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A B S T R A C T

Memory reactivation during sleep is critical for consolidation, but also extremely difficult to measure as it is
subtle, distributed and temporally unpredictable. This article reports a novel method for detecting such reac-
tivation in standard sleep recordings. During learning, participants produced a complex sequence of finger
presses, with each finger cued by a distinct audio-visual stimulus. Auditory cues were then re-played during
subsequent sleep to trigger neural reactivation through a method known as targeted memory reactivation (TMR).
Next, we used electroencephalography data from the learning session to train a machine learning classifier, and
then applied this classifier to sleep data to determine how successfully each tone had elicited memory reac-
tivation. Neural reactivation was classified above chance in all participants when TMR was applied in SWS, and in
5 of the 14 participants to whom TMR was applied in N2. Classification success reduced across numerous rep-
etitions of the tone cue, suggesting either a gradually reducing responsiveness to such cues or a plasticity-related
change in the neural signature as a result of cueing. We believe this method will be valuable for future in-
vestigations of memory consolidation.
Introduction

Newly learned memories are reactivated in sleep at both neuronal
(Ego-Stengel and Wilson, 2010, 2007; Jones and Wilson, 2005; Wilson
and McNaughton, 1994) and systems levels (Maquet et al., 2000;
Peigneux et al., 2004). Such reactivation can be intentionally triggered
through targeted memory reactivation (TMR), in which cues associated
with previous learning are used to reactivate aspects of this prior learning
on demand (Antony et al., 2012; Cousins et al., 2014; Cousins et al.,
2016; Diekelmann et al., 2011; Fuentemilla et al., 2013; Oudiette and
Paller, 2013; Rasch et al., 2007; Rudoy et al., 2009; Schreiner and Rasch,
2014). Several influential models, including Active Systems Consolida-
tion (Rasch and Born, 2013), Synaptic Homeostasis (Tononi and Cirelli,
2014, 2006), Memory Triage (Stickgold and Walker, 2013), and Infor-
mation Overlap to Abstract (Lewis and Durrant, 2011), have proposed
mechanisms by which memory reactivation in sleep could boost memory
consolidation, but these ideas have been difficult to test since reac-
tivation is notoriously problematic to detect in humans. The challenge
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stems both from not knowing precisely when during sleep reactivation
occurs, and from the fact that reactivation can be greatly compressed in
time (N�adasdy et al., 1999).

Prior attempts to measure reactivation in humans (Maquet et al.,
2000; Peigneux et al., 2004) have provided evidence that neural activity
during sleep partially mimics the activity occurring during wake, and
that the extent of such reactivation can predict the degree of behavioural
improvement across retention periods (Peigneux et al., 2004; Yotsumoto
et al., 2009). Other work has used multivariate classification to capture
the distributed signals associated with wakeful memory reactivation in
functional magnetic resonance imaging (fMRI) (Deuker et al., 2013;
Staresina et al., 2013) and magnetoencephalography (Fuentemilla et al.,
2010). One fMRI study applied TMR in sleep to control the time at which
reactivation occurred (van Dongen et al., 2012). Other work has shown
that electroencephalography (EEG) classifiers can distinguish between
the sleep following two different learning tasks (Sch€onauer et al., 2017).
Most recently, TMR was used to control the timing of memory reac-
tivation in a declarative memory task and a correlation based decoding
.
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method distinguished between reactivation of objects and scenes (Cair-
ney et al., 2018). In the current report, we aim to develop a novel method
for the identification of TMR cued neural reactivation in a procedural
memory task. We use EEG because of its excellent temporal resolution
and appropriateness for sleep studies.

Our participants performed a sleep sensitive serial reaction time task
(SRTT) (Cousins et al., 2014; Cousins et al., 2016; Sch€onauer et al., 2014)
which requires both motor learning and sequence learning. Participants
were intensively trained on a fixed sequence of finger presses cued by
audio-visual triggers. To minimise motion artefacts, they were
re-exposed to the audio-visual cues and asked to imagine making the
cued movement while remaining motionless (‘Imagery task’). During
subsequent sleep, we re-played cue tones to trigger reactivation of the
associated memory. EEG data from the Imagery task were then used to
train a multivariate classifier which was applied to the Sleep data to
detect TMR cued reactivations.

Because much of the work on memory reactivation in sleep has been
performed in rats where stage 2 sleep (N2) and slow wave sleep (SWS)
are not considered separately (Bendor andWilson, 2012; Ego-Stengel and
Wilson, 2007; Lee and Wilson, 2002), it remains unclear whether reac-
tivation has distinct characteristics in these two sleep stages. Although
TMR has been applied in both stages in humans (Antony et al., 2012;
Rasch et al., 2007; Rudoy et al., 2009), no direct comparison has been
made. We addressed this question by triggering reactivation in N2 and
SWS, and examining the classification rate in both. Based on our own
prior work showing that TMR in SWS enhances consolidation of the SRTT
task (Cousins et al., 2014; Cousins et al., 2016), we expected to find that it
also triggered reactivation in this state. Based on the extensive literature
Fig. 1. A schematic illustration of the design of the experiment and the classifier
In the Imagery task they were instructed to remain motionless and imagine performi
Motor task. During subsequent SWS and N2, the sequence was repeatedly reactivate
Visual cues were objects or faces (1¼ face #1, 2¼ lamp, 3¼ face #2, 4¼water tap). N
one image, and that image was repeated every time the cue was repeated). (C) Mean
and after sleep. Error bars indicate one standard deviation.
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linking N2 spindles to procedural finger tapping tasks (Laventure et al.,
2016; Vahdat et al., 2017; Walker et al., 2002) it also seemed likely that
TMR would trigger reactivation in N2. However it was unclear whether
we would be able to detect this reactivation in either state given the high
signal to noise ratio. It is also unclear whether TMR always triggers
reactivation, or whether the system eventually saturates, such that no
further processing will occur. To examine this, we tested whether the
classification rate changed systematically across repeated TMR cues.

Materials and methods

The experiment was approved by the University of Manchester Ethics
committee. Participants provided informed consent and were reimbursed
for their time. 30 healthy volunteers with no self-reported history of
neurological, psychiatric, sleep, or motor disorders participated, 15 (6
males, 27� 8 years) in the main experiment, and 15 (2 male, 25� 5
years) in the Control. All participants abstained from caffeine and alcohol
for 24 h prior to the experiment.

Design and Procedure for the Main Overnight Experiment: Par-
ticipants completed the Stanford Sleepiness Scale (Hoddes et al., 1972) at
the start of each testing session (e.g. pre- and post-sleep). Participants
were fitted for polysomnographic (PSG) recording at 8–9 pm before
performing an adapted SRTT (Nissen and Bullemer, 1987) containing
repeating blocks of a single fixed 12-item sequence
(1-2-1-4-2-3-4-1-3-2-4-3). They were then permitted to read in bed until
~11 p.m., and allowed to sleep for ~8 h until 7–8 am (Fig. 1A). During
the night, tones associated with the learned sequence were softly played
in blocks of repeating correct-order sequences during SWS and N2.
. (A) In the Motor task, participants performed the SRTT task with finger presses.
ng the task while experiencing the same audio-visual cues that were used in the
d in blocks of 1.5 min on, 2 min off. (B) The visual cues used in the experiment.
ote that these 4 cues were always the same (e.g. each finger was paired with just
learning curve showing performance (CS¼ RT/accuracy) for each block before



Table 1
The number of 12-item sequences used for each participant before sleep, during
sleep and after waking.

Participant Number of Presented Sequences

Before Sleep During Sleep Morning (Wake)

Motor (Learning) Imagery SWS N2 Motor (Retest)

1 70 70 41 No data 70
2 70 70 99 59 70
3 70 60 24 39 70
4 70 70 99 199 70
5 70 70 54 114 70
6 70 70 139 84 No data
7 70 70 39 59 70
8 70 70 74 64 70
9 70 70 79 124 No data
10 50 70 74 49 70
11 70 70 99 119 No data
12 70 70 99 24 No data
13 70 70 157 60 70
14 70 70 39 110 70
15 70 70 62 91 70

Event-related potentials (ERPs) from 70 sequences were recorded in both Motor
and Imagery tasks in 15 experimental participants. Due to noise on the trial-
marker channel two participants had lower trial numbers, thus ERPs from only
50 sequences were extracted from the Motor task in one, while only 60 sequences
were extracted from the Imagery task in another.
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Brown noise was played throughout the night to minimise disturbance.
For each trial in the SRTT, a visual cue appeared with a tone in one of

four spatial locations, corresponding to keyboard keys of the same
configuration, and participants pressed as quickly as possible while
minimising errors with index and middle fingers. Items appearing on the
left of the screen (Classes 1 and 2) required a left hand response, while
items on the right side of the screen (Classes 3 and 4) required right hand
responses. This arrangement was chosen to make the sequence easier to
classify, as left handed responses are associated with a right hemispheric
EEG response, and vice versa.

Visual cues were objects or faces (1¼ face #1, 2¼ lamp, 3¼ face
#2, 4¼water tap), see Fig. 1B. Like the button response fingers,
these images were chosen to make the sequence more easily classi-
fiable since we expected the N170 component (Eimer, 2011) to be
different for faces (Classes 1 and 3) and objects (Classes 2 and 4) at
electrodes near face-selective brain regions, P7 and P8 (Calder et al.,
2010). Each visual cue was accompanied by a specific auditory tone
which was also associated with the cued finger. Tones (each lasting
300 ms and played through headphones at an intensity which par-
ticipants found comfortable) were musical notes grouped closely
within the 4th (low) (C/D/E/F) octave. Training comprised 7 blocks,
with 10 sequence repetitions per block giving a total of 70 sequence
repetitions, and 210 trials for each of the four finger classes. After
each response there was a 1,230ms inter-trial interval before the next
cue started.

After completion of training, participants performed a block of Im-
agery task SRTT in which the audio-visual cues were presented exactly as
they had been during Motor training, but participants remained immo-
bile, simply imagining they were pressing each button when cued. The
Imagery session comprised 7 blocks of 10 sequence repetitions, and the
EEG data from the Imagery session, which was free of motion artefacts,
was used to train and test our classifier. Tone onsets were 1,500ms apart.

We recorded event-related potentials (ERPs) from 70 sequences in
both Motor and Imagery tasks in 15 experimental participants. Due to
noise on the trial-marker channel, two participants had lower trial
numbers, thus ERPs from only 50 sequences were extracted from the
Motor task in one, while only 60 sequences were extracted from the
Imagery task in another.

During subsequent stable SWS and N2 sleep, tones were played softly
(approximately 48 dB) in blocks of 5 sequence repetitions. Tones were
spaced 1,500ms apart. Each reactivation block took 1.5min
(5� 12� 1,500ms), and was followed by 2min without reactivation.
Reactivation was paused immediately upon signs of changes in sleep
stage or arousal.

We performed TMR during SWS (79� 38 sequences) in all 15 par-
ticipants, and during N2 (83� 45 sequences) in only 14 of these partic-
ipants due to an experimenter error. TMR stimulation lasted 65%� 25%
(mean� SD) of the time between initial sleep and final awakening (total
night time). Although stimulations in SWS and N2 were highly inter-
leaved, SWS TMR time was earlier on average, mean 36%� 26% of total
night time, than S2 stimulation time, mean 53%� 14%, t (13)¼ 4.461
p¼ 0.001. The precise numbers of sequences presented to each partici-
pant before sleep, during SWS or N2, and post-sleep is shown in Table 1.

The Motor task was repeated in the morning after the sleep experi-
ment for 11 of the 15 participants in order to provide a measure of
behavioural plasticity across the sleep epoch. Note that we did not collect
these data in the first 4 participants.

Control task: To demonstrate that it was not possible to classify the
brain activity associated with simply hearing tones in the absence of any
procedural learning, fifteen volunteers who were naïve to the experiment
and task listened to the tones associated with the Imagery task with no
visual input. The tone sequences were presented 140 times, which is
equivalent to the total number of sequences presented during both Motor
and Imagery tasks together, with a timing equivalent to that in the main
experiment.
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Behaviour

Our primary behavioural measure was the composite score (CS) of
both response times (RT) and accuracy, CS¼ RT/accuracy (Bruyer and
Brysbaert, 2011; Jackson et al., 2015), which was calculated using the
mean values of each block of 10 sequences. Paired sample t-tests were
used for the comparisons, except when the Shapiro-Wilk tests indicated a
non-normal distribution, in which case Wilcoxon signed-rank tests were
used. To minimise the contribution of outliers, we eliminated the trials in
which the RT was greater than 1000ms.

To determine whether there was a relationship between initial
learning and the extent of reactivation in response to TMR (as deter-
mined by the CCR), we calculated a measure of initial learning strength
by taking the difference between the first and last blocks of the Motor
SRTT pre-sleep. We further investigated the relationship between the
overnight improvement and the extent of reactivation. Overnight
improvement was quantified using the difference between the last block
of Motor SRTT pre-sleep and the first block of Motor SRTT post-sleep. We
studied the above correlations during SWS and N2.

EEG recording and analysis: We used an Embla N7000 poly-
somnography system with a 16 bit resolution and 200Hz sampling rate.
Acquisition filters were 0–400Hz for bipolar and 0.3–400 Hz for
monopolar, with a 50Hz power line filter. Scalp electrodes were attached
according to the 10–20 system at sixteen standard locations: F3, F4, C5,
C3, Cz, C4, C6, CP5, CP3, CP4, CP6, P7, Pz, P8, O1, O2, and all referenced
to the combined mean of left and right mastoid. Left and right electro-
oculogram, left and right electromyogram, and a forehead ground elec-
trode were also attached. Impedance <5 kΩ was verified at each
electrode, and the digital sampling rate was 200Hz throughout the
experiment. Data were scored by a trained sleep researcher according to
the AASM Manual (American Academy of Sleep Medicine, Westchester,
IL). Prior to the classifier analysis, Artefacts in the EEG data resulting
from blinks, saccades or 50 Hz electrical noise were removed using In-
dependent Components Analysis (ICA) (Jung et al., 2000).

The experimental paradigm was programmed in MATLAB 6.5 (The
MathWorks Inc., Natick, MA, 2000) and Cogent 2000 (Functional Im-
aging Laboratory, Institute for Cognitive Neuroscience, University Col-
lege London). Sounds were presented via Sony noise cancelling
headphones MDR-NC7 (with noise cancelling turned off) during the



S. Belal et al. NeuroImage 176 (2018) 203–214
learning session and via PC speakers positioned under the bed head
during sleep reactivation.
Classifier analysis

We aimed to create an EEG classifier which could identify the neural
activity associatedwith each of the 5 possible classes (one for each finger,
and one for baseline EEG – or a failure to reactivate), and then apply this
to the EEG data collected after each TMR tone (Fig. 2). To create the
classifiers, we extracted specific features from the EEG obtained for each
trial in both Motor and Imagery tasks. We then performed feature se-
lection to reduce the dimensions of the data and to maximise classifica-
tion accuracy of the weak signals embedded in noisy EEG data. We
adopted a hybrid feature selection algorithm consisting of two stages.
First, a filter mechanism stage ranked features based on joint mutual
information (Yang and Moody, 1999). Next, a wrapper mechanism
searched for the best subset of these features, maximising classification
accuracy. We trained Linear Discriminate Classifiers (Heijden et al.,
2004) and tested them using the Imagery task EEG recordings. We then
applied the trained classifiers to the EEG recorded after each TMR event
in sleep to determine whether it was possible to detect memory reac-
tivation by correctly determining which finger press had been cued. We
compared the mean classification rates for TMR applied in N2 and SWS.
Finally, we examined the effect of repeated TMR upon classification rate.
Each of these steps is described in more detail in the following.

The Classification of Motor and Imagery EEG:Data from the Motor
and Imagery tasks were analysed separately, but using an identical
method. We segmented the EEG data into epochs of 1,500ms with
stimulus onset at 500ms. Each epoch was baseline corrected by sub-
tracting the mean of 500ms of pre-stimulus EEG from the remaining
1,000ms. As visual inspection showed that the averaged ERPs at
ftrial; WT ¼ �
D2;ch1;D3;ch1;D4;ch1;D;5;ch1;D2;ch2;D3;ch2;D4;ch2;D;5;ch2;…D2;ch16;D3;ch16;D4;ch16;D;5;ch16

�
(1)
different electrodes occurred during the first 400ms post-stimulus, we
used the 400ms directly after each TMR cue for the analysis of that trial.
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Importantly, in addition to the four classes relating to the four finger cues
we formed a fifth (null) class representing ‘no TMR cue’, using randomly
chosen 400ms EEG segments from the 2-min inter-block intervals. The
trials of the fifth class were baseline corrected, as in the other four classes,
by subtracting the mean of the 500ms preceding EEG. Each trial was
assigned a label ωi, where iεf1;2;::;5g. Trials were randomly divided into
two sets: training <training (60%) and evaluation <evaluation (40%), with the
number of trials for each class kept equal across sets to maintain balance
during training and evaluation. We extracted three families of features
from the training and evaluation sets to obtain a comprehensive
description of the EEG data: discrete wavelet transform (DWT) features,
spectral features, and time domain features (the down-sampled average
EEG), as explained below.

Discrete Wavelet Transform features: The discrete wavelet trans-
form has many advantages over other conventional spectral methods for
processing EEG signals. It provides an optimal resolution in both time and
frequency domains, and the condition of signal stationarity is not a
requirement (Graps, 1995). This latter advantage is important since the
EEG exhibits a non-stationary behaviour in a variety of contexts (Krystal
et al., 1999). Therefore, wavelet analysis using a Daubechies-4 (DB4)
wavelet (Daubechies, 1988) was used to decompose the EEG data from
each electrode into five different levels of approximation (A1-A5) and
detail coefficients (D1-D5). The frequencies corresponding to different
levels of decomposition are presented in Table 2, which shows that the
frequency range of the detail coefficients at level 5 (D5) is within the
theta range (4–8 Hz), D4 is within the alpha range (8–13 Hz), D3 is
within the beta range (13–30 Hz) and D2 is within the low gamma band
(25–50Hz). To maintain a good signal-to-noise ratio, the analysis was
limited to the detail coefficients of frequencies up to 50Hz. Therefore,
the detail coefficients at levels 2 to 5 extracted from each EEG channel
were concatenated to form the DWT features vector:
Fig. 2. Flow diagram of the classifier pipeline. We
trained the classifier with EEG data from the wakeful
imagery task (bluish colours), next we used EEG data
from sleep (orange colours) to feed the trained algo-
rithm and calculate the final accuracy results (purple
colours). From the imagery data we extracted 3 types of
features (temporal, spectral and wavelet-based features)
that divided into training and testing sets were used to
train the classifier after a selection process to reduce the
number of features. The ranking and selection of fea-
tures was done using join mutual information (JMI)
algorithm and a wrapping methodology. Once the
classifier (LDC) was trained we extracted the same type
of features from the sleep dataset and used them to feed
the trained classifier. An additional control step (per-
mutation of labels) was added to be sure that the clas-
sification rates were not due merely to the chance
probability.



Table 2
The frequencies corresponding to different levels of decomposition for
Daubechies-4 (DB4) filter wavelet with a sampling frequency of 200 Hz.

Level Frequency Range of the Detail
(Hz)

Frequency Range of the Approximation
(Hz)

1 50–100 0–50
2 25–50 0–25
3 12.5–25 0–12.5
4 6.25–12.5 0–6.25
5 3.125–6.25 0–3.125
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where ftrial; WT signifies ‘wavelet features for each trial’, and
as an example; D2;ch1, means ‘Detail coefficient 2, Channel 1’.

Spectral features: The Power Spectral Density (PSD) techniques for
spectral signal representation have been demonstrated to be robust and
consistent for classification for Motor Imagery EEG data (Herman et al.,
2008). We computed power spectra by using the Welch's modified
periodogram method (Welch, 1967), in which the EEG on each electrode
was divided into overlapping segments each having 64 samples with an
overlapping ratio of 90%. The segments were then weighted by a Han-
ning window function to reduce spectral leakage. Fourier transform was
applied on the windowed segments to obtain the power density values,
which were then averaged. The average power in the bands theta (4–8)
Hz, alpha (8–12) and beta (16–24) Hz was obtained from a rectangle
approximation of the integral of the signal's PSD.

For each EEG trial, we concatenated the computed spectral average
power values from each EEG channel to form the spectral features vector:
ftrial; Spect ¼
�
powerθ;ch1; powerα;ch1; powerβ;ch1; powerθ;ch2; powerα;ch2; powerβ;ch2;…powerθ;ch16; powerα;ch16; powerβ;ch16

�
(2)
Where ftrial; Spect signifies ‘spectral features for each trial’, where as an
example, powerθ;ch1 means theta power on channel 1.

Time-domain features: In order to include time domain information,
we averaged the raw EEG signal on each channel (EEGch) using a moving
window of length N ¼ 4.

avgEEGch½n� ¼ 1
N

XnþN�1

n

EEGch½n� (3)

where avgEEGch signifies ‘averaged EEG features’.
Next, we down-sampled the averaged EEG by a factor of four. For

each EEG trial, we concatenated the down-sampled EEG to form the
features vector:

ftrial;avgEEG ¼ favgEEGch1; avgEEGch2;…; avgEEGch16g (4)

where ftrial;avgEEG signifies ‘downsampled EEG features for each trial’,
where as an example, avgEEGch1 means average EEG on channel 1:

The EEG in <training and <evaluation was now represented by two feature
matrices in which each row corresponds to a trial, and it consists of the
concatenation of the DWT, spectral and time domain features. For each
trial, 1344 features were extracted (992 DWT features, 48 Spectral fea-
tures and 304 Time-domain EEG features) each occupying a separate
column. Features in the training and evaluation sets were then normal-
ised to zero mean and unit variance.

Feature Selection: The values of each feature vector were transferred
into three levels using quantile-based discretization. The features were
then ranked using the joint mutual information method (Yang and
Moody, 1999). The criterion for ranking features in this method provides
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the best trade-off in terms of accuracy, stability, and flexibility with small
data samples (Brown et al., 2012).

Next, feature subsets were sequentially chosen in a forward manner
from the ranked features, a normal-density-based linear discriminant
classifier was trained using the features of each subset, and the classifier's
error rate was calculated. The initial subset contained the first two
ranked features. New features were added to this initial subset if they led
to a smaller error rate, but were otherwise discarded. This produced a
monotonically decreasing error rate curve and an optimal feature subset.
We used 10-fold cross validation (Kohavi, 1995) to evaluate each clas-
sifier. A normal-density-based linear discriminant classifier, which is
widely used in EEG classifications, was used because it makes the pos-
terior probabilities for each class available for further manipulation.

Once the optimal set of features for classification was chosen through
feature selection, we calculated the performance of each classifier using
<evaluation. We used the correct classification rate (CCR) as a metric for
evaluation. This was calculated as: ðNCorrect=NTotalÞ� 100 %. Where
NCorrect is the number of correctly classified trials, and NTotal is the total
number of trials to be classified.

In order to estimate the classification rate more robustly, we repeated
the complete process five times, randomly selecting the training and
evaluation sets each time. We then calculated the average evaluation
classification performance and its standard deviation. Due to large inter-
subject variability in the EEG, both feature selection and classifier
training were conducted separately for each participant, such that each
participant had their own individual classifier.
Classification of sleep EEG: We first developed classifiers for the
Motor task, where we expect movement related potentials to greatly
facilitate classification. We tested these classifiers on 40% (held out, e.g.
not used for training the initial classifier) of the data. Next, we trained
completely new classifiers on data from the Imagery task, as we expected
these data to be more similar to what would be observed in sleep. We
again tested these classifiers on 40% (held out) of the data. Next, we
applied the Imagery Task classifiers to EEG data recorded during sleep to
determine whether TMRs during sleep could be identified by classifica-
tion. To do this, we performed an analysis similar to that used when
applying classifiers to the held out Motor and Imagery data. However, in
Sleep data, due to uncertainty about the timing of reactivation after the
tone, the extraction process was repeated n¼ 120 times using a sliding
window of length W¼ 400ms, and step size 5ms in order to maximise
the chance of capturing a reactivation that could occur at any time during
the 1,000ms after the tone. We then normalised the features extracted
from the data. Finally, we applied the trained Imagery classifier to the
normalised features extracted from each lag time, and obtained the class
associated with each lag.

As a result, for each trial we obtained a vector containing n¼ 120
values for the class prediction (class label), each being: C 2 fωigKi¼1,
where K¼ 5. In a modified majority voting strategy, the class label with
longest uninterrupted run, based on the process described below, was
chosen as the predicted class of that trial.

As the response to the stimuli may occur at different points of time
post-stimuli, we sought an optimal window for voting. We used 12
windows (subsets) of the 120 lags, shifting the start of each window by
10 lags. Thus, the first window contained the lags 1–120, the second
window 10–120, the third 20–120, and the 12th window contained the
lags 110–120.

For each participant, this process was applied to the entire data set
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(all sequences). We then chose the window which corresponded to the
highest classification rate across all trials for each participant as our
classification window. Because classes were never repeated adjacently
(e.g. class 1, class 1) in the trained sequence, classification predictions
were constrained such that if such a repetition was chosen initially, the
classifier was forced to choose the second-choice class, e.g. the class with
the next longest run within the window.

To determine whether classification was above chance, we used a
permutation test (Hesterberg et al., 2010; Lehmann and Romano, 2014).
This consists of randomly shuffling the labels of the sleep trials and then
calculating a new classification rate (‘random CCR’) for the shuffled data
using the same set of features as selected before. The classification rate
using the true labels, as calculated by sampling 50% of the data 1000
times and obtaining the mean, was compared against the ‘random CCR’
rates. A p-value for each participant was determined by counting the
number of times that there was higher (or equal) classification accuracy
in the shuffled data than in the true labels. Importantly, for each ran-
domisation, we used the time window with the highest classification for
the features of the shuffled labels, just as we had done for the true labels.

Consistency of selected features

We sought to identify the most important features and electrodes by
investigating the frequency of their selection (by the feature selection
stage) at each of the 5 training sessions of the Imagery classifier.

To determine which were the most important down-sampled EEG
features, the number of times each feature was selected across the 5
sessions for each participant was placed in a 2D-matrix, ‘feature selection
matrix’, Xðn� mÞ, where n is the number of participants and m is the
number of features. The columns of X were grouped separately into a
multilevel cluster tree or “dendrogram” using hierarchical clustering. The
Euclidian distance between pairs of features was calculated and the
linkage criterion was the mean, in which the distance between two
clusters is defined as the average distance between all pairs of the two
clusters' members.

To determine which electrodes were most useful in classification, we
applied the same approach by replacing the variables representing the
rate of appearance of the features, X, by the frequency of the appearance
of the electrodes.

We calculated the rates with which the four frequency bands of the
DWT (25–50, 12.5–25, 6.25–12.5 and 3.125–6.25 Hz) were selected
across participants, and then used a Friedman test to check for differ-
ences. Pairwise comparisons then established which bands were most
useful for classification.

We followed a similar approach for spectral feature bands and for the
type of features (feature families) selected by the training sessions. We
also repeated the above analysis for the control data to see if there was
any difference in the selected features.

Control group

It was important to establish that the classifier was identifying the
reactivation of memories associated with the stimuli and not just clas-
sifying auditory responses to the tones. In order to test this, we recorded
data from 15 participants who were not aware of the underlying task or
the purpose of the experiment. Participants listened to the same tones as
had been presented in the ‘Motor’ and ‘Imagery’ tasks but without any
visual stimuli or motor response. We then applied the classification
analysis to the second block (equivalent to ‘Imagery’) in exactly the same
way as it had been applied to the data collected from the original Imagery
and Motor task. A total of 1680 trials were recorded from each of the 15
Control participants. From the second block of exposure, 60% of the trials
were used for training and 40% for evaluation. We repeated the process
of randomly sampling these percentages and training/testing the classi-
fier and calculating the CCR 5 times (same as in the Experimental con-
dition for the Imagery and Motor tasks) in order to provide a distribution
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of results for each participant.
To determine whether the CCR was above chance, we created a

‘random CCR’ by randomly shuffling the labels of the 40% of the Control
data that was designated for test 1000 times and then applying the 5
trained classifiers described above. We then compared the 5 random CCR
results with the average value of the 5 CCR results for the correctly labelled
trials to determine if classification in the latter was above chance, using the
same method described above for classifying the sleep EEG.

Results

Behaviour. To determine whether more intensive learning was
associated with a greater classification rate for TMR cued reactivations
during subsequent sleep, we computed a measure of initial learning by
calculating the change in performance using composite score
(CS¼ speed/accuracy) between the first and last test blocks of the pre-
sleep Motor task (Bruyer and Brysbaert, 2011; Jackson et al., 2015).
One participant was excluded due to performance decrease across
training which indicated disengagement from the task. In the remaining
participants, there was a significant improvement across training, CS
(paired samples t (10)¼ 5.278, p¼ 0.001) (see Fig. 1C for CS learning
curve), however a Pearson correlation between the extent of improve-
ment across training and CCR during SWS revealed no significant rela-
tionship (r¼ 0.434, p¼ 0.182). Examination of performance change
across sleep revealed the expected improvement, CS (paired samples t
(10)¼ 4.904, p¼ 0.001), (Fig. 1C), however a Pearson correlations be-
tween CCR in SWS and this improvement revealed no significant rela-
tionship (Pearson r¼�0.510, p¼ 0.109). See Inline Supplementary
Table 1 for performance on CS, RT, and Accuracy and see Inline Sup-
plemental figure 1 for RT and Accuracy learning curves.

Inline Supplemental Figure 1: Learning curves for A) RT, B) Accuracy,
and C) Composite score are plotted against block number. Blue represents
pre-sleep training, while orange represents post-sleep testing.

Repeating the above behavioural correlation analyses in participants
who completed the post-sleep behavioural tasks and also exhibited an
above chance CCR in N2 showed no significant correlations between
either initial learning or overnight improvement and N2 CCR. This could
be due to the small sample size (n¼ 5).

Sleep measures

Polysomnography showed normal sleep architecture, with mean du-
rations (minutes) in each sleep stage as follows: N1: 25.5� (21.6)
(mean� SD); N2: 253.4� (68.4); N3: 70.3� (32.0); REM: 70.9� (24.9);
Wake: 35� (33.2), total sleep time 420� (35), and a mean sleep effi-
ciency of 92.2 (8.2)%. Stanford sleepiness scores showed no difference in
sleepiness levels between morning 3.11 (0.78) and evening 3.67 (1.66)
sessions (p¼ 0.262, Wilcoxon signed-rank test). Note that polysomno-
graphic data were lost for one participant, and Stanford Sleepiness Scale
data were lost for 3.

Classification of Motor and Imagery EEG: Both Motor and Imagery
classifiers categorised trials at a high correct classification rate (CCR) of
0.70� 0.12 (mean� SD) for Motor and 0.57� 0.16 for Imagery,
(Fig. 3A). Note that chance was 0.20 due to the five possible classes. CCRs
for each participant are shown in Table 3. To ensure that this mean
classification rate was not driven by detection of the fifth (‘no cue’) class,
we separately examined mean classification of the four tone-related
classes, which was well above chance with a CCR of 0.67� 0.15 for
Motor and 0.54� 0.18 for Imagery. Unsurprisingly, classification of the
fifth class was even higher, with a CCR of 0.82� 0.10 for Motor and
0.67� 0.15 for Imagery, indicating that our classifier can very success-
fully determine whether or not a tone was present.

Classification of Sleep EEG: We applied the classifier that had been
trained on Imagery task data to one second of EEG after each TMR tone in
sleep. Due to uncertainty about when reactivation occurs after the TMR
cue, we repeated feature extraction 120 times using a sliding window of



Fig. 3. Behavioural results. (A) Correct classification rate (CCR) in the Motor and Imagery experiments shown as mean and standard error (SE). (B) Correct classi-
fication rate for SWS, N2 and Control and their corresponding random classifiers, shown as mean and SE.

Table 3
Motor and Imagery tasks classification.

Participant Number of Trials Evaluation CCR Number of Selected Features

Mean SD Mean Minimum maximum

Motor Task 1 1050 0.73 0.01 29 21 35
2 1050 0.84 0.02 47 39 52
3 1050 0.76 0.02 39 37 42
4 1050 0.58 0.04 30 24 40
5 1050 0.66 0.02 34 29 37
6 1050 0.73 0.02 31 28 34
7 1050 0.40 0.02 23 18 29
8 1050 0.76 0.02 30 24 38
9 1050 0.65 0.03 37 32 48
10 750 0.64 0.03 25 16 31
11 1050 0.54 0.02 32 25 39
12 1050 0.71 0.03 39 31 49
13 1050 0.82 0.02 41 30 53
14 1050 0.83 0.03 30 16 39
15 1050 0.84 0.01 36 29 44

Imagery Task 1 1050 0.50 0.04 27 21 36
2 1050 0.63 0.03 29 18 38
3 900 0.68 0.04 32 21 39
4 1050 0.47 0.03 26 20 32
5 1050 0.35 0.02 22 15 33
6 1050 0.51 0.04 30 19 34
7 1050 0.30 0.05 18 12 25
8 1050 0.56 0.02 27 20 36
9 1050 0.61 0.02 30 25 34
10 1050 0.56 0.03 29 23 42
11 1050 0.38 0.02 13 9 16
12 1050 0.65 0.03 41 38 46
13 1050 0.84 0.02 29 23 33
14 1050 0.81 0.02 45 41 48
15 1050 0.69 0.02 15 10 17

The average correct classification rate (CCR) of the evaluation ERP data for the Motor and Imagery tasks. Classifiers were trained using randomly selected subsets (60%
of the data) and this was repeated 5 times. The trained classifiers were applied on the unseen evaluation data (40% of the data). SD: is the standard deviation over the 5
repeats.
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400ms. In a modified majority voting strategy, the class label with the
longest uninterrupted run over the 120 extractions was chosen as the
predicted class of that trial.

In SWS, classification was significantly above chance in all 15 par-
ticipants (t (14)¼ 7.91, p< 0.0005), with a group mean CCR of
0.25� 0.03. In N2, classification was more variable, with above chance
performance in only 5 of the 14 participants with TMR applied in N2, and
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a group mean of 0.20� 0.02 which did not differ from chance (t
(13)¼ 0.79, p¼ 0.44); see Table 4.

To ensure that above-chance classification rates were not driven by
class 5, we examined classification of the four tone-related classes, which
were again well above chance in SWS, with a CCR 0.23� 0.02 > 0.20, t
(14)¼ 6.64, p< 0.0005). CCR for the fifth class was also high
(0.28� 0.13> 0.20, t (14)¼ 2.38, p¼ 0.032< 0.05). In N2, the figure



Table 4
Sleep (SWS and N2) classification rates.

Sleep
Stage

Participant The start of
the window
(ms)

CCR� SD p-value

Classifier Random
Classifier

SWS 1 50 0.28� 0.02 0.21� 0.02 0.004
2 550 0.24� 0.01 0.20� 0.01 0.002
3 400 0.25� 0.02 0.19� 0.02 0.017
4 1 0.27� 0.01 0.20� 0.01 <0.001
5 1 0.24� 0.02 0.19� 0.02 0.018
6 1 0.28� 0.01 0.21� 0.02 <0.001
7 450 0.21� 0.02 0.19� 0.02 0.040
8 450 0.24� 0.02 0.19� 0.02 0.004
9 200 0.26� 0.01 0.21� 0.01 <0.001
10 300 0.25� 0.01 0.21� 0.02 0.016
11 550 0.22� 0.01 0.20� 0.01 0.030
12 550 0.23� 0.01 0.19� 0.02 <0.001
13 500 0.23� 0.01 0.20� 0.1 0.02
14 100 0.30� 0.02 0.20� 0.03 0.001
15 100 0.25� 0.02 0.20� 0.03 0.011

N2 1 No data
2 500 0.21� 0.01 0.20� 0.02 0.070y
3 500 0.22� 0.02 0.21� 0.01 0.043
4 500 0.22� 0.01 0.20� 0.02 0.004
5 50 0.21� 0.01 0.19� 0.01 <0.001
6 80 0.19� 0.01 0.20� 0.02 0.060y
7 100 0.18� 0.01 0.21� 0.01 <0.001y
8 50 0.21� 0.02 0.20� 0.01 0.039
9 110 0.20� 0.01 0.20� 0.02 0.131y
10 110 0.16� 0.02 0.18� 0.03 <0.001y
11 80 0.20� 0.01 0.20� 0.02 0.245y
12 550 0.21� 0.02 0.19� 0.02 0.044
13 450 0.21� 0.02 0.20� 0.02 0.316y
14 450 0.22� 0.01 0.20� 0.02 0.085y
15 550 0.21� 0.01 0.20� 0.02 0.241y

Statistical comparisons between the mean correct classification rate (CCR) of the
TMR cued reactivations during sleep (SWS and N2) and the CCR of a random
classifier. The mean and standard deviation of the classifier's CCR were calcu-
lated after sampling the data (50%) 1000 times. For the random classifier, the
class-labels were randomly shuffled before sampling. The start of the window
corresponds to the sample index at which the optimal window for voting was
chosen (see the materials and methods section). Cases in which no above chance
classifier was found are indicated by ‘y’.
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was 0.19� 0.03 < 0.20, t (13)¼�7.74, p¼ 0.427 for the four tone
classes combined, and (0.27� 0.09> 0.20, t (13)¼ 2.684,
p¼ 0.019< 0.05) for the fifth class.

As a further control, we compared the CCR from SWS and N2 with a
‘random CCR’, created by shuffling the trial labels. This showed greater
group mean CCR for SWS (t (14)¼ 10.79, p< 0.0005), but not for the N2
classifiers (p¼ 0.242, Wilcoxon signed-rank test) when compared to
random, Fig. 3B and Table 4. However, the group mean CCR of the 5
above-chance N2 classifiers was different from random CCR (p¼ 0.038,
Wilcoxon signed-rank test).

Furthermore, CCRs showed greater classification success in SWS than
N2, both when all N2 participants were included (t (13)¼ 6.464,
p< 0.0005), and when only above-chance classifier N2 participants were
considered (p¼ 0.039, Wilcoxon signed-rank test). The application of
TMR cues to SWS and N2 was interleaved across the night, but N2 TMR
nevertheless occurred later on average (see methods). To determine
whether the lower classification success in N2 related this later TMR
application, we correlated CCR for SWS and N2 with mean TMR time for
SWS and N2, but found no trend (p¼ 0.943 and p¼ 0.537 respectively).

Classification of Control stimuli: Fifteen Control participants listened
to the same auditory sequence as experimental participants, but without
having learned any association between these and visual display or
movement. Classification of the four tones was at chance level
(CCR¼ 0.20� 0.01, t (14)¼�1.31, p¼ 0.211), indicating that our
classifier cannot discriminate between these tones unless associated with
other information. As expected, CCR of the fifth class was above chance,
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(0.55� 0.01> 0.20, t (14)¼ 14.02, p< 0.0005), indicating that the
classifier can successfully detect the presence of a tone.

We also performed a second control analysis by comparing the CCR
rates for the 4 tones and the background EEG with no tone presented to
CCRs generated by randomly shuffling the trial labels. Permutation tests
showed no difference between the correctly labelled and the random
classifier in any Control participant, (p> 0.05 in all 15 cases). This result
was also supported by a group comparison of the CCR for the four tones
and their corresponding random CCRs (t (14)¼ 0.068, p¼ 0.947,
Fig. 3B). This again demonstrates that our classifier could not discrimi-
nate between the four tones unless they were associated with learned
material.

Notably, the random CCR of the fifth class (background EEG) was
artificially inflated through a bias towards the classification of all trials as
background, and was thus above chance (0.28� 0.02> 0.20, t
(14)¼ 14.415, p< 0.0005). Irrespective of this artificial boosting, the
random CCR was still significantly lower than the CCR of the control
EEG, so despite this response bias, the classifier could discriminate be-
tween EEG and tone presentation.

Consistency of features and electrodes used for classification

To determine which features were most useful for classification, we
asked how often each feature in each of the three families of features
(DWT features, spectral features, and time domain features) was selected
by the feature selection stage. Feature selection rates were then
compared both between and within families. This was repeated for the
Imagery classifier and Control classifiers.

The selection rates of the three families of features differed signifi-
cantly: Imagery classifier Friedman's χ2 (2, N¼ 15)¼ 24.13, p< 0.001
and Control-trained classifier, Friedman's χ2 (2, N¼ 15)¼ 26.27,
p¼ 0.001< 0.05, and all possible pairs of families differed from each
other: Imagery post-hocWilcoxon p< 0.05, and Control-trained classifier
post-hoc Wilcoxon p< 0.05.

Interestingly, in the Imagery classifier, which easily distinguished
between the four finger classes, the DWT features were consistently the
most commonly selected. In the Control classifier, which could only
distinguish between presence and absence of a tone, the down-sampled
average EEG features were most commonly selected, see Fig. 4.
Furthermore, within the DWT family, there was no statistical difference
in the selection of the coefficients of the different frequency bands
(Friedman's χ2 (3, N¼ 15)¼ 6.3, p¼ 0.098). This was not the case for the
coefficients selected by the Control classifier (Friedman's χ2 (3,
N¼ 15)¼ 18.84, p< 0.001). The coefficients of higher frequencies
(25–50Hz) were more commonly selected in the Control classifier
(Wilcoxon, p< 0.05) while the lower frequencies (3.125–6.25 Hz) were
the least selected (Wilcoxon, p< 0.05).

Within the time domain family, the 19 features were selected at
different rates in both Imagery and Control classifiers, Friedman's χ2 (18,
N¼ 15)¼ 51.42, p< 0.001 and χ2 (18, N¼ 15)¼ 82.95, p< 0.001,
respectively. Hierarchical clustering showed that features 4, 5, 6, 7, 8, 10
and 12, were the most selected for the imagery trials while features 1 to 8
were themost selected for the control trials, with feature 8 being themost
frequent in both. The time domain features 4, 5, 6, 7, 8, 9 and 10 rep-
resented the amplitudes of the elicited ERP in the interval 40–200ms
which captured the P1 and N1 components of the ERP. Because the time
domain feature family was consistently the most useful in the control
classifier, and because the classifier could detect the presence or absence
of a tone but nothing more, this finding suggests that the ERP peaks were
useful for such determinations.

Within the spectral features family, which was the least consistently
used by both classifiers, both 4–8 and 8–12Hz bands were most
frequently selected in the Imagery classifier Friedman χ2 (2,
N¼ 15)¼ 5.35, p¼ 0.067> 0.05 whereas only 4–8 Hz was frequently
selected in the Control classifier (Friedman χ2 (2, N¼ 15)¼ 27.1,
p¼ 0.001< 0.05; Wilcoxon, p< 0.0005).



Fig. 4. Frequency of selecting each family of features. After the feature extraction stage, a feature selection process determines which features were most suitable
for classification. The X-axis (# Times Selected) represents the number of times each feature family appeared across participants. Y-axis (% participants) shows the
proportion of participants in whom that particular number of features was selected.

Fig. 5. Electrode selection. (A) A plot of the frequency
of selecting each of the 16 electrodes for the Imagery
classifier. This was determined by accounting for each
time a feature belonging to a particular electrode was
selected by the classifier. The more often an electrode
was selected (# Times Selected) across a large propor-
tion of the participants (Proportion of Participants is
indicated by the colour bar), the more important the
electrode was deemed. This was objectively determined
using hierarchical clustering (B).

Table 5
The correlation between the CCR and the repetitions during SWS and N2.

Participant SWS N2

r p-value r p-value

1 �0.16 0.001 ↓* No Data
2 �0.35 <0.001 ↓* �0.21 <0.001 ↓*y
3 �0.49 <0.001 ↓* 0.69 <0.001 ↑*
4 �0.85 <0.001 ↓* �0.25 <0.001 ↓*
5 �0.43 <0.001 ↓* 0.59 <0.001 ↑*
6 �0.36 <0.001 ↓* 0.41 <0.001 ↑*y
7 �0.68 <0.001 ↓* �0.75 <0.001 ↓*y
8 0.34 <0.001 ↑* �0.08 0.054 ↓
9 �0.50 <0.001 ↓* �0.16 <0.001 ↓*y
10 0.02 0.588 ↑ �0.72 <0.001 ↓*y
11 �0.67 <0.001 ↓* 0.56 <0.001 ↑*y
12 �0.41 <0.001 ↓* �0.76 <0.001 ↓*
13 �0.79 <0.001 ↓* �0.85 <0.001 ↓*y
14 �0.62 <0.001 ↓* �0.68 <0.001 ↓*y
15 �0.12 0.004 ↓* �0.40 <0.001 ↓*y

The arrows indicate the direction (positive or negative) of the correlations, ‘*’
significant correlations (p < 0.05), and ‘y’ classifier is not above chance.
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To determine which electrodes out of our array of 16 provided the
most useful information for classification, we repeated the above analysis
now considering the electrodes at which features were selected. This
revealed a consistent difference in the number of times specific elec-
trodes were selected in both Imagery, Friedman's χ2 (15, N¼ 15)¼ 39.3,
p< 0.001 and Control data, Friedman's χ2 (15, N¼ 15)¼ 58.29,
p¼ 0.001< 0.05. Hierarchical clustering showed that electrodes F3, F4,
P7, P8, Pz and C5 (Fig. 5), and F3, F4, C3, C4, C5, C6, Cz and P8 were the
most frequently selected for the Imagery and Control trials, respectively.
P8 was the most frequently selected in the Imagery trials and Cz in the
Control trials.

The effect of multiple TMR repetitions on classifier performance

We next set out to determine whether classification strength changed
across repeated TMR events. We calculated classifier performance for
each participant using a sliding window of 240 trials in length, in which
we averaged across 240 trials and then slid the window forward to
average again. This revealed a significant (p< 0.001) decrease in CCR
across repetitions during SWS in 13 of 15 participants. In N2, decrease
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across TMR repetitions was significant (p< 0.001) in only 2 of the 5
participants who showed above chance classification, Table 5 and Inline
Supplemental Figure 2.

Inline Supplemental Figure 2: Representative plot of how classifier
performance decreased across TMR repetitions. The CCR was calculated
as the mean across 240 trials in a window that was slid forward in iter-
ative steps. The x axis shows the trial number of this sliding window. The
Y axis shows the mean CCR for the window.

Discussion

We have developed a non-invasive method for identification of neural
reactivation in sleep, demonstrating as a proof of principle that it is
possible to detect TMR cued reactivations of a procedural memory task
above chance level using EEG classifiers. Through applying this method,
we provide critical support for the occurrence of memory reactivation
during human sleep, and for the triggering of such reactivation with
TMR. We also show that repeated triggering of reactivation in SWS re-
sults in a gradually decreasing classification rate. Because our method
uses EEG data, which is standardly recorded during sleep experiments,
we hope it may provide a useful tool for future examinations of memory
consolidation in sleep.
Classifiers

Our classification pipeline was specifically tailored to identification of
TMR trials during sleep. We used an array of 16 electrodes; however,
post-hoc analyses revealed that only a subset of these were consistently
useful for classification. Because our task requires integration of visual,
auditory, and motor information it seems plausible that the utility of
parietal electrode P8 for classification of imagery trials in the majority of
participants may be due to the cross-modal integration function of this
area. We selected which families of features to include based on the
nature of the EEG signals and the characteristics of the classes we were
aiming to predict. EEG signals are non-stationary, and we had to consider
the possibility that responses to TMR during sleep could be a compressed
version of responses during wake. The coefficients of the wavelet trans-
form, the spectral power, and the ERPs were therefore all potential
candidate features; however, it was interesting to note that the wavelet
transform and ERP families consistently provided useful information,
while the spectral power did not. It is similarly noteworthy that the lower
frequency information which characterises sleep was consistently useful
in classification, while high frequency information was not.
Decay of classification rate

Our observation that the rate of classification decays across repeated
TMR applications in SWS can be interpreted in two different ways. First,
once they have been reactivated a certain number of times in a night,
memories may no longer be as likely to reactivate in response to TMR.
This idea is in keeping with the observation that neural reactivation in
rats declines sharply across the first hour of sleep (Tatsuno et al., 2006),
and could occur because memories have been processed to a sufficient
degree, see (Vyazovskiy and Delogu, 2014), or even to the maximal de-
gree possible in one night. Alternately, our finding could suggest that the
neural signature of reactivation evolves across TMR events, such that it
eventually does not fit the classifier we developed before sleep, an
explanation which could also be relevant for this effect in
template-matching based reactivation studies in rats (Tatsuno et al.,
2006). This latter idea builds on neuroimaging data (Durrant et al., 2012;
Gais et al., 2007; Sterpenich et al., 2007; Takashima et al., 2006; Walker
et al., 2005) showing that the neural signature of remembering is
different after sleep, and this plasticity often relates to the amount of SWS
obtained.
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SWS vs N2

We observed a significantly higher classification rate in SWS than N2,
although it is noteworthy that 5 out of 14 participants tested did exhibit
classification significantly above chance in N2. The higher classification
rate in SWS could potentially be due to occurrence of S2 TMR cues later
in the night than SWS TMR cues. As discussed above, classification rates
decrease across TMR repetitions. Given this pattern, cues occurring later
in the night might be expected to be less successfully elicit reactivation.
We tested for a relationship between mean TMR time and classification
rate, but found no evidence of a correlation for either SWS or N2. If the
lower classification success of N2 is not due to the later timing of N2 TMR
cues, it could potentially suggest that TMR in N2 does not elicit reac-
tivation to the same extent as TMR in SWS, a difference which might
relate to the distinct physiology of these two stages, e.g. different levels of
acetylcholine and differential connectivity between the hippocampus
and neocortex (Andrade et al., 2011). SWS is characterized by the
orchestrated, and often phase-coupled, occurrence of slow oscillations,
spindles and ripples which presumably underpins effective memory
reactivation (Born et al., 2006; Diekelmann and Born, 2010). Such
phase-coupling is less evident during N2, which could potentially explain
why it was harder to detect TMR cued reactivations in this sleep stage.
However, because a number of elegant studies have shown that N2 is
important for procedural memory consolidation (Laventure et al., 2016;
Vahdat et al., 2017; Walker et al., 2002) we believe this issue deserves
further investigation, and that future studies should take care to avoid
differences in the timing of TMR cues in S2 and SWS.

Limitations

Memory reactivation in sleep is linked to consolidation, and can
therefore be expected to impact on post-sleep behavioural performance.
A recent study of memory reactivation in a declarative task supported
this by finding a positive correlation between the extent to which TMR
cued reactivation could be classified as relating to a place or object and
the extent to which TMR strengthened the memory (Cairney et al., 2018).
We searched for a similar relationship between classification success and
behavioural performance in our data, but found no significant correla-
tion. This difference between our findings and those of Cairney et al. very
likely relates to differences in the study design and choice of behavioural
task, since we used a procedural task and did not include a non-TMR
control sequence. While links between memory reactivation and behav-
ioural performance are of great interest, it is noteworthy that the vast
majority of the rodent work on reactivation bears no reference to
behavioural consolidation, see (Ego-Stengel and Wilson, 2007; Lee and
Wilson, 2002; �Olafsd�ottir et al., 2016; Wilson and McNaughton, 1994),
for examples. Also see (Carr et al., 2011) for a review which strives to
make the link between reactivation and memory consolidation, thus
highlighting the fact that this link is not assumed.

Our control experiment was designed to determine whether our
classification pipeline could accurately identify tones that had not been
paired with any particular memory or action. Our observation that these
non-memory control tones could not be identified, while the same tones
were accurately identified in our experimental task, where they had been
paired with a picture and finger press, strongly suggests that our classifier
is detecting neural reactivation of the associated memory rather than an
ERP to the tone itself. Importantly however, our task involves motor,
visual, auditory, and sequencing components, and our classification
method does not distinguish between these elements, so we cannot say
anything about which aspect of the task was reactivated. Given that our
prior work using a similar TMR protocol led to sequence specific im-
provements in performance (Cousins et al., 2014), it seems likely that
activity detected in the current experiment reflects a similar process.
Future work is needed to test this possibility, potentially by including a
control condition in which TMR cues that were learned in a particular
order are replayed in sleep in a random order.
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While our current results are promising, and we hope that our clas-
sifier pipeline will be of use for future investigations, we should also
highlight the fact that this pipeline was developed with our particular
procedural task in mind, and may not generalize well to other behav-
ioural tasks. Furthermore, because our classifiers were developed indi-
vidually for each participant, we do not expect these to generalize to
other participants. Finally, it should be noted that we applied TMR in S2
and SWS, but have not yet explored REM sleep. There is notable evidence
for memory reactivation in REM sleep (Maquet et al., 2000), so this may
provide an exciting area for future investigation.
In sum

We have developed a method for detecting neural reactivation in
sleep using EEG classifiers. This should provide a useful tool for future
explorations of such reactivation and its impacts on memory consolida-
tion and brain plasticity. In the current proof of principle paper, we have
applied this method to two specific problems. We show that while TMR
elicits classifiable reactivations in both SWS and N2, these are more
consistently classifiable in SWS. We also show that TMR induced reac-
tivation becomes less classifiable with multiple repetitions suggesting
that TMR becomes less effective as the neural processing associated with
reactivation is gradually completed. In future, our classifier method
could be applied to determine whether more classifiable reactivations
lead to greater functional plasticity, and which EEG features are the most
important for this.
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