
i 
 

 

DOCTORAL THESIS 

 

 

 

___________________________________________________________________________ 

The white matter microstructure of the basal ganglia circuitry and its 

changes in Parkinson’s disease 

___________________________________________________________________________ 

 

by 

Jilu Princy Mole 

 

 

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy 

at 

Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University 

Schools of Medicine and Psychology 

 

  



ii 
 

Summary of thesis 

 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative with an 

estimated prevalence of 1% in people older than 60 years and rising to 3% in people 

older than 80 years (Lee and Gilbert 2016). Currently, the exact aetiology of PD is not 

known, there is no cure and there are no therapeutic interventions that can possibly 

delay disease progression. The symptoms can be controlled or managed by treatment, 

physical therapy and/or surgical procedures however these cause side effects and 

complications. Therefore, there is an increasing need for understanding the underlying 

pathophysiology of the disease which will aid in developing therapeutic treatments that 

help alleviate symptoms without side effects while minimizing the requirement for 

medications.  

 

The aim of this thesis was to explore selected white matter connections of the basal 

ganglia circuitry and investigate their changes in PD thereby potentially increasing our 

understanding of the underlying pathophysiology in PD. Results from my PhD show 

selective compensatory and neurodegenerative differences in selected motor and non-

motor white matter pathways in PD patients compared to healthy controls. For the first 

time, I describe and develop an anatomical protocol for in vivo segmentation of two 

basal ganglia-cerebellar tracts and demonstrate their spatial independence and their 

cortical connections. Results from my investigation of the main cerebellar pathways 

and the two basal ganglia-cerebellar tracts show that the cerebellar input and output 

structures are involved in the pathophysiology of PD. My results pave way for future 

studies to further explore and delineate the specific compensatory and 

neurodegenerative processes of these white matter pathways in PD.  
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Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease with 

an estimated prevalence of 1% in people older than 60 years, rising to 3% in people 

older than 80 years (Lee and Gilbert 2016). PD is named after James Parkinson who 

gave the first description of the disease in ‘An essay of the Shaking Palsy’ in 1817 

(Goetz 2011). The four main symptoms of PD are tremor, bradykinesia (slowness of 

movement), rigidity and postural instability (Jankovic 2008; Andalib et al. 2014). 

Currently, the exact aetiology of PD is not known, there is no cure and there are no 

therapeutic interventions that have been shown to delay disease progression. The 

symptoms can be managed by drug treatment and/or surgical procedures. Medications 

cause adverse side effects such as nausea, hallucinations, delusions, impulse control 

disorders, dyskinesia (Fernandez 2012) and other complications with their long term 

usage, which affect the quality of daily life. Surgical procedures such as Deep Brain 

Stimulation (DBS) can cause intracranial haemorrhage, infection and seizures (Kleiner-

Fisman et al. 2006). It is therefore important to gain further understanding of the 

underlying pathophysiology of the disease, so that therapeutic treatments that help 

alleviate symptoms with minimal side effects can be developed.  

The main pathophysiological feature associated with the motor symptoms of PD is the 

loss of substantia nigra dopaminergic neurons of the basal ganglia (Fearnley and Lees 

1991). This loss affects structures of the basal ganglia circuitry such as the putamen and 

the thalamus which are connected to regions of the cortex such as the supplementary 

motor area and the motor cortex (Wichmann and Dostrovsky 2011). There is increasing 

evidence that the cerebellum is also involved in motor and non-motor symptoms of PD 

(Wu and Hallett 2013) and studies have also revealed direct anatomical connections 

between the basal ganglia and the cerebellum in non-human primates (Hoshi et al. 

2005; Bostan and Strick 2010). However, the roles of these structures and their white 

matter connections have not yet been researched in PD. 
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Therefore, the aim of this thesis was to explore selected white matter connections of 

the basal ganglia circuitry and investigate their changes in PD using advanced diffusion 

MRI methods, thereby increasing our understanding of the underlying pathophysiology 

in PD. The current chapter provides an introduction to the basal ganglia circuitry and 

Parkinson’s disease. Chapter 2 gives an introduction to diffusion MRI, and an overview 

of methodology used in this thesis. Chapter 3 explores the differences in diffusion 

metrics in selected motor and non-motor tracts in Parkinson’s disease. Chapter 4 

provides an anatomical protocol for the reconstruction of the anatomical connections 

between the basal ganglia and the cerebellum using diffusion tractography and assesses 

their spatial overlap with the main cerebellar tracts (the middle, inferior and superior 

cerebellar peduncles) and the corticospinal tract. Chapter 5 investigates the differences 

in the microstructural diffusion metrics in the main cerebellar tracts and basal ganglia-

cerebellum connections in Parkinson’s disease. Finally, Chapter 6 presents a summary 

and integration of the findings set out in this thesis. The wider clinical relevance of the 

studied white matter connections and future directions of current work are also 

discussed in Chapter 6. 
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1.1 Basal ganglia 

The basal ganglia (BG) are a collection of deep grey matter nuclei that are located 

within the white matter of the cerebral hemispheres. The BG consists of the caudate 

nucleus, putamen, globus pallidus, nucleus accumbens, substantia nigra and the 

subthalamic nuclei (Blumenfeld 2010). The thalamus is an oval shaped structure 

located behind the BG just above the brain stem on either side of the third ventricle. 

Parts of it serves as a relay station for sensory pathways, and the motor portion of the 

thalamus is functionally related to the BG and sometimes subsumed under the BG. The 

subthalamic nucleus of the ventral thalamus and the substantia nigra of the 

mesencephalon are also functionally related to the BG.  

1.1.1 Sub-structures of BG 

Figure 1.1 Sub-structures of the basal ganglia (Blumenfeld 2010) 

The caudate nucleus is an elongated C-shaped curved cell mass that is in direct contact 

with the lateral ventricle throughout its extent. The putamen is a large nucleus forming 

the lateral portion of the BG and it is anteriorly and ventrally connected to the caudate 

forming the striatum (Figure 1.1). The caudate and the putamen have similar 

histological and embryological profiles. Their histological structure is characterised by 

medium-sized neurons with 75% of these being medium spiny projection neurons 

(Blumenfeld 2010). The caudate and putamen are interconnected by cell bridges 

distributed among bundles of the internal capsule, giving rise to the term “striatum”. 
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The globus pallidus lies medial to the putamen and means “pale globe” because of the 

myelinated fibres that pass through this region, which appear paler than the caudate and 

putamen on sections of the post mortem brain. The putamen and globus pallidus 

together form the lenticular or lentiform nucleus (lentil-shaped) with the putamen 

forming the outer part and the globus pallidus forming the inner part.  

The nucleus accumbens includes the ventral parts of the head portion of the caudate 

and the putamen. The nucleus accumbens and the medium sized cells of the olfactory 

tubercle together form the ventral striatum (Nieuwenhuys et al. 2008). The subthalamic 

nucleus is an oval shaped component of the subthalamus, which lies lateral to the 

hypothalamus and medial to the internal capsule. The substantia nigra, is latin for “black 

substance” because of its darker appearance on post mortem slices due to high levels 

of neuromelanin in dopaminergic neurons (Rabey and Hefti 1990). It is composed of 

two parts; the ventral, pars reticulata and the dorsal, pars compacta.  

1.1.2 Input and Output nuclei 

 

Figure 1.2 Normal basal ganglia input and output pathways  

M1- Motor cortex, PMC- Primary motor cortex, SMA – Supplementary motor area, CMA – Cingulate 

motor area, CM – Centromedian nucleus of thalamus, VA/VL – Ventro anterior and ventro lateral nuclei 

of thalamus, GPe – Globus pallidus external, GPi - Globus pallidus internal, SNc – Substantia nigra pars 

compacta, SNr – Substantia nigra pars reticulata, STN – Subthalamic nucleus, PPN – Pedunculopontine 

nucleus, D1, D2 - Dopamine receptor subtypes, Indir – Indirect pathway, Dir – Direct pathways. Black 

arrows are inhibitory connections and grey arrows are excitatory connections. Arrow thickness indicates 

the strength of the activity. Taken from (Wichmann and Dostrovsky 2011).  

The input structures of the BG are the caudate, putamen, and nucleus accumbens. They 

receive input from the cerebral cortex (Figure 1.2), and from the thalamus, subthalamic 
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nucleus and other brain stem structures. Most of these cortical inputs to the striatum are 

excitatory and use glutamate as their neurotransmitter. The output structures are the 

internal segment of the globus pallidus, substantia nigra pars reticulata, and ventral 

pallidum, and they project back to the cerebral cortex via the thalamus (Middleton and 

Strick 2000). The outputs leave from the substantia nigra pars reticulata and the internal 

segment of the globus pallidus to the ventro anterior and ventro lateral nuclei of 

thalamus. The thalamic nuclei then relay these outputs to parts of the cerebral cortex 

(Figure 1.2). These output pathways are inhibitory and use the neurotransmitter gamma 

aminobutyric acid (GABA). The intrinsic nuclei within the BG comprise the lateral 

position of the globus pallidus, subthalamic nucleus and the substantia nigra pars 

compacta, which are interconnected by local circuit projections and are also connected 

to the input and output nuclei (Figure 1.2).  

  



10 

 

1.2 BG circuitry  

Anatomical knowledge of the basal ganglia circuitry has been based on animal tracing 

studies and human post mortem work. Since invasive fibre tracking techniques are not 

possible in humans, anatomical studies exploring the presence of the parallel circuitry 

of the BG loops in humans have been largely based on primate-human extrapolations 

suggested by Alexander and colleagues (Alexander et al. 1986). It should be noted that 

the BG circuitry is highly complex with sub-structures within the BG having 

projections to and from other BG nuclei. Hence, the focus of this literature review is a 

brief overview of the topographical evidence of segregated and overlapping 

connections to and from the sub-structures of the BG, and the frontal and cortical 

regions, with specific focus on the motor circuitry for the purposes of this thesis.  

1.2.1 Foundational research on the BG loops 

The anatomical models of the organisation of BG circuits have undergone major 

revisions since their initial descriptions; it was primarily thought that the BG served as 

a “funnel”, integrating and channelling information from the cerebral cortex to the 

thalamus and back to the motor cortex (Allen and Tsukahara 1974). Evidence for 

anatomical and functional segregation of influences from the cortex to the BG-thalamo-

cortical circuits from anatomical and physiological findings has challenged and 

changed these initial views. DeLong and colleagues suggested that there were two 

loops; (i) a ‘motor loop’ that receives inputs from the sensory and motor areas that pass 

through the putamen and project back to the premotor areas; and (ii) an ‘association 

loop’ receiving input from the association areas passing through the caudate and 

returning back to the prefrontal areas (DeLong et al. 1984). Further evidence reinforced 

the principle that inputs from the BG are transmitted to segregated topographic portions 

of the frontal lobe. Alexander and colleagues proposed the organisation of the cortico-

BG-thalamo-cortical (CBTC) circuits as a model of five parallel circuits; where, in 

addition to the motor circuit, there are four other circuits designated as ‘oculomotor’, 

‘dorsolateral prefrontal’, ‘lateral orbitofrontal’ and ‘anterior cingulate’ circuits. 

(Alexander et al. 1986) as shown in Figure 1.3.  
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The basic design for each pathway is thought to be similar; each circuit contains non-

overlapping parts of the striatum, globus pallidus, thalamus, substantia nigra and cortex. 

Each circuit receives multiple and partially overlapping cortical inputs, which are 

integrated to pass through pallidum and substantia nigra, then to a specific portion of 

the thalamus, and then back to a separate/single cortical area. The initial description of 

funnelling inputs into the BG has been retained, however, here this would be the 

funnelling of inputs from functionally related and anatomically interconnected regions 

within the segregated circuits. The term circuit in this context does not refer to a closed 

pathway without any other substantial inputs or outputs, but refers to a closed loop 

within each circuit despite the presence of other inputs and outputs. Anatomical 

evidence to support the circuits primarily came from primate studies and post mortem 

human tissue work (Alexander et al. 1986; Alexander and DeLong 1985; Vitek et al. 

1994). For the purposes of this thesis, this will be discussed in relation to the motor 

circuitry of the BG.  

1.2.2  Motor circuit 

In the motor circuit, the putamen mostly receives substantial projections from the motor 

(Künzle 1975) and somatosensory cortices (Kunzle 1977). The motor and 

somatosensory ‘leg’ areas of the cortex are monosynaptically connected to the 

dorsolateral putamen while the ‘face’ area projects to the ventromedial region of the 

putamen and the ‘arm’ regions project to a region in between (Figure 1.4). The putamen 

also receives topographically organised projections from area 5 and lateral area 6 

including the arcuate premotor area (APA) and from the supplementary motor area 

(SMA) in a model derived from non-human primate data (Jones et al. 1977; Selemon 

and Goldman-Rakic 1985). Striatal projections from the SMA were traced by 

anterograde label injections into the rostral ‘face’ region with the resulting terminals 

ending in the ventromedial putamen (Brinkman and Porter 1979; Muakkassa and Strick 

1979). Therefore, as shown in Figures 1.3 and 1.4, the motor circuit has a combination 

of ‘open’ and ‘closed loops’ in which somatotopically organised influences from the 

SMA, APA, motor cortex (MC) and somatosensory cortex (SC) travel through the 

circuits and are then ultimately project back to the SMA.  
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Figure 1.4 Somatotopic organisation of the BG motor circuitry 

Here, the motor circuit is indicated by red arrows connecting the regions that modulate leg movements. 

It is somatotopically organised throughout the loop, with the regions representing leg movements lying 

dorsal and medial, those representing face movements lying ventral and lateral, and those representing 

arm movements lying in-between. The somatotopic arrangement of the primary motor cortex is generally 

maintained in the striatopallidal and subthalamic nuclei. GPe=globus pallidus pars externa. GPi=globus 

pallidus pars interna. STN=subthalamic nucleus. Figure from Obeso and colleagues and Rodriguez-Oroz 

and colleagues (Rodriguez-Oroz et al. 2009)    

The cortical terminal of the motor circuit, the SMA, has an important role in the 

programming and the control of movements. In primates, it projects not only to the 

APA and MC (Muakkassa and Strick 1979; Schell and Strick 1984) but also directly to 

the spinal cord (Biber et al. 1978; Murray and Coulter 1981; Palmer et al. 1981; 

Macpherson et al. 1982). Micro-stimulation of the SMA in the monkey has been shown 

to produce limb movements (Macpherson et al. 1982) and single cell studies in 

behaving primates have shown discharge in relation to limb movements (Brinkman and 

Porter 1979; Tanji and Kurata 1979) and during the preparation of these movements 

(Tanji et al. 1980). However, there is also evidence that the BG and the putamen are 

directly involved in preparation and planning of limb movements (Alexander 1987). 
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Several studies in awake behaving primates confirmed the somatotopic organisation of 

putamen as suggested by the topographical organisation of corticostriatal projections 

(Crutcher and DeLong 1984; Alexander et al. 1985; Liles 1985). Ordered somatotopic 

distribution of the motor inputs within areas of the BG and the thalamus has been 

consistently described in primates (Wichmann et al. 1994; Vitek et al. 1994; Takada et 

al. 2001; Takada et al. 1998; DeLong et al. 1983; Nambu et al. 1996). Segregated 

somatotopy of movement related neurons was shown in sensorimotor areas of the 

monkey striatum (Takada et al. 1998), GPi and GPe (DeLong 1971; DeLong et al. 1985) 

and the thalamus (Vitek et al. 1994). A segregated loop that connects the primary motor 

cortex (M1), SMA, the premotor cortex (PMC), and cingulate motor areas (CMA) with 

the motor areas of the thalamus and the BG facilitates the processing of motor 

information (Alexander and Crutcher 1990; Alexander et al. 1986; Takada et al. 2001; 

Smith et al. 1998; Romanelli et al. 2005). 

  



15 

 

1.3 Parkinson’s disease 

Parkinson’s disease (PD) is characterised by the irreversible depletion of dopaminergic 

neurons in the substantia nigra pars compacta (SNc) a structure located in the mid brain 

(Fearnley and Lees 1991) with projections that are relayed in the putamen and lead to 

the thalamus and motor cortex as shown in (Figure 1.5).  

1.3.1 BG circuitry in PD 

 

Figure 1.5 Basal ganglia-thalamo-cortical pathway in normal and Parkinson’s disease.  

M1- Motor cortex, PMC- Primary motor cortex, SMA – Supplementary motor area, CMA – Cingulate 

motor area, CM – Centromedian nucleus of thalamus, VA/VL – Ventro-anterior and ventro-lateral nuclei 

of thalamus, GPe – Globus pallidus external, GPi - Globus pallidus internal, SNc – Substantia nigra pars 

compacta, SNr – Substantia nigra pars reticulata, STN – Subthalamic nucleus, PPN – Pedunculopontine 

nucleus, D1, D2 - Dopamine receptor subtypes, Indir – Indirect pathway, Dir – Direct pathways. Black 

arrows are inhibitory connections and grey arrows are excitatory connections. Arrow thickness indicates 

the strength of the activity. Taken from (Wichmann and Dostrovsky 2011).  

Disturbance in the BG circuitry occurs after the loss of around 80% of the nigral 

dopaminergic neurons that have projections to the striatum (Bernheimer et al. 1973). 

According to the most prevalent model of BG dysfunction in PD (Bergman et al. 1990), 

this leads to a decrease in the activation of the cortex and causes the motor symptoms 

of the disease to arise. In the normal circuitry, as shown in the black arrows (Figure 

1.5), inhibitory signals are sent when the D1 receptors are activated in the direct output 

pathway from the putamen to the globus pallidus internus (GPi) and the substantia nigra 

pars reticula (SNr) (Wichmann and Dostrovsky 2011). The D2 receptors activate the 

indirect pathway and send inhibitory signals from the putamen to the globus pallidus 

externus (GPe) which in turn causes inhibitory signals to be sent to the subthalamic 
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nucleus (STN), which sends excitatory signals to the globus pallidus internus (GPi). 

The direct and indirect pathways to the GPi and SNr therefore help to modulate the 

transmission of signals to the ventro-anterior and ventro-lateral nuclei of the thalamus 

which in turn have excitatory connections to the cortex (Figure 1.5) (Alexander and 

Crutcher 1990; Albin et al. 1989). In PD, due to the reduced dopaminergic projections 

from the SNc, the activation of the D1 and D2 receptors in the putamen is reduced, 

causing reduction in the inhibitory signals to the GPi via the direct pathway. The GPi 

now also receives increased excitatory signals via the indirect pathway, causing 

increased inhibitory signals to the thalamus which in turn causes reduced excitatory 

signals to the cortex (Figure 1.4). After the description of this classic model of BG 

disruption in the 1990s, there has been a tremendous increase in clinical and 

experimental studies in PD.  

1.3.2 Braak’s staging of PD pathology 

Though the crucial pathology of PD is loss of SNc dopaminergic neurons, from the 

neuroanatomical work by Braak it has become clear that PD is not just a 

neurodegenerative disease of the BG system, as there are stages in which other regions 

of the brain undergo PD-related changes as well (Figure 1.4) (Braak et al. 2003).  

 

Figure 1.6 Braak staging of PD pathology.  

Pathogens come into contact with olfactory and/or enteric nervous system (ENS) neurons, which trigger 

the α-Synuclein aggregation (Stages 1 and 2). The aggregated α-Synuclein spreads toward the central 

nervous system (CNS) via the olfactory bulb and the vagus nerve, eventually, arriving at the substantia 

nigra (Stages 3 and 4). And then spreads to the neocortex and the prefrontal cortical regions (Stages 5 

and 6) (Halliday et al. 2011).  
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A consistent feature of PD pathology is the appearance of intercellular protein 

aggregates known as Lewy bodies in the dorsal motor nucleus of the vagus (DMV) 

within the medulla oblongata in post mortem analysis (Rietdijk et al. 2017). Baark’s 

staging postulates that α-synuclein (a major component of the Lewy body pathology) 

in the olfactory tract (Beach, White, et al. 2009; Hubbard et al. 2007) and the enteric 

nervous system (ENS) (Wakabayashi et al. 1988; Heiko Braak, De Vos, et al. 2006; 

Shannon et al. 2012) cause gastrointestinal and olfactory problems (Doty 2012). There 

is clinical evidence that these occur during the earlier stages of PD before the onset of 

motor symptoms and disease diagnosis creating the pre-motor symptoms of the disease 

(Bloch et al. 2006; Abbott et al. 2007; Ross et al. 2008a; Braak et al. 2003; Shannon et 

al. 2012). This has also been substantiated in animal models where α-synuclein 

aggregates were found in gastrointestinal tracts of animal models (Hallett et al. 2012; 

Natale et al. 2010; Wang et al. 2012; Drolet et al. 2009; Kelly et al. 2014). The α-

synuclein pathology spreads from the ENS to the central nervous system (CNS) via the 

vagal nerve (Tredici et al. 2010; Del Tredici and Braak 2008) and the DMV in the 

medulla oblongata (Takeda et al. 1993; Del Tredici et al. 2002; Jellinger 2004; Hely et 

al. 2008; Del Tredici and Braak 2008). This then spreads within the CNS from the lower 

brain stem regions towards the SN and eventually the neocortex and prefrontal cortex 

(Halliday et al. 2008; Del Tredici et al. 2002; Bloch et al. 2006; Braak et al. 2003) 

(Figure 1.6).  

Despite evidence from in vitro, in vivo and clinical studies, not all PD patients adhere 

to the proposed pattern of α-synuclein spread within the Braak’s stages such as those 

with young onset and long disease duration (Jellinger 2008; Kalaitzakis et al. 2009; 

Halliday et al. 2008). Recent studies have also suggested that neuronal loss and glial 

cell activation should be added to pathological studies in PD progression, as SNc 

neuronal loss shows linear relationship with motor symptoms (Greffard et al. 2006), 

while Lewy body aggregation only shows a trend towards a positive correlation with 

the motor symptoms (Beach, Adler, et al. 2009).  

1.3.3 PD symptoms and the BG model 

The cardinal symptoms of PD are resting tremor (shaking hands at rest), bradykinesia 

(slowness of movement), and rigidity (unnatural stiffness of the muscles) (Jankovic 

2008). All the main symptoms of PD are known to be directly related to SNc 
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dopaminergic loss, and are mainly associated with the disruption of the BG motor 

circuitry. The onset of motor features correlates with loss of dopamine in the posterior 

putamen which is the motor region of the striatum (Rodriguez-Oroz et al. 2009).  

Bradykinesia is characterised by reduction in the speed and amplitude of initiation and 

execution of movements up to a complete cessation (Jankovic 2008; Rodriguez-Oroz 

et al. 2009). Bradykinesia is a defect of the BG motor circuitry involving the structures 

of STN, GPi and GPe (Nambu et al. 1998; Kita 2005). It also involves the recruitment 

of cortical neurons and BG connections with the SMA and prefrontal cortices known 

for their involvement in time processing in animals and humans (Meck 2006; 

Jahanshahi et al. 2006) for adjusting initiated movement (Escola et al. 2003; Mink and 

Thach 1991; Boraud et al. 2000). In PD, there is increased difficulty in self-initiated 

movements than externally triggered movements and this fits in well with the BG model 

of PD which modulates areas such as SMA which is involved in self-initiated actions 

(Redgrave et al. 1999; Escola et al. 2003). Rigidity is caused by increased slow and 

sustained muscle stretching in PD patients (Andrews et al. 1972) and it is mediated 

through the primary motor cortex suggested by increased primary cortex excitability in 

humans (Lefaucheur 2005; Mir et al. 2005) and animals (Goldberg et al. 2002). 

However, the relationship between dopamine deficiency, increased BG output and its 

relation to primary motor cortex excitability and rigidity is not fully understood. Tremor 

is characterised by 4-6Hz activity at rest in the limbs. STN and GPi rhythmic and 

synchronous neuronal firing rates correlate with tremor in monkeys and in PD patients 

(Rodriguez et al. 1998; Bevan et al. 2002). The ventral intermediate nucleus (Vim) and 

cerebellar activation is also known to associated with tremor (Rodriguez-Oroz et al. 

2009).  

However, the BG model does not fully and clearly explain PD symptoms. Increased 

neuronal activity in the STN/GPi-SNr and the subsequent inhibition of thalamocortical 

projections does not explain the origin of tremor and rigidity (Rodriguez-Oroz et al. 

2009). Levodopa-induced dyskinesia are eliminated by GPi lesions (pallidotomy), 

which is not compatible with a model that relates excessive GPi/SNr inhibition and 

reduced BG output activity with dyskinesia (Obeso, Rodríguez-Oroz, et al. 2008; 

Obeso, Marin, et al. 2008). Similarly thalamic lesions (thalamotomy) which causes 

disruption of the motor circuitry does not aggravate bradykinesia nor produces new 
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motor symptoms (Magrinelli et al. 2016). Therefore, the manifestation of the motor 

symptoms of PD suggests a more complex pathophysiological origin.  

Dopamine levels can be adjusted temporarily by the administration of levodopa, a 

precursor of dopamine that crosses the blood brain barrier and can be metabolised to 

dopamine in the brain (Fahn 2015). Levodopa treatment, which is the current 

therapeutic standard in PD, targets the BG temporarily by increasing the amount of 

dopamine in the BG (caudate and putamen) and improving movement related functions 

(Mirdamadi 2016). Surgical treatment options available are DBS (Williams 2015), 

thalamotomy (Linhares and Tasker 2000) and pallidotomy (Lozano and Lang 1998), 

these are typically given when medications are not adequate in controlling the 

symptoms of the disease or have caused unacceptable side effects; however, recent 

research suggest that DBS may be specially effective in treatment in the earlier course 

of the disease (Hacker et al. 2015). The ventral intermediate nucleus (VIM) found at 

the centre of the thalamus is implicated as being the part of the circuit that generates 

tremor, it is therefore a target for thalamotomy and DBS (Rodriguez-Oroz et al. 2009).   

Although PD is predominantly described and clinically classified as a motor disorder, 

there are a number of non-motor symptoms that occur during the progression of the 

disease including deficits in smell, mood, sleep, cognition and autonomic function 

(Goldman and Postuma 2014; van Rooden et al. 2009). Cognitive dysfunction is present 

in 20-40% of PD patients even in early PD but are often overshadowed by the motor 

symptoms (Foltynie et al. 2004; Muslimović et al. 2005; Elgh et al. 2009).  

The specific neuroanatomical basis for the non-motor symptoms of Parkinson’s disease 

remain unknown. Studies that explored olfactory disturbances in PD support that these 

symptoms are associated with Braak stage 1, where degeneration of neurons in the 

olfactory bulb and anterior olfactory nucleus occurs (Montgomery et al. 1999; Ross et 

al. 2008b). And within the Braak staging 1 and 2, the pathological changes in the lower 

brainstem, the pedunculopontine nucleus and the thalamocortical pathways are thought 

to mediate the sleep disturbances associated with PD  (Rye 2004; Saper et al. 2001). 

Pallidosubthalamic projections within the basal ganglia circuitry have been regarded as 

anatomical base for most of the non-motor functions within PD in deep brain 

stimulation studies of the subthalamic nucleus (Karachi et al. 2005; Chaudhuri et al. 

2006).  
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Non-motor symptoms such as anxiety, apathy and anhedonia in PD are associated with 

neuronal degeneration and decreased reward processing in projections between the 

ventral tegmentum and nucleus accumbens and in frontal-subcortical areas (Brown and 

Pluck 2000; Robbins and Everitt 1996; Kunig et al. 2000). The prefrontal cortex and 

the limbic loop are implicated in the cognitive symptoms of PD (Heiko Braak, Rub, et 

al. 2006), with decline in cognitive symptoms correlating with neuropathological stage 

of PD (Braak et al. 2005).   

Resting state functional connectivity studies have shown that certain brain regions such 

as the ipsilateral orbito-frontal area was negatively correlated with the severity of non-

motor symptoms (Yoo et al. 2015). Dysfunction in PD resting state extends beyond the 

sensorimotor network to include fronto-parietal and visual areas as well (Prodoehl et 

al. 2014). Cognitive deficits in PD also correlated with decreased functional 

connectivity of medial frontal area, temporal lobe, inferior parietal cortex and posterior 

cingulate areas (A Tessitore et al. 2012; Disbrow et al. 2014).  

Due to the specific involvement of the above mentioned grey matter areas, two white 

matter tracts of interest; the uncinate fasiculus and the medial forebrain bundle were 

chosen for the purposes within this thesis. The uncinate fasiculus connects the 

orbitofrontal cortex with the anterior temporal lobes (Von Der Heide et al. 2013; 

Highley et al. 2002) and these brain regions as shown above are known to influence 

non-motor and cognitive symptoms in PD (Yoo et al. 2015; Alessandro Tessitore et al. 

2012; A Tessitore et al. 2012; Disbrow et al. 2014; Papagno et al. 2011).  The medial 

forebrain bundle connects the ventral tegmental area to the forebrain and the frontal 

lobe, and these brain areas as shown above as well as the bundle itself has been shown 

to be involved in reward processing alterations such as anhedonia and depression in PD 

(Coenen et al. 2012; Bracht et al. 2015; Brown and Pluck 2000; Robbins and Everitt 

1996; Kunig et al. 2000).   

PD is therefore a complex disorder with a wide range of motor and non-motor 

symptoms which may include various regions and pathways of the brain even though 

the main pathological feature is the degeneration of the BG system.  
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1.4 Cerebellum  

1.4.1 Anatomy 

The cerebellum is located below the cerebrum, behind the brainstem and is connected 

to both of these structures (Nieuwenhuys et al. 2008). It has two lateral cerebellar 

hemispheres and the medial vermis, and is classically divided into three lobes; an 

anterior lobe, a larger posterior lobe and a smaller flocculonodular lobe. The three 

cerebellar lobes are anatomically separated by 2 transverse fissures, the primary fissure 

separating the anterior and the posterior lobe and the posterolateral fissure between the 

posterior and flocculonodular lobe. The cerebellum has 10 further subdivisions or 

transverse lobules labelled by Roman numerals (lobules I-X) as shown in Figure 1.7 

where the unfolded view of the cerebellar cortex also shows the fissures, lobules, lobes 

and its somatotopy (Roostaei et al. 2016). The cerebellum consists of highly convoluted 

outer layer of grey matter also known as the cerebellar cortex, that surrounds the 

branches of white matter which in turn surround the deep cerebellar nuclei 

(Nieuwenhuys et al. 2008; Ramnani and Owen 2004). 

  

Figure 1.7 Unfolded view of the cerebellar cortex showing the fissures, lobules, lobes and its somatotopy 

(Roostaei et al. 2016). 
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The deep cerebellar nuclei are the dentate, interposed and the fastigial nuclei, with the 

dentate nucleus being the largest of them. The cerebellar cortex and the deep cerebellar 

nuclei are interconnected to extra cerebellar structures through the superior, inferior and 

middle cerebellar peduncles (Catani et al. 2008). All input and output connections from 

and to the cerebellum pass through these peduncles. An overview of cerebellar anatomy 

and function is shown in Figure 1.8.  

The cerebellum has diverse and varied functions ranging from motor planning and 

execution to higher-order cognitive and emotional functions such as time perception, 

working memory, language, executive functioning and emotional processing (Ramnani 

2006; Schmahmann 1996; O’Callaghan et al. 2016; Buckner et al. 2013; Balsters and 

Ramnani 2011; Koziol et al. 2014; Roostaei et al. 2016).  It is also known to regulate 

balance, posture, motor coordination and cognitive functions (Nieuwenhuys et al. 2008; 

Ramnani 2006). 

 

Figure 1.8 Overview of cerebellar anatomy and function  

A shows the classical lobular divisions, B shows the classic connectivity patterns and C shows anatomical 

clusters with their putative functions (Makris et al. 2005).  
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1.4.2 Cerebellar circuitry  

The cerebellum has direct and indirect connections to various brain regions including 

the brain stem, the spinal cord and various cerebral subcortical and cortical regions. The 

cerebellar circuitry is also organised similar to the BG circuitry in parallel and partially 

overlapping circuits. This circuitry originates from the motor, association and 

paralimbic regions of the cerebral cortex, with organised projections towards the 

pontine nuclei as fibres from the frontal, temporal, parietal and occipital regions 

(Schmahmann 1996; Stoodley and Schmahmann 2009; Glickstein et al. 1985; Ramnani 

and Owen 2004; Ramnani 2012).  

The pontine nuclei project to distinct cerebellar input nuclei which are in turn connected 

to cerebellar output nuclei that project back to the contralateral cortical regions via the 

ventrolateral nucleus of the thalamus (Middleton and Strick 2001; Middleton and Strick 

2000; Ramnani 2006). These cortico-cerebellar loops have functional distinctions with 

the ‘motor’ cerebellum comprising lobules V, VI, VIIb and VIII which project to pre 

and post central gyrus (cortical motor regions), and the ‘cognitive’ cerebellum 

containing Crus I and II which project to prefrontal and parietal cortices (Kelly and 

Strick 2003; Hoover and Strick 1999; O’Reilly et al. 2010; Balsters et al. 2014; Balsters 

and Ramnani 2011). 

It is now known that both the BG and the cerebellum modulate the activity of largely 

overlapping cerebral cortical areas through multisynaptic loops, which were previously 

assumed to be anatomically and functionally separate (Wu and Hallett 2013). Studies 

show direct and distinct interconnections between the BG and the cerebellum in animals 

(Bostan et al. 2010; Hoshi et al. 2005) and similar connections have been described in 

humans (Jeong et al. 2012; Mollink et al. 2016; Fenoy et al. 2017; Calabrese et al. 

2015).  

The motor and cognitive regions output to distinct topographical regions in the 

sensorimotor and associative striatum via the dentate nucleus through projections 

towards the thalamus after decussating at the red nucleus (Meola et al. 2016; Mollink 

et al. 2016; Jeong et al. 2012; Jang and Kwon 2015; Calabrese et al. 2015; Kwon et al. 

2011; Anthofer et al. 2017). And the STN has projections towards the contralateral 

cerebellar cortex via the pontine nuclei (Sweet et al. 2014; Bostan et al. 2010). 

Projections from the associative, limbic and motor territories of the STN terminate in 
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the motor and non-motor regions of the cerebellum (Bostan et al. 2013). These 

pathways that show BG and cerebellum interconnections show integration of a range 

of BG and cerebellum functions.  

1.4.3 Cerebellum in PD   

Increasing evidence suggests that the cerebellum may play certain roles in the PD 

pathophysiology. Cerebellar atrophy and volumetric changes have been reported in PD 

with these changes being attributed to motor and non-motor functions. Reduced 

cerebellar volume in the left cerebellum of PD patients compared to healthy controls 

and in patients with tremor at the quadrangular lobe was reported suggesting a role of 

cerebellum in tremor (Borghammer et al. 2010; Benninger et al. 2009). PD cerebellar 

atrophy has been associated with cognitive deficits and markers of disease severity 

(Pereira et al. 2009; Nishio et al. 2010; Yoo et al. 2015).  

Another recent resting state functional connectivity study also found that cerebellar 

atrophy can cause pathological loss of connectivity with large-scale cortical networks 

and contribute to motor and cognitive changes in PD (O’Callaghan et al. 2016). 

Cerebellar grey matter changes correlated with reduced connectivity between the 

cerebellum and sensorimotor, dorsal attention and default networks while showing 

increased connectivity with the frontoparietal network (O’Callaghan et al. 2016).  

Additionally, olfactory (K. Y. Zhang et al. 2011) and cognitive (Camicioli et al. 2009; 

Nishio et al. 2010; Pereira et al. 2009) related structural changes have also been 

reported in PD cerebellum. Dopaminergic degeneration has been reported to produce 

pathological changes in the cerebellum in PD patients and in animal models. In rat and 

monkey lesion models, degeneration of nigrostriatal dopaminergic neurons causes 

dysfunction of both the basal ganglia-thalamic and cerebello-thalamic pathways 

(Rolland et al. 2007). Post mortem brain tissue from PD patients showed reduced 

dopamine receptors in the cerebellum (Hurley et al. 2003).  

Cerebellum has also been shown to play a role in PD symptoms such as gait 

disturbances (Schweder et al. 2010), tremor (Helmich et al. 2012), dyskinesia (Koch et 

al. 2009) and non-motor symptoms (Wu and Hallett 2013). PD resting tremor has been 

linked to changes in the BG and the cerebello-thalamo-cortical motor loop, and a recent 

functional MRI studied showed that the BG influences the tremor amplitude and the 

cerebello-thalamo-cortical loop is effectively influenced through the motor cortex and 
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not the cerebellum, suggesting that PD tremor arises in the BG and it’s propagated via 

the cerebello-thalamo-cortical loop (Dirkx et al. 2016).  

Furthermore, functional MRI studies reveal hyperactivity of the cerebellum in PD 

(Magrinelli et al. 2016; Jahanshahi et al. 2010; Yu et al. 2007a; Koch et al. 2009; Gao 

et al. 2017; Wu et al. 2009). In hypokinetic PD patients, the hyperactivity of the 

cerebello-thalamo-cortical circuit has been proposed to compensate for the 

hypoactivation of striato-thalamo-cortical circuit, while in PD tremor subtype, 

cerebello-thalamo-cortical circuit dysfunction is thought as a physiopathologic 

mechanism for rest tremor (Dirkx et al. 2016). Studies have also shown decreased α-

synuclein levels in the cerebellum in PD (Westerlund et al. 2008; Fuchs et al. 2008; 

Solano et al. 2000). Therefore, converging evidence suggests the importance of the 

cerebellum and the cerebellar interconnections with the BG in PD.  
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1.5 Main white matter connections for investigation 

In summary, from the literature above it is clear that the BG and the cerebellum form 

networks with the cortical areas and the thalamus and these are affected by the PD 

pathology. It is known that the motor symptoms of PD only arises after 80% of 

dopamine in the striatum is depleted and compensatory process have been suggested to 

occur within and outside the BG which should be reflected in the architecture of the 

fibre tracts connecting motor cortex, basal ganglia and thalamus (Bezard et al. 2003).  

The study of the white matter architecture of BG interconnections have been omitted in 

research into PD which provides the novelty and rationale for studying the white matter 

connections between the SMA and the putamen, and the thalamus and the premotor 

cortex in relation to BG circuitry in PD (Chapter 3). The corticospinal tract is the major 

motor tract and it is the pyramidal pathway from the primary motor cortex travelling 

through the cerebral hemispheres including the posterior internal capsule, which lies 

between the globus pallidus and the thalamus, the brain stem (crossing at the bottom of 

the medulla) and the lateral part of the spinal cord (Jang 2014). Therefore, the 

corticospinal tract was also added as the motor tract of interest for investigation in 

Chapter 3. Non-motor symptoms and their related white matter connections have also 

been overlooked in PD, which provides the rationale for including the uncinate 

fasiculus and the medial forebrain bundle for additional investigation in Chapter 3.   

Despite converging evidence that the cerebellum plays a role in PD pathogenesis and 

the evidence showing direct connections between the BG and the cerebellum, no studies 

have looked at the white matter connections of the cerebellum and its interactions with 

the BG in PD. Therefore in Chapter 4, these connections were mapped out in healthy 

participants to provide an anatomical investigation and protocol for delineate the BG-

cerebellum interconnections. And in Chapter 5, these connections and the main 

cerebellar pathways were investigated in the first diffusion tractography study of their 

alteration in PD. The work within this thesis closes the gaps in knowledge in PD were 

previous neuroimaging studies have overlooked the white matter connections of the BG 

and also the interconnections between the BG and the cerebellum while also provide an 

anatomical protocol for future studies in PD and other brain disorder to reconstruct and 

study these white matter connections.  
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2.1 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) uses the principle of applying radio frequency 

(RF) pulses to excite hydrogen nuclei (protons) within a tissue of interest and recording 

the energy released while they return back to their relaxed state. Hydrogen nuclei 

possess a magnetic dipole with a corresponding north and south pole, these dipoles also 

referred to as spins, align themselves to an externally applied magnetic field.  Therefore, 

when a magnetic field is applied on a tissue, the protons within that tissue align 

themselves parallel to the direction of the magnetic field as shown in (Figure 2.1). This 

net magnetic field direction is referred to as B0 and the net alignment of all the protons 

along this direction as M0. 

 

Figure 2.1 Protons aligned along the magnetic field B0. 

The excited protons spin around their axis and higher magnetic fields cause faster spins 

and vice versa. When an RF pulse that matches the frequency of the spin hits the 

protons, the protons absorb the energy and deflect or fall out of alignment with the 

magnetic field into a higher energy state (Figure 2.2a). The protons then recover back 

into alignment along B0 while releasing the absorbed energy. This process is called as 

magnetic recovery, the time taken to recover is called T1 and the MR signal measured 

as the T1 signal (Figure 2.2b). RF pulses also help coordinate the protons magnetic 

fields so that they wobble in time together (in phase) and as they begin to relax, the 

wobble becomes uncoordinated (out of phase). This process of returning back to 
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uncoordinated wobbling is called as magnetic relaxation, the time taken to relax is 

called T2 and the MR signal is measured as T2 signal (Figure 2.2c).  

 

Figure 2.2 T1 and T2 signal 

a) 90° RF pulse hits a proton causing it to fall in alignment with magnetic field. b) Proton gets back to 

low energy state by releasing energy as the T1 signal. c) Proton falls out of phase and give rise to the T2 

signal.  

In practice, the MR scanner produces a series of short RF pulses followed by longer 

periods of waiting to measure the MR signal that comes back. The signal that come 

backs is called the magnetic echo, the time between the RF pulse and the resulting 

magnetic echo is called as the echo time (TE). When double RF pulses are used, the 

image obtained is called a spin echo MRI image. The time between consecutive RF 

pulses is called as repetition time (TR). When extra magnets in the scanner called as 

the magnetic gradient systems, are rapidly switched ‘on’ and ‘off’, the image formed is 

called a gradient echo MRI image. MRI images are made up of pixels usually 

represented as a matrix, and the more pixels, the higher the resolution which gives more 

structural detail in the MRI image.  
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By manipulating the TE and the TR, different contrasts of MR images can be obtained. 

T1 and T2 times vary within different tissue in the brain (grey matter, white matter and 

cerebrospinal fluid) this causes different contrasts to the MR images as shown in Figure 

2.3. 

 

Figure 2.3 T1 and T2 contrasted images of a representative human brain in the axial view. 
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2.2 Diffusion MRI Imaging and Tractography 

2.2.1 Background 

Diffusion is the process of transporting matter by the random motion of molecules, also 

called as Brownian motion. And about 30 years ago, Le Bihan and colleagues made it 

possible to image the apparent diffusion of water molecules in the human brain (Le 

Bihan et al. 1986). Since then diffusion MRI has become a standard for understanding 

various brain diseases such as multiple sclerosis, dementia, traumatic brain injury, 

stroke, schizophrenia etc. (Oppenheim et al. 2004; Assaf and Pasternak 2008; Ciccarelli 

et al. 2008; Le Bihan and Johansen-Berg 2012; Dijkhuizen et al. 2012). Diffusion 

weighted imaging (DWI) uses the property of Brownian motion of water molecules (Le 

Bihan et al. 2001) to provide image contrasts based on the rate of diffusion (differences 

in magnitude of water diffusion) within the brain. The degree/rate of MR signal loss is 

dependent upon the degree/rate of diffusion (diffusivity), with higher diffusivity areas 

(E.g.: CSF) resulting in more MR signal loss and lower diffusivity areas (E.g.: white 

and grey matter areas) resulting in lower MR signal loss. This degree of the MR signal 

loss can be enhanced by increasing the strength and duration of the diffusion-encoding 

gradients which are characterised by the b value (s/mm2).  

 

Figure 2.4 Diffusion weighted spin echo sequence (Winston 2012a) 

The b value is defined by the Stejskal-Tanner equation: 

 

Where, γ is the gyromagnetic ratio, G, δ, Δ correspond to the amplitude, duration and 

interval of the diffusion gradient, respectively (Figure 2.4). Two dimensional DWI 

images/maps of the diffusion rates are generated by calculations from a combined 

analysis of the two images acquired with different b values (b = 0 and b = 1000 s/mm2) 

(Huisman 2010). A representative participant’s T1 and DWI images are shown in 
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(Figure 2.5 A, B), respectively. The apparent diffusion coefficient (ADC) is the 

measure of the rate of diffusion, a representative ADC map can be seen in (Figure 2.5 

B), where high diffusivity areas appear hyperintense and low diffusivity areas are 

hypointense.  

 

Figure 2.5 T1, DWI, FA and FA colour coded images of a single slice axial view of a representative 

subject. 

A tensor is a mathematical vector which describes both direction and magnitude, 

therefore in diffusion tensor imaging (DTI), the DWIs are acquired in many 

orientations/directions to calculate the overall dominant direction and magnitude of 

water molecule diffusion within each voxel. DTI allows the calculation of the shape 

and orientation of the diffusion in space, which is the tensor graphically represented as 

the ellipsoid in Figure 2.6.  
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Figure 2.6 The diffusion tensor and its quantitative measures 
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Therefore, DTI gives a 3D measurements with three principal diffusivities 

(eigenvalues, λ
1
, λ

2
, λ

3
 in Figure 2.6) which are associated with the three mutually 

perpendicular principal directions (eigenvectors, Dxx, Dyy, Dzz). The tensor has three 

degrees of freedom and is represented by a 3×3 symmetric matrix (Dxx, Dxy, Dxz, 

Dyx, Dyy, Dyz, Dzx, Dzy, Dzz). The sampling of the tensor is performed by repeating 

diffusion-weighted sequence along different directions and one measurement is usually 

a low b-value or a zero b value.  

However, diffusion is a three-dimensional property differing between brain areas and 

influenced by the various microstructural architecture as well as physiological factors 

with the various brain structures. When the movement of the water molecules is 

completely unhindered and they can move freely and equally in all three directions, the 

diffusion is isotropic and the 3D shape is represented by a sphere (E.g.: in the CSF). 

When the movement of the molecules is hindered, the diffusion becomes anisotropic 

(E.g.: in the white matter tracts) and this 3D shape is graphically represented as an 

ellipsoid (Figure 2.6). In the white matter tracts, diffusion happens predominantly along 
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the direction parallel to the long axis of the tracts (axonal bundles) and is more restricted 

along the directions perpendicular to the direction.  

Various quantitative measurements can be extracted using the information from the 

directional restriction of diffusion along the three axes. The main quantitative measures 

extracted from this information are Fractional Anisotropy (FA), Axial Diffusivity (AD), 

Radial Diffusivity (RD) and Mean Diffusivity (MD) as shown in (Figure 2.6). 

Fractional anisotropy (FA) is a scalar measure of the degree of anisotropy and its value 

ranges from 0 to 1, with values approaching 0 reflecting isotropic tissue and values 

approaching 1 reflecting anisotropic tissue. It is a normalised measure of diffusion 

along all the three directions derived by the following formula (Pierpaoli and Basser 

1996)   

 

FA values can also represented as degree of anisotropy maps and (Figure 2.4 C) shows 

high FA values as bright (e.g.: corpus callosum, internal capsule) and low FA value 

regions e.g.: CSF or grey matter. Mean diffusivity (MD) is a measure of the average 

diffusion along all three directions. Axial or Longitudinal diffusivity (AD/L1) is a 

measure of diffusion along the axial direction or direction of the largest eigenvector 

along the axonal bundle. Radial Diffusivity (RD) is measure of diffusion perpendicular 

to the axial direction or axonal bundle. (Pierpaoli et al. 1996; Song et al. 2002; 

Hagmann et al. 2006).  

As DTI also gives the principal direction of the diffusion, colour-coded FA images 

depicting the direction of largest eigenvector can be derived where the red, green, and 

blue colours are assigned to the right-left, anterior-posterior, and superior-inferior 

directions of the fibre orientations, respectively (Pierpaoli et al. 1996) (Figure 2.4 D). 

MRI measurement of water diffusion in brain tissue provides information about the 

composition, microstructure, architectural organisation and physical properties of the 

constituents of the tissue in a non-invasive manner without the use of contrasting 

agents. Therefore, DTI has made it possible to visualise in vivo white matter 
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connections in the human brain and to investigate their white matter properties. The 

importance of white matter microstructure and it’s organisation in unravelling the 

mysteries of cognition and disease is now widely recognised, particularly how white 

matter is vulnerable to neuropathological defects and neurodegenerative diseases.  

2.2.2 Tractography 

Using the information from the diffusion tensors or ellipsoids, the principal direction 

of the apparent diffusion can be determined for each voxel. With the development of 

mathematical algorithms that allow the connection of ellipsoids one voxel after another 

along their principal directions, it is possible to depict the trajectory of the apparent 

diffusion along white matter fibre tracts as shown in Figure 2.7. Mathematical methods 

were developed to extract and visualise coherently ordered fibre tract trajectories within 

each voxel followed in discrete steps to form tracts. In this way, diffusion tensor based 

tracking allows the visual representation of diffusion directions along white matter 

pathways (Derek K Jones et al. 1999; Pierpaoli et al. 1996; Mori et al. 1999; Catani et 

al. 2002).  

 

Figure 2.7 Tractography based on Diffusion Tensor Imaging [modified from book (Jones 2010)] 

However, DTI based tractography has limitations; in particular, it is unable to resolve 

multiple fibre orientations within voxels (Alexander 2013; Von Dem Hagen and 
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Henkelman 2002). Therefore, several alternative methods to overcome the challenges 

posed by DTI have been developed, such as Diffusion Spectral Imaging (Wedeen et al. 

2005), Q-ball imaging (Tuch 2004), persistent angular structure MRI (PAS-MRI) 

(Jansons and Alexander 2003) and spherical deconvolution (SD) (Anderson 2005; 

Tournier et al. 2004) methods. The data acquisition time for DSI is quite restrictive 

producing partially acquired data which don’t provide sufficient data to reconstruct the 

full diffusion propagator. Q-ball imaging is a variant of DSI, which allows fibre 

orientation peaks to be derived from data acquired at a single b-value however these 

peaks are not very sharp. The PAS-MRI and the SD methods both attempt to sharpen 

the fibre orientation peaks however the PAS-MRI methods have longer computation 

time due to non-linear estimation requirements. Among these methods, the SD based 

tractography has been shown to resolve the DTI problem of crossing fibres with a good 

angular resolution, it also has a relatively short acquisition time similar to standard DTI 

clinical protocols and have reasonable computational analysis times (Huisman 2010; 

Jones 2004). Given that there are crossing fibres in about 90% of the voxels of the brain, 

allocation of voxel-based findings to specific tracts can be highly speculative (Jeurissen 

et al. 2013). The SD method is based on the assumption that the diffusion signals within 

a voxel can be modelled as a spherical convolution between the fibre orientation 

distributions (FOD) and the fibre orientation density function (fODF) which describes 

the common signal profile from the white matter fibres within a voxel (Tournier et al. 

2004). Therefore the FOD is said to provide a better estimation of fibre bundles within 

each voxel as it does not require modelling of the diffusion process itself and does not 

require prior information about the likely number of different fibre populations present 

within each voxel. An example of SD based fODFs reconstructed in the pons is shown 

in Figure 2.8.  
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Figure 2.8 Fibre ODFs reconstructed from the in vivo data for adjacent voxels in the pons. A shows an 

axial FA map at the level of the pons. B shows a magnified section of the FA map, coloured according 

to the anatomic direction of the major eigenvector of the diffusion tensor (red: left–right, green: anterior–

posterior, blue: inferior–superior). C shows the fibre ODFs reconstructed from the voxels highlighted in 

the direction map, also coloured according to orientation. [modified from (Tournier et al. 2004) ]  

Tractography done using only the tensor information from the DTI method is unsuitable 

due to problems with the crossing fibres, however the SD based methods can resolve 

up to 3 peaks reliably which is very important as most of the voxels within the brain 

are known to have crossing fibres (Jeurissen et al. 2013). Even though the SD method 

overcomes these limitations of the DTI method, it is known to be affected by isotropic 

partial volume effects which is likely to produce artefactual tractography results 

(Ciccarelli et al. 2008; Schonberg et al. 2006). The modified damped Richardson-Lucy 

(dRL) algorithm was developed to overcome these challenges of false positives, partial 
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volume effects, crossing fibres and spurious tracking (Dell’acqua et al. 2010). The  dRL 

algorithm has been shown to reduce false positive fibre orientations while preserving 

angular resolution therefore making it robust in estimating the fibre orientations of 

white matter tracts are close to the cortex, thereby providing accurate description of 

white matter organization (Dell’acqua et al. 2010).  

There are two main types of tractography methods: Deterministic and Probabilistic. In 

probabilistic tracking, a seed point (a chosen voxel) is assumed to have connections 

across all points but only those connections that have some minimal cost function are 

taken as most probable connections and pursued to create the fibre tract (Behrens et al. 

2003; Jones and Pierpaoli 2005). The disadvantage of this method is that the frequently 

travelled connection ultimately becomes the most probable one and the cost function 

restricting the direction or coherence of the nerve fibre may not be useful in giving an 

actual representation of a fibre tract.  In deterministic tracking, the fibres are launched 

from a defined region of interest in all directions until specified termination conditions 

are met (Mori et al. 1999; Basser et al. 2000). All ellipsoids or spherical convolutions 

that pass those conditions create the continuous trajectories that form a fibre tract, 

making it computationally less expensive than probabilistic tracking. The disadvantage 

of this strategy is that one cannot be sure whether the fibre tract may represent an actual 

or even a probable white matter pathway, therefore caution needs to be taken when 

performing deterministic tracking without prior knowledge of anatomical pathways.  

Tractography has been shown to be able to generate tracts that are anatomically 

plausible when compared with post mortem sectioning results (Jellison et al. 

2004).Tractography is not only non-invasive and time saving, but it helps to visualise 

white matter tracts in the brain, segment specific tracts for studying and understanding 

them better. Tractography elucidates the white matter anatomy to inform neurosurgery 

of brain tumours and other lesions (Ulmer et al. 2014) or deep brain stimulation (Torres 

et al. 2014) and also enables to find the differences between healthy and diseased white 

matter microstructure (Ciccarelli et al. 2008) thereby helping to understand the 

underlying neuropathology and disease mechanisms.  

For the purposes of this thesis, a whole brain deterministic tractography based on the 

dRL algorithm was employed for the tractography analyses of the chosen white matter 
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pathways of interest guided by previous post mortem, animal tracing and/or human 

diffusion imaging studies. 

2.3 MRI data acquisition and processing 

2.3.1 Data cohorts  

Previously collected data from three different studies were utilised for the analyses 

within this thesis. The first cohort was a group of 26 patients with Parkinson’s disease 

(PD) who took part in a trial that compared functional magnetic resonance imaging 

(fMRI)-based neurofeedback and exercise intervention with a gaming console over 12 

weeks (Subramanian et al. 2016). Here the data used for the analyses here is from the 

baseline scan, which were unaffected by the intervention. Two PD patients’ scans had 

to be excluded from the final analysis due to corrupted data files. The second cohort 

used in this thesis was from a study that looked at the effects of ageing on white matter 

microstructure (Metzler-Baddeley et al. 2011). This study used the same diffusion 

imaging protocol as the PD intervention study and were included to provide 26 age and 

gender matched healthy control (MHC) individuals. The third cohort is a group of 20 

young healthy participants (YHP), acquired as part of a study into white matter 

plasticity following working memory training (Metzler-Baddeley et al. 2016; Metzler-

Baddeley et al. 2017). These studies were approved by the local NHS research ethics 

committee for the patient study and the ethics committee of the School of Psychology 

for the healthy aging and cognitive training studies. All patients and participants 

provided written informed consent. The demographics information of all three groups 

is shown in Table 2.1.  

Table 2.1 Demographics of the Young healthy participants (YHP), Parkinson’s disease (PD) patients 

and Matched healthy controls (MHC)  

 YHP 

(n=20) 

PD  

(n=24) 

MHC 

(n=26) 

Differences between 

PD and MHC 

Age 25.4 ± 4.84 63.42 ± 10.82 64.88 ± 8.06 P = 0.5918, Two 

sample t-test 

Sex (M:F) 12:8 22:2 17:9 P = 0.06, Chi squared 

test 

No of diffusion 

directions 

60 30 30 - 

H & Y Stage NA 1.75 ± 0.47 NA - 

MOCA NA 26.54 ± 2.01 NA - 

LEDD (mg) NA 537.64 ± 340.69 NA - 
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Abbreviations: MOCA –The Montreal Cognitive Assessment; H & Y - Hoehn & Yahr Stage; LEDD – 

Levodopa Equivalent Daily Dose; YHP- Young Healthy Participants; PD- Parkinson’s disease patients; 

HC – Healthy Controls; M - Male; F - Female; R – Right; L - Left  

2.3.2 Structural MRI scanning 

All data were collected at the Cardiff University Brain Research Imaging Centre 

(CUBRIC) on a 3T GE Signa HDx system (General Electric Healthcare) with eight 

head coils. T1-weighted structural scans were acquired using an oblique-axial, 3D fast 

spoiled gradient recalled sequence (FSPGR) with the following parameters: 178 slices; 

TE = 3 ms, TR = 7.9 ms, voxel size 1.0×1.0×1.0 mm3, 256×256 Field of view (FOV), 

acquisition time of 6 minutes. These T1 structural images were acquired for correcting 

geometrical echo planar imaging (EPI) distortion by co-registration with the diffusion 

MRI data, for grey matter anatomical landmarks for localization of regions of interest 

for the tractography and for the subcortical volume analyses.  

2.3.3 Diffusion MRI scanning 

Diffusion weighted MRI data were acquired using a peripherally gated twice-refocused 

pulse-gradient spin-echo echo-planar imaging sequence providing whole oblique axial 

(parallel to the commissural plane) brain coverage. Data were acquired from 60 slices 

of 2.4 mm thickness, with a field of view 23 cm, and an acquisition matrix of 96 x 96 

(yielding isotropic voxels of 2.4 x 2.4 x 2.4 mm, reconstructed to a resolution of 1.9 x 

1.9 x 2.4 mm). Echo time (TE) was 87 ms and parallel imaging (ASSET factor = 2) was 

used. Diffusion encoding gradients (b = 1,200 s/mm2) were applied as the optimal b-

value for deriving good estimates of fractional anisotropy, mean diffusivity and fibre 

orientation is 750-1300 s/mm2 (D K Jones et al. 1999). The gradients were applied 

along 30 isotropically-distributed directions for the PD group and MHC group and 60 

isotropically-distributed directions for YHP group using an optimized gradient vector 

scheme (Jones et al. 2002; D K Jones et al. 1999). Three or six non-diffusion weighted 

images were acquired for the 30 or 60 directions respectively. The 60 direction scan 

was cardiac gated and took approximately 30 minutes while the 30 directions scan took 

a total acquisition time of 15 minutes. 

2.3.4 Diffusion MRI pre-processing 

Echo planar imaging (EPI) which is the technique used to acquire the images of the 

brain plane by plane can be affected by inhomogeneity in the magnetic field and this 

causes distortions in the intensity of each image obtained, and the strong gradients that 
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are used for diffusion encoding create eddy currents (EC) that causes geometric 

distortions to the images, particularly in areas adjacent to the sinuses i.e. frontal and 

anterior temporal lobe regions (Jezzard et al. 1998; Irfanoglu et al. 2012).  

The data were corrected for these EC and EPI distortions by registering each image 

volume to the high resolution T1 weighted anatomical images (Irfanoglu et al. 2012). 

DWI data were also corrected for non-linear distortions induced by the diffusion-

weighted gradients and artefacts due to head and subject motion with appropriate re-

orienting of the encoding vectors (Leemans and Jones 2009).  A single diffusion tensor 

model was fitted (Basser et al. 1994) to the data in order to compute quantitative 

parameters such as FA, MD, RD, AD. The Damped Richardson-Lucy Algorithm (dRL) 

was used to estimate the fibre orientation density function (fODF) in each voxel for 

whole brain tractography (Dell’acqua et al. 2010). Correction for free water 

contamination of the diffusion tensor based estimates was applied, before extracting the 

diffusion properties (FA, RD, AD and MD) along the tracts  (Pasternak et al. 2009; 

Metzler-Baddeley et al. 2012). This was done because aging and neurodegeneration are 

associated with grey and white matter tissue loss which produces partial volume effects 

(PVE) which in turn causes artificial decreases in FA and increase in MD due to the 

contamination from cerebrospinal fluid (CSF) (Metzler-Baddeley et al. 2012).. Hence 

all the diffusion parameters extracted from the tracts in this study were corrected for 

the PVE using the Free Water Elimination (FWE) method (Vos et al. 2011).  

2.3.5 Tractography 

Whole brain deterministic tractography was performed in ExploreDTIv4.8.3 (Leemans, 

Jeurissen, Sijbers, et al. 2009) using the spherical deconvolution based dRL algorithm 

following peaks in the fODF reconstructed from dRL (Dell’acqua et al. 2010; Jeurissen 

et al. 2013). For each voxel in the data set, streamlines were initiated along any peak in 

the fODF that exceeded amplitude of 0.05. This enables multiple fibre pathways to be 

generated from any voxel. Each streamline was continued in 0.5 mm steps following 

the peak in the ODF that subtended the smallest angle to the incoming trajectory. The 

termination criterion was set to an angle threshold greater than 45 degrees; thereby 

streamlines that had angles above this threshold were excluded from the final tracts. 

Three-dimensional fibre reconstructions of the specific tracts were then obtained by 

applying waypoint region of interest (ROI) gates (“AND”, “OR” and “NOT” gates 



42 

 

following Boolean logic) to isolate specific tracts from the whole brain tractography 

data. ROIs were drawn manually on either the T1 anatomical images or colour-coded 

fibre orientation maps in native space guided by known anatomical landmarks.  

All white matter pathways reported in this thesis were reconstructed using this 

methodology. These were: the corticospinal tract, the uncinate fasiculus, the supero-

lateral medial forebrain bundle, the white matter connection between the supplementary 

motor area and putamen and the white matter connection between the thalamus and 

motor cortex reported in Chapter 3, the dentato-rubro-thalamic tract and the 

subthalamo-ponto-cerebellar in Chapter 4 and the middle, inferior, and superior 

cerebellar peduncles in Chapter 5.    

2.3.6 Anatomical methods  

Anatomical landmarks were identified on either the T1 anatomical images or colour-

coded fibre orientation maps in native space depending on the tract of interest with 

ExploreDTIv4.8.3 (Leemans, Jeurissen, Sijbers, et al. 2009). The identification of these 

anatomical landmarks were not reliant on any one specific anatomical atlas or piece of 

literature but rather a combination of animal tracing studies, human post mortem and 

human diffusion imaging based studies. Therefore the anatomical landmarks and 

accuracy of tract reconstruction for each tract within this thesis is provided in detail in 

their respective chapters. The special case for reconstruction of the white matter 

connection between the supplementary motor area and putamen and the white matter 

connection between the thalamus and motor cortex reported in Chapter 3, was the use 

of the Anatomical Automatic Labelling (AAL) atlas in the Montreal Neurological 

Institute (MNI) space with FSL (Jenkinson et al. 2012; Smith et al. 2004). The AAL 

atlas was used to create masks for the regions of thalamus, motor cortex, supplementary 

motor area and the putamen which were then used for the segmentation of the individual 

tracts were derived by reconstructing the connections between the chosen masks. 

2.3.7 Clinical and behavioural measures from the PD cohort  

The following clinical and behavioural measures from the PD cohort were also utilised 

within this thesis to explore their potential correlations with the extracted diffusion 

metrics:  

(i) The Movement Disorder Society-Unified Parkinson’s Disease Rating Scale 

(MDS-UPDRS) (Goetz et al. 2008) was performed when patients were in their 
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“off medication” state where they were requested not to take their medication 

for 12 hours before the assessment. The MDS-UPDRS full scale measured non-

motor experiences of daily living, motor experiences of daily living and motor 

complications in addition to the motor examination (which was videotaped for 

later evaluation). Here the baseline off-medication MDS-UPDRS scores were 

utilised.   

(ii) PD disease duration has been shown to correlate negatively with the uptake of 

dopamine transporters in the bilateral striatum, caudate and putamen (Benamer 

et al. 2000; Hsiao et al. 2014). PD patients with longer disease duration also 

presented with reduced cerebral blood flow to the bilateral motor cortex, the 

thalamus, subthalamic nucleus and the basal ganglia (Kapitan et al. 2009). As 

these structures are involved in investigated tracts of interest, duration since PD 

diagnosis (in months) was also added. 

In patients with PD, well executed and skilled hand movements that are crucial for daily 

life are affected. Bradykinesia, one of the main symptoms of PD, is characterised by 

the slowness of initiation and progressive reduction on speed and amplitude of a 

repetitive action (Gibb and Lees 1988). Resting tremor of the hands during voluntary 

movements may also contribute to the difficulty in performing such a task (Dovzhenok 

and Rubchinsky 2012; Abdo et al. 2010). The SMA known to be involved in motor 

preparation and motor tasks (Picard and Strick 2003) was activated when participants 

imagined performing a complex sequence of finger movements (Samuel et al. 2001; 

Roland et al. 1980) while the primary motor cortex was activated when subjects 

actually performed the sequence (Inuggi et al. 2011). This provides the rationale for 

exploring correlations between the motor white matter connections of interest with the 

following two behavioural tasks: 

(iii) The correct number of finger sequence responses and reaction time scores from 

a motor sequence task adapted and modified from a previous study (Tamas 

Kincses et al. 2008). 

(iv) The total number of finger taps per minute for each hand were calculated. The 

finger tapping was measured using a wooden board with an electronic counter 

attached for counting the number of taps (Subramanian et al. 2011).   
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3.1 Abstract  

Objective 

To determine the differences in the white matter microstructure of selected motor 

pathways and non-motor pathways and of volumetric measures of the subcortical 

structures in Parkinson’s disease (PD) compared to age-matched healthy controls 

(MHC). 

Methods 

Diffusion weighted imaging data of 24 PD patients and 26 MHCs were analysed and 

deterministic tractography analysis using the spherical deconvolution-based damped 

Richardson-Lucy algorithm was performed. Additionally, subcortical volume analyses 

was also performed.  

Results 

There was significantly increased fractional anisotropy (FA) in the motor pathways of 

PD patients: the bilateral corticospinal tract (right; corrected p=0.0003, left; corrected 

p=0.03), bilateral thalamus-motor cortex tract (right; corrected p=0.02, left; corrected 

p=0.004) and the right supplementary area-putamen tract (corrected p=0.001) 

compared to MHCs. There was also significantly decreased FA in the right uncinate 

fasiculus (corrected p=0.01) and no differences of FA in the bilateral supero-lateral 

medial forebrain bundles (p>0.05) of PD patients compared to MHCs. There were no 

subcortical volume differences (p>0.05) between the PD patients and MHCs.  

Conclusion 

Increased FA values in the motor tracts in PD may reflect neurodegeneration or 

compensatory reorganisation of neural circuits indicative of adaptive or extended 

neuroplasticity. These results can inform biological models of neurodegeneration and 

neuroplasticity in PD.  
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Key points  

1. Fractional anisotropy was higher in motor pathways of PD patients compared to 

healthy controls. 

2. Fractional anisotropy was lower in the uncinate fasciculus while there was no change 

in the fractional anisotropy of PD patients compared to healthy controls.  

3. Increased fractional anisotropy could suggest adaptive neuroplasticity or selective 

neurodegeneration.  
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3.2 Background and Rationale 

The motor symptoms in PD only arise after approximately 80% depletion of striatal 

dopamine and it has long been thought that compensatory plasticity must occur both 

within and outside the basal ganglia as the pathology progresses (Bezard et al. 2003). 

Such compensatory processes, as well as any long-range deficits arising from 

degeneration of the basal ganglia pathways, are expected to ultimately be reflected in 

the architecture of the fibre tracts connecting motor cortex, basal ganglia and thalamus.  

To date most diffusion MRI based studies on PD have only considered changes within 

defined regions of interest (ROI) in grey matter (Meijer et al. 2013) or have conducted 

whole-brain analysis of white matter microstructure using tract based spatial statistics 

(TBSS) (Rae et al. 2012). These approaches are prone to partial volume effects and 

entail difficulties of spatial alignment across participants. Given that there are crossing 

fibres in about 90% of the voxels of the brain, allocation of voxel-based findings to 

specific tracts can be highly speculative (Jeurissen et al. 2013). The dRL based SD 

algorithm improves fibre tracking in areas of complex fibre architecture and regions 

affected by partial volume (Dell’acqua et al. 2010). Therefore, deterministic 

tractography using the dRL algorithm which is more sensitive to detect group 

differences than whole brain and group-wise voxel-based approaches and produces 

anatomically plausible white matter tracts (Jeurissen et al. 2013) was chosen for 

analysis.  

The following motor pathways were reconstructed to investigate motor related changes 

in PD; (i) the corticospinal tract (ii) fibre connections between the thalamus and the 

motor cortex (iii) fibre connections between the SMA and the putamen. The 

corticospinal tract (CST) is crucial for self-initiated movements and thus putatively 

involved in bradykinesia in PD (Phillips et al. 2014; Jang 2014). Post mortem and 

diffusion MRI studies show direct white matter fibre connections from the SMA to the 

striatum (Vergani et al. 2014). The thalamus, a relay centre for sensory and motor 

information, conveys motor inputs from the basal ganglia to the cortex and decreased 

dopaminergic innervation to the thalamus is assumed to contribute to the 

pathophysiology of PD (Lindenbach and Bishop 2013). These structures and their 

connections are not only part of the BG motor circuitry affected in PD (Bergman et al. 

1990), but also known to be mediating effective treatments options in PD (Mirdamadi 
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2016; Williams 2015; Rodriguez-Oroz et al. 2009; Sweet et al. 2014; Calabrese et al. 

2015; Linhares and Tasker 2000). It has been proposed that these connections are 

relevant for motor performance in PD (Mink 1996) and thus are closely related to PD 

pathophysiology, symptoms, and potentially also their remediation.  

The following non-motor pathways were also reconstructed to investigate any potential 

changes as PD is a diverse disease with motor and non-motor symptoms; (iv) the 

uncinate fasiculus and (v) the supero-lateral medial forebrain bundle.  

The uncinate fasiculus connects the orbitofrontal cortex with the anterior temporal lobes 

and is assumed to be involved in language, emotional processing and episodic memory 

(Von Der Heide et al. 2013; Highley et al. 2002). These connecting brain regions are 

known to influence non-motor and cognitive symptoms in PD (Yoo et al. 2015; 

Alessandro Tessitore et al. 2012; A Tessitore et al. 2012; Disbrow et al. 2014; Papagno 

et al. 2011).  The medial forebrain bundle connects the ventral tegmental area to the 

forebrain and the frontal lobe, and these brain areas as well as the bundle itself has been 

shown to be involved in reward processing alterations such as anhedonia and depression 

in PD (Coenen et al. 2012; Bracht et al. 2015; Brown and Pluck 2000; Robbins and 

Everitt 1996; Kunig et al. 2000).  Due to their involvement in PD, these non-motor 

tracts were included as comparison tracts to examine specific changes in motor 

compared to non-motor pathways known to be involved in PD. 

Additionally, studies have detected subcortical volume differences in PD patients 

compared to healthy controls (Rosenberg-Katz et al. 2016; Gerrits et al. 2016; Lee et 

al. 2011; Nemmi et al. 2015; Geng et al. 2006; Menke et al. 2014; Lisanby et al. 1993). 

Therefore, subcortical volume analysis was included to study any potential grey matter 

subcortical volumes changes that may also help in understanding their contribution to 

the disease pathology in addition to any white matter microstructure changes.  
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3.3 Aims 

The primary aim was to determine the differences in selected motor pathways and non-

motor pathways of the basal ganglia in PD patients compared to healthy controls. The 

second aim was to investigate any potential group differences in the subcortical 

volumes. 
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3.4 Materials and Methods 

3.4.1 Participants 

Table 3.1 Demographics of the PD patients and MHCs 

 
PD  

(n=24) 

MHC 

(n=26) 

Analyses 

Age 63.42 ± 10.82 64.88 ± 8.06 P = 0.5918, Two sample t-test 

Sex (M:F) 22:2 17:9 P = 0.06, Chi squared test 

Handedness (R:L) 20:4 24:2 P = 0.3293, Chi squared test 

H & Y Stage 1.75 ± 0.47 NA - 

UPDRS score 25.04 ± 11.01 NA - 

MOCA 26.54 ± 2.01 NA - 

LEDD (mg) 537.64 ± 340.69 NA - 

PD – Parkinson’s disease; MHC - Healthy controls; MOCA – The Montreal Cognitive Assessment; H 

& Y - Hoehn & Yahr Stage; UPDRS – Unified Parkinson’s Disease Rating Scale (pre-intervention and 

off medication); LEDD – Levodopa Equivalent Daily Dose; M - Male; F - Female; R – Right; L - Left  

Please refer to the Chapter 2 General Methodology for full details of the MR data 

acquisition, diffusion MR pre-processing and the deterministic tractography algorithms 

used. The tracts of interest were reconstructed in the PD patient group and the MHC 

group, see Table 3.1 for demographics.  

3.4.2 Tractography 

3.4.2.1 Corticospinal tract (CST)  

For the segmentation of the CST, the primary motor cortex was identified in the axial 

slice of a T1-weighted anatomical image using a “SEED” region (in blue) (Figure 3.1 

A. (i)). Further, an “AND” region (in green) was drawn in the brain stem (identified as 

the blue colour of the pons in the anterior part of the brain stem) in the axial slice of an 

FA image (Figure 3.1 A. (ii)). The CST of a representative subject on a sagittal slice of 

a T1 image is shown in (Figure 3.1 A (iii)). 
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Figure 3.1 Reconstructed motor tracts  

A. Corticospinal tract. A. (i) Axial slice of T1 image showing “SEED” region. A. (ii) Axial slice of FA 

image showing “AND” region. A. (iii) Sagittal slice of T1 image showing the reconstructed CST. B. 

Reconstructed supplementary area-putamen tract and C. Thalamus-motor cortex tract on sagittal slices 

of T1 image. 

Anatomical landmarks and tract accuracy were quality assessed by manually checking 

through each CST on both hemispheres for each participant in all groups. The 

anatomical landmarks for the CST were the primary motor cortex identified by the 

inverted omega Ω symbol in the axial slice of a T1 image (Figures 3.1A (i) and 3.2 A), 

the pons identified by the blue colour of the pons in the anterior part of the brain stem 

in an axial slice of an colour coded FA image and  FA image (Figures 3.1A (ii) 3.2 B) 

and the CST passing through the internal capsule identified below the thalamus in a 

coronal slice of T1 image (Figure 3.2 C and D), showing the front and reverse views 

respectively. 
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Figure 3.2 Anatomical landmarks for CST 

A. Axial slice of T1 image showing the inverted omega (Ω) landmark. B. Axial slice of FA image 

showing the pons regions in the brain stem. C. Coronal slice showing the front view of the CST passing 

through the internal capsule just below the thalamus, going towards the primary motor cortex. D. Coronal 

slice showing the reverse view of the CST passing through the pons and the internal capsule.  

3.4.2.2 Thalamus-motor cortex (THAL-MC) and Supplementary area-putamen (SMA-

PUT) tracts 

The ROIs for segmentation of THAL-MC and SMA-PUT tracts were derived by 

creating masks chosen from the Anatomical Automatic Labelling (AAL) atlas in the 

Montreal Neurological Institute (MNI) space. These masks were warped to the 

individual native space of each subject using inverse parameters derived from warping 

the T1 image to the AAL template using FSL FLIRT (Jenkinson et al. 2012; Smith et 

al. 2004). These masks were then used as “SEED” and “AND” regions in 

ExploreDTIv4.8.3 (Leemans, Jeurissen, Siibers, et al. 2009) for segmenting out the 
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respective tracts. The reconstructed THAL-MC and SMA-PUT tracts also included 

their connections towards the brain stem beyond the thalamus and putamen, 

respectively. These were then segmented using the Splitter tracts tool within 

ExploreDTI4.8.3. The splitter tracts tool is used to segment portions of a reconstructed 

tract by drawing SEED and AND ROIs to specify the location of segmentation. This 

was used here to include only the portion of the THAL-MC at the level of the thalamus 

towards the motor cortex, and portion of the SMA-PUT at the level of the putamen 

towards the SMA for extracting the diffusion metrics from these tracts. The final SMA-

PUT and THAL-MC tracts in a sagittal slice of a T1 image of a representative subject 

are shown in (Figure 3.1 B) and (Figure 3.1 C), respectively. 

 

Figure 3.3 Anatomical landmarks for THAL-MC tract 

A. Coronal slice T1 image showing THAL-MC tract split at the level of the thalamus. B. Coronal slice 

of T1 image showing THAL-MC tract split at the level of the thalamus with tract moving towards the 

motor cortex. C. Coronal slice of T1 image showing full THAL-MC tract between thalamus and the 

motor cortex.  
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Anatomical accuracy of the THAL-MC tract was verified by checking that the tract 

after the splitting began at the level of the thalamus (Figure 3.3 A) and then moved 

towards the motor cortex (Figure 3.3 B, C). The accuracy of the ROI masks were 

checked by overlaying them with the tract and the colour coded FA image to verify that 

they covered the thalamus and the motor cortex regions and that the tracts themselves 

passed originate or terminate in these ROI masks. (Figure 3.4) 

 

Figure 3.4 Mask accuracy for THAL-MC tracts 

A. Sagittal slice of colour coded FA image with ROI mask for thalamus and THAL-MC tract overlaid 

on the ROI mask. B. Sagittal slice of colour coded FA image with ROI mask for motor cortex and THAL-

MC tract overlaid on the ROI mask. C. Sagittal slice of colour coded FA image with ROI mask of motor 

cortex and full THAL-MC tract overlaid on it.  
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Figure 3.5 Anatomical landmarks for SMA-PUT tract 

 A. Coronal slice of T1 image showing the putamen and caudate nucleus. B. Coronal slice of T1 image 

 showing Putamen and SMA-PUT tract split at this level as well a portion of the tract going towards the 

 SMA. C. Coronal slice of T1 image showing full SMA-PUT tract split at the level of the putamen and 

 going towards the SMA.  

Anatomical accuracy for the SMA-PUT tracts was verified by checking that the tract 

after splitting began at the level of the putamen and then moved towards the SMA 

(Figure 3.5). The accuracy of the ROI masks were checked by overlaying them with 

the tract and the colour coded FA image to verify that they covered putamen and SMA 

regions and that the tracts themselves originated or terminated in these ROI masks 

(Figure 3.6).  
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 Figure 3.6 Mask accuracy for SMA-PUT tract 

 A. Coronal slice of colour coded FA image with ROI mask for putamen and the SMA-PUT tract overlaid 

 on it. B. Coronal slice of colour coded FA image with ROI mask for SMA and the SMA-PUT tract 

 overlaid on it. C. Axial slice of colour coded FA image with ROI mask for putamen and the SMA-PUT 

 tract overlaid on it. D. Axial slice of colour coded FA image with ROI mask for SMA with the SMA-

 PUT tract overlaid on it.   

3.4.2.3 Uncinate Fasiculus (UNF)  

For segmentation of the UNF, the most posterior slice in the coronal view of a T1 image 

where the frontal and the temporal lobes are separated was chosen which is 

approximately at the height of the nucleus accumbens. The “SEED” region (in blue) 

was drawn around the temporal lobe (Figure 3.7 D. (i)) and the “AND” region (in green) 

was drawn around the region lateral to the caudate and the putamen (Figure 3.7 D. (ii)). 

The UNF tract of a representative subject on a sagittal slice of a T1 image is shown in 

(Figure 3.7 D (iii)). Anatomical accuracy for the uncinate was verified by checking if 

the tracts pass through the ROIs and that the spurious and unwanted fibres were 

removed from them (Figure 3.8).  
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3.4.2.4 Supero-lateral medial forebrain bundle (slMFB) 

For reconstruction of the slMFB one horizontal “AND” region was placed surrounding 

the ventral tegmental area. The anatomical borders for this AND region were laterally 

the substantia nigra, anteriorly the mammillary bodies and posteriorly the red nucleus 

(Figure 3.7 E. (i)). Another “AND” region was drawn surrounding caudate and putamen 

on a coronal section at the height of the nucleus accumbens (Figure 3.7 E. (ii)) (Bracht 

et al. 2015). The slMFB tract of a representative subject on a sagittal slice of a T1 image 

is shown in (Figure 3.7 E. (iii)). Anatomical accuracy for the slMFB was verified by 

checking if the tracts pass through the ROIs and that the spurious and unwanted fibres 

were removed from them (Figure 3.9). 

 

Figure 3.7 Reconstructed non-motor tracts  

D. Uncinate fasiculus tract. D. (i) Coronal slice of T1 image showing “SEED” region for uncinate 

fasiculus segmentation. D. (ii) Coronal slice of T1 image showing “AND” region. D. (iii) Sagittal slice 

of T1 image showing reconstructed uncinate fasiculus tract. E. Supero-lateral medial forebrain bundle. 

E. (i) Axial slice of T1 image showing “AND” region. C. (ii) Coronal slice of T1 image showing “AND” 

region. E. (iii) Sagittal slice of T1 image showing reconstructed supero-lateral medial forebrain bundle.  

Each reconstructed tract was visually inspected and any obvious outlier streamlines that 

were not consistent with their known anatomy were excluded by drawing “NOT” 

regions and the entire procedure was performed separately for both hemispheres. 
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Figure 3.8 Anatomical landmarks for UNF 

A. Coronal slice of T1 image showing anatomical landmarks of caudate and putamen for the AND region, 

and the frontal lobe for the SEED region with the UNF passing through them. B. Sagittal slice of T1 

image showing frontal part of the UNF passing through the AND region in the frontal lobe. C. Axial 

slice of T1 image showing temporal part of UNF passing through the SEED region in the temporal lobe. 

D. Sagittal slice of T1 image showing temporal part of the UNF passing through the SEEN region in the 

temporal lobe.  
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Figure 3.9 Anatomical landmarks for the slMFB 

A. Coronal slice of T1 image showing the caudate and putamen surrounded by the AND region and the 

frontal part of the slMFB passing through it. B. Axial slice of T1 image showing AND region drawn 

laterally to the substantia nigra, anteriorly to the mammillary bodies and posteriorly to the red nucleus. 

C. Sagittal slice of T1 image showing the full slMFB passing through both the AND regions.  

3.4.3 Subcortical volumes analysis 

The volumes of subcortical brain structures were measured using FSL's FIRST software 

(FMRIB Image Registration and Segmentation Tool) (Patenaude et al. 2011; Jenkinson 

et al. 2012). The structures of the thalamus, caudate, putamen, pallidum, hippocampus, 

amygdala, nucleus accumbens and ventricles were extracted for both the hemispheres 

and their volumes measured for all T1-weighted MR images of the PD patients and 

MHCs. The extracted volumes were normalised using the scaling factor obtained from 

brain tissue normalization for subject head size, using SIENAX (Structural Image 

Evaluation using Normalization of Atrophy) (Smith et al. 2004).  
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3.4.4 Statistical Analysis 

All the statistical analyses were carried out in the R statistical software v2.15.3 (R Core 

Team 2014). Before data analysis, all variables were checked for Gaussian distribution 

using Shapiro-Wilk test (p<0.05) and were transformed using appropriate 

transformations if necessary. 

A multivariate analysis of covariance (MANCOVA) was performed in each hemisphere 

for each of the five tracts separately with FA, MD, AD and RD as dependent variables 

and group (PD and MHC) as independent variable, along with age and gender as 

covariates. These analyses were corrected for multiple comparisons using False 

Discovery Rate (FDR) correction (p<0.01). Significant results were further analysed 

using post-hoc univariate ANOVAs also corrected for multiple comparisons using FDR 

correction (p<0.05). The inter-rater reliability of diffusion metrics derived from the 

manually reconstructed tracts was investigated using the inter class correlation 

coefficient (ICC).  

For the subcortical volumes analysis, two sample t-tests were carried out comparing the 

corrected subcortical volumes of the PD patients and MHCs.  

Post hoc correlations were also performed in the PD group between metrics in tracts 

that showed significant group differences and the following clinical and behavioural 

measures: off medication baseline Unified Parkinson’s Disease Rating Scale (UPDRS) 

scores, duration since diagnosis (in months), scores from a standard finger tapping task 

and a four button finger sequence task measuring the correct number of responses and 

reaction time.  
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3.5 Results 

For all PD patients and MHCs, reliable reconstruction results of all investigated fibre 

tracts was obtained.  

3.5.1 Inter-rater reliability  

For inter-rater reliability testing, a subset of four subjects from the PD group and MHC 

group were randomly selected by two researchers (T.B and C.M.B) experienced in 

tractography. FA values were extracted and tests were performed independently and 

separately using the IRR package in the R statistical software. Inter-rater correlations 

coefficients (ICC) for the tracts are presented in Table 3.2. 

Table 3.2 Inter-rater reliability tests 

JPM and TB ICC p-value 

L-CST 0.998 3.07e-21 

R-CST 0.999 3.25e-22 

L-UNF 1 9.6e-27 

R-UNF 1 9.6e-27 

JPM and CMB    

L-CST 1 5.99e-26 

R-CST 1 2.44e-29 

L-UNF 0.998 3.67e-20 

R-UNF 0.998 3.67e-20 

L-CST- Left corticospinal tract, R-CST-Right corticospinal tract, L-UNF- Left uncinate fasiculus, R-

UNF- Right uncinate fasiculus, ICC – Inter-rater correlation coefficients   
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3.5.2 Multivariate effects 

The MANCOVAs demonstrated a significant effect of group (PD and MHC) on the 

multivariate diffusion metrics (FA, MD, AD and RD) in the CST, SMA-PUT, THAL-

MC and UNF, but not in the slMFB (Table 3.3).  

Table 3.3 Multivariate effects 

Tract 
 

F statistic Pillai's trace P-value 

Right CST Group F(4,43)=4.6907 0.3 0.003132 *** 

Age F(4,43)=3.3356 0.23 0.018252 

Gender F(4,43)=3.1088 0.22 0.024736 

Left CST Group F(4,43)=8.5394 0.44 3.66E-05 *** 

Age F(4,43)=2.7190 0.2 0.04189 

Gender F(4,43)=2.5850 0.19 0.05026 

Right SMA-PUT Group F(4,43)= 6.4230 0.38 0.000363 *** 

Age F(4,43)=10.5065 0.48 1.00E-05 *** 

Gender F(4,43)=0.5654 0.04 0.730037 

Left SMA-PUT Group F(4,43)=4.8551 0.31 0.002546 *** 

Age F(4,43)=5.5182 0.34 0.001123 *** 

Gender F(4,43)= 0.3259 0.02 0.859045 

Right THAL-MC Group F(4,43)=4.7410 0.31 0.002939 *** 

Age F(4,43)=4.4941 0.29 0.00402 *** 

Gender F(4,43)=0.6916 0.06 0.601839 

Left THAL-MC Group F(4,43)=5.5699 0.34 0.001054 *** 

Age F(4,43)=4.4365 0.29 0.004326 *** 

Gender F(4,43)=1.4269 0.11 0.241373 

Right UNF Group F(4,43)=5.7824 0.28 0.002011 *** 

Age F(4,43)=2.5327 0.15 0.069178 

Gender F(4,43)=3.2413 0.18 0.030894 

Left UNF Group F(4,43)=5.0908 0.32 0.001898 *** 

Age F(4,43)=3.8483 0.26 0.009263 

Gender F(4,43)=2.6825 0.19 0.044023 

Right slMFB Group F(4,43)=1.2095 0.1 0.320719 

Age F(4,43)=5.1433 0.32 0.001778 *** 

Gender F(4,43)=1.9735 0.15 0.115659 

Left slMFB Group F(4,43)=1.1442 0.09 0.348703 
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Age F(4,43)=4.3186 0.28 0.005032 *** 

Gender F(4,43)=3.2387 0.23 0.020777 

CST - Corticospinal tract, SMA-PUT - Supplementary motor area-putamen tract, THAL-MC - 

Thalamus-motor cortex tract, UNF - Uncinate fasiculus, slMFB - supero-lateral medial forebrain bundle.  

*** = FDR corrected p < 0.01 

3.5.3 Univariate group effects 

Post hoc analyses showed significantly increased FA and AD in right CST, and 

significantly increased FA in the left CST of the PD patients compared to MHC (Table 

3.4). In PD patients, there was significantly increased FA and AD in the right SMA-

PUT tracts and significantly increased AD in the left SMA-PUT tracts. Similarly, there 

was significantly increased FA in both right and left THAL-MC tracts and increased 

AD in the left THAL-MC tracts of the PD patients compared to MHCs (Table 3.4). 

Conversely, in the UNF of PD patients, there was significantly decreased FA and 

significantly increased RD in the right UNF, and significantly increased MD and 

significantly increased RD in the left UNF (Table 3.4). 

Table 3.4 Univariate group effects  

Tract Metric HC (n=26) 

mean ± SD 

PD (n=24) 

mean ± SD 

F statistic FDR Corrected      

p-value 

Right 

CST 

FA 0.54 ± 0.025 0.58 ± 0.024 F(1,48)=24.32 0.0003264 *** 

MD (10–3) 0.71 ± 0.018 0.72 ± 0.032 F(1,48)=2.601 0.134 

RD (10-3) 0.46 ± 0.022 0.45 ± 0.028 F(1,48)=4.068 0.0751 

AD (10-3) 1.21 ± 0.048 1.25 ± 0.072 F(1,48)=16.24 0.0012672 *** 

Left 

CST 

FA 0.53 ± 0.027 0.56 ± 0.030 F(1,48)=12.25 0.0032544 *** 

MD (10-3) 0.72 ± 0.023 0.73 ± 0.024 F(1,48)=2.098 0.1699 

RD (10-3) 0.48 ± 0.025 0.47 ± 0.025 F(1,48)=3.138 0.106 

AD (10-3) 1.20 ± 0.045 1.26 ± 0.058 F(1,48)=7.556 0.0179328 

Right 

SMA-

PUT 

FA 0.42 ± 0.041 0.47 ± 0.029 F(1,48)=20.63 0.0006016 *** 

MD (10-3) 0.71 ± 0.024 0.73 ± 0.034 F(1,48)=4.459 0.06392 

RD (10-3) 0.53 ± 0.027 0.52 ± 0.026 F(1,48)=2.486 0.138742857 

AD (10-3) 1.07 ± 0.06 1.15 ± 0.071 F(1,48)=16.47 0.0012672 *** 

Left 

SMA-

PUT 

FA 0.44 ± 0.041 0.46 ± 0.036 F(1,48)=3.695 0.084201739 

MD (10-3) 0.72 ± 0.024 0.74 ± 0.033 F(1,48)=6.4 0.027764706 

RD (10-3) 0.54 ± 0.033 0.54 ± 0.028 F(1,48)=0.08 0.7775 
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PD- Parkinson’s disease patients, MHC-Healthy Controls. CST - Corticospinal tract, SMA-PUT - 

Supplementary motor area-putamen tract, THAL-MC - Thalamus-motor cortex tract, UNF - Uncinate 

Fasiculus. FA – Fractional Anisotropy, MD – Mean Diffusivity, RD – Radial diffusivity and AD – Axial 

diffusivity.  *** = FDR corrected (p < 0.01), SD - Standard deviation. 

3.5.4 Subcortical volumes analysis  

There were no significant volume differences between PD patients and MHCs in the 

FSL FIRST analysis of subcortical and ventricular volumes (Table 3.5).  

Table 3.5 Subcortical volumes analysis results  

Sub-cortical 

structures 

PD (mean ± SD) MHC (mean ± SD) t-value df P-

value 

L-Amygdala 1812.24 ± 235.03 1759.77 ± 242.49   0.1275 48.89 0.8991 

L-Caudate 4700.76 ± 504.54 4583.12  ±  458.61 -0.008 45.85 0.9931 

L-Globus 

pallidus 

1912.32 ± 183.76 1861.65 ± 206.15 0.2403 39.58 0.8113 

L-Hippocampus 4901.72 ± 635.04 4872.85  ± 759.49 -0.532 47.25 0.5969 

AD (10-3) 1.10 ± 0.045 1.16 ± 0.075 F(1,48)=10.32 0.006258667 *** 

Right 

THAL

-MC 

FA 0.49 ± 0.031 0.52 ± 0.036 F(1,48)=13.96 0.0017984 *** 

MD (10-3) 0.69 ± 0.018 0.70 ± 0.027 F(1,48)=1.353 0.2672 

RD (10-3) 0.48 ± 0.024 0.46 ± 0.025 F(1,48)=6.618 0.0264 

AD (10-3) 1.10 ± 0.044 1.16 ± 0.071 F(1,48)=8.312 0.01344 

Left 

THAL

-MC 

FA 0.47 ± 0.030 0.51 ± 0.036 F(1,48)=17.4 0.0012672 *** 

MD (10-3) 0.71 ± 0.022 0.71 ± 0.027 F(1,48)=0.721 0.412 

RD (10-3) 0.51 ± 0.027 0.49 ± 0.027 F(1,48)=6.13 0.029 

AD (10-3) 1.11 ± 0.042 1.16 ± 0.076 F(1,48)=10.64 0.00593 *** 

Right 

UNF 

FA 0.43 ± 0.024 0.41 ± 0.019 F(1,48)=14.36 0.0017984 *** 

MD (10-3) 0.77 ± 0.018 0.78 ± 0.024 F(1,48)=3.56 0.0869 

RD (10-3) 0.57 ± 0.018 0.59 ± 0.022 F(1,48)=13.91 0.001798 *** 

AD (10-3) 1.11 ± 0.048 1.14 ± 0.049 F(1,48)=2.934 0.1147 

Left 

UNF 

FA 0.42 ± 0.039 0.40 ± 0.024 F(1,48)=3.973 0.0755 

MD (10-3) 0.75 ± 0.017 0.77 ± 0.021 F(1,48)=15.13 0.0016 *** 

RD (10-3) 0.57 ± 0.028 0.59 ± 0.024 F(1,48)=10.11 0.00634 *** 

AD (10-3) 1.18 ± 0.043 1.15 ± 0.051 F(1,48)=4.512 0.06392 
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L-Nucleus 

accumbens 

663.48 ± 188.68 624.12  ± 121.88 0.6446 37.98 0.523 

L-Putamen 5073.24 ± 515.06 5154.19  ± 558.31 -1.33 47.65 0.1899 

L-Thalamus 7919.24 ± 734.17 7865.15  ± 743.50 -0.556 36.35 0.5812 

L-Ventricles 10996.24 ± 

3795.60 

13036.96  ± 

4124.85 

-1.924 48.95 0.0602 

Brain stem 27039.76 ± 

2420.41 

25368.85  ± 

2447.38 

1.5628 45.16 0.1251 

R-Amygdala 1778.8 ± 295.89 1737.65  ± 303.74 0.0859 45.95 0.9319 

R-Caudate 5024.16 ± 645.34 4845.38  ± 536.10 0.3984 40.29 0.6924 

R-Globus 

pallidus 

1875.92 ± 236.54 1865.81  ± 227.78 -0.408 38.18 0.6855 

R-Hippocampus 5044.4 ± 518.01 5001.35  ± 672.08 -0.382 48.03 0.7037 

R-Nucleus 

accumbens 

504.44 ± 145.58 519.15  ± 105.40 -0.529 40.78 0.5996 

R-Putamen 4915.4 ± 809.16 4968.69  ± 643.96 -1.017 41.88 0.3148 

R-Thalamus 7706.88 ± 686.55 7650.62  ± 700.39 -0.524 39.15 0.603 

R-Ventricles 10087.52 ± 

4117.54 

11598.62  ± 

4338.02 

-1.370 48.86 0.1767 

R – Right, L – Left, SD - Standard Deviation 

There were no significant results from the correlation analyses as well (see 

supplementary table 3.3 and supplementary table 3.4).  

  



66 

 

3.6 Discussion 

This is the first comprehensive deterministic tractography study of motor and non-

motor tracts in PD. I found increased FA in the cortico-basal ganglia and CSTs, which 

may indicate compensatory mechanisms or structural changes related to altered pallido-

thalamic activity in PD. Patients with early stage PD relative to age-matched controls 

demonstrated a specific increase in FA and AD in the white matter of motor tracts which 

was not present for two non-motor comparison tracts.  

In the previous literature, neurodegenerative disorders have generally been associated 

with decreased FA in the major pathways, which has been attributed to primary white 

matter degeneration, demyelination, reduced gliosis or axonal damage as a result of 

grey matter loss (Concha et al. 2006; Assaf 2008; Lebel et al. 2008). Diffusion tensor 

based ROI and whole brain analyses in PD have shown reduced FA or increased MD 

in a priori regions such as the substantia nigra and putamen (Rae et al. 2012; Meijer et 

al. 2013; Schwarz et al. 2013). Thus only the finding of decreased FA and increased 

RD in the UNF, but not the findings of increased FA and AD in the CST and cortico-

basal ganglia tracts, would be compatible with a general neurodegenerative process.  

3.6.1 Neurodegenerative models 

These findings may reflect selective neurodegeneration. AD, which is the measure of 

diffusion in the principal fibre direction is sensitive to the number of axons and their 

coherence (Takahashi et al. 2000) while RD, the measure of diffusion perpendicular to 

the principal diffusion direction is thought to reflect decreased myelination (Song et al. 

2002). Therefore, in the current data the results of elevated FA in combination with 

elevated AD could suggest selective neurodegeneration causing lower neural 

branching, decreases of axonal diameter and thus higher coherence along the principal 

orientation. Increased FA in theses tracts may also occur as a primary pathogenic 

consequence of altered pallido-thalamic activity in PD. A combined diffusion tensor 

and histology based study of rat model of traumatic brain injury showed that increase 

in FA in the cortical regions was correlated with gliosis (Budde et al. 2011). It has been 

suggested that FA is more related to axonal package density and less to myelination 

(Winston 2012b). Along these lines, the results from the current data could suggest a 

higher axonal package density of motor pathways as there was no significant 

differences in RD in the current study. 
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3.6.2 Neuroplastic models 

Alternatively, these findings might reflect early compensatory mechanisms associated 

with increases in axonal density in pathways of the cortico-basal-ganglia-thalamo-

cortical loop. Such compensatory changes might preserve neural functions despite loss 

of the dopaminergic input (Bezard et al. 2003). A recent study in PD showed increase 

in striato-cortical connectivity mediated by levodopa intake (Herz et al. 2015), hence  

it could also be suggested that increased FA in the SMA-PUT and THAL-MC tracts 

may be an adaptive response to abnormal dopaminergic modulation and levodopa 

intake.  

The results are consistent with the suggested compensation stages of PD where 

structures outside the basal ganglia, especially the SMA, would undergo changes to 

counterbalance the putative abnormal activity in the thalamus and basal ganglia (Bezard 

et al. 2003). Considering the long time-course from the onset of PD-related pathology 

to the onset of clinical symptoms (H Braak et al. 2006), the subcortical and cortical 

motor pathways may well have undergone compensatory and adaptive structural and 

functional reorganisation long before PD patients have been diagnosed clinically. Such 

a model would be supported by the observation (Supplementary Table 3.1) that changes 

in the diffusion metrics were not confined to the hemisphere contralateral to the side of 

dominant symptoms.   

Recent evidence from PD rodent models showed axonal sprouting as compensatory 

mechanism (Arkadir et al. 2014), but this has not be studied in detail outside the 

nigrostriatal system. Based on the present findings, there may be compensatory 

sprouting in motor tracts in response to decreased input from thalamus and striatum as 

a consequence of PD pathology. The results could also suggest that sprouting should 

also be assessed in corticospinal and thalamo-cortical motor tracts, both in animal 

models and in human brains post-mortem.   

3.6.3 Subcortical volumes 

There were no differences in the subcortical volumes between the PD patients and the 

MHCs. This finding is inconsistent with previous studies that had similar sample sizes 

and PD patients’ disease stages to our current cohort but reported smaller volumes of 

the subcortical structures in PD compared to healthy controls (Rosenberg-Katz et al. 
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2016; Lisanby et al. 1993; Gerrits et al. 2016; Lee et al. 2011; Nemmi et al. 2015; Geng 

et al. 2006; Menke et al. 2014).  

3.6.4 Methodological considerations 

Diffusion metrics are highly sensitive to white matter microstructural changes, 

however, they are non-specific indices with complex measures; hence one has to be 

cautious when inferring any specific biological mechanisms underlying changes in 

these measures (Jones et al. 2013). Before interpreting the current findings in terms of 

putatively increased structural connections in PD the possibility that they are influenced 

by methodological artefacts should be eliminated. The dRL algorithm was used, and 

this reduces the number of spurious fibre orientations that can produce artefactual 

reconstructions of tracts and is robust in mapping cortical connectivity (Dell’acqua et 

al. 2010). In patient and clinical studies, presence of degeneration makes the estimated 

tract reconstructions prone to isotropic partial volume effects (Ciccarelli et al. 2008) 

but the spherical deconvolution methods makes it possible to obtain accurate white 

matter fibres that are corrected for partial volume effects and crossing fibres. 

Additionally, there was higher number of reconstructed streamlines in PD patients than 

in MHCs in the motor tracts and the UNF (Supplementary Table 3.2) even though only 

the motor tracts showed increased FA whereas the UNF showed decreased FA. Thus it 

can be excluded that higher FA values were driven by the increase in number of 

reconstructed streamlines or number of occupied voxels or tract volume.  

Because FA is a normalised measure it can be affected by changes in any of the 

compartments of white matter. For a better understanding of the specific contributions 

of axonal microstructural changes and myelination to changes in the white matter 

architecture in PD, future studies can apply complex diffusion microstructural models 

such as Composite Hindered and Restricted Model of Diffusion (CHARMED) or 

AxCaliber (Assaf 2008). However, their clinical application in patients with movement 

disorders is limited by the long duration of scanning protocols. Recently developed 

myelin water fraction mapping and quantitative magnetization transfer techniques 

could also be used in future studies to better quantify myelination (Levesque et al. 

2010).  
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3.7 Conclusion 

This first comprehensive deterministic tractography study of motor and non-motor 

tracts in PD revealed increased FA in the cortico-basal ganglia and CSTs, which may 

indicate compensatory mechanisms or structural changes related to altered pallido-

thalamic activity in PD. Tractography analysis should be incorporated in future 

longitudinal imaging studies of PD in order to evaluate the role of white matter changes 

in neurodegenerative and neuroplastic processes.    
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 Anatomy of the dentato-rubro-thalamic tract (DRTT) and 

the subthalamo-ponto-cerebellar tract (SPCT) 
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4.1 Abstract 

Objective 

Evidence from animal tracing studies shows direct anatomical connections between the 

basal ganglia and the cerebellum. Although the presence of similar connections in 

humans have been reported in a few studies using diffusion MRI, the anatomy of these 

pathways and their reliable reconstruction has not been demonstrated yet. 

Methods 

Anatomical protocols were developed to delineate the two white matter tracts that 

connect the basal ganglia and the cerebellum: the dentato-rubro-thalamic tract (DRTT) 

and the subthalamo-ponto-cerebellar tract (SPCT), in young healthy adults with high 

angular resolution diffusion data using deterministic diffusion MRI tractography. The 

feasibility of transferring this protocol to clinical studies of diffusion MRI data from a 

cohort of Parkinson’s disease patients and their matched healthy controls was also 

demonstrated. 

Results 

In all groups, the two tracts were reliably reconstructed using the developed anatomical 

protocols. The tracts obtained closely correspond to the previously described 

anatomical pathways of the DRTT and the SPCT. The cortical connections of the 

reconstructed tracts and their spatial overlap with the major cerebellar pathways and 

the corticospinal tract were also derived. 

Conclusion 

The findings from this study are thus consistent with the presence of direct anatomical 

connections between the basal ganglia and the cerebellum. Furthermore, the spatial 

independence and cerebellar-cortical connections of these tracts were demonstrated for 

the first time. These tracts have clinical research application and will help to understand 

the role of the cerebellum in neuropsychiatric and neurodegenerative disorders.  

 

 



72 

 

Key points 

1. An anatomically guided tractography protocol was developed to reconstruct the DRTT 

and the SPCT using deterministic diffusion MRI tractography. 

2. Successfully demonstrated feasibility of transferring the developed tractography 

protocol to standard diffusion imaging protocols in a cohort of PD patients and their 

matched healthy controls.  

3. The spatial independence of the DRTT and the SPCT was assessed and the cortical 

connections were also described. 
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4.2 Background and Rationale 

The loops that connect the basal ganglia and the cerebellum have long been thought to 

be anatomically and functionally distinct while interacting with each other only at the 

level of the cerebral cortex (Doya 2000). In primates, there are efferent connections 

from cerebellar nuclei to subdivisions of the thalamus which in turn project to motor, 

premotor and basal ganglia areas (Percheron et al. 1996; Sakai et al. 1996). However, 

recent neuronal tracing studies in non-human primates have found direct projections 

from the dentate nucleus not only to the thalamus but also to the dorsal striatum (Hoshi 

et al. 2005). Reciprocal inter-connections between the basal ganglia and the cerebellum, 

notably between the sub-thalamic nucleus and the cerebellar cortices have also been 

demonstrated (Bostan et al. 2010). These studies reveal direct anatomical connections 

between the basal ganglia and the cerebellum, suggesting close interactions that may 

influence aspects of motor, affective and cognitive functions known to be mediated by 

these structures (Wu and Hallett 2013).  

There are two anatomical connections that are crucially implicated in the cerebellar 

output to the basal ganglia and the basal ganglia output to the cerebellum. The cerebellar 

output to the basal ganglia through the dentato-rubro-thalamic-tract (DRTT) was 

delineated through rabies virus injection into the sensorimotor area of the putamen of 

macaque monkeys and retrograde transneuronal transport (Hoshi et al. 2005). Their 

findings showed clear pathways (disynaptic projections) connecting the striatum, which 

is the input region of the basal ganglia, and the dentate nucleus, which is the output 

nucleus of the cerebellum, through the thalamus. In humans, the DRTT has been 

described as an ascending tract carrying the main efferent pathway from the cerebellum 

(Parraga et al. 2016). It ascends from the dentate nucleus through the superior cerebellar 

peduncle towards the red nucleus (with axon collaterals to this nucleus) (Surova et al. 

2015) and decussates in the midbrain to reach the thalamus. 

The basal ganglia output to the cerebellum, also known as subthalamo-ponto-cerebellar 

tract (SPCT), was described in a follow-up study in 2010 (Bostan and Strick 2010) by 

injecting rabies virus into the cerebellar cortex of non-human primates. From the 

injection site, retrograde transport was observed to first-order neurons that innervate 

the injection from the pontine nuclei, then to second-order neurons in the subthalamic 

nucleus (STN) that make synaptic connections with the first order neurons (Bostan et 
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al. 2010). In humans, the SPCT has so far been described in one study as a tract 

originating in the sub-thalamic nucleus and travelling through the pons into the 

contralateral cerebellar cortex (Sweet et al. 2014). 

It has been a challenge to translate these tracing studies in non-human primates to 

human anatomy. Diffusion MRI tractography is presently the only technique that allows 

for in vivo and non-invasive investigation of white matter connections in humans. The 

importance of tractography is increasingly being recognised in neurology and 

neurosurgery and particularly important for the characterisation of the anatomical 

position of such white matter connections (Sweet et al. 2014; Coenen et al. 2015; Hana 

et al. 2016; Anthofer et al. 2017; Fenoy et al. 2017). Whilst some of these pathways, 

such as the main cerebellar peduncles, have been fairly well characterized in the 

literature (Stieltjes et al. 2001; Leitner et al. 2015; Rodriguez-Mena et al. 2017), 

research into the DRTT and SPCT has been scarce.  

Some recent diffusion MRI studies have considered these two tracts (Kwon et al. 2011; 

Sweet et al. 2014; Calabrese et al. 2015; Surova et al. 2015; Hana et al. 2016; Meola 

et al. 2016), but so far, a comprehensive characterization of their anatomy with regards 

to cortical connections and relation to other cerebellar tracts, has not been conducted 

yet. One reason for this is, that these tracts are thin, long and multi-synaptic, and cross 

over to the contra-lateral hemisphere, making them prone to crossing fibres especially 

at the decussating regions and are therefore not straightforward to reconstruct using 

tractography. The dRL algorithm as described in Chapter 2 accounts for this problem. 

However, this issue was further resolved by first reconstructing the tracts in a high 

angular resolution diffusion imaging (HARDI) (Tuch et al. 2002) sample with 60 

gradient directions, as the increase in number of directions for diffusion data acquisition 

may resolve the problem of crossing fibres (Behrens et al. 2003; Chung et al. 2011). 
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4.3 Aims 

The primary aim of this study was to describe and develop an anatomically guided 

tractography protocol to reconstruct and delineate the DRTT and the SPCT using 

deterministic diffusion MRI tractography in HARDI (60 directions) dataset from a 

cohort of young healthy participants. The second aim of the study was to demonstrate 

feasibility of transferring this tractography protocol to diffusion imaging protocols  

commonly acquired in clinical studies (scans acquiring 30 directions), by 

reconstructing the DRTT and SPCT in a dataset from patients with Parkinson’s disease 

and their matched healthy controls.   
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4.4 Materials and Methods 

4.4.1 Data cohorts, MRI acquisition and processing 

All three data cohorts previously described in Table 1 of Chapter 2 – General 

methodology were used. Also please refer to Chapter 2 – General methodology for 

detailed MRI acquisition and processing protocols.  

4.4.2 Tractography protocols 

4.4.2.1 DRTT  

The dentate nucleus was identified in the axial view of the brain infero-lateral to the 

fourth ventricle, where the temporal lobe is still visible and the slice cuts through the 

middle of the basilar pons and an ROI was drawn as shown in Figure 4.1 (A). The 

thalamus was identified in the axial view and a second ROI was drawn contralateral to 

the AND region of the dentate nucleus as shown in Figure 4.1 (C). The red nucleus is 

located in the midbrain, infero-medial to the thalamus, infero-lateral to the 3rd ventricle 

and posterior to the cerebral peduncle. The decussation point of the DRTT was 

identified along with the red nucleus and the substantia nigra in the diffusion principal 

direction colour coded image, and another ROI was drawn (Figure 4.1 (B)). This 

procedure was repeated for the other hemisphere and for all participants. The full DRTT 

of a representative participant is shown in (Figure 4.1 (D & E)) and the right and left 

DRTTs are shown in (Supplementary Figure 4.1).  

Anatomical landmarks to check the accuracy of tract reconstruction was the dentate 

nucleus, the decussation point in the midbrain at the level of the red nucleus and the 

thalamus (Figure 4.1). These landmarks were chosen as the ROIs based on animal 

tracing studies (Hoshi et al. 2005; Wu and Hallett 2013) and human diffusion 

tractography studies (Parraga et al. 2016; Surova et al. 2015) described in the 

introduction section.  
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Figure 4.1 The DRTT tract along with the ROIs in axial, sagittal and coronal views of T1 anatomical 

scan of a representative participant.  

A shows the DRTT tract from the dentate nucleus, B shows the DRTT decussating in the mid brain and 

C shows the DRTT passing through the thalamus in the axial view. D shows the entire DRTT with its 

cortical projections on a sagittal slice and E shows the entire DRTT with its cortical projections on a 

coronal slice.   

4.4.2.2 SPCT  

The subthalamic nucleus is small biconvex-shaped nucleus modulating the basal 

ganglia output and is located inferior to the thalamus and superior to the substantia 

nigra, and lateral to the internal capsule (Hamani et al. 2004). For the reconstruction of 

the SPCT, the subthalamic nucleus was identified in the coronal view and a ROI was 

drawn as shown in (Figure 4.2 (A)). The second ROI was drawn around the 

contralateral pons region surrounding the decussation of the SPCT into the cerebellar 
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hemispheres (Figure 4.2 (B)). This procedure was repeated for the other hemisphere 

and for all participants.  

Anatomical landmarks to check for accuracy of tract reconstruction was the SPCT 

passing through both the ROIs and also the decussation at the level of the pons. 

 

Figure 4.2 Regions of interest and reconstruction of the SPCT for a representative participant in coronal 

view. 

The first ROI is drawn around the subthalamic nucleus in T1 anatomical (A) and the second ROI is drawn 

around the contralateral pons region in a diffusion colour coded image (B). 

In some cases, where the methods described above were unsuccessful in delineating the 

SPCT or the DRTT, a different approach was taken: an ROI was drawn around the 

thalamus covering the posterior limb of the internal capsule in an axial view of the brain 

(Figure 4.3 (A)) and a second ROI around the contralateral cerebellar hemisphere at the 
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level of the pons was drawn also in the axial view of the brain as shown in (Figure 4.3 

(B & C)). Appropriate NOT ROIs were drawn to delineate the DRTT and the SPCT 

separately. A representative SPCT obtained using this alternative method is shown in 

(Figure 4.3 (D)). The right and left SPCTs are also shown in (Supplementary Figure 

4.2). 

 

Figure 4.3 Alternative ROIs used for reconstruction of DRTT and SPCT.  

The ROI around the thalamus covering the internal capsule is shown in (A), the ROI covering the 

contralateral cerebellar peduncle (B) & (C). An example of the SPCT obtained using this alternative 

method is shown in (D). 

Additionally, the main cerebellar tracts (middle, inferior and superior cerebellar 

peduncles: MCP, ICP and SCP) and the corticospinal tracts (CST) were reconstructed 

in order to investigate the tract overlap and to compare reliability indices. The 
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procedure for the reconstruction of the CST has been described previously in Chapter 

3 (Mole et al. 2016) and reconstruction of the cerebellar tracts were performed using 

descriptions from (Stieltjes et al. 2001; Oishi et al. 2011) and their reconstruction 

protocols are described in Chapter 5. 

4.4.3 Statistical Analysis  

4.4.3.1 Tract probability maps 

The probability maps of connections of the various tracts (DRTT, SPCT, CST, MCP, 

SCP and ICP) within the brain were mapped out using group-based probability maps 

for each tract. To create these maps, the NIfTI-exported (Neuroimaging Informatics 

Technology Initiative) tracts of each participant were registered to MNI space. This was 

done by first registering each participant's structural high-resolution T1-weighted 

image to MNI space, using FSL FNIRT (FSL version 5.0.9, warp resolution: 10 mm, 

10mm, 10mm) (Andersson et al. 2010; Jenkinson et al. 2012), and then applying the 

warp to the tract NIfTI file (which had already been registered to the high resolution 

structural scan as part of the pre-processing pipeline in ExploreDTIv4.8.3).  

4.4.3.2 Spatial overlap between tracts 

As the DRTT and SPCT lie in close proximity to other cerebellar tracts, I aimed to 

assess their spatial independence by looking at their spatial overlap with the MCP, SCP, 

ICP and CST. Spatial overlap was assessed by calculating overlap dice coefficient 

scores [see also (Zijdenbos et al. 1994)]. First the tracts were exported to binary NIfTI 

files, then the number of voxels for each tract and the number of voxels overlapping in 

two tracts were counted using the AFNI function 3DOverlap (Cox 1996). Finally, dice 

coefficients were calculated using the formula:  

(2 x number of overlapping voxels) / (number of voxels in tract 1 

+  number of voxels in tract 2) 

 And these were subsequently converted to percentage. This was performed in both 

directions to quantify what percentage of voxels in tract 1 were occupied by tract 2, and 

vice versa. Then the overlap dice coefficients were averaged across participants within 

each group. 

 



81 

 

4.4.3.3 Inter-operator reliability of tract reconstruction 

I reconstructed all tracts (DRTT, SPCT, MCP, ICP, SCP and CST) for all participants 

in all groups. A second operator (IL) independently reconstructed tracts for a subset of 

randomly selected participants (5 from each group) to assess reliability and 

reproducibility of reconstructions. Similar to the procedure for assessing spatial 

overlap, reliability was assessed by calculating overlap dice coefficient scores using the 

formula:  

(2 x number of overlapping voxels) / (number of voxels in tract by operator 1 

+  number of voxels in tract by operator 2) 

 And these were converted to percentage as before.   
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4.5 Results  

The DRTT and the SPCT was successfully reconstructed across all the three groups as 

shown in Table 4.1.  

Table 4.1 Number of successful reconstructions of the DRTT and SPCT tracts  

Tract Young Healthy 

Controls 

Parkinson’s 

Disease 

Matched Healthy 

Controls 

Number of 

participants 

20 24 26 

Number of directions 60 30 30 

Mean age ± SD 25.4 ± 4.84 63.42 ± 10.82 64.88 ± 8.06 

Number of L DRTT 

(%) 

16 (80%) 17 (71%) 18 (69%) 

Number of R DRTT      

(%) 

15 (75%) 16 (67%) 14 (54%) 

Number of L SPCT 

(%) 

11 (55%) 19 (79%) 22 (85%) 

Number of R SPCT 

(%) 

16 (80%) 19 (79%) 23 (89%) 

SD – Standard deviation, L - Left, R - Right, DRTT – Dentato-Rubro-Thalamic Tract, SPCT – 

Subthalamo-Ponto-Cerebellar Tract  

4.5.1 Tract probability maps 

The probability maps depicting the anatomical connections for all tracts across the 

whole brain for the YHC group are shown in Figure 4.4 and Figure 4.5, for the PD 

group and the MHC group in Supplementary Figure 4.3 and Supplementary Figure 4.4. 

The tract projection maps of the DRTT and the SPCT in the YHC group were visually 

assessed using atlases (Juelich Histological atlas, Harvard-Oxford Subcortical 

Structural Atlas, MNI Structural Atlas) in both hemispheres.  

The DRTT originates from the dentate nucleus and travels superiorly and medially 

through the SCP (Kwon et al. 2011; Surova et al. 2015; Meola et al. 2016) towards the 

midbrain. The DRTT showed extensive projections to the frontal lobe through the 

internal capsule. The DRTT also showed projections to the premotor cortex and the 

supplementary motor cortex, close but not overlapping with the corticospinal tract, with 

projections also towards the precentral, inferior and superior frontal gyri (Figure 4.4, 

Figure 4.5). There were no identifiable projections of the DRTT towards the occipital, 

parietal and temporal lobes. The DRTT is located medio-posteriorly to the CST in the 

internal capsule and then its cortical projections travel laterally anterior and posterior 
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to the CST (Figure 4.4, Figure 4.5). The current findings are in line with a previous 

study that found the DRTT projections are located medio-posteriorly to the CST (Hana 

et al. 2016). It was found that the DRTT also projects to the caudate and the putamen, 

which is again in line with the animal literature that reports projections into the motor 

regions of the putamen (Hoshi et al. 2005).  

The SPCT showed connections with the frontal lobe, primary motor cortex, primary 

somatosensory cortex, premotor cortex, and precentral cortex, inferior and superior 

frontal gyri. While there were no connections between the SPCT and the occipital and 

temporal lobes, there were connections with the superior parietal lobe (Figure 4.4, 

Figure 4.5). A diagrammatic representation of the connections of the reconstructed 

DRTT and the SPCT including their cortical connections is depicted in (Figure 4.6). 

The connections of the reconstructed DRTT and the SPCTs appear consistent across 

the groups in both hemispheres (Figure 4.4, Figure 4.5, Supplementary Figure 4.3 and 

Supplementary Figure 4.4). The key anatomical landmarks that the DRTT and the 

SPCT pass through, shown here in serial axial slices of the brain are also depicted in 

Figure 4.4. For the DRTT, the tract at the level of the dentate nucleus and decussation 

at the level of the red nucleus, and for the SPCT the tract decussation at the level of the 

pons. Other key features for both the DRTT and the SPCT was passage through the 

internal capsule and connections towards the various cortical regions. 

 

Figure 4.4 DRTT and SPCT anatomical connections shown as probability maps in axial slices in the 

YHC group. The range is from 1-50, hence areas of the brain showing yellow and light blue colours have 

at least 50% of participants’ tracts passing through those voxels. 
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Figure 4.6 Circuits interconnecting the cerebellum and the basal ganglia including the cerebral cortex 

connections.  

Based on findings from the current tractography reconstructions and probability maps in the YHC group 

[adapted and modified from (Bostan and Strick 2010)]. STN - Subthalamic nucleus, PN – Pontine nucleus 

and DN – Dentate nucleus  

4.5.2 Spatial overlap between tracts 

The spatial overlap between tracts (as percent of each of the tracts’ voxels occupying 

voxels of the DRTT or the SPCT) are shown in Table 4.2 and the results from the spatial 

overlap among all the tracts in both directions are depicted in the matrix plots (Figure 

4.7). The DRTT predominately overlaps with and travels through the SCP, with the 

YHC group showing that the left SCP occupies an average 15.59% of the left DRTT 

and the right SCP occupies an average 16.97% of the right DRTT (see Table 4.2). While 

the left and right DRTT occupy less than 2.92% of the left and right SCPs across all 

groups [hemisphere (mean ± standard deviation) in YHC, R(2.28 ± 2.02) L(1.95 ± 

1.91), in PD, R(2.62 ± 2.22) L(2.92 ± 2.58) and in MHC, R(1.37 ± 1.34) L(2.15 ± 

2.10)].  

The left and right SPCTs predominately overlap with the MCP, with the YHC group 

showing that the MCP occupies an average 32.28% of the left SPCT and occupies an 

average 29.61% of the right SPCT (see Table 4.2). While the left and right SPCTs 

occupy less than 4.93% of the MCPs across all groups [hemisphere (mean ± standard 

deviation) in YHC, R(1.88 ± 2.29) L(2.15 ± 1.61), in PD, R(2.82 ± 2.80) L(4.63 ± 3.46) 

and in MHC, R(4.30 ± 2.95) L(4.93 ± 2.78)]. 
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Table 4.2 Spatial overlap 

Dice similarity coefficient (DSC) (Mean ± SD) 

L DRTT 

   L CST  L DRTT  L ICP  MCP  L SCP  L SPCT 

YHC 
0.46% ± 

1.34%  
100% 

4.91% ± 

6.62%  

1.60% ± 

2.94%  

15.59% ± 

16.23%  

0.57% ± 

1.16%  

PD 0% 100% 
1.35% 

±2.02%  

0.66% ± 

1.24%  

8.25% ± 

6.09%  

1.16% ± 

1.94%  

MHC 
1.42% ± 

3.00%  
100% 

1.68% ± 

3.00%  

0.18% ± 

0.54%  

7.30% ± 

6.12%  

3.90% ± 

9.03%  

R DRTT 

   R  CST  R  DRTT  R  ICP  MCP  R  SCP  R  SPCT 

YHC 
0.10% ± 

0.28%  
100% 

4.22% ± 

5.88%  

1.28% ± 

2.78%  

16.97% ± 

19.26%  

0.77% ± 

1.22%  

PD 
0.03% ± 

0.09%  
100% 

1.70% ± 

2.70%  

0.13% ± 

0.30%  

9.86% ± 

6.88%  

0.65%± 

2.31%  

MHC 
1.47% ± 

2.84%  
100% 

0.80% ± 

1.46%  

0.17% ± 

0.45%  

9.06% ± 

9.45%  

0.70% ± 

1.69%  

L SPCT  

   L CST  L DRTT  L ICP   MCP  L SCP  L SPCT 

YHC 
1.63% ± 

1.69%  

0.97% ± 

2.34%  

0.52% ± 

0.63%  

32.28% ± 

13.96%  

0.39% ± 

0.93%  
100% 

PD 
1.02% ± 

0.85%  

1.05% ± 

1.75%  

0.57% ± 

1.24%  

22.87% ± 

11.70%  

0.17% ± 

0.61%  
100% 

MHC 
0.80% ± 

0.65%  

1.19% ± 

1.94%  

0.50% ± 

0.97%  

25.60% ± 

10.72%  

0.28% ± 

0.64%  
100% 

R SPCT 

   R  CST  R  DRTT  R  ICP   MCP  R  SCP  R  SPCT 

YHC 
1.78% ± 

1.60%  

1.31% ± 

2.63%  

1.70% ± 

2.70%   

29.61% ± 

12.52%  

0.58% ± 

0.86% 
100% 

PD 
1.38% ± 

1.06%  

0.70 % ± 

2.47%  

0.73% ± 

1.46%  

25.60% ± 

10.81%  

0.12% ± 

0.29%  
100% 

MHC 
1.69% ± 

1.12%  

0.99% ± 

2.81%  

0.29% ± 

0.72%  

27.18% ± 

10.06%  

0.11% ± 

0.31%  
100% 

YHC - Young Healthy Controls, PD – Parkinson’s disease, MHC – Matched Healthy Controls, SD - 

Standard deviation, L - Left, R - Right, DRTT – Dentato-Rubro-Thalamic Tract, SPCT – Subthalamo-

Ponto-Cerebellar Tract, CST – Corticospinal tract, ICP – Inferior Cerebellar Peduncle, SCP – Superior 

Cerebellar Peduncle, MCP - Middle Cerebellar Peduncle 
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Figure 4.7 Matrix plots representing the overlaps as group-averaged dice scores between the tracts in 

each group.  

L - Left, R - Right, DRTT – Dentato-Rubro-Thalamic Tract, SPCT – Subthalamo-Ponto-Cerebellar 

Tract, CST – Corticospinal tract, ICP – Inferior Cerebellar Peduncle, SCP – Superior Cerebellar 

Peduncle, MCP - Middle Cerebellar Peduncle 

 

4.5.3 Inter-rater reliability of tract reconstruction 

The inter-rater reliability of the reconstructed tracts was measured as the spatial 

agreement between the tracts reconstructed by operator 1 (JPM) and operator 2 (IL). 

On average the spatial agreement for all tracts was above 50% and comparable across 

tracts, with the exception of the MCP which showed particularly high agreement (CST: 

L: 64±28 (n = 15), R: 69±27 (n = 15); DRT: L: 61±25 (n = 10), R: 66±30 (n = 7); ICP: 

L: 58±22 (n = 15), R: 67±15 (n = 15); SCP: L: 66±15 (n = 15), R: 61±15 (n = 12); 

SPCT: L: 68±21 (n = 9), R: 75±25 (n = 8); MCP: 93±5 (n = 15)). Closer inspection 

revealed that tracts from one operator were consistently larger than tracts from the other 

operator, whose smaller tracts were mostly comprised within the larger ones (see 

Supplementary Table 4.1). However, the extracted fractional anisotropy values from 

the full reconstructed tracts showed high inter-class correlation across operators (PD, 

ICC 0.671, p=0.0286 and MHC, ICC 0.969, p=3.32e-07) (see Supplementary Table 4.3 

and Supplementary Table 4.4). 
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4.6 Discussion  

In this study, an anatomically guided tractography protocol was developed to 

reconstruct the DRTT (cerebellar output to the basal ganglia) and the SPCT (basal 

ganglia output to the cerebellum) using HARDI data (60 directions) from a group of 

young healthy participants. The anatomical protocol was then also used to successfully 

reconstruct these tracts in a dataset (30 directions) of Parkinson’s disease patients and 

matched controls. Most importantly and for the first time the tract probability maps and 

spatial overlap of the reconstructed tracts have been described in humans using 

diffusion tractography.  

4.6.1 Tract probability maps 

There was evidence of cortical motor and non-motor connections for the DRTT and the 

SPCT and to date this is the first study to report these cerebellar-cortical connections in 

humans.  

4.6.1.1 DRTT 

The projections of the DRTT followed the previously described animal literature (Hoshi 

et al. 2005) and various studies in humans using tractography, histology and post-

mortem dissection studies (Kwon et al. 2011; Sweet et al. 2014; Surova et al. 2015; 

Hana et al. 2016; Mollink et al. 2016; Fenoy et al. 2017). The DRTT originates in the 

dentate nucleus, ascending through the SCP towards the brainstem and then decussates 

in the mid brain at the level of the red nucleus towards the contralateral thalamus, with 

projections further on towards the cortical regions (Figure 4.1, Figure 4.4, Figure 4.5). 

One retrograde transneuronal virus tracer study has looked at the motor and non-motor 

cerebral cortex projections of the dentate nucleus and showed that it projects to the 

primary motor, premotor, prefrontal and posterior parietal areas of the cortex (Dum and 

Strick 2003). This is in line with the current tractography findings for the DRTT (Figure 

4.4), which suggest that these projections could be a result of neuronal connections 

between the dentate nucleus and the cortical regions via the DRTT. The DRTT 

cerebellar connections are also in line with the following studies using retrograde 

transneuronal transport in monkeys: firstly, disynaptic projections from the dentate 

nucleus to the SMA and pre-SMA have been found (Akkal et al. 2007). Secondly, the 

dentate nucleus has been found to project to and receive input from the primary motor 
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cortex and the dorsolateral prefrontal cortex (Kelly and Strick 2003). Furthermore, the 

dentate nucleus provides input to the frontal eye field (Lynch et al. 1994) and projects 

to the different regions of the prefrontal cortex via the thalamus (Middleton and Strick 

2001). Finally, a review has reported that cerebellar nuclei project to the subdivision of 

the thalamus which in turn project to neocortical regions including the premotor, 

prefrontal and posterior parietal areas of the cerebral cortex (Percheron et al. 1996). 

However, the inferior parietal lobule (Clower et al. 2001) and posterior parietal cortex 

(Clower et al. 2005) are targets for output from the dentate nucleus, but there were no 

similar DRTT connections to the parietal cortex in the current study.  

4.6.1.2 SPCT 

The connectivity of the SPCT also followed the animal literature (Bostan and Strick 

2010). The SPCT originates in the subthalamic nucleus descending though the 

brainstem and decussating in the upper and/or middle pons (Figure 4.2), before 

travelling into the contralateral cerebellar hemisphere. The SPCTs that were 

reconstructed in the current study did not however enter the contralateral cerebellar 

cortex via the SCP as described by the previous study in humans (Sweet et al. 2014), 

but through the MCP. The current findings have been replicated within different healthy 

participant groups and in the PD patient group with findings consistently showing that 

the SPCT overlaps with MCP and not the SCP (Table 4.2, Figure 4.7). The finding of 

cortical connections of the SPCT from the current data (Figure 4.4, Figure 4.5) are in 

support of the classical view that cerebellum receives input from widespread 

neocortical areas including portions of the frontal, parietal, temporal and occipital lobes 

(Glickstein et al. 1985; Schmahmann 1996).  

4.6.2 Spatial overlap 

It was observed that there was overall low spatial overlap between the main tracts of 

interest (the DRTT and the SPCT) with the CST, MCP, SCP and the ICP (Table 4.2). 

This is very encouraging as spatial independence suggests that these tracts are distinct 

pathways and not just part of the major cerebellar pathways even if the DRTT passes 

through the SCP and the SPCT through the MCP.   
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4.6.2.1 DRTT 

Of all the investigated tracts, the SCP showed highest spatial overlap with the DRTT 

(Table 4.2, Figure 4.7, and Supplementary Figure 4.5). This finding is in line with a 

recent human connectome-based tractography and microdissection study using 488 

subjects which found that the DRTT runs superiorly and medially inside the SCP and 

verified the same using microdissection (Meola et al. 2016). A probabilistic 

tractography study in 41 healthy subjects showed that the DRTT is a part of the SCP 

where the SCP acts as a channel for the DRTT leaving the cerebellum (Kwon et al. 

2011). Other studies showed that fibers arising from the dentate nuclei pass through 

ipsilateral SCP before decussating at the level of the inferior colliculi in the 

mesencephalic tegmentum (Parraga et al. 2016).  

4.6.2.2 SPCT 

The MCP showed the highest spatial overlap with the SPCTs (Table 4.2, Figure 4.7). 

The SPCT described previously in humans (Sweet et al. 2014) did not demonstrate a 

similar overlap. Here, the high overlap between SPCT and MCP is likely due to the 

decussation of the SPCT occurring at the level of the pons, where the MCP joins the 

two cerebellar hemispheres (Supplementary Figure 4.9).  

4.6.3 Inter-rater reliability 

Using the developed protocol a researcher new to tractography (operator 2/I.L.) was 

also able to reconstruct the DRTT and the SPCT using the developed protocol, as 

suggested by good inter-rater reliability. This was comparable to the inter-rater 

reliability for the more established tracts (CST, MCP, SCP and ICP). The tract with the 

highest inter-rater reliability was the MCP, which is a large tract and quite easy to 

reconstruct. It should be noted that although all the tracts were reliably reconstructed 

and were visually and anatomical accurate, the volume was thinner in most of the 

operator 2 tracts, suggesting that measures of tract size (and derived measures such as 

average fractional anisotropy across a tract) can depend on how an operator draws the 

ROIs, thereby highlighting the importance of consistent application of manual 

tractography protocols. Regardless of the limited spatial concordance across operators, 

the reliability of the obtained semi-quantitative measure of fractional anisotropy for 

each tract was good, which is an important prerequisite for any study looking at inter-



91 

 

individual or group (e.g., patients vs. controls) differences (Supplementary Table 4.3 

and Supplementary Table 4.4). 

4.6.4 Consistent reconstruction across data sets 

Although previous tractography papers have obtained the full DRTT including the 

cortical projections, the current study is the first to follow the cortical projections and 

verify its course in a larger participant sample, including different age groups, patients, 

and different acquisition protocols. Moreover, the tracts reconstructed in three different 

datasets were qualitatively comparable across groups (see tract probability maps in 

Figure 4.4, Figure 4.5, Supplementary Figure 4.3, Supplementary Figure 4.4). 

4.6.5 Limitations 

It was not possible to reconstruct the DRTT and the SPCT in all participants. This may 

be in part caused by their anatomical nature; for instance, they are smaller, longer and 

have more curvature than more well-established tracts (e.g. CST, MCP). Even though 

the data were correction for participant motion, eddy current and echo planar imaging 

distortion, residual noise and signal artefacts from free water and air tissue interfaces 

may have contributed to this. The choice of the imaging parameters, the image quality, 

the tracking algorithms and pre-processing pipelines are also known to affect the 

quality, precision and reliability of tractography results and contribute to false positive 

and false negative findings (Jbabdi and Johansen-Berg 2011). It has to be noted that not 

all tracts that could potentially overlap with the cortical connections of the DRTT and 

SPCT have been reconstructed in this study (e.g. the anterior thalamic radiation) as the 

focus was on looking at overlap with the main cerebellar tracts and the CST. 
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4.7 Conclusion 

The current study is the first to describe and develop anatomical protocols for the 

cerebellar output (DRTT) and cerebellar input (SPCT) connections that have been 

previously described in non-human primates in healthy young adults, older participants 

and PD patients. Also for the first time their cortical connections and spatial overlap 

with the major cerebellar pathways (MCP, ICP, SCP) and the CST are described.  

These findings are in support of previous studies suggesting that there are distinct and 

direct anatomical connections between the basal ganglia and the cerebellum (Hoshi et 

al. 2005; Bostan and Strick 2010). These findings also challenge the classical view that 

the cerebellum receives input from neocortical areas but then funnels this information 

back to only the primary motor cortex through the thalamus (Allen and Tsukahara 

1974), as there was distinct cerebral connections with various cortical regions in both 

DRTT and SPCT.   

Using the developed anatomical protocol one can now reconstruct the DRTT and the 

SPCT from data that is routinely obtained in clinical research studies. Clinical and 

research applications include anatomical localisation for deep brain stimulation (Sweet 

et al. 2014; Coenen et al. 2015; Hana et al. 2016; Fenoy et al. 2017) and identification 

of changes in these tracts in neurodegenerative and movement disorders (Jeong et al. 

2012; Jang and Kwon 2015; Surova et al. 2015).  
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 Investigating microstructural differences in the white 

matter of the main cerebellar and basal ganglia-cerebellar pathways 

in Parkinson’s disease 
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5.1 Abstract 

Objective 

To compare microstructural differences in a cohort of Parkinson’s disease (PD) patients 

and their matched healthy controls (MHC), in the three main cerebellar pathways (the 

middle, inferior and superior cerebellar peduncles) and in the two basal ganglia-

cerebellar connections (dentato-rubro-thalamic tract and subthalamo-ponto-cerebellar 

tract).  

Methods 

Diffusion weighted imaging data of 24 PD patients and 25 MHCs were analysed and 

deterministic tractography was performed using the spherical deconvolution-based 

damped Richardson-Lucy algorithm. Diffusion metrics reflecting the underlying white 

matter microstructure (fractional anisotropy (FA), mean, axial and radial diffusivity; 

(MD, AD, RD) and hindrance modulated orientational anisotropy (HMOA)) were 

extracted from the tracts of the interest and statistical analysis were performed. 

Results 

PD patients had higher FA in the right superior cerebellar peduncle, the right inferior 

cerebellar and significantly increased HMOA in the right superior cerebellar peduncle 

compared to MHCs.  

Conclusion 

This is the first study to explore the microstructural differences in the main cerebellar 

pathways and the two basal-ganglia cerebellar connections in PD. I found higher FA, 

and HMOA of the selected cerebellar tracts in patients compared to controls. Current 

results suggest that the microstructural characteristics of cerebellar input and output 

connections are altered in PD, however future studies are required to delineate the 

specific compensatory, pathological and/or disease progression contributions of these 

pathways to PD.  

 

 



95 

 

 

Key points  

1. In the PD cohort, there was significantly increased FA in the right superior cerebellar 

peduncle and the right inferior cerebellar peduncle.   

2. In the PD cohort, there was significantly increased hindrance modulated orientational 

anisotropy in the right superior cerebellar peduncle.  

3. These results suggest that microstructural characteristics of cerebellar input and 

output pathways are altered in PD. Future studies are required to delineate the specific 

compensatory, pathological and/or disease progression contributions of these pathways 

in PD. 
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5.2 Background and Rationale 

Research in PD has mostly targeted the basal ganglia ever since the finding of reduced 

dopamine levels in the striatum in the 1960s (Hornykiewicz 2006). Accumulating 

evidence from anatomical studies in animals and functional studies in humans show the 

influence of the cerebellum in parkinsonian motor symptoms such as akinesia/rigidity, 

tremor, dyskinesia, gait disturbances and some non-motor symptoms such as cognition 

and olfaction (Wu and Hallett 2013). Although the cerebellum is known to be involved 

in voluntary movement, gait, posture and motor functions, (Ghez and W Thomas 2000) 

research into the role of the cerebellum in PD has been very limited.  

For instance, a post-mortem study revealed reduced dopamine receptors in the 

cerebellum of PD patients compared to healthy participants highlighting its role in the 

symptoms of the disease (Hurley et al. 2003). In the rat brain, the cerebellum receives 

dopaminergic projections from the substantia nigra pars compacta and the ventral 

tegmental area which lies close to the substantia nigra and the red nucleus (Ikai et al. 

1992; Panagopoulos et al. 1991). One study showed that degeneration of nigrostriatal 

dopaminergic neurons caused decrease in neural activity in thalamo-cortical neurons 

receiving input from substantia nigra and cerebellum in primate models of PD; thereby 

suggesting both basal ganglia-thalamic and cerebellar-thalamic pathways are involved 

in PD symptoms (Rolland et al. 2007).  

The middle cerebellar peduncle (MCP) connects the two cerebellar hemispheres to the 

pons, the superior cerebellar peduncle (SCP) is the main output pathway from the 

cerebellum connecting it to the midbrain, and the inferior cerebellar peduncle (ICP) 

carries inputs from the spinal cord and the medulla oblongata into the cerebellum 

(Nieuwenhuys et al. 2008). Previous studies have found that the MCP and the SCP in 

addition to the basal ganglia contributed to differentiating PD from multiple system 

atrophy (MSA-P) and progressive supranuclear palsy (PSP) (Nair et al. 2013; Nicoletti 

et al. 2008; Nicoletti et al. 2006; Quattrone et al. 2008; Nicoletti et al. 2013).  

Moreover, recent animal tracing studies have found reciprocal interconnections 

between the cerebellum and the basal ganglia (Bostan and Strick 2010; Hoshi et al. 

2005), while previously the basal ganglia and the cerebellum were assumed to interact 

only at the level of the cerebral cortex (Percheron et al. 1996). In Chapter 4, I 
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successfully developed an anatomical protocol and reconstructed these basal ganglia-

cerebellar interconnections namely, the DRTT and SPCT. 

Despite the increasing evidence that the interplay between the basal ganglia and 

cerebellum plays an important role in mediating cognitive and motor functions in PD, 

no published studies to date have explored the role of the main cerebellar white matter 

tracts (MCP, SCP and ICP) and basal ganglia-cerebellar white matter connections 

(DRTT and SPCT) in PD. Hence, deterministic tractography using the spherical 

deconvolution based damped Richardson-Lucy (dRL) algorithm (Dell’acqua et al. 

2010), detailed in Chapter 2, was employed to reconstruct the main cerebellar pathways 

and basal ganglia-cerebellar white matter pathways and to characterize the average 

microstructural properties of these tracts.  

In addition to the standard diffusion metrics, hindrance modulated orientational 

anisotropy (HMOA), a novel tract-specific index of white matter microstructural 

organisation was implemented in the current study. The HMOA is defined as the 

absolute amplitude of the fibre orientation distribution and it provides a fibre population 

specific index of the diffusion properties along the reconstructed fibres (Dell’Acqua et 

al. 2013). So far only eight papers were present on PubMed central search using the 

criteria “Hindrance modulated orientational anisotropy” and/or “HMOA” on 24th 

September 2017, and this metric has not been used in PD. One paper reported that lower 

HMOA values of the fornix predicted brain structure and function suggesting that 

recognition memory performance may be influenced by underlying neuroanatomical 

alterations in very preterm born individuals (Tseng et al. 2017). Another study found 

that individual HMOA variation in post-commissural, but not pre-commissural, fibres 

of the fornix correlated positively with visual recall performance (Christiansen et al. 

2016). A study showed increased HMOA values in the superior longitudinal fasiculus 

(SLF) with abnormal lateralisation of occipito-frontal and parito-frontal pathways in 

developmental dyslexia (Zhao et al. 2016). Another recent paper that looked at human 

visuospatial attention found increased HMOA in the SLF (Cazzoli and Chechlacz 2017) 

and advised caution in interpreting increased HMOA as a surrogate for higher 

connectivity. A study that investigated perinatal brain injury (PBI) found significantly 

reduced HMOA in the dorsal cingulum of the PBI group compared with controls, but 

reported increased HMOA in the SLF  and suggested that this increase could be due to 

the possibility of lateral neuroanatomical compensation for medial structural deficits in 
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the PBI group (Froudist-Walsh et al. 2015). In a study that looked at visuospatial 

attention, individual differences in visual short-term memory (VSTM) were linked to 

variability in the HMOA of the inferior fronto-occipital fasciculus (IFOF) the SLF II 

and the SLF III (Chechlacz et al. 2015). From these studies, HMOA metric has been 

shown to be sensitive to individual variation in white matter microstructural 

organization (Chechlacz et al. 2015). It has been proposed to be more sensitive to 

changes in diffusion than conventional diffusion metrics (Dell’Acqua et al. 2013; 

Christiansen et al. 2016).  
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5.3 Aims 

The aim of this study was to explore the microstructural metrics in a cohort of PD 

patients and matched healthy controls, in the three main cerebellar pathways (the MCP, 

SCP and ICP) and in the two basal-ganglia cerebellar tracts (DRTT and SPCT). In 

addition, I investigated how the potential microstructural differences may be correlated 

with clinical and behavioural measures in the PD patient group.   
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5.4 Materials and Methods 

5.4.1 Data cohorts, MR acquisition and processing 

Full details of the MR data acquisition, diffusion MR pre-processing and the 

deterministic tractography algorithms used can be found in Chapter 2. The final 

participant sample in this chapter was comprised of contained 24 PD patients and 25 

MHCs as one participant from the MHC group did not have diffusion data that covered 

the cerebellum (Table 5.1).  

Table 5.1 Demographics of the participants for the cerebellar analyses 

Abbreviations: MOCA –The Montreal Cognitive Assessment; H & Y - Hoehn & Yahr Stage; LEDD – 

Levodopa Equivalent Daily Dose; PD - Parkinson’s disease patients; MHC – Matched Healthy Controls; 

M - Male; F - Female; R – Right; L - Left  

5.4.2 Reconstruction of the major cerebellar pathways 

5.4.2.1 Middle cerebellar peduncle (MCP) 

For the reconstruction of the MCP, AND regions were drawn around the pons on a 

coronal slice on both hemispheres as shown in (Figure 5.1, A). Appropriate NOT 

regions were drawn to eliminate any erroneous fibres. The MCP of a representative 

participant on axial and sagittal slices of a T1 anatomical image is shown in (Figure 

5.1, B and C), respectively. The anatomical accuracy of the MCP was checked by 

making sure that the tract connected the two cerebellar hemispheres and did not have 

tract projections towards the cortex or the lower part of the brainstem.   

 

 
PD (n=24) MHC (n=25) Analyses 

Age 63.42 ± 10.82 64.84 ± 8.22 P = 0.6065, Two sample t-test 

Sex (M:F) 22:2 16:9 P = 0.0203, Chi squared test 

H & Y Stage 1.75 ± 0.47 NA - 

MOCA 26.54 ± 2.01 NA - 

LEDD (mg) 537.64 ± 

340.69 

NA - 
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Figure 5.1 Reconstruction of the Middle Cerebellar Peduncle (MCP).  

The figure shows the AND region around the pons in green in a colour-coded fibre orientation image (A) 

of a representative participant for reconstruction of the MCP. The MCP on a T1 image of a representative 

participant is shown in axial (B) and sagittal (C) views, respectively.  

5.4.2.2 Superior cerebellar peduncle (SCP) 

The SCP was identified in the coronal plane of a colour-coded fibre orientation image, 

the AND region was drawn around the SCP (visible as a small light blue structure) as 

shown in (Figure 5.2, A). Additionally, two large NOT regions were drawn above 

(Figure 5.2, Red ROI 1) and in front of the fornix (Figure 5.2, Red ROI 2), to remove 

tracts going to the frontal and cortical regions. Two more NOT regions were drawn, 

one NOT region at longitudinal fissure to cut fibres that cross into the other hemisphere 

(Figure 5.2, Red ROI 3) and another to cut fibres that go into the brain stem (Figure 

5.2, Red ROI 4). This procedure was repeated for both hemispheres separately. The 

SCP of a representative participant in sagittal and coronal views is shown in (Figure 

5.2, A and B), respectively.  
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The anatomical accuracy for the reconstruction of the SCP was checked by making sure 

the ROIs were placed as described above in each hemisphere and that the resulting tract 

did not have any unwanted fibres going towards the cortex or the brain stem. 

 

Figure 5.2 Reconstruction of the Superior Cerebellar Peduncle (SCP).  

The figure shows the AND region in green (A) and the NOT regions along with the reconstructed SCP 

in the colour-coded fibre orientation image (B) and the reconstructed SCP on a T1 image (C) of a 

representative participant. Red NOT regions, ROI 1 and ROI 2 were drawn above and in front of the 

fornix, ROI 3 at the longitudinal fissure and ROI 4 to cut fibres towards the brainstem.  

5.4.2.3 Inferior cerebellar peduncle (ICP) 

For the reconstruction of the ICP, the large NOT region (Red ROI 1, ROI 2 and ROI 3) 

from the SCP reconstruction were retained. In a colour-coded fibre orientation image, 

an AND region was drawn in the axial slice around the ICP (visible as the small light 

blue structure) located by moving up slices from the bottom of the brain where the 

medial lemniscus and cerebellar peduncle is visible (Figure 5.3, A). Another AND gate 

was drawn around the region (visible as the light green structure) located at 

approximately five slices above the first AND gate (Figure 5.3, B). The ICP ROI 

placement used here was previously described in (Catani et al. 2008). The ICP of a 

representative participant in sagittal views of a colour-coded fibre orientation image 
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and a T1 image are shown in (Figure 5.3, C and D), respectively. Anatomical accuracy 

for reconstruction of the ICP was checked by making sure the ROI were placed 

correctly in each hemisphere as described above and that the tract did not have any 

unwanted fibres towards the other hemisphere or the cortical regions.  

 

Figure 5.3 Reconstruction of the Inferior Cerebellar Peduncle (ICP). 

The figure shows the first AND region (A), second AND region (B), the three retained NOT regions 

along with a reconstructed ICP tract in a colour-coded fibre orientation image (C) and the reconstructed 

ICP in a T1 anatomical image (D) of a representative participant. Red NOT regions, ROI 1 and ROI 2 

were drawn above and in front of the fornix and final ROI 3 at the longitudinal fissure.  

Each reconstructed tract was visually inspected and any obvious outlier streamlines that 

were not consistent with their known anatomy were excluded by drawing “NOT” 

regions and the entire reconstruction procedure was performed separately in the left and 

right hemispheres for the left and right SCP and ICP, respectively. 

5.4.2.4 DRTT and SPCT  

The full protocol for reconstruction of the DRTT and the SPCT is described in Chapter 

4. The reconstructed DRTT and SPCT also included their cortical projections and here 

they were then segmented using the Splitter tracts tool within ExploreDTI4.8.3. The 

splitter tracts tool is used to segment portions of a reconstructed tract by drawing SEED 
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and AND ROIs to specify the location of segmentation. This was used here to include 

only the portion of the DRTT between the dentate nucleus and the thalamus, and portion 

of the SPCT from the subthalamic nucleus to the cerebellum for extracting the diffusion 

metrics from these tracts. The number of DRTTs and SPCTs successfully reconstructed 

in the PD and MHC groups are shown in Chapter 4 (Table 4.1). A representative 

segmented DRTT and SPCT with the ROIs are shown in Figure 5.4. 

 

Figure 5.4 Reconstructed full and segmented DRTT and SPCT.  

The reconstructed DRTT with its cortical projections is shown in A and the segmented DRTT is shown 

in B along with the ROIs at the level of the thalamus and the dentate nucleus. The fully reconstructed 

SPCT with its cortical connections is shown in C and the segmented SPCT is shown in D along with the 

ROI at the level of the sub-thalamic nucleus.  

5.4.3 Statistical Analysis 

All statistical analyses were carried out in the R statistical software v3.0.0 (R Core 

Team 2014). Before data analysis, all variables were checked for Gaussian distribution 

using the Shapiro-Wilk test (p < 0.05) and visually assessed using the histogram 

function and appropriate transformations were performed as required. The data was 

checked for outliers and homogeneity of variance using the Levene’s test within R 

statistical software’s car package (R Core Team 2014).  
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To assess the microstructural differences, multivariate covariate analyses of variance 

(MANCOVAs) were performed for the major cerebellar tracts (MCP, left SCP, right 

SCP, right ICP, left ICP) with FA, MD, AD, RD and HMOA as dependent variables 

and group (PD and MHC) as independent variable, along with age and gender as 

covariates. All significant results (p<0.05) were further analysed using post-hoc 

univariate ANOVAs corrected for multiple comparisons using FDR correction.  

Separate MANCOVAs were also performed for the basal ganglia – cerebellar tracts 

(left DRTT, right DRTT, left SPCT, right SPCT) and all significant results (p<0.05) 

were further analysed using post-hoc univariate ANOVAs corrected for multiple 

comparisons using FDR correction. 

Post-hoc correlations were also performed in the PD group between the metrics and the 

tracts that showed significant group differences and the following clinical and 

behavioural measures: off medication baseline Unified Parkinson’s Disease Rating 

Scale (UPDRS) scores, duration since diagnosis (in months), scores from a standard 

finger tapping task and a four button finger sequence task measuring the correct number 

of responses and reaction time.  

Additionally, I performed analysis to investigate the macrostructural differences (the 

average tract volumes) in the main cerebellar tracts between PD patients and the MHCs 

(See Chapter 5 supplementary material for full details) 
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5.5 Results  

5.5.1 Microstructural differences  

Results from the MANCOVAs (Table 5.2) showed significant group effects for the 

right SCP (F(5,41) = 3.24, Pillai’s trace = 0.28, p = 0.0147), the right ICP (F(5,41) = 

4.22, Pillai’s trace = 0.34, p = 0.0034) and the left ICP (F(5,41) = 2.72, Pillai’s trace = 

0.25, p = 0.032).  

Table 5.2 Results from the MANCOVAs for the main cerebellar tracts 

Tract   

MHC (n=25) vs PD (n=24) 

F statistic 
Pillai's 

trace 
p-value 

Middle Cerebellar 

Peduncle 
        

  Group F(5,41)=1.32 0.14 0.27523 

  Age F(5,41)=2.26 0.22 0.06598 

  Gender F(5,41)=0.83 0.09 0.53914 

Left Superior Cerebellar 

Peduncle 
        

  Group F(5,41)=1.47 0.15 0.2223 

  Age F(5,41)=1.58 0.16 0.1876 

  Gender F(5,41)=1.03 0.11 0.4126 

Right Superior Cerebellar 

Peduncle 
        

  Group F(5,41)=3.24 0.28 0.014787 

  Age F(5,41)=5.56 0.40 0.000535 

  Gender F(5,41)=1.29 0.14 0.288652 

Left Inferior Cerebellar 

Peduncle 
        

  Group F(5,41)=2.72 0.25 0.03274 

  Age F(5,41)=1.30 0.14 0.28192 

  Gender F(5,41)=1.19 0.13 0.33141 

Right Inferior Cerebellar 

Peduncle 
        

  Group F(5,41)=4.22 0.34 0.003465 

  Age F(5,41)=2.06 0.20 0.090584 

  Gender F(5,41)=0.65 0.07 0.661444 

MHC – Matched healthy controls, PD - Parkinson’s disease patients 

Results from the post-hoc ANCOVAs (Table 5.3) of these three tracts showed 

significantly increased FA in the PD patients compared to MHCs in the right SCP (0.44 

± 0.020 [MHC, mean±SD], 0.46 ± 0.029 [PD, mean±sd], F(3,45) = 10.89, FDR 

corrected p-value = 0.014), right ICP (0.43 ± 0.030 [MHC, mean±sd], 0.45 ± 0.027 
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[PD, mean±sd], F(1,47) = 8.23, FDR corrected p-value = 0.031) and significantly 

increased HMOA in the PD patients compared to MHCs in the right SCP (0.17 ± 0.013 

[MHC, mean±sd], 0.19 ± 0.019 [PD, mean±sd], F(3,45) = 11.03, FDR corrected p-

value = 0.014). 

Table 5.3 Post-hoc ANCOVAs for the main cerebellar tracts 

Tract 
 

MHC (n=25) vs Session 1 PD 

(n=24) 

F statistic Uncorrected p-

value 

Left Superior Cerebellar 

Peduncle 

   

FA Group 2.236 0.14181 
 

Age 3.8201 0.05687 
 

Gender 3.1594 0.08225 

MD Group 1.5827 0.21486 
 

Age 3.2599 0.07768 
 

Gender 0.1308 0.71935 

RD Group 3.8497 0.05596 
 

Age 0.588 0.44721 
 

Gender 1.0659 0.30739 

AD Group 0.0456 0.83185 
 

Age 5.754 0.02066 
 

Gender 0.1733 0.67915 

 HMOA Group 6.4048 0.01495 

  Age 0.1551 0.69557 

  Gender 1.6853 0.20084 

Right Superior Cerebellar 

Peduncle 

   

FA Group 10.899 0.001889 
 

Age 11.1258 0.001713 
 

Gender 4.2952 0.043979 

MD Group 0.0725 0.789 
 

Age 2.3568 0.1317 
 

Gender 0.6415 0.4274 

RD Group 2.4664 0.1233 
 

Age 0.0044 0.9475 
 

Gender 1.8768 0.1775 

AD Group 2.4923 0.121409 
 

Age 10.5162 0.002232 
 

Gender 0.0216 0.883797 

 HMOA Group 11.031 0.001785 

  Age 0.6467 0.425515 
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  Gender 3.3324 0.07457 

Right Inferior Cerebellar 

Peduncle 

   

FA Group 8.2384 0.006229 
 

Age 1.0264 0.316422 
 

Gender 0.3943 0.533245 

MD Group 1.3385 0.2534 
 

Age 0.3654 0.5486 
 

Gender 1.3473 0.2519 

RD Group 6.2952 0.01578 
 

Age 0.2136 0.64616 
 

Gender 2.0705 0.15709 

AD Group 0.0806 0.7778 
 

Age 0.4236 0.5185 
 

Gender 0.5333 0.469 

 HMOA Group 5.6614 0.02164 

  Age 0.0786 0.78055 

  Gender 0.4186 0.52094 

MHC – Matched healthy controls, PD - Parkinson’s disease patients, FA – Fractional anisotropy, MD    

– Mean diffusivity, RD – Radial diffusivity, AD – Axial diffusivity, HMOA – Hindrance Modulated    

orientational anisotropy  

The correlation analyses and the separate MANCOVAs for the DRTT and SPCT tracts 

did not show any significant results (see supplementary table 5.3 and supplementary 

table 5.4).  

  



109 

 

5.6 Discussion  

Patients with early stage PD relative to matched healthy controls showed increased FA 

in the right superior and right inferior cerebellar peduncles and increased HMOA in the 

right superior cerebellar peduncles. However, there were no significant differences in 

the basal ganglia-cerebellar connections of the dentato-rubro-thalamic tracts and the 

subthalamo-ponto-cerebellar tracts between the PD patients and their matched controls. 

Additionally, there were no significant correlations between any of the diffusion 

metrics in the cerebellar tracts and the clinical and behavioural measures in the PD 

group.  

5.6.1 Increased FA in the Right SCP and Right ICP 

The current increased FA findings are consistent with our previous finding of increased 

FA in the motor tracts i.e., the bilateral corticospinal tract (right; corrected p = 0.0003, 

left; corrected p = 0.03), bilateral thalamus-motor cortex tract (right; corrected p = 0.02, 

left; corrected p = 0.004) and the right supplementary area-putamen tract (corrected 

p = 0.001) compared to non-motor tracts in PD patients as demonstrated in Chapter 3. 

This could be due to potential compensatory and/or selective neurodegenerative 

mechanisms in the motor pathways that occur at pre-symptomatic stages of the disease 

(Mole et al. 2016). The current findings of increased FA in the right SCP and the right 

ICP oppose the several findings from previous studies. One study reported decreased 

FA in the entire white matter of the cerebellar hemispheres in PD patients suggesting 

damaged white matter microstructure (Mormina et al. 2015). Another study found 

decreased FA and increased MD in PD cerebellum and a positive correlation with the 

decrease in FA and thresholds of olfactory identification (K. Zhang et al. 2011); 

however, there were no measures of olfaction available within the current PD cohort to 

explore similar correlations. Previous studies have also reported no significant FA 

alterations in the SCP and the MCP (Nicoletti et al. 2006; Nicoletti et al. 2008; Wang 

et al. 2011; Rizzo et al. 2008; Blain et al. 2006; Nicoletti et al. 2013).  

Interpreting the results in the literature in context of our current results is challenging 

due to the various differences in methodology, processing and analysis of the diffusion 

data. In addition all the aforementioned studies used whole brain voxel based or region 

of interest based analysis rather than a priori selection of individual tracts. Taking all 

this into context with the current results, the specific increase in FA in just the input 
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and output from the cerebellum (ICP and SCP) might be either be related to 

compensatory mechanisms that help mask the disease during the pre-symptomatic 

stages but eventually fail as the pathological damage becomes severe (Jankovic 2005) 

or selective neurodegenerative processes that affect the different regions of the brain at 

different stages. Functional studies have showed task specific hyperactivation in the 

cerebellum during performance of finger sequence tasks and motor learning (Sen et al. 

2010; Yu et al. 2007b). Previous functional MRI studies have demonstrated increased 

activation of the cerebellum in PD and interpreted this as early compensatory 

mechanism that seems to decrease as the disease progresses possibly due to cerebellar 

degeneration process (Yu et al. 2007a; Wu and Hallett 2013; Jankovic and Kapadia 

2001). It was suggested that the cerebellar involvement might vary according to the 

various clinical stages of the disease. Therefore, in the preclinical stage, the cerebellum 

might be fully compensating for the loss in basal ganglia function, and later cerebellar 

compensation may reduce as the severity of the PD symptoms accumulates (Wu and 

Hallett 2013). One functional MRI study showed hyperactivation of the ipsilateral 

cerebellum in PD as a compensatory mechanism for defective basal ganglia motor 

controls signals (Yu et al. 2007a). There was also increased recruitment of the 

cerebello-thalamo-cortical circuit as the disease progresses suggesting its involvement 

in compensatory effects (Sen et al. 2010). The right lateralised effect in the current 

results may be due to the ipsilateral control of body movements in the cerebellum and 

its compensatory effects in PD as our PD cohort was predominately right-handed (Table 

3.1). However, there were no FA differences between the affected vs unaffected 

hemisphere in the motor tracts and cerebellar tracts (See Table 3.6, Supplementary 

Table 3.2 and Supplementary Table 5.2).  

5.6.2 Increased HMOA in the right SCP 

There was significantly increased HMOA in the right SCP, left and right ICP, the MCP, 

the DRTTs, and the SPCTs. whereas in the current study there were no correlations 

between HMOA and PD patients’ clinical and behavioural data. This in context with 

the current results could also suggest similar lateralised neuroanatomical compensation 

as there was statistically significant increase in the PD group’s HMOA metric only in 

the right SCP but not in the other main cerebellar tracts or the basal ganglia-cerebellar 

pathways.  
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It has been shown that HMOA decreases with increasing radial diffusivity and axonal 

radius; thus, it is likely that increased myelination decreases HMOA (Tournier et al. 

2004; Dell’Acqua et al. 2013). This could suggest that the current increased HMOA 

could be due to decreases in myelination in the right SCP which is the main output 

pathway from the cerebellum to the mid brain and also through which the DRTT leaves 

the cerebellum. While the HMOA index characterises microstructural properties of the 

specific white matter tract, it still depends on several white matter properties (as with 

FA). Therefore, despite the sensitivity of HMOA, it is influenced by myelination, axon 

density, axon diameter, and fibre dispersion, and is problematic to interpret it in way 

that a higher HMOA index explicitly means stronger connectivity (Dell’Acqua et al. 

2013; Jones et al. 2013; Beaulieu 2002). Nevertheless, as HMOA is specific to the 

direction followed by tractography, this index measures how much water is diffusing 

in the tractography reconstruction direction independently of other directions and is 

therefore a true tract specific index, being less influenced by crossing fibres and partial 

volume effects (Dell’Acqua et al. 2013). Based on the results from the current data, I 

speculate that a higher HMOA index combined together with the higher FA in the same 

tract represents white matter microstructural alterations associated with compensatory 

mechanisms, rather than pathological or neurodegenerative processes in the PD cohort. 

Nevertheless no substantial conclusions can be drawn due to lack of HMOA 

correlations with clinical and behavioural measures in this cohort.   

A direct comparison between the FA index from DTI tractography and the HMOA 

index from SD tractography models was performed to verify that SD provides unique 

and additive information especially in regions of crossing fibres (Vanderauwera et al. 

2015). The FA model was more confounded by crossing fibres than the SD model, 

however there did not seem to be a direct influence of crossing fibres on the metrics as 

both the FA and HMOA were highly correlated. Nevertheless, the HMOA index seems 

to provide an advantage for the quantitative study of white matter changes over FA, as 

confirmed by simulation and inter-individual variability studies (Dell’Acqua et al. 

2013; Christiansen et al. 2016; Chechlacz et al. 2015).  

5.6.3 DRTT and SPCT 

The microstructural  measures from the DRTT and SPCT did not show any significant 

differences (Supplementary table 5.4) even though various studies have shown the 
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influence of cerebello-cortical circuits to have impact on PD (Sweet et al. 2014; 

Martinu and Monchi 2013). Both the basal ganglia and the cerebellum are known to 

influence activity in the cerebral cortices via the thalamus with their recurrent circuitry, 

known to affect motor, cognitive and affective behaviour (Alexander et al. 1986; 

Middleton and Strick 2000; Lewis et al. 2013). Outputs from basal ganglia and the 

cerebellum project to the ventro anterior and ventro lateral thalamic nuclei respectively 

with differential involvement in external and internal guided tasks (Middleton and 

Strick 2000; MacMillan et al. 2004; Vaillancourt et al. 2003).  

Since the motor symptoms in PD only occur after 50% of dopaminergic nigral cells and 

60-80% of striatal dopamine levels are depleted (Fearnley and Lees 1991; Lee et al. 

2000) and the lack of observed motor symptoms despite this cell loss indicates 

redundant and compensatory mechanisms that may be preserving optimal level of 

motor function (Zigmond et al. 1990; Bezard et al. 2001). One possible compensatory 

mechanism for the generation of movement in PD has been suggested as the recruitment 

of cortico-cerebellar networks (Martinu and Monchi 2013; Rascol et al. 1997; Palmer 

et al. 2009). 

In a study that explored the neurofunctional basis of externally and internally guided 

movements in PD patients, there was increased signal in the cerebellum, putamen, 

supplementary motor area and the thalamus during the externally guided task (Cerasa 

et al. 2006). Another study showed that increased cerebello-thalamo-cortical activity 

could reflect compensation for breakdown of the striato-thalamo-cortical pathway to 

successfully perform internally guided task (Sen et al. 2010). They could not 

definitively delineate between compensatory and/or pathological processes so they 

suggested that this could be due to disease progression in PD as the patients transitioned 

from unilateral to bilateral symptoms therefore (Sen et al. 2010). From these previous 

studies it is clear that the cerebellum plays a role in compensation and symptomology 

in PD.  

The DRTT has been shown to play an important role in the PD symptoms as placing a 

Deep Brain Stimulation (DBS) contact at close proximity to the DRTT has been shown 

to be efficient in relieving symptoms especially the tremor (Sweet et al. 2014). This 

suggests that the tract may be a more suitable target to be stimulated by DBS and may 

hence lead to better therapeutic outcomes in PD. Differences in cerebellar activity may 
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be considered a pathological mechanism related to basal ganglia dysfunction, or a 

compensatory mechanism. The nature of the cerebellar involvement is complex and is 

likely influenced by dopamine, patient subtypes, and the particular symptom or 

function assessed. Lastly, given that PD is largely heterogeneous in nature, a combined 

approach would help clarify whether particular symptoms of PD are mediated by 

particular white matter pathways. Ultimately, this could lead to stronger conclusions 

regarding whether the cerebellum plays a pathological role driven by striatal 

dysfunction or a compensatory role to overcome striatal dysfunction.  

5.6.4 Limitations and future directions  

There were no significant correlations between the diffusion metrics and the clinical 

and behavioural data from the clinical PD data. This is very likely due to the limited 

sample size which could also be why we do not see any significant correlations in our 

sample of 24 PD patients and 25 healthy controls as well. This is based on previous 

studies that report smaller sample sizes as limitations for correlational analyses in PD 

(Mischley et al. 2017; Heinzel et al. 2016).  Any results observed from such correlations 

should be interpreted with caution and further validation assessments would still be 

needed (Mokkink et al. 2010).  

The current results also show asymmetry and right lateralised significant effects in 

HMOA and FA which are in line with previous studies showing that the asymmetry of 

white matter pathways varies across different diffusion MRI derived measures (De 

Santis et al. 2014). One study found that the HMOA and the tract volume differentially 

contributed to the anatomical lateralization of frontoparietal attention networks and 

individual differences in attention, but did not find any correlations (Chechlacz et al. 

2015). They attributed this to large number of right-handed participants which may also 

be the case for our current PD cohort (Table 3.1).  

It should be noted that the HMOA is estimated based on several white matter 

characteristics, including myelination, axon density, axon diameter, and fibre 

dispersion with each factor contributing differentially to HMOA (Dell’Acqua et al. 

2013). Therefore, interpreting that higher HMOA is equivalent to higher connectivity 

should be avoided (Beaulieu 2002; Jones et al. 2013; Dell’Acqua et al. 2013).  

The current knowledge of the role of cerebellum in PD is limited. Future studies that 

can ascertain the specific degenerative and/or compensatory effects in cerebellum are 
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required to better understand its contribution to the disease and also to inform better 

treatments and interventions. Furthermore, investigation of the white matter 

connections between the basal ganglia and the cerebellum in a larger sample of PD data 

is warranted.  

5.7 Conclusion 

In summary, this is the first study to explore the microstructural differences in the main 

cerebellar pathways and the two basal-ganglia cerebellar connections between PD 

patients and matched healthy controls. I found increased FA in the superior and inferior 

cerebellar peduncles and increased HMOA in the superior cerebellar peduncle. This 

shows that the cerebellar input and output connections are altered in PD, however future 

studies that explicitly probe the functions of the cerebellum would help to shed light 

onto the specific contributions of the white matter connections in PD.  
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6.1 Summary of findings  

The work described in this thesis utilised diffusion tractography methods to explore 

selected white matter connections of the basal ganglia circuitry to increase our 

understanding of the underlying pathophysiology in PD.  

As PD is clinically classified as a motor disorder affecting the basal ganglia circuitry, 

it was of particular interest to explore the basal ganglia white matter motor connections 

in PD. Therefore in Chapter 3, I investigated for the first time the differences in 

diffusion metrics in selected motor tracts of the basal ganglia circuitry; Corticospinal 

tract (CST), and the white matter connections between the supplementary motor area-

putamen (SMA-PUT) and the thalamus-motor cortex (THAL-MC), and selected non-

motor tracts; uncinate fasiculus (UNF), supero-lateral medial forebrain bundle (slMFB) 

in PD. Increased FA was found in all the basal ganglia motor tracts while there was 

decreased FA in the UNF and no differences in the slMFB. Additionally, I also 

investigated differences in subcortical volumes between PD patients and MHCs and 

found no such volumes differences.  

Furthermore, it was found that the basal ganglia and the cerebellum have direct 

anatomical connections between them via the denato-rubto-thalamic tract (DRTT) and 

the subthalamo-ponto-cerebellar tract (SPCT) and these connections had not been 

anatomically well defined in humans. Therefore in Chapter 4, I developed an 

anatomically guided tractography protocol to reconstruct the DRTT and the SPCT and 

demonstrated feasibility of transferring this protocol to reconstruct these tracts in a 

cohort of PD patients. And for the first time, I also assess the spatial independence and 

map the cortical connections of these tracts in humans.  

Recent evidence show the involvement of the cerebellum in PD, and that the non-motor 

symptoms of the disease in most cases precede the motor symptoms. This in addition 

to the reconstructed basal ganglia-cerebellar connections from Chapter 4 provided the 

opportunity and rationale for investigation of these tracts and the main cerebellar 

pathways (the middle, inferior and superior cerebellar peduncles) in PD. Hence in 

Chapter 5, I investigated the differences in diffusion metrics in the main cerebellar 

pathways and the two basal ganglia-cerebellar connections and found increased FA in 

the superior and inferior cerebellar peduncles and increased HMOA in the superior 

cerebellar peduncle. 
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Overall, the results of increased FA in the motor and cerebellar tracts in PD suggest that 

the basal ganglia motor pathways and the cerebellar input and output connections are 

altered in PD. These alterations may suggest selective neurodegeneration due to 

consequences of the disease or compensation along these pathways due to extended and 

adaptive neuroplasticity. Using the developed anatomical protocol, one can now 

reconstruct and study the DRTT and the SPCT from data that is routinely obtained in 

clinical research studies.  

Together, the findings highlight the importance of white matter connections of the basal 

ganglia circuitry and their connections with the cerebellum in PD. The novel findings 

support the involvement of structures such as the putamen, thalamus, SMA, dentate 

nucleus, subthalamic nucleus and the motor cortex through their white matter 

interconnections. Although there were no significant results from the correlational 

analyses within this thesis, one can still see that the tracts of interest showed marked 

changes in the diffusion metrics indicating their involvement in compensatory and 

neurodegenerative process within the disease. This suggests that a better understanding 

of PD at the level of brain circuitry can be derived by not just studying the individual 

grey matter structures but also studying the interconnections among them in brain 

imaging studies but also in post-mortem brains, cellular models and mechanistic models 

of the disease.   

The individual white matter connections investigated here offer patient/participant 

specific, brain region specific as well as symptom specific results that show motor 

symptoms in PD may progress differently compared to non-motor symptoms and their 

involved structures may also undergo very specific changes, respectively. The study 

methodology to delineate the white matter connections of interest manually is also very 

important for instance in deep brain simulation surgery for PD. The method used within 

this thesis for detecting individual differences in brain specific areas is also important 

for instance in stroke patients. This also shows that group average and automated atlas 

based studies may limit detecting true differences due to averaging of voxels across 

participants. Replicating the findings from this thesis in these white matter connections 

in larger databases with more clinical and behavioural information can help unravel the 

exact aetiology of PD and thereby enable the research community to get a step closer 

to finding therapeutic interventions that delay disease progression.  
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Results from this thesis now provide the background and foundation for future studies 

in PD that explicitly probe the functions of these specific white matter connections, 

their correlation with clinical and behavioural measures as well as their functions in 

healthy and diseased states. Moreover, the developed anatomical protocol for 

delineation of the DRTT and SPCT not only suggests the importance of studying grey 

matter structures such as the cerebellum and the basal ganglia as a whole but also the 

importance of their sub-structures such as the dentate nucleus, the putamen and the 

thalamus as well as the exploration of their white matter interconnections in PD.  

6.2 Limitations and future research in PD 

Several methodological considerations were needed to be taken to avoid 

misinterpretation of results. Diffusion metrics though sensitive to underlying changes 

in white matter microstructure are not specific to change in any particular component 

of white matter microstructure or specific biological mechanism. Both the FA and the 

HMOA metrics are estimated based on several white matter characteristics, including 

myelination, axon density, axon diameter, and fibre dispersion with each factor 

contributing differentially to FA and HMOA (Dell’Acqua et al. 2013). Therefore, 

interpreting higher FA and higher HMOA as higher connectivity or stronger/healthier 

white matter connections should be avoided (Beaulieu 2002; Jones et al. 2013; 

Dell’Acqua et al. 2013). To better understand and delineate the specific contributions 

of axonal microstructural changes and myelination changes in the white matter 

architecture in PD, future studies could apply complex diffusion microstructural models 

such as Composite Hindered and Restricted Model of Diffusion (CHARMED) or 

AxCaliber (Assaf 2008; Assaf and Basser 2005). Myelin water fraction mapping and 

quantitative magnetization transfer techniques could also be used in future studies to 

better quantify myelination (Levesque et al. 2010).  

There were no significant correlations between the diffusion metrics and the clinical 

and behavioural data from the clinical PD data, making it very difficult to interpret the 

increased FA results in the PD cohort. This is very likely due to the limited sample size 

of 24 PD patients. Therefore, it would also be of particular interest to investigate the 

connections between the basal ganglia and the cerebellum in a larger sample of PD data, 

as current data may have been under sampled to detect any significant differences in 

these pathways.  
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Future studies that explicitly probe the functions of the cerebellum and the cerebellar 

pathways would help to shed light into the specific contribution of cerebellar white 

matter in PD. Tractography analysis should be incorporated in future longitudinal 

imaging studies in PD to evaluate the specific role of white matter changes in 

neurodegenerative and neuroplastic processes as the disease progresses. I propose to do 

by this investigating these connections from a larger dataset of PD and healthy controls 

from the Parkinson’s Progression Marker’s Initiative (PPMI) database (PPMI 2011). 

This study would be performed in an attempt to replicate the current findings in this 

thesis. This would not only give us more power to detect differences but also look at 

longitudinal data that may help provide further information.  

Although PD is clinically diagnosed based on the presence of motor signs, it is now 

recognised that this is preceded by significant neurodegeneration and compensatory 

neuroplasticity within and outside the basal ganglia (Bezard et al. 2003) which is also 

reflected in alterations in white matter connections in early PD as reported in this thesis 

(Mole et al. 2016). The prodromal phase of PD may be present for over a decade before 

clinical diagnosis. Although symptomatic treatment exists, clinical studies mainly 

depend on motor clinical markers and there is of lack disease modifying or curative 

therapies for PD. Therefore identifying markers during prodromal PD could identify 

patients earlier and enable the development of high impact interventions and 

prophylactic treatments that help prevent clinical PD. I propose to evaluate imaging 

biomarkers of disease progression in patients with REM-sleep behaviour disorder 

(RBD). RBD is the strongest clinical marker for prodromal PD (Postuma and Berg 

2016) and over 80% of patients with RBD develop neurodegenerative disease within 

10 years (PD, Dementia with Lewy bodies or Multiple System Atrophy) (Boeve et al. 

2013). This also constitutes a potential for longitudinal studies of disease progression 

as RBD to PD conversion is ~10% per year hence the number of PD identified from a 

cohort of 50 patients with RBDs followed up for five years would further the 

understanding of transition from prodromal to the clinical motor phase. 

Future studies should also attempt to delineate the compensatory changes and the 

disease pathology related changes in PD. For instance, one could use behavioural tests 

that require patients to perform tasks that are challenging for them or tasks that increase 

in difficulty. The assumption is that there would be no change or improvement in the 

performance of the task if it is disease pathology related but if the performance is 
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maintain and/or improved this could be due to compensatory mechanisms that are in 

place.   

Further advances in the development of higher order diffusion models as well as of 

techniques that can target specific microstructural properties could help to further 

increase the understanding of the contribution that white matter microstructure plays in 

PD. However, the advanced and higher order diffusion models will have to be 

researched in healthy developing and healthy aging brain to provide better 

interpretation of the extracted metrics in diseased states.    

6.3 Wider clinical relevance of investigated BG white matter connections 

The investigated tracts within this thesis have clinical importance and relevance in a wide 

range of disorders and in understanding healthy developing and aging human brain (Zhao 

et al. 2016; Callaghan et al. 2014; Metzler-Baddeley et al. 2011; Inuggi et al. 2011; 

Christiansen et al. 2016). Detailed knowledge of the anatomy of the basal ganglia 

circuitry in humans would not only be important in understanding the pathophysiology 

of neurological and neurodegenerative disorders such as Parkinson’s disease, 

Huntington’s disease, Progressive supranuclear palsy, Wilson’s disease, Fahr’s disease 

and Gilles de la Tourette's syndrome (Worbe et al. 2015; van Wassenaer-van Hall et al. 

1995; Phillips et al. 2014; DeLong 1990; Surova et al. 2015; Nicoletti et al. 2013) but 

also identification of changes in these tracts in neurodegenerative and movement 

disorders (Jeong et al. 2012; Jang and Kwon 2015; Surova et al. 2015).  

The basal ganglia circuitry is also involved in neuropsychiatric disorders such as 

Schizophrenia, Bipolar disorder, Obsessive-compulsive disorder, depression and 

addiction (Ring 2002; Middleton and Strick 2000; Dirnberger and Jahanshahi 2013; 

Obeso, Rodríguez-Oroz, et al. 2008). The basal ganglia circuitry is thus not only involved 

in motor functions and implicated in their impairment but also in different levels of non-

motor and cognitive impairment as well as varying degrees of non-motor signs and 

symptoms. Clinical and research applications include anatomical localisation for deep 

brain stimulation (Sweet et al. 2014; Coenen et al. 2015; Hana et al. 2016; Fenoy et al. 

2017; Anthofer et al. 2017; Hacker et al. 2015; Torres et al. 2014; Rodriguez et al. 1998; 

Calabrese et al. 2015) and tractography guided surgery (Torres et al. 2014; Parraga et al. 

2016; Papagno et al. 2011; Linhares and Tasker 2000; Coenen et al. 2011; Feigl et al. 

2014).  
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6.4 Conclusion 

In conclusion, this thesis demonstrates that white matter connections of the basal 

ganglia motor system and the cerebellar system are involved in Parkinson’s disease.  

The microstructural differences observed could be due to compensation and/or disease 

pathology related. This warrants the need for future cross-sectional and longitudinal 

imaging studies with tractography analysis that explicitly probe the functions of the 

basal ganglia and cerebellum in PD.  

Furthermore, future studies that study the specific motor and non-motor white matter 

connections in Parkinson’s as well as the connections between the basal ganglia and 

the cerebellum need to be investigated at a much higher resolution using novel diffusion 

and brain imaging techniques. This would shed light into the specific role of white 

matter changes in the neurodegenerative and neuroplastic processes.    

Studying the underlying structural connections of the basal ganglia with the cortex in 

humans within the context of the basal ganglia circuitry and the connections between 

the basal ganglia and the cerebellum and exploring their functions in relation to heath 

and disease would better our understanding of a wide range of disorders.  

This thesis not only demonstrates the importance and novelty of studying individual 

white matter connections in PD within the basal ganglia circuitry in order to understand 

the underlying pathophysiology but also the importance of these individual connections 

for surgical procedures such as DBS and therefore their contribution to effective and 

timely treatment strategies and novel therapies for rehabilitation.  
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 Supplementary material  

8.1 Chapter 3 Supplementary material 

Supplementary Table 3.1 Affected versus unaffected hemisphere analysis 

PD Tracts FA in affected hemisphere 
 (mean ± SD) 

FA in unaffected hemisphere 
 (mean ± SD) 

t-value df p-value 

CST 0.5687 ±  0.033 0.5705 ± 0.024 -0.2861 21 0.7776 

SMA-PUT 0.4612 ± 0.032 0.4701 ± 0.034 -1.3333 21 0.1967 

THAL-MC 0.5200 ± 0.033 0.5137 ± 0.041 0.9283 21 0.3638 

UNF 0.4037 ± 0.023  0.4045 ± 0.020 -0.1787 21 0.8599 

MFB 0.4480 ± 0.028 0.4488 ± 0.031 -0.1251 21 0.9016 

 

Supplementary Table 3.1 shows paired-t-tests between the FA values of the affected and 

unaffected hemispheres of the PD patients. The affected hemisphere calculation was done from 

the motor scale of the pre intervention off medication UPDRS scores. Of the 24 PD patients, 

10 were affected on the left hemisphere and 12 were affected on the right hemisphere while 

two were affected bilaterally. The results show no differences in FA. 

Supplementary Table 3.2 Additional tractography measures 

ADDITIONAL 
TRACTOGRAPHY 

MEASURES 

26 HC 
mean ± sd 

24 PD 
mean ± sd 

Uncorrected 
p value 

Bonferroni 
corrected  p 

value 

Number of 
reconstructed  
streamlines 

    

L-CST 226.08 ± 114.02 388.4583 ± 144.21 7.00E-05 0.00448128 

R-CST 150.8 ± 74.59 301.38 ± 154.31 0.0001313 0.0084032 

L-UNF 122.6538 ± 77.41 319.375 ± 120.81 4.32E-08 2.77E-06 

R-UNF 127.3077 ± 89.29 245.4167 ± 115.81 0.000233 0.014912 

L-THAL-MC 511.7692 ± 213.29 861.6667 ± 286.66 1.62E-05 0.00103936 

R-THAL-MC 482.5 ±  206.54 845.5 ± 342.39 6.60E-05 0.00422464 

L-SMA-PUT 309.1538 ± 304.34 387.125 ± 243.01 0.3202 1 

R-SMA-PUT 412.2692 ± 258.92 305.4583 ± 226.61 0.1265 1 

Number of voxels 
occupied 

    

L-CST 55144.92 ± 31355.74 101776  ±  39556.99 3.66E-05 0.0023392 

R-CST 36720.04 ± 19048.19 76711.96 ± 39201.36 7.48E-05 0.004784 

L-UNF 21796.31 ± 14363.91 51676.46 ± 22440.19 2.20E-06 0.00014099 

R-UNF 20803 ± 15147.96 36972.25 ± 19556.66715 0.002251 0.144064 

L-THAL-MC 70840.92 ± 31314.81 123591.33 ± 45097.07 2.41E-05 0.00154112 

R-THAL-MC 65971.58 ±  30102.2 118596.58 ±  51327.33 9.70E-05 0.00620608 

L-SMA-PUT 41776.5 ± 41788.07 51178.96 ± 33445.52 0.3825 1 

R-SMA-PUT 52861.46 ± 32879.99 40739.88 ± 2281.64 0.1856 1 

Tract volume 
    

L-CST 4062.192 ± 1331.57 5679.39 ± 1631.49 0.000409 0.026176 

R-CST 3225.038 ± 1069.84 4783.381 ± 1848.04 0.0009185 0.058784 
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L-UNF 2321.385 ± 1199.01 4917.796 ± 1725.59 2.92E-07 2.92E-07 

R-UNF 2626.654 ± 1399.54 4269.982 ± 1709.79 0.0005878 0.0376192 

L-THAL-MC 4523.423 ± 1634.04 6965.428 ± 1962.54 2.04E-05 0.00130624 

R-THAL-MC 4435.346 ±  1600.88 7031.932 ±  2365.56 5.59E-05 0.00357888 

L-SMA-PUT 3699.692 ± 2806.51 4029.246 ± 1979.24 0.6317 1 

R-SMA-PUT 4900.962 ± 2281.64 3600.541 ± 1877.41 0.03217 1 

Tract length 
    

L-CST 118.0652 ± 11.45 129.1263  ±  9.52 0.0005202 0.0332928 

R-CST 119.9535 ± 12.09 125.7192 ±  10.24 0.07447 1 

L-UNF 89.70457 ± 10.08 78.89722 ± 8.42 0.000148 0.009472 

R-UNF 80.14056 ± 14.32 72.86341 ± 8.34 0.03234 1 

L-THAL-MC 68.47292 ± 5.42 70.43006 ± 4.68 0.1771 1 

R-THAL-MC 67.47677 ±  5.63 68.82386 ± 6.28 0.43 1 

L-SMA-PUT 63.44871 ± 7.12 64.1478 ± 6.95 0.727 1 

R-SMA-PUT 63.05385 ± 5.71 65.63078 ± 7.25 0.1636 1 

 

Supplementary Table 3.2 shows the two-samples t-tests between PD and controls for each 

extracted additional tractography measure. PD-Parkinson’s disease patients, HC-Healthy 

Controls. CST - Corticospinal tract, SMA-PUT - Supplementary motor area-putamen tract, 

THAL-MC - Thalamus-motor cortex tract, UNF - Uncinate Fasiculus. L-Left, R-Right. 

Bonferroni corrected p < 0.05 (0.05/32=0.00156), SD - Standard deviation. 

Supplementary Table 3.3 Correlation analysis results  

Tract and 
metrics 

R-CST-FA L-CST-FA R-SMA-PUT-FA 

 
t p-value t p-value t p-value 

Finger sequence 
task - Reaction 
time 

0.6677 0.5116 0.8498 0.405 -1.0423 0.3091 

Finger sequence 
task - Correct 
number of taps 

-1.2174 0.2392 -1.4636 0.1605 -1.4333 0.1689 

Duration since 
diagnosis (in 
months) 

-0.9167 0.3697 -1.1495 0.2633 -1.0893 0.2884 

Pre intervention 
off medication 
UPDRS scores 

1.6902 0.1051 1.4594 0.1586 0.8887 0.3838 

Finger tapping 
on dominant 
hand 

0.8135 0.4247 0.6358 0.5315 0.6302 0.5351 

Finger tapping 
on non-
dominant hand 

-1.4504 0.1611 -0.457 0.6521 -1.0759 0.2936 

Finger tapping 
on both hands 

-0.325 0.7483 0.1245 0.9021 -0.2344 0.8169 

R-CST-FA – Right corticospinal tract fractional anisotropy, L-CST-FA – left corticospinal tract fractional 

anisotropy, R-SMA-PUT-FA, Right supplementary motor area-putamen fractional anisotropy 

 

Supplementary table 3.4 Correlation analyses results  
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Tract and metrics R-THAL-MC-FA            L-THAL-MC-FA           R-UNF-FA 

 t p-value t p-value t p-value 

Finger sequence 
task - Reaction 
time 

0.5087 0.6162 -0.0388 0.9694 2.2022 0.03896 

Finger sequence 
task - Correct 
number of taps 

-0.7364 0.471 -1.4031 0.1776 0.3975 0.6956 

Duration since 
diagnosis (in 
months) 

-1.4269 0.1683 -1.5508 0.1359 1.9158 0.0691 

Pre intervention 
off medication 
UPDRS scores 

1.8738 0.07431 1.5235 0.1419 0.7046 0.4884 

Finger tapping on 
dominant hand 

-0.1591 0.8751 0.8458 0.4067 1.1152 0.2768 

Finger tapping on 
non-dominant 
hand 

-0.9068 0.3743 -1.1512 0.262 0.9712 0.342 

Finger tapping on 
both hands 

-0.6383 0.5298 -0.1448 0.8862 1.2986 0.2075 

R-THAL-MC-FA – Right thalamus-motor cortex fractional anisotropy, L-THAL-MC-FA – Left thalamus-

motor cortex fractional anisotropy, R-UNF-FA – Right uncinated fasciculus fractional anisotropy.  

TBSS analysis 

The FSL tool “TBSS” (Tract-based spatial statistics) (Jenkinson et al. 2012; Smith et al. 2006) 

was used to compare diffusion measures between PD patients and controls. Subjects' individual 

FA images were first registered to a common template. As PD is a neurodegenerative disease, 

some degree of atrophy is often present, which can result in enlarged ventricles. With normal 

ageing, there can also be atrophy and enlargement of the ventricles. Registration to a study-

specific image was chosen with the aim of more accurate alignment of the centre of tracts 

across subjects. Subjects' FA images were therefore registered to the FA image of the most 

“representative” subject, which is automatically detected by TBSS according to which image 

requires the least transformation to the FA images of all other subjects. After subjects' 

individual FA images were registered to this initial template, they were registered to MNI152 

space for convenience of display and reporting. The mean FA skeleton, a representation of the 

centre of the white matter tracts common to all subjects, was created and with a threshold FA 

> 0.2. Subjects' MNI152-registered FA images were projected onto the skeleton before 

statistics were performed on each skeleton voxel using permutations testing with the FSL tool 

“Randomise”.  

A design matrix was generated using the FSL tool “Glm”, in which images were categorised 

according to subject group (PD patient or control). The repeated measures element of the design 
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was specified using the “group” option in the Glm tool. Age and gender were added as 

covariates and were demeaned within options of the Randomise tool. 

This design matrix was used to analyse subjects' FA images using the FSL tool randomise, with 

500 permutations. The randomise option threshold-free cluster enhancement (TFCE) was 

applied (Smith and Nichols 2009). All statistic images were corrected for multiple 

comparisons, FWE (family-wise error) with threshold of p<0.05. Any regions on the skeleton 

showing significant clusters were localised using the “John Hopkins University ICBM-DTI-81 

White Matter Labels” and “John Hopkins University White Matter Tractography” atlases in 

FSL. 

TBSS results 

 

Supplementary Figure 3.1 shows FA values in PD>Controls. There was higher FA in the right corticospinal tract 

compared to healthy controls (p<0.05, FWE) and there was also higher FA in the right thalamus, right putamen 

and right cortex regions however this did not reach significance (p<0.07, FWE).   
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Supplementary Figure 3.2 shows TBSS results for FA values in Controls > PD, p<0.05 Family wise error 

corrected.  In controls, there was higher FA in the left and right Uncinate fasiculus, , left and right superior 

longitudinal fasiculus, left and right inferior occipital fasiculus, Forceps minor and major, and anterior thalamic 

radiation. 
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8.2 Chapter 4 Supplementary material 

 

Supplementary Figure 4.1 The left and right DRTT on axial and coronal views in T1 anatomical scan 

of representative subject. A shows the tracts passing though the dentate nucleus on left and right side, B 

shows the decussation of the tracts to the contralateral hemispheres, C shows the tracts passing through 

the thalamus and in this example passing on to the supplementary motor area and the primary motor 

cortex. D shows the two tracts in the coronal view. 
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Supplementary Figure 4.2 The reconstructed SPCT in an axial view of a representative subject, A 

shows the left SPCT with the alternative ROIs 1 and 2, B shows the left SPCT, C shows the right SPCT, 

and D shows both the right and the left SPCTs.  
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Probability maps  

Supplementary Figure 4.3 The probability maps in axial slices, showing the probability (in percent) of 

projections of the DRTT, SPCT, CST, ICP, SCP and MCP tracts in the PD group. The range is from 1-50, hence 

areas of the brain showing yellow have at least 50% of participants’ tracts passing through those voxels. 

 

Supplementary Figure 4.4 The probability maps in axial slices, showing the probability (in percent) of 

projections of the DRTT, SPCT, CST, ICP, SCP and MCP tracts in the MHC group. The range is from 1-50, 

hence areas of the brain showing yellow have at least 50% of participants’ tracts passing through those voxels. 

 



165 

 

Spatial overlap  

 

Supplementary Figure 4.5 DRTT (red) and SCP (white) overlap 

 

 

Supplementary Figure 4.6 DRTT (red) and ICP (white)  
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Supplementary Figure 4.7 DRTT (red) and MCP (green)  

 

Supplementary Figure 4.8 DRTT (red) and SPCT (white) 
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Supplementary Figure 4.9 SPCT (red) and MCP (white) overlap 
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Supplementary Table 4.1 Inter-rater reliability of reconstructions for individual fiber tracts  

Tract Group Min. 
Dice 
score 

Max. 
Dice 
score 

Dice score 
mean ± SD 

 Percent of ILs 
tract voxels in 
JMs tract 

 Percent of JMs 
tract voxels in 
ILs tract 

L DRTT YHC 50 62 58 ± 7 92 ± 14 42 ± 4 

 MHC 52 100 72 ± 22  93 ± 14 62 ± 28 

 PD 1 72 48 ± 41 58 ± 47 45 ± 40 

R DRTT YHC 27 96 50 ± 40 100 41 ± 44 

 MHC 58 100 79 ± 30 100 70 ± 42 

 PD 64 86 75 ± 16 100 62 ± 21 

L SPCT YHC 90 90 90 100 82 

 MHC 77 79 78 ± 1 84 ± 17 77 ± 20 

 PD 30 91 58 ± 24 84 ± 30 56 ± 29  

R SPCT YHC 50 100 83 ± 22 96 ± 8 78 ± 32 

 MHC 68 72 70 ± 3 89 ± 2 58 ± 4 

 PD 30 100 65 ± 49 100 59 ± 58 

L CST YHC 18 66 44 ± 20 69 ± 21 36 ± 18 

 MHC 13 95 70 ± 34 74 ± 30 68 ± 35 

 PD 37 95 76 ± 25 75 ± 30 89 ± 18 

R CST YHC 4 95 54 ± 39 62 ± 40 50 ± 38 

 MHC 40 84 63 ± 16 72 ± 17 63 ± 25 

 PD 86 94 89 ± 3 92 ± 8 88 ± 9 

L ICP YHC 28 72 51 ± 18 82 ± 21 38 ± 17 

 MHC 69 95 80 ± 10 74 ± 16 88 ± 3 

 PD 19 56 42 ± 18 48 ± 28 40 ± 19 

R ICP YHC 46 70 56 ± 10 89 ± 9 42 ± 11 

 MHC 55 78 73 ± 12 76 ± 15 71 ± 13 

 PD 44 86 70 ± 17 76 ± 11 69 ± 24 

L SCP YHC 47 70 59 ± 11 76 ± 14 50 ± 13 

 MHC 31 82 65 ± 24 78 ± 6 62 ± 32 

 PD 65 79 73 ±  5 81 ±  13 70 ±  16 

R SCP YHC 52 75 64 ± 11 81 ± 10 55 ± 14 

 MHC 43 69 54 ± 18 80 ± 14 45 ± 23 

 PD 62 76 70 ± 7 77 ± 23 68 ± 11 

MCP YHC 85 97 90 ± 4 89 ± 7 91 ± 8 

 MHC 88 99 85 ± 5 99 ± 1 92 ± 8 

 PD 89 98 95 ± 4 98 ± 2 93 ± 8 

YHC - Young Healthy Controls, PD – Parkinson’s disease, MHC – Matched Healthy Controls, SD - Standard 

deviation, L - Left, R - Right, DRTT – Dentato-Rubro-Thalamic Tract, SPCT – Subthalamo-Ponto-Cerebellar 

Tract, CST – Corticospinal tract, ICP – Inferior Cerebellar Peduncle, SCP – Superior Cerebellar Peduncle, MCP 

- Middle Cerebellar Peduncle 
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Supplementary Table 4.2 Spatial tractography measures  

Tract Group Number of 
streamlines 
(Mean ± SD) 

Number of points 
(from all tracts) 
(Mean ± SD) 

Mean tract 
length (in mm) 
(Mean ± SD) 

Approximate tract 
volume (in mm^3) 
(Mean ± SD) 

L DRTT YHC 13.38 ± 9.85 3245 ± 2473.25 119.60 ± 19.18 862.89 ± 567.37  
PD 21.29 ± 17.18 5088.88 ± 4020.24 122.98 ± 23.73 1107.89 ± 681.18  
MHC 17.28 ± 17.89 4386.5 ± 4641.52 125.89 ± 18.89 1005.06 ± 692.56 

R DRTT YHC 21.27 ± 20.45 4967.73 ± 5563.26 107.22 ± 23.63 1091.12 ± 888.57  
PD 18.63 ± 16.99 3906.75 ± 3370.91 115.18 ± 26.46 996.62 ± 688.91  
MHC 11.07 ±  10.59 2718.14 ± 2716.34 122.44 ± 19.52 708 ± 545.68 

L SPCT YHC 17.09 ± 20.45 4310.46 ± 5138.32 139.75 ± 33.27 1037.53 ± 856.37  
PD 21.84 ± 18.40 6473.68 ± 5916.88  142.23 ±  20.83 1409.86 ± 983.63  
MHC 30.36 ± 28.29 8863.36 ± 8710.77 144.55 ± 17.59 1859.95 ± 1257.85 

R SPCT YHC 22.31 ± 24.19 6304.31 ± 6914.50 148.13 ± 31.74 1411.99 ± 1148.62  
PD 33.37 ± 36.28 10566.74 ± 12412.98 149.84 ±  27.72 1893.36 ±  1458.36  
MHC 29.83 ± 31.69 9236.91 ± 9887.11 148.45 ± 20.15 1798.74 ± 1378.39 

YHC - Young Healthy Controls, PD – Parkinson’s disease, MHC – Matched Healthy Controls, SD - Standard 

deviation, L - Left, R - Right, DRTT – Dentato-Rubro-Thalamic Tract, SPCT – Subthalamo-Ponto-Cerebellar 

Tract 

 

Supplementary Table 4.3 Inter-rater reliability test for extracted FA from the full DRTT and SPCT 

PD FA values Rater 1 
(JPM) 

Rater 2 
(IL) 

MHC FA values Rater 1 
(JPM) 

Rater 2 
(IL) 

L DRTT   L DRTT   
 

0.46701 0.48657 
 

0.4628 0.46276  
0.50817 0.51433 

 
0.425 0.42318  

0.50261 0.54599 
 

0.50532 0.50532 

R DRTT   
 

0.48335 0.48897  
0.47127 0.48777 R DRTT   

 
0.47694 0.46683 

 
0.46072 0.4628  

0.49164 0.50797 
 

0.43552 0.45284 

L SPCT   L SPCT   
 

0.52505 0.48587 
 

0.46237 0.45837  
0.52096 0.52219 

 
0.5047 0.51392  

0.50294 0.50508 
 

0.49435 0.48482  
0.47266 0.47492 R SPCT   

 
0.51444 0.48728 

 
0.49614 0.5191 

R SPCT   
 

0.49458 0.50101  
0.48003 0.50411 

 
0.49741 0.49261  

0.47408 0.47408 
   

      

ICC  0.786 ICC 0.969 

p-value p = 0.00487 p-value p = 3.32e-07 
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Supplementary Table 4.3 shows the IRR for the full DRTTs and the SPCTs and to check if 

variation in the FA values were due to inclusion of the cortical connections of these tracts, the 

tracts were chopped to include only the portion of the DRTT between the dentate nucleus and 

the thalamus and the portion of the SPCT from the sub-thalamic nucleus to the cerebellum. 

And the IRR extracted values from the chopped tracts are shown in Supplementary Table 4.4. 

 

Supplementary Table 4.4 Inter-rater reliability for the extracted FA from the chopped DRTT and 

SPCT 

PD FA values Rater 1 
(JPM) 

Rater 2 (IL) MHC FA values Rater 1 
(JPM) 

Rater 2 
(IL) 

L DRTT   L DRTT   
 

0.49178 0.49629 
 

0.51106 0.48851  
0.59715 0.5865 

 
0.40573 0.40192  

0.5561 0.57004 
 

0.50816 0.51649 

R DRTT   

 
0.54704 0.55294  

0.53295 0.51123 R DRTT   
 

0.47694 0.45537 
 

0.48622 0.48988  
0.49164 0.53783 

 
0.4873 0.4859 

L SPCT   L SPCT   
 

0.42577 0.41867 
 

0.52649 0.45062  
0.48934 0.4992 

 
0.48441 0.48093  

0.46495 0.48166 
 

0.48624 0.48636  
0.45142 0.42771 R SPCT   

 
0.51444 0.51069 

 
0.46921 0.47054 

R SPCT   

 
0.46355 0.46963  

0.48003 0.4919 
 

0.50987 0.47652  
0.46635 0.46677 

 
  

 

  
 

  

ICC  0.96 ICC 0.861 

p-value  p = 5.58e-07 p-value p = 0.000973 
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8.3 Chapter 5 supplementary material 

Macrostructural differences  

Additionally, previous studies have found that the MCP and the SCP in addition to the 

basal ganglia contributed to the differentiating PD from multiple system atrophy (MSA-

P) and progressive supranuclear palsy (PSP) (Nair et al. 2013; Nicoletti et al. 2008; 

Nicoletti et al. 2006; Quattrone et al. 2008; Nicoletti et al. 2013) while another recent 

study found that the disease duration correlated negatively with MCP width in PD 

without tremor onset (Sako et al. 2015) suggesting progressive degeneration of 

cerebellar pathways. As these previous studies have found differences in the 

macrostructure of the main cerebellar tracts (eg: MCP width) in PD, the average tract 

volume which denotes the space occupied by the tract, calculated as the number of 

voxels occupied by the reconstructed streamlines was also derived from the main 

cerebellar tracts. To assess the macrostructural differences, the tract volumes of the 

MCP, ICP and SCP between PD and MHCs were also compared using two-sample t-

tests.  

Results  

I found volume differences with higher volumes in the PD group for the MCP (mean ± 

standard deviation PD , MHC (12323.65 ± 4112.48, 9009.08  ± 2115.72) t = 3.5259, df 

= 34.065, p-value = 0.001228), left ICP ((1918.65 ± 569.03,1291.28 ± 639.25) t = 

3.632, df = 46.741, p-value = 0.0006965) and the right ICP ((1792.57 ± 710.93, 1187.2 

± 485.63) t = 3.4667, df = 40.444, p-value = 0.001263) but not for the left and right 

SCP (p=0.21 and p=0.049, respectively) (Supplementary Table 5.1). 

Supplementary Table 5.1 Macrostructural differences between the PD and MHC groups 

Tract Group Number of 
streamlines 

Mean tract length 
(in mm) 

Approximate tract 
volume (in mm^3) 

MCP PD 610.54 ± 273.35 125.21 ± 11.62 12323.65 ± 4112.48  
MHC 397.84 ±  118.72 121.57  ± 7.44 9009.08  ± 2115.72 

L ICP PD 126.04 ± 46.26 45.85 ± 7.85 1918.65 ± 569.03  
MHC 83.4 ± 46.08 40.17 ± 9.59 1291.28 ± 639.25 

R ICP PD 121.13  ± 47.94 45.1 ± 8.84 1792.57 ± 710.93  
MHC 79.92 ± 36.78 39.65 ± 7.99 1187.2 ± 485.63 

L SCP PD 170.67 ± 81.86 56.68 ± 9.20 3112.5 ± 1058.16  
MHC 196.4 ± 52.12 54.79 ± 6.98 3458.36 ± 866.23 

R SCP PD 136.34 ± 58.04 55.84 ± 6.06 2795.95 ± 871.76  
MHC 164.16 ± 58.44 52.46 ± 6.60 3287.84 ± 830.84 
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L DRTT PD 17.53 ± 12.14 46.41  ± 8.92 234.35  ± 117.75 

 MHC 15.22 ± 17.70 57.11 ± 7.76 282.56 ± 168.47 

R DRTT PD 15.25 ± 13.27 50.2 ± 14 254.5 ± 168.67 

 MHC 8.43 ± 8.98 57.16 ± 6.17 194.71 ± 110.91 

L SPCT PD 23.2 ± 19.72 75.4 ± 17.93 591.6 ± 399.35 

 MHC 29.45 ± 27.40 75.86 ± 12.37 763.27 ± 473.16 

R SPCT PD 38.67 ± 45.91 80.75 ± 16.89 832.94 ± 609.21 

 MHC 28.22 ± 29.79 75.17 ± 13.36 643 ± 439.80 

L DRTT PD 17.53 ± 12.14 46.41  ± 8.92 234.35  ± 117.75 

 MHC 15.22 ± 17.70 57.11 ± 7.76 282.56 ± 168.47 

R- Right, L- Left, MCP – Middle cerebellar peduncle, SCP – Superior cerebellar peduncle, ICP – Inferior 

cerebellar peduncle, DRTT – Dentato-rubro-thalamic tract, SPCT – Subthalamo-ponto-cerebellar tract 

Discussion 

Increased volume of the MCPs and the ICPs 

The results demonstrated larger tract volumes in the middle cerebellar peduncle and 

both the inferior peduncles of the PD patients compared to healthy controls. Even 

though there was increased volume in the MCP, left and right ICPs, there was no 

correlation between the significant increased FA in the right ICPs with the ICP volumes 

in the PD group (t=-1.72,d.f=22,p-value=0.1002). There is inconsistency regarding the 

direction of cerebellar changes in PD across imaging studies (Borghammer et al. 2009) 

(Linder et al. 2009; Messina et al. 2011). Some studies have found differences in the 

MCP width and correlation with disease duration (Sako et al. 2015), while others 

showed that width of the MCP and SCP to be useful for differential diagnosis of PD 

from multiple system atrophy and Progressive supranuclear palsy (Nair et al. 2013; 

Nicoletti et al. 2013; Quattrone et al. 2008), however here there were no significant 

correlations as these previous studies. Although the tract volume is a tract specific 

average measure of the space occupied by a tract, its relationship to axonal number, 

axonal diameter, and density has yet to be established (Beaulieu 2002).  

A study that investigated perinatal brain injury (PBI) found significantly reduced 

volume and HMOA of the dorsal cingulum PBI group compared with controls, but 

reported increased HMOA in the ventral component of the superior longitudinal 

fasiculus (SLF III) and suggested that this increase could be due to the possibility of 

lateral neuroanatomical compensation for medial structural deficits in the PBI group 

(Froudist-Walsh et al. 2015). This in context with the current results could also suggest 

similar lateralised neuroanatomical compensation as there was statistically significant 
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increase in the PD group’s HMOA metric in the right SCP but not in the left SCP or 

both the ICPs or even the MCP which connects the cerebellar hemispheres.   

HMOA and FA represent a markers of tissue microstructure (Dell’Acqua et al. 2013) 

while the tract volume, representing the space occupied by the tract (macrostructure) 

(Beaulieu 2002). One study found that the HMOA and the tract volume differentially 

contributed to the anatomical lateralization of frontoparietal attentional networks and 

individual differences in attention (Chechlacz et al. 2015). Their findings agree with 

previous studies showing that the asymmetry of white matter pathways varies across 

different diffusion MRI derived measures (De Santis et al. 2014). The current results 

also show asymmetry and right lateralised significant effects in HMOA and FA but not 

the tract volumes. Additional correlations between the significant HMOA metrics and 

the FA values in the PD group with the corresponding tract volumes were also 

performed as previous studies reported tract volume correlations with age especially in 

the SCP and ICP (Nair et al. 2013; Nicoletti et al. 2008), but there were  no significant 

differences. This is in line with the attention study (Chechlacz et al. 2015) which also 

did not get any correlations and attributed this to large number of right-handed 

participants, which is also the case for the current PD cohort (Table 3.1). 

Affected vs Unaffected hemisphere analysis 

Supplementary Table 5.2 Affected vs Unaffected hemisphere analysis  

PD Tracts FA in affected 

hemisphere 

 (mean ± sd) 

FA in unaffected 

hemisphere 

 (mean ± sd) 

t-value df p-value 

SCP 0.459 ± 0.032 

 

0.452 ± 0.024 

 

0.8496 21 0.4051 

ICP 0.449 ± 0.027 

 

0.444 ± 0.025 

 

0.7284 21 0.4744 

 

Correlation analysis results  

Supplementary table 5.3 Correlation analysis results  

Tract and metrics R-SCP-FA R-ICP-FA R-SCP-HMOA 

 
t p-value t p-value t p-value 

Finger sequence task 
- Reaction time 

2.1123 0.04681 1.8926 0.07228 1.8137 0.08404 
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Finger sequence task 
- Correct number of 
taps 

0.5462 0.5916 -0.1704 0.8666 0.4602 0.6509 

Duration since 
diagnosis (in months) 

-0.1083 0.9148 0.2438 0.8098 0.0587 0.9537 

Pre intervention off 
medication UPDRS 
scores 

-0.48 0.636 0.3944 0.6971 -0.4893 0.6295 

Finger tapping on 
dominant hand 

1.1073 0.2801 0.2378 0.8143 0.8227 0.4195 

Finger tapping on 
non-dominant hand 

1.4516 0.1607 1.4656 0.1569 1.5598 0.1331 

Finger tapping on 
both hands 

1.592 0.1257 1.0085 0.3242 1.4613 0.1581 

R-SCP-FA – Right superior cerebellar peduncle fractional anisotropy, R-ICP-FA – Right inferior cerebellar 

peduncle fractional anisotropy, R-SCP-HMOA – Right superior cerebellar peduncle hindrance 

modulated orientational anisotropy 

Supplementary Table 5.4 Results from the MANCOVAs for the BG-cerebellar tracts 

Tract   
MHC (n=25) vs PD (n=24) 

F statistic 
Pillai's 
trace 

p-value 

 L DRTT         

  Group F(5,27)=2.58 0.32 0.04935 

  Age F(5,27)=0.61 0.10 0.68922 

  Gender F(5,27)=0.07 0.01 0.99532 

R DRTT       

  Group F(5,27)=3.20 0.42 0.025222 

  Age F(5,27)=4.94 0.52 0.003505 

  Gender F(5,27)=0.96 0.18 0.458007 

L SPCT       

  Group F(5,27)=1.51 0.18 0.2110 

  Age F(5,27)=1.06 0.13 0.3997 

  Gender F(5,27)=0.88 0.11 0.5013 

R SPCT       

  Group F(5,27)=0.77 0.10 0.5743 

  Age F(5,27)=1.32 0.16 0.2774 

  Gender F(5,27)=1.48 0.18 0.2209 

MHC – Matched healthy controls, PD - Parkinson’s disease patients, L – Left, R- Right, DRTT – Dentato-

rubro-thalamic tract, SPCT – Subthalamo-ponto-cerebellar tract 

 


