
Journal of Artificial Intelligence Research 62 (2018) xx-yy Submitted 10/17; published 5/18

Lifted Relational Neural Networks:
Efficient Learning of Latent Relational Structures

Gustav Šourek souregus@fel.cvut.cz
Faculty of Electrical Engineering
Czech Technical University in Prague
Prague, Czech Republic

Vojtěch Aschenbrenner v@asch.cz
Faculty of Mathematics and Physics
Charles University
Prague, Czech Republic

Filip Železný zelezny@fel.cvut.cz
Faculty of Electrical Engineering
Czech Technical University in Prague
Prague, Czech Republic

Steven Schockaert schockaerts1@cardiff.ac.uk
School of Computer Science & Informatics
Cardiff University
Cardiff, United Kingdom

Ondřej Kuželka ondrej.kuzelka@kuleuven.be

Department of Computer Science

KU Leuven

Leuven, Belgium

Abstract

We propose a method to combine the interpretability and expressive power of first-
order logic with the effectiveness of neural network learning. In particular, we introduce
a lifted framework in which first-order rules are used to describe the structure of a given
problem setting. These rules are then used as a template for constructing a number of
neural networks, one for each training and testing example. As the different networks cor-
responding to different examples share their weights, these weights can be efficiently learned
using stochastic gradient descent. Our framework provides a flexible way for implementing
and combining a wide variety of modelling constructs. In particular, the use of first-order
logic allows for a declarative specification of latent relational structures, which can then be
efficiently discovered in a given data set using neural network learning. Experiments on 78
relational learning benchmarks clearly demonstrate the effectiveness of the framework.

1. Introduction

Lifted models, also known as templated models, have recently attracted significant attention
in areas such as statistical relational learning (Kimmig, Mihalkova, & Getoor, 2015; De
Raedt, Kersting, Natarajan, & Poole, 2016). They essentially define patterns from which
specific (ground) models can be derived. For example, a Markov logic network (MLN)
model (Richardson & Domingos, 2006) may express that friends of smokers tend to be

c©2018 AI Access Foundation. All rights reserved.

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

smokers. Such lifted patterns are typically encoded as weighted first-order formulas. To
make predictions, an MLN is combined with a set of facts about specific individuals to define
a ground Markov network; e.g. in an MLN about smokers, these facts may include examples
of people who smoke and of people who are in a friendship relation. An important advantage
of lifted models is that they can make explicit which symmetries exist in a domain, and
thus reduce the number of weights that have to be learned. Another advantage is that the
first-order formulas could be provided by domain experts, which can offer a convenient way
of guiding the learning process, although the formulas could also be learned from data, e.g.
through inductive logic programming methods (De Raedt, 2008).

In this paper, we introduce Lifted Relational Neural Networks (LRNNs), a framework
that uses lifted models for specifying feed-forward neural networks. Similar to MLNs,
LRNNs are represented as sets of weighted first-order rules. Together with a set of relational
facts, these weighted rules then define a standard (or “ground”) feed-forward neural network.
In particular, for each training or testing example, a separate ground neural network is
constructed. The structure of this network is obtained from the grounding of the first-order
rules w.r.t. the constants that appear in the example. The weights of the ground network are
determined by the weights of the first-order rules. Crucially, the weights of different ground
neurons that were constructed from the same first-order rule are tied in our framework,
similarly to how weights are shared in lifted graphical models and how weights are tied
together in convolutional neural networks. As a result, the weights of the first-order rules
can be efficiently learned using stochastic gradient descent.

There have been a few other approaches which adapt neural networks for relational
learning (Franca, Zaverucha, & Garcez, 2014; Botta, A, & Piola, 1997; Bader & Hitzler,
2005; Ramon & De Raedt, 2000; Uwents, Monfardini, Blockeel, Gori, & Scarselli, 2011).
What distinguishes LRNNs from these previous works is that, following the lifted modelling
strategy (Kimmig et al., 2015), we construct a different ground network for each example,
exploiting each example’s particular relational properties. While recursive Neural Tensor
Networks (Socher, Perelygin, Wu, Chuang, Manning, Ng, Potts, et al., 2013) follow a
similar strategy, they do so in a much more restricted setting. In particular, they use a tree
model structure which exactly follows the tree structure of each example, in a way which is
reminiscent of Recursive Auto-Associative Memories (Pollack, 1990).

Many approaches in machine learning rely on finding a latent representation of the ob-
jects of interest, e.g. by using probabilistic models, matrix factorization, or neural networks.
Neural networks and matrix factorization have proven very effective for learning latent rep-
resentations, but in their standard form, they cannot be used to find latent representations
in relational settings. Probabilistic models have also been used to find latent relational rep-
resentations, but the scalability of such methods is limited by the fact that they need to run
expensive expectation maximization (EM) algorithms (Kok & Domingos, 2007). LRNNs
allow us to combine the modelling flexibility of probabilistic models with the effectiveness
of neural network learning, to efficiently find different kinds of latent relational structures.
While there have already been several works that combine propositional or first-order logic
with neural networks (Towell, Shavlik, & Noordewier, 1990; Botta et al., 1997; Franca et al.,
2014), to the best of our knowledge, none of these existing methods is able to learn weights
of latent non-ground relational structures.

2

Lifted Relational Neural Networks

The remainder of the paper is organized as follows. The next section briefly recalls
some basic notions from first-order logic and neural networks. Section 3 formally introduces
LRNNs, and explains how the weights of an LRNN can be learned and how a ground network
can be constructed for classifying a given example. Subsequently, Section 4 illustrates some
of the modelling constructs that can be encoded using LRNNs. In Section 5 we then provide
an overview of related work. Finally, Section 6 presents our experimental evaluation, after
which we conclude the paper.

This paper extends an earlier workshop paper (Šourek, Aschenbrenner, Železný, &
Kuželka, 2015a). Since the publication of this workshop paper, a number of approaches
have been proposed that are somewhat similar in spirit to LRNNs (Rocktäschel & Riedel,
2016; Cohen, 2016). These approaches, and their differences with LRNNs, will be discussed
in Section 5.

2. Preliminaries

Firstly, we recall some basic preliminaries from first-order logic, an extension of which is
used as the representation formalism for LRNNs, and neural networks, a model of which
forms the learning part of the framework.

2.1 First-Order Logic

We consider a function-free first-order logic, in which formulas are formed in the usual
way from a set of constants, a set of variables, a set of n-ary predicates for each n ∈ N,
and the propositional connectives ∨, ∧ and ¬ (Smullyan, 1995). We will not explicitly
write quantifiers, but any variables appearing in formulas will implicitly be assumed to be
universally quantified. To avoid confusion, constant symbols will be written in lower case
(e.g. alice) while variables will be written with a capitalized first letter (e.g. Person). A
term is a constant or a variable. An atom is an n-ary predicate symbol, for some n ∈ N,
applied to a tuple of n terms (e.g. friends(X, bob)). A ground atom is an atom which only
has constants as arguments (e.g. friends(alice, bob)). A literal is an atom or the negation
of an atom; a literal is called positive if it is an atom and negative otherwise. A clause is
a disjunction of literals. A clause containing exactly one positive literal is called a definite
clause. A definite clause is sometimes also referred to as a rule, and a set of definite clauses
is sometimes called a logic program. To help interpretability, a rule h ∨ ¬b1 ∨ · · · ∨ ¬bk will
usually be written as h← b1 ∧ · · · ∧ bk, as is common in the context of logic programming.
We refer to the literal h as the head of the rule and the conjunction b1∧ · · · ∧ bk as the body.
A clause which consists of a single atom is also called a fact.

The Herbrand base of a set of first-order formulas P is the set of all ground atoms which
can be constructed using the constants and predicates that appear in this set (while re-
specting the arity of each predicate). A Herbrand interpretation of P, also called a possible
world, is a mapping that assigns a truth value to each element from P’s Herbrand base.
We say that a possible world I satisfies a ground atom F , written I |= F , if F ∈ I. The
satisfaction relation is then generalized to arbitrary ground formulas in the usual way. A
set of ground formulas is satisfiable if there exists at least one possible world in which all
formulas from the set are true; such a possible world is called a Herbrand model. Each set
of definite clauses has a unique Herbrand model that is minimal w.r.t. the subset relation,

3

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

called its least Herbrand model. The least Herbrand model of a finite set of ground definite
clauses can be constructed in a finite number of steps using the immediate-consequence op-
erator (Van Emden & Kowalski, 1976). This immediate consequence operator is a mapping
Tp from Herbrand interpretations to Herbrand interpretations, defined for a set of ground
definite clauses P as Tp(I) = {h | (h← b1∧· · ·∧bk) ∈ P, {b1, ..., bk} ⊆ I}. In other words the
operator Tp expands the current set of true atoms (i.e. the current Herbrand interpretation
I) with their immediate consequences as prescribed by the rules in P.

Now consider a set of non-ground definite clauses P. The grounding of a clause α from
P is the set of ground clauses G(α) = {αθ1, ..., αθn} where θ1, ..., θn is the set of all possible
substitutions, each mapping the variables occurring in α to constants appearing in P. Note
that if α is already ground, its grounding is a singleton. The grounding of P is given by
G(P) =

⋃
α∈P G(α). The least Herbrand model of P is then defined as the least Herbrand

model of G(P). In practice, most of the rules in the grounding G(P) will be irrelevant, as
their body can never be satisfied. The restricted grounding limits the grounding to those
rules which are “active”, i.e. whose body is satisfied in the least Herbrand model H. It is
defined by GR(P) = {hθ ← b1θ ∧ · · · ∧ bkθ | (h← b1 ∧ · · · ∧ bk) ∈ P and {hθ, b1θ, . . . , bkθ} ⊆
H}.

2.2 Artificial Neural Networks

An artificial neural network (NN) is a biologically inspired mathematical model, consisting
of interconnected processing units called neurons, each of which is associated with an acti-
vation function gi ∈ G from some predefined family of differentiable functions. The neural
network then defines a mapping f : Rm 7→ Rn of input space to target space vectors, param-
eterized by a set of weights wlj ∈ R. Following the pattern of neural interconnections, the
mapping f can be seen as a composition of activation functions gi ∈ G. For feed-forward
neural networks, the mapping f typically corresponds to a hierarchical compound of non-
linear weighted sums gi(

∑
j w

l
jgj(

∑
k w

l+1
k gk(. . .))), which can be conveniently depicted as a

weighted directed acyclic graph of neurons. By adapting the weights wij ∈ W, the model can
be trained to approximate some target function t : Rm 7→ Rn. This is typically performed
by some sort of gradient descent minimization of a given cost function cost : {W,D} 7→ R
capturing the discrepancy between f and t for some set of training samples (xd, t(xd)) ∈ D.

3. Lifted Relational Neural Networks

In this section, we formally introduce the framework of LRNNs. We define the representa-
tion language, describe the translation into neural models and how to use them for inference.
We then discuss variant semantics with the choice of activation functions and negation, and
detail the learning process.

3.1 Definition

A lifted relational neural network (LRNN) N is a set of weighted definite clauses, i.e.
a set of pairs (Ri, wi) where Ri is a definite clause and wi ∈ R. For an LRNN N , we
write N ∗ to denote the corresponding set of definite clauses, i.e. N ∗ = {C | (C,w) ∈ N}.
The grounding N of an LRNN N is defined in terms of the restricted grounding of N ∗.

4

Lifted Relational Neural Networks

Specifically, we define N = {(Cθ,w) | (C,w) ∈ N , Cθ ∈ GR(N ∗)}. As already mentioned in
the introduction, LRNNs are seen as templates for creating ground neural networks. These
networks will (among others) contain a node for each considered ground clause. Since it is
clearly beneficial to keep the networks as simple as possible, it is thus important to avoid
including any ground clauses that are not relevant (i.e. those that are not active in the least
Herbrand model). The restricted grounding of N ∗ contains exactly those clauses that are
relevant (i.e. those that are active in the Herbrand model).

Example 1 Let the LRNN N be defined as follows:

N ={(mother(C,M)← parent(C,M) ∧ female(M), 1),

(father(C,F)← parent(C,F) ∧male(F), 2),

(female(alice), 1), (parent(bob, alice), 1), (parent(eve, alice), 1)}.

The grounding N is then given by:

N ={(mother(bob, alice)← parent(bob, alice) ∧ female(alice), 1),

(mother(eve, alice)← parent(eve, alice) ∧ female(alice), 1),

(female(alice), 1), (parent(bob, alice), 1), (parent(eve, alice), 1)}.

Note that N does not contain the predicates male/1 or father/2 as they do not appear in
least Herbrand model of N .

The neural network corresponding to an LRNN N is constructed as follows.

3.1.1 Neurons

The neurons that appear in the network correspond to logical constructs, such as atoms,
facts and rules. Specifically, the network contains the following types of neurons:

• For each ground atom h occurring in N , there is a neuron Ah, called an atom neuron.

• For each ground fact (h,w) ∈ N , there is a neuron F(h,w), called a fact neuron.

• For every ground rule (cθ ← b1θ∧· · ·∧bkθ, w) ∈ N , there is a neuron R(cθ←b1θ∧···∧bkθ,w),
called a rule neuron.

• For every (possibly non-ground) rule (c← b1 ∧ · · · ∧ bk, w) ∈ N and every grounding
h = cθ of c that occurs in H, there is a neuron Aggh(c←b1∧···∧bk,w), called an aggregation
neuron.

3.1.2 Weights and connections

We now describe how the different neurons are connected, and how their outputs are defined.
Intuitively, the neural network computes for each ground atom h a truth value, which is
encoded by the output of the atom neuron Ah. To obtain these truth values, the network

5

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

Type of neuron Notation Output

Atom neuron Ah g∨(o(F(h,w)), o(Agghα1
), ..., o(Agghαm

))

Fact neuron F(h,w) w

Rule neuron R(cθ←b1θ∧...∧bkθ,w) g∧(o(Ab1θ), ..., o(Ab1θ))

Aggregation neuron Aggh(c←b1∧···∧bk,w) w · g∗(o(Rα1), ..., o(Rαm))

Table 1: Overview of the process of constructing a neural network from a given LRNN N .

propagates values in a way which closely mimics the immediate consequence operator1. In
particular, when using the immediate consequence operator, there are two ways in which
h can become true: if h corresponds to a fact, or if h is the head of a rule whose body is
already satisfied. Similarly, the inputs of the atom neuron Ah consist of the fact neurons
of the form F(h,w) and aggregation neurons of the form Aggh(c←b1∧···∧bk,w). The output of

an atom neuron with inputs i1, ..., im is given by g∨(i1, ..., im), where g∨ is an activation
function that maps the inputs to a real-valued output. Different choices are possible for g∨,
as will be discussed in detail in Section 3.2.

A fact neuron F(h,w) has no input and has the value w as its output. The output of the

aggregation neuron Aggh(c←b1∧···∧bk,w) intuitively expresses how strongly h can be derived
using the rule c ← b1 ∧ · · · ∧ bk. Note that there can be several groundings of the rule
that have the atom h in the head, when the body of the rule contains variables that do
not appear in the head. This is why we need to distinguish rule neurons, which corre-
spond to individual groundings of rules, from aggregation neurons, which group together
all groundings of a rule that have the same head. Specifically, the inputs of the aggregation
neuron Aggh(c←b1∧···∧bk) are all rule neurons R(cθ←b1θ∧···∧bkθ,w) for which cθ = h. The output

of this aggregation neuron is given by w · g∗(i1, ..., im), where i1, ..., im are its inputs, g∗ is
an activation function, and w is the weight of the corresponding rule. Note that while we
will assume throughout this paper that the weight of a rule and the value g∗(i1, ..., im) are
combined using multiplication, in principle other combination operators are also possible.
The rule neuron R(cθ←b1θ∧···∧bkθ,w) intuitively needs to fire if the atoms b1θ, ..., bkθ are all
true. Accordingly, its inputs i1, ..., ik are given by the atom neurons Ab1θ, ..., Abkθ, and its
output is g∧(i1, ..., ik), with g∧ being a third type of activation function. An overview of the
different types of neurons and their interconnections is shown in Table 1, where we write
o(N) to denote the output of neuron N .

Throughout this paper, we will only consider LRNNs whose associated ground neural
network is feed-forward. It is easy to see that this is the case when the rules in N ∗ are free
from cycles, i.e. when there exists a strict ordering ≺ of the predicates such that for each
predicate p2 occurring in the body of a rule with predicate p1 in the head, it holds that
p1 ≺ p2. Note, however, that there are many cases where the logic program N ∗ associated
with an LRNN contains cycles, but where the resulting ground neural network does not. For
instance, rules defining directed paths in acyclic graphs would not lead to directed cycles
in the resulting ground neural networks, despite the fact that the rules in the LRNN itself

1. In fact, it is possible to precisely characterize the behavior of the neural network by using extensions
of the immediate consequence operator for multi-valued logics (Achs & Kiss, 1995; Damásio & Pereira,
2001b).

6

Lifted Relational Neural Networks

parent(A,B) ∧ horse(B) =⇒ foal(A)

sibling(A,B) ∧ horse(B) =⇒ foal(A)

parent(star,aida)

Fact neurons

horse(aida)

parent(star,cheyenne)

horse(cheyenne)

sibling(star,dakotta)

horse(dakotta)

parent(star,aida)

Atoms neurons

∨

horse(aida)
∨

parent(star,cheyenne)
∨

horse(cheyenne)
∨

sibling(star,dakotta)
∨

horse(dakotta)
∨

foal(star)

Rule neurons

∧

foal(star)
∧

foal(star)
∧

foal(star)

Aggregation neurons

∗

foal(star)
∗

foal(star)

Atom neuron

∨

w1

w4

w2

w5

w6

w3

w
m

wn

Figure 1: Left: the LRNN N from Example 2, omitting the ground facts. Right: the
corresponding ground neural network. Atom neurons are denoted by “∨”, rule
neurons by “∧” and aggregation neurons by “∗”, the remaining neurons are fact
neurons.

would clearly be recursive. In general, however, when grounding an LRNN with cycles, we
may end up with recurrent neural networks, which are more difficult to train.

Example 2 Let us consider the following LRNN:

N ={(foal(A)← parent(A,B) ∧ horse(B), wm), (foal(A)← sibling(A,B) ∧ horse(B), wn),

(horse(dakotta), w1), (horse(cheyenne), w2), (horse(aida), w3),

(parent(star, aida), w4), (parent(star, cheyenne), w5), (sibling(star, dakotta), w6)}.

Figure 1 shows the LRNN N from the example, together with its ground neural network.
To visualize the creation of the neural network, colors are used to denote unique predicate
signatures, while rectangles group the neurons that have been derived from the same ground
rule.

3.1.3 LRNNs as neural network templates

To use LRNNs in practice, we typically start from a set of rules P and some labelled
examples. The labelled examples are used to learn weights for the general rules in P, as
will be explained in Section 3.4. This process leads to a trained LRNN N which contains
weighted rules, but does not contain any ground facts. Each time we want to use this LRNN,
we then first add a set of weighted ground factsM that describe the specific example about
which we want to make a prediction. In this way, for each prediction we make, a different
ground neural network is constructed, with a potentially very different structure. This
process makes LRNNs similar in spirit to lifted graphical models, and rather different from
normal neural network frameworks.

Example 3 We consider an LRNN N containing rules for predicting the toxicity of molecules,
based on conformations of the atoms contained in them and their bonds. For example, it

7

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

may be beneficial to assign atoms to some latent groups. Assuming we want to consider two
latent groups, this can be accomplished using the following rules:

wo1 : gr1(X)← O(X) wn1 : gr1(X)← N(X) ... wh1 : gr1(X)← H(X)

wo2 : gr2(X)← O(X) wn2 : gr2(X)← N(X) ... wh2 : gr2(X)← H(X)

The weight wo1, for instance, represents the degree to which oxygen atoms (O) belong to
the first latent group. This membership degree is learned based on training data, i.e. all
we need to specify is that we want to consider two latent groups as the basis for making
predictions and that none of the atoms O,N, ...,H is excluded a priori from belonging to
these groups. From the latent groups of atoms, we can now construct relational patterns,
such as small chains, trees or general graphlets. For instance, the following rule describes a
small relational pattern where an atom from gr1 is connected to an atom from gr2 through
a bond (represented by the predicate b):

wf1 : toxic← gr1(A) ∧ b(A,B) ∧ gr2(B) (1)

In general, there would be different rules with toxic in the head, each encoding a different
relational pattern in the body. Which of these relational patterns is actually predictive of
toxicity is then again learned from training data. For example, if (1) was found to be
predictive, then wf1 would receive a high value after training; otherwise, it might be set as
0.

LetM1 andM2 be two sets of (weighted) facts, each describing a given molecule, i.e. the
particular conformations of specific atoms and bonds. To use the LRNN N for predicting
the toxicity of these molecules (after its weights have been trained), we construct the ground
networks of N ∪M1 and N ∪M2, and for both of the resulting ground neural networks we
compute the output of an atom neuron corresponding to the literal toxic. The ground neural
networks for two example molecules are displayed in Fig. 2. As can be seen from this figure,
the neural networks for the two cases are different in both size and structure, which is a
result of the fact that N ∗ ∪M∗1 and N ∗ ∪M∗2 have different Herbrand models.

3.2 Activation Functions

The behavior of an LRNN crucially depends on how the activation functions g∧, g∨ and
g∗ are chosen. Intuitively, g∧ should behave like a conjunction, in the sense that the atom
neuron for h should only receive a high weight from the rule neuron for h ← b1 ∧ · · · ∧
bk if the atom neurons for b1, ..., bk all have a high output value. Similarly, g∨ and g∗
should intuitively behave like disjunctions; the reason why we need two types of disjunctive
activation functions will become clear below. One possibility for choosing the activation
functions is to draw inspiration from the field of fuzzy logic, where extensions of logical
connectives to real-valued arguments have been widely studied (Klement, Mesiar, & Pap,
1997). In particular, if all input weights are between 0 and 1, such fuzzy logic connectives
could straightforwardly be used. For example, in accordance with Gödel logic, we could
choose the activation functions as follows:

g∧(b1, ..., bk) = min(b1, ..., bk)

g∗(b1, ..., bm) = g∨(b1, ..., bm) = max(b1, ..., bk)

8

Lifted Relational Neural Networks

H1H(h1)

b(h1, h2) H2 H(h2)

b(h2, h1)

O1

b(o1, h2)

b(o1, h1)

O(o1)

H2 H(h2)

b(h2, o1)

H1 H(h1)

b(h1, o1)

H(h1)

b(h1, h2)

b(h2, h1)

H(h2)

H(h1)
∨

b(h1, h2)
∨

b(h2, h1)
∨

H(h2)
∨

gr1(h1)
∧

gr1(h1)
∗

gr1(h1)
∨

gr2(h1)
∧

gr2(h1)
∗

gr2(h1)
∨

gr2(h2)
∧

gr2(h2)
∗

gr2(h2)
∨

gr1(h2)
∧

gr1(h2)
∗

gr1(h2)
∨

toxic
∧

toxic
∧

toxic
∗

toxic
∨

wh2

wh2

wh1

wh1

wf1

H(h1)

b(o1, h1)

b(h1, o1)

O(o1)

b(o1, h2)

b(h2, o1)

H(h2)

H(h1)
∨

b(h1, o1)
∨

b(o1, h1)
∨

O(o1)
∨

b(h2, o1)
∨

b(o1, h2)
∨

H(h2)
∨

gr2(h1)
∧

gr2(h1)
∗

gr2(h1)
∨

gr1(h1)
∧

gr1(h1)
∗

gr1(h1)
∨

gr1(o1)
∧

gr1(o1)
∗

gr1(o1)
∨

gr2(o1)
∧

gr2(o1)
∗

gr2(o1)
∨

gr2(h2)
∧

gr2(h2)
∗

gr2(h2)
∨

gr1(h2)
∧

gr1(h2)
∗

gr1(h2)
∨

toxic
∧

toxic
∧

toxic
∧

toxic
∧

toxic
∗

toxic
∨

wh2

wh2

wo1

wo2

wh1

wh1

wf1

Figure 2: The two neural networks N ∪M1 and N ∪M2 grounded from the single LRNN
N and the two example molecules from Example 3. Atom neurons are denoted by
“∨”, rule neurons by “∧” and aggregation neurons by “∗”, the remaining neurons
are fact neurons.

9

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

Alternatively, using the connectives from product logic, we obtain:

g∧(b1, ..., bk) = b1 · ... · bk
g∗(b1, ..., bm) = g∨(b1, ..., bm) = 1− (1− b1) · ... · (1− bk)

Another popular alternative are the Lukasiewicz connectives:

g∧(b1, ..., bk) = max(b1 + ...+ bk − k + 1, 0)

g∨(b1, ..., bm) = min(b1 + ...+ bm, 1)

g∗(b1, ..., bm) = max(b1, ..., bk)

Note that g∨ and g∗ in this case correspond to the two types of disjunctions that are used in
 Lukasiewicz logic. An advantage of using fuzzy logic connectives is that LRNNs can then be
seen as fuzzy logic programs. In particular, the predictions of an LRNNN are then precisely
given by the truth degrees of the corresponding atoms in the least Herbrand model of N ,
viewed as a fuzzy logic program. However, using these fuzzy logic connectives also has two
important drawbacks. First, gradient-based learning is considerably less effective with such
operations, compared to e.g. sigmoidal activation functions. Second, it would be useful
to consider parametrized families of activation functions, such that a specific activation
function could be chosen based on training data. The latter issue could in principle be
addressed by using continuous families of fuzzy logic connectives, such as the Frank family of
t-norms, which is parametrized by a real value, and has the three aforementioned examples
of fuzzy logic conjunctions as special cases. However, as this would further complicate
gradient-based learning, in this paper we will focus on more standard activation functions,
and sigmoidal functions in particular.

Specifically, we will consider two classes of activation functions, which will be useful in
slightly different types of applications. The first class is defined as follows.

Definition 1 (Max-Sigmoid Activation Functions) The Max-Sigmoid (MS) collection
of activation functions are defined as:

g∧(b1, . . . , bk) = sigm

a ·
 k∑
i=1

bi − k + 1 + b0

g∗(b1, . . . , bm) = max
i
bi

g∨(b1, . . . , bk) = sigm

a ·
 k∑
i=1

bi + b0

where a, b0 ∈ R are parameters.

The parameters a and b0 are typically fixed, although they could also be determined using
training data (see Section 3.4). When learned from training data, they help to ensure
that we select an activation function that is appropriate for the domain being modelled.
When the inputs are between 0 and 1, the parameters a and b0 in the definition of g∧

10

Lifted Relational Neural Networks

1

0.80

0.1

0

0.2

0.6

0.3

0.2

x
2

0.4

0.5

x 1 A
N

D
 x

2

0.40.4

0.6

x
1

0.7

0.8

0.6
0.2

0.9

1

0.8
01

Lukasiewicz
Sigmoidal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

diagonal cut x
1

 = x
2

0

x
1
 A

N
D

 x
2

0.5

x
2

0.5

x
1

10

1

0.80

0.1

0

0.2

0.6

0.3

0.2

x
2

0.4

0.5

x 1 O
R

 x
2

0.40.4

0.6

x
1

0.7

0.8

0.6
0.2

0.9

1

0.8
01

Lukasiewicz

Sigmoidal 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

diagonal cut x
1

 = x
2

0

x
1
 O

R
 x

2

0.5
x

2

0.5
x

1

01

Figure 3: A crude approximation of Lukasiewicz conjunction (left) and disjunction (right)
by respective sigmoidal activation functions for the use in LRNNs. A diagonal
view of x1 = x2 is embedded to detail the level of approximation of each operator.

and g∨ can be chosen such that these activation functions approximate the Lukasiewicz
connectives. To illustrate this, the functions sigm

(
a · (b1 + · · ·+ bk − k + 1 + b0)

)
and a ·

sigm
(
a · (b1 + · · ·+ bk + b0)

)
, with b0 = −0.5 and a = 6, are compared with the Lukasiewicz

conjunction and disjunction, respectively, in Figure 3. The g∗ activation function groups
different groundings of the same rule with the same head. If we think of the bodies of these
rules as patterns, choosing g∗ as the maximum means that we are simply looking for the
best match. This view is illustrated in the following example.

Example 4 Let us consider the following LRNN with the activation functions from the
Max-Sigmoid family:

N = {(hasBrightEdge← isBright(E), 1),

(isBright(E)← edge(E,U, V) ∧ bright(U) ∧ bright(V), 1),

(bright(U)← yellow(U), 2), (bright(U)← red(U), 1), (bright(U)← blue(U), 0.5)}.

Note that hasBrightEdge is a predicate of arity 0. Let us also consider a set G describing a
specific graph with colored vertices.

G ={(edge(e1, v1, v2), 1), (edge(e2, v2, v3), 1), (edge(e3, v3, v4), 1), (edge(e4, v4, v1), 1),

(red(v1), 1), (blue(v2), 1), (yellow(v3), 1), (yellow(v4), 1)}

The output of the atom neuron AhasBrightEdge only depends on the “brightest edge”, which in
this case is e3. This is because the aggregation function g∗ is g∗(b1, . . . , bm) = maxi bi. Note
that any colored graph that contains an edge connecting two yellow vertices would lead to
the same output. Similar kinds of LRNNs could be useful in practice, for instance, to detect
molecules which contain a substructure that is similar to a prescribed pattern. Instead of
colors, we would then model physico-chemical properties of atoms (e.g. partial charge) and
instead of graph edges we would describe bonds in molecules.

11

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

In the next example, we illustrate how using a sigmoidal function for g∨ leads us intuitively
to accumulate the evidence coming from different rules with the same head.

Example 5 Consider the following LRNN with the activation functions from the Max-
Sigmoid family:

N ={(highPressure(X)← stressed(X), 1), (highPressure(X)← obese(X), 1),

(highPressure(X)← exercises(X),−1)}

and the set of weighted facts P = {(stressed(alice), 1), (obese(alice), 1), (stressed(bob), 1),
(exercises(bob), 1)}. Outputs of aggregation neurons for rules with the same head are com-
bined using the activation function g∨. In this particular example, if we construct the ground
LRNN of N ∪ P then the output of the atom neuron AhighPressure(alice) will be higher than
the output of the atom neuron AhighPressure(bob), because alice is stressed and obese whereas
bob is just stressed and exercises.

We now give an example of a scenario where the Max-Sigmoid class of activation functions
is not appropriate.

Example 6 Let us consider the following simple LRNN for predicting which individuals
are infected with the flu:

N ={(hasFlu(A)← friends(A,B) ∧ hasFluDiagnosed(B), 1)}

and a set of weighted ground facts P about a group of people and their friendships. If
we constructed the ground neural networks of N ∪ P using the activation functions from
the Max-Sigmoid family then the prediction of whether an individual has the flu would be
entirely based on the existence of at least one person who was already diagnosed with the
flu. It would obviously be more meaningful to base the predictions on the fraction of one’s
friends who were diagnosed with the flu.

The next definition introduces a family of activation functions that are appropriate for
situations such as the one in the previous example.

Definition 2 (Avg-Sigmoid Activation Functions) The Avg-Sigmoid (AS) collection
of activation functions are defined as:

g∧(b1, . . . , bk) = sigm

a ·
 k∑
i=1

bi − k + b0

g∗(b1, . . . , bm) =
1

m

m∑
i=1

bi

g∨(b1, . . . , bk) = sigm

a ·
 k∑
i=1

bi + b0

12

Lifted Relational Neural Networks

An advantage of the Avg-Sigmoid family over the Max-Sigmoid family is that the func-
tions from the Avg-Sigmoid family are everywhere differentiable, which simplifies learning.
Of course, a wide variety of other families of activation functions can be used for LRNN
learning, but in this paper we will limit ourselves to the two considered families.

Finally note that, in principle, a different activation function could be used for every
neuron. For example, we may have some rules that are aimed at detecting the existence of a
pattern, suggesting the use of a maximum, while for other rules we may want to accumulate
the evidence provided by different rules, suggesting the use of a summation or average. We
could also consider a setting where the different activation functions are learnable, e.g. by
tuning the value of the parameter b0. Note, however, that the latter could also be simulated
in the basic framework, by adding an additional atom to each rule body and learning the
weight of that atom instead.

3.3 Negation As Failure

There is a close connection between LRNNs, on the one hand, and (multi-valued extensions
of) logic programs, on the other hand. However, from a logic programming point of view,
the syntax of LRNNs is quite limited, as negation is not considered. In particular, negation-
as-failure is a central notion in most logic programming frameworks (Lloyd, 2012). The
idea is to use rules such as a ← b ∧ not c, which intuitively encodes that we can derive a
if b is true, unless we can prove that c is true (i.e. c is an explicit exception to the default
rule “if b then normally a”). In general, logic programs with negation-as-failure may no
longer have a unique least Herbrand model. This effectively makes these logic programs
non-deterministic, and thus unsuitable as a basis for LRNNs in general.

A logic program with negation-as-failure P is called stratified if there exists a partition
P = P1 ∪ ... ∪ Pn such that for each rule a ← b1 ∧ ... ∧ bk ∧ not bk+1 ∧ ... ∧ not bk+l in
Pi it holds that the predicates used in the atoms bk+1, ..., bk+l do not occur in the head of
any of the rules in Pi ∪ ... ∪ Pn (Rondogiannis & Wadge, 2005). It is easy to verify that
stratified logic programs have a unique least Herbrand model. It turns out that we can
easily generalize LRNNs to cases where the corresponding logic program N ∗ is a stratified
logic program with negation-as-failure. To this end, we define the grounding of such an
LRNN N as

N = {(hθ ← b1θ ∧ · · · ∧ bkθ ∧ not bk+1θ ∧ . . . ,∧not bk+lθ, w) : {hθ, b1θ, . . . , bkθ} ⊆ H and

(h← b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ not bk+l, w) ∈ N}

where H is the least Herbrand model of N ∗. Note that we do not put any constraints on
the containment of the atoms bk+1θ ∧ · · · ∧ bk+lθ in the Herbrand model H. In a classical
logic programming setting, we can omit the rule hθ ← b1θ ∧ · · · ∧ bkθ ∧not bk+1 ∧not bk+l

if one of the atoms bk+1, ..., bk+l is in H. However, in accordance with most multi-valued
extensions of negation-as-failure, in LRNNs the atom neuron corresponding to not bi may
have a non-zero output even if bi has a non-zero output. Intuitively, if we can only derive
that bi is partially true, a rule with not bi in the body will still partially fire.

To construct the ground network of an LRNN with negation-as-failure, we consider an
additional type of neuron called negation neuron. For every ground atom not a that occurs
in one of the rules of the grounding N , we add one such negation neuron Nota, which has

13

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

the atom neuron for a as input, if it exists (i.e. if a ∈ H), and the constant 0 otherwise.
This negation neuron is then added as one of the inputs of the corresponding rule neuron.
As with the other types of neurons, the activation function gnot associated with a negation
neuron can be chosen in different ways.

Example 7 Let us consider an LRNN N consisting of the rule

w1 : flies(X)← bird(X) ∧ not antarctic(X)

and the fact bird(tweety). The grounding N contains the rule

flies(tweety)← bird(tweety) ∧ not antarctic(tweety).

Therefore there will be a neuron Notantarctic(tweety) in the ground network. The input to
this neuron is the constant 0 in this case because antarctic(tweety) is not in the least Her-
brand model of the corresponding logic program N ∗. Assuming that the activation func-
tion of negation neurons is 1 − x, the output of this neuron will be 1. The rule neuron
Rflies(tweety)←bird(tweety)∧not antarctic(tweety) then has two inputs, the neuron Notantarctic(tweety)

and the atom neuron Abird(tweety). The rest of the network is constructed as for normal
LRNNs, following the rules described in Section 3.1.

In LRNNs where all the outputs are between 0 and 1, a natural choice for this acti-
vation function, which is in line with the semantics of several existing multi-valued logic
programming frameworks (Damásio & Pereira, 2001a; Blondeel, Schockaert, Vermeir, & De
Cock, 2013), is gnot(x) = 1 − x. In other contexts, where positive and negative values are
associated with positive and negative support, respectively, the choice gnot(x) = −x could
be used.

3.4 Weight Learning

We consider an LRNN N whose weights we want to train. To this end, we assume that we
also have access to a list of training examples E = (E1, . . . , Em), where each Ej is an LRNN.
In applications, these LRNNs encoding training examples would typically only contain
ground facts. In such cases, each training example intuitively describes some relational
structure using a set of weighted atoms (e.g. as displayed in Fig. 2). We also assume that we
are given a list Q = ({(q1

1, t
1
1), . . . , (q1

k1
, t1k1)}, . . . , {(qm1 , tm1), . . . , (qmkm , t

m
km

)}) where each qji
is a ground atom, which we call a training query atom, and tji is its target value. For a query

atom qji , let yji denote the output of the atom neuron A
qji

in the ground neural network of

N ∪ Ej . The goal of the learning process is to find the weights wh of the rules (and possibly

facts) in N for which the loss J on the training query atoms J(Q) =
∑m

j=1

∑kj
i=1 cost(yji , t

j
i)

is minimized, where cost is some predefined loss function that measures the discrepancy
between the output of the neurons corresponding to the training query atoms and their
desired target values.

Example 8 Let us again consider the LRNN N from Example 3 and the sets of facts M1

and M2 describing the two molecules (shown in Figure 2). We recall that N contains

14

Lifted Relational Neural Networks

the rule for toxicity of molecules w1 : toxic ← gr1(A) ∧ b(A,B) ∧ gr2(B) where b(., .) is a
predicate for representing atomic bonds in the molecules, and the predicates gr1(.) and gr2(.)
are defined using the rules listed in Example 3. Let us suppose that we want to learn the
weights of this theory based on the knowledge that M1 is toxic and M2 is not. In other
words, the list of training examples in this case is given by E = (M1,M2). We also need
to specify the corresponding list of training query atoms Q, which in this case is given by
Q = {{toxic, 1}, {toxic, 0}}. The weight learning task is to optimize the weights so as to
minimize the discrepancy between the toxicity according to the training query atoms and the
toxicity predicted by the LRNNs N ∪M1 and N ∪M2, where the predicted toxicity is the
output of the atom neuron Atoxic.

Similarly to conventional neural networks, weight adaptation is performed by gradient
descent steps:

wh ← wh − γ
∂J(Q)

∂wh

where γ > 0 is some given learning rate. Different from conventional neural networks, in
the case of LRNNs, we end up with different ground networks for the different learning
examples Ej . This is not problematic, however, because the weights for all the ground
neural networks N ∪ Ej are fully specified in the LRNN N .

It is possible to learn the weights of an LRNN using conventional stochastic gradient
descent, based on gradients computed by backpropagation, except that the increments for
the shared weights must be accumulated. This can be seen from the following reasoning. Let
J(u1, u2, . . . , un) be a loss function of a given ground neural network. To encode which of
these n weights are shared, we can consider a function g : Rm → Rn, where R = {w1, ..., wm}
is the set of distinct weight variables (m ≤ n). For a given vector v ∈ Rm, the vector
g(v) is obtained by copying the values of the shared weights. For instance, if n = 3,
R = {w1, w2} and the first two weights are shared, then g(w1, w2) = (w1, w1, w2). It follows
from elementary multivariate calculus that ∂

∂wi
(J ◦ g) = ∇J · ∂g∂wi

, where · denotes scalar

product (noting that both ∇J and ∂g
∂wi

are n-dimensional vectors). Since ∂g
∂wi

is a vector
which has 1 at position j iff the j-th weight is assigned to the shared weight wi, it follows
that ∂

∂wi
(J ◦ g) can be computed as the sum of the components of ∇J that correspond

to the positions j to which wi is assigned. In other words, this means that in order to
compute the partial derivative w.r.t. a shared weight wi, we can compute the gradient using
standard backpropagation without assuming any weight sharing and sum the individual
terms corresponding to the given shared weight.

The complete weight learning algorithm then works as follows. First, the given LRNN
N is grounded w.r.t. every example Ej , leading to a set of ground neural networks with
shared weights; information about the origin of each weight is explicitly stored, such that
the respective weights in the template can be updated correctly. The algorithm then iterates
over the ground networks in a random order. Each time, it computes the gradient of the
loss function for the current example given the current weights in the template, and updates
the weights accordingly. It continues iterating these steps, following the standard stochastic
gradient descent procedure. To reduce the risk of getting stuck in local optima, we can also
employ a restart strategy for this algorithm, restarting the search with randomly initialized
weights after a given number of SGD epochs has been reached. There are many restart

15

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

sequences that we can use, e.g. Luby’s universal strategy (Luby, Sinclair, & Zuckerman,
1993).

For the Max-Sigmoid family of activation functions, learning is complicated by the fact
that the max operator introduces non-differentiable points to the optimization problem. As
a consequence, some weights, corresponding to ground rules which never contribute to the
output value (because they never give maximal output), may never be updated by SGD
because the respective partial derivatives of the loss function are zero. This may then lead
to poor solutions. The restart strategies mentioned above help to partially alleviate this
problem.

A note on structure learning For many types of lifted models, the learning process
is separated in two steps, called structure learning and weight learning. In the case of
MLNs, for instance, the aim of structure learning consists in determining relevant first-
order formulas, whose associated weights are then determined in the subsequent weight
learning step. While LRNNs could, in principle, be used in a similar way, one of the main
strengths of LRNNs is the fact that they can learn predictive latent relational structures in
an efficient way. When we use LRNNs for this purpose, as we do in this paper, the first-
order rules are completely generic. Their purpose is then to encode what types of latent
structures we want to find, rather than to encode domain knowledge. All domain knowledge
is then obtained through weight learning. This way of using LRNNs is illustrated in detail
in the next section.

4. Illustrative Examples of LRNN Modeling Constructs

In this section we describe several modelling constructs that can straightforwardly be en-
coded using LRNNs, but which would be difficult or impossible to implement in frameworks
such as CILP++ (Franca et al., 2014), which also combines logic and neural networks. The
considered modelling constructs correspond to different kinds of latent relational structures
that can be effectively learned using LRNNs. Frameworks such as CILP++ do not al-
low simultaneous learning of target and auxiliary predicates, and are thus not well-suited
for learning latent structures. Instead, they rely on propositionalization (Krogel, Rawles,
Železný, Flach, Lavrač, & Wrobel, 2003) and are thus only capable of learning latent fea-
tures over the corresponding propositionalized representations. While somewhat similar
modelling constructs can, in principle, be used in MLNs and in probabilistic logic program-
ming systems such as Problog (De Raedt, Kimmig, & Toivonen, 2007), they would require
EM algorithms which repeatedly need to perform computationally expensive probabilistic
inference.

4.1 Implicit Soft Clustering

In many learning tasks, it has been observed that good results can be obtained by generating
(soft) clusters of objects. The idea is then to make predictions based on the membership
degrees of a given object in these clusters, rather than trying to make predictions directly
from the features describing the object itself. As an example, let us consider the problem of
predicting adverse effects of drugs. For this problem, the use of auxiliary clusters of similar
drugs has been found to lead to significant improvements in predictive accuracy (Davis,

16

Lifted Relational Neural Networks

Costa, Berg, Page, Peissig, & Caldwell, 2012). However, existing methods to generate these
auxiliary clusters rely on a form of greedy discrete clustering, which can often be too crisp.
Using LRNNs, on the other hand, we can simply define predicates that represent these
soft clusters, and then automatically train the corresponding weights, which represent the
membership degrees. This is illustrated in the following example.

Example 9 Let us suppose that, similarly to the work of Davis et al. (2012), we have
temporal data about patients, the drugs they took, and the time instants when changes in
their health occurred. We want to predict adverse effects of drugs or their combinations.
Let us also assume that we have a set of general rules like:

w
(1)
1 : effect(P,AE, T2) ← took(P,D1, T1) ∧ period(T1, T2, T) ∧ shortPeriod(T)∧

∧took(P,D2, T2) ∧ drugGroup1(D1) ∧ drugGroup2(D2)∧
∧effectGroup1(AE)
. . .

w
(2)
1 : effectGroup1(E) ← headache(E)

w
(2)
2 : effectGroup1(E) ← sneezing(E)

. . .

Here, effect(Patient,AdverseEffect,Time) is a predicate whose meaning is that the patient
Patient had the adverse effect AdverseEffect at time Time. Similarly, took(Patient,Drug,
Time) states that the patient Patient took the drug Drug at time Time, Period(T1, T2, T)
is true when T = T2 − T1, i.e. it expresses that T is the length of the time period from
T1 to T2. For simplicity, we assume that time is discretized (e.g. it may be enough to
measure the time in days for certain types of adverse effects), which means that we may
represent these predicates extensively as facts. The predicate shortPeriod is a predicate which
defines what “short period” means in the given context; here we assume that it is specified
by an expert2. Finally, the predicates drugGroup1, . . . , drugGroupN and effectGroup1, . . . ,
effectGroupM are latent predicates which will be learnt by the LRNN. For convenience, we
use the superscript to index the latent predicates and subscript to index the rules defining
the latent predicates, starting from 1 for each of the predicates.

Intuitively, the adverse effects that happen to have high soft membership in the same
clusters of effects, defined by the effect-group predicates, are effects that tend to frequently
occur together. The groups of drugs are supposed to represent similar drugs. The intuition
behind the rules for the predicate effect/3 is as follows. Using these rules, we want to be able
to capture the adverse effects which result from interactions of certain drugs that were taken
by the patient in a short time interval. Let us assume that we already have definitions of
the effectGroup/1 and drugGroup/1 in accordance with the described intuition. Then each
of the rules essentially says that if a person took a drug from group 1 and shortly after a
drug from group 2 then the patient will get (all the) adverse effects from the adverse-effect
group 1. Note that the weights of these rules can also be negative, encoding the fact that the
drugs that were taken actually prevent the adverse effects from the corresponding group.

Using the Avg-Sigmoid family of activation functions, weight learning in this LRNN can
implicitly discover clusters of drugs which interact adversely with other clusters of drugs,

2. The predicate shortPeriod could be learned using techniques analogical to those described later for the
predicate Similar(X,Y) in Section 6.2.

17

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

clusters of adverse effects corresponding to these combinations of drugs, and an appropriate
definition for the predicate shortPeriod. To obtain these weights, we only require examples
consisting of ground facts describing patients, the drugs they have taken, when they have
taken these drugs, and what adverse effects they experienced.

In Section 6 we will provide experimental results showing that LRNNs can indeed learn
useful soft clusters, using a scenario which is similar to the one from the previous example,
in the domain of organic chemistry. Note that we could not perform experiments for the
problem setting from example 9, as the required data are not publicly available for privacy
reasons.

In the above example, soft clustering was essentially used to group related predicates.
However, the underlying idea can also be applied to more complex relational structures. To
illustrate this, the following example shows how we can group related (hyper)graphs in a
similar way.

Example 10 Let us consider the problem of predicting properties of organic molecules (e.g.
toxicity) that depends on the presence of substructures from some rather large set. In this
example, we will consider such substructures based on aromatic six-rings. The basic aro-
matic six-ring is the benzene ring, which is a ring of six carbon atoms, each connected to a
hydrogen atom, connected by aromatic bonds. If some carbon atom is replaced by another
atom, we speak of a substitution.

If the patterns capturing classes of substructures in the molecules have the same struc-
ture, e.g. they are all aromatic six-rings with substitutions at some positions, one could in
principle use probabilistic modeling to approximate them. The main idea would then be to es-
timate a probability distribution on the sets of substitutions, such that sets of substitutions
which are jointly occurring in the individual patterns would have high probability. While
such a probabilistic modeling approach is possible in principle, it would typically require us
to introduce latent concepts, in which case we would have to resort to EM. Using LRNNs,
on the other hand, learning latent representation patterns is straightforward. For instance,
if we want to capture pairwise dependencies between the substitutions in neighboring atoms,
we can first define auxiliary binary predicates of the following form:

w
(1)
1 : s1(carbon, nitrogen)

w
(1)
2 : s1(carbon, oxygen)

. . .

Each si is supposed to represent a group of substitution pairs which often appear together
in discriminative substructures (because the weights will be learned in this way). Then, we
can define a predicate sixRing as follows:

w
(2)
1 : sixRing(A,B,C,D,E, F)← ring(A,B,C,D,E, F)∧s1(A,B)∧s2(B,C)∧ . . . s6(F,A)

together with the following rule:

w1 : toxic(M)← atom(M,A) ∧ atom(M,B) ∧ · · · ∧ atom(M,F) ∧ sixRing(A,B,C,D,E, F)

18

Lifted Relational Neural Networks

Intuitively, sixRing then represents a class of substructures whose presence in a molecule
suggests that it is toxic. We can similarly define predicates for five-rings and other struc-
tures. For each of the these classes of substructures, we then add a rule, whose weight
encodes how predictive that substructure is of toxicity, e.g.:

w2 : toxic(M)← atom(M,A) ∧ atom(M,B) ∧ · · · ∧ atom(M,E) ∧ fiveRing(A,B,C,D,E) . . .

When learning the weights of this LRNN (based on examples of toxic and non-toxic molecules),
we then simultaneously discover the appropriate weights of the auxiliary predicates (e.g. s1,
sixRing) as well as the weights of the rules that predict the target predicate toxic. In other
words, we jointly learn what the latent substructures represent and how predictive they are.

Finally, as an illustration of a more elaborate use of LRNNs for learning soft clusters, we
refer to the work of Šourek, Manandhar, Železný, Schockaert, and Kuželka (2016), where a
method is proposed to simultaneously learn soft clusters of predicates and soft clusters of
entities, based on a reified representation of predicates.

4.2 Approximate Matching

If the body of a given rule is only approximately satisfied, it often makes sense to still derive
the head of that rule, but with a lower degree. Using LRNNs we can easily learn how the
different ways in which the body can be approximately satisfied should affect the degree
to which we want to derive the head. We refer to this modelling construct as approximate
matching.

Example 11 Let us again consider the example about predicting who has the flu. Let us
consider the following rule, expressing that if X is in a group of 4 people who are mutual
friends and all of them have flu symptoms, then X has the flu:

w
(1)
1 : hasFlu(X)← clique(W,X, Y, Z) ∧ fluSymptoms(W) ∧ fluSymptoms(X) (2)

∧fluSymptoms(Y) ∧ fluSymptoms(Z).

The requirement that the friendship graph of W,X, Y, Z is a clique seems unnecessarily
strict. For instance, the rule is still meaningful if two of these four people are not actually
friends, although in such a case we may prefer to derive the conclusion that X has the
flu with lower certainty. In general, the more of the friendship relations are missing, the
lower the certainty of the conclusion should intuitively be. This can easily be expressed using
LRNNs, e.g. by defining the predicate clique as a soft concept and automatically learning
the respective weights:

w
(2)
1 : clique(W,X, Y, Z) ← f(W,X) ∧ f(W,Y) ∧ f(W,Z) ∧ f(X,Y) ∧ f(X,Z) ∧ f(Y,Z)

w
(3)
1 : f(X,Y) ← friends(X,Y) ∧ friends(Y,X)

w
(3)
2 : f(X,Y) ← friends(X,Y)

w
(3)
3 : f(X,Y).

where the predicate friends is specified in the description of the examples. Note how the
predicate f enables a flexible definition of the predicate clique, and how this allows us to

19

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

draw conclusions in situations which only partially match the body of the rule (2). Using
the activation functions from the Max-Sigmoid family for the predicates hasFlu and f, we
can obtain the desired behavior.

5. Related Work

The main inspiration for the work presented in this paper are lifted graphical models such as
Markov logic networks (Richardson & Domingos, 2006), Bayesian logic programs (Kersting
& De Raedt, 2001) or Relational dependency networks (Neville & Jensen, 2007). How-
ever, none of these existing lifted graphical models is particularly well suited for learning
parameters of latent relational structures. Our approach is also generally related to prior
art in combining logical rules with neural networks, also known as neural-symbolic inte-
gration (d’Avila Garcez, Broda, & Gabbay, 2012), such as in the KBANN system (Towell
et al., 1990). While KBANN also constructs the network structure from given rules, these
rules are propositional rather than relational and do not serve as a lifted template. Cru-
cially, this means that KBANN cannot be used to learn latent relational structures. A
more recent system, called CILP++(Franca et al., 2014), utilizes a relational representa-
tion, which is however converted into a propositional form through a propositionalization
technique (Krogel et al., 2003). This again means that latent relational structures such as
those exemplified in Section 4 cannot be learned by CILP++. The work on First Order Neu-
ral Networks (FONN) (Botta et al., 1997) is more closely related, in that it also involves
a technique to construct neural networks from relational rule sets. However, in FONN
only flat rule sets are considered, producing 1-layer (shallow) networks in which relational
patterns cannot be hierarchically aggregated. While there are many other approaches to
neural-symbolic integration that rely on relational (and first-order) representations (Bader
& Hitzler, 2005), e.g. based on the CORE method (Hölldobler, Kalinke, & Störr, 1999), they
typically search for a neural network modelling a given logic program, and thus principally
differ from the presented lifted modeling approach.

While standard (and convolutional) feed-forward neural networks can be seen as a spe-
cial case of LRNNs, a salient aspect of our method is that it allows for learning from
structured (relational) examples, rather than just attribute vectors (or tensors). There has
been previous work on adapting neural networks to cope with certain facets of relational
representations. For example, an extension to multi-instance learning was presented by Ra-
mon and De Raedt (2000). A similarly directed work (Blockeel & Uwents, 2004) facilitated
aggregative reasoning, with the aim of processing sets of related tuples from a relational
database as a sequence through a recurrent neural network structure. These approaches are
fundamentally different from the presented method as they do not follow the lifted modeling
strategy to cope with variations in the structure of relational samples. More loosely related
works can also be found in the neural networks community, where various recursive auto-
encoders based on the idea of “reduced descriptions” (Hinton, 1990) are used to encode
structured data. Another line of work are convolutional neural networks (LeCun, Bottou,
Bengio, & Haffner, 1998) and techniques of indirect encoding (Clune, Stanley, Pennock, &
Ofria, 2011), exploiting patterns and regularities in neural connections to create more com-
pressed representations of large neural networks. However, these approaches are still geared
towards learning from fixed-size propositional, rather than relational, data. Demeester,

20

Lifted Relational Neural Networks

Rocktäschel, and Riedel (2016) developed a method that allows injecting knowledge in the
form implication rules into distributed representations for the task of knowledge base con-
struction, although their method is restricted to binary predicates and they only consider
rules with a single atom in the body.

Recently3 two other frameworks for combining logic programming and neural networks
have been introduced (Rocktäschel & Riedel, 2016; Cohen, 2016). Rocktäschel and Riedel
(2016) introduced differentiable theorem provers which explicitly represent constants in a
distributed manner as vectors. Unification in their approach is soft and returns a value
which is determined based on dot-products fed into sigmoids. When different unifying sub-
stitutions to the same variables need to be aggregated, their approach takes their maximum
value. It is interesting to note that a similar deductive reasoning process can be imple-
mented using LRNNs, with the activation functions g∨ and g∗ chosen as the maximum. In
particular, soft unification can be modelled by pre-computing the dot products between
the vector representations of all (relevant) pairs of constants, and by encoding these dot
products as the weights of facts of the form match(ci, cj). Hence, it should be possible to
represent any learned model from their framework in LRNNs. However, other modelling
constructs are actually more natural for working with distributed representation in LRNNs,
for instance soft clustering. Cohen (2016) introduced a system called TensorLog, which is a
differentiable probabilistic database based on belief propagation. TensorLog implements a
subset of Datalog. It restricts the factor graphs constructed for the belief propagation step
to be tree-like. Further restrictions include the fact that only unary and binary predicates
are allowed, and only certain types of queries are supported. Because of these restrictions,
it would be difficult to directly compare TensorLog with LRNNs. Both approaches seem
to be tailored towards different types of tasks. One advantage of TensorLog is that it does
not require a complete grounding of the set of rules to perform inference. While we have
relied on complete groundings in this paper, even for LRNNs it would often be sufficient to
limit grounding to the proofs of the given query formula. Crucially, however, this requires a
fast top-down inference engine. In preliminary experiments, we have found such top-down
grounding of LRNNs to be significantly slower than the current bottom-up grounding. An-
other recent work (Niepert, 2016) introduced so called discriminative Gaifman models which
are models that aggregate information from locally sampled neighbourhoods, motivated by
Gaifman’s locality theorem (Gaifman, 1982).

A number of efficient methods have recently been proposed for structured output pre-
diction, such as the work on so-called input convex neural networks (Amos, Xu, & Kolter,
2017). In the future it would be interesting to try to combine this work with LRNNs for
types of abductive reasoning, for which relational linear programming (Kersting, Mladenov,
& Tokmakov, 2017) could turn out to be particularly suitable.

6. Experiments

In this section, we describe experiments performed on 78 datasets about organic molecules:
the Mutagenesis dataset (Lodhi & Muggleton, 2005), four datasets from the predictive tox-
icology challenge, and 73 NCI datasets (Ralaivola, Swamidass, Saigo, & Baldi, 2005). The

3. Note that these two approaches were published after the workshop and arxiv papers that first described
LRNNs (Šourek et al., 2015a; Šourek, Aschenbrenner, Železný, & Kuželka, 2015b).

21

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

Mutagenesis dataset contains information about 188 molecules, with labels denoting their
mutagenicity. A number of published results for this dataset have relied on an extended set
of features, providing additional expert knowledge about relational properties of molecules.
Since we want to focus on the learning capabilities of our model, we will not rely on these ad-
ditional features, and only use atom bond information. The predictive toxicology challenge
dataset (PTC) (Helma, King, Kramer, & Srinivasan, 2001) is composed of four datasets
about molecules, labeled by their toxicity for female rats (fr) and mice (fm) and male rats
(mr) and mice (mm). Each of the NCI-GI datasets contains several thousands of molecules,
labeled by their ability to inhibit growth of different types of tumors. Detailed statistics of
these datasets are in Table 2.

We compare the performance of LRNNs with the state-of-the-art relational learners
kFOIL (Landwehr, Passerini, De Raedt, & Frasconi, 2006) and nFOIL (Landwehr, Kerst-
ing, & Raedt, 2007), which respectively combine relational rule learning with support vector
machines and with naive Bayes learning. We also compare LRNNs with MLN-boost (Khot,
Natarajan, Kersting, & Shavlik, 2011) and RDN-boost (Natarajan, Khot, Kersting, Gut-
mann, & Shavlik, 2012), which are both based on functional gradient boosting (Friedman,
2001) together with Markov logic networks and relational dependency networks (Neville &
Jensen, 2007), respectively. We also attempted a comparison with CILP++ (Franca et al.,
2014), but were not able to transform the datasets into the propositional representation
which is used by CILP++ using the publicly available part of the CILP++ implementa-
tion. In addition we performed experiments with Aleph (Srinivasan, 2000), which we used
both in its abductive and inductive modes. In the abductive mode we gave Aleph the same
graphlet defining rules as we give to LRNNs in the experiments with the soft clustering
modelling construct that we report in Section 6.1. In theory, Aleph could learn defini-
tions of crisp clusters by abduction, although it cannot learn soft clusters. In practice we
found that it was not effective. Interestingly, the inductive mode of Aleph did not achieve
competitive results on the NCI datasets either; it rarely exceeded majority-class accuracy.

To demonstrate the versatility of LRNNs, we perform experiments with different tem-
plates, representing some of the modeling constructs that were discussed in Section 4. Each
time, we only make use of generic templates, ensuring that the rules that are provided are
not predictive by themselves, and that the weight learning must thus create useful latent
relational concepts in order to be succesful. In particular, the considered templates do not
relate to any specific property of molecules and might be equally useful for other classifi-
cation tasks. The idea is that useful latent relational concepts emerge from the gradient
descent based weight learning process, rather than by explicit enumeration, in contrast to
propositional approaches and ILP (De Raedt, 2008). Nonetheless, in real applications the
fact that declaratively specified expert knowledge can be provided is of course an important
strength of LRNNs. Table 3 lists statistics of the ground neural networks for LRNNs based
on the different modelling constructs.

For all the reported experiments, we set the learning rate to 0.3 and training epochs to
3000. In general, we found that training was not very sensitive to the learning rate (with
the effective range being up to 0.5) as long as a sufficient number of learning steps is used.
We set the learning rate relatively high so as to keep the number of necessary epochs to
converge reasonable. The time for training an LRNN on a standard commodity machine

22

Lifted Relational Neural Networks

Table 2: Statistics of the three groups of molecular datasets used in the experiments. Except
for the number of datasets, the remaining numbers are averages over the datasets
in the given group.

#datasets avg. #examples avg. #bonds avg. #atoms

NCI 73 3031 50 23
PTC 4 342 51 25

MUTA 1 188 56 26

Table 3: Average sizes of ground neural networks (average number of atom neurons per
network) corresponding to the LRNNs based on the different modelling constructs.

Soft Clusters Approx. Matching Atom Embeddings Charge Charge+Soft

NCI 520 1145 1241 1373 1396
PTC 598 1619 1292 1414 1435
MUTA 696 1800 1338 1445 1482

with one CPU was in the order of a few hours for the larger NCI-GI datasets, and in the
order of a few minutes for the smaller datasets such as Mutagenesis.

6.1 Soft Clustering

We start with a simple hand-crafted LRNN template which is based on the idea of implicit
soft clustering that was described in Section 4.1. The template defines 3 predicates for soft
clusters of atom types and 2 predicates for soft clusters of bond types. The predicates atgr1,
atgr2, and atgr3, representing soft clusters of atom types are defined by considering one rule
for every atom type occurring in the dataset, e.g.:

w
(1)
1 : atgr1(X)← o(X)

w
(1)
2 : atgr1(X)← br(X)

. . .

Similarly, the predicates bondgr1 and bondgr2 representing soft clusters of bond types
are defined by considering one rule for every bond type occurring in the dataset. These
predicates are then used to define rules for different types of atom chains of length 3, one
for each group choice for each of the 3 atoms’ soft clusters and each of the 2 bonds’ soft
clusters, i.e. 243 rules in total:

w
(2)
(1,1,1;1,1) : chain3←atgr1(X) ∧ bond(X,Y,B1) ∧ atgr1(Y) ∧ bond(Y, Z,B2)

∧ atgr1(Z) ∧ bondgr1(B1) ∧ bondgr1(B2),

. . .

w
(2)
(3,3,3;2,2) : chain3←atgr3(X) ∧ bond(X,Y,B1) ∧ atgr3(Y) ∧ bond(Y, Z,B2)

∧ atgr3(Z) ∧ bondgr2(B1) ∧ bondgr2(B2).

23

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

−5 −4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1
c28

c14

c16

n31

o40
i95o51
c25n36

c21

cl93

n34

o52
o41

br94
c194n35 o49

c29

o45

n32

c27

f92 c19 n38
h8
c232

c22

o42

c230

h3

c26

c10

c195
h1o50

c28

c14

c16

c25

c21

c194

c29

c27

c19
c232

c22

c230

c26

c10

c195
o40

o51
o52

o41
o49o45

o42

o50

n31

n36

n34

n35

n32

n38i95
cl93br94

f92

Figure 4: PCA projection of vector embeddings of atom types corresponding to the learned
weights of soft clusters in the Mutagenesis dataset. Brown denotes the group 14 of
the periodic table (carbon group), blue the group 15 (pnicotgens), red the group
16 (chalcogens), violet the group 17 (halogens) and black the group 1 (hydrogen).

The predicate chain3 then represents the, possibly varying, learning target for each of
the molecular datasets (e.g. toxicity or mutagenicity). A comparison between the results
obtained with this LRNN template and those obtained with kFoil, nFoil, MLN-boost and
RDN-boost is shown in Figure 5. As can clearly be seen from this figure, the LRNN method
consistently outperforms the four baselines.

The learned weights of the rules defining the predicates atgr1, atgr2 and atgr3 can
be interpreted as membership degrees of the atom types to the three soft clusters. These
degrees might be interpreted as defining a three-dimensional vector space embedding of
the atom types. The first two principal components of these embeddings, for different atom
types from the Mutagenesis dataset, are shown in Figure 4. Note that the atom types in the
Mutagenesis dataset have been enriched with contextual information, which is why there
are different atom types c21, c22, . . . , c195 which all refer to carbon atoms. The LRNNs
are not given any explicit information about how these different atom types are related, and
thus have to reconstruct this information from the available training data. It is therefore
interesting to see that in the embedding from Figure 4, the nitrogen atoms are mostly in
the top left corner, carbons are mostly in the bottom right corner and the rest of the atoms
are around the center of the plot (where some further noticeable patterns can be observed,
such as halogen atoms being clustered together).

Next we demonstrate the importance of relational information in the molecule classifi-
cation tasks. Specifically, we show that a model which captures conformations of particular
atom types leads to better classification accuracy than a model which is only based on a soft
clustering of atom types. To this end, we created 3 templates with increasing complexity.
The first template is based purely on soft clustering, i.e. it only considers relational chains
of size 0. For each i ∈ {1, 2, 3} we consider the following rules, one for each soft cluster of

24

Lifted Relational Neural Networks

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5
P

3
8

8

P
3

8
8

_
A

D
R

S
N

1
2

K
1

m
u

ta
g

e
n

e
s
is

D
M

S
_

1
1

4

X
F

_
4

9
8

M
1

9
_

M
E

L

N
C

I_
H

5
2

2

S
R

D
M

S
_

2
7

3

K
M

2
0

L
2

L
X

F
L
_

5
2

9

S
N

B
_

7
8

R
X

F
_

3
9

3

M
O

L
T

_
4

D
L
D

_
1

R
P

M
I_

8
2

2
6

H
S

_
5

7
8

T

P
C

_
3

R
X

F
_

6
3

1

M
C

F
7

M
D

A
_

M
B

_
2

3
1

_
A

T
C

C

U
2

5
1

M
D

A
_

N

K
_

5
6

2

7
8

6
_

0

B
T

_
5

4
9

N
C

I_
H

2
2

6

N
C

I_
H

4
6

0

T
_

4
7

D

n
c
i-

g
i

S
K

_
M

E
L
_

5

U
O

_
3

1

S
N

B
_

7
5

H
O

P
_

1
8

H
T

2
9

S
F

_
2

6
8

H
C

T
_

1
1

6

N
C

I_
H

2
3

M
D

A
_

M
B

_
4

3
5

L
O

X
_

IM
V

I

M
A

L
M

E
_

3
M

C
C

R
F

_
C

E
M

H
L
_

6
0

_
T

B

p
tc

-f
r

S
F

_
2

9
5

O
V

C
A

R
_

4

E
K

V
X

H
O

P
_

9
2

A
4

9
8

A
C

H
N

H
C

T
_

1
5

O
V

C
A

R
_

8

O
V

C
A

R
_

3

K
M

1
2

H
O

P
_

6
2

C
O

L
O

_
2

0
5

N
C

I_
A

D
R

_
R

E
S

U
A

C
C

_
6

2

H
C

C
_

2
9

9
8

D
U

_
1

4
5

S
K

_
M

E
L
_

2

IG
R

O
V

1

M
1

4

T
K

_
1

0

S
F

_
5

3
9

S
N

B
_

1
9

C
A

K
I_

1

S
W

_
6

2
0

S
N

1
2

C

U
A

C
C

_
2

5
7

N
C

I_
H

3
2

2
M

S
K

_
M

E
L
_

2
8

A
5

4
9

_
A

T
C

C

S
K

_
O

V
_

3

O
V

C
A

R
_

5

p
tc

-m
m

p
tc

-m
r

p
tc

-f
m

E
rr

o
r

LRNN test error comparison

nFoil kFoil LRNN MLN-boost RDN-boost

Figure 5: Prediction errors of LRNNs, kFOIL, nFOIL, MLN-boost and RDN-boost mea-
sured by cross-validation on 78 datasets about organic molecules.

atom types:

w
(2)
(i) : chain1← atgri(X)

The second template involves relational chains composed of two atoms. It contains the
following rule for each i, j, k ∈ {1, 2, 3}:

w
(2)
(i,j,k) : chain2← atgri(X) ∧ bond(X,Y,B1) ∧ atgrj(Y) ∧ bondgrk(B1)

Finally, we consider the template with the chain3 predicate, describing chains of 3 atoms,
which we used in the previous experiment.

Results for the three templates chain1, chain2 and chain3 are shown in Figure 6. While
most of the performance is clearly due to the use of soft clustering, using non-trivial re-
lational chains does lead to improved predictive accuracy. It is evident from the graph
that relational chains of length greater than 1 are better than relational chains of length 1.
The difference between chains of lengths 2 and 3 is smaller but still statistically significant
(p = 0.002, using binomial test).

6.2 Alternative Modeling Constructs

Beyond learning soft clusters of atom types and bond types, a wide variety of other con-
structs can be used to solve the considered learning tasks. In this section, we briefly discuss
a number of these alternatives.

25

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Název grafu

train_atomic3 train_chain3 trainbichain2

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

P
3

8
8

P
3

8
8

_
A

D
R

S
N

1
2

K
1

m
u

ta
g

e
n

e
si

s

D
M

S
_

1
1

4

X
F

_
4

9
8

N
C

I_
H

5
2

2

S
R

T
_

4
7

D

R
P

M
I_

8
2

2
6

H
S

_
5

7
8

T

D
M

S
_

2
7

3

C
C

R
F

_
C

E
M

M
O

L
T

_
4

B
T

_
5

4
9

P
C

_
3

M
1

9
_

M
E

L

S
K

_
M

E
L_

5

M
D

A
_

M
B

_
2

3
1

_
A

T
C

C

S
N

B
_

7
5

N
C

I_
H

4
6

0

M
C

F
7

H
C

T
_

1
1

6

K
_

5
6

2

H
L_

6
0

_
T

B

H
O

P
_

1
8

U
2

5
1

D
L
D

_
1

p
tc

-m
m

S
F

_
2

9
5

M
D

A
_

N

M
D

A
_

M
B

_
4

3
5

R
X

F
_

3
9

3

D
U

_
1

4
5

K
M

1
2

L
O

X
_

IM
V

I

IG
R

O
V

1

K
M

2
0

L
2

H
T

2
9

S
F

_
2

6
8

7
8

6
_

0

S
N

B
_

7
8

A
4

9
8

S
N

1
2

C

S
N

B
_

1
9

A
C

H
N

N
C

I_
H

2
3

M
A

L
M

E
_

3
M

N
C

I_
A

D
R

_
R

E
S

E
K

V
X

O
V

C
A

R
_

8

H
O

P
_

6
2

U
O

_
3

1

O
V

C
A

R
_

3

C
O

L
O

_
2

0
5

M
1

4

U
A

C
C

_
6

2

O
V

C
A

R
_

4

U
A

C
C

_
2

5
7

H
O

P
_

9
2

A
5

4
9

_
A

T
C

C

H
C

T
_

1
5

L
X

F
L
_

5
2

9

N
C

I_
H

2
2

6

T
K

_
1

0

C
A

K
I_

1

S
W

_
6

2
0

S
F

_
5

3
9

S
K

_
M

E
L
_

2
8

S
K

_
M

E
L_

2

S
K

_
O

V
_

3

O
V

C
A

R
_

5

p
tc

-f
m

N
C

I_
H

3
2

2
M

H
C

C
_

2
9

9
8

R
X

F
_

6
3

1

p
tc

-f
r

p
tc

-m
r

Relational chain size influence

chain1 chain2 chain3

Figure 6: Test errors of three LRNN templates with growing relational chain sizes as mea-
sured by cross-validation on 78 datasets about organic molecules.

6.2.1 Learnable Numerical Transformations

In the previous section, we showed how the soft clusters that are learned by an LRNN can be
interpreted as vector space embeddings. Conversely, we can also generate soft clusters from
a given pre-trained embedding. To demonstrate this idea, we will use a simple vector space
representation, which encodes for each atom type how its valence electrons are distributed
across the s,p,d,f orbitals. For instance, the oxygen atom type O with electron configuration
(1s2)[2s2, 2p4] is encoded as the vector O := [2, 4, 0, 0]. To construct an LRNN that takes
advantage of this external knowledge, we actually use the similarity degrees induced by
these vectors, rather than the vectors themselves. For this experiment, we measure the
similarity between two atom types as the cosine between their vector representations. We
then construct the LRNN template as follows.

For each pair of atom-types (a1, a2) with similarity degree s, we add the following ground
fact:

1.0 : Similar(a1, a2, s)

We also add rules which encode a learnable transformation of the similarities into a
score that is useful for the considered predictive task:

26

Lifted Relational Neural Networks

w−1 : Similar(X,Y)← Similar(X,Y, S), S ≥ −1.0

w−0.9 : Similar(X,Y)← Similar(X,Y, S), S ≥ −0.9

... ...

w0.9 : Similar(X,Y)← Similar(X,Y, S), S ≥ 0.9

We then randomly sample three atom type vectors as prototype1 := [2, 0, 0, 14], prototype2 :=
[1, 0, 10, 0], prototype3 := [2, 6, 10, 0] and modify the definition of atom groups to reflect the
similarity to one of these prototypes:

w
(1)
1 : atgr1(X)← Similar(X, prototype1)

. . .

w
(1)
3 : atgr3(X)← Similar(X, prototype3)

We will refer to this method as atomEmbeddings.
As an alternative, we also tested how well the atom groups can be induced from the

charge of each atom within a given molecule. As this information is only available in the
NCI datasets, for this variant we do not consider the predictive toxicology datasets. To
generate the atom groups, we again use a learnable transformation, but this time based
on partial atom charges. Noting that the partial atom charges in the datasets are always
between −1 and 1, this can be done as follows:

w−1 : atgr1(X)← Charge(X,C), C ≥ −1.0

w−0.9 : atgr1(X)← Charge(X,C), C ≥ −0.9

... ...

w0.9 : atgr1(X)← Charge(X,C), C ≥ 0.9

This method will be referred to as atomCharge. Finally we also tried to combine the soft
cluster definition of atom groups with the definition based on atom charges, the results of
which can be seen as charge+softCluster in Figure 7. To construct these combined LRNNs,
we simply merge the definitions of the atom groups atgri from both of the LRNNs.

The experimental results for the considered methods are depicted in Figure 7. The test
errors of the LRNNs based purely on the partial charges are higher than the test errors of
LRNNs based purely on soft clustering, which was to be expected. Indeed, similar results
for relational features based on atom types or partial charges have been previously reported
(Kuželka, Szabóová, & Železný, 2012). However, the fact that the combined LRNNs did not
outperform the soft clustering LRNNs is more surprising. It suggests that the soft clusters
built from the extended atom types present in the NCI datasets (e.g. c21, c22, . . .) may
already capture the information present in the information about partial charges.

6.2.2 Approximate Matching

The aim of this experiment is to demonstrate the capability of LRNNs to capture structural
similarities within the relational features. Following the idea of the approximate matching
construct (see Section 4.2), we create a more flexible variant of the relation representing the
bond between two atoms, such that more complex structural patterns can be matched, with

27

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

P
3

8
8

P
3

8
8

_
A

D
R

S
N

1
2

K
1

m
u

ta
g

e
n

e
si

s

D
M

S
_

1
1

4

X
F

_
4

9
8

N
C

I_
H

5
2

2

S
R

T
_

4
7

D

R
P

M
I_

8
2

2
6

H
S

_
5

7
8

T

D
M

S
_

2
7

3

C
C

R
F

_
C

E
M

M
O

LT
_

4

B
T

_
5

4
9

P
C

_
3

M
1

9
_

M
E

L

S
K

_
M

E
L_

5

M
D

A
_

M
B

_
2

3
1

_
A

T
C

C

S
N

B
_

7
5

N
C

I_
H

4
6

0

M
C

F
7

H
C

T
_

1
1

6

K
_

5
6

2

H
L_

6
0

_
T

B

H
O

P
_

1
8

U
2

5
1

D
LD

_
1

p
tc

-m
m

S
F

_
2

9
5

M
D

A
_

N

M
D

A
_

M
B

_
4

3
5

R
X

F
_

3
9

3

D
U

_
1

4
5

K
M

1
2

LO
X

_
IM

V
I

IG
R

O
V

1

K
M

2
0

L2

H
T

2
9

S
F

_
2

6
8

7
8

6
_

0

S
N

B
_

7
8

A
4

9
8

S
N

1
2

C

S
N

B
_

1
9

A
C

H
N

N
C

I_
H

2
3

M
A

LM
E

_
3

M

N
C

I_
A

D
R

_
R

E
S

E
K

V
X

O
V

C
A

R
_

8

H
O

P
_

6
2

U
O

_
3

1

O
V

C
A

R
_

3

C
O

LO
_

2
0

5

M
1

4

U
A

C
C

_
6

2

O
V

C
A

R
_

4

U
A

C
C

_
2

5
7

H
O

P
_

9
2

A
5

4
9

_
A

T
C

C

H
C

T
_

1
5

LX
F

L_
5

2
9

N
C

I_
H

2
2

6

T
K

_
1

0

C
A

K
I_

1

S
W

_
6

2
0

S
F

_
5

3
9

S
K

_
M

E
L_

2
8

S
K

_
M

E
L_

2

S
K

_
O

V
_

3

O
V

C
A

R
_

5

p
tc

-f
m

N
C

I_
H

3
2

2
M

H
C

C
_

2
9

9
8

R
X

F
_

6
3

1

p
tc

-f
r

p
tc

-m
r

e
rr

o
r

Comparison of different LRNN modeling concepts

atomCharge atomEmbeddings approximateMatching softClustering charge+softCluster

Figure 7: Prediction errors of the various introduced LRNN modeling concepts as measured
by cross-validation on 78 datasets about organic molecules.

different degrees of similarity. We use the template with chains of 3 consecutive atoms from
Section 6.1, but replace the predicate bond by a new predicate bondK. This new predicate
is then defined in terms of the predicate bond, as follows:

w1 : bondK(X,Y,B)← bond(X,Y,B)

w2 : bondK(X,Y,B)← bond(X,Z,B), bond(Z, Y,B2)

The results of the experiments with this template are displayed as approximateMatching in
Figure 7. Although the differences are small, the approximateMatching method obtained
statistically significantly better accuracies than the LRNNs which only used relational chains
of length 3 with soft clustering (p = 0.008, using binomial test).

7. Conclusions

In this paper, we have introduced LRNNs, a new framework for learning from relational
data. Similar as in lifted probabilistic frameworks such as Markov logic and Problog, learned
LRNN models are represented as sets of weighted first-order formulas. However, while
Markov logic and Problog models serve as templates for constructing probabilistic graphi-
cal models, LRNN models serve as templates for constructing feedforward neural networks.
This means that we can employ neural network learning, based on backpropagation, to
efficiently discover latent relational structures from training data. Thanks to the use of
first-order logic rules, we can easily specify what kind of latent structures we want the

28

Lifted Relational Neural Networks

network to learn. In the experimental results, we have shown that very general rules, es-
sentially indicating that we want to find predictive groups of atom types and predictive
groups of bond types, allow us to achieve state-of-the-art predictive accuracies on various
datasets about organic molecules. Furthermore, we have discussed and evaluated several
other modelling constructs, e.g. based on learning latent groups of graph patterns, approx-
imate matching of relational patterns, and using pre-trained vector space embeddings.

There are several interesting avenues for future work. First, in our experiments we have
only considered generic templates, while one of the advantages of using logic-based repre-
sentations is that we can easily incorporate domain knowledge into the learning process.
Such domain knowledge could be explicitly provided by experts, or could be derived au-
tomatically using rule induction methods. These rules could be learned from the training
data itself, but also possibly from related datasets about the same domain. Related to this
latter point, we believe that LRNNs can allow for a natural way of modelling various forms
transfer learning. Another possibility, which stays closer to the way in which we have been
using LRNNs in this paper, is to learn rules from training data that aim to capture which
types of latent relational structures are meaningful for the considered setting. Some initial
work along these lines is presented in (Šourek, Svatoš, Železný, Schockaert, & Kuželka,
2017). At the technical level, it seems interesting to study a wider variety of activation
functions, and to consider LRNNs that correspond to recurrent neural networks.

Acknowledgments

GŠ and FŽ acknowledge support by project no. 17-26999S granted by the Czech Science
Foundation. SS is supported by ERC Starting Grant 637277. This work was done while OK
was with Cardiff University and supported by a grant from the Leverhulme Trust (RPG-
2014-164) and ERC Starting Grant 637277. Computational resources were provided by
the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the
programme “Projects of Large Research, Development, and Innovations Infrastructures”.

References

Achs, Á., & Kiss, A. (1995). Fuzzy extension of datalog. Acta Cybernetica, 12, 153–166.

Amos, B., Xu, L., & Kolter, J. Z. (2017). Input convex neural networks. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, pp. 146–155.

Bader, S., & Hitzler, P. (2005). Dimensions of Neural-symbolic Integration - A Structured
Survey. arXiv preprint.

Blockeel, H., & Uwents, W. (2004). Using neural networks for relational learning. In ICML-
2004 Workshop on Statistical Relational Learning and its Connection to Other Fields.

Blondeel, M., Schockaert, S., Vermeir, D., & De Cock, M. (2013). Fuzzy answer set program-
ming: An introduction. In Soft Computing: State of the Art Theory and Novel Appli-
cations, Vol. 291 of Studies in Fuzziness and Soft Computing, pp. 209–222. Springer.

Botta, M., A, G., & Piola, R. (1997). Combining first order logic with connectionist learning.
In Proceedings of the 14th International Conference on Machine Learning.

29

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

Clune, J., Stanley, K. O., Pennock, R. T., & Ofria, C. (2011). On the performance of indirect
encoding across the continuum of regularity. IEEE Trans. Evolutionary Computation,
15 (3), 346–367.

Cohen, W. W. (2016). Tensorlog: A differentiable deductive database. arXiv preprint
arXiv:1605.06523.

Damásio, C. V., & Pereira, L. M. (2001a). Antitonic logic programs. In Proceedings of the
6th International Conference on Logic Programming and Nonmonotonic Reasoning,
pp. 379–392.

Damásio, C. V., & Pereira, L. M. (2001b). Antitonic logic programs. In Proceedings of the
International Conference on Logic Programming and Non-Monotonic Reasoning, pp.
379–393.

d’Avila Garcez, A. S., Broda, K., & Gabbay, D. M. (2012). Neural-Symbolic Learning
Systems: Foundations and Applications. Springer-Verlag London.

Davis, J., Costa, V. S., Berg, E., Page, D., Peissig, P. L., & Caldwell, M. (2012). Demand-
driven clustering in relational domains for predicting adverse drug events. In Proceed-
ings of the 29th International Conference on Machine Learning, ICML.

De Raedt, L. (2008). Logical and Relational Learning. Springer.

De Raedt, L., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical Relational Artificial
Intelligence: Logic, Probability, and Computation. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its
application in link discovery. In IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pp. 2462–2467.

Demeester, T., Rocktäschel, T., & Riedel, S. (2016). Lifted rule injection for relation em-
beddings. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, pp. 1389–1399.

Franca, M. V., Zaverucha, G., & Garcez, A. S. d. (2014). Fast relational learning using
bottom clause propositionalization with artificial neural networks. Machine learning,
94 (1), 81–104.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, 1189–1232.

Gaifman, H. (1982). On local and non-local properties. In Stern, J. (Ed.), Proceedings
of the Herbrand Symposium, Vol. 107 of Studies in Logic and the Foundations of
Mathematics, pp. 105 – 135. Elsevier.

Helma, C., King, R. D., Kramer, S., & Srinivasan, A. (2001). The predictive toxicology
challenge 2000–2001. Bioinformatics, 17 (1), 107–108.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. Artificial
Intelligence, 46 (1-2), 47–75.

Hölldobler, S., Kalinke, Y., & Störr, H. P. (1999). Approximating the semantics of logic
programs by recurrent neural networks. Applied Intelligence, 11 (1), 45–58.

30

Lifted Relational Neural Networks

Kersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with
bayesian networks. In Inductive Logic Programming, 11th International Conference,
ILP 2001, Strasbourg, France, September 9-11, 2001, Proceedings, pp. 118–131.

Kersting, K., Mladenov, M., & Tokmakov, P. (2017). Relational linear programming. Artif.
Intell., 244, 188–216.

Khot, T., Natarajan, S., Kersting, K., & Shavlik, J. W. (2011). Learning markov logic
networks via functional gradient boosting. In 11th IEEE International Conference on
Data Mining, ICDM 2011, pp. 320–329.

Kimmig, A., Mihalkova, L., & Getoor, L. (2015). Lifted graphical models: a survey. Machine
Learning, 99 (1), 1–45.

Klement, E. P., Mesiar, R., & Pap, E. (1997). Triangular norms. Tatra Mountains Mathe-
matical Publications, 13, 169–193.

Kok, S., & Domingos, P. M. (2007). Statistical predicate invention. In Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, pp. 433–440.

Krogel, M.-A., Rawles, S., Železný, F., Flach, P. A., Lavrač, N., & Wrobel, S. (2003).
Comparative evaluation of approaches to propositionalization. Springer.

Kuželka, O., Szabóová, A., & Železný, F. (2012). Relational learning with polynomials.
In IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI
2012, pp. 1145–1150.

Landwehr, N., Passerini, A., De Raedt, L., & Frasconi, P. (2006). kFOIL: learning sim-
ple relational kernels. In AAAI’06: Proceedings of the 21st national conference on
Artificial intelligence, pp. 389–394. AAAI Press.

Landwehr, N., Kersting, K., & Raedt, L. D. (2007). Integrating naive bayes and foil. The
Journal of Machine Learning Research, 8, 481–507.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86 (11), 2278–2323.

Lloyd, J. W. (2012). Foundations of logic programming. Springer Science & Business Media.

Lodhi, H., & Muggleton, S. (2005). Is mutagenesis still challenging. ILP-Late-Breaking
Papers, 35.

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of las vegas algorithms.
Information Processing Letters, 47 (4), 173–180.

Natarajan, S., Khot, T., Kersting, K., Gutmann, B., & Shavlik, J. W. (2012). Gradient-
based boosting for statistical relational learning: The relational dependency network
case. Machine Learning, 86 (1), 25–56.

Neville, J., & Jensen, D. D. (2007). Relational dependency networks. Journal of Machine
Learning Research, 8, 653–692.

Niepert, M. (2016). Discriminative gaifman models. CoRR, abs/1610.09369.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46 (1),
77–105.

31

Šourek, Aschenbrenner, Železný, Schockaert & Kuželka

Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical
informatics. Neural Netw., 18 (8), 1093–1110.

Ramon, J., & De Raedt, L. (2000). Multi instance neural networks. In Proceedings of the
ICML Workshop on Attribute-Value and Relational Learning.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62 (1-2),
107–136.

Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem
provers. Proceedings of AKBC, 45–50.

Rondogiannis, P., & Wadge, W. W. (2005). Minimum model semantics for logic programs
with negation-as-failure. ACM Transactions on Computational Logic (TOCL), 6 (2),
441–467.

Smullyan, R. M. (1995). First-order logic. Courier Corporation.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., Potts, C.,
et al. (2013). Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on empirical methods in natural language
processing (EMNLP), Vol. 1631, p. 1642. Citeseer.

Srinivasan, A. (2000). The Aleph manual (Technical Report). Computing Laboratory,
Oxford University.

Towell, G. G., Shavlik, J. W., & Noordewier, M. O. (1990). Refinement of approximate
domain theories by knowledge-based neural networks. In Proceedings of the eighth
National conference on Artificial intelligence, pp. 861–866. Boston, MA.

Uwents, W., Monfardini, G., Blockeel, H., Gori, M., & Scarselli, F. (2011). Neural networks
for relational learning: an experimental comparison. Machine Learning, 82 (3), 315–
349.

Van Emden, M. H., & Kowalski, R. A. (1976). The semantics of predicate logic as a
programming language. Journal of the ACM (JACM), 23 (4), 733–742.

Šourek, G., Aschenbrenner, V., Železný, F., & Kuželka, O. (2015a). Lifted relational neural
networks. In Proceedings of the NIPS Workshop on Cognitive Computation: Integrat-
ing Neural and Symbolic Approaches co-located with the 29th Annual Conference on
Neural Information Processing Systems (NIPS 2015).

Šourek, G., Aschenbrenner, V., Železný, F., & Kuželka, O. (2015b). Lifted relational neural
networks. arXiv preprint arXiv:1508.05128.

Šourek, G., Manandhar, S., Železný, F., Schockaert, S., & Kuželka, O. (2016). Learning
predictive categories using lifted relational neural networks. In Inductive Logic Pro-
gramming - 26th International Conference, ILP 2016, Revised Selected Papers, pp.
108–119.

Šourek, G., Svatoš, M., Železný, F., Schockaert, S., & Kuželka, O. (2017). Stacked structure
learning for lifted relational neural networks. In Proceedings of the 27th International
Conference on Inductive Logic Programming, pp. 140–151.

32

