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Summary

Recent rapid progress in machine learning (ML), particularly so-called ‘deep learning’, has led to

a resurgence in interest in explainability of artificial intelligence (AI) systems, reviving an area of

research dating back to the 1970s. The aim of this article is to view current issues concerning

ML-basedAI systems fromtheperspectiveof classicalAI, showing that the fundamental problems

are far from new, and arguing that elements of that earlier work offer routes to making progress

towards explainable AI today.
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1 INTRODUCTION

An explanation is commonly defined as a reason or justification given

for an action or belief. Typically, an explanation provides new informa-

tion linked to the thing that it is intended to explain and, as with all

information, is subject to interpretation by its recipients. In psycholog-

ical terms, explanations are characterized by a variety of models and

schemas, includingcausal structures,domain-specificpatterns (e.g., sci-

entific explanations), and cultural schemas (Keil, 2006).

Artificial intelligence (AI) is concernedwith the creationof computer

systems (or ‘agents’) that take actions or express beliefs based on pro-

cesses that, if exhibited by a natural agent, would be considered as

‘intelligent’ (Russell and Norvig, 2010). It therefore follows that the

generationof explanationshasalwaysbeenakey issue inAI: developers

and users of AI systems need to be able to obtain reasons or justifica-

tions for the actions or outputs of the machine, and often expect the

system to generate explanations that exhibit traces of ‘intelligent pro-

cessing’. As with all explanations, those from an AI system are subject

to interpretation, and therefore need to use communicable represen-

tations such asmathematical, logical, linguistic, or visual forms.

The interest in explainability of AI systems is naturally linked to

surges of interest in AI. The ‘classical’ period of progress in AI — from

the 1970s to early 1990s — featured a corresponding phase of inter-

est inmethods for explanationgeneration in largely symbolic reasoning

systems, including so-called ‘expert systems’ (Jackson, 1999). Signifi-

cant progress was made on explainability during this period, with solid

principles established, but the problem was not considered to have

been completely solved.

The recent rapid progress in machine learning (ML), particularly

so-called ‘deep learning’ (LeCun, Bengio, and Hinton, 2015), has led

to a resurgence in interest in explainability.
1
Issues of transparency

and accountability have been highlighted as specific areas of concern

(Diakopoulos, 2016). Transparency is increasingly viewed from a legal

and ethical standpoint as well as a technical one. There is growing con-

cern around issues of fairness in machine decisionmaking, particularly

arising from biases in the data on which machine learning or statistical

decision-support algorithms are trained (Olhede andRodrigues, 2006).

These issues are particularly problematic from a societal perspective

where the algorithmic biases relate to characteristics associated with

equality and diversity, e.g., gender, race, or religion (Caliskan, Bryson,

and Narayanan, 2017). Moreover, there are international efforts to

enshrine algorithmic decision making within legal frameworks; for

example, theEuropeanUnion'sproposedGeneralDataProtectionReg-

ulation isduetocome into force in2018, creatinga ‘right toexplanation’

entitling an individual to receiveanexplanationof anydecisionmadeby

an algorithm about them (Goodman and Flaxman, 2016).

The aim of this article is to view these current issues concerning

ML-based AI systems from the perspective of classical AI, showing

that the fundamental problems are far from new, and arguing that ele-

ments of that earlier work offer routes to making progress towards

explainable AI today. Section 2 reviews progress in explanation genera-

tion during the 1970s–1990s knowledge-based systems era. Section 3

Intell Sys Acc FinMgmt. 2018;1–10. wileyonlinelibrary.com/journal/isaf Copyright © 2018 JohnWiley & Sons, Ltd. 1
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examines current thinking around explainability (nowmore commonly

termed interpretability) in ML. Section 4 argues that solutions to the

interpretability in themoderncontext candrawonclassical approaches

to the original explainability problem. Section 5 concludes the paper by

suggesting an agenda andway forward.

2 PERSPECTIVE: EXPLANATION IN

CLASSICAL AI SYSTEMS

Even in the earliest AI systems of the 1960s and 1970s, the gener-

ation of explanations was identified as a key issue. Initially, the focus

was on providing mechanisms for users to obtain traces of the reason-

ing performed by a system. This approach is exemplified by the rule

traces generated by the explanation component of the MYCIN expert

system (Buchanan and Shortliffe, 1984). Even at this early stage, it was

realized that there were two distinct kinds of stakeholder requiring

explanations:

• developers of an AI system, needing assistance in debugging the

software by being able to verify the correctness or otherwise of

rule firing sequences leading to a conclusion;

• users of the system, seeking assurance that they could trust the

output from the software by inspecting the chain of reasoning

supporting a particular conclusion.

Both kinds of stakeholder were essentially requiring that the AI sys-

tem have a degree of transparency in its workings, i.e., the opposite

of opacity. Commonly, in software engineering, opaque systems are

referred to as ‘black boxes’ while transparent systems are called ‘glass

boxes’ (Beizer, 1995).

2.1 MYCIN: AskingWHY andHOW

MYCIN offered two mechanisms aimed at promoting transparency,

depending on whether the system was in the mode of offering a con-

clusion (as the result of a chain of rule firings) or asking a question (as

part of a backward chaining inference process). In the former case, a

user could ask HOW in response to a conclusion, and receive a trace of

the rules fired, along with the certainty factors (Buchanan and Short-

liffe, 1984). In the latter case, a user could ask WHY in response to

being asked a question by the system, in which caseMYCINwould pro-

vide a trace of the currently-active goal and sub-goals in the backward

chaining process.

The early MYCIN work also highlighted other key challenges in

generating explanations in AI systems. Firstly, the comprehensibility

of explanations in terms of rule traces is lower when chains are long,

hindering transparency (generally, MYCIN inference chains were rel-

atively short due to the system having a small search space). From

the developer's perspective, the value of HOW explanations proved

very limited, as the harder debugging cases involved complex and

unexpected rule interactions (Davis, 1980), leading to research in

knowledge base verification and validation (Suwa, Scott, and Short-

liffe, 1982). Indeed, verification and validation are closely linked to

explanation: verification, being concerned with whether the system

is implemented correctly, is tied to a developer's need for explanation

— e.g., rule traces in the simplest case; validation, being concerned

with whether the system correctly meets its requirements, is associ-

ated with the user's need for explanation — e.g., assurance that the

system properly models its intended problem domain (O'Keefe and

O'Leary, 1993).

A second key challenge highlighted by the early MYCIN work

on explanation was that transparency was restricted only to par-

ticular parts of the system, specifically the rule base containing

explicitly-encoded symbolic knowledge acquired fromdomain experts.

This part of the system was specifically engineered to be compre-

hensible by human experts in the problem domain, at least in terms

of relatively small sets of rules and rule interactions as noted above.

Other components of the system, e.g., LISP program code designed

to produce lists of drug recommendations, were opaque to users and

played no part in generating HOW and WHY explanations. These

parts encoded knowledge implicitly rather than explicitly. Moreover,

the more opaque aspects of an AI system often corresponded to arte-

facts arising from the programming of the system (Swartout, 1983).

While improved transparency in these aspects would assist devel-

opers in debugging the system, revealing them to users would be

confusing and unhelpful.

2.2 Usingmeta-knowledge in explanation

generation

In view of the opacity of parts of the MYCIN system, and in an effort

to reduce the role of programming artefacts in system design, the

NEOMYCIN project attempted to encode additional types of knowl-

edge explicitly, including meta-rules for control of reasoning and tax-

onomic information, e.g., of diseases (Clancey, 1987). The former dif-

ferentiated various kinds of knowledge including causal rules, rules

connecting data to hypotheses, and ‘screening’ rules that restrict the

search space under particular conditions. All of these type of knowl-

edge could play useful roles in generating HOW andWHY style expla-

nations in NEOMYCIN. The important lesson here is that explanations

require context in terms of either what the system is currently trying

to do (WHY) or how it did it (HOW). A key claim for the NEOMYCIN

approach was that the approach was intended to simulate human

problem solving and was thus a form of cognitive modelling in the sense

of (Newell, 1990).

A broader perspective on context in explanation generation was

taken inCENTAUR,where frames called ‘prototypes’wereused in addi-

tion to rules to organize the knowledge base of the system in terms

of elements of a deductive process. The CENTAUR approach afforded

thesystemexplicit representationof therelationshipbetweendataand

hypotheses including:

• hypotheses consistent with (i.e., suggested by) data items;

• data items inconsistent with hypotheses (‘errors’ or ‘surprises’);

• data items unaccounted for by any hypotheses (residuals).

In this respect, CENTAUR was arguably the first AI system to be

designed for explainability, rather than explanationbeing considered as

an add-on feature.
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2.3 The explainable expert systems project

In the early 1990s, the Explainable Expert Systems (EES) project

further developed the theme of using meta-knowledge for explana-

tion generation, focusing on three key principles (Swartout, Paris, and

Moore, 1991; Paris, 1993): (i) separation of terminological and declar-

ative domain knowledge from procedural problem-solving knowledge

that would be compiled into a run-time system using (ii) transforma-

tions that explicitly captureddesign rationale (e.g., enhancingmaintain-

ability or human readability of the transformed knowledge) accessible

to a user via (iii) a dialogue-based interactionmodule that could create

explanations, justifications and paraphrases of the system actions and

corresponding rationale (see Figure 1).

The first principle in EES (separation of terminological and declara-

tive domain knowledge from procedural problem-solving knowledge),

in line with the previous NEOMYCIN and CENTAUR thinking, was also

compatible with the shift in attention in knowledge-based systems

work in the1990s towards a focuson reusabledomainontologies (Gru-

ber, 1994) andproblem-solvingmethods (Schreiberet al., 1999) though

generally those two sub-fields did not focus specifically on explana-

tion generation. It is also worth noting that, while a strength of the EES

approachwasexplicit representationofdesignrationale, concernssuch

asmaintainability—whileundoubtedlyaspectsof systemtransparency

— are of more relevance to developers than users. Arguably the earlier

NEOMYCINwork, emphasizing framing explanations in termsof cogni-

tive models, was amore relevant approach tomeeting users' needs for

system explanations.

The EES work also highlighted the interactive and dialogue-based

nature of explanation generation, going far beyond the simple WHY

and HOW interactions supported by MYCIN. Using a planner, a set

of heuristics, and a natural language (NL) generation system, the EES

user interaction module was able to interpret queries such as WHY in

context and generate appropriate NL responses based on the design

history linked to the expert system.

2.4 Summary and some desiderata

In conclusion, the classical perspective from the 1960s to 1980s offers

a number of desiderata on explanation generation in AI:

1. Explanation generation is an intrinsic designed-in feature of an

AI system, not a bolt-on.

2. There are two types of stakeholder requiring explanations from

an AI — developers and users — but the needs of these two

constituencies are not the same.

3. Interactivity anddialogue is a keyelementof explanationgenera-

tion, and a useful distinction can be drawnbetweenwhatMYCIN

termed ‘how’ and ‘why’ explanations: the former questionswhat

the system is doing or intends to do, the latter questions what the

system did.

4. Explanations need to cover both the ‘knowhow’ and ‘knowwhat’

of a system— the former is commonly opaque; the latter can be

opaque also, especially in a complex system.

5. Cognitive modelling as a basis for explanation generation (fram-

ing explanations in terms of reasoning processes that resemble

those of human experts) is seen as a means of promoting sys-

tem transparency for users, while capturing of software design

rationale is a key issue for explanations to developers.

Having reviewed the classical perspective on explanations in AI sys-

tems, the following section considers current concerns andapproaches

in the context of the recent rapid progress inML and deep learning.

3 INTERPRETABILITY IN ML-BASED AI

SYSTEMS

By common definition, an interpretation is the action of explaining the

meaning of something. That is, an interpretation generates an expla-

nation, and the two terms are thus closely associated. Since the late

1990s, the term ‘interpretable’ has been favoured over ‘explainable’ in

theML context.WhereMLwas viewed as a ‘knowledge discovery’ tool,

it naturally followed that the discoveries generated by an ML system

needed to be interpretable to users in terms of domain knowledge; to

this end, researchers focused upon how to exploit domain knowledge

as both input to the learning process and in the generation of inter-

pretations of its output (Bratko, 1997). Moreover, as in the classical

AI consideration of explanations, interpretations in ML were seen as

critical in building user trust in the system (Ridgeway, Madigan, and

Richardson, 1998).

FIGURE 1 Explainable Expert System framework (adapted from Paris, 1993)
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Despite this long-term interest in interpretability of ML-based

AI systems, a formal, commonly-agreed definition of the term has

remained elusive. Lipton (2017) observes that a key issue in defin-

ing interpretability formally is that the concept is not monolithic. This

observation essentially echoes the 1970s realization that the kinds of

explanations required of anAI systembydevelopers are quite different

from those required by end users. Moreover, developers may have dif-

fering needs, e.g., verifying the performance or robustness of a system,

and end-userswill have different perspectives, e.g., better understand-

ing a reported ‘discovery’ (Bratko, 1997) or determining the fairness of

a decision (Diakopoulos, 2016; Olhede and Rodrigues, 2006).

Doshi-Velez and Kim (2017) link interpretability to the need for

an ML system to satisfy auxiliary criteria, i.e., criteria that are in part

qualitative and cannot be satisfied by improved training (unlike, say,

accuracy). While many examples are given by the authors (and others,

e.g., Lipton, 2017) — including being nondiscriminatory (as in fairness),

safety (Otte, 2013), and satisfying a user's right to explanation (as in

Goodman & Flaxman, 2016) — there does not yet appear to be a com-

prehensive typology of these kinds of auxiliary criteria.

3.1 Towards transparency in deep learning systems

Aswith classical AI concerns regarding explainability, transparency is a

key issue in interpretability of ML systems, but the problem is exacer-

bated with deep learning systems by the sub-symbolic nature of these

approaches. For example, while a trace of rule firings in a classical AI

system may or may not be informative to a developer or end-user, a

set of weights in a multi-layer neural network is unlikely to be infor-

mative to anyone. This has led researchers to argue that intelligibility

of ML models is a necessary property for transparency (Lou, Caruana,

andGehrke, 2012): the ability for ahuman tounderstandhowa learned

modelworks. In classicalAI,we sawthat attention shifted fromexamin-

ing rule traces to focusing on the meta-knowledge that controlled and

guided inference. This was an attempt to frame explanations in terms

of algorithmic transparency, providing confidence that the system was

behaving ‘sensibly’ in general, rather than at the level of specific rule fir-

ing sequences. The problem is, however, that algorithmic transparency

for deep learning systems is not achievable given our current under-

standingof these systems, becausewecannot prove that theywillwork

on unseen problems (Lipton, 2017).

In the absence of algorithmic transparency for deep learning ML,

researchers have instead opted to focus on finding equivalences to

‘traces’. The most common example of this approach is in image clas-

sification systems, to associate an output class with the parts of an

input image that had the greatest weight in determining the classi-

fication. For example, the LIME (Local Interpretable Model-agnostic

Explanations) approach identifies ‘super-pixels’ (contiguous regions of

similarly-weighted pixels) in an input image that contribute positive

weight towards a particular output class, with the intuition that these

regions are significant in making the model predict that the class may

be present in the image (Ribeiro, Singh, andGuestrin, 2016). LIMEdoes

this by perturbing the input (in terms of super-pixels) to see how the

model's predictions behave in response, and then learning a simpler,

interpretablemodel (e.g., a linear model or decision tree) from the per-

turbed inputs and responses. This approach has the advantage that

the super-pixels will be in and of themselves meaningful to a human,

especially in relation to the whole of the original image.

Similarly-motivated approaches include the use of heatmaps to visu-

alize the relative weighting of parts of an image at the pixel level in

terms of a ‘hot to cold’ scale where ‘hottest’ = most highly weighted

(Montavon, Lapuschkin, Binder, Samek, and Müller, 2016) and class

maps to highlight the parts of an image most associated (in weight

terms) with each of several possible output classes (Kumar, Wong,

and Taylor, 2017). Kumar et al.'s CLEAR (CLass-Enhanced Attentive

Response) algorithm for generating class maps builds on work on

deconvolutional neural networks.CLEARworksbygeneratingmaps for

each class based the last convolutional layer from feature space to the

input space. Based on thesemaps it then generates, for each location in

an image, the dominant attentive level for that location, and the dom-

inant class. The result for a given image indicates the correspondence

betweenmajorpositiveandnegative focusareas, andpredictedclasses.

Class maps are interesting because, while the classifier will generally

output the most highly predicted class, a class map will provide a visu-

alization of the parts of the image that could have led the classifier to

predict a different output (i.e., ‘I think it’s X because of region A; how-

ever, region B suggested it might be Y and region C suggested it might

be Z'). This richer context to the interpretation provided by a classmap

arguablygivesauser improved intelligibilityofhowtheclassifierworks,

and therefore a greater impression of algorithmic transparency.

These approaches for ‘tracing’ input to output relationships in deep

learning ML systems are not confined to imagery. Similar techniques

can be used to identify the most salient (highest weighted or most

predictive) text features or fragments. For example, Lei, Barzilay, and

Jaakkola (2016) propose an approach that extracts coherent phrases

from input text that are sufficient to predict the same output as the full

input. These extracts are offered as rationale for the classification and,

like the image regions selected by LIME, heat maps, or class maps, are

meaningful to humans.

Generation of the above kinds of interpretation is computationally

intensive and can impact system performance, so investigation of less

computationally costly methods is an active area of research. Koh and

Liang (2017) propose the use of influence functions to determine the

impact of specific training cases on predictions without perturbing the

data and retraining a model. Because the computation of influence

functions is itself very expensive, they show how the functions can

be approximated effectively. Chakarov, Nori, Rajamani, Sen, and Vijay-

keerthy (2016) propose an automated method for finding root causes

of misclassifications in ML systems in terms of errors in training data

that lead to misclassifications in test cases. Their method derives from

Pearl's theory of causation, encoded as a probabilistic program, and

exploiting transformations and efficient inference techniques for such

programs.While the approach is generally applicable toMLsystems, its

performance has yet to be demonstrated on deep neural networks.

3.2 Transparency vs post-hoc interpretations

A key distinction is drawn in current thinking in terms of explaining the

classifications of modern ML systems between true transparency and

post-hoc interpretations or explanations (Lipton, 2017). This distinction

was not present in the classical era because algorithmic transparency
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wasseenasachievable for thosekindsofAIsystem.While transparency

aims to reveal how a system actually reached its conclusion, a post-hoc

interpretationseeks toexplainanoutputwithout referencetothe inner

workings of the system. Post-hoc interpretations have become popu-

lar as an approach in the context of deep learning because algorithmic

transparency is seen as being unachievable for these systems.

Techniques for generating post-hoc interpretations include visual-

izations, NL explanations, and retrieval of salient examples. Technically,

heat maps and class maps are a form of post-hoc interpretation since

they visualize (by useof colour) significant parts of the input image.Use

of natural language caption generation is also a form of post-hoc inter-

pretation. For example, Hendricks et al. (2016) propose a method that

uses a dual neural network system: one sub-system learns to classify

images, and a second sub-system learns to generate text explanations

on the basis of textual background knowledge that describes discrimi-

nating features of each output class: explanatory sentences generated

by this second system thereby contain class-specific information. Thus,

the explanations generated by the second sub-system tend to include

text descriptions of discriminating features, when those features are

detected in an input image. This approach attempts to combine aspects

of transparency (highly-weighted features leading to a classification)

with post-hoc explanation (textual renderings of discriminant features)

though, because deep neural networks are employed, there can be no

guarantees that the ‘right words’ are always associated with the ‘right

features’.

It is, however, worth noting at this point that these kinds of

post-hoc interpretation techniques are analogous to what humans

do when asked to explain classification decisions. As noted by Lipton

(2017), ‘To the extent that we might consider humans to be inter-

pretable, it is [post-hoc] interpretability thatapplies.’ Inasense, seeking

fully-transparent interpretations fromadeep learning basedAI system

isholding thesystemtoahigherstandardthantheonetowhichhumans

can be held.

Retrieval of examples is another technique employed in generat-

ing post-hoc explanations, taking inspiration from the behaviour of

human experts, e.g., doctors and lawyers, who often frame explana-

tions by referring to case studies. For example, Caruana, Kangarloo,

Dionisio, Sinha, andJohnson (1999)demonstratedhowcase-basedrea-

soning could be used to generate explanations for a neural network

by using the latter as a means of computing the distance metric for

case retrieval. The approach involves recording activation patterns

across the neural network layers for each training case, and compar-

ing these with the activation pattern for a new input case. Because

eachacasedescribesa situation, this approachagainhas theadvantage

that the cases are meaningful to humans though, as with all post-hoc

approaches, the explanations offer limited insight into how the classi-

fier actually made its decision (i.e., the activation patterns). Moreover,

the approach can result in generation of many similar cases, leading to

a need to limit the number of explanatory cases offered to the user.

3.3 ML interpretability and expert knowledge

As discussed in Section 1, the notion of explanation is often associ-

atedwith causality, and a significant part of the classical AI explanation

work examined in Section 2 focused on introducing meta-knowledge

to capture causal rules and deductive chains. While causality has been

highlightedasadesirable feature for interpretabilityofMLmodels (Lip-

ton, 2017), relationships learned by ML systems are not assured to be

causal. Indeed, the current state-of-the-art in ML is weak at learning

causal models of the world that support understanding (Lake, Ullman,

Tenenbaum, and Gershman, 2016). Moreover, the tension between

correlation and causation is a well-known issue in ‘big data’ work

(Diakopoulos, 2016). The problem of deriving causal associations has

been extensively studied but establishing causality generally relies on

availability of prior background knowledge (Pearl, 2009), which com-

monly does not feature in ‘big data’ systems.

Ross, Hughes, and Doshi-Velez (2017) propose an approach that,

while not aiming to assure causal explanations, attempts to avoid offer-

ing spurious correlations by applying constraints during training that

specify whether or not an input feature is relevant to the classifica-

tion of that input, according to a human expert. The approach works

by applying binary masks that specify whether an input feature is or

it not relevant to a particular output class. The learned model is thus

intended to be ‘right for the right reasons’: explanations from such a

model areoptimized for correctness in termsof expert-determined rel-

evance.Again, theapproachmakesuseofbackgroundknowledge in the

form of human experts' opinion, though it can also generate multiple

explanatory models (in the form of weighted input gradient elements)

that can be presented to a human expert for consideration as to which

is best.

Recent work by Doshi-Velez and Kim (2017) proposes a three-level

taxonomy for evaluating interpretations inML systems, where the lev-

els are in descending order of cost:

Application-grounded evaluation involves humans performing

real tasks requiring domain expertise, e.g., medical diagnosis

or financial decisions. The gold standard for comparison here

is with human-produced explanations to assist other humans

trying to complete the task. The relative quality and cost of

machine-produced vs human-produced explanations is compared.

Human-groundedevaluation involves realhumansperformingsim-

plified tasks that can be carried out by non-experts therefore mak-

ingsubject recruitmenteasierat theexpenseof someexternal valid-

ity. Commonly, the purpose here is to test some aspect of the expla-

nation unrelated to the subject matter, such as speed of reaching a

decision, or avoiding cognitive bias.

Functionally-grounded evaluation involves no humans and uses

proxy tasks (ideally derived from one or other of the above types

of evaluation) together with formal metrics as proxies for explana-

tion quality. This method avoids the need for ethical review and is

often used in the earlier stages of assessing anML approach, where

the system has not yet reached maturity. Most of the techniques

described in the previous two subsections utilized this kind of eval-

uation method. Human expertise is implicitly or explicitly factored

into the design of the proxy tasks andmetric.

Related principles are espoused by Dhurandhar, Iyengar, Luss, and

Shanmugam (2017) in a framework that seeks todefine interpretability

relative to a target model, which can be a human or machine decision

maker. Their approach defines interpretability as the ability of some

model to improve the performance of a target model; in the case of
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a human target, this may be by outputting a decision list; in the case

of a linear (machine) model, it could be by outputting feature weights.

Taken togetherwith the above framework, this work offers a promising

approach to benchmarking AI system interpretability.

3.4 Summary and some desiderata

In conclusion, current thinking regarding interpretability of ML-based

AI systems offers a number of desiderata:

1. As with classical AI systems, transparency is the ideal for inter-

pretability; however, full transparency (particularly algorithmic

transparency) is notachievablegiven thestate-of-the-art indeep

learning, so post-hoc interpretations will in many cases be the

best-available option. Nevertheless, it is important to utilize as

much transparency as possible as a basis for generating post-hoc

interpretations (for example, generating NL explanations on the

basis of salient input image regions or features).

2. Interpretations depend on user's requirements in terms of aux-

iliary criteria such as safety, legal accountability (e.g., ‘right

to explanation’) or knowledge discovery. As with classical AI

systems, different groups of users will have different require-

ments. The auxiliary criteria are qualitative and resistant to for-

mal definition; nevertheless, works needs to be done to eluci-

date them better, so that users can specify their interpretation

requirementsmore systematically, and systemscanbeevaluated

more robustly.

3. Interpretations in many cases will depend on domain knowl-

edge, e.g., background or prior knowledge. Examples include

meta-knowledge of salient or discriminant features to guide

the pertinence of explanations, prior knowledge to frame causal

explanations, and knowledge that frames classifications for use

in case-based retrieval of examples. Acquisition, curation, and

re-use of such domain knowledge needs to be considered more

systematically as part of engineeringML-based AI systems.

Havingexaminedperspectivesonexplanation inAI fromtheclassical

era to the present ML-dominated period, the next section draws ele-

ments of both together, offering a systems architecture for hybridML /

knowledge representation and reasoning AI systems.

4 EXPLANATION IN AI: A DUAL SYSTEM

APPROACH

The organization of the previous two sections was intended to empha-

size distinctions (and some parallels) between the perspectives on

explanation in classical AI — with its emphasis on knowledge repre-

sentation and reasoning — and modern ML — with its emphasis on

deep learning. The presentation therefore may have implied a false

dichotomy between the two. In actuality, there is significant acknowl-

edgement that AI systems require an integration of reasoning and

learning, and there is growing interest in approaches seeking to com-

bine the two. An important motivation for this is to address the weak

state of ML in dealing with causal relationships (Bottou, 2014) and to

integratemodel-buildingwith pattern recognition (Lake et al., 2016).

How exactly to combine reasoning and model-building with ML is a

topicof somedebate. Someresearchers favourapproaches that seek to

utilize vector-space representations instead of classical manipulation

of symbolic expressions (Guha, 2015; LeCun et al., 2015). Others argue

for building reasoning capabilities in a bottom-up manner, from a rich

set of primitive learningoperators (Bottou, 2014). Akeyaspect of these

discussions is the issue that, unlike deep learning systems, humans are

capable of learning from small amounts of data (Lake et al., 2016), and

knowledge representation-based systems offer this property of what

Guha (2015) calls ‘teachability’. Recent work aiming to integrate deep

learning and Bayesian models within a uniform probabilistic frame-

work appears promising in this context (Wang and Yeung, 2016). Such

a model is amenable to user input (i.e., it is teachable), and some ini-

tial work has been done in this area, referred to as collaborative deep

learning (Wang,Wang, and Yeung, 2015).

Of course, all of these approaches, while offeringmeans to integrate

MLwithknowledgerepresentationandreasoning, comewithan impor-

tantcaveat: the interpretabilityproblemforsucha integratedapproach

will also need to be addressed.

4.1 An explainableML framework

Figure 2 draws on the classical EES framework (Figure 1) to pro pose

an architecture for explainable ML-based AI systems. A system genera-

tormodule (with essentially the same role as the compiler in EES) builds

a dual systemwith two parts — amodel part, comprising models of the

world, and a neural network part— from a set of inputs including train-

ing data, domain knowledge, and meta-knowledge. A run-time module

uses the dual system to derive classifications and inferences, while also

providing input to the interaction module that provides output to the

end-user also allows them to seek explanations.

To show how the framework is intended to operate, we consider a

number of example ML-based AI systems using techniques from the

previous section:

Basic transparency: super-pixels, heatmaps, class maps Our sim-

plest example is a deep learning image classification system

where the only available explanation is in the form of LIME-style

super-pixels extracted from the input image. Training examples are

provided to a deep learning algorithm that is part of the system

generator, along with the meta-knowledge requirement that the

generated system be capable of offering super-pixel regions as

explanations. Here, themodel part of the dual system is empty. The

generated system is able to inform the interaction module that it is

able to answer basic ‘Why do you think it is X?’ queries; it does so

via the super-pixel computation capability built-into the neural net-

work part of the generated system and captured by the run-time

module.

The case is similarwhere heatmaps are to be generated, but slightly

different where class maps are used since then the generated sys-

tem is able to inform the interaction module that it is capable of

answering ‘Whydo you think it is X?’ and also ‘Whydo younot think

it isY?’queriesbydrawingontherelative featureweightsgenerated

by the neural network at run-time.

‘Right for the right reasons’Here, the input to the system genera-

tor module must include knowledge acquired from domain experts



PREECE 7

that specifies whether or not an input feature is relevant to a par-

ticular output class. Meta-knowledge includes the requirement

that the generated system be trained to optimize explanations for

correctness in terms of the background knowledge. Themodel part

of the generated systemwill include this domain knowledge.When

answering ‘Why do you think it is X?’ queries, the interaction mod-

ule will draw on both the model part of the system as well as the

weights computed by the run-time module from the neural

network part.

Note that the interaction module can also allow the end-user to

explore the model of relevant features per output class, to gain

insights into what the system ‘knows’, as an additional means of

building trust between user and system. Thus, in some cases the

interactionmodulewill drawonboth themodel andneural network

parts of the system, while in other cases the model part alone may

suffice to provide a user with useful explanations.

Causal explanations Leaving aside the challenges in learning causal

relationships discussed in Section 3 and in Pearl (2009), to the

extent that progress is likely to be made in this area in future (Lake

etal. (2016)offer adetaileddiscussionofprospectsandapproaches

in relation to deep learning) the dual system approach provides a

means of capturing learned causal knowledge in the model part of

the system, linked to elements of the neural part of the system. It

is unclear at present what is the best approach for capturing such

linkages, though the work on Bayesian deep learning appears to be

a promising direction (Wang and Yeung, 2016).

In this case, meta-knowledge will capture the requirement to learn

causalmodels, andmayspecifyparticular featuresorclasses tocon-

strain the learned relationships (in relation to the domain knowl-

edge). Early 1990s work on knowledge discovery also points to the

role in background domain knowledge as an input to a ML sys-

temtosupportexplanationgeneration (Bratko,1997). Theenriched

model parts of a generated system in this case will afford deeper

interactionswith the end-user in terms of elucidating and justifying

causal explanations. Thepossibilities here resemble the capabilities

of systems like CENTAUR in Section 2 where users could explore

deductive processes and identify input data that was consistent or

inconsistent with hypotheses.

Case-basedexplanationsbyexampleFraminga collectionof ‘exem-

plary’ classifications as cases for retrieval as explanations would

use a similar approach to causal explanations in terms of using

meta-knowledge tospecify frames for thecases, domainknowledge

of pertinent features and ontological relationships, and distance

metrics for retrieval of pertinent examples. Cases would form part

of the model element of the generated system, and interactions

would be further enriched to support queries such as, ‘Show me

examples ofX’. Retrieval of exampleswill in somecases be subject to

privacy requirements, however. For example, it may be acceptable

to use imagery from a particular patient's case in offering an expla-

nation in amedical diagnosis systemprovided that nopersonal data

is revealed.

Satisfying auxiliary criteria The final example concerns auxiliary

criteria relating to background knowledge such as safety-critical

elements or features relating to characteristics associated with

equality and diversity, e.g., gender, race, or religion. The framework

supports capturing such criteria in terms of background knowledge

for the learning system, incorporating the criteria in themodel part

of the system, and supporting end-user queries relating to the cri-

teria.However, given theextremely challengingproblemofdefining

manyof theauxiliarycriteriaobjectively,howtocapture these in the

model part of the generated system is an open problem.

4.2 Discussionw.r.t. explanation desiderata

Considering theabove frameworkagainst thedesiderata forAI systems

identified in Section 2:

1. The framework ensures that explanation-generation is an intrin-

sic, designed-in feature of the generated system, accessible to

end-users via the interaction system.

2. Avarietyof stakeholders are catered-forby the framework: their

distinct requirements in terms of kinds of explanation (trans-

parency and ad-hoc) can be specified as meta-knowledge input,

and they can access explanations via the interaction system.

3. The interaction system supports a variety of dialogues, appro-

priate to the explanation mechanisms built into the generated

system, specified by themeta-knowledge inputs.

4. The dual system distinguishes between ‘knowwhat’ (model) and

‘know how’ (neural network) knowledge levels. As with classical

systems, the former is less opaque (its opacity is more a func-

tion of system complexity than representation) while the latter

is far more so; nevertheless, transparency-based and post-hoc

explanations can be generated for both parts.

5. The question of to what extent cognitive modelling plays a use-

ful role in explanation generation for deep learning-based AI

systems is an interesting one, and is bound up with the discus-

sionof towhat extent such systems arebiologically-inspired (see

Eliasmith (2015) for detailed discussion on this matter). At the

simplest level, the framework caters for addressing causal rela-

tionships andmodel-based explanations, which provides at least

a basis for explanation in terms of ‘higher-level’ reasoning pro-

cesses.

Next, considering the framework against theML systemexplanation

desiderata from Section 3:

1. The framework is designed to support the generation of both

transparency-based and post-hoc explanations as shown in the

example cases above. The first two cases (Basic Transparency and

‘Right for the right reasons’) are focused more on transparency,

while the latter three have significant post-hoc aspects (though

with a basis in transparency).

2. The framework, while not solving the issue of formally defining

auxiliary criteria, makes them a designed-in feature in terms of

meta- and domain knowledge.

3. Similarly, the framework is explicitly designed to exploit domain

knowledge in generating a systemwith explanation capabilities.

5 CONCLUSION AND FUTURE WORK

The framework described in the previous section is still largely con-

ceptual at present, although we are building its various components
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FIGURE 2 A framework for explainable AI systems

in current research (Chakraborty et al., 2017; Nottle et al., 2017; Har-

borne, Willis, Tomsett, and Preece, 2017). The key stages in a roadmap

for realizing the framework are:

• Development of a service-oriented approach to providing expla-

nation mechanisms for ML systems. Most of the state-of-the-art

approaches described in Section 3 are available as open source

software, so the next stage would be to wrap them as APIs.

• Systematic definition of a typology of auxiliary criteria for assur-

ance of ML systems, encompassing fairness, transparency, and

accountability aspects, along with robust metrics for each.

• Research and development of protocols to support

explanation-seeking dialogues between users and AI systems.

The current status of a service-oriented architecture that aims to

integrate multiple classification and reasoning components, together

with interpretation techniques, is described in Nottle et al. (2017) and

Harborne et al. (2017). Further details on the deep neural network

based components are given inWillis, Harborne, Tomsett, andAlzantot

(2017). To enable rapid prototyping and experimentation, the services

are integrated using the Node-RED programming environment for

Internet of Things applications.
2
These currently include a CNN-based

classifier, a LIME-based saliency map generator, and an R-CNN-based

object detector. The service-oriented approach allows the CNN-based

classifier to be usedwith or without the LIME-based saliencymap gen-

erator, depending on whether the user wishes to receive explanations

or not. The application domain of the prototype systems is determining

traffic congestion in a city using traffic camera imagery (still and video).

Three kinds of explanation are offered by this part of the experimental

system:

• saliencymapsgeneratedviaLIME (transparentexplanationof the

CNN classifier), i.e., labelling parts of a camera image that most

positively or negatively influenced the classification congested vs

not congested;

• salient object detection via the R-CNNobject detector (indepen-

dent detection / verification of the presence of objects/features

relevant to the target classification), e.g., detection of a large

number of individual car objects in an image that is classified

congested;

• explanations by example (wherein a wrapper for the CNN-based

classifieroffers anarrayof trainingexamplesat greaterand lesser

class conditional probabilities to the input case (Willis et al.,

2017), e.g., a rangeof example images depicting different degrees

of congested.

Currently, the ML-based system components have been imple-

mentedmanually using standard tools (chiefly Tensorflow
3
) but, having

experimented with integrating the services and generating the multi-

ple kinds of explanation listed above, we now seek to generate and

compose services semi- or wholly automatically in line with Figure 2.

For the domain knowledge and model elements of the generated sys-

tem we intend to use semantic web ontologies, integrated into the

Node-RED service wrappers via JSON-LD.
4
The ultimate goal of this

work is to allow rapid incorporation of emergingML and interpretation

techniques in a system that supports deployment of portfolio methods

towards achieving robust AI decisionmaking (Dietterich, 2017), where

users can tailor the system in terms of performance / explainability

trade-offs.

An area that has not been considered in the preceding discussion

is the need for machine-to-machine explanation, which is becoming a

more important issue in the Internet of Things (IoT) context, especially

where IoT technologies are to be deployed in safety-critical application

domains (Fraga-Lamas, Fernández-Caramés, Suárez-Albela, Castedo,

andGonzález-López, 2016). The difference between explanations gen-

erated for human consumption and those generated for machine con-

sumption is an area that researchers are beginning to consider (Dhu-

randhar et al., 2017); ultimately, however, it is likely that future AI

systemswill need to provide both kinds of explanation.
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2 https://web.archive.org/web/*/https://nodered.org/about/
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