Þ for given time
frames and frequencies. The spectra for all channels may be

shaped into a three-way tensor ST of size IE� IT� � IF�,

where IE is the number of sensors, IT� is the number time

samples, and IF� is the number of frequency samples.

The PARAFAC model decomposes ST into R compo-

nents or ‘‘atoms’’ which can be expressed in several alter-

native forms. In scalar notation, it is

STðiE; iT�; iF�Þ ¼
XR

r¼1

MVðiE; rÞTVðiT�; rÞFVðiF�; rÞ

þEðiE; iT�; iF�Þ (8)

where iE, iT�, and iF� are indices for space, time, and

frequency, respectively, and E denotes noise. MVð:; rÞ;
TVð:; rÞ;FVð:; rÞ are the spatial, temporal, and spectral

signatures, respectively, for atom r.

To make clear the M–P notation, we reexpress (8) in

terms of tensor operations

ST ¼MV �fRg TV �fRg FV þ E

¼ ½½MV;TV;FV		 þ E: (9)

Many multilinear models, in particular PARAFAC com-

ponents, have a scale indeterminacy which does not affect

interpretation. By convention, we will assume that factors are
all normalized except the first one in the Kruskal operation.

This is the model applied in [43] which isolated several

rhythmic components of EEG. There are several variations

on this basic PARAFAC model that can improve interpre-

tability. For example, we may impose sparseness, smooth-

ness, nonnegativity, and orthogonality for the spatial

signatures MVð:; rÞ similar to that of (3).

The resulting modelVa PARAFAC/ICAVis depicted
in M–P format as in Fig. 5. In practical terms, this model

may be estimated as follows:

M̂V; T̂V; F̂V

� �
¼ arg min

MV;TV;FV

�
1

2
ST � ½½MV;TV;FV		k k2

2

þ �1kMVk1 þ �2kLMVk2
2

�

s.t. MT
VMV ¼ I; MV � 0; FV � 0: (10)
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As will be seen in Section IV-B, this model is easily
combined with EEG source estimation.

A review of related work on combining tensor methods

for EEG analysis can be found in [75]. The combination of

ICA with PARAFAC has also been developed in [76] and

[77]. A slightly different approachVapplied to fMRI

dataVin [78] is to impose the PARAFAC structure during

ICA extraction.

A characteristic of the PARAFAC model that underlies
our presentation is that, as a consequence of the outer

product structure of signatures, reconstructed atoms may

appear as ‘‘oval blobs.’’ While useful as a first approxima-

tion, this is a limitation that may be taken care of by in-

cluding nonlinear crossed terms as variables or by using

more complex multilinear models (e.g., Tucker decompo-

sition). This is a topic that will be the subject of future

research.

B. Tensor-Based EEG Inverse Problems
In Section III-A, we described STONNICA, a type of

ICA in source space that was applied to time domain

electrophysiological data. We have already seen that EEG

time/frequency decompositions are best described in a

tensor format and that PARAFAC decompositions may

reveal interesting latent structures. It is therefore natural

to integrate PARAFAC and STONNICA, a model that is
estimated as follows:

ST ¼ ½½KMG;TV;FV		 þ E

for which the estimator will be

M̂G; T̂V; F̂V

� �
¼ arg min

MG;TV;FV

1

2
ST�½½KMG;TV;FV		k k2

2

�

þ�1kMGk1þ
1

2
�2kLMGk2

�

s.t. MT
GMG ¼ I; MG � 0; FV � 0: (11)

FV is the spectral signature of the generator sources of

EEG. The Markov–Penrose diagram of this model is shown
in Fig. 6(a).

The application of this model to the analysis of the

resting state EEG is shown in Fig. 6(b). Note that three

atoms were identified, all predominant in the occipital

cortex. The frequency signatures are shown in the top left

of that figure, showing that the components were primarily

related to the different types of alpha rhythm.

Related work on combining PARAFAC and inverse
solutions can be found in [79].

V. BRAIN CONNECTIVITY AS A
TENSOR REGRESSION

We now address the use of tensor methods to evaluate

brain connectivity. Of the different types shown in Fig. 7
we will concentrate on effective connectivity. This is the

direct causal activation of one neural mass by another

mediated by axonal pathways.

This topic has been reviewed in depth in [80], where it

is argued that current work in this area is a fusion of

several strands of research.

• One strand is based on graphical representations of

causal models and the conditions under which causal
inference is possible. This structural approach is best

exemplified by the work of Pearl [81] who identifies

the essential role of interventions to determine

causality and in effect formalizes their application.

• A second line of work is that of Wiener [82], Akaike

[83], Granger [84], and Schweder [85] in which

predictability of one time series by another is used

to lagged-based measures of statistical dependence.
These measures of influence that apply to contin-

uous time series, point processes, linear models,

and nonlinear models were termed Wiener–

Akaike–Granger–Schweder (WAGS) influence

measures in [80].

• A third strand in the integration of WAGS theory

with the structural approach previously mentioned

Fig. 5. M–P diagram of a PARAFAC/ICA decomposition.

(a) PARAFAC/ICA decomposition for a third-order tensor ST.

Atoms (components) are latent variables shown with circles

and ST is the observed variable. Here MV is required to be

orthogonal, nonnegative, sparse, and smooth. (b) The more

traditional 3-D representation of PARAFAC.
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has been carried out for discrete time by Eichler

[86] and for continuous time [87].

• Structural and WAGS influences are amplified by

the biophysical modeling (c.f., by random differ-

ential equations) as best illustrated by dynamic

causal modeling [88].

Biophysical causality explicitly examines the state–
space equations that model not only system dynamics but

also the observation equation [80]. From the discussion of

the EEG forward problem in Section III-A, it becomes

evident that volume conduction is a serious problem af-

fecting the interpretation of influence measures. For a re-

cent attempt to overcome the complexities of EEG Granger

causality (GC), see [89].

Our specific application of GC to fMRI should be
viewed in the light of the debate on the applicability of lag-

based measures of influence for fMRI [90], which are

based on the following arguments:

• fMRI has a very low temporal resolution that is

limited by the rather large repetition time (
2 s) of

most image acquisition pulse sequences;

Fig. 7. Several related concepts of brain connectivity are summarized.

Anatomical connectivity is defined as the existence of axonal pathways

that link two distinct neural masses. If this pathway is activated there

is effective connectivity between these neural masses. On the other

hand, if one only measures a correlation between the activities of

two neural masses, one is measuring functional connectivity.

It is effective connectivity that is of interest in defining functional

neural networks.

Fig. 6. PARAFAC/STONNICA. (a) M–P diagram indicating the tensor operation flow for tensor STONNICA, in this case, a PARAFAC decomposition of

an inverse solution, where ST is the signal observed in the scalp and K is the lead field matrix. The atoms of the decomposition are denoted

as spectral signature (FV in the diagram), temporal signature ðTVÞ, and spatial localization of sources ðMGÞ, for the latter of which multiple

regularizations are imposed. (b) An example of the application of this procedure on the resting state EEG from one subject. Tensor STONNICA

is applied on the cross-spectral density of EEG for all segments in the frequency range 0.5–30 Hz in 0.5-Hz steps. MNI-based head model is used

for the calculation of lead field. Spectral signatures show three distinct atoms at 9, 9.5, and 10 Hz, all of them being alpha atoms. Temporal

signatures reveal coexistence of these rhythms at the same time in different magnitudes. Spatial signatures in source space are localized in

occipital, striatal, and parastriatal areas. Note that three atoms are well separated in frequency and spatial localization. 3 Frequency domain

STONNICA was presented at the XXVII Annu. Int. Meeting Human Brain Mapping, 2011: M. Bringas, I. Pedroso, V. Perez, J. Sanchez-Bornot, and

P. Valdes-Sosa, ‘‘Resting state frequency domain Tomographic ICA.’’
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• the low-pass behavior of the hemodynamic re-
sponse blurs the temporal profile of information

flow between neuronal populations;

• the variability of the hemodynamic response func-

tion (HRF) across brain regions has been considered

a factor that might potentially bias GC estimates.

While the jury is still out on the applicability of lag-

based methods for fMRI, recent work has offset, to a

certain degree, the most pessimistic points of view. In [91],
it was shown that GC is invariant to HRF convolution with

higher temporal sampling and low measurement noise, a

conclusion bolstered by [92]. Extensive simulations by

Rodrigues and Andrade suggest that the optimal sampling

frequency is around 100 ms [93]. This is also argued for

experimentally by Lin et al., who employed a fast fMRI

sequence of 100 ms [94]. It is this data that we have used in

this paper. In any case, the specific fMRI analysis shown
should be taken as an illustration of tensor GC and further

study of the validity of lag based methods for influence are

warranted, especially by embedding them in formulation

[95], [96].

Since our purpose is to show that the estimation of GC

(influence) measures for fMRI data can be profitably ap-

proached using tensor methods we exclude EEG from this

section and will limit our examples on a data set of BOLD
measurements.

This is fast fMRI data (sampled at 10 Hz) from one of

the subjects reported in [94]. The subject recorded had to

respond with the corresponding hand to right or left visual

hemi-field stimuli. Data from 1100 voxels were recorded

from the visual (V), parietal (PCC), premotor (PreM), som-

atosensory (S), and motor (M) regions of interest (ROIs).

A. WAGS Influence or Granger Causality
This influence measure is based upon the multivariate

autoregressive model (MAR). For a review and freely

available toolbox, see [97]. The algorithms described in the

cited paper and many others are useful only when
analyzing a quite small number of time series. We now

set out the matrix formulation of the problem.

However, as pointed out in [80] and [98], for brain

imaging data, a high-dimensional MAR is needed to search

for the influence fields that are the spatial maps of

the influence of one brain area on the rest of the brainV
something for which a Bayesian formulation is needed.

To formalize these ideas, we remind the reader that the
BOLD signal is denoted by B 2 RICx�IT� . Then, the spatial

MAR is

bt ¼
XIlag

q¼1

Aqbt�q þ "t (12)

where bt ¼ Bð:; tÞ, Ilag is the number of past lags included

in the model, and "t is the innovation noise.

The autoregressive matrices Aq 2 RICx�ICx quantify
the influence of the past time series on all others, in-

cluding themselves. If a coefficient Aqði; jÞ 6¼ 0, we will

say that time series j (Granger) influences time series i
after q lags.

Thus, GC measures are essentially tests of the null

hypothesis for coefficients of the MAR model.

One of the main problems is that for fMRI the number

of time series ICx is much larger than the length of the time
series IT�. A MAR model contains Ilag � I2

Cx þ ðI2
Cx þ ICxÞ=2

variables. This reveals (12) as a high-dimensional p� n
regression problem for which the usual multivariate

statistical techniques fail.

To avoid the high-dimensional scenario, the problem

can be reduced in size, first by averaging the BOLD signal

over voxels for preselected ROI, and then carrying out

bivariate GC for all pairs of ROIVcorrecting for multiple
comparisons. The results of this analysis for the data set

used in this section are shown in Fig. 10(a) in which an

outflow of influence from V spreads out to other ROIs.

An alternative approach is to use methods for high-

dimensional data regression presented in [99]. This pe-

nalized MAR approach was first presented in [98] and

reviewed in [47]. Here all voxels of interest (the whole

brain if necessary) may be included in the regression but
statistical procedures that lead to variable selection were

carried out. However, only matrix-based models were

dealt with.

We now change our viewpoint completely and look at

the penalized MAR model in a tensor format.

B. Granger Causality Viewed as a Tensor Regression
If we collect bt from (12) for all time samples t ¼ Ilagþ

1; . . . ; IT� þ Ilag, we define matrix Bt�q 2 RICx�IT� as

follows:

Bt�q ¼ bIlagþ1�q; . . . ;bITþIlag�q

� �T
:

Then, we concatenate matrices Bt�q constructed for all

q ¼ 1; . . . ; Ilag to obtain a data tensor B 2 RIlag�ICx�IT� .

The autoregressive coefficients are also essentially a

tensor A 2 RICx�ICx�Ilag that is obtained by concatenating

Aq matrices along the Ilag dimension. We state the con-

catenation operations explicitly as follows:

B ¼ ½Bt�q	f1j���j1gq¼1:Ilag
; A ¼ ½Aq	f1j���j1gq¼1:Ilag

:

Note that we make use of the property of tensors that

adding singleton dimensions to a tensor will not change

the dimension. The concatenation operation for B is de-

picted in Fig. 8.
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Thus, the MAR model is a tensor regression expressed

by means of a tensor contraction

Bt ¼ A �fICx;Ilagg BþEt: (13)

The M–P diagram for this type of model is given in

Fig. 8. Note that A 2 RICx�ICx�Ilag is a 3-D tensor in the

same figure.

In recognition of the tensor nature of the MAR in (13),

we propose the following estimation procedure:

Â ¼ arg min
A

Bt �A �fICx;Ilagg B
�� ��2

2
þ �ðAÞ

n o
: (14)

For example, in [47], the penalty �ðAÞ ¼ �1kAk1 þ
�2kL �fICxgAk

2 was used, as well as a number of other

variants.

C. Granger Causality With t-Products
A refinement of the model just defined is to use tensor

norms as penalization functions. Such an approach takes

advantage of the t-product to implement the Levinson–

Durbin estimation of MAR [100].
The t-product and related tensor operations were in-

troduced by Kilmer et al. [101], and the key concept is

summarized in Table 2. These operations allow 3-D ten-

sors to be treated as though they were matrices which fit

the tensor GC problem since three dimensions are ade-

quate to define emitter, receiver, and temporal signatures

of nodes.

We further need the following definitions.
• The sample covariance tensorR 2 RICx�ICx�ðIlagþ1Þ is

RðiCx; iCx; qÞ¼ð1=IT�Þ
PIT�

iT�¼1Bðq;iCx;iT�ÞBtðiCx; iT�Þ,
where each block Rð:; :; qÞ is an ICx � ICx cross-

covariance matrix.

• R1 ¼Rð:; :; 0 : Ilag � 1Þ; R2 ¼Rð:; :; 1 : IlagÞ.
The naBve solution to the classical Levinson–Durbin

equation in our notation is

MatVecðAÞ ¼ tplzðR1Þ�1MatVecðR2Þ: (15)

It is well known that this type of solution is not

numerically stable. Therefore, one approach is to regu-

larize the estimate of the covariance matrix R1 using the

t-operations defined in Table 2. The specific estimator is

R̂1 ¼ arg min
�

kR1 � �k2
2 þ �k�k�

	 

(16)

where the penalty term is the tensor nuclear norm (TNN)

defined in Table 2.

The estimator R̂1 can be explicitly found by shrinking

the t-singular values in D by � with the � function of [102]

R̂1 ¼ U fIlagg �ðDÞ fIlagg V
T:

Then, A is estimated as

Â ¼ V fIlagg �ðDÞ fIlagg U
T fIlaggR2:

In fact, this operation was improved by using the

circulant embedding defined in [103].

This model was applied to the data set analyzed in this

section, and the resulting connectivity diagram is pre-

sented in Fig. 10(b). The method was able to deal with

high-dimensional data having more than 1000 nodes and

20 lags with stable numerical results. It is also interesting

to note that this estimate of connectivity seems to be much
more sensitive than the simple bivariate approach.

D. Granger Causality With PARAFAC/ICA
As seen, the tensor GC uncover a much richer set of

connections than simpler methods. However, basic neu-

roscience suggests that effective connectivity implies a

structured sparsity of A, which is desirable since it prunes

many of the spurious connections characteristic of some

functional connectivity measures. Structured sparsity can

be achieved by positing a PARAFAC/ICA structure for the

connectivity tensor. We will define a node as a sender if it

Fig. 8. Representation of Granger causality as a tensor regression

problem. The time series Bt�q of size ICx � IT� is constituted by

lagging a sample matrix Bt at q ¼ 1; . . . ; Ilag. Concatenation of

Bt�q over Ilag singleton dimensions gives the lagged data tensor B

with size Ilag � ICx � IT� . B is contracted with connectivity tensorA

over spatial and temporal lag dimensions resulting the time series

in voxels Bt .
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influences another set of nodes, and as a receiver if its
activity is caused by other nodes.

Signatures of A are estimated by

M̂s; M̂r; T̂
� �
¼ arg min

Ms;Mr;T

1

2
Bt �A �fICx;Ilagg B
�� ��2

2
þ�1kMsk1

�

þ 1

2
�2kLMsk2 þ �3kMrk1 þ

1

2
�4kLMrk2

þ�5kTk1 þ
1

2
�6kLTk2

�

s.t. A ¼ ½½Ms;Mr;T		; Ms � 0;

MT
sMs ¼ I; Mr � 0; MT

rMr¼I (17)

where Mr is the spatial signature for receiving nodes Ms,

is the spatial signature for sender nodes, and T is the

temporal signature for causal lags.

In this model, the identifiability is enhanced by en-

forcing nonnegativity, orthogonality, smoothness, and

sparseness for the spatial signatures and a smooth Lasso-

type constraint for the lag signature. In other words, these

constraints tend to estimate smooth patches of voxels on
the cortex. Orthogonality and nonnegativity constraints

guarantee that spatial factors can have only one nonneg-

ative element in each row which can be interpreted as the

cluster centroids [104], [105]. In this way, the connected

spatial regions are confined to be nonoverlapping patches.

This model is the generalization of clustering in which

connectivity tensor is decomposed into sum of rank one

triclusters [106].
The atomic decomposition of the 3-D connectivity

tensor for the model of (17) favors a parsimonious model

where the number of parameters to be estimated is

ð2ICx þ IlagÞR, with R being the model order of PARAFAC.

The M–P diagram is shown in Fig. 9.

For the application of the GC–PARAFAC on the fMRI

data set analyzed in this section, a time period of 500 ms

corresponding to five time frame lags was selected as the
temporal factor. A graph Laplacian matrix is used as the

smoother matrix L in (17). The model order of PARAFAC

was set to 3. Fig. 10(c) shows the existence of strong

bottom–up and weak top–down connections between VC,

PCC, M, and S. There is also lateral information flow from

left to right visual areas.

We wish to note that the work in this section was

encouraged by the tensor formulation of the state–space
model set out in [96]. However, this is, to our knowledge,

the first time the estimation of the well-known MAR

model has been posed as a tensor regression problem. Al-

though this formulation of MAR as a tensor problem is

quite obvious, clearly stating the connection between MAR

formulations and tensor models may help the introduction

of concepts that are popular in multidimensional analysis

for the analysis of the autoregressive processes. Two
techniques immediately come to mind.

• As we have just shown, various tensor decomposi-

tions may aid in the analysis of the autoregressive

coefficient tensor, of which PARAFAC is just the

simplest. It can easily be seen that any of the va-

rious tensor decompositions can be applied with

advantage to provide new insights into analyzing

influence between time series [107], [108].
• In addition to the regularization of the signatures

of the connectivity tensor that we have employed,

different regularizations of the connectivity ten-

sor, for example, the multiway nuclear norm [109],

[110], may be employed to improve algorithms and

interpretability.

VI. TENSOR EEG/fMRI FUSION

As reviewed in [23], symmetrical fusion of EEG/fMRI is an

‘‘equal opportunity’’ combination of modalities in which

the relative influence of each modality to the final solution

is not specified a priori but rather selected by the data.

Fusion can be of two types: model driven and data driven.

We will concentrate on data-driven approaches as an

extension of the matrix-based approaches of Section III-C.
We recall Fig. 1 and note that we will assume that the VFFS

h and the primary current density G are related to each

other in a simple fashion.

Fusion can be carried out by using tensor techniques

that link the two modalities along a common dimension,

usually temporal or spatial. Another possibility for multi-

subject data is to use subject identity as the common link.

Fig. 9. Granger causality as a PARAFAC decomposition. The

connectivity tensor indicating voxel-to-voxel causal effect (denoted as

tensor A in Fig. 8) applied a PARAFAC decomposition of order R into

three component matrices:Mr for receiver nodes,Ms for sender nodes,

and T for temporal lags. For the sake of interpretation, multiple priors

are used for the estimation of components: sparsity, smoothness,

orthogonality for spatial factors, and sparsity and smoothness for

temporal lags. Since the connectivity tensor may take negative values,

the temporal factor is kept to be real valued with the purpose of sign

convention.
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In this section, we will give three examples of fusion: EEG/

fMRI along the temporal domain, EEG/DTI along the

subject domain, and EEG/fMRI along the spatial domain.

We now explain these examples.

A. Multiway Partial Least Squares (N–PLS)
Multiway partial least squares is a tensor-based method

in which both dependent and independent variables con-

stituted as tensors are decomposed simultaneously, while

the signatures or factors of the shared dimension are

required to have maximal covariance [111].

Tensor PLS has been extended by using kernel methods
and Tucker decomposition to model the nonlinear rela-

tions between two tensors [112]. For a review on N–PLS,

see [113].

In [45], to find the BOLD correlates of EEG rhythms,

the time-varying EEG spectrum ST is decomposed into

spatial MV, temporal TV, and spectral FV signatures, and

the fMRI data matrix B is decomposed into spatial MB

and temporal TB signatures such that temporal factors TV

and TB will have the maximum covariance. We therefore

set the regression model between temporal signatures as

TB ¼ TVCþ ETB

s.t. ST ¼ ½½MV;TV;FV		 and B ¼ ½½MB;TB		: (18)

Source localization is performed on the corresponding

spatial signatures of EEG ðMVÞ to find the generators of

each component. Then, the source signatures of EEG
denoted by MG are estimated through the forward model

defined by

MV ¼ KMG þEMV
: (19)

The M–P diagram of this type analysis is shown in Fig. 11.

Fig. 10. Granger causality on real data. The data corpus described in Section V was used for analyzing brain connectivity by means of

different techniques, which offer comparable results. The arrows denote directional dominant flows of Granger causality between the

visual ðVÞ, parietal ðPPCÞ, premotor ðPreMÞ, somatosensory ðSÞ, and motor ðMÞ cortex. (a) The original results were published in [94]

and extracted from [94, Fig. 2]. This is the dominant information flow calculated from the difference between two unidirectional Granger

estimates among the ROIs. Only connections that have a p-value�0.05 are shown. (b) Results using the t-product technique described in Section V

make the connectivity analysis more valuable revealing the bidirectional and interhemispheric interaction between ROIs. A major interaction was

found on the left hemisphere which could be related to the right-handed condition of the subject. (c) The resulting three spatial atoms of the

connectivity tensor retrieved by the GC analysis with PARAFAC decomposition. Each atom of receiver ðMrÞ and sender signatures ðMsÞ is

grouped according to ROIs and the sum of each ROI is taken. Connectivity maps are generated for each atom by using directed arrows that are

pointed from the cortical regions of senders which have a value greater than zero to positively active regions of the corresponding receiver

signature. The temporal atoms, encoded in matrix T, showed an ascending connectivity influence, peaking at the first lag (100 ms) and slowly

decaying afterwards. Note that in all of these results there is a predominance in causal directionality emerging from the V and PCC cortex to the

rest of the areas. Magnitude of the connectivity is symbolized by the color bar on the right of the figure.
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This method was applied on the resting state EEG/fMRI
data of a single subject originally collected in [114]. Since

this has been a well-studied data set, we will only briefly

mention the results that can be found in detail in [45].

The time-varying EEG spectra ST 2 RIE�IT��IF� is

estimated for IE ¼ 16 channels in the frequency range of

0.5–50 Hz for IF� ¼ 124 frequency points and for IT� ¼ 105

time points. fMRI data are acquired in six adjacent slices

that cut through occipital lobe and thalamus.
The N–PLS analysis described in (18) is applied by

maximizing the covariance between temporal signatures.

The scatterplot of the identified atoms shows this corre-

spondence. Both topographic and source spatial signatures

of EEG and spatial signature of fMRI are shown in Fig. 12.

Three atoms were extracted exhibiting spectral peaks

in the alpha (�), theta (	), and gamma (�) range of EEG.

There was a significant covariance between EEG and fMRI
components only for � and 	, which are the only ones we

will comment on. Note in Fig. 12 that both the scalp and

source topographies are clearly delimitated as being in the

occipital region ð�Þ and the frontal lobes ð	Þ. The 	 atom

showed frontal negative activity, meaning that the

increased BOLD signal corresponds to decreased spectral

activity. Note that the spatial signature of the � atom is

positive for the thalamus and negative for the visual cortex.
These negative associations between BOLD and EEG activity

in cortex have been interpreted as due to desynchronization

of neural activity with greater thalamo–cortical input; a

hypothesis that has received support with a large scale

neural model described in [23]. In addition, it is shown in

[43] that � is suppressed during mental calculation while

the opposite is true for 	.

Identifying the coupling between EEG rhythms and
resting state fMRI is a topic of current interest. An ex-

ample for this type of work is [115]. Thus, it seems that

tensor methods could be of use for the study of these

interrelated phenomena.

A recent application of N–PLS to a different pair of

modalities was to the joint decomposition of EEG and DTI

functional anisotropy (FA). This was carried out in order to

explore the neuroanatomical determinants of the inter-
individual variability of the peak frequency of the EEG

scalp alpha rhythm (8–12 Hz). Here the common

dimension for both modalities was subject identification

with an N of 200.

The data for each modality were encoded by an array

with the common ‘‘subject dimension.’’ The first modality

is related to white matter architecture, as measured by

DTI–FA. The voxels of the FA images in which the white
matter probability is lower than 0.5 and FA is below 0.1

were masked out, leaving IWm¼24 764 voxels. The masked

FA images were vectorized in rows and concatenated over

subject dimension IW ¼ 200 to build a 2-D matrix FA 2
ZIW�IWm . Since FA 2 ½0; 1	, they were logit-transformed to

approximate normal distribution. The second modality is

EEG scalp spectrum estimate, organized in a 3-D array

SS 2 RIE�IW�IF� , where IE ¼ 76 is the number of channels
(a subset of EEG channels of the 10–20 system) and

IF� ¼ 58 is the number of frequencies in the range of 0.39–

29.68 Hz. For the details on the MRI and EEG acquisition

and preprocessing, see [116]. Here both arrays were scaled

and their grand mean subtracted. Inverse source localiza-

tion was performed on the scalp spatial signatures of EEG

using LORETA and MNI-based head models.

Fig. 11. The M–P diagram for N–PLS. EEG data ST is decomposed using an R order PARAFAC into temporal ðTVÞ, spectral ðFVÞ, and spatial ðMVÞ
atoms, the latter of which is complemented by the source localization performed via the lead field matrixK, resulting in a spatial cortical atomMG.

A similar R order PARAFAC decomposition is done on the fMRI data B, with temporal ðTBÞ and spatial ðMBÞ atoms in a way that covariance of

temporal factors TV;TB is maximized via matrix Q.
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For the correlation of EEG and FA data, N–PLS is used

in which the covariance between subject signatures is

maximized. We determined that three atoms were ade-

quate for the description of the EEG data set. Fig. 13 shows
the spectral signature FV, the spatial signature MV, and

inverse source constructions MG of the atoms obtained

from the N–PLS.

The spectral and spatial signatures associated to the

atoms allowed us to identify them as follows.

1) An atom with a spectrum dominated by ‘‘slow wave

activity,’’ with essentially a 1=f decay. Its distribu-

tion was frontal. This atom might correspond with
the EEG process identified as the ‘‘X process’’

described in [117] and [118].

2) An ‘‘alpha’’ ð�Þ atom with a spectral peak very

similar to those shown for other in Figs. 6 and 12.

Its localization was occipital, as expected.

3) An ‘‘alpha contrast’’ atom, with a spectrum that

resembles the derivative of that � atom, also with

an occipital topography.

It is interesting that the first two components are similar

to those described for the X� � model in [117] and [118],

which was obtained by individual parameterized spectral

models for EEG of a different set of 211 normal subjects.
The alpha contrast atom seems to reflect the individual-

to-individual fluctuations of the peak alpha frequency

across the sample. Interestingly, the subject signatures of

both modalities for this atom have the highest and signi-

ficant correlation ðR ¼ 0:7701; p 
 10�8Þ, suggesting that

white matter architecture indeed is correlated with the

interindividual variation of the alpha rhythm. The spatial

signature of the FA data set MFA for this atom, shown in
Fig. 13, is loaded on the major tracts, especially thalamo–

cortical, in accordance with the results in [116]. This type of

result is important in order to test models of the origin of

the alpha rhythm.

B. Coupled Matrix-Tensor Factorization (CMTF)
We propose a new data fusion framework based on a

joint decomposition of EEG and fMRI along the common

Fig. 12. Multiway partial least squares results of EEG/fMRI fusion. Topographic maps of EEG ðMVÞ and the corresponding source maps of

EEG ðMGÞ and spatial signature of fMRI ðMBÞ are shown in columns. For all spatial maps, red color indicates positive values and blue color indicates

negative values. Scatter plot of the fMRI temporal signatures ðTBÞ against EEG temporal signatures ðTVÞ is demonstrated for three atoms.

Spectral signature of EEG ðFVÞ is also shown. Signatures are named as alpha (a), theta (q), and gamma (g) due to the resemblance of their

spectral characteristics to EEG rhythms, as revealed in the plot of the spectral signature of EEG. The EEG spatial signature shows activation

in occipital regions for alpha, frontal regions for theta, and pario-temporal regions for gamma atoms. On the other hand, for alpha atom,

the fMRI spatial signature shows negative activation in occipital and superior temporal regions and positive activation in the thalamus

and insula. Theta atom of the fMRI spatial signature shows negative activation in anterior cingulate and occipital regions. Gamma atom of

the fMRI spatial signature shows similar activity with the alpha atom. Scatter plot of the fMRI temporal signature against the EEG temporal

signature significantly revealed positive correlation in the alpha atom. Correlation of these signatures for theta and gamma atoms is found

insignificant. The EEG spectral signature showed three distinct peaks at alpha, theta, and gamma frequencies. Note the topographically

distinct pattern of relations BOLD signals and spectral components that indicates stable relations between fMRI, resting state components,

and EEG oscillations. The figure is adapted from [45].
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spatial profile. We extend the matrix-based EEG/fMRI fu-
sion in (7) to coupled tensor decompositions of the EEG

tensor ST and the fMRI data matrix B. In Section IV-B, we

showed that source signatures of EEG can be identified

from ST by using PARAFAC. The EEG tensor ST 2
RIE�IT��IF� is decomposed into source spatial MG, tempo-

ral TV, and spectral FV signatures, and the fMRI data

matrix B 2 RICx�IT� is decomposed into spatial MB and

temporal TB signatures, in which source spatial signatures
are coupled during decomposition.

Earlier fusion algorithms were predicated on the idea

that the support of the EEG active regions had a complete

coincidence with that of the fMRI. Unlike conventional

CMTF algorithms in which the common dimension is

considered to be completely coupled, we distinguish also a

discriminative subspace [119] where the signatures of both

modalities are not overlapping. This enables us to deal with
the cases in which EEG and fMRI sources may have a spatial

mismatch [120]. Coupled and uncoupled spatial profiles are

obtained for each modality.

Assume that Meeg is the source spatial factor of ST and

Mfmri is the spatial factor of B, then in the proposed

framework these factors will be: Meeg ¼MCjfRC jRGgMG

and Mfmri ¼MCjfRC jRBgMB where subscript C is for the

common part and subscript GðBÞ is for the discriminant

factor of EEG (fMRI). RC is the number of common atoms,

RB is the number of discriminative atoms of fMRI, and RG is

the number of discriminative atoms of EEG. In this way,

different model orders can be assigned to the decom-

position of ST and B as long as the number of common

components is kept the same, i.e., the column number
of MC.

Modality-specific and coupled signatures are esti-

mated by

M̂C; M̂G; T̂V; F̂V; M̂B; T̂B

� �
¼ arg min

MC;MG;TV;FV;MB;TB

� 1

2
ST � K MCjfRC jRGgMG

� �
;TV;FV

h ih i��� ���2

2

�

þ � 1

2
B� MCjfRC jRBgMB

� �
;TB

h ih i��� ���2

2

�
: (20)

Fig. 13. Multiway partial least squares for DTI–FA and EEG fusion. Spectral signatures of EEG ðFVÞ and the spatial signature of FA ðMFAÞ are

shown. Both scalp distribution ðMVÞ and its corresponding brain electrical tomography of the derivation signatures ðMGÞ are demonstrated under

the corresponding spectral signatures. The frequency signatures of the three EEG atoms show three distinct patterns. The first one is dominated

by a low 1=f behavior. We will therefore identify this signature as the ‘‘slow wave signature.’’ The second one is a pure alpha peak. We will

therefore identify this atom as the ‘‘alpha signature.’’ The most interesting signature, the third one, seems to be a contrast between low and high

alpha. We will therefore identify this signature as the ‘‘alpha contrast signature.’’ The slow wave signature shows a frontal source near the theta

signature described in [45]. As clearly seen, the spectral alpha signature colocalizes with the source of the alpha rhythm, as described in [45].

The new alpha contrast signature has a localization very similar to the alpha signature. We only showed the corresponding spatial signature

of the FA to alpha contrast signature. Major tracts, especially talamo–cortical, are enhanced in this signature in accordance with [116].
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Furthermore, we impose nonnegativity, orthogonality,

smoothness, and sparsity constraints on spatial factors to

ensure uniqueness. The corresponding M–P diagram is

shown in Fig. 14, and new parameters with constraints are
found by

M̂C; M̂G; T̂V; F̂V; M̂B; T̂B

� �
¼ arg min

MC;MG;TV;FV;MB;TB

� 1

2
ST � K MCjfRC jRGgMG

� �
;TV;FV

h ih i��� ���2

2

�

þ � 1

2
B� MCjfRC jRBgMB

� �
;TB

h ih i��� ���2

2

þ�1kMCk1 þ
1

2
�2kLMCk2 þ �3kMGk1

þ 1

2
�4kLMGk2 þ �5kMBk1 þ

1

2
�6kLMBk2

�

s.t. MCjfRC jRGgMG

� �T

MCjfRC jRGgMG

� �
¼ I;

MCjfRC jRBgMB

� �T

MCjfRC jRBgMB

� �
¼ I;

MC � 0; MG � 0; MB � 0; FV � 0: (21)

The model in (21) can also be interpreted as the esti-

mation of neuronal activity through two sources of infor-

mation with multiple priors. The � parameter takes into

account the scale difference between EEG and fMRI.

We applied the proposed algorithm on a simultaneously

recorded EEG–fMRI data [121]. In this experiment,
flashing light stimuli in 13 frequencies in the range of 6–

42 Hz were presented in a block design paradigm. For this

analysis, data segments in the resting periods of the 6-Hz

stimulation session of one subject are used. Further infor-

mation about the acquisition and preprocessing of the data

can be found in [121].

The EEG was filtered with a high-pass filter with a

cutoff frequency at 60 Hz and segmented in 2981-ms
duration segments to match the repetition time of fMRI

(TR ¼ 2981 ms). The Thomson multitaper method was

used to calculate the power spectrum of each segment

[122]. We extracted the resting periods of the whole

experiment and used them for further analysis. This

resulted in an EEG tensor ST 2 RIE�IT��IF� : with IE ¼ 31

channels, IT� ¼ 38 time points, and IF� ¼ 58 frequency

points. The lead field was computed using a realistic head
model with three homogenous isotropic conductor bound-

aries based on the MNI brain atlas.

The fMRI data were normalized to standard MNI space.

The voxels on the cortical grid of EEG source space were

extracted. Grand mean scaling over the session for the

voxels inside the mesh was performed, and BOLD values

were normalized to obtain a percentage change. In the end,

we had an fMRI data matrix B 2 RICx�IT� with ICx ¼ 5124

Fig. 14. Coupled matrix-tensor factorization. (a) M–P diagram for the coupled matrix-tensor factorization for EEG/fMRI fusion. The EEG tensorST

and the fMRI matrix B are decomposed simultaneously on common and discriminant spatial subspaces to encompass different physiological

sources. The spatial signature M involves common component MC and two uncommon MG;MB components. The fMRI spatial signature is

ðMCjfRC jRBgMBÞ and the temporal signature is TB. For EEG, the spatial signature of the generators is ðMCjfRC jRGgMGÞ, the temporal signature is TV,

and the spectral signature is FV. By incorporating the lead field matrix K, the model extends the decomposition of EEG to source space.

M–P diagrams of EEG and fMRI are separated for a better visualization. (b) Explicit representation for common and discriminative subspaces.

Note that the common subspace is represented with MC.
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cortical grid points and IT� ¼ 38 time points. In total, three
atoms were extracted from constrained CMTF model: one

for the common atom, one for the individual EEG atom,

and one for the individual fMRI atom.

Fig. 15(I) shows the spatial, temporal, and spectral

signatures of the common atom. Since the two data sets

were coupled only in spatial dimension, two temporal

signatures for each modality were obtainedVbut these

show only irregular activity and will not be described
further.

The common spatial signature MC shows a clear

activation in occipital areas with an EEG spectral

signature peaking at 10 Hz, which identifies it with the

� activity found by other techniques and shown in Figs. 6,

12, and 13, in line with [45]. Pearson’s correlation

coefficient between the temporal signatures of EEG and

fMRI of this common component is found to be �0.3346
with a p-value of 0.04, which is not corrected for serial

correlations.

The discriminant fMRI atom is shown in Fig. 15(II).

The spatial signature showed activation mostly in inferior

frontal areas of left and right hemispheres, inferior

parietal and middle temporal areas of the right hemi-

sphere, precuneus and caudate. When the model order of

the fMRI is increased these regions are distributed on
separate atoms (results not shown). Therefore, it seems

that the discriminant atom of fMRI might be the result of

the interaction of several of the reported resting state

networks.

The discriminant EEG atom shows a 1=f decay in the

spectral signature with diffused activations in the inferior

and middle frontal areas, as well as the temporal areas of

both hemispheres, which identify it with the X EEG process
mentioned in Section VI-A [see Fig. 15(III)(a)–(b)].

It seems interesting that the two last techniques,

one applied to EEG/DTI data and the other to EEG/

fMRI data, seem to support the X� � model proposed

in [117].

In this section, we presented a PARAFAC-based

CMTF method for the decomposition of EEG and fMRI

on the common and discriminative subspaces by consid-
ering the discrepancy in the neural origins. CMTF is not

limited to PARAFAC decomposition and can be modified

by using other decomposition methods, e.g., the Tucker

method, to account for the interactions between the signa-

tures [39], [123], [124]. CMTF differs from the linked

ICA [125] in the sense that statistical independence of

the spatial signatures is not required and common pro-

files can be divided into two subspaces. Recently, scala-
ble and fast algorithms for CMTF have been developed

and applied on the decomposition of fMRI and behav-

ioral data [126].

C. Other Fields of Application of Tensor Fusion
By integrating different measurements of a phenome-

non we can overcome the lack of precision they offer, pro-

viding a complementary vision of things we cannot measure
directly.

Many examples of multimodal data integration of dif-

ferent fields are available, such as dynamic clustering by

the combination of text and image information on the

web [1]; speech recognition using complementary hand

gesture [127]; multisensory image fusion, that is, merging

relevant information proceeding from many images that

comes from multiple sensors [128]; and human emotion
recognition by exploring data arising from speech, face

image, and thermal image [129]. Multimodal fusion for

biological data is found in [3] for integration of gene

expression data with text information and in [130] for

metabolomics.

VII. NONLINEAR TENSOR MODELS

We have already mentioned, in passing, nonlinear exten-

sions of tensor methods. Here we comment on a possible

tensor formulation for neural mass models.

There are several reasons to consider nonlinear equa-

tions in EEG and fMRI modeling. As emphasized in [80],
all dynamic imaging modalities must be cast into a state–

space form, with both dynamical equations that model the

evolution of brain dynamics (which is what we are inter-

ested in) and observation equations that explain how these

brain dynamics are reflected as time series measured by

the different imaging technologies. In particular, we have

the following.

• Brain dynamics at the mesoscopic level that we are
dealing with are best represented by neural mass

modeling [62] or neural field modeling [131].

• The observation equation for the fMRI is highly

nonlinear [18], [132].

• Though the EEG forward model is linear with the

quasi-static approximation [16], an assumption we

will follow here, there is some doubt that this

condition might not hold for high-frequency acti-
vity. If this is so, even this forward model will be

nonlinear.

In order to make ideas concrete, we will illustrate ideas

with the state–space formulation of the EEG forward

problem with a neural mass model dynamical equation.

This is a slight extension of (1)

vt ¼Kgt þ ev;t ¼ KOxt þ ev;t

_g ¼ fðx; QÞ þ E

where vt is the vector of EEG measurements at time t, x
are the complete state–space variables that characterize

the neural dynamics, K is the lead field, and O is an

observation matrix that transforms state variables of the

neural mass model x to current density g. E denotes white

noise. The function f is nonlinear. In symbol Q, we lump
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Fig. 15. Coupled matrix-tensor factorization on the EEG–fMRI data. (I) Common atom extracted from CMTF. (a) and (b) The spatial signature ðMCÞ
shows the distribution of activation of the spatial signature on the lateral and medial views of left and right hemispheres. Activity is localized

in the occipital cortex. (c) The fMRI temporal signature of the common atom [TBð:; 1Þ]. (d) The EEG temporal signature of the common atom

[TVð:; 1Þ]. (e) The EEG spectral signature of the common atom [FVð:; 1Þ]. The 10-Hz peak in the EEG spectral signature indicates an alpha band

activity. (II) Discriminant fMRI atom. (a) and ;(b) The spatial signature of the discriminant fMRI atom [MBð:; 2Þ] projected on the lateral and medial

views of the left and right hemispheres. (c) The temporal course of the discriminant fMRI atom [TBð:; 2Þ]. fMRI activity is diffused mostly in the

frontal and temporal regions. (III) Discriminant EEG atom. (a) and (b) The spatial signature of the discriminant EEG atom projected on the lateral

and medial views of the left and right hemispheres [MGð:; 2Þ]. A diffused activity is revealed. (c) The temporal signature [TVð:; 2Þ]. (d) The spectral

signature [FVð:; 2Þ]. Energy of the spectral signature decreases toward higher frequencies showing the 
 process. Spatial distribution is diffused

over temporal and inferior frontal areas. All of the signatures are normalized to the unit norm.
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together all the parameters of neural masses and their
connectivity. Estimation of x and Q is a classic continuous

to discrete filtering problem that can be dealt with by

applying Kalman filtering [62] or with the variational

techniques described by [133].

For the purpose of illustration suppose that we have the

observation equation equal to the identity function, i.e.,

the dynamical equations are the observed variables. Then,

our purpose will be to estimate Q from the following sto-
chastic differential equations model:

_x ¼ fðx; QÞ þ E:

In [134], it was shown that this equation may be dis-

cretized with a stochastic version of the exponential Euler
integrator as

xtþ�t ¼ JðtÞ�1 eJðtÞ�t � I
� �

fðxt; QÞ þ !t

where JðtÞ is the Jacobian of function f at time t, �t is the

time step of integration, and !t is a noise term defined in

the cited reference.4 In some circumstances, this equation

can be further simplified to

xtþ�t ¼ Bðxt; QÞxt þ !t (22)

which is simply a nonlinear regression. This naturally leads

to a tensor formation.

For multiple instants t ¼ 1; . . . ; IT , concatenation of

the vector xtþ�t is equal to the matrix X 2 RIS�IT defined
as X ¼ ½xtþ�t	f1j���j1gt¼1:IT

. B’s are concatenated to obtain the

parameter tensor B 2 RIS�IS�IT�I� as B ¼ ½B	f1j���j1gt¼1:IT
. Here

I� ¼ 1 is used for the time step. Finally, the past values of

the state variables are X 2 RIS�IT�I� defined by X ¼
½xt	f1j���j1gt¼1:IT

. The tensor formulation of (22) is expressed by

the tensor convolution as follows:

Xðis; itÞ ¼
X1

p¼1

Bðis; is; i� ; pÞ �fis;i�g X ðis; i� ; it � pÞ

X ¼B fITg X þ �

which is of the type of regression problem we have been
dealing with, albeit of a highly nonlinear character. Note

that the convolution here contains contraction over two

modes.

It is interesting to note that integration schemes of the
type just described have also been extended to equations

with multiplicative noise, to delay differential equations,

and to partial differential stochastic equations. Stochastic

partial differential equations have been the subject of re-

cent work with tensor representations that are quite pro-

mising [135], [136].

VIII . ALGORITHMS AND SOFTWARE FOR
TENSOR-BASED PROBLEMS

Throughout this review, we have concentrated on the

graphical properties of tensor diagrams and on the mod-

eling advantages of tensor models. In this section, we focus

on a more practical subject, that is, the methods and algo-

rithms used for fitting such models. We explain the choices

we have made motivated by the main numerical difficul-
ties. We then describe major software packages that are

available to implement tensor models.

A. Optimization of the Model Functional
Though there are many techniques for tensor network

decomposition, we present only the PARAFAC decom-

position. Besides clarity of interpretation, a major reason

for this selection is the ease with which it may be aug-
mented with multiple penalizers that enhance interpret-

ability and numerical stability. In fact, the alternating least

squares algorithm (ALS), often used to estimate the

PARAFAC model, is the easily implementable and flexible

algorithm. ALS is an iterative algorithm in which, at each

step, only one signature is estimated, considering all others

to be fixed. Since each step is a linear regression, penaliza-

tion methods can be incorporated naturally. ALS has been
improved with line search at each step [137], though it can

converge slowly, especially when the components are

collinear.

Other methods such as gradient-based optimization

methods [138] and generalized Schur decomposition [139]

have been developed as an alternative to overcome the

limitations of ALS. In addition, probabilistic methods for

general tensor factorizations are presented in [140] and
[141]. These are alternatives to the algorithmic choices we

have made.

Our approach in this paper has been to use a

modification of ALS, the hierarchical alternating least

squares (HALS) algorithm in which, at each step of ALS,

only one of the components of a factor is estimated, fixing

other signatures of all atoms [142]. In particular, we have

implemented a gradient-based HALS for the estimation of
parameters for which orthogonality and nonnegativity are

required: orthogonality can easily be imposed columnwise

(refer to [143] for details).

In addition, since we use a combination of penalties

with different forms of regression and decomposition,

we separate our optimization problem into its additive

components and combine the solutions by means of the

4As discussed in the cited paper, it should be noted that this is not the
formula to be used for actual calculations due to numerical inaccuracy.
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alternating direction method of multipliers (ADMM)
[144]–[146].

The distributed nature of ADMM is also especially

geared to solve very large problems in big data since mul-

tiple penalization problems may merged into a single global

optimization which is solved piecewise. An example of this

splitting behavior of ADMM is illustrated in (14). Influence

fields may be required to be smooth both in incoming (re-

ceiver) and outgoing (emitter) directions with a different
profile. An analytical solution with these two priors is not

possible due to the penalization on two of the dimensions of

the connectivity tensor. ADMM shows its strength by

splitting this optimization into two tractable subproblems.

A similar approach can be adopted in (17) and (21) for

assigning multiple priors on components of a PARAFAC

decomposition.

Since estimation of the factor matrices of the
PARAFAC decomposition is a nonconvex optimization

problem, an algorithm may reach different solutions with

different starting points. In the ALS method, the objective

function decreases at each step of the algorithm, but there

is no guarantee that global minimum may be reached. We

address the problem heuristically by means of the follow-

ing approaches:

• running the algorithm with multiple random initial
values;

• alternatively using, as a starting point, the eigen-

vectors of the unfolded tensor to be fitted [147];

• using a combination of the previous two schemes;

• estimating all runs and retaining the one with the

best fit;

• in the case of models with nonnegative factor ma-

trices, using a modified nonnegative double singu-
lar value decomposition proposed in [148] for the

initial eigenanalysis;

• GC analysis with PARAFAC requires a decomposi-

tion at each step of the ADMM algorithm; in this

analysis, a ‘‘warm start’’ is used with initial values

for the decomposition set as the factor estimates

from the previous step.

However, these techniques do not guarantee conver-
gence to the global minima; this is an area of increased

current research [149], [150]. A definitive solution might

be obtained by approximating the models here with alter-

native convex ones.

B. Selection of Model Parameters
Multiple penalization methods entail tuning of a large

amount of hyperparameters, with scant knowledge about
the actual effect of parameter changes.

We have adopted the approach to carry out parameter

selection based on the Bayesian information criterion

(BIC). This requires the estimation of the degrees of free-

dom (DoF), which reflects model complexity, for a given

set of parameters. While general formulations of DoF exist

[151] and explicit formulas are available for many of the

most common regularization problems [152], [153], the
complicated nature (e.g., nondifferentiability) of some re-

gularizers makes it very difficult to find an accurate math-

ematical expression. For this means, general purpose

nonparametric methods have been developed such as in

[154]. DoF for tensor problems are calculated according to

the penalization function applied on each signature, e.g.,

for a smooth Lasso type of penalization, the DoF formulated

by [152] is used.
The hyperparameters chosen are those that minimize

BIC, a search over a suitable grid being carried out. One of

the most extreme cases in terms of the number of

hyperparameters is the CMTF. This is the CMTF objective

function in (21) with ten hyperparameters: six for smooth

Lasso-type penalization, three for the orthogonality

constraints on spatial signatures, and one for the variance

difference between two modalities. On the one hand,
hyperparameters for orthogonality constraints are deter-

mined as described in [143]. The rest of the parameters are

found by minimizing the BIC formulations spelled out in

the Appendix.

C. Selection of the Number of Atoms
PARAFAC-type decompositions require the determina-

tion of the number of components or atoms, which is also
known as the tensor rank. There is not any straightforward

algorithm to determine the rank of a specific given tensor;

in fact, this problem is NP-hard [155]. Furthermore, best

rank approximation of a tensor may not exist [156]. Never-

theless, practical methods and heuristics have been de-

veloped in order to automatically determine the number of

components in the PARAFAC model such as Corcondia

[157], [158]. For the determination of the model order of
PARAFAC-based models defined in this paper, we used

Corcondia and evaluated the explained variance for a dif-

ferent number of components. For the selection of the

number of common components ðRCÞ of the CMTF model,

a heuristic approach is applied by decomposing two data

sets independently. After deciding for an initial value of RC

based on spatial signatures, several model orders are tested

and the best model is selected according to the maximum
fit and observation of the factors. We also checked the

collinearity of the factors and the convergence of the

algorithm.

D. Software
There are available software sources for tensor decom-

positions and tensor operations. The MATLAB Tensor

Toolbox offers classes for tensor operations and has several
tensor decomposition algorithms [159]. The N-Way Tool-

box supports constrained decompositions and N–PLS

[160]. CuBatch is a MATLAB-based software for both

tensor and classical data analysis, and validation tools pro-

viding graphical outputs [161]. Tensorlab provides sev-

eral decomposition algorithms, including structured data

fusion of tensors and complex optimization tools [162].
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TDALAB and Tensorbox have a graphical user interface
supporting several tensor decomposition types [163],

[164]. The MATLAB CMTF Toolbox provides constrained

and unconstrained algorithms for the joint decomposition

of tensors with different orders by using PARAFAC [165].

ERPWAVELAB is a MATLAB-based toolbox for multi-

channel time/frequency analysis of EEG and MEG by

various tensor decompositions, including PARAFAC,

shifted PARAFAC, and Tucker [166]. The TT Toolbox
includes functions for basic operations with tensor-train

tensors that are the low-parametric representations of

high-dimensional tensors [167]. Python implementation of

the TT Toolbox is also available [168]. The Tensor Tool-

box in Python includes the decomposition of tensors in

tensor-train format and spectral tensor-train format [169].

For the construction and manipulation of tensors in the

hierarchical Tucker format, the Hierarchical Tucker
Toolbox is available [170]. The TensorReg Toolbox for

MATLAB provides sparse PARAFAC and Tucker regres-

sion functions [171].

Many of the algorithms developed by the authors can be

found at http://www.research.cneuro.cu/categories/tensor

and http://neurosignal.boun.edu.tr/software/tensor.

IX. CONCLUSION

In this paper, we have presented a general framework for

tensor analysis of single modality model inversion and

multimodal data fusion. We have introduced the Markov–

Penrose (M–P) diagrams to unify graphical tensor

notations with that for directed acyclic graphical (DAG)

description of Bayesian statistical models. Using these

diagrams, different approaches for the solution of inverse
problems of EEG and fMRI have been described as well as

models for their fusion in common domains. Additionally,

we have proposed a tensor MAR for modeling the causal

brain networks and have reviewed symmetrical fusion

methods with the proposed notation. We have reviewed

algorithms and software packages for implementation of

tensor-based problems.

EEG and fMRI are mediated by different physiological
processes from neural activation leading to differences in

their spatial and temporal resolutions. Biophysical models

have been addressed to fuse electrical and metabolic sig-

nals in mesoscale. Due to the indirect nature of these sig-

nals, inverse problems for each modality should be solved

to cover the interactions between modalities which are

intrinsically ill-posed in their nature. The examples shown

with simulations and real data support the usefulness of
this type of approach.

As the amount of neuroimaging data increases

tremendously, methods dealing with this problem should

be developed. Statistical methods based on tensors

embrace the high dimensionality of the multimodal data.

The M–P tensor notation based on DAGs and Penrose

diagrams, which unify mathematical models for connec-

tivity and multimodal fusion, may play a heuristic role in
suggesting new ways to analyze data, not only in

neuroscience, but possibly in other fields. h

APPENDIX
We will use the BIC formula given as

BIC ¼ logð�̂2Þ þ df
logðNÞ

N

where N is the number of observations, df is the DoF, and

�̂2 is the error variance estimated from the residual sum of

squares (RSS) as �̂2 ¼ RSS=N.
BIC formulations for coupled and uncoupled compo-

nents of the spatial signatures are given as

BICðMCÞ

¼ log
ST � K MCjfRC jRGgMG

� �
;TV;FV

h ih i��� ���2

2

ðnV þ nBÞ

0
B@

þ
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� �
;TB

h ih i��� ���2

2

ðnV þ nBÞ

1
CA

þ dfðMCÞ logðnV þ nBÞ=ðnV þ nBÞ
BICðMGÞ

¼ log
ST � K MCjfRC jRGgMG

� �
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h ih i��� ���2

2

nV

0
B@

1
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þ dfðMVÞ logðnVÞ=nV

BICðMBÞ

¼ log
B� MCjfRC jRBgMB

� �
;TB

h ih i��� ���2

2

nB

0
B@

1
CA

þ dfðMBÞ logðnBÞ=nB:

nV and nB are the number of elements in ST and B,

respectively, and df is the DoF computed as in [152]. Hy-

perparameters �1 to �6 and � in (21) are found as the

minimum of the BIC multidimensional arrays given above.
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