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SUMMARY

Neutrophils are characterised by undergoing rapid cell shape change, especially during cell 

spreading and phagocytosis. In both situations, the cell changes from a spherical to a non-

spherical configuration. This must necessarily require additional cell surface membrane as a 

sphere is the minimum surface area to enclose a given volume. Although it has been 

proposed that this additional membrane may come from cell surface structures called 

wrinkles or micro-ridges, it has not been possible to directly test this hypothesis. In this 

thesis, a methodology was established that would permit such a test.  By incorporating 

freely diffusible fluorescent molecules into the plasma membrane of neutrophils, a 

methodology was devised that allows the diffusion time into a subdomain within a 

photobleached area to be monitored. As the diffusion time depended on the diffusion 

pathlength, this gave a measure of the surface topography. In osmotically swollen cells, in 

the neutrophil tail and the phagocytic cup, it was found that the membrane was smooth. 

However, in the cell body, there was a significant delay in diffusion, consistent with the 

presence of surface wrinkles.  These wrinkles were reduced by osmotic swelling, and as cells 

spread onto a substrate. The wrinkledness could be increased by osmotic shrinking. This was 

the first time that changes in cell surface topography could be monitored. In order to 

establish whether changes in cell surface topography were important for rapid cell shape 

change, cells were suddenly hyper-wrinkled (osmotically) during phagocytosis or chemotaxis. 

In both cases this procedure immediately arrested the cell behaviour. On restoration of 

normal surface topography (by return osmolality to normal), cells then continued to undergo 

shape change. In the hyper-wrinkled state an abnormal shape change could be induced by 

uncaging cytosolic IP3 and so force a Ca2+ signal. The data presented in this thesis therefore 

confirms that surface wrinkling changes during neutrophil shape change, and that this was a 

key factor in neutrophil shape change.
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Chapter 1 

Introduction 
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1.  The Immune system 

1.1 Understanding the immune system  

         The immune system is a complex structure that defends the body against diseases. It is 

a collection of cells, tissues and molecules which have evolved to prevent infection and to 

eradicate established infections. The reaction of these cells and molecules are mediated by 

recognizing and detecting a wide variety of pathogenic infectious agents which stimulates an 

immune response. Pathogens such as viruses, fungi, or bacteria are usually recognised by 

proteins on their surfaces. The immune system distinguishes them from proteins on the cells 

of the body and reacts against them. This influences both health and diseases; the beneficial 

roles in health include preventing the growth of some tumours, the clearance of dead cells 

and repairing damaged tissues. However, abnormal immune responses can cause severe 

diseases known as inflammatory diseases (Abul et al., 2014).  

        The organs of the immune system include the lymphatic system which is responsible for 

the growth, development and distribution of lymphocytes. The lymphoid organs are 

classified as primary or secondary. The primary lymphoid organs, also called central 

lymphoid organs, include the bone marrow and the thymus. Immune cells develop in these 

sites in the absence of antigen. The secondary lymphoid organs, also  known as peripheral 

lymphoid organs, include spleen, lymph vessels, lymph nodes, skin and liver in which the 

maturation of immune cells occurs which is driven by antigen. The cells of the immune 

system (Table 1.1) protect the body from infection via the immune response, or by the 

innate immune system (Klaus, 2009). Neutrophils form a key component of innate immunity. 
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1.2 Innate immune system  

        Innate immunity provides the primary protection against infection as it is able to 

respond quickly to limit or eliminate infection within a short period of time. The innate 

immune system is also called natural immunity or native immunity as it does not require 

prior exposure to the infecting agent and is the immunity with which the body is born. It is 

characterised by physical, biological and chemical barriers in addition to the specific immune 

cells and soluble molecules (Klaus, 2009). It is thus considered to be the first line of defence 

against infection (Abul et al., 2014). The main mechanisms for innate immunity are passive 

barrier defences and nonspecific reactive cellular responses. 

       The passive barriers defences are able to restrict unwanted materials from entering and 

damaging the tissues in our bodies.  In fact, they are identified as layers that are found in the 

external surfaces that protect the deeper tissues of the body. However, once the pathogens 

have passed the layers, phagocytes are responsible for killing the invading microbes. The 

innate immune cellular response is mounted against infections by bacteria or fungi, although 

not against any particular strains. Innate immunity is mediated mainly by phagocytic cells 

that are ready to recognize these pathogens at the site of infection and become quickly 

stimulated to destroy them (Gregory, 2009). 
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Table 1.1 The mechanisms of the different cells of the immune system. 

Cell type Primary Role

Leukocytes

-Neutrophils

-Basophils

-Eosinophils

-Monocytes

-Macrophages

Phagocytosis and microbial killing

Release histamine and other chemicals involved in inflammation

Destroy multicellular parasites

Move to sight of infection and differentiate into macrophages:
Phagocytosis and antigen presentation

Lymphocytes

-B cells

-T cells

-Cytotoxic T cells

-Helper T cells

-Supressor T cells

-NK cells 

-Plasma cells

-Mast cells

Make antibodies against antigens and develop into memory cells

Bind antigens on target cells/pathogens and destroy them

Release cytokines (to attract macrophages)

Suppress immune responses

Kill virus infected and tumour cells

Produce large quantities of antibodies

Degranulate upon activation and release inflammatory mediators
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1.3 Neutrophils  

 Neutrophils were discovered in 1908 by Elie Metchnikoff (Metchnikoff, 1905) and are 

small leucocytes (fig 1.1), having an average diameter of around 10µm (micrometres) (Segal, 

1996). They can be simply isolated from other white blood cells due to their high density of 

1.08-1.09g/ml. The main distinguishing feature of neutrophils is their distinctive 

morphology: the cytosol of the cell has a large multilobed nucleus, with 3 to 5 lobes (Schmid-

Schonbein et al., 1980) which occupies more than 20% of the cell size and the rest of the 

cytosol contains granules. There are three major types of neutrophil granule; primary 

granules which are also called azurophilic granules; specific or small storage granules; and 

gelatinase-containing granules. Each population of granules differ in their contents and size. 

These granules store enzymes, receptors, pre-synthesised inflammatory mediators and other 

proteins. Neutrophils are not very metabolically active cells and contain only a limited 

number of mitochondria that account for only 0.2% of the total amount of the cell volume. 

Additionally, neutrophils have few organelles such as endoplasmic reticulum (ER) or Golgi, 

which accounts for less than 1% of the cell volume. 

           Neutrophils are a subtype of leukocytes (Borregaard and Cowland, 1997) which 

represents the most numerous white blood cells (Ellett et al., 2011), which constitute 

approximately 40–80% of the white blood cell population (Schmid-Schonbein et al., 1980), 

approximately 7x109 neutrophils per litre of blood (Lewis et al., 2006). Homeostasis of this 

cell number is maintained through the continuous release of large numbers of the cells from 

the bone marrow and extravasation from the blood. The non-activated human neutrophils in 
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the circulation have a short lifespan of 3-5 days (Roth, 1993). After migration into the tissue, 

the activated neutrophils survive for only 1-2 days (Schmid-Schonbein et al., 1980). 

           At sites of infection, neutrophils are the first leukocytes to enter an area of 

inflammation. This is the result of signalling by microbes that have accessed the tissues and 

also from resident macrophages that activate local endothelial cells lining blood vessels and 

signal circulating neutrophils to extravasate at that location. Neutrophils are attracted to 

sites of infection by chemoattractants, such as IL-8, C3a, C5a and leukotriene B4, for which 

neutrophils have receptors, which both activate chemokinesis and guides the cells by 

chemotaxis (Schmid-Schonbein et al., 1980). Once neutrophils have migrated through the 

extravascular space to the site of inflammation or infection, neutrophils engage microbes or 

cell debris and internalise them by phagocytosis (Kobayashi et al., 2005). Within the formed 

phagosome, lytic enzymes are released from their granules and a membrane bound oxidase 

activated to produce reactive oxygen species (ROS), (Segal and Jones, 1979; Kaplan, 2013), 

both of which cause killing of the internalised material.  
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Figure 1.1 Blood cells. Blood cells are divided into three groups; red blood cells (erythrocytes); 
platelets (thrombocytes) and white blood cells (leukocytes). Leukocytes (neutrophils, 
eosinophils and basophils) with many nuclear lobes are called polymorphonuclear leukocytes 
or granulocytes. This figure was adapted from The Hematologic and Lymphatic Systems 
(http://what-when-how.com/nursing/the-hematologic-and-lymphatic-systems-structure-
and-function-nursing-part-1/.)

https://what-when-how.com/nursing/the-hematologic-and-lymphatic-systems-structure-and-function-nursing-part-1
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1.3.1 Production of neutrophils

          Neutrophils are produced by the haematopoietic system which is responsible for both 

neutrophil proliferation and differentiation. Production begins in the early embryo to form 

blood that comprised of various cell types with 175 billion red cells, 70 billion granulocytes 

(neutrophils, eosinophils, basophils), macrophages and other white blood cells and 175 

billion platelets, that each have specialised functions (fig 1.1). The hematopoietic stem cells 

(HSCs) are capable of self-renewal and reside in the bone marrow (fig 1.2). However, they 

can also be isolated from the blood and but may not be active outside the bone marrow, 

except in umbilical cord vasculature where circulating HSCs spread from the venous system 

to the bone marrow (Spangrude, 1994). HSCs differentiate to a range of cell types. Many of 

the blood cells have a brief life and so must be continually produced each day; in humans it 

is estimated that at least one hundred billion new hematopoietic cells are produced daily. 

Thus, HSCs in the bone marrow are the only source for the production of all blood cell types, 

which then become committed to the central marrow cell lines of either erythroid, 

megakaryocytic, granulocytic, monocytic and lymphocytic lineages (Okuda et al., 1992). 

      Neutrophils derived from HSC in the bone marrow then undergo five stages of 

differentiation. It is crucial for life that the production of neutrophils is maintained, as they 

are in the circulation for between 4 and 10 hours only. The stages and differentiation 

processes which produce neutrophils is known as granulopoiesis. Studies by Chilvers et al in

(1990) have shown that an adequate balance between granulopoiesis, bone marrow storage 

and release, intravascular margination, clearance and release is essential for the 
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maintenance of neutrophil homeostasis. In a normal adult human, 1011 – 1012 new cells are 

created per day in order to maintain steady state levels in the peripheral circulation. 

However during infections, this increases to compensate for an increased extravasation of 

cells. The release of neutrophils from the bone marrow is regulated by granulocyte colony 

stimulating factor (G-CSF), which is essential for turning on neutrophil production. The large 

amount of neutrophils in the bone marrow can be separated to three pools. The stem cell 

pool which contains undifferentiated haematopoietic stem cells (HSCs); the mitotic pool 

which includes committed granulocytic progenitor cells; and the post-mitotic pool that are 

maturing neutrophils yet to be released and thus form a bone marrow reserve (Chilvers et 

al., 1990). 



10 

Figure 1.2 Light microscopy and scanning electron microscopy of guinea pig bone marrow. 
(A) Light microscopy of guinea pig bone marrow. (B) Scanning electron microscopy of guinea 
pig bone marrow [Taken from (Sara, 2010)].  
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1.3.2 Myelopoiesis 

           The combined production of monocytes and granulocytes is referred to as 

myelopoiesis. This is a regulated process in the bone marrow which begins with pluripotent 

stem cells which undergo mitotic division to generate two types of stem cells, myeloid or 

lymphoid stem cells (fig 1.3). The myeloid stem cell lineage is the source of neutrophil 

production as well as all other granulocytes, monocytes, platelets and erythrocytes. 

Neutrophils production begins with differentiation of myeloid stem cells, which form the 

neutrophil progenitor pool (NPP) (fig 1.4). Essentially, the cells form a CFU-GEMM (colony 

forming unit – granulocyte, erythroid, monocyte and megakaryocyte) which differentiates 

into the CFU-GM (colony forming unit– granulocyte, macrophage) and into the CFU-G 

(colony forming unit– granulocyte) (Okuda et al., 1992).  

           The differentiation of CFU-G cells results in the granulocyte cell type, but individual 

cells at this stage are not completely committed to a particular granulocyte cell type. 

Consequently, the mitotic divisions in this step form myeloblastic promyelocytes that are 

able to divide once or twice to form the neutrophilic myelocytes that, in contrast to the 

other cells, are capable of up to four further divisions. The formation of these cells is the first 

step in the commitment to neutrophil differentiation. Within a period of one week, these 

cells add to the proliferative pool (NPP) and finally lead to mature neutrophils within the 

neutrophil storage pool (NSP). Mature neutrophils can be distinguished from other granular 

cells by their three or more segmented nucleus. After neutrophil production, they are no 

longer capable of cell division and their synthetic machinery becomes practically inactivated 
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(Okuda et al., 1992). Lastly, mature neutrophils in the bone marrow are more deformable 

and migrate through the endothelial holes in the bone marrow and into the blood stream.  



13 

 Figure 1.3 Production of blood cells from the pluripotent stem cell. This figure was adapted 
from National Cancer Institute (www.cancer.gov/about-cancer). 
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Figure 1.4 Neutrophil production. Figure produced using Servier Medical Art. 
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1.3.3 Granule formation during cell differentiation  

                During myeloid cell differentiation, neutrophil granules are developed and formed 

(selected granule content shown in Table 1.5). Primary granule maturation begins with the 

division of the promyelocyte. These granules, also known as azurophilic granules due to their 

staining by azure A, have a large size and have functions similar to the lysosomes of other 

cells. They fuse with phagocytic vacuoles to form phago-lysosmes. Primary granules are 

loaded with a wide range of anti-microbial defensins and contain myeloperoxidase, an 

enzyme that catalyses the formation of hypochlorous acid within the phagosome. Their 

maturation is fully completed at the myelocyte stage. Additionally, peroxidase negative 

granules develop which are separated into secondary and tertiary granules. Specific 

secondary granules are formed in the myelocytes and metamyelocytes steps. These are 

secretory vesicles that are rich in lactoferrin. However, during the band stage, non-

lactoferrin granules are also formed and identified as gelatinase granules. They use the 

degranulation process to release several enzymes and antimicrobial peptides. Later, another 

population of secretory vesicles appear, consisting of a fourth category of granules in the last 

stage of neutrophil development at the band nuclear neutrophil segmentation (Borregaard 

et al., 1995; Borregaard and Cowland, 1997). 
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Table 1.5 Content of neutrophils granules (adapted from Borregaard et al., 1996). 

Granules Membrane content Matrix content
Azurophil(primary) 
granules

CD63, CD68 Acid β glycerophosphatase,
acid mucopolysaccharide, α1-

antitrypsin, αmannosidase, 
azurocidin/ CAP37, 
heparin binding protein, 
bactericidal permeability, 
increasing protein, βglycerophos-
phatase,β-glucuronidase, 
cathepsins, defensins, elastase, 
lysozyme, myeloperoxidase, 
N-Acetly- β- glucosaminidase, 
proteinase-3, sialidase.

Specific(secondary) 
granules

CD15 antigens, CD66, CD67,
cytochrome-b558, FMLP-R, 

fibronectin-R, G-protein α -subunit, 
Laminin-R, Mac-1 (CD11b/CD18),
NB1 antigen, 19kD-protein, 155kD-

protein,
Rap1, Rap2, thrombospondin-R,
TNF-Receptor, Vitronectin-R 

β2-microglobulin, collagenase, 
gelatinase,histaminases, 
heparanase, lactoferrin, lysozyme, 
NGAL, plasminogen activator, 
sialidase, 
vitamin B12-binding protein.

Gelatinase (tertiary)
granules

Cytochrome b558, Diacylglyverol, 
deacylating enzyme, fMLP-R, Mac-
1(CD11b/CD18

Actytranferase, β2-microglobulin, 
gelatinase, lysozyme

Secretory vesicles Alkaline phosphatase, CR1 (CD£%), 
cytochrome b 558, FMLP-R, MAC1 
(CD11b/CD18),
uroplasmingoen activator-R, CD10, 

CD13, CC45, Fcγ RIII(CD16),
C1q-receptor, DAF

Plasma proteins including
tetranectin
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1.3.4 Neutrophil receptors 

           During differentiation, neutrophils acquire a number of receptors on their surface. 

These include G coupled receptors (Table 1.6 part 1), cytokine receptors (Table 1.6 part 2), 

“opsonin” receptors (Table 1.6 part 3), “adhesion” receptors ((Table 1.6 part 4) and pattern 

recognition/innate immunity receptors (Table 1.6 part 5). The following table (Table 1.6) lists 

these receptors and their agonists.  
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Table 1.6 (part1). G-coupled receptors on neutrophils and their agonists   

RECEPTOR AGONISTS AGONISTS

Formyl-peptide receptors 
1. FPR1 (FPR) 
2. FPR2 (FPRL1) (lipoxin A4 receptor)
3. FPR3 (FPRL2)

Physiological
Bacterial 
Formyl-
peptides

Experimental
1.  f-met-leu-phe etc : N-

terminal peptide Annexin I
(Ac 9-25)
2. Peptides WKYMVM; 
MMK1
3. Peptide WKYMVM

Classical chemoattractant receptors 
1. BLT1 (LTB4-receptor) 
2. BLT2 (LTB4-receptor) 
3. PAFR 
4. C5aR

LTB4
LTB4
PAF
C5a

2. U75302 (partial agonist)
3. PAF(C-16): Edelfosine

Chemokine receptors 
• CXCR1 (human) 
• CXCR2 
• CCR1 
• CCR2

Interleukin 8
IL8RA (alpha)
IL8RB (beta)
CCL 3; 4 ; 5 ;7 ;8 ;13 ;14 ;15 ;16 ;23
CCL 2
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Table 1.6 (part 2) Cytokine receptors and their agonists   

RECEPTOR AGONIST

Type I cytokine receptors 
• IL-4R
• IL-6R 
• IL-12R 
• IL-15R 
• G-CSFR 
• GM-CSFR 

• IL-4 
• IL-6 
• IL-12 
• IL-15 
• G-CSF 
• GM-CSF 

Type II cytokine receptors 
• IFNAR (IFNα/β-receptor) 
• IFNGR 
• IL-10R IL-1R family 
• IL-1RI
• IL1RII (decoy) 
• IL-18R TNFR family 
• TNFR1 (p55) 
• TNFR2 (p75) 
• Fas 
• LTβR 
• TRAIL-R2
• TRAIL-R3

• IFNA (IFNα/β) 
• IFNG 
• IL-10 : IL-1 
• IL-1 
• IL1 
• IL-18 : TNF 
• TNF
• TNF) 
• CD95L (Fas ligand)
• LTβ 
•  TRAIL
• TRAIL
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Table 1.6 (part 3) “Opsonin” Receptors on Neutrophils and their binding partners or 
agonists 

RECEPTOR AGONIST/BINDING 
PARTNER

Complement Receptors
CR3 
(CD18/CD11b: beta2 
integrin; LFA1 etc) 

C3bi (iC3b)

Fcγ-receptors 
• FcγRI • FcγRIIA (human) 
• FcγRIIIB (human) 
• FcαRI (human) Fcε-
receptors • FcεRI • FcεRII

Antibody (Fc)
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Table 1.6 (part 4) “Adhesion” receptors and their binding partners or agonists 

RECEPTOR AGONIST/BINDING PARTNER

Selectins 

• L-selectin 

• P-selectin glycoprotein 
ligand-1 (PSGL-1) 

 On endothelial cells: CD34 GlyCAM-1, MadCAM-1, (PSGL-1, 
low affinity). 

•  P-selectin

Integrins
• Mac-1 

(αMβ2; CR3; CD18/CD11b: 
beta2 integrin etc) 

• LFA-1 (αLβ2) 

•ICAM-1 (on endothelial cells ): (C3bi (iC3b) opsonised 
microbes)

•ICAM-1 (on endothelial cells ):

https://en.wikipedia.org/wiki/PSGL-1
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Table 1.6 (part 5) Pattern Recognition/Innate Immunity Receptors 

RECEPTOR AGONIST/BINDING PARTNER

Toll-like receptors 
1• TLR1 
2• TLR2 
3• TLR4 

4• TLR5 
5• TLR6
6• TLR8 
7• TLR9 

1• Bacterial lipoprotein
2•  zymosan (Beta-glucan): Bacterial peptidoglycans: Others 
3• lipopolysaccharide (Gram-negative bacteria): fibrinogen: heparan 
sulfate: hyaluronic acid: others 
4• Bacterial flagellin
5• Mycoplasma lipopeptides
6• Viral RNA (?)
7• Viral DNA (?)

C-type lectins 
• Dectin-1 
• Mincle  

β-1,3-linked and β-1,6-linked glucans from fungi
glycolipids

Others
• NOD2 Bacterial peptidoglycans

https://en.wikipedia.org/wiki/Zymosan
https://en.wikipedia.org/wiki/Beta-glucan
https://en.wikipedia.org/wiki/Lipopolysaccharide
https://en.wikipedia.org/wiki/Gram-negative_bacteria
https://en.wikipedia.org/wiki/Fibrinogen
https://en.wikipedia.org/wiki/Heparan_sulfate
https://en.wikipedia.org/wiki/Heparan_sulfate
https://en.wikipedia.org/wiki/Hyaluronic_acid
https://en.wikipedia.org/w/index.php?title=Bacterial_flagellin&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mycoplasma
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1.4 The neutrophil programme 

         The most important function of neutrophils is the effective killing of infecting microbes. 

In order to achieve this, neutrophils must first adhere to the endothelium of blood vessels 

and then leave the blood vessels and migrate to the site of invading microbes. Once the 

neutrophils have achieved all of these steps, they must recognise, phagocytose and kill the 

microbes. This can be thought of as “the neutrophil programme” which each individual cell 

must undertake successfully to provide an effective anti-microbial defence (fig 1.5). 
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Figure 1.5 The neutrophil programme. Activation of endothelial cells by inflammatory 
mediators induces the expression of cell surface ICAM1, which binds to integrins on the 
surface of neutrophils leading to neutrophil extravasation, chemotaxis and then phagocytosis 
and killing of the microbes (Zarbock and Ley, 2008). 
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1.4.1 Neutrophil extravasation (diapedesis) 

Extravasation means leaving the bloodstream (“vascular” referring to cells in the blood 

and “extra” meaning outside the vascular system). Neutrophil extravasation includes the 

following steps: (i) tethering of neutrophils to endothelial cells lining the blood vessels, (ii) 

rolling of the tethered cells along the endothelial layer, (iii) firm adhesion of neutrophils to 

the endothelium; flattening of neutrophils and reorganisation of the cell morphology and 

finally (iv) transmigration across the endothelial layer (fig 1.6). These steps are triggered by 

specific molecular signals, chemoattractants and other inflammatory mediators released 

from invading microbes, damaged cells and the cells surrounding them which act to direct 

the cells to contact the pathogens. 

1.4.2 Neutrophil rolling (selectins)  

A free circulating neutrophil is captured to the surface of the blood vessel endothelium 

via selectins which contain lectin domains that bind to carbohydrates. The binding between 

neutrophils and endothelial cells is mediated by the expression of P-selectin adhesion 

molecules on the surface of endothelial cells, within minutes of their stimulation by the 

cytokine TNFα. After 90 minutes, E-selectin which is a second surface adhesion molecule, is 

also produced. These two selectins are important in directing neutrophils to the site of 

infections. Other molecules such as IL-1 and LPS component also stimulate E and P-selectin 

expression (Kolaczkowska and Kubes, 2013). A 1997 study by McEver has showed that the 

microvilli of neutrophils and other leukocytes is the major site for expression of P selectin 

glycoprotein ligand 1 (PSGL1), which is a strong binding partner to the P-selectin molecule on 
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the endothelial cells. Interaction leads to slowing of neutrophils and initiates their rolling 

along the surface vessel wall in the direction of blood flow. This binding permits the slowed 

neutrophils to interrogate molecules on the endothelium that leads to them stopping and 

ultimately moving into the tissues (Kolaczkowska and Kubes, 2013). 

        Circulating neutrophils express L-selectin, which either tethers an already rolling 

neutrophil or produces a signalling event which directs neutrophils to adhere to the 

endothelial cells. L-Selectin is a type 1 transmembrane glycoprotein which mediates the 

rolling and activation of neutrophils by its binding to sialylated ligands that are expressed on 

the surface of the endothelial cells (Zarbock and Ley, 2008). Cytoskeletal interactions with L-

selectin are essential for the formation of the tether and involve vinculin (Pavalko et al., 

1995) and the ERM proteins such as ezrin and moesin by binding of its cytoplasmic domain 

to α-actinin (Ivetic et al., 2002). Rolling in such conditions requires the formation of a weak 

adhesion that permits a rolling motion; brief bonds are formed and broken between 

selectins and their ligands and results in the activation of β2 integrin (Simon et al., 1995). 

1.4.3 Adhesion (integrins) 

       Integrins are heterodimers which represent the key metazoan receptors for cell 

adhesion that are also essential for the cell-cell contact and for the connections of cell-

extracellular matrix (ECM). Integrin receptors are heterodimers which consist of two 

different chains, α (alpha) and β (beta) subunit. β2 integrins are expressed only on immune 

cells such as neutrophils and monocytes. Contact between neutrophils and the endothelium 
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via selectins allows them to roll slowly along the endothelium, sensing signals on the 

endothelium which enhance the expression of integrins on neutrophils and activate them 

into a higher affinity state. High levels of integrins are expressed on neutrophils, including 

LFA1 (αLβ2; β2 integrin, CD11a complexed with CD18) and MAC1 (αMβ2; CD11b/CD18) 

which both bind the ICAM1 and ICAM2 molecules that are expressed on the surface of the 

endothelial cells (Zarbock and Ley, 2008). Adhesion of the cells is mediated through the 

binding of these β2 integrins to the ICAM1 (Lawrence and Springer, 1991). In addition, high 

affinity binding of LFA1 promotes neutrophil arrest on the endothelium (Ding et al., 1999). 

Resting neutrophils express Mac1 which are stored in their granules. Upon neutrophil 

activation, Mac1 is fused into the plasma membrane (Borregaard et al., 1994). After 

neutrophils adhere to the endothelium as a result of integrin activation, they spread and 

then extravasate into the nearby tissues (Dunne et al., 2002).  

1.4.4 Transmigration 

       Neutrophils have to seek the right place to leave the vasculature by transmigration 

through the endothelial cells into the surrounding tissue. They migrate through the 

endothelium which takes around 5 minutes and later penetrate the bottom of the 

membrane that may take up to 15 minutes (Kolaczkowska and Kubes, 2013). The 

penetration across the endothelial cell layer may occur by one of two different mechanisms; 

either between the endothelial cells (paracellular route) or through an endothelial cell itself 

(transcellular route) (fig 1.6).  
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Figure 1.6 Neutrophil extravasation. Neutrophil recruitment to the site of infection follows 
four steps: tethering, rolling (which is dependent on selectins), adhesion (with integrin 
interactions) and transmigration. There are two routs of transmigration, A) Paracellular 
transmigration between the endothelial cells or B) Transcellular transmigration, passing 
through an endothelial cell itself.  
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1.4.5 Paracellular transmigration 

         Paracellular transmigration is probably the most common way for neutrophils to travel 

through the endothelium (fig 1.6 A). This mechanism is used when neutrophils migrate 

though the junction between the endothelial cells of the blood vessel wall in order to not 

cause any disturbance to their integrity. This process is controlled by molecules which are 

expressed on the endothelial cells, such as platelet-endothelial cell adhesion molecule 1 

(PECAM1), also known as CD31 (Kolaczkowska and Kubes, 2013). It is a member of the 

immunoglobulin that is also expressed on leukocytes and platelets (Garrido-Urbani et al., 

2008). In vivo, this molecule has a role in the extravasation of neutrophils which can be 

demonstrated by blocking with PECAM1 antibody in the inflamed peritoneal cavity of mice 

(Bogen et al., 1994). Although, PECAM1 is not completely necessary for the neutrophil 

transmigration, it might be involved by playing two different roles which help to arrest 

neutrophils before the cells pass through the basement membrane and also after passing 

through the cell junctions (Nakada et al., 2000, Wakelin et al., 1996). 

        Paracellular transmigration demands the release of junction intercellular proteins such 

as vascular endothelial cadherin (VE-cadherin) from the plasma membrane of endothelial 

cells within the adherent junction (Garrido-Urbani et al., 2008). Although lost during 

neutrophil transmigration, cadherin is replaced once the neutrophil has migrated through 

the endothelial cell layer (Shaw et al., 2001). A 1997 study by Gotsch et al has shown that in 

vivo, the entry of neutrophils into inflamed peritoneum in mice is caused by antibody 

mediated inhibition of VE- cadherin. This suggests that there is a significant effect of VE-

cadherin during neutrophil extravasation by its ability to control the opening of the 
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endothelial barrier that is necessary for the cells transmigration (Gotsch et al., 1997). Also, it 

has suggested that neutrophil transmigration can be decreased by the inhibition of VE-

cadherin that has been phosphorylated through the engagement of ICAM1 (Allingham et al., 

2007). 

         Other molecules required during cell transmigration are known as junctional adhesion 

molecules (JAMs). JAMs comprise three classical members JAM A, JAM B and JAM C. JAM A 

and JAM B are both expressed on the endothelial cells whereas JAM C is expressed at the 

intercellular junctions of high endothelial venules (Aurrand-Lions et al., 2005).  

1.4.6 Transcellular transmigration 

          Transcellular transmigration is when the neutrophil passes through the endothelial cell 

itself. A possible explanation of the way transcellular transmigration may occur is shown in 

the diagram (fig 1.6 (B)). A study by Feng et al in (1998) provided evidence for transcellular 

transmigration using electron microscopy studies, which showed that the stimulation of 

neutrophils with fMLP component led to the transmigration of the neutrophil through 

endothelial cell itself (Feng et al., 1998) and this involved ICAM1 clustering on the 

endothelial cell.  This is an important step by which the ICAM1 is translocated to caveolin 

rich domains in the plasma membrane. Neutrophil migration depends on the availability of a 

route that the cells can follow. The generation of the route can be seen through the 

internalisation of the ICAM1 that can then be trancytosed to the basal plasma membrane of 

the endothelial cells over the caveolae (Millan et al., 2006). Although there is some  
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experimental evidence for neutrophil transmigration by either ways, the mechanisms by 

which these occur are still not completely understood.  

1.4.7 Neutrophil apoptosis 

Neutrophils are short-lived cells which leave the blood stream to enter the tissues 

and sites of potential infection; in humans mainly to the lungs and the gut. They leave the 

body by these routes to be replaced by new circulating neutrophils from the bone marrow 

(see section 1.3.1). However, neutrophils also leave the blood stream to sites of localised 

infection, or inflammation, such as cysts or, in inflammatory joint disease, to the joint fluid. 

Under these conditions, neutrophils cannot exit the body directly and will die at these 

localised sites. In order to prevent the release of proteolytic enzymes from necrotic cells 

which lyse, neutrophils undergo spontaneous apoptosis (Haslett, 1997). The process of 

apoptosis, also known as a programmed form of cell death, maintains the integrity of the 

plasma membrane during cell death. Thus, apoptosis of neutrophils prevents the 

uncontrolled release of potentially tissue-damaging enzymes which would exacerbate the 

inflammation and cause accumulating damage to the extracellular matrix at the site of 

localised infection. It has been reported that the prevention of neutrophil apoptosis will lead 

to necrosis of the cells, with the release of their cellular contents resulting in tissue damage 

and autoimmune diseases (Cheah et al., 2005). Apoptotic neutrophils are no longer capable 

of chemotaxis, phagocytosis, respiratory burst and degranulation (Whyte et al., 1993). This is 

important, as the apoptotic cells are removed, along with anything they have previously 

phagocytosed, by phagocytosis into macrophages. It is also important in the production of 

anti-inflammatory mediators that prevent the inflammation continuing (Erwig et al., 2007). 

Neutrophil apoptosis involves characteristic changes involving internucleosomal DNA 
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fragmentation and shut down of cellular processes which results in a decrease in cell 

volume, mitochondrial depolarization, nuclear condensation, cellular crenation and 

vacuolated cytoplasm (Savill et al., 1989; Kamada et al., 2005). 

Neutrophils undergo constitutive apoptosis via two classical cellular apoptotic 

pathways. The extrinsic pathway, which requires an extracellular signal that activates the 

tumour necrosis factor-alpha (TNF-α) receptors or Fas on the plasma membrane, will lead to 

activation of a cascade of enzymatic activity, which includes proteases such as initiator 

caspases (caspase-8). A second route is the intrinsic pathway which may also be triggered by 

an intracellular signal such as irreparable damage to DNA or severe metabolic cell stress.  

Due to damage, the balance of the B cell lymphoma (Bcl)-2 family of proteins is altered 

which causes mitochondrial permeabilization. This leads to the release of cytochrome c into 

the cytosol and also stimulation of the apoptosome and initiator caspase-9. Caspase-8 is also 

important by activating the pro-apoptotic Bcl-2 homology-3-interacting domain death 

agonist protein (Bid). DNA fragmentation is caused by endonucleases and the entry of 

caspase-3, -6 and -7, into the nucleus. There is a common last step to both pathways. There 

are characteristic changes in nuclear morphology which involve karyorrhexis and pyknosis 

(Savill et al., 1989; Kamada et al., 2005).  

             Clearance of the apoptotic inflammatory neutrophils from sites of inflammation or 

infection is determined by changes to the cell surface such as externalization of 

phosphatidylserine (PS) that allow phagocytes, such as resident macrophages in the spleen, 
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liver and bone marrow, to recognise the apoptotic cells and remove them from the 

circulation or tissue via phagocytosis. Apoptotic neutrophils are then identified and 

phagocytosed by macrophages through release of their histotoxic components (Savill et al., 

1989). During the course of phagocytosis, the tethering of non-inflamed apoptotic cells to 

macrophages is essential via a surface molecule CD14, usually including bacterial 

lipopolysaccharide (LPS), that has an effect on neutrophil survival in addition to the 

activation of TLR4  (Devitt and Marshall 2011). However the apoptotic neutrophil has 

excellent LPS-binding capacity, thereby decreasing the LPS stimulation of viable, responding 

cells (Sarah et al., 2010). Stimulation of macrophages by exposure to externalised PS does 

not only trigger phagocytosis via their receptors but also stimulates the production of some 

cytokines such as IL-10 and TGF-β in high amounts, which contribute to the resolution of the 

inflammatory response and also supports the healing tissue (Miller et al., 2006; Scannell et 

al., 2007). It is thought that neutrophil apoptosis is also influenced by the production of ROS, 

which can delay apoptosis via interference with the actions of caspases or else cause 

necrosis of the neutrophil by direct toxicity before they can undergo apoptotisis (Fadeel et 

al., 1998, Geering and Simon, 2011; Scheel-Toellner et al., 2004). Apoptosis can also be 

delayed by microbial components and by pro-inflammatory stimuli in damaging tissues.  

         Briefly, neutrophil apoptosis probably involves different pathways to the classically 

defined pathways of apoptosis in other cell types and is not yet completely understood (Tak 

et al., 2013).  
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1.4.8 The oxidative killing mechanism in neutrophils.  

          The generation of reactive oxygen species (ROS) by neutrophils is a non-mitochondrial 

process, often referred to as the respiratory burst. It is crucial for the destruction of particles 

and microorganisms within the neutrophil phagosome. It may also be important as a 

signalling molecule or a mediator of inflammation, for example by causing endothelial 

dysfunction by oxidation of essential cellular signalling proteins such as tyrosine 

phosphatases (Manish et al., 2014). ROS are produced when the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase is activated to generate superoxide by one 

electron reduction of oxygen (fig 1.7). The NADPH oxidase is found in a range of cells such as 

the professional phagocytes and endothelial cells. In resting neutrophils, there are four 

cytosolic subunits of the oxidase; p47-phox, p40-phox, p67-phox and Rac. When p47-phox is 

phosphorylated by activated protein kinase C (PKC), a complex forms which combines with 

cytochrome b558 (comprised of gp91phox and p22phox) in the phagosomal membrane (Manish

et al., 2014). The vectorial arrangement across the phagosomal membrane of the assembled 

and active oxidase results in the release of superoxide into the phagosome, where it 

dismutates to form peroxide (H2O2), the substrate for the major intraphagosomal enzyme 

myeloperoxidase (MPO). MPO is abundantly expressed in neutrophils and catalyses the 

conversion of H2O2 to highly reactive hypochlorous acid (HOCl). HOCl chlorinate numerous 

bacterial proteins to bring about bacterial death (Manish et al., 2014).    

      Also, in the presence of Fe2+, the Fenton’s reaction generates the highly toxic hydroxyl 

radical (OH●) which rapidly destroys the 3D structures of biological molecules, especially 

proteins within the phagosome. The lifetimes of superoxide and especially hydroxyl radicals 

https://en.wikipedia.org/wiki/Bacteria
https://en.wikipedia.org/wiki/Myeloperoxidase
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are extremely short so that diffusion from the source of generation cannot be more than a 

fraction of a micron. H2O2 is longer lived (semi-stable) and may leak from the phagosome. 

However, antioxidant enzymes in the cytosol, such as catalase, glutathione peroxidase (GPX), 

or peroxiredoxins (Prx) e.g. thioredoxin (Trx), “scavenge” H2O2 by its conversion to O2 (fig 

1.7) (Manish et al., 2014). The NADPH oxidase in the phagosome membrane also provides 

superoxide for a reaction with nitric oxide (NO) at a diffusion limited rate (k=5-10x109M-1s-1), 

following the formation of highly reactive nitrogen species (RNS), such as peroxynitrite 

(ONOO ̶). It is three to four times faster than the dismutation of superoxide anion (O2
-) which 

has been suggested to show an important effect in antimicrobial defence. The RNS, in turn, 

induces nitrosative stress, which adds to the proinflammatory burden of ROS. Likewise, 

because of the negative charge on superoxide O2
-, its passage through biological membranes 

is regulated by voltage-dependent anion channels (VDAC) (Manish et al., 2014).  
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Figure 1.7 Routes to the generation of reactive oxygen species. The diagram shows the 
conversion of molecular oxygen (O2) to superoxide (O2

.-); its conversion to hydrogen peroxide 
(H2O2) by superoxide dismutase (SOD); conversion to hypochlorite (OCl- /HOCl) by 
myeloperoxidase (MPO). The Haber-Weiss reaction is shown below the main diagram 
together with antioxidants steps. (Taken from Manish et al., 2014). 
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1.5 Calcium signalling in neutrophils 

1.5.1 Ca2+ Signalling 

         Cytosolic free Ca2+ ions control a number of different cellular processes in a wide 

variety of cell types, including exocytosis, muscle contraction, gene transcription, 

proliferation and cell death. Although in biological systems, the concentrations of many ions 

are controlled, the Ca2+ ion is probably the most tightly regulated. It is important for life to 

keep the cytosolic Ca2+ ion concentration low in order to prevent precipitation by forming 

insoluble calcium salts with phosphates, sulphate and carbonate. Of course, the major 

insoluble extracellular component of bone, calcium phosphate, is produced as a result of the 

higher extracellular concentrations of Ca2+. As the extracellular Ca2+ concentration is 

normally high (around 1 - 5mM), eukaryotic cells require an energy-depended mechanism to 

achieve low concentration of free Ca2+ inside the cell. The cytosolic level of Ca2+ is 

maintained at around 100nM, by homeostatic systems which pump Ca2+ out of the cell to 

balance the inward leak of Ca2+. This makes a considerable concentration gradient across the 

plasma membrane. Once significant additional amounts of Ca2+ enter the cytosol, the free 

Ca2+ concentration would considerably change, especially close to the channel gate that 

facilitated the entry. The generation of calcium signals inside a cell occurs as a result of two 

interdependent mechanisms; (i) by releasing Ca2+ from intracellular Ca2+ stores and (ii) by 

Ca2+ influx from the extracellular medium. There are three types of intracellular Ca2+ stores 

with inward facing Ca2+ pumps, sarco/endoplasmic reticulum (S/ER), membrane bound 

vesicles and possibly mitochondria. The SERCa pumps pass Ca2+ from the cytosol into the 

luminal space of the S/ER and also control channels which facilitate the release of Ca2+ once 

stimulation has occurred.  
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1.5.2 General Signalling System 

         Although individual cell types utilise Ca2+ signalling for different outcomes, they all use 

the same “toolkit” of mechanisms. Thus the general structure of any Ca2+ signalling pathway 

follows the same method.  It begins when a receptor is occupied by its agonist and signals a 

pathway which usually includes a cascade leading to activation of enzymes (fig 1.8). 

Depending on which proteins are expressed in the particular cell type, the Ca2+ signal can 

thus generate outcomes that differ widely from cell-type to cell-type. 

As with a number of cell types, the “Ca2+ cascade” begins with activation of 

phospholipase C (either  or ) which cleaves phosphatidylinositol 4,5-bisphosphate 

(PtdIns(4,5)P2, PI(4,5)P2, or PIP2 )  in the inner leaflet of the plasma membrane to liberate the 

head group as inositol 1,4,5-trisphosphate (InsP3; IP3) to diffuse into the cytosol and leave 

diacylglyercol (DAG) in the plasma membrane (fig 1.8). Both products act together to 

activate DAG /Ca2+ dependent isoforms of protein kinase C (PKC). DAG acts directly by 

binding to PKC, whereas IP3 acts indirectly by triggering the Ca2+ response (see section 1.5.3 

and fig 1.9). In neutrophils, one of the important functions of PKC is the phosphorylation of 

p47phox to form an activate NADPH oxidase in the phagosomal membrane. Since the 

phagocytic stimulus is localised to the contact site between the particle and the neutrophil 

surface, DAG generated locally would be diluted by diffusion in the membrane. However, 

once a phagosome had closed, no such dilution would be possible and DAG concentration in 

the phagosomal membrane may rise to activate PKC locally and so activate the NADPH 

oxidase locally. Since it has been postulated that locally high Ca2+ driven by Ca2+ influx 

activates calpain to allow pseudopodia formation (see section 1.6), the outcome of PLC 
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activation would provide both localised psuedopodia formation and following this localised 

oxidase activation.  
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Figure 1.8 General signalling systems. From occupation of the receptor to the cell response 
(indicated as results) as series of step, including amplication cascades occur. The lightning 
bolts at each step of the pathway are control points at which cross-talk can occur with other 
pathways. 
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1.5.3 Calcium signalling in neutrophils  

1.5.3.1 Cytosolic free calcium homeostasis  

The level of cytosolic free Ca2+ is essential for the regulation of most neutrophil functions 

including phagocytosis, cell spreading and possibly chemotaxis. In neutrophils, similarly to all 

mammalian cells, the concentration of cytosolic free Ca2+ is regulated at different states of 

the neutrophil, i.e. resting and activated. In the resting neutrophil, the cytosolic free Ca2+

concentration is kept at approximately 100nM. However, with an extracellular calcium 

concentration of 1mM, the Ca2+ concentration across the neutrophil plasma membrane is 

10,000:1. The maintenance of this gradient arising from the low permeability to Ca2+ of the 

plasma membrane of resting neutrophils and the pumping out of Ca2+ ions back across the 

plasma membrane. Fluctuations of concentration in cytosolic free Ca2+ are also reduced due 

to the high Ca2+ buffering capacity of the proteins within the neutrophil cytosol. The Ca2+

storage organelles in neutrophils also contribute to Ca2+ buffering at locations where the 

intracellular Ca2+ is actively sequestered. The effect of Ca2+ releasing from stores, as well as 

from channel opening at the plasma membrane, causes the global intracellular Ca2+

concentration to rise to about 1M  (Demaurex et al., 1992). However more recently, it has 

been shown that in microdomains such as the cytosol within membrane wrinkles of 

activated neutrophil, the Ca2+ concentrations may reach in excess of 30M (Brasen et al., 

2010).  
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1.5.3.2 The storage of calcium in neutrophil  

           Neutrophils are able to buffer Ca2+ via their various intracellular Ca2+ stores. Thus, in 

the cytoplasm, the concentration of Ca2+ sequestered within intracellular Ca2+ stores is high 

in resting cells. However, the store Ca2+ concentration is lowered significantly when it is 

released into the cytosol. There are intracellular Ca2+ stores near the plasma membrane sites 

that can produce Ca2+ during CD11b/CD18 crosslinking and also at a juxta nuclear site, 

possible vestigial ER or golgi (Davies et al., 1991), which can release Ca2+ in response to fMLP 

stimulation (Pettit and Hallett, 1998b). It has been reported that ‘calciosomes’ are an 

additional IP3 sensitive calcium storage site in neutrophils. When the neutrophil undergoes 

phagocytosis, it has been shown that these intracellular calcium stores redistribute around 

the phagosome (Favre et al., 1996; Stendahl et al., 1994). Ca2+ can be pumped into these IP3

sensitive calcium storage sites via SERCA2b calcium ATPase pumps, which have been 

identified within all of these stores. Pumping of Ca2+ into the stores can be prevented by 

various inhibitors, such as thapsigargin and cyclopiazonic acid (Favre et al., 1996).  

1.5.3.3 Cytosolic free Ca2+ signalling in neutrophils

          In neutrophils, there are a vast number of receptors (see Table 1.6). Ca2+ signals are 

caused by the seven transmembrane spanning domain receptors (7TM) and by “cross-

linking” stimuli such the opsonic receptors. Both are able to trigger the release of Ca2+ from 

intracellular calcium stores and open plasma membrane channels which permit Ca2+ influx. 

IP3 is generated by the action of phospholipase C on PIP2 and diffuses through the cytosol to 

trigger the release of Ca2+ from Ca2+ stores, which in turn prompts Ca2+ influx. Most of the 
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neutrophil effector functions rely on Ca2+ influx. It is essential for activation of all their 

responses, because the simple removal of extracellular Ca2+ is able to inhibit the neutrophil 

response. The intracellular Ca2+ stores which release calcium are also able to produce Ca2+, 

which may play an important role for local activation. This liberating of Ca2+ from stores is 

thus crucial for the Ca2+ signalling (Hallett & Campbell, 1984).  

           When stimulated, the cytosolic Ca2+ concentration rises rapidly in the neutrophil. In 

the absence of extracellular Ca2+, the Ca2+ signal is severely attenuated, showing that Ca2+

influx phase is the dominant phase. However, activation of neutrophils by both receptor 

classes gives different relative contributions of Ca2+ influx and Ca2+ store release. Although 

they are strongly coupled in the case of the (7TM) receptors, they are not so with the cross-

linking stimuli. However, neutrophil responses rely mainly on the Ca2+ influx phase.  

1.5.3.4 Cytosolic free Ca2+ signalling by seven transmembrane receptors (G protein coupled 

receptors) 

  Activation of 7TM receptors on neutrophils causes Ca2+ signalling that includes the 

release of calcium from intracellular Ca2+ stores at a juxta nuclear location (Davies et al., 

1991) and this triggers the opening of channels at the plasma membrane which allow an 

influx of calcium across the plasma membrane (Pettit and Hallett, 1995). Upon the activation 

of the 7TM receptors, a G protein is activated at the inner surface of the plasma membrane 

which activates phospholipase C-β(PLCβ) (Cockcroft and Gomperts, 1985). Activation of PLCβ 

causes PIP2 in the membrane to be cleaved to generate IP3, which releases calcium from IP3
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sensitive calcium stores. This may stimulate the opening of TRPM2 channels in the plasma 

membrane (Du et al., 2009) and so cause Ca2+ influx stage (fig 1.9). Diffusion of signalling 

molecules from the plasma membrane to intracellular calcium stores requires a measureable 

period of time (Hallett and Lloyds, 1995), which can cause a short but measureable delay 

between 7TM receptor activation and the global rise in cytosolic calcium (Hallett et al., 

1990). 

1.5.3.5 Cytosolic free Ca2+ signalling by cross-linking of stimuli (Integrin engagement) 

           Another way to generate the signalling of cytosolic free Ca2+ in neutrophil is by cross-

linking of IgG receptors such as Fc (CD16/CD32) receptors (Roberts et al., 1997) or else by 

integrin such as CD11b/CD18 receptors. The mechanism for the generation of this cytosolic 

free Ca2+ signalling by cross-linking of stimuli is yet to be fully determined (Morgan et al., 

1993). However, it shares features with the mechanism involved with 7TM receptors 

activation (Hellberg et al., 1996). The Ca2+ signal that is caused by the cross-linking stimuli 

originates from intracellular Ca2+ stores (Davies and Hallett, 1995). This release of Ca2+ from 

stores may not be enough to cause Ca2+  influx activation (Pettit and Hallett, 1997). There 

may also be a difference between the site of the Ca2+ store release between the cross linking 

and the 7TM receptors; the stores being peripheral with cross linking receptor (Pettit and 

Hallett, 1996) rather than central with 7TM (Davies and Hallett, 1995). There is evidence 

from electron microscope studies which supports the presence of motile Ca2+ storage sites 

close to the plasma membrane. It has been shown that Ca2+ storage sites are located near 

the plasma membrane (Hoffstein, 1979). It has been suggested that the delay which occurs 

between receptor ligation and the calcium signal is connected to the period of time that is 
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required by the receptors to diffuse in the plasma membrane to form sufficiently large cross-

linked aggregates to generate the Ca2+ signal (Roberts et al., 1997).   

             Some inhibitors of tyrosine kinases (Morgan et al., 1993) and the actin bundling 

protein, L-plastin (Rosales et al., 1994) are able to stop this Ca2+ signal suggesting that the 

signal from the plasma membrane is transduced by the tyrosine phosphorylation and the 

actin cytoskeleton. It has been proposed that Ca2+ signalling by cross linking of stimuli and 

7TM receptors have similarities and that integrin engagement activates tyrosine kinase 

dependent Ca2+ mobilisation, via PLCγ2 phosphorylation and a rise in IP3 (Hellberg et al., 

1996). A potential mechanism is shown in (fig 1.9).   
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Figure 1.9 Schematic graphic for Ca2+ signalling in the neutrophil. The release of calcium into 
the cytosol is followed by the activation of a 7TM receptor by a chemoattractant such as 
fMLP. The ligated receptor activates a G protein that is able to stimulate PLCβ which converts 
PIP2 into IP3 and DAG. IP3 is capable of activating IP3 receptors on the Ca2+ stores and so 
release Ca2+into the cytosol. The calcium released from Ca2+ stores could also be stimulated 
by cross linking of integrins through phosphorylation and activation of PLCγ2 in the 
neutrophil plasma membrane which causes the release of IP3 and DAG which triggers the 
release of calcium from Ca2+ stores. Channels in the plasma membrane prompt calcium influx 
into the cytosol. This figure shows a possible mechanism that might occur, but the real 
mechanism of calcium influx from channels in the plasma membrane of neutrophil is still not 
identified. DAG actives calcium channels, calcium influx factor (CIF) is the calcium channels 
activation through liberating of calcium from stores or a diffusible second messenger.  

Ca2+
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1.5.3.6 Calcium influx in neutrophils  

           Upon the liberation of Ca2+ from intracellular stores in neutrophils, as a result of either 

7TM receptors or cross-linking of stimuli, there will be Ca2+ influx through channels in the 

plasma membrane. However, the mechanism for Ca2+ influx is still not completely 

understood.  Inhibition of many neutrophil responses can be realised by discontinuing Ca2+

influx (Hallett and Campbell, 1984, Marks and Maxfield, 1990). It is clear that when the Ca2+ 

stores are no longer able to release Ca2+, Ca2+ influx occurs in order to refill the Ca2+ stores 

(Smyth et al., 2006). For example, inhibition of the SERCA pumps using thapsigargin or 

cyclopiazonic acid, empties the Ca2+ stores and results in the opening of Ca2+ channels in 

plasma membrane. Ca2+ influx is triggered by diffusion of small molecules and results in a 

delay of tens of milliseconds between the addition of the stimulus to neutrophil and the 

global Ca2+ influx. Micro-injection of the IP3-receptor blocker heparin has the ability to block 

Ca2+ influx from channels in plasma membrane when triggered by the 7TM receptor agonist 

fMLP (Davies-Cox et al., 2001).  However, Ca2+ influx cannot be prevented when triggered by 

IgG immune complexes, suggesting an IP3-independent mechanism may also occur in 

neutrophils (Davies and Hallett, 1995). In addition, C5a stimulation of anucleated neutrophil 

cytoplasts fails to trigger calcium signal generation pointing to the importance of the 

juxtanuclear calcium store (Gennaro et al., 1984).   

           There is also a difference in the time delay of the Ca2+ signal triggered by the two 

distinct mechanisms. Stimulation of neutrophils with fMLP releasing Ca2+ from intracellular 

stores results in a total delay of around 500ms before Ca2+ influx (Pettit and Hallett, 1995).  

In contrast, cross-linking of integrin on the plasma membrane requires between 10s and 
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100s before opening of Ca2+ channels occurs (Pettit and Hallett, 1996). The delay difference 

cannot be explained by the two different intracellular Ca2+ stores, each coupled to the two 

distinct receptor types and is more likely to result from the time required to form receptors 

clusters. It has recently been shown that within the plasma membrane, TRPM2 channels are 

opened directly as a result of a rise in cytosolic calcium, leading to Ca2+ influx following their 

activation by IP3 receptors. This gives an indication that Ca2+ signalling in neutrophils that 

occurs via 7TM receptors leads to the release of calcium from IP3 sensitive juxtanuclear 

calcium store that is necessary following the generation of the calcium influx (Du et al., 

2009).  

1.6 Neutrophils and cell surface topography   

Phagocytosis is a complex event and changes in both the biochemistry and 

structure of neutrophils occur to facilitate the process. This may include dynamic changes at 

the level of the cell surface membrane, which apparently expands significantly by extension 

of pseudopods leading to engulfment of the foreign body. These changes may also be seen 

during the process of extravasation when the cells undergo chemotaxis and spreading, 

stages which represent movement of the neutrophil following activation on the 

endothelium, when an apparent increase in the cell membrane surface area of neutrophils 

has been attributed to ‘flattening’ of wrinkles (Dewitt & Hallett, 2007). There are a few other 

theories which have been proposed to explain the phenomenon of the membrane expansion 

in neutrophils (fig 1.10).  
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              It has been shown that during the formation of phagosomes in macrophages, the 

membrane of endoplasmic reticulum (ER) fuses with the cell surface membrane (Gagnon et 

al., 2002). This may provide the additional membrane for phagocytosis in these cells. It has 

been found that there was only a residual amount of the ER in neutrophils and that is deeply 

embedded within the cell. It is thus unlikely that this mechanism for providing additional 

membrane during phagocytosis could occur in neutrophils (Bessis, 1973). In fact, the authors 

of this original paper showed that ER was not involved in phagocytosis by neutrophil. It 

should be noted that the ER theory even in macrophages remains controversial (Gagnon et 

al., 2002). 

            It has been suggested that fusion of intracellular vesicles to the membrane might be 

another source of the extra membrane. However, the amount of 2500 vesicles would be 

necessary to provide sufficient additional membrane. This would amount to the total vesicle 

compliment of the neutrophil. Exocytosis of vesicle contents would also occur with an 

accumulation of extracellular degradative enzymes and hydrolases (Hallett & Dewitt 2007). 

This would be harmful for the surrounding healthy tissue and is unlikely to occur during 

normal phagocytosis. Also exocytosis only results from the fusion of vesicles that are close to 

the membrane and limits the possible maximum to about third of the total vesicle content. It 

has been discussed the last point against this theory. The authors of this original paper 

studied that membrane expansion by applying suction through a micropipette held at the 

neutrophil surface and measuring the force required to deform the membrane. It was found 

that a significant expansion could be achieved by simply a physical effect, which was 
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independent of exocytosis. Furthermore from calculation of the force required, it was found 

to be consistent with localised “unwrinkling” of the membrane (Herant et al., 2006). 
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Figure 1.10 Diagram presenting several theories of membrane expansion during 
phagocytosis by neutrophils. (A) The stretching model: formation of pseudopodia by actin 
filaments pushing and stretching the plasma membrane. (B) The vesicle model: fusing of 
intracellular vesicles to the plasma membrane adding membrane. (C) The endoplasmic 
reticulum (ER) model: fusion of ER to the cellular membrane to afford additional membrane. 
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1.6.1 Possible methods of membrane expansion 

            The importance of cell surface area regulation in neutrophil activity has been an area 

of intense research and speculation. Imaging these changes in neutrophils is complex and 

although atomic force microscopy has not been successfully used in these experiments, 

there is the potential for scanning electron micrography (SEM) to identify morphological 

changes on a sub-micron level. However, this has not been completely studied and therefore 

more work is needed to verify this approach. Experiments with SEM demonstrate that the 

cell surface of neutrophils is irregular (fig 1.11) and characterized by numerous surface 

wrinkles, folds or ruffles and projections such as filopodia and microvillus extensions (Hallett 

et al., 2007).  

           Wrinkles are believed to play an important role in determining cell surface binding and 

morphological change in response to elevated levels of cytosolic Ca2+. However, how the 

apparent extra membrane is achieved has not yet been resolved. It is thought that these 

wrinkles might be a membrane reservoir which can be utilised when necessary. For example, 

SEM images show that when the neutrophil undergoes phagocytosis, membrane wrinkles 

are lost locally. This provides the possibility that when neutrophils undergo shape changes, 

unfolding of the wrinkled plasma membrane provides the extra membrane (Hallett et al., 

2007). It is thus necessary to determine the nature of the surface wrinkles in neutrophils and 

the mechanisms that maintain or regulate these wrinkles (fig 1.11). 
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Figure 1.11 Scanning electron micrographs of multiple wrinkles on the neutrophil surface 
membrane which are lost in regions where the neutrophil spreads (images from Dewitt and 
Hallett, 2007).  

PIP2

Adherent 
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            Applying suction to the plasma membrane of neutrophils through micropipettes is 

useful for measuring the “tightness” of surface membrane wrinkles in neutrophils. The 

results of these studies identified that a limited amount of suction could expand the 

membrane into the mouth of the micropipette and accounted for around 5% of the total 

surface area. However, a greater force could produce an additional expansion of the cell 

plasma membrane (Herant et al., 2003; Dewitt and Hallett 2007; Hallett and Dewitt 2007). 

These data were interpreted as reflecting a limited amount of slack within the wrinkles, but 

that extra force could "unwrinkle" the remainder of the membrane, as if the wrinkles were 

held in place by a molecular "velcro" (Herant et al., 2003).  

            The "velcro-like" molecular structures which hold the wrinkle together, includes two 

main binding molecules. The first molecule is the membrane linker protein ezrin, which may 

also hold L-selectin in place on the wrinkled membrane. The second molecule is the 

membrane linker protein talin, which may also hold β2-integrin in place in the wrinkle 

valleys. Within the wrinkled region, the different locations for these molecules can be 

observed at the SEM level where L-selectin is only placed in peaks and β2-integrin is only 

placed in valleys (Herant et al., 2003). These locations are probably important in explaining 

their roles in neutrophil capture by the endothelium and subsequent cell spreading (see 

section 1.4). 
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1.6.2 Neutrophils under tension 

           Polarization and migration of neutrophils in response to chemoattractants results from 

the formation of protrusions at the leading edge of the cell, which are balanced by shrinkage 

at the back of the cell. The maintenance of cell polarization is essential for effective and 

constant migration. This maintenance is a continuous response to an anisotropic 

environment that results in the migration of the neutrophil up a chemoattractant gradient. It 

has been proposed that there is a semi-autonomous excitable network that maintains 

polarization of the cell (Afonso and Parent, 2012), which involves both positive and negative 

feedback loops. It has been suggested that actin, PI3K and small GTP binding Rac and Ras 

proteins are positive feedback loops which are useful in controlling protrusions at the 

leading edge of the neutrophil (Brandman and Meyer, 2008; King and Insall, 2009). 

           A study by Chen et al (2006) has shown that positive feedback loops include the action 

of extracellular signals. For example, the stabilisation of neutrophil polarization and 

migration occurs after the secretion of ATP at the leading edge of the cell (Chen et al., 2006). 

Such positive feedback loops need a balancing inhibitory factor so that neutrophils spread 

protrusions throughout their leading edge. In addition to this, whole cell spreading occurs 

when pseudopodia are formed uniformly over the whole cell-substrate contact surface. It 

has been identified that a mechanism for avoiding inappropriate protrusions formation that 

is linked to membrane tension, acts as an inhibitory factor in neutrophils (Houk et al., 2012) 

(fig 1.12). 



56 

         Devreotes and Janetopoulos  (2003) have shown that the main inhibitory signals behind 

membrane tension might be characterised as a “sink” for limiting factors. For example, key 

proteins for establishing protrusion have to be isolated to the front of the cell and 

eliminated from the back. Also, within the leading edge of the cells, there may be the 

generation of a fast-diffusing soluble molecule that acts as the inhibitory signal. The 

formation of this molecule establishes a uniform inhibitory signal that is essential to restrict 

the positive signal to the leading edge of the cells. However, the dominant effect within 

pseudopodia is the mechanical force which is the inhibitory signal. Hence, the front 

pseudopodium has a mechanical force which also exerts its effect at the back of the cell 

(Devreotes and Janetopoulos, 2003).  
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Figure 1.12 Membrane tension within polarised neutrophils. Neutrophils freely polarise and 
are able to localise activating signals at leading edges (green colour) in response to 
chemoattractants. Cell membrane tension acts to prevent the signals at the leading edge, so 
the polarisation becomes stable. The cell behaviour depends of the action of the membrane 
tension. (Left of the diagram) shows effects of reduction in membrane tension which results 
in the spread of protrusions at the leading edge and pseudopods reach the whole cell. (Right 
of the diagram) shows opposite effects throughout the inhibition of protrusions as a result of 
rise in membrane tension (Figure adapted from Alfonso & Parent (2012)).
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1.6.3 The mechanism of mechanical tension  

        The study by Houk et al (2012) has shown that mechanical tension is a long range 

inhibitory mechanism which controls the cell body behaviour. This hypothesis was tested by 

the demonstration of some enhanced effects by increasing the surface area, doubling the 

membrane tension for long range inhibition of Rac activation and inhibition effects through 

reducing activity of membrane tension. It has been widely assumed that the mechanism of 

the long range inhibition usually involves the generation of diffusible molecules or requires 

sequestration at the leading edge. However, from this finding, the most important aspect of 

the long range inhibition is the constraint in increasing at membrane plasma area during 

leading edge protrusion. This effect prevents secondary fronts from generating, away from 

the cell front (Houk et al., 2012). 

         Although it has long been speculated that a diffusion based inhibition is one of the 

important hypothetical inhibition mechanisms for maintaining cell polarisation (Jilkine and 

Edelstein-Keshet, 2011; Houk et al., 2012), provided an elegant demonstration that cell 

membrane tension was the key in neutrophils for controlling pseudopod formation. 

Neutrophils were exposed to a brief heat shock to generate elongated cells, the front of 

which actively formed pseudopodia while the cell body was inactive. A thin tether 

connecting the front and the body would restrict diffusion of any factor from front to back. 

This thin tether could be severed spontaneously or by a focused laser beam without causing 

any damage to the cell body or the pseudopod (fig 1.13 A). Within 70s of cutting the link, 

psuedopdia formed on the previously inert cell body of about 47% cells. The reanimated cell 

body became extremely protrusive and able to generate a new pseudopod (fig 1.13 B). The 
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authors showed that without laser cutting, the tethers also cleaved spontaneously at a low 

frequency. Again, within 1 min of severing, reanimation of 26% of the cell bodies occurred 

and new pseudopodia formed (fig 1.13 C). After severing the tether, the fast reanimation of 

the cell body could not be explained by a slow resynthesis of an inhibitory factor and instead 

demonstrates that inhibition of the cell body was the result of a reduction in the mechanical 

tension. This conclusion verified that membrane tension is essential and enough for 

preventing the spreading of membrane protrusions after neutrophils are exposed to uniform 

chemoattractant stimulation (Houk et al., 2012). 
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Figure 1.13 The formation of a new pseudopod in neutrophils after severing. (A) A summary 
of laser-based severing experiments. The results present information of the cell body 
behaviour upon the polarisation and then removal of the pseudopod. Mechanical tension 
could generate a brief inhibitor at the leading edge, which would be consistent with the 
reanimation upon pseudopodia after severing. This inhibitor might be either a rapidly 
synthesised limiting component or a diffusible inhibitor with a short half-life. (B) A summary 
of formation of new pseudopod after laser-based serving experiments. At zero seconds, a 
laser beam severs a tethered HL-60 cells. After the cell is severed in about 47%, a new 
pseudopod is made (white arrow) by the previously inactive cell body. (C) A summary of 
formation of new pseudopod after spontaneous tether cleavage. At zero seconds, the 
pseudopod is spontaneously cleaved from the cell body (black arrow). Within 50s of severing 
(white arrow) a new pseudopod is generated from the cell body, initiating migration. The cell 
body is able to reanimate after spontaneous tether cleavage in 26% of cells (This figure is 
from Houk et al., 2012). 

http://www.sciencedirect.com/science/article/pii/S009286741101363#gr
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1.6.4 Unwrinkling theory and the role of calcium 

    The basic idea behind the cell surface wrinkle theory is that the cell surface wrinkles 

maintain tension in the membrane, which prevents pseudopodia formation until required. 

When the membrane unwrinkles, tension is released and additional membrane is provided 

for an increase in cell surface area. It has been proposed that wrinkles are released to 

provide the extra membrane required for phagocytosis (Hallett and Dewitt, 2007) and cell 

spreading (Dewitt and Hallett, 2007). For 20 years it has been recognised that during 

spreading by neutrophil and macrophages, there is a huge increase in the level of cytosolic 

free Ca2+. Furthermore, Ca2+ elevation induced by uncaging cytosolic Ca2+ or inositol 1,4,5-

trisphosphate (IP3) (Pettit and Hallett, 1998) triggers cell spreading. It has been shown that 

there is also a need for a rise in cytosolic free Ca2+ during phagocytosis (Dewitt and Hallett, 

2002) which accelerates the rate of the pseudopod extension around the particle, an effect 

linked to µ-calpain activity, a protease activated by Ca2+. Within the cell, active calpain can 

cleave substrates important for maintaining the wrinkled surface (Molinari and Carafoli, 

1997; Dewitt and Hallett, 2002) (fig 1.14). 

           During lymphocytes adhesion via ß2-integrin, cell flattening also occurs as results of 

the calpain activation (Stewart et al., 1998; Leitinger et al., 2000). It  has shown that µ-

calpain has two separate binding sites; the ezrin, radixin and moesin homology (FERM) 

domain, that binds to membrane-associated proteins and an actin-binding domain, linking to 

the actin cytoskeleton (Dewitt and Hallett, 2007; Hallett and Dewitt, 2007). Activation of µ-

calpain via Ca2+ influx would thus provide a mechanism for liberating the molecular “velcro”, 
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through proteolytic cleavage of the calpain-sensitive cytoskeletal elements, leading to the 

extra membrane required to realise pseudopod formation. 

          As a result of calpain activation via elevated Ca2+, the link between the cell surface 

membrane and the underlying actin cytoskeleton is disconnected. Pharmacological inhibition 

of calpain activation reduces the process of phagocytosis, cell spreading and extravasation. It 

is therefore possible that µ-calpain may be a therapeutic target for the treatment of 

autoimmune conditions (Michetti et al., 1997). There is abundant evidence in the literature 

to support this proposal, both in vitro and in animals. For example, the onset of 

experimentally induced RA and inflammation in rats is significantly decreased by inhibition of 

µ-calpain (Shahi et al., 2011). However, more work is needed in order to prove the role of µ-

calpain in the unwrinkling theory.

          Calpastatin is an endogenous binding partner of activated µ-calpain, via A, B and C 

domains (Wendt et al., 2004). From this binding it is possible to indicate the location of the 

activated calpain in the cell. Thus, domain IV of µ-calpain binds to domain A and domain VI 

of µ-calpain binds domain C. However, domain B requires binding between A and C domains 

in order to permit the binding to the activated µ-calpain (Bokor et al., 2005). Thus, domains 

A and C increase calpain activation, whereas domain B inhibits calpain activation (Yang et al., 

1994; Takano et al., 1995). 
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Figure 1.14 Mechanism for wrinkle release to provide the extra membrane needed for cell 
morphology changes. Holding wrinkles in two structure, (a) actin across the wrinkles by talin 
and (b) actin within the wrinkles by ezrin. Release of the additional membrane is proposed 
through the cleavage of both (c) talin and (d) ezrin, as a result of Ca2+ influx, allowing 
pseudopodia to be formed. (e) The possible connection between talin and ezrin is shown, 
whereby the FERM and actin-binding domains link to the calpain cleavage site. This figure is 
adapted from Hallet and Dewitt (2007). 

a
b

e

c
d



64 

1.7 Aims of the work in this thesis 

As discussed in the above overview of neutrophil function and cell surface topography, 

neutrophils are characterised by undergoing rapid cell shape change, especially during cell 

spreading and phagocytosis. In both situations, the cell changes from a spherical to a non-

spherical configuration. This must necessarily require additional cell surface membrane as a 

sphere is the minimum surface area to enclose a given volume. Although it has been 

proposed that this additional membrane may come from cell surface structures called 

wrinkles or microridges, it has not been possible to directly test this hypothesis.  

The work in this thesis therefore aims to test these proposals. 

 The aims can be put under three headings. 

1. Developing and establishing the validity of a novel methodology that can be used to 

monitor the cell surface topography (wrinkledness) of living neutrophils.  

2. Use this novel methodology to investigate whether changes in the surface topography 

that occur during neutrophil shape change in a manner consistent with the hypothesis that 

wrinkles provide the additional membrane for the shape change. 

3. To establish whether changes in cell surface topography were required for rapid 

neutrophil cell shape change. 
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Chapter 2 

Materials and Methods 
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2.1Materials 

Product Product source volume Chapter Used in 

Heparin CP Pharmaceuticals Ltd, U.K. 100µl Chapter (3 ,4 & 5)

Dextran Sigma-Aldrich Ltd, Dorset, U.K. 2.5ml Chapter (3 , 4 & 5)

Fluo-4 AM Invitrogen Ltd, Paisley, U.K. 1µl Chapter (4 & 5)

Zymosan A Sigma-Aldrich Ltd, Dorset, U.K. 10mg/ml Chapter (4 & 5)

IP3 (Caged) Enzo Life Sciences, Exeter, U.K. 1.5µl Chapter (5)

fMLP 
(N-Formyl-Met-LeuPhe)

Sigma-Aldrich Ltd, Dorset, U.K. 2µl/ml Chapter (5)

Bovine Serum Albumin
(BSA)

Sigma-Aldrich Ltd, Dorset, U.K. 100µl Chapter (3, 4 & 5)

HEPES Fisher Scientific, Leicester, U.K. 1ml Chapter (3, 4 & 5)

KCl Sigma-Aldrich Ltd, Dorset, U.K. 1ml Chapter (3, 4 & 5)

NaCl Sigma-Aldrich Ltd, Dorset, U.K. 50µl (1.2M) Chapter (3 & 5)

KH2PO4 Sigma-Aldrich Ltd, Dorset, U.K. 1ml Chapter (3, 4 & 5)

MgSO4 Sigma-Aldrich Ltd, Dorset, U.K. 1ml Chapter (3, 4 & 5)
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CaCl2 Sigma-Aldrich Ltd, Dorset, U.K. 1ml Chapter (3, 4 & 5)

Octanol Sigma-Aldrich Ltd, Dorset, U.K. 10µl / 1ml Chapter (5) 

Sucrose Sigma-Aldrich Ltd, Dorset, U.K. 50µl / 1.2M Chapter (5) 

DiI Sigma-Aldrich Ltd, Dorset, U.K. 1.1mM  Chapter (3, 4 & 5)

Deoxycholate Sigma-Aldrich Ltd, Dorset, U.K. 100µl Chapter (3 & 5)

Table 2.1 Laboratory Reagents & Chemicals
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2.1 Laboratory Equipment 

2.1.1 Microscopy 

CLSM Confocal Microscope (Leica, Milton Keynes, U.K). 

Leica SP5 resonant laser scanning microscope equipped with a UV diode laser    

(405nm) suitable for uncaging. 

 Scanning Electron Microscope (SEM).

2.1.2 Cell Counting equipment  

Cellometer® Automated Cell Count (Peqab Ltd., Fareham, U.K). 

2.2 Software 

Software Source 

Microsoft Excel 2010 Microsoft, Redmond, 

Washington,U.S.A. 

Microsoft PhotoEditor 3.0 Microsoft, Redmond, 

Washington,U.S.A. 

Microsoft Word 2010 Microsoft, Redmond, 

Washington,U.S.A. 

Leica Application Suite Advanced 

Fluorescence

Leica Microsystems

Microsoft Paint Version 5.1 Microsoft, Redmond, 

Washington,U.S.A.

Table 2.2 Computer software 
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2.3 Buffers  

Human neutrophils were suspended in Hepes Buffered Krebs (HBK) medium which had the 

following constituents.  

Substance  Concentration

NaCl 120mM

HEPES 25mM

KCl 4.8mM

KH2PO4 1.2mM

MgSO4.7H20 1.2mM

CaCl2.2H20 1.3mM

Bovine Serum Albumin (BSA) 0.1%  (v/v)

Table 2.3 Constituents of Hepes Buffered Krebs
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2.3.1 HBK preparation: 

 The HBK was prepared in double distilled water.  

 The NaCl and HEPES stock solutions were kept at 4°C.  

 The chemicals KCl, KH2PO4, MgSO4.7H20 and CaCl2.2H20 were dispensed into aliquots 

(20ml) which were kept at 4°C until required for use.  

 In order to generate fresh HBK medium, the BSA was prepared by diluting 10% (w/v) 

in ddH2O and frozen in aliquots of 1ml. For a concentration of 0.1% (w/v), the BSA 

was added to all the stock solutions in order to make a fresh HBK medium for every 

experiment and adjusted to pH7.4 using NaOH.  

2.3.2 Balanced Salt Solution (BSS)

BSS (0.13M-Nacl, 2.6mM-KCL, 8.0mM- Na2HPO4 and 1.83mM-KH2PO4, pH 7.4), was made in 

5 litre batches with double distilled water using the following quantities:  

40g-NaCl, 

1g-KCl, 

5.75g-Na2HPO4

1.0g –KH2PO4. 

This was then adjusted to pH7.4 using NaOH, aliquoted and heat autoclaved 20Psi for 

30mins. 
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2.4 Labelling & Detection Products 

2.4.1 Membrane probes

The following fluorescent membrane markers were used. 

Product Name Chemical Structures Manufacturing 

DiI

1,1' - Dioctadecyl - 3,3,3',3' -

tetramethylindocarbocyanine 

iodide

Sigma-Aldrich Ltd, 

Dorset, U.K.

FM 1-43

(N-(3-Triethylammoniumpropyl)-4-(4-

(Dibutylamino)Styryl) 

Pyridinium Dibromide)

Sigma-Aldrich Ltd, 

Dorset, U.K.

PHK26 -

Sigma-Aldrich Ltd, 

Dorset, U.K.

Table 2.4: Fluorescent probes tested for suitability for membrane labelling. 
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2.4.2 Deoxycholate 

          Deoxycholate (Doc) is a water-soluble ionic detergent. It was stored at 4°C. In order to 

avoid a formation of MW ~2000 micelles, it is necessary ensure the concentration does 

exceed 2mM in solution. Also failure to control the concentration can lead to a toxic cellular 

effect. In the studies reported here, Doc was used as an artificial plasma membrane 

expander (Rohm and Haas, 2006) (See Chapter 3 and 6 for details). 

2.4.3 Properties of deoxycholate 

Figure 2.1 The chemical structure of deoxycholate.
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The following lists the properties of Deoxycholate 

Alternative Names     Sodium deoxycholic acid; deoxycholate, sodium salt

Chemical Name      3, 12-α-Dihydroxy-5β-cholan-24-oic acid, monosodium salt

Molecular  Formula C24H39O4Na

Molecular Weight     414.6g

Detergent Class      Ionic (anionic)

Solubility (in water at 20°C) ≥5%

Absorbance (1% Detergent Solution) 340nm <0.02; 280nm <0.04; 260nm <0.06

pH (1% Solution) 5 to 9

Purity (by HPLC) ≥98%

Aggregation Number    5 (average)

Micelle Molecular Weight     2000g (average)

Critical Micelle Concentration (CMC)    2 to 6 mM (0.083 to 0.249%, w/v)

Cloud Point   Unknown
Dialyzable   Yes

Form Powder 

Product Size 5g 

Regent Type Detergent (Pure)

Table 2.5 The chemical structure and Properties of Deoxycholate, taken from website: 
www.thermofisher.com. 
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2.5 Methods  

 The following are methods that were used in the results chapters. 

2.5.1 Blood collection and neutrophil isolation protocol

           Neutrophils were isolated from the blood of healthy human donors ranging from 20- 

60 years old in all experiments as follows below:

Stage 1: Blood collection

           A volume of blood (10ml) was drawn and transferred in a tube containing of 100μl 

heparin (WOCKHARDT) as anti-coagulant (100μl/10ml blood; final concentration of 50IU per 

ml of blood). Blood samples were mixed gently after collection.  

Stage 2: Dextran sedimentation

          A volume of (2.5ml) of 6% dextran solution which was dissolved in BSS (6g dextran 

dissolved in 100 ml BSS, stored at 4°C) was added to the sample. This was determined to be 

the optimal dextran concentration to isolate the leukocytes. Sedimentation was allowed to 

proceed by leaving the cells for 30 mins at room temperature until three layers appeared: 

(from bottom to top) erythrocytes (red blood cells), leucocytes (buffy coat) and platelet-rich 

plasma. The buffy coat layer, consisting of white blood cells and plasma, was carefully 

aspirated and placed into clean tubes. This sample was centrifuged at 500g (RCF) for 1 min 

(break speed 3). Distilled water (1ml) was added to the cell pellet (re-suspended gently for 

10s) before osmolarity was restored by the addition of BSS (20ml). The sample was spun at 

500g for 1 min (break speed 3) and the cell pellet resuspended in Krebs buffer (1ml) and 

cooled in an ice bath until required (fig 2.1).  
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Stage 3: Ficoll  

          As experiments were to be performed on single cells, further purification was rarely 

necessary (living neutrophils were easily identified under phase contrast microscopy by 

virtue of their physical/morphological characteristics). Also centrifugation through Ficoll-

paque can have adverse effects on neutrophil subsequent behaviour. If it was required, 

however, the ficoll paque was layered under the white cell/granulocyte suspension 

produced in step 2 to form a physical gap between the ficoll: cell interface and the base of 

centrifuge tubes. Centrifugation at 350g (RCF) for 30 mins was undertaken and the interface 

cells discarded. The pelleted cells were carefully resuspended (to avoid mechanical 

activation) and washed 3 times to remove the ficoll. 

Stage 4: Cell viability 

         The morphological observation demonstrated that neutrophils had an intact plasma 

membrane (trypan blue exclusion) and 2-5 lobed nuclei (acridine orange staining). Freshly 

isolated human neutrophils were stained with DiI and studied for their morphology. All 

stained cells were viewed and imaged under the confocal microscope.  

2.5.2 Serum preparation 

           Human blood was taken without anticoagulant and left in glass universal vial to clot 

overnight at 4oC. Human serum was separated from clotted blood by centrifugation (10 mins 

at 1300g) to force fluid from the clot. This fluid was collected and centrifuged for a further 

(20,000g; 5 mins) in order to clear the fluid of red blood cells. The supernatant serum was 

stored at -20oC until required.  
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Figure 2.2 Blood neutrophil isolation. 
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2.5.3 Fluorescent labelling and detection (cell membrane labelling) 

          The fluorescent marker to be used in this project must have a good uptake into the 

plasma membrane and be reasonably photostable but also readily photo-bleachable when 

exposed to high laser intensity. Ideally, the marker should remain in the cell membrane 

without significant redistribution into other organelles, giving images with a bright thin layer 

around the cell. The markers listed in Table 2.4 were tested and DiI was identified as the 

most suitable marker. Membrane labelling was thus carried out using DiI in all experiments. 

DiI is a lipophilic carbocyanide (fig 2.3) which is weakly fluorescent in water, but highly 

fluorescent and moderately photostable when incorporated into cell membranes (Kobbert et 

al., 2000). Upon application of DiI, lateral diffusion occurs and staining of the entire cell 

membrane was observed, with minimal or no cellular toxicity. Therefore, DiI was utilised as 

an effective means of establishing fluorescence in neutrophil cell membranes. 
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       Figure 2.3 The structure of DiI. 
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The properties of DiI are listed below.

Alternative name DiI,  D282 and DiIC18

Chemical name 1,1'-dioctadecyl-3,3,3'3'-

tetramethylindocarbocyanine perchlorate

Molecular formula C59H97CIN2O4

Molecular weight 933.87g/mol

CAS number 41085-99-8 

Storage Store liquid/solid at room temperature (RT) 

Solubility Soluble in ethanol, methanol, DMF, DMSO 

Platform Fluorescence Microscopy

Detection Method Fluorescent

Sub-Cellular Localization Cell Membranes & Lipids

Table 2.6 Properties of DiI, taken from website: www.thermofisher.com.
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2.5.4 Fluorescence spectra

        The fluorescent properties of DiI (fig 2.4) give the possibility of imaging without 

bleaching, yet also allowing bleaching when required. The DiI-labeled plasma membrane of 

neutrophils was imaged using a Leica SP5 resonant laser scanning microscope and SP5 Leica 

software. Excitation at 543nm gave good fluorescence imaging with the emission collectors 

set to 600–750nm, but with little or no bleaching. When exciting at 488nm, photobleaching 

was achievable by increasing the laser power of the argon laser. This step was used to give 

good bleaching when required (see section 2.5.6). Imaging was therefore routinely achieved 

at 543nm excitation and photobleaching at 488nm (high power).  
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Figure 2.4 Fluorescence Spectra.  

This image is taken from Dil Stain (https://www.thermofisher.com/order/catalog/product/D282).
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2.5.5 The mechanism of labelling the cell membrane  

       DiI is a red-orange fluorescent, lipophilic carbocyanine marker which is able to insert the 

two long (C18 carbon) hydrocarbon chains into the plasma membrane and diffuses rapidly 

around the phospholipid bilayer of the membrane in order to stain the whole cell surface 

(Shiraishi et al., 1992). It was usually applied to cells in a DMSO solvent but generated DiI 

crystals when added to the cell suspension. The contacting between a crystal and a cell gave 

a rapid staining of the cell membrane. 

2.5.5.1 DiI staining method  

Stock 1 solution: 10mg/ml in DMSO to give 1.1mM   

Stock 2 solution: Stock 1 diluted in DMSO 1:11 (to give 1mM)  

The Stock 1 and Stock 2 solutions were stored at room temperature 

On day of experiment: 

1- Stock 2 was diluted in Krebs (4µl in 1000µl) to provide 4µM. 

2- This was added 1:1 to neutrophils on the cover slip (usually 100µl added to 100µl) to 

provide final concentration of 2M.  

3- After 2 minutes, non-cell associated extracellular DiI was removed by washing.  

4. A well stained cell was selected on which to undertake experiment. 
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2.5.6 Confocal imaging 

          Confocal microscopy of neutrophils was performed using an oil immersion lens at 

63×/1.2 NA. The microscope was equipped with an argon ion laser (for 488nm), a helium 

neon laser (for 543nm) and a helium-neon laser for (633nm). In order to avoid detection of 

autofluorescence background signals in images, laser intensities never exceeded 4% for the 

argon ion and 10% for the helium-neon laser, individually. The microscope was also 

equipped with an oil immersion objective ECPlan-Neofluor 40×/1.30 NA. During the 

experimental procedures, the neutrophils were kept active by maintaining the stage 

incubator temperature at 37°C. The images were analysed with the Leica Advanced 

Fluorescence software. 

2.5.7 Leica Microsystems  

          Leica Microsystems provides an advance fluorescence imaging software which was 

used for imaging. Image J (NIH) and purpose written software plugins were used for cell 

counting and other analysis of the data in this thesis. 

The following simple steps for data analysis were: 

• Leica microsystems image analysis software and Image J are available online from a 

number of free sources was installed on the analysis computer. 

• Using the Leica software, Open the chosen experimental data file from the saved 

experiment file. Choose “quantify”. 
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• If the image sequence is an AVI.file, or a TIF series it is necessary to “import” the data.  

• The images can then be quantified from within regions of interest (ROIs) selected in the 

field to produce date streams for numerical analysis within Excel. Scale bar and time stamps 

are automatically provided with the Leica software which is recalculated as the image size is 

adjusted (an example of screenshots is shown below).  
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Screenshots from the Leica Analysis software showing analysis of raw data in progress.
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2.5.8  Sub-domain FRAP procedure 

             FRAP experiments were performed on a Leica SP5 resonant scanner confocal microscope 

using a 63x objective. A region of the cell to be photobleached was identified by prior 

inspection. The zoom, rotation controls and image format (e.g. 512 x 512 pixels = full frame, 32 

x 512 pixels = a “letter box” shape) was used to limit the scan area to the desired region of the 

cell. Data were acquired from this restricted zone of the cell and photobleaching achieved when 

required by transiently stepping up the power of the argon laser. This resulted in a pulse of 

photobleaching restricted to that part of the cell. Data acquisition was continuous throughout 

the bleach pulse and the subsequent recovery cycle. This cycle could be repeated several times 

to give reproducible results or “before and after” treatment comparisons.

         Neutrophils were maintained at 37oC using an air-stream incubator and photobleaching 

was facilitated through a 40mW argon laser at 30% power; rectangular slices of 488nm and 

543nm lines were utilized. For each bleach pulse, a single iteration was performed lasting 

between 1-10s. For examination of recovery of fluorescence, the intensity of the 488nm laser 

was reduced to zero and imaging continued at the lower laser intensity 543nm line. The 

fluorescence recovery at subdomains within the bleached area was recorded. 

2.5.9 DiI as a membrane label 

          Honig and Hume have used DiI for studying anterograde and retrograde neuronal tracing 

(Honig and Hume, 1986). Hence, DiI is fluorescent lipophilic membrane stain that has a 

hydrophilic head and hydrophobic tail which embeds in the plasma membrane of the cell.  

Within the hydrophobic plasma membrane, its two lipophilic hydrocarbon side chains are 
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restrained and the quantum yield of the fluor increases (see the structure of DiI in fig 2.3). 

Before DiI is combined into the plasma membrane, it is therefore weakly fluorescent (Hofmann 

and Bleckmann, 1999; Honig and Hume, 1986). However, within the plasma membrane bilayer, 

it is extremely fluorescent and quite photostable (Michelle and Fox, 2007). Sherazee and 

Alvarez have shown that over the cell membrane, DiI is able to diffuse along the lipid bilayer of 

membranes. DiI diffusion laterally (Hofmann and Bleckmann, 1999; Honig and Hume, 1986) is 

sufficient to highlight dendrites and outline their spinous protrusions (Sherazee and Alvarez, 

2013). Because of its hydrophobicity, movement of DiI between membranes is typically 

insignificant (Hofmann and Bleckmann, 1999; Honig and Hume, 1986). 

           DiI is ideal for confocal laser scanning microscope and gives an extremely strong and 

robust fluorescence (Gan et al., 1999; Lanciego and Wouterlood, 2011). A study by Terasaki et 

al in (1994) has discovered that DiI stains many different live cell types and also can be used 

with fixed tissue (Terasaki et al., 1994). In addition, it is significant in labelling various species for 

example rodents, primates and zebrafish (Gan et al., 2000; O’Brien and Lummis, 2006; Seabold 

et al., 2010; Arsenault and O’Brien, 2013). Within brain tissue, a “gene gun” for gene injection 

has been used with “DiO listic labelling,” i.e. drops of DiI that are coated with the lipophilic dye 

(Lo et al., 1994).

5.10 DiI Labelling procedure (staining of neutrophil plasma membrane)   

           In 2011, a study by Westmark et al established protocols for DiI application (Westmark et 

al., 2011). Labelling with DiI was achieved by direct application of the dye crystal to the 

neutrophil plasma membrane. The preparation of DiI membrane staining solutions is shown in 
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section 2.5.5. Briefly, staining was achieved by applying dye working solution to 100µl of 

neutrophil on a coverslip. DiI solution and any crystals were washed by using 100µl of Krebs. 

Stained cells were identified by confocal microscopy and kept at 37°C. All images and movies of 

the cells were taken as soon as possible after the labelling, in order to reduce intracellular 

membrane staining.

2.5.11 Subdomain FRAP Theory 

            The theory behind the proposed methodology is that knowledge of the distance of 

diffusion of DiI in the membrane can be acquired from the rate of recovery after 

photobleaching. This can be seen by simulating the effect using Fick’s law of diffusion.  

2.5.11.1 Fick’s Law simulation 

Fick’s Law was used to simulate diffusion in the plane of the membrane. The effect of 

distance from the bleach front was thus theoretically observed. Essentially a section of 

membrane is considered to be divided into equal compartments, with the same area of contact 

to the next such that the flux in unit time (J) from each compartment to the next is driven to the 

concentration difference across the boundary between compartments. Fick’s Law is that J (C2-

C1) where J is the flux from one compartment to the next and C1 and C2 are the concentrations 

in each compartment. The concentrations at each unit step in time can thus be calculated in 

each membrane compartment (distant from the diffusion front) and be followed over time.

At the start, all compartments within the bleached zone are empty; and the 

concentration at the bleach boundary is 1000 molecules. If a constant of proportionality is 

taken to be 0.1, at the next time step, there will be 100 molecules in the first compartment 
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within the bleach zone. At the second time step, there will be 10 molecules in second bleach 

compartment (a tenth of the molecules previously in compartment 1), but 180 molecules in the 

first compartment as 10 molecules which are lost to compartment 2 but 90 molecules enter 

from the boundary (i.e. 0.1x(C2-C1)). At the third time step, there will be 1 molecule in the third 

compartment (a tenth of the molecules previously in compartment 2), 27 molecules in 

compartment 2 (1 molecule lost to compartment 3 but 18 molecules arrive from compartment

1 i.e. a tenth of the molecules previously in compartment 1) and 271 molecules in compartment 

1 (18 lost to compartment 2 but 82 arrive from outside the bleach zone (i.e. 0.1 x (C2-C1) and so 

on. It can be seen that the number of molecules increases in each compartment over time, but 

that the relationship between distance from the bleach zone and time is not obvious. For this 

reason the number of molecules in each compartment was calculated time step by using an 

algorithm in Excel. 

Using standard Excel calculation (shown in fig 2.5) the concentration in “cell D13”, for 

example is calculated as D13=D12+($C$2*C12)-($C$2*D12) where Xn is the fraction of 

molecules in compartment X at time step n and $C$2 is the fraction of molecules moving in 

each time step. By plotting the increase in concentration in each compartment over time the 

effect of distance from bleach front was observed (fig 2.5). Validation of the principle of 

sdFRAP, namely that the increase in fluorescence at various distances would depend on the 

distance therefore required an experimental demonstration that the way in which the 

fluorescence increased would be similar to that predicted by Fick’s Law. For this reason, smooth

(non-wrinkled) cell membrane was required, so that the linear distance could be measured. In 

both the smooth membrane of the fully stretched neutrophil tail and in the osmotically swollen 

cells where the membrane was fully stretched (prior to osmotic lysis), it was found that the 
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kinetics of the increase in intensity was similar to that predicted by Fick’s Law. Fick’s Law 

simulation was used here only to illustrate the expected relationships if the membrane was 

smooth (as in the tail and swollen cell membranes) and so provide validation of the theory 

underlying the sdFRAP methodology. Fick’s Law was not used to estimate diffusion distances in 

wrinkled membranes, as the difference in distances between smooth and wrinkled membranes 

were small. Instead, advantage was taken of the relationship between time and diffusion given 

by Einstein’s diffusion relationship: D x2/ where the diffusion coefficient, D, is proportional 

to the square of the distance travelled (x2) divided by the characteristic time taken (). In the 

stretched membrane situation this relationship was shown to hold, as the diffusion coefficient, 

D, was similar when calculated at various distances. The timing on the arrival of molecules at a 

defined distance from the bleach front simply followed Einstein’s equation.
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Figure 2.5 Fick’s Simulator. The figure shows a screen-shot of the Excel calculation used to 
predict  diffusion using Fick’s Law  Flux� (C1-C2), where the flux in unit time is proportional to 
the concentration difference between compartments C1 and C2. In the Excel sheet, column A is 
the unit-less time step (here simply a constant 1), the rows show the calculation for each 
subsequent time step, columns B - J are calculations for the signal increase at 9 adjacent 
“compartments” in the bleach zone and the insert shows the increase in fluorescence taken from 
the simulation by plotting the signal in 9 compartments against time. In this example, the 
concentration outside the bleach zone was unity (see cell B2), so that the recovery of 
fluorescence can be seen as a return to the starting value i.e. F/F0. The highlighted cell (D13) 
shows the algorithm in the upper function box (fx= D12 + ($C$2*C12)-($C$2*D12)) which was 
used in all cells.
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2.5.11.2 Relationship between diffusion rate to subdomain and cell surface topography  

            The diffusion coefficient, D (for DiI is a purely physical parameter), the time to arrive at a 

subdomain, depends on the actual diffusion distance.  In the equation D  x2/ x2 is the actual 

mean square displacement in time , which could be measured independently on smooth 

membranes. In membranes of unknown topography, y2 is the apparent mean square 

displacement on a wrinkled surface in time w. Given that the diffusion constant D for the 

molecule is unchanged y2/ x2=w/Y/x is thus a ratio of the diffusion path lengths on the 

smooth and wrinkled surfaces and is calculated from the measured parameters √ (w/). Since 

the area of a smooth and wrinkled surface is proportional to the pathlength squared, (w/) 

gives a measure of the wrinkledness of the surface between the photobleach front and the 

subdomain; and is used in this thesis as the topographical index (Ti).  

          Thus Ti= w/s, where w is the characteristic times for diffusion to the subdomain on the 

wrinkled cell surface and  is the characteristic time for diffusion to the subdomain on a smooth 

surface.  

2.5.11.3 Measurement of sdFRAP recovery rate constant  

         The recovery of fluorescence intensity in the subdomain will follow the exponential 

recovery curve, 

Intensity = 1- e-kt,

k is the recovery rate constant (s-1) and t is the time after bleaching. The value of k was 

measured by curve fitting the recovery curve to this theoretical curve. This was done by 
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subtracting the background fluorescence after bleaching and dividing by the maximum 

fluorescence that was reached  i.e. the normalised data was calculated as ( It-I0)/(Imax-I0), where 

It is the intensity at any time after bleaching,  I0 is the intensity after bleaching (time zero) and  

Imax is the intensity after full recovery (at infinite time). The recovery curve therefore moves 

from zero (after bleaching) to unity (after full recovery). The exponential rise in fluorescence is 

defined by the exponential rate constant k (fig 2.6). By varying the value of k, the best fit of the 

data to the curve was obtained (fig 2.7). It is seen that a small change in estimated k value 

causes a large mismatch to the actual data (fig 2.7). The “best fit” had the minimum residual 

error. The value of k was easily estimated from the data, as when k = t the theoretical curve 

would give a value of 1-e-1 (0.63). The time at which this value is achieved would be 1/k 

seconds. In the example shown, the k value was found to be 0.17s-1 by curve fitting; and the 

reciprocal value (the characteristic time of the curve) of 5.8 seconds is shown on the curve. 

Knowledge of the characteristic time (or the k value) describes the entire recovery curve. 
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Figure 2.6 A typical recovery curve with the theoretical curve superimposed. The Curve was 
calculated for a k value of 0.17s-1 and was the best fit. The dotted lines show the position of the 
curve at 1-(1/e) which is 0.63. This gives a characteristic time of 5.8s (or 1/0.17s-1).  
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Figure 2.7 The effect of varying the value of k over a narrow range (0.1-0.25s-1) in fitting the 
theoretical curve (smooth line) to the same experimental data. With a k value of 0.25s-1, the 
predicted line reaches the maximum too soon. With a k value of 0.10s-1, the predicted line 
reaches the maximum too slowly. However, with the “best fit” k value of 0.17s-1, the predicted 
line follows the actual data over the recovery period from zero to unity. 
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2.5.11.4 Comparison of sdFRAP recovery curves. 

            In order to compare fluorescent recovery curves, it was first necessary to normalise the 

data by calculating the “normalised intensity” i.e. ( It-I0)/(Imax-I0), where It is the intensity at any 

time after bleaching, I0 is the intensity after bleaching (time zero) and Imax is the intensity after 

full recovery (at infinite time). As the zero and maximum values are set, it allows the time of 

recovery (and the rate constant) to be compared directly. The reproducibility of the system was 

shown by the effects of two photo-bleaches performed under control conditions, (i.e. without 

any experimental manipulation between successive photo-bleaches). When undertaking this, it 

was found that the rate constants for each recovery were virtually identical. In many 

experiments, the same zone was bleached twice to test an experimental intervention between 

the first and second photo-bleach. Experimental manipulations were repeated on different cells 

and the resultant rate constants (K values) were compared experimentally using paired t-test 

(before and after treatment).   

           In the example shown in fig 2.8, successive bleaches have been compared. The raw data, 

the normalised intensity curves with fitted theoretical curves; and the two successive photo-

bleaches can be superimposed. The curves were also compared on a point by point basis (rather 

than as a single rate constant). The residual difference between the curves or residual “error” 

being the value at time t from curve 1 minus the value at the same time for curve 2, divided by 

the value in curve 1 i.e. residual = ( Ix1-Ix2/Ix12). If the curves are the same and difference are 

simply due to random noise, the sum of residuals would be zero ((res) = 0), as  result of the 

equal likelihood of positive and negative deviations. The mean of the residuals and the standard 

deviation of the data points was therefore used to perform a one sample t-test that the null 

hypothesis that the residual were not significantly different from zero. In the example shown in 
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fig 2.7, the mean residual was 0.00475 ± 0.037 (SD); n = 77. This was not significantly different 

from zero (p = 0.27) and showed that the curves were not significantly different. If this test 

failed, it would show that there was a different recovery rate (and hence diffusion path) after 

the two photobleaches. In all experiments shown, in which double bleaching was performed, 

the reproducibility was adequate to allow detection of differences in the rate constant if they 

occurred after experimental manipulation.   
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Figure 2.8 Reproducibility of sdFRAP recovery. (a) Shows a typical experiment in which double 
photobleaching of DiI on a labelled neutrophil is shown. The fluorescence intensity is shown as it 
changed with time. At zones 1 and 2 photobleaching was performed. (b) Displays the same data 
that have been compared for each recovery after normalisation. (c & d) Indicate the rate 
constant, k was estimated from the first and second bleaches. In both cases it was 0.21s-1.   



99 

2.5.11.5 Necessity of fluorescent signal normalisation (F/F0) 

          It was necessary to normalise the fluorescence intensity between different experiments  

because there were differences in the amount of DiI loaded into each cell and the detection 

sensitivity (laser strength and the PMT voltage) would be set to different parameters on 

different days. The standard method for normalising in this situation is to calculate the unit-less 

parameter F/F0, which will be a value of between zero (total bleaching) and 1 (total recovery). 

The fluorescence intensity in the zone on the cell which was bleached was measured after full 

recovery and taken F0 (i.e. the theoretical fluorescence at time zero being the recoverable 

fraction at photobleaching). The fluorescence intensity at every subsequent time point after 

bleaching (F) was divided by F0. This ensured that for every cell the theoretical initial 

fluorescence was unity (i.e. F0/F0) and was a minimum of zero (e.g. when bleaching reduced the 

intensity to zero). The recovery after bleaching was always between zero and 1 and the timing 

of recovery could easily be compared. For example, when the fluorescence had recovered to 

50% of the initial value, F/F0 would always be 0.5 regardless of the starting intensity of the cell. 

As each bleach step on the same cell was a separate determination of recovery before and after 

a treatment, there would be two F0 values, one for each pre-photobleach step. F/F0 values were 

then calculated after the first photobleach, taking F0 as the theoretical pre-photobleach 

intensity and F/F0 values were calculated for the second bleach using the intensity before the 

second bleach as the F0 value. In this way, recovery of F/F0 values in the same cell could be 

compared.   
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2.5.11.6  Change in membrane wrinkle coverage after osmotic treatment 

         Before osmotic shrinking or swelling, the actual surface area (SA) of the cell is W.4R, 

where R is apparent radius of the cell and w is the factor by which wrinkled membrane 

increases that area. After osmotic shrinking or swelling, the surface area (SA) = w.4rwhere r 

is the apparent new radius and W is the new factor by which wrinkled membrane increases that 

area.  

Since the actual SA does not change during osmotic shrinking or swelling:    

   W.4R= w.4r           or    W/w = (r/R)2

       Thus, if osmotic swelling causes the cell diameter to increase from 10m to 11m, the ratio 

W/w is √ (5/5.5) = approx. 0.95, i.e. the swollen cell has 5% less wrinkle coverage. If osmotic 

shrinking reduces the cell diameter from 10m to 8m, the W/w is √ (5/4) = 1.12, i.e. the 

shrunk cell has 12% more wrinkle coverage. 

2.5.11.7 Relationship between fluorescence recovery rate constant at the subdomain and 

diffusion distance

         The relationship x2 t for sdFRAP recovery at subdomains at defined distances times can 

be shown experimentally. The plasma membrane of the tail region of a spread neutrophil, 

labelled with DiI, was photobleached and fluorescence recovery recorded in 100nm square 

subdomains, 500nm apart as shown in the example in Chapter 3 (fig 3.9). Recovery from the 

entire region (FRAP) and from the subdomains (sdFRAP) within the bleached area are shown, 

together with half times of recovery from the equally spaced subdomains estimated from the 

raw data. The graphs show the relationship for all subdomains taken from 2 successive 

photobleaches. The insert shows the untreated data and the main graph the relationship 

between time and the square of the distance with the fitted linear regression (R2 = 0.97).  

However, estimating the t1/2 value is prone to error as it is taken from a single time point. In 

contrast, the characteristic time �can be estimated using all the data in the recovery curve. 
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Since the rise in fluorescence follows a simple exponential recovery It = 1-e-kt (where It is the 

intensity (as F/Fo) and time t and k is the rate constant (s-1), the reciprocal of the rate constant, 

k,  the characteristic time, �� also  describes the whole curve. Thus, fitting the recovery curve to 

the exponential equation to give the characteristic time is a robust descriptor of the sdFRAP 

recovery curves. It can simply be shown that the characteristic time, ��is the sdFRAP diffusion 

distance in the same way as the half-time, as follows. 

      The diffusion of molecules from a constant source (of n0 molecules) into the bleached zone 

follows the following relationship: 

n(x,t) is the concentration of molecules (n/no) at point x from the source at time t from onset of 

the concentration boundary (Berg, 1977; Bokshtein et al., 2005; Crank, 1980).  

Using the first 2 terms of the Taylor series to approximate the error function (erfc) gives the 

following simple expression. 

The concentration of fluor (or intensity as F/F0) after photobleaching within the subdomain at a 

distance x from the bleach front is thus given by   
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Thus, an intensity (conc. of fluor molecules) reaches a fraction of F0 (i.e. when F/F0 = f) within a 

subdomain at distance x when time is t: 

                                                                     x2 = (1-f)2. ��Dt 

The time for the intensity to rise to a defined fraction of the final concentration is in proportion 

to the square of its distance from the source. This is a fundamental property of diffusion. The 

time to reach ½ the equilibrium concentration (half time, t1/2) is thus given by x2 = (Dt1/2. 

The time to reach (1/e)th (characteristic time ) of the equilibrium concentration is  given by x2 = 

(. D. Both half time (t1/2) and characteristic time () thus obey the relationship x2 t and 

so give information of the diffusion distance.  

2.6 Phagocytosis  

2.6.1 Induction of Phagocytosis 

          Phagocytosis was induced using zymosan particles (10mg/ml) which were allowed to 

adhere to the glass coverslip. Free zymosan particles were washed away before allowing 

neutrophils to also adhere to the glass. On addition of normal human serum (1/10 dilution), 

complement was activated at the zymosan surface resulting in opsonisation of the particles 

(iC3b) and generation the chemoattractant C5a. Neutrophils near zymosan particles were thus 

induced to move towards the particles and undergo phagocytosis. The neutrophils were 

labelled by adding the DiI and then washed by adding Krebs medium. The images were taken 

during phagocytosis and FRAP experiments performed on chosen neutrophils at various stages 

of phagocytosis, including within phagosomes which were closed and those which were yet to 

close (i.e. open phagosomes).   

        FITC–conjugated zymosan particles were sometimes used, especially during the 

experimental manipulation of the surface topography by osmotic change. This enabled easier 
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analysis of the extent and rate of phagocytosis. Confocal images (or images sequences) were 

obtained during the process of phagocytosis.

2.6.2 Preparation of adherent zymosan   

           Zymosan particles, the cell wall of yeast saccharomyces cerevisiae comprising protein-

carbohydrate complexes, were used as the phagocytic stimulus in these experiments. Zymosan 

was stored as a powder and suspended for use in physiological Krebs medium by vortex mixing 

to give 1mg/ml zymosan suspension. Microscopic inspection of the zymosan suspension was 

made to check that there were few large aggregates and further vortex mixing undertaken if 

necessary to produce single zymosan particles, ellipsoid in shape having a larger diameter of 

about 2-3µm (Pillemer and Ecker, 1941). Zymosan particles were allowed to adhere to glass 

coverslips by placing a droplet of zymosan suspension on a clean coverslip and left at room 

temperature for at least 15 mins. Adherence of zymosan particles was monitored 

microscopically and incubation extended if necessary. Adherent zymosan particles were easily 

identified as their Brownian motion ceases when firm adherence is made. Non-adherent 

zymosan particles were washed away by the addition of excess medium with the aim of 

producing a sparse coverage of adherent zymosan particles with sufficient space between 

particles and neutrophils, so that they occupy the cover glass without touching. An ideal 

coverage was about 1-2 zymosan particle/ 400m2. These zymosan-coated coverslip could be 

prepared in advance of the experiment.  
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2.6.3 Induction of phagocytosis of adherent zymosan by neutrophils  

          While observing microscopically, human neutrophils were added to the coverslip coated 

with adherent zymosan particles. A field was selected in which a neutrophil and a particle were 

within the same field of view. The zoom facility was used to provide good imaging conditions.  

Normal human serum (prepared as previously described, section 2.7) was added to give a 1/10 

dilution. The reaction between complement within the serum and the zymosan cell wall 

generates C3bi, which opsonises the particle and at the same time C5a, a chemo-attractant, is 

produced. Within a short time (0-30s) neutrophils start to move towards the particle. Imaging 

sequences were often acquired at this time in order to capture the phagocytic event, which 

occurs when the front of the neutrophil is in contact with the zymosan particles.  

2.6.4 Preparation of C3bi- opsonised zymosan particles

          In some experiments, zymosan particles were opsonised with C3bi in vitro, so that the 

neutrophils were not exposed to C5a. Zymosan particles were opsonised by addition to the 

freshly prepared serum and incubated at 37oC for 30 mins. The zymosan was then centrifuged 

and washed repeatedly to remove the activated serum (containing C5a). These particles were 

treated as outlined in section 2.6.2. Under these conditions, contact between the neutrophils 

and the particles were allowed to occur by random chance. 

2.7 Fluorescent methods for measuring cytosolic Free Ca2+ concentration in neutrophils 

2.7.1 Fluorescent Ca2+  indicators

          Fluorescent probes for monitoring cytosolic free Ca2+ signalling using the confocal 

techniques have been assessed in neutrophils. The fluorescent probe Fluo-4 AM was normally 
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used to detect and measure Ca2+ changes in cells. It is a green fluorescent calcium indicator that

can be loaded quickly into neutrophils. Fluo-4 AM stock solutions, prepared by diluting 50µg of 

it into 10µl of a dry anhydrous DMSO, were kept at 20oC until required. 1µl of the prepared 

stock was loaded in a 1ml suspension of the cells.  In order to let the cells take up the dye and 

convert the acetoxymethyl ester to the free acid (i.e. Fluo-4 AM to Fluo-4), they were left at the 

room temperature for 30 mins before starting the experiment. 

2.7.2 Monitoring Ca2+ changes during FRAP experiments 

              After loading the cells with the Fluo-4 indicator, cells were left on the cover slip for 

about 5-8 mins at 37°C using an air-stream incubator. The cells were stained with DiI using the 

same methods described in (section 2.5.5). The changes of the Ca2+ were obtained throughout 

the bleaching of the tagged molecules in the neutrophil membrane using the sub-domain FRAP 

procedure described in section 2.5.8 and Chapter 3. Photobleaching was undertaken in two 

steps, one photobleach before stimulating of an elevating cytosolic Ca2+ and the other 

photobleach after stimulating an of elevating cytosolic Ca2+. The stimulation was achieved 

either by adding FMLP to the cells (1µM) or by uncaged cytosolic IP3 using brief UV exposure. 

The fluorescence Ca2+ indicator was excited by 488nm light and emitted light collected at 510 -

550nm. DiI was excited using the laser line at 543nm and bleaching performed as previously 

described (section 2.5.8) with maximum output of the 488nm laser line. There was no cross-talk 

between the signals. 
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2.8 Measurement of cell spreading

2.8.1 Measurement of spreading neutrophil diameters in cell populations 

The Cellometer automated cell counter machine was used as an automatic method for 

counting cells of defined diameter. Although this device is conventionally used for cell counting, 

the software uses a size threshold algorithm to distinguish “cells” from noise or debris. 

However, by setting size thresholds at different levels, a cell size distribution was generated so 

that a change in cell diameters within a population of cells was obtained in real time as they 

spread onto a surface. Thus, the spreading competencies of the whole neutrophil populations 

were achieved to determine the measurements for an individual cell. To measure and calculate 

the cell populations diameters in this experiment, the cell sizes were set from 7 to 20µm. In 

order to determine neutrophils spreading on a glass surface, it was necessary to modify the 

counting chamber by setting glass coverslips between the top and the bottom half of the chamber 

(fig 2.9). Neutrophils (10μl suspended in 500μl HBK medium) were added onto the adjusted 

Cellometer slides, using Pipette 20µl and left for two minutes to settle on the glass and spread 

spontaneously. The measuring time to the spreading diameters of neutrophils in the populations 

was within 15 mins. Data and images of the neutrophils spreading were recorded at defined 

intervals.  

         The data are described as mean +/- S.E.M. The means from different experiments were 

compared by one-way analysis of variance. The comparisons were made using Student’s t-test for 

unpaired values and the statistical significance set at p<0.05. Each of these experiments was 

repeated at least 5 times on different cell populations and at least 500 cell diameters recorded. 
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Figure 2.9 The Cellometer slides and glass coverslips for measuring the change in neutrophils 
diameters within a population. Inserting the glass coverslips allows spreading of the cells onto the 
surface and the slides were then attached back together. 
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2.8.2 Single neutrophil spreading measurements 

In order to establish the time course of spreading of individual cells, rather than a shift in 

population distribution of sizes, individual neutrophils were allowed to sediment onto glass 

coverslips at 37C whilst acquiring confocal images and the complete spreading event recorded.  

The diameter of the cell on each image of the recorded sequence was measured and the time of 

onset of spreading and maximum spread size determined. 

2.9 Scanning Electron Microscopy 

Neutrophils were fixed in suspension with glutaraldehyde (4%) overnight. The fixed cell 

suspension was filtered on to porous membranes to produce a stable population of fixed cells 

for dehydration and sputter coating with gold. Sputter coating is an ultra-thin coating of 

electrically-conducting material, deposited by low vacuum coating of the sample. This is done to 

produce a faithful reflection of the surface contours of the cells and to increase the amount of 

secondary electrons that can be detected from the surface of the sample, thereby increasing 

the signal-to-noise ratio. It also prevents charging of the specimen which would occur during 

imaging by the accumulation of static electric fields as a result of electron irradiation. The gold-

coated sedimented neutrophils were imaged using a JEOL 840A scanning electron microscope 

(Joel UK, Hertfordshire, UK) within the Electronic Microscopy Unit of Cardiff University Medical 

School, operated by Dr Chris von Ruhland. Images were acquired using analySIS (Munster, 

Germany) and quantified using ImageJ. 
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2.10 Statistical analysis 

        Data in this thesis were analysed using Excel or GraphPad Prism 5.01 software (GraphPad 

software Inc). Where possible, one-way ANOVA of variance with Bonferroni post-hoc testing 

(with correction for multiple tests) or t-test was performed for normally distributed data. For 

non-parametric data the comparisons were made using Kruskal-Wallis test/ Dunn's Multiple 

Comparison post-tests or Mann Whitney U tests especially when the sample size was small. 

Results were viewed as statistically significant when the p value <0.05.  
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Chapter 3 

Developing a new method for 

monitoring cell surface topography in 

live cells 
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3.1 Introduction 

        At present, there are no methods for investigating surface topography in living cells. A new 

method is therefore needed. In this chapter, I will describe how subdomain FRAP (fluorescence 

recovery after photo-bleaching) may be used to provide information of the cell surface 

topography. It is well known that fluorescence tagged molecules within living cells are useful for 

examining and measuring dynamic cellular events. FRAP has been employed to study the 

movement of molecules within living cells. As the method depends on monitoring the recovery 

of fluorescence following photobleaching of tagged molecules, it may also be useful for 

monitoring cell surface topography (Reits and Neefjes, 2001). In this chapter, data will be 

presented to show that the movement of cell surface fluorescent molecules can reveal the 

distance that diffusion has occurred, this can be used to examine the cell surface topography.

3.1.1 Fluorescence and photobleaching 

        Within cold bodies, fluorescence is an optical phenomenon that results from absorbance of 

light of a specific wavelength by certain molecules. After a short delay, the same molecule emits 

a lower energy photon and hence light of a longer wavelength. The delay is known as the 

fluorescence lifetime. The change in energy between the absorbed and produced photons is the 

result of molecular vibrations during absorbance (excitation). As a result of the absorbance of 

energy by the molecule, bonds can be broken and covalent modification occurs such that the 

fluorophore is no longer fluorescent. This photon-induced chemical damage is irreversible and 

is called photobleaching and the features of photobleaching differ in each fluorophore. Before 

the molecules of the fluorophore are irreversibly photobleached, they experience a number of 



112 

absorption-emission cycles. The average number of excitation and emission cycles is 

determined by the local environment and by the molecular structure and fluorophore-specific 

property (Dittrich and Schwille, 2001).   

          Photobleaching is linked to the process of transition from an excited singlet state to the 

excited triplet state, a method termed intersystem crossing. However, the particular 

photobleaching mechanism is not yet identified. When the excited molecules withdraw from 

the absorption-emission cycle, they have a much longer timeframe and are able to undergo 

chemical reactions with components in the environment, which may form the basis for 

bleaching reactions. This is because the triplet state is relatively long-lived with respect to the 

singlet state. Emitting a few photons will cause rapid bleaching to some fluorophores. However, 

more robust fluorophores may possibly go through thousands or millions of cycles before 

bleaching (Dittrich and Schwille, 2001). 

3.1.2 Principle of confocal laser scanning microscopy  

          In the mid-1950s, the basic concept of confocal microscopy was first established by 

Marvin Minsky (Minsky, 1988). This microscopy is known to be an important tool for a wide 

collection of studies in the biological and medical sciences. Thus, it has the ability to image thin 

optical sections in living and fixed samples reaching around 100µm in thickness. Also, it is 

considered to be a great standard tool for achieving FRAP experiments. The modern tools have 

been equipped with 3 to 5 laser systems that are regulated via high-speed acousto-optic 

tunable filters (AOTFs). Photomultiplier tubes, connected to the confocal microscope, have the 
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ability to measure the emission of fluorescence between 400 and 750nm. Through this 

connection, it shows high quantum efficiency in the near-ultraviolet, visible and near-infrared 

spectral regions. The laser systems are useful for very specific control of wavelength and 

excitation intensity. Also, this microscopy has spectral imaging detection systems that enable 

advanced refinement of the technique. This includes fluorophore resolution with overlapping 

spectra and also provides the ability to compensate for autofluorescence (Minsky, 1988).  

          Synthetic and naturally occurring molecular probes such as fluorescent proteins and 

quantum dots have been improved due to the recent advances in fluorophore design. 

Therefore, these molecular probes may display a great level of photo stability and target 

specificity (Pawley, 1995). The light source of a laser scanning microscope is one or more 

laser(s). The use of a laser as illumination source has two major consequences. The excitation 

light bandwidth is determined by the source and not by an excitation filter and thus is much 

narrower than in fluorescence microscopy (2 - 3nm rather than 20 - 30nm).  

          Illumination of the total visual field is achieved by scanning the sample with the laser 

beam sequentially point by point and line by line. The photomultiplier tube (PMT) is used to 

measure the fluorescence emitted at each point and the image construction is achieved 

through collecting all the pixel data into single image (fig 3.1). There is a huge benefit of this 

technique of illumination through the possibility of selecting regions of the visual field to 

illuminate. The fundamentally significant point to the confocal method is realised by eliminating 

the out-of-focus light in specimens. This can be seen using a spatial filtering technique with 

thickness, which is able to go above the immediate plane of focus. PMT can record only light 
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from the focal plane due to its location behind the pinhole. Thus, confocal microscopy is able to 

image optical slices of the specimen, that can be done either by high contrast or through high 

resolution in x, y and z. From the focal plane, it is possible to record (optical slices) single images 

once the focus plane is moved in z-direction and then processing the slides together will provide 

a reconstructed image of the 3-dimensional object (Michael, 2015).
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Figure 3.1 Confocal laser scanning microscope. The whole visual field is achieved and scanned 
due to the laser beam that causes the illumination. The out of focus light is decreased by a 
pinhole [Taken from (Michael, 2015)].  
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3.1.3 Theory of FRAP experiments  

         FRAP is achieved by introducing a rapid shift away from the steady-state distribution of 

fluorescent molecules without disrupting the actual concentration of the molecule under study 

(Robert and Misteli, 2001). FRAP experiment is realised when irreversible photobleaching of 

fluorescent molecules in the cell membrane are bleached by an increased localised focus argon 

laser beam (Reits and Neefjes, 2001) (fig 3.2). This generates conditions where the probe 

molecules in the illuminated region are bleached and recovery occurs when they are replaced 

by fluorescent molecules in the surrounding unilluminated region. This leads to a mixture of 

fluorescent and non-fluorescent molecules over time until a steady-state distribution is reached 

(Robert and Misteli, 2001). The movement of the non-bleached fluorescent molecules into the 

bleached area leads to a recovery of fluorescence, which is recorded at low laser power (Robert 

and Misteli, 2001). The rate of recovery of fluorescence is limited by diffusion and the distance 

molecules must travel. If a subdomain within the bleached area is monitored, the distance of 

the subdomain to the bleach front is known in 1 dimension (D) and thus the time taken for 

molecules to arrive is limited by its 2D travel distance (fig 3.3). Since the diffusion constant of a 

particular probe is fixed, changes in the recovery rate will reflect changes in the distance 

travelled by the molecule (Reits and Neefjes, 2001) in 2D but also as a result of the ‘non-flat’ 

topography (fig 3.3). This will therefore give an indication of the cell surface topography in the 

bleached region of the cells. 
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Figure 3.2 Representation of the FRAP process. These diagrams illustrate the process of 
photobleaching of fluorescent-labeled cell molecules. The images [taken from (Terjung, 2011)], 
illustrate the need to consider the diffusion speed and exchange rate between the bleached and 
non-bleached regions. The lower time series (pre-bleach, bleach within red zone and post-bleach 
recovery of fluorescence) demonstrates that fluorescently labelled molecules can be specifically 
bleached and that diffusion follows this process, leading to delineation of the bleached area and 
a rise in relative fluorescence.  

Adherent 

Fluorescence recovery after photobleaching
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Figure 3.3 The diagram shows the apparent diffusion distance of a molecule in 2D and the actual 

3D distance travelled as a result of a non-flat topography. [Taken from (Naji and Brown, 2007)] 

“Spherical”
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3.2 Aim of this chapter  

          The aim of the work in this chapter is to develop a method for monitoring the cell surface 

topography. This will be achieved by using a novel variation on standard FRAP whereby the 

recovery of the fluorescent signal at a bleached region of membrane is recorded at a define 

distance from the bleach front. The time for molecules to arrive at this region (or sub-domain) 

will depend on the pathlength for diffusion. The methodology will be set up, optimised and the 

validity of these measurements established by experimental manipulation of the neutrophil 

plasma membrane. The new method is called subdomain FRAP (sdFRAP) to distinguish it from 

conventional FRAP. 
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3.3 Results  

3.3.1 Fluorescent labelling the neutrophil plasma membrane  

          Initial experiments were conducted in order to determine the most suitable means of 

labelling neutrophil membranes for fluorescence detection. Several probes were investigated of 

which DiI, PHK26 and FM generated significant plasma membrane staining (fig 3.4 A). However, 

FM1-43 and PHK26 dyes were not suitable markers to label the plasma membrane of the cells, 

as they provided low quality images and resulted in a large number of crystals that might affect 

the experimental outcomes. In contrast, DiI was a more appropriate dye giving specific and 

clear membrane labelling. Therefore, cells labelled with DiI were investigated regarding their 

bleaching properties. Significant bleaching was achieved at 488nm illumination, 15s of 

bleaching reducing the signal from 200 to 60 arbitrary units. It was apparent that DiI labelling 

varied between different cells, with staining appearing ‘thicker’ in some cells than others. This 

was attributed to the ability of DiI to report on the extent of membrane wrinkledness (thicker 

staining), more wrinkled, (fig 3.4b). It was also seen that two different cells bleached at the 

same time, had different results, one cell bleaching very slowly and recovering very quickly; and 

the second bleaching very quickly and recovering very slowly.
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Figure 3.4 Efficiency of markers for cell surface topography measurements. (A) The fluorescent 
and phase contrast confocal images of living neutrophils stained with DiI, PHK26 or FM1-43 are 
shown. (B) Visual inspection of the apparent thickness of peripheral DiI staining in spread and 
“bloated” cells suggested that the DiI reported different states of membrane wrinkledness and 
thus these preliminary results suggested that the signal from DiI was sensitive to surface 
topography. Each image shown is typical of at least 10 other cells observed. This experiment was 
achieved four times on a single day and it was repeated six alternative days and neutrophils 
were sourced from four separate donors.  
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3.3.2 Photo-bleaching and recovery characteristics of DiI in the neutrophil membrane  

          Following identification of DiI as a suitable marker for cell surface topographic changes, it 

was necessary to characterize FRAP in order to understand these changes during further 

experimentation. The FRAP signal from normal neutrophils is shown in the explanatory diagram 

(fig 3.5), where (a) indicates the initial intensity at the membrane,  (b) the fluorescence intensity 

decrease as a result of photo-bleaching,  (c) a gradual recovery in intensity as diffusion occurs to 

the point of measurement and (d) the steady state level reached within 70s. The pre- and post-

bleach levels indicated as x and y values were used to calculate the equilibrium recovery of 

fluorescence ((y/x) x 100 = % recovery).  

         In this example, the bleach zone was about 10% of the cell surface and thus 10% of the 

molecules were bleached. This means that at full recovery, the intensity cannot be 100% of the 

starting value; but instead it is (100-10)% i.e. 90%. When calculating recovery kinetics (or 

recovery time), it is obviously important that final equilibrium level is used (defined as F0). The 

extent of the reduction in the equilibrium level after photobleaching is dependent on the area 

bleached and, importantly, the duration of the photobleaching. If photobleaching requires too 

long a duration, because it is inefficient (or the probe is resistant to bleaching), diffusion of 

fluorescent marker molecules into the slowly bleaching zone will occur and they will also 

become bleached. If bleaching is very slow, all the molecules in the cell will be bleached. Thus, it 

is important that DiI can be bleached efficiently so that sufficient fluorescent molecules remain 

for the recovery to be measured. The data shown in (fig 3.5), therefore show that DiI has 

acceptable “bleach-and-recovery” characteristics to be used in this study. 



123 

Figure 3.5 Bleach-and-Recovery of DiI in the neutrophil plasma membrane. The data are taken 
from a typical “bleach-and-recovery” experiment. (a) Is the initial intensity before the elevation 
of the signal at the point of photobleaching (resulting from the increased laser strength required 
for photobleaching, it peaks at 255 units, the maximum (8 - bit) signal of the detection system).   
As this is not relevant to the data, in most other examples given in this thesis it has been 
removed. However, for completeness, it is shown here together with (a) the initial intensity at 
the membrane, (b) the fluorescence intensity after photo-bleaching, (c) the recovery phase and 
(d) the steady state level. X and Y show the pre- and post photobleach fluorescence levels used 
to calculate the percentage recovery. 
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3.3.3 Validation of sdFRAP as a measure of distance 

           The aim of the sub-domain FRAP (sdFRAP) methodology is to measure the diffusion 

distance on the neutrophil surface. In this way, information will be gained about the cell surface 

topography. In order to assess the ability of sdFRAP to monitor diffusion distance, a flat 

membrane with no topographical features would be required. Once spread onto a glass surface, 

neutrophils polarise to form a leading edge and a uropod or “tail”. The “tail” can spread to a 

surprising degree and will form a large flattened membrane. The 2D distance on this flat surface 

will be equivalent to the diffusion distance and so provided a test of the sdFRAP methodology.  

The diffusion of DiI into the tail region following photobleaching showed that diffusion was 

unimpeded and DiI diffused into the main part of the tail and along its smaller “branches” (fig 

3.6). This experiment clearly showed that the recovery kinetics depend on the position of the 

measurement subdomain, the further from the bleach front, the slower the recovery of 

fluorescence (fig 3.7). The recovery after photobleaching was monitored by confocal laser 

scanning microscopy as a continuous time course (which can be viewed as a movie).

        By recording the intensity of DiI in defined regions within the bleached tail (i.e. FRAP 

subdomains), there was a clear delay in achieving half maximum signal which was related to the 

distance from the bleach front. At 4m and 8m from the boundary the half times were 11s 

and 32s, respectively (fig 3.8). These times correspond to the same diffusion constant (of about 

1.43m2/s) and are thus consistent with simple diffusion on a flat surface. The shape of the 

recovery curves was also dependent of the distance. A simulation of the kinetics of diffusion 

over a linear path can be generated using Fick’s law of diffusion (fig 3.8). 
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Briefly, in this diffusion simulator (see Chapter 2.5.11.1: Fick’s Law simulation), a section of 

membrane, divided into equal compartments, with the same area of contact to the next such 

that the flux in unit time (J) from each compartment to the next is driven by the concentration 

difference across the boundary between compartments. This follows Fick’s Law: J (C2 - C1) 

where J is the flux from one compartment to the next and C1 and C2 are the concentrations in 

each compartment. The concentrations at each unit step in time in each membrane 

compartment (distant from the diffusion front) were thus calculated and the change in 

concentration over time plotted for different subdomains (fig 3.8). In this simple simulation, the 

effect of measuring the concentration at distances remote from the bleach front can be seen 

(fig 3.8), with delays in fluorescence recovery occurring at increasing distances, as well as 

differences in rates of recovery. 

           It can be seen that there is an agreement between the theoretical (fig 3.8) and observed 

(fig 3.7) shapes of the recovery curves. sdFRAP would therefore be potentially useful in 

interrogating the surface topography of neutrophils. A deviation from the “flat” diffusion 

kinetics which was seen in the flat tail, would indicate that the diffusion pathlength was longer 

and thus that the surface was not flat but had “hills and valleys”. Furthermore, there is a 

relationship between the diffusion distance and the half time for fluorescence recovery at the 

subdomains is shown in figure 3.9. As before, the plasma membrane of the tail region of a 

spread neutrophil, labelled with DiI, was photobleached. The fluorescence recovery was 

recorded in 100nm square subdomains, each 500nm apart. The graphs show the relationship 

for all subdomains taken from 2 successive photobleaches and the method for determining the 

relationship between time and the square of the distance. As predicted, the diffusion constant 
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for DiI constant, D, t (0.5) was proportional to the diffusion distance, with a linear regression  R2 = 

0.97. This relationship between either the half time or the characteristic time (see section 

2.5.11.7) can be used to establish the diffusion distance (section 2.5.11.3). As the characteristic 

time is the inverse of the rate constant, it will be important to use the recovery data curve to 

find the rate constant.  
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Figure 3.6 Diffusion of DiI into the flattened neutrophil tail. The upper image shows the 
distribution of DiI in the membrane of an entire spread and polarised neutrophil  with the cell 
body and the flattened and branching tail (to the right). Photobleaching was achieved by 
zooming in to the required region of the cell as indicated in the lower panel. The 488nm laser 
intensity was then increased to maximum sufficient time to achieve significant photobleaching 
(1 - 15). Areas of the cell outside the bleach zone were not exposed to this high intensity laser 
excitation. The lower set of images show the tail region within the bleach zone before and at the 
time of photobleaching (time zero), followed by images at 10 and 30 seconds after bleaching. 
This experiment gave similar results when performed on at least five similar polarised cells from 
two different blood donors on two separate days and similar quantitative results were obtained 
from at least 20 subdomain locations. 
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Figure 3.7 Kinetic sdFRAP measurement in the neutrophil tail. The image shows the position of 
three measurement subdomains within the bleach zone (see fig 3.6); each zone is 4m apart i.e. 
4, 8, 12m from the photo-bleach front. The raw data from each subdomain is shown as 
indicated on the continuous recording below, with the yellow line being at 4m from the bleach 
front and the black and pink lines being at 8m and 12m from the bleach front. In this 
experiment, two cycles of bleach and recovery were taken. Both cycles gave the same results 
and the estimated diffusion constant D (= dist2/time) gave similar values from all the sites. Scale 
bar is 4.71m. Similar quantitative results were obtained from at least 20 subdomain locations.

Bleach                                                 Bleach 
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Figure 3.8   Fick’s law simulation of sdFRAP. The graph shows the result of simulating Fick’s Law 
of diffusion in silico. Each curve shows the recovery of fluorescence at a subdomain increasingly 
remotes from the photobleach front. The distance between subdomains (x = distance from 
subdomain) and the time (t) for recovery are in arbitrary units but are linked by the diffusion 
constant relationship D, x2  t. The intensity is given as (F/F0) on the y axis. (See section 2.5.11.5 
for explanation of (F/F0 )).         
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Figure 3.9 The relationship between diffusion distance and sdFRAP recovery. The DiI-labelled neutrophil tail was photobleached and 
fluorescence recovery recorded in 100nm square subdomains, 500nm apart as shown in the images. (A) Recovery from the entire region (FRAP) 
and from equally spaced subdomains (sdFRAP) are shown (top panel). Fluorescence recovery after two successive photobleaches is shown. The 
half times (t1/2) of recovery for each subdomain is shown (lower panel). (B) The relationship between halftime for recovery (t1/2) and distance 
from bleach zone at all subdomains is shown. The raw t1/2 data is in the insert, with the main graph showing the relationship between time and 
the square of the distance with the fitted linear regression (R2 = 0.97). 

Time (S)

FRAP sdFRAP

(A) (B)



131 

3.3.4 sdFRAP of DiI in the stretched neutrophil plasma membrane 

          In order to test whether sdFRAP would accurately measure diffusion distance in 

regions of smooth neutrophil plasma membrane other than the tail, it was necessary to 

generate smooth plasma membrane in regions of the plasma membrane that were not 

adhered to the underlying substrate. This was achieved by osmotically swelling the cells to 

near their lytic point, when any wrinkled membrane would be unfurled by lateral tension.  

Neutrophils were therefore subjected to extreme osmotic swelling to generate “bloated” 

spherical cells with a smooth (non-wrinkled) surface by dilution of the bathing physiological 

medium (fig 3.10).  

          The recovery of fluorescence in subdomains within the smoothed membrane (fig 3.11) 

also followed the prediction made from the Fick’s Law simulation. Also, the recovery curves 

gave a similar estimate of the diffusion constant D as in the neutrophil tail, D = 1.2 ± 0.3 

m2/s (n = 3) but was slightly reduced from the value obtained in the flattened tail region of 

the cell. This may suggest that the swollen cell membrane was not as fully extended as the 

tail region. Testing the rates of recovery in subdomains on a smooth (non-wrinkled) surface 

(which was not adherent to the glass) was a further demonstration that our system monitors 

diffusion distances. From these studies, it was concluded that sdFRAP could monitor the 

diffusion distance when used in the lateral diffusion along the membrane. 
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Figure 3.10 Lateral diffusion of DiI in the stretched neutrophil membrane. The confocal image 
on the left shows the DiI distribution in an osmotically swollen neutrophil. A region of plasma 
membrane remote from the nuclear and granular content (which also stains with DiI as 
indicated above) was chosen as indicated. This region was subjected to photobleaching and 
the recovery monitored in 3 sub-domains as shown in image (a) on the right. The sequence 
on the right shows (a) the region of stretched plasma membrane before photobleaching, (b) 
immediately after bleaching, (c) 10s, (c) 20s and (d) 30s after the bleaching.  
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Figure 3.11 Kinetic sdFRAP measurement in the stretched neutrophil membrane. The 
measurement of the sdFRAP was taken in the three subdomains shown in fig 3.10 a. The 
diffusion distances from the bleach front are indicated alongside the three lines (1, 2 and 3). 
The sdFRAP on a swollen cell surface showed the same relationship between subdomain 
distance and recovery (i.e. time to recovery increases with increasing distance). It is 
interesting that this is not quite as quick as in the tail (figure 3.7) and therefore it is possible 
that there were still some wrinkled regions of membrane even under these conditions. This 
experiment was typical of five other experiments, which were repeated on different days with 
neutrophils from at least two blood donors.  

1

2

3
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3.3.5 Sub-domain FRAP characterisation of topography of non-spread neutrophils

           In these previous experiments, the time delays before fluorescence appeared at a 

subdomain were evident. This was because the diffusion distances were large. For example, 

the tail length was over 10µm. It would not be possible to achieve such large diffusion 

distances in other regions of the neutrophil (e.g. the phagocytic cup is only 2-3µm diameter). 

Therefore, in the remainder of experiments reported here, simple time delays cannot be 

recorded and instead the rate of recovery was measured at a defined location within the 

bleach zone (i.e. a sub-domain) for comparisons between different neutrophil states.  The 

recovery rate, k, (s-1) is the inverse of the characteristic time(s) for recovery (see section 

2.5.11.3 for the calculation of k value). After bleaching part of the non-stretched membrane 

of the neutrophil, the sdFRAP signal was similar to those observed previously (fig 3.12).  The 

fluorescence recovery can be fitted to an exponential curve (fig 3.13). 

F/F0= 1-e-kt        equation 1 

F0 is the equilibrium fluorescence; F is the fluorescence at time, t, after the   

                 photobleach and k is the exponential decay constant in units of s-1. 

          The value of k was estimated using a log transformation of the recovery of 

fluorescence, which was linear with a slope equal to -k. In four normal cells (Table 3.1), at a 

2m subdomain, k was found to be 0.15 ± 0.02s-1 (mean ± sd). The rate constant is the 
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reciprocal of the “characteristic time” (see section 2.5.11.2 in for explanation) in the 

standard diffusion equation: 

D �x2/� equation 	

D is the diffusion constant (m2/s), is the characteristic time in seconds and x is the 

distance in m.    

          In the spread neutrophil tail (see section 3.4.3), the characteristic time at a 2µm 

subdomain was approx. 2.86s; giving a k value of 0.35s-1. The characteristic time in normal 

neutrophils was significantly longer than in stretched membrane (p<0.05). This analysis 

shows that in round (non-spread) neutrophils, the surface is significantly more wrinkled that 

in the tail of the spread neutrophil. The diffusion path length compared to the flat tail will be 

given by √ (w/s) and the wrinkled area is simply ws (where w and s are the 

characteristic recovery times for the wrinkled and smooth surfaces) (see section 2.5.11.2 for 

explanation).  

          The sdFRAP data therefore shows that the normal neutrophil has a wrinkled 

topography that increases the diffusion distance on the cell surface by 1.6 fold and also 

increases the surface area by 2.56 fold. Thus, the cell body has wrinkles that would provide 

approximately 150% additional membrane which would be sufficient to act as a reservoir for 

either cell spreading or phagocytosis. For simplicity, the term ws will be called the 
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topographical index (Ti), as this indicates the apparent fold increase in diffusion area in 2D as 

a result of surface topography in 3D. It has been difficult to quantify this parameter 

previously in either fixed cells using SEM or AFM, or in live cells using AFM. This quantitation 

may thus represent the first direct measurement of the extent of the membrane “reservoir” 

afforded by cell surface topography in a living cell. 
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Figure 3.12 Recovery of DiI fluorescence in a subdomain after photobleaching in non-spread 
neutrophils. The data shown is from a typical experiment in which the plasma membrane of a 
non-fully spread neutrophil (top left) has been photo-bleached in the area shown on the top 
right sequence of bleach and recovery (pre-bleach and 0, 16, 22 and 54s post bleach). 
Recovery was measured in the sub-domain (indicated in lower panel) from the sequence of 
recovery images and the subdomain recovery time course is shown (graph). This experiment 
is typical of four other experiments which were studied on two different days. Two different 
donors provided the blood. 
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Figure 3.13 Analysis of kinetics of sdFRAP recovery. On the left is the recovery kinetics of the 
experiment shown in fig 3.12 with a superimposed smooth line for F/F0 = 1-e-kt. The value of k 
was adjusted to give the ”best fit”. In this case k was estimated to be 0.17s-1. On the right the   
log transformed data is shown. This confirms that when t = 0, F/F0 = 1 and that the 
relationship is linear with a slope of – k.  



139 

Normal cell K (s-1)

Cell 1 0.17s-1

Cell 2 0.15s-1

Cell 3 0.15s-1

Cell 4 0.13s-1

Mean 0.15s-1

sd 0.01633

sem 0.008165

Table 3.1 K values estimated from 4 random cells using the analysis shown in fig 3.13. The 

mean, the standard deviation (sd) and the standard error of the mean (sem are also shown). 
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3.3.6 Sub-domain FRAP of DiI in the plasma membrane of artificially wrinkled neutrophils

          In order to test whether a change in cell surface topography would impact on the 

measured sub-domain recovery rate constant, the effect of osmotically shrinking neutrophils 

was investigated. As the cell volume would be decreased as a result of osmotic shrinking, but 

the plasma membrane would not, the surface area of the cell would necessarily increase its 

wrinkledness at both microscopic and sub-microscopic levels. When sdFRAP analysis was 

performed on neutrophils shrunk by an increased extracellular NaCl concentration, there 

was a striking decrease in the measured k value from 0.14s-1 before shrinking to 0.03s-1 (fig 

3.16 a). The characteristic recovery times increased from 7s before shrinking to 33s in the 

shrunk state (fig 3.15, fig 3.16). Cell shrinking caused a significant decrease in value K value 

from 0.12 ± 0.2s-1 to 0.04 ± 0.03s-1 (mean sd, n = 3) (fig 3.17, Table 3.2). Since these data 

were derived from before and after measurements on the same cell, a paired t-test was 

used and showed the difference to be highly significant (p<0.004).   

These observations were consistent with the increased diffusion distance expected in 

the shrunk cell. It was concluded that the increase in cell surface wrinkledness induced by 

shrinking could be easily detected by this method. 
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Figure 3.15 Osmotic shrinking of DiI labelled neutrophils. (a) A confocal image of a DiI loaded 
neutrophil prior to the experiment. The rectangle shows the region expanded on the right. (b) 
The expanded region at various stages of the experiment i.e. before osmotic shrinking and at 
the first bleach; then after osmotic shrinking (shrunk) with NaCl and then at the second 
bleach. The final image of the sequence shows the ability of the cell to recover its initial non-
shrunk state. This experiment was repeated four times on neutrophils isolated from the blood 
of at least three different donors, on three separate days.   
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Figure 3.16 The effect of osmotically induced wrinkles on the kinetics of sdFRAP. The 
measurement of the sdFRAP was taken before and after osmotic shrinkage. The 
characteristic diffusion times are indicated after each bleach recovery cycle. At the arrow, the 
osmotic strength was increased by the addition of NaCl (300mM) generating an optical 
artefact as indicated.  
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Figure 3.16a The effect of osmotically induced wrinkles on the kinetics of sdFRAP. The kinetics 
of fluorescence recovery at subdomains before and after osmotic shrinkage, which was 
induced by the addition of NaCl (300mM). The  graphs show the acquired data with the 
theoretical curve 1-e-kt fitted to estimate the k value (s-1). The reciprocal of this gives the 
characteristic time in seconds () as shown. 
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Figure 3.17 Effect of shrinking on neutrophils as measured by recovery rate constant (k 
values). Results show a marked significant reduction in recovery after shrinking, reflecting an 
increase in membrane topographical features. The raw data are shown in Table 3.2.  
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K (s-1) Before shrinking After shrinking 

Cell 1 0.12s-1 0.05s-1

Cell 2 0.14s-1 0.07s-1

Cell 3 0.1s-1 0.01s-1

Mean 0.12s-1 0.043s-1

sd 0.016 0.025

sem 0.01 0.017

n 3 3

Table 3.2 Effect of shrinking on neutrophil as measured by recovery rate constant (k values). 
The raw data are presented as K values of three different cells from three healthy donors 
before and after the effect of shrinking with mean ± sem. The differences between the means 
of the population (unpaired) and from individual cells (paired data) were statistically 
significant and were shown in the fig 3.17: p<0.05 and p<0.004 respectively.
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3.3.7 sdFRAP of DiI in the plasma membrane of  artificially expanded neutrophils  

             To further test whether sdFRAP reflected cell surface topography, the cell surface 

membrane was expanded by addition of the hydrophobic lipid membrane expander, 

deoxycholate (Doc). Unlike osmotic shrinkage, where wrinkles form as a consequence of a 

cell volume change, Doc incorporates into the lipid bilayer and thus adds more “membrane” 

to the cell without a decrease in the cell volume. This procedure generated neutrophils 

which in SEM appeared “bloated” with inflated wrinkles of a “loose bag” rather than the 

“tight bag” of untreated cells (see data in Chapter 4).  

        Using confocal microscopy of living cells, the bloating resulted in a loss of fine detail (fig 

3.18). The subdomain recovery rates of the DiI, measured in the same cells before and after 

the addition of Doc, showed that the diffusion path was extended by the addition of Doc (fig 

3.19 a and b). In 4 cells, the population mean rate constant (k) before the addition of Doc 

was 0.65 ± 0.21s-1, whereas after DOC incorporation, this was reduced to 0.47 ± 0.07s-1. 

Although this difference was not statistically significant at p<0.01, a paired t-test of the data 

from individual cells (see Table 3.3) showed that the effect of Doc was highly significant 

(p<0.01). It was therefore concluded that sdFRAP was sensitive to a perturbation of the 

neutrophil surface topography in the absence of a change in cell volume. 
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Figure 3.18 The effect of the membrane expander, deoxycholate, on neutrophil morphology. 
The image pairs show the same neutrophil (1) before and (2) after the addition of 
deoxycholate 400M. In the right hand images, a magnified region of the cell (shown 
superimposed on the left hand image) is shown. The scale bars indicate 2m in the right 
hand pair of images and 5m in the right hand pair of images.
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Figure 3.19a The effect of deoxycholate-induced bloating on the kinetics of sdFRAP. The data 
from a typical experiment are shown in which sdFRAP was measured both before and after 
deoxycholate (400M) incorporation into the neutrophil membrane as indicated (DeOxCh). 
The 10 mins deoxycholate incubation on the time course on the left have been omitted from 
the record for clarity. This experiment was repeated four times on four different days from 
different donors for each day.   
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Figure 3.19b The effect of the membrane expander, deoxycholate, on neutrophil 
morphology. Curve fitting of the “before” and “after” DOC recovery kinetics applied to the 
data from fig 3.19a. 
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K (s-1) Before Doc After 

Doc

Diff ratio 1/ratio

Cell 1 1 0.65 0.35 0.65 1.538462

Cell 2 0.65 0.45 0.2 0.692308 1.444444

Cell 3 0.6 0.35 0.25 0.583333 1.714286

Cell 4 0.35 0.25 0.1 0.714285714 1.4

Mean 0.65 0.43 0.23 0.66 1.52

sdev 0.23 0.15 0.09 0.05 0.12

sem 0.12 0.07 0.05 0.02 0.06

Table 3.3 The complete data for 4 cells treated with deoxycholate as shown in fig 3.19. The 
before and after deoxycholate values were estimated from curve fitting as shown in fig 3.19b 
and the means sd and sem for all data is given. In each cell, there was a decrease in k value 
(significantly different from zero) and the ratio or inverse ratio was again significantly 
different from unity (i.e. non change). The t-test p values for the before and after k values 
were p (paired) = 0.02 and p (unpaired) = 0.21; n = 4. 
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Figure 3.20 The effect of deoxycholate on sdFRAP recovery rate (k). The population data 
shown in Table 3.3 is shown graphically for ease of understanding. The values are the mean ± 
SEM. For the three cells studied. 
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3.4 Discussion

        In this chapter I have shown that sdFRAP can report changes in cell surface topography 

of neutrophils. This was established under two conditions where the diffusion distance was 

measureable (i) the flattened tail of the neutrophil and (ii) in osmotically swollen cells where 

the membrane was “stretched” to nearly its maximum extent. The ability of sdFRAP to 

monitor changes in the cell surface topography was tested by two experimental procedures 

that increased the wrinkledness of the cell surface: (i) osmotically shrinking the cell volume 

to induce hyper-wrinkling at the cell surface; and (ii) adding a membrane expander, 

deoxycholate, to add extra surface features to the cell. In both cases sdFRAP was sufficiently 

sensitive to measure the change in cell surface topography within individual cells. Using 

sdFRAP it was shown for the first time that in the resting neutrophil, cell surface wrinkles 

were significant and could be the membrane reservoir required for phagocytosis and cell 

spreading.  

         Although there have been no previous attempts to monitor cell surface topographical 

changes in living cells, a non-imaging optical approach, based on right angle light scattering  

which has been reported to monitor neutrophil “shape change” (Wymann, et al., 1987; 

1989; Kernan et al., 1991; Ehrengruber et al., 1995, 1996).  Essentially, the 90o scattering of 

light by particles in suspension can be calculated from Mie scattering theory (Mie, 1908). 

This predicts that light scattering by particles of the same order of magnitude as the 

wavelength of the incident light will be profound in some granular cells (Meyer, 1979; Ruban 

http://jcb.rupress.org/content/184/2/197#ref-15
http://jcb.rupress.org/content/184/2/197#ref-19
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et al., 2007). In the granular cytoplasm of neutrophils (granule diameters 0.2 – 0.3µm), the 

attenuation coefficient could be as high as 700mm−1 (Prahl, 2007), depending on the number 

of granules/volume of cytoplasm (Dewitt et al., 2009) Changes in the right angle scattering 

from suspension of neutrophils may thus result from changes in the “shape” of the 

neutrophil giving changes in the granular density. Remarkably, using flow cytometry to 

interrogate individual cells in the population, this approach shows that populations of 

suspended neutrophils change “shape” synchronously in a sinusoidal oscillation if pre-

treated with the PI3-kinase inhibitor, wortmannin (Wymann et al., 1987; 1989). However, 

the underlying principle of this measurement is unclear and the interpretation has been 

challenged (Keller et al., 1996). These authors concluded that it is not possible to determine 

whether a particular “shape change” had occurred e.g. spherical to polarized or to nonpolar 

cells. Furthermore, they concluded that “forward or right angle scatter changes are not a 

reliable measure for changes in “cell volume” of human PMNs (Keller et al., 1996). Without 

knowledge of whether light scattering measurements report cell volume or surface area 

changes, or whether it is related to surface “reflection properties” or, more likely, cytosolic 

granular density, these data obviously cannot be interpreted or used to make proposals of 

changes in the neutrophil cell surface topography. 

        Prior to the work reported in this chapter, the only methodologies for monitoring the 

cell surface topography were based on direct imaging. Electron microscopy has sufficient 

resolution to image the cell surface topography, but is only applicable to fixed cells. The cell 

surface topography can be observed directly using scanning electron microscopy (SEM) or in 

http://jcb.rupress.org/content/184/2/197#ref-19
http://jcb.rupress.org/content/184/2/197#ref-18
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2D in sections cut through the cell in transmitted electron microscopy (TEM). As both 

methodologies require the cell to be fixed and exposed to an electron beam in a vacuum, 

these methods cannot be used on living cells and hence no effects of experimental or 

physiological manipulation can be observed directly on the same cell. Atomic force 

microscopy (AFM) can achieve a similar resolution and in theory can be used with living cells. 

However, there are two problems. The first is that the time required for acquisition of the 

image (scanning with the atomic force probe can require several minutes) is slower than the 

time scale of neutrophil movement (e.g. neutrophils can spontaneously move at 0.1m/s). 

This results in a severe “blurring” of the image such that quantitative measurement of the 

surface is impossible. Secondly, as the cell body of the neutrophil is pliant, the probe 

downward force is sufficient to “smooth” out surface features (see Al Jumaa et al., 2017). 

AFM works well when the neutrophil is firmly adhered to a solid substrate (giving a non-

yielding resistance to the probe) or on fixed cells. Thus, this method is also not suitable for 

studying living cells. 

The sdFRAP approach in the flattened neutrophil membrane of the fully spread tail was 

used to estimate the diffusion constant, D in order to compare it with values obtained by 

other techniques. It was found that the entire tail region of these cells had a homogeneous 

flattened topography, with measurements of the diffusion constant being approx. 1.43m2/s 

at all locations. This is significantly less than the diffusion constant for DiI (C18 (3)) reported 

in pure lipid layers of 9.8m2/s measured (Gullapalli, Demirel and Butler, 2008). Presumably, 

membrane associated proteins which exclude DiI in the neutrophil membrane, by which are 
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absent in the pure lid bilayer, account for this difference. Interesting, the value obtained 

here in the flattened tail is higher than those reported in several cell types (Pucadyil and

Chattopadhyay, 2006; Bag, Yap and Wohland 2014). As the reported values in other cell 

types did not take account of the possibility of cell surface topography, the diffusion 

constant was underestimated. In “spherical” erthrocyte ghosts which have an apparently 

simple and smooth topography with a reported D value for DiI (C18) of 0.2m2/s (Thompson 

and Axelrod, 1980) was surprisingly low compared to other reports. This may be accounted 

for by the fragility of the red cell ghost membrane which once detached from underlying 

spectrin reforms in a variety of geometries including surface “spicules”, which depends on 

the precise osmotic resealing conditions. The value found here, of 1.4m2/s is, however 

close that previously reported in neutrophil membrane of 1.7m2/s (Petty, Hafemann and 

McConnell, 1981). Since the D value estimated by sdFRAP in the neutrophil tail was constant 

regardless of the distant at which it was measured, it was concluded that there was no 

significant variation in wrinkledness in the tail region. 

However, it was not the aim to achieve an accurate measurement of the diffusion 

constant of DiI but to provide a reporter system for changes in the surface topography. The 

sdFRAP methodology depends on the measurement of changes in sdFRAP rather than 

calculation of the absolute values of D, the diffusion constant (see section 3.4.5). These

changes could be as a result of experimental manipulations (such as in this chapter) or as a 

consequence of cell behaviour (e.g. spreading, phagocytosis or elevated cytosolic Ca2+ in 

later chapters): or it may between different loci within an individual cell.  



156 

As the tail is a fully “stretched” region of the cell, it may be assumed that this was the 

maximum rate of DiI diffusion on a smooth surface in our system. Osmotic swelling of the 

cells was used to reduce the cell surface wrinkles in regions of the cell which were not 

adherent. This was difficult as once the cell volume is increased by osmotic pressure, lysis 

often results. Presumably the wrinkles were held in place securely until a critical point when 

expansion occurred which led swiftly to bursting point. However, if the cell was expanded in 

this way but remained intact, the diffusion length was reduced to almost the 2D measured 

length as was seen in the stretched neutrophil tail. 

In order to validate the method, in this chapter I have shown data from experimentally

altering the cell surface topography. By shrinking the cell osmotically, the cell surface must 

necessarily be altered. As the cell volume is decreased, the excess surface area is taken up by 

surface folding. It was expected that additional folds would be superimposed on the already 

wrinkled surface and that an increase in the path-length for diffusion would be evident. It 

was therefore very important that the effect of shrinkage was easily detectable (fig 3.15; 

3.16). The change in sdFRAP recovery rate, or the characteristic recovery time were 

significantly different when either comparing population means or the responses within 

individual cells. This gave a validation of method. 

The cell surface membrane was also expanded artificially by the inclusion of 

deoxycholate (DOC). This has been shown previously to expand the membrane and reduce 
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surface tension (Raucher and Sheetz, 2000). Again it was important to use Doc carefully with 

neutrophils, deoxycholate could also lyse cells. However, in the experiments reported here, 

it was possible to see effect on the surface topography. Blebs and abnormal topography 

were generated as a result of expansion of the membrane without physiological control or 

other signals to induce spreading. This was easily measurable by sdFRAP as an increase in 

pathlength. These approaches therefore demonstrated the validity and sensitivity of the 

sdFRAP approach to monitor cell surface topography in neutrophils. 

          Although it has not been possible before to measure the membrane reservoir in 

neutrophils or other cells, theoretical considerations of the additional membrane required 

for either phagocytosis or cell spreading suggest that  the wrinkles must contain an excess of 

membrane more than 172% and 210% respectively (Dewitt & Hallett 2007; Hallett and 

Dewitt, 2007). Here the sdFRAP approach found that, compared to the flat tail of the 

neutrophil, the cell body was significantly wrinkled. It was estimated that the extra 

wrinkledness accounted for an additional area which increased the area of a flat surface by 

256% (section 3.3.5). This is an interesting value which is in line with previous estimates. 
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3.5 Summary 

           In summary, the data presented in this chapter have established a methodology which 

can report changes in cell surface topography. The methodology was based and a novel 

technique called sdFRAP in which the recovery rate at subdomain at a defined distance from 

the photo-bleach front of a region of plasma membrane was used to estimate the diffusion 

pathlength. This approach has found that the tail region of the neutrophil is smooth and the 

cell body is wrinkled; and that the cell surface topography can be altered experimentally by 

osmotic changes or chemical membrane expanders. 
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Chapter 4 

Topographical changes of the cell surface 

during neutrophil phagocytosis and 

spreading  
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4.1 Introduction  

4.1.1 The pathway of phagocytosis   

         The major anti-bacterial role of neutrophils is the phagocytosis of infecting microbes.  

Phagocytosis can be defined as a receptor-mediated, clathrin-independent but actin-

dependent, process whereby particulates (>200nm) are internalised by the cell (Mukherjee 

et al., 1997, Aderem and Underhill, 1999). There are four professional phagocytic cell-types 

in the  mammalian immune system; neutrophils, monocytes, macrophages and dendritic 

cells (Rabinovitch, 1995). Phagocytosis is triggered in these cells by pathogen-specific 

receptors or by opsonin-mediated (C3bi or antibody) binding. “Recognition” of the invading 

microbe, by activation of these receptors by binding of the particle to the cell surface, starts 

the process of phagocytosis (fig 4.1). This results in a localised actin polymerisation which 

produces pseudopodia by “pushing out” against the plasma membrane to form a phagocytic 

cup, holding the particle firm before ultimately internalising the particle within a closed 

phagosome (Mukherjee et al., 1997; Rabinovitch, 1995). The phagosome fuses with granules 

containing hydrolytic and degradative enzymes to produce a phagolysosomes (Rabinovitch, 

1995; Fratti et al., 2001) (fig 4.1).  

          Complement receptor C3bi and Fc-receptors (FcR), scavenger receptors and pathogen-

specific receptors, like Toll-like receptors (TLRs), mannose receptors and lectins (Aderem and 

Underhill, 1999; Underhill and Ozinsky, 2002) may all be involved in the initial binding event. 

C3bi is formed by complement activation via one of the three pathways, (i) the alternative 

pathway, (ii) the classical pathway and (iii) the mannose binding lectin pathway (Aderem and 
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Underhill, 1999); and results in the cleavage of C3 into C3a and C3b. C3b undergoes a further 

chemical change to the opsonin, C3bi (or iC3b) and binds tightly to the surface of the 

bacterium in a process called opsonisation. When antibodies against the microbe are 

produced, they bind to and coat (opsonise) the microbe. Fc receptors on the surface of 

phagocytes bind to the Fc region of antibodies. Immobilisation of opsonin receptors on the 

phagocyte surface is produced through interaction with C3bi or Fc regions of antibodies, 

which result in tyrosine phosphorylation of immune receptor tyrosine activation motifs 

(ITAMs). This activation is essential to cause Syk kinases activation that have important roles 

in cytoskeleton changes, actin assembly and downstream transcriptional activation of 

inflammatory cytokines (Cox et al., 1996, Majeed et al., 2001). It is known that Scavenger 

receptor A (SR-A) binds to whole microbes, recognizing LPS and lipoteichoic acids (Pearson, 

1996). Likewise, macrophage receptor with collagenous structure (MARCO) recognises a 

variety of Gram-positive and Gram-negative bacteria (Elomaa et al., 1995) as well as artificial 

latex and TiO2 (Palecanda et al., 1999), silica (Hamilton et al., 2006) and polystyrene 

particles (Kanno et al., 2007). The both receptors are considered to be the major scavenger 

receptors for the process of phagocytosis. The binding between receptors such as TLRs on 

the surface of the phagocyte cells and the moiety on the surface of pathogens is sufficient to 

trigger intracellular signalling and the internalisation and the release of pro-inflammatory 

cytokines such as IL-6, TNF and IL-1β (see Table 1.6, Chapter 1). 
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Figure 4.1 Phagocytosis pathways in immune cell. The diagram summarises some of the 
routes to phagocytosis in immune cells including neutrophils. The yeast or bacterial 
“pathogen” is recognised by opsonic receptors on the phagocyte surface such as FcR= Fc 
receptor, CR= complement receptor and TLR= toll-like receptor, which leads in phagocytic cup 
formation as a result of actin polymerisation and membrane expansion. Internalisation of the 
particle forms a phagosome which in neutrophils is the goal and results in killing of the 
pathogen by activation of the phagosome oxidase system and the action of non-specific 
proteolytic enzymes (labelled “innate”). Other fates are possible in other cell-types, including 
“nutrient recycling” and importantly in antigen presenting cells (labelled “adaptive”).  
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4.1.2 Phagocytosis by neutrophils   

          Perhaps the major phagocyte for host protection is the neutrophil, being the initial cell 

to phagocytose and kill bacteria and fungi (Lee et al., 2003, Segal, 2005). Some studies of 

neutrophil phagocytosis have been undertaken, using light and electron microscopy for 

capturing the progressive events in phagocytosis including recognition, attachment, 

engulfment and phagosome-lysome fusion. Phagocytosis of specific particles by neutrophils 

usually ends with lysis and degradation of the internalised particulate, as a result of the 

action of hydrolases and antibacterial proteins within the phagolysosome (Bainton, 1973). In 

neutrophils, the lysosomes are highly specialised and are called neutrophil granules. Primary 

azurophilic granules contain myeloperoxidase (MPO), proteases, lysozyme and acid 

hydrolases (Pryzwansky et al., 1979). Specific or secondary granules also have lysozyme and 

lactoferrin (LF). These granules are formed in early myelocytes stage.  

         It has been possible to study neutrophil degranulation and secretion through the use of 

immunocytochemistry with antisera against MPO and LF. During phagocytosis of E. coli by 

neutrophils, degranulation begins just 5s after the onset of phagocytosis which can result in 

MPO and LF markers on the neutrophil surface (Pryzwansky et al., 1978). Recognition of 

opsonised particles is essential for neutrophil phagocytosis and its failure results in lack of 

recognition and subsequent killing of the attacking microorganism (Roos et al., 1981). 

Experimentally, the binding of neutrophils to opsonised zymosan particles is useful, as these 

particles are sufficiently large to be distinguished within the cell and phagocytosis can be 
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controlled by micromanipulation or zymosan immobilisation techniques. This technique 

allows the contact between the particle and the cell to be timed and the subsequent 

pseudopodia formation, phagocytic cup and then internalisation to be followed in real-time 

microscopically. As the process is quick, it requires live real-time cell imaging for detailed 

observation. However, a SEM study of fixed cells by MacRae and Pryzwansky in (1984) was 

able to quantify some aspects of the process. They reported that after 30s incubation with 

opsonised zymosan, phagocytic cups, i.e. incomplete phagosomes having open cavities, had 

formed. The phagosome was complete within the next minute; and the bulging outline of 

the internalised zymosan could be detected within the cell in 3 mins (MacRae et al., 1980). 

During these events, there is an apparent increase in the surface area of the neutrophil 

plasma membrane to provide the pseudopodal membrane and the phagosomal membrane. 

As discussed in Chapter 1, it has been proposed that this is the result of localised unwrinkling 

of surface wrinkles to provide the additional membrane.  

4.1.3 The process of cell shape change  

Although in the circulation or in cell suspension, neutrophils appear “spherical”, once 

adherent, the shape of neutrophils changes and its shape change is highly dynamic. The 

phenomenon is primarily driven by actin polymerisation beneath the cell surface which 

pushes against the plasma membrane. It is an important property which underlies 

chemotaxis and movement of the cell to the site of infection. This was first observed by Van 

Leeuwenhoek in 1675. He described cell movement and the crawling of the cells on his 
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microscope slide. The cell movement is realised when some physical, chemical, diffusible or 

non-diffusible signals are sent from the surrounding environment of the cell. The cell 

membrane has receptors which are responsive to chemoattractant signals and trigger 

directed movement (Alberts et al., 2002). Cell movement includes the constant restructuring 

of the actin cytoskeleton and involves three different steps (fig 4.2). The first step is actin 

polymerization at the leading edge of the cell, locally forcing the membrane forward. The 

second step is adhesion to the underlying substrate at the leading edge and releasing at the 

cell body and tail. The last step is retraction of the cell rear and the translocation of the cell 

body when contractile forces, possibly generated by the action of the acto-myosin network, 

pull the cell forward. All these phases are determined by physical forces which are created 

by unique segments of the cytoskeleton (Abercrombie, 1980). 
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Figure 4.2 The three phases of cell movement. Cell migration starts with a leading edge 
protrusion, once the direction of motion has been determined. This can be seen through the 
process of actin polymerisation at the leading edge of the cell. In order to achieve movement, 
the leading edge adheres to the surface and then the rear detaches. Contractile forces made 
at the cell body and as well as at the rear result in the whole cell body being pulled forward. 
[Image is adapted from (Revathi and Allen, 2007)]. 
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 4.1.4 The Brownian Ratchet and the action of actin

            A key step in this process and also in the formation of pseudopodia during 

phagocytosis is the “pushing” force of actin polymerisation. In contrast to muscle 

contraction, where actin reacts with myosin and consumes ATP, in non-muscle cells, the 

pushing force generated is not contractile but is outward. For example, the protrusion is the 

first phase of cell movement requires the force to be outward to produce a leading edge. 

Within the leading edge of the cell, the force is exerted by the mechanical connection 

between the actin cortical network and the plasma membrane; and the underlying 

mechanism is termed the Brownian ratchet (Grebecki, 1994). Essentially, actin monomers 

can be added to the leading monomer of polymerised actin, provided the concentration of 

free monomeric actin is above its critical concentration. In vitro, actin monomers will simply 

add to the polymer chain to generate ever lengthening chains of polymerised actin. However 

in the cell, this process will be impeded when the actin polymer is in contact with the plasma 

membrane. There will be no space for additional actin monomers to be added to the actin 

chain despite there being plenty of monomeric actin available. However, the actin polymer 

may flex a little or the position of the plasma membrane may fluctuate a little due to 

thermal agitation (Brownian movement). If sufficient space for an actin monomer to be 

added at the leading edge occurs, the membrane will be unable to relax back to its initial 

position which is now displaced by the length of 1 actin monomer. It will have been forced to 

a new position. This is the Brownian ratchet effect. Of course, the force of the Brownian 

ratchet can only push the plasma membrane if t the actin polymer is firmly tethered at the 

distal end. This is achieved by crosslinking and branching of actin polymers which involves 
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WASP proteins and other crosslinking proteins. The Brownian ratchet at the end of plasma 

membrane will continue until the growing actin filament is forced against the plasma 

membrane and Brownian movement of either the filament or the membrane is insufficient 

to permit the addition of any further actin monomers. Under these conditions, there is 

however, a potential pushing force, which would be evident if the thermal fluctuations 

increased or the resistance to thermal fluctuation at the plasma membrane is decreased. 

The latter would result from the unwrinkling of the plasma membrane. This underlies the 

protrusion of plasma membrane at the leading edge and at locations where pseudopodia 

actively form e.g. during phagocytic cup formation (Pollard and Borisy, 2003). It can be 

shown by computer simulations and mathematical calculations, that the Brownian ratchet 

provides a significant force and that there is no requirement for any additional “motors”. 

The Elastic Brownian Ratchet Model (Mogilner and Oster, 1996) is a variation on the original 

proposal which suggests that as an actin monomer is 2.7nm  long, it is  able to add itself 

between the filament and membrane once bending of the filament away from the mebrane 

occurs is sufficiently large (i.e. when  bending angle is  > ~30°). This occurs when the filament 

length is > ~70nm. Each addition of a monomer “ratchets” the membrane, which implies 

that this process prohibits backward movement of the membrane and ensures that there is 

only a net forward motion of the cell edge.  

          The key event which would allow the Brownian ratchet to operate is the increase in 

spacing between the polymerizing actin and the plasma membrane. If this is provided by 

unwrinkling of the cell surface wrinkles, this proposal requires that the cell surface would be 
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altered from a wrinkled to a less wrinkled topography. The decrease in cell surface wrinkles 

has been observed in SEM studies of macrophages which had undergone phagocytosis (Petty 

et al., 1981), but the dynamics of the process (which requires living cells) has not been 

observed. Also, since SEM can visualise only the cell surface, there can be no information on 

the wrinkledness of the formed phagosome which is within the cell. There are thus key 

questions as to whether the event precedes or follows phagocytosis; whether the 

unwrinkling is localised to the region of particle contact; and at what stage of phagocytosis 

unwrinkling is triggered. Clearly, the sdFRAP methodology for examining the cell surface 

topography in living cells (developed in Chapter 3), gives an opportunity to explore these 

questions.  
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4.2 Aims of this chapter  

         From the discussion above, it can be seen that the unwrinkling of the plasma 

membrane on the neutrophil would provide the additional membrane required for 

phagocytosis and to allow the Brownian ratchet to operate and so push out pseudopodia. 

The aim of the work in this chapter is therefore to investigate whether unwrinkling of the 

microridges occurs during phagocytosis and can be detected by a change in cell surface 

topography; and then to use this to discover whether the unwrinkling is localised to the 

region of the cell where phagocytosis is occurring.  

 Specifically the objectives are to:  

1- Measure cell surface topography using the sdFRAP in living neutrophils having 

undertaken phagocytosis and spreading.  

2- Compare plasma membrane topographical wrinkledness in the same individual living 

neutrophil before and after phagocytosis. 

3- Compare the topography of membrane in the forming phagosome (phagocytic cup) 

and fully formed phagosomes with the topography of the rest of plasma membrane 

in the same cells. 
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4.3 Results 

4.3.1 The topography of membrane of complete phagosomes  

          Having established that sdFRAP is a sensitive monitor of changes in cell surface 

topography, it was used initially to investigate whether there were regional differences in 

cell surface topography following phagocytosis. The confocal nature of the methodology 

allows examination of both the phagosomal membrane within the cell and the plasma 

membrane. This is impossible using SEM, as it can visualise only the cell surface, there can be 

no information on the wrinkledness of the membrane surrounding the intracellular closed 

phagosome. Initially, therefore, the topography of closed phagocytic cups was assessed 

using the sdFRAP technique. This was achieved by allowing DiI labelled neutrophils to 

internalise C3bi opsonised zymosan and performing sdFRAP in bleach zones which included 

the phagosomal membrane of closed phagosomes (fig 4.3 a). As the area of the phagosomal 

membrane is significantly smaller than the whole cell, it therefore had fewer DiI molecules. 

This means that it was important to establish a condition where it was possible to 

reproducibly measure the recovery rate within the phagosome without depleting its 

membrane of DiI. Fortunately, by simply reducing the bleach zone area, this was achieved 

using the standard methodology shown in Chapter 3. Although, this still reduced the 

fluorescence intensity to a level which was significantly lower than the pre-bleach level (fig 

4.3 b), within the closed phagosome, recovery rates could be measured which were 

reproduced by a second sdFRAP (fig 4.3 c). Both the first and second recovery data, when 

normalised to (F/F0) as described in section 2.5.11.5. This was fitted to the same recovery 

curve (1-e-kt) over the entire recovery curve (Chi square (X2) “goodness of fit” test gave a 
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probability (p>0.89). The variation between the closed phagosomes was also acceptable, 

with the estimate of the recovery rate constants from independent cells having a relative 

standard error of 10.5% of DiI diffusion in the phagosomal membrane. This provided 

information on the apparent diffusion distance (Table 4.1).  
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Figure 4.3 Demonstration of sdFRAP on phagosomal membrane. A confocal slice through a 
DiI-labelled neutrophil after internalisation of C3bi opsonised zymosan. The membrane 
around the closed phagosome can be distinguished from the plasma membrane, as shown in 
the enlarged image on the right. (b) The raw data from a typical experiment in which DiI in 
the phagosomal membrane were photo-bleached twice. On increasing the laser power, the 
signal increases and then reduces as bleaching takes place. After the photo-bleach step, the 
fluorescent signal recovers over the subsequent 20s. (c) The recovery curves after the two 
bleach steps were normalised as F/F0 and superimposed to illustrate the reproducibility over 
the entre recovery curve. 
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sdFRAP k value (s-1)

Cell 1 0.23s-1

Cell 2 0.24s-1

Cell 3 0.15s-1

Cell 4 0.30s-1

Cell 5 0.25s-1

Mean 0.23s-1

SD 0.048

SEM 0.022

RSE 10.5%

n 5

Table 4.1 Five independent measurements of the recovery constant, k, of phagosomal DiI. 
The recovery rate constant, k, was determined in the closed phagosomal membrane from five 
random cells, using the analysis shown in fig 4.3. The mean, the standard deviation (SD), the 
standard error of the mean (SEM) and the relative standard error (RSE) are shown. The 
source of neutrophils was from different blood donors for each cell measurement. 
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           Using this approach, a comparison was made between the topography of the closed 

phagosomal membrane and the plasma membrane surrounding the body of the same cell. 

This was achieved by measuring sdFRAP within the phagosomal membrane and the plasma 

membrane within the same bleach slice through the same cell (fig 4.4). The conditions for 

recovery at both cellular loci were therefore identical and could be compared directly. A 

typical experiment is shown in fig 4.4 in detail, with the two loci, one at the phagosomal 

membrane and the other at the plasma membrane, shown. The sdFRAP recovery curves 

from these two loci, together with the fitted recovery curves are significantly different over 

the entire recovery curve (2 goodness of fit p<0.001). In all cells examined (4/4 cells), the 

characteristic time for recovery, τ, was calculated and it was found that the fluorescence 

recovery was significantly faster within the phagosomal membrane indicating the membrane 

was smoother i.e. the diffusion path was shorter than the plasma membrane in the same cell 

(Table 4.2). The mean sdFRAP diffusion rate of DiI (k) was 0.325 ± 0.043s-1 within the 

phagosomal membrane compared to 0.197 ± 0.021s-1 at the plasma membrane of 4 cells (fig 

4.5). It is seen that the relative standard error of these two measurements was 

approximately 10% (as seen in Table 4.1). However, comparing these parameters within 

individual cells (where the measurement conditions were identical at the two loci) by taking 

a ratio has a relative standard error of only 3.4% (Table 4.2). This illustrates the value of 

experimentation on individual cells, when cell-to-cell variation is not relevant. The ratio of 

sdFRAP diffusion constants in the plasma membrane and phagocytic membrane of 1.65 ± 

0.056 is significantly different from a value of 1, which would be true if the two membrane 
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had the same wrinkledness (p<0.01). It was thus concluded that the phagosomal membrane

was significantly smoother than the plasma membrane.

           The ratio is also useful for comparison with the diffusion path-length divided by the 

apparent diffusion distance, giving a topographical index (related to area). By definition, a 

completely smooth membrane has a Ti = 1 and the plasma membrane of adherent or 

spreading cells has a Ti between 1.6 and 2. Thus, the Ti of spreading cells is about 1.6 - 2 

times that of the smoothest membrane (see sections 3.3.5 and 2.5.11.2). This is similar to 

the difference between the wrinkledness between the phagosomal membrane and the 

plasma membrane of the cell membrane, with a ratio of 1.65 ± 0.056 (Table 4.2) and 

suggests that the two membrane membranes are near the extremes of membrane 

wrinkledness, the phagosome being totally smooth and the plasma membrane being near its 

physiologically expected degree of wrinkledness.
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Figure 4.4 Comparison of membrane topography of the phagosomal membrane and the 
plasma membrane. The image (top left) shows the DiI staining of a portion of a neutrophil 
which has undergone phagocytosis of an opsonised zymosan particle, with the photo-
bleached zone (Bl Z) and the loci of two measurement regions (sdFRAP loci) marked. The two 
graphs below (left) show the sdFRAP recovery of DiI fluorescence at  the two regions 
indicated, i.e. the plasma membrane (PM) and the phagosomal membrane (PhagM) with the 
fitted curves (1-e-kt), where k is  the rate constant (see section 2.5.11.2) used to  determine 
the  characteristic times, τ, as shown in the figure. The graph on the right shows the raw data 
(without normalisation). The experiment shown was representative of at least 4 phagosomes 
measured. 

Bleach 
Time (s)

Intensity
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K (s-1) Phagosomal
membrane

Plasma membrane PhagM/PM
Ratio

Cell 1 0.45s-1 0.25s-1 1.8

Cell 2 0.3s-1 0.19s-1 1.6

Cell 3 0.25s-1 0.15s-1 1.7

Cell 4 0.3s-1 0.2s-1 1.5

Mean 0.325 0.197 1.65

SD 0.087 0.041 0.11

SEM 0.043 0.021 0.056

RSE 13.2% 10.7% 3.4%

n 4 4 4

Table 4.2 Measurement of recovery rate constant, k values of plasma membrane and 
phagosomal membrane. The data show the sdFRAP recovery rate constants, k values of the 
plasma membrane and the closed phagosomal membrane in four cells. The population mean, 
standard deviation (SD), standard error of the mean (SEM) and relative standard error (RSE) 
are shown. Paired T-test of data was significantly different p<0.05, (p = 0.0067 unpaired t-
test); and the ratio was significantly different from 1 (p<0.05). 
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Figure 4.5 Graphical representation of the recovery rate constants for DiI diffusion in the 
closed phagosomal membrane and the plasma membrane. The histogram shows the mean 
and standard error of the mean of recovery rate constants (k, s-1) for DiI diffusion in the 
closed phagosomal membrane and the plasma membrane. The data are also shown in Table 
4.2. 
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4.3.2 Kinetics of phagocytosis of opsonised zymosan particles by human neutrophils 

         Two questions arise from the discovery that unwrinkling of the plasma membrane 

occurs locally at the site of phagocytosis. Firstly, at what stage in the process does plasma 

membrane unwrinkling occur (e.g. on particle contact, cup formation before phagosome 

closure or after closure) and secondly, if it occurred earlier, how restricted was the plasma 

membrane unwrinkling. This would obviously require performing sdFRAP on cells at an 

earlier stage of phagocytosis.    

       Since phagocytosis by neutrophils is a rapid and dynamic process, before attempting to 

monitor changes in the cell surface topography during phagocytosis, it was necessary to 

assess the kinetics of the process using zymosan attached to the glass coverslip (see section 

2.6.2). When phagocytosis was induced between glass-adherent zymosan particles and the 

human neutrophils, there were two distinct stages. Following contact with the particle, a 

phagocytic cup formed within approximately 30s of contact (fig 4.6). The formed cup 

remained without any major change for up to 40-120s (fig 4.6), before the pseudopodia 

advanced rapidly to complete phagocytosis within the subsequent approximately 100s (fig 

4.6). A similar time course of phagocytic cup formation has been previously observed when 

non-adherent zymosan is presented to neutrophils. The time at which the extension of 

pseudopodia accelerates correlates with the time Ca2+ signalling occurs (Dewitt and Hallett, 

2002).   
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           The initial phase of phagocytic cup formation and the final pseudopodial acceleration 

phases would present technical problems for using sdFRAP as the rapid movement of the 

cellular membranes distorted the recovery curves which could not be fitted simply to the 

expected kinetics. Also as the membranes of interest were moving, dual photo-bleaching of 

the same subdomain was not possible. However, the prolonged delay after phagocytic cup 

formation was ideal for surface topography monitoring as this delay gave sufficient time to 

undertake localised sdFRAP. In the demonstration experiment shown (fig 4.6), the 

membrane probe DiI was added at 76s to show that the delay was not the result of DiI 

labelling the neutrophil and further that DiI labelling did not arrest phagocytosis at this 

stage, but phagocytosis could continue to completion and formation of a fully internal 

phagosome (in this case within 120s of DiI addition). Thus, it was concluded that DiI did not 

interfere with the phagocytotic kinetics.  
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Figure 4.6 Kinetics of phagocytosis of opsonised zymosan by human neutrophils. Phase 
contrast images are shown which illustrate the process of phagocytosis under the 
experimental conditions adopted (see section 2.6.2). The time is shown at the bottom of each 
frame as t = xm, ys. The phagocytic cup which is formed around approximately 50% of the 
zymosan surface at 35s persisted until 76s (1 min and 16s). In this experiment, DiI was added 
to the cells at this point and in order to demonstrate that phagocytosis was able to continue 
to completion. This experiment was repeated on at least eight other cells from five different 
days and the sources of cells were from at least three blood donors, resulting in similar 
kinetics.  
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4.3.3 The topography of membrane comprising phagocytic cups 

          It was found from the sdFRAP kinetics of DiI in the forming phagocytic cup, that this 

membrane was significantly smoother than the adjacent plasma membrane. This suggested 

that the unwrinkling of the plasma membrane preceded complete closure and was probably 

the rate limiting step at this stage, as neutrophils often pause with an open cup before the 

Ca2+ signal is elicited and the process moves to completion (Dewitt and Hallett, 2002). In a 

series of experiments, this observation was very reproducible, but difficult to quantify 

accurately because during phagocytic cup formation, the speed of membrane movement 

relative to the time required for photobleaching and sdFRAP measurement was too great.  

However, as shown in section 4.3.2, there was a significant delay after phagocytic cup 

formation, before completion of phagosome formation. It was therefore possible to use 

sdFRAP to establish whether unwrinkling of membrane occurred earlier when the phagocytic 

cup was formed.  

               By changing the zymosan particle surface density, it was possible to induce multiple 

phagocytic events by a single neutrophil. In figure 4.7, a neutrophil is shown that had three 

phagocytic cups arrested at different stages. This gave an opportunity to perform sdFRAP 

simultaneously on the three cups and the adjacent plasma membrane within the same 

individual cell. There was a statistical difference in the rate of sub-domain fluorescence 

recovery in each of these loci compared to the plasma membrane (Table 4.3). The 

characteristic recovery time determined from k values found for curve fitting (fig 4.7) 

indicated that the plasma membrane around the forming phagocytic cup was significantly 
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less wrinkled that the non-phagocytic membrane, ( as was shown in fig 4.4)  even when the 

cell was forced to attempt phagocytosis of multiple targets (fig 4.7). This suggested that the 

membrane reservoir provided by the wrinkled surface of the neutrophil was significant and 

could account for a number of separate phagocytotic events without the need for a global 

Ca2+ signal and unwrinkling of the entire cell surface wrinkles. 

          Using the goodness of fit statistical method (Chi square as in section 4.31 and 4.3.2) to 

compare rate curves, the “normalised intensity” i.e. (It-I0)/(Imax-I0), where It is the intensity at 

any time after bleaching; I0 is the intensity after bleaching (time zero): and Imax is the 

intensity after full recovery (at infinite time) was calculated so that the zero and maximum 

values were fixed at zero and unity. This allowed the time of recovery (and the rate 

constant) to be compared directly and also for the curves to be compared for similarity or 

difference. The residual difference between the curves = ((Ix1-Ix2)2/Ix12), where I is the 

intensity at time x in curve 1 or curve 2 (see section 4.3.1). If the curves are the same and 

apparent difference are simply due to random noise, the sum of residuals would be zero; 

(res) = 0, with an equal likelihood of positive and negative deviations. The 3 phagocytic 

cups represent the pre-stage before cup formation (cup1), cup formation at approx. 50% of 

the zymosan surface (cup2) and a further advanced cup (cup3) with approximately 80% of 

the zymoson surface covered. It was found that the rate of recovery in the pre-cup (cup1) 

was significantly different from either the later phagocytic cups (cups 2 and 3). These 

topography of the advanced phagocytic cups were not significantly different from each 



185 

other. Importantly, the rate of recovery of DiI within a single phagocytic cup was 

reproducible between the two bleaches and was not statistically different (Table 4.3). Using 

this determination, a map of the distribution of topographical indices was generated by 

sampling subdomains from multiple loci on the three phagocytic cups within the same 

photo-bleach slice (fig 4.8).  
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Figure 4.7 Neutrophil with multiple phagocytic cups. The image (top left) shows the DiI 
staining of a portion of a neutrophil which has completed phagocytosis of an opsonised 
zymosan particle (marked “Phg”) and has three phagocytic cups marked i, ii and iii) en 
route to full phagocytosis. The graphs to the right shows the raw data from two photo-
bleaches measured at three loci one each within the membrane of the three phagocytic 
cups. The graph below shows the sdFRAP recovery of fluorescence in the three phagocytic 
cups with the fitted curves from which the characteristic times, , were estimated.
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P values 

(n = 77) Bleach 1 v Bleach 2 Cup 1 Cup 2 Cup 3

Cup 1 0.27 <0.0001* <0.0001*

Cup 2 0.28 <0.0001* 0.29

Cup 3 0.35 <0.0001* 0.29

Table 4.3 The statistical significance of recovery rates from the 3 phagocytic cup within the 
same cell. For each sdFRAP recovery curve (normalised to F/F0), the 77 time paired points 
from bleach to recovery were compared between the first and second photobleaches (column 
1) and between phagocytic cups 1, 2 and 3 as indicated in columns 2, 3 and 4 using the chi 
square (goodness of fit) parameter .(O-E)2/E, where E is the expected value from the 1-e-kt

curve fit to the cup indicated on each row and O is the corresponding observed value from 
the cup shown in each row. The table shows that the replicate bleaches from each cup were 
not significantly different (column 1), nor were cups 2 and 3 significantly different from each 
other. In contrast, the recovery rate in cup 1 (the pre-cup (i) at an early stage of cup 
initiation/formation) is highly significantly different (*p = c.10-38-10-16) from either cup 2 or 
cup 3.  



188 

Figure 4.8 Topographical map of phagocytosis. The upper image shows the DiI loaded 
confocal image of the region of a neutrophil with the three phagocytic cups of interest 
labelled. The lower image shows the corresponding phase contrast image of the cell 
shown with a pseudo-colour overlay to illustrate the distribution of Ti values as a measure 
of the wrinkledness of the membrane, where a Ti value of 1 is smooth and higher values 
indicated increasing surface features. The colour bar shows the cut-offs used where green 
was used for Ti values of 1 - 1, 25; yellow 1, 25 - 1.5; orange 1.5 - 2.0 and red for greater 
than 2.0. 
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4.3.4 The topography of the plasma membrane after cell spreading   

The second dramatic cell shape change which neutrophils undergo occurs when 

spreading on a surface. This has been likened to the localised “spreading” of the 

neutrophil membrane over a phagocytic particle, but on a larger scale so that the surface 

(having infinite curvature) cannot be internalised. Neutrophil spreading can occur on a 

glass surface (e.g. a glass coverslip) and is thought to involved immobilisation of 

neutrophil integrin receptors on the charged glass surface and so mimic physiological 

spreading. Like phagocytosis, it occurs quickly, complete within 100s and depends on a 

large Ca2+ signal which is triggered by contact with the glass (Kruskal et al., 1986; Marks et 

al., 1990; Dewitt et al., 2013). It has been postulated that, as with phagocytosis, the 

additional membrane required for the transition from non-spread to spread is provided 

by the reservoir of membrane within the wrinkled surface (Raucher et al., 2000; Dewitt & 

Hallett, 2007). sdFRAP was therefore applied to cells in the process of spreading. It was 

found that in every cell, sdFRAP of neutrophils membrane before and after spreading was 

significantly accelerated (fig. 4.9). The sdFRAP recovery rates (k) were 0.20 ±- 0.03s-1

before spreading and  0.11 ±- 0.022 (n = 3), giving a reduction in the topography index of 

the cell body from 2.6 ± 0.4 to 1.43 ± 0.29 (n = 3). These differences were statistically 

significantly different at the p<0.1 level (p = 0.082). The difference was greater in the tail

region of spread neutrophils, where the Ti value was unity (as shown in Chapter 3; figure 

3.3). This was consistent with the loss of surface wrinkles contributing to the additional 

membrane needed for spreading.
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Figure 4.9 The effect of neutrophil spreading on cell surface topography. Cell surface 
topography during cell spreading was established by sdFRAP measurement before and 
after cell spreading of individual neutrophils. An example of the change in sdFRAP signal 
from an individual neutrophil is shown in (A) before and (B) after spreading onto a glass 
coverslip. The inset phase contrast images show the gross morphological difference in the 
cell before and after spreading. The fluorescence recovery curves before and after cell 
spreading are shown together with the fitted curve (F/F0 = 1-e-kt) and the characteristic 
time for recovery (�). As both images were taken at the same magnification, the scale bar 
applies to both images. This experiment was typical of at least three other similar 
experiments on three different days from different donors for each day.  
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4.3.5 Cell surface topography changes induced by transient Ca2+influx

It has been known for 30 years that an elevation of cytosolic Ca2+ precedes the 

neutrophil spreading response (Kruskal et al, 1986; Marks and Maxfield, 1990) and that 

inducing a Ca2+ signal, triggers neutrophil spreading (Pettit & Hallett, 1998; Dewitt et al.,

2013). Similarly, a Ca2+ signal is required for the localised cell shape change that is 

required for rapid phagocytosis (Lew et al., 1985; Kruskal & Maxfield, 1987; Dewitt &

Hallett, 2002). The evidence points to a permissive role for Ca2+ signalling for neutrophil 

shape change, by the localised activation of calpain, a cytosolic Ca2+ activated protease 

which cleaves the cortical actin-plasma membrane linker proteins, such as ezrin. While 

elevating cytosolic Ca2+ by photolytic uncaging of “caged Ca2+” can induce spreading 

(Pettit & Hallett, 1998), this required a global cytosolic Ca2+ rising to a level which was not 

physiologically observed. In contrast, uncaging IP3 induces neutrophil spreading in 

response to physiological Ca2+ levels (Dewitt et al., 2013). This is attributed to the indirect 

effect of IP3 by inducing Ca2+ influx, which mathematical modelling suggests can elevate 

cytosolic Ca2+ within the wrinkles to sufficiently high levels to activate calpain (Brasen et 

al., 2010). As uncaging IP3 triggered a Ca2+ influx, which induced cell spreading, it would 

not be able to distinguish between an effect on cell surface topography as the result of 

Ca2+ influx or to cell spreading. As cell spreading was shown to alter the cell surface 

topography, in order to test whether an elevation of Ca2+ influx alone was sufficient to 

alter the cell surface topography, a plastic film substrate to which neutrophils cannot 

adhere or spread was used. The effect of photo-lytically uncaging IP3 in neutrophils under 



192 

these conditions was established. It was found that an IP3-driven Ca2+ influx had a 

significant effect on sdFRAP in the absence of cell spreading (Ti = 4.0 ± 0.3 and 2.7 ± 0.4 

before and after uncaging respectively, n = 4: sig diff P<0.05). After the Ca2+ signal, sdFRAP 

indicated a decreased diffusion path-length (fig. 4.10), which would result from flattening 

of the cell surface wrinkles even in the absence of cell spreading. 
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Figure 4.10 Uncaging cytosolic caged IP3 on cytosolic Ca2+ and cell surface topography. An 
example of a neutrophil loaded with the cytosolic Ca2+ indicator fluo4, cytosolic caged 
IP3 and membrane DiI, sedimented onto a plastic film coated coverslip on which spreading 
cannot occur. The images show the DiI image (DiI) showing its location at the cell 
periphery, fluo4 shows its cytosolic location (fluo4) and the phase contrast image (PC). The 
graphs show the time courses of DiI fluorescence (blue) and fluo4 intensity (black). IP 3 was 
uncaged by transient illumination with the 404nm laser as shown (UV uncaging) while 
fluo4 intensity, as a marker of cytosolic Ca2+ was monitored. DiI was photo-bleached both 
before and after the IP3–induced Ca2+ signal in the zone shown and the characteristic 
times,��for sdFRAP are shown. This was typical of at least 4 experiments and neutrophils 
were sourced from four separate donors.
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In order to discover whether this effect was the result of IP3 driven Ca2+ influx or the 

global elevation of cytosolic Ca2+, cytosolic Ca2+ was elevated using a Ca2+ ionophore, 

ionomycin. Ionophores have the effect of increasing the inward leak of Ca2+ into the cell 

(by acting as a cryptating ion carrier across the plasma membrane). This method of 

elevating cytosolic Ca2+ to a similar level to the peak of the IP3-induced Ca2+ signal had no 

effect on the cell surface topography (fig 4.11). In three similar experiments there was no 

significant change in the sdFRAP signal (paired t-test p>0.6). This demonstrates that the 

physiological route of elevating Ca2+ via IP3 and Ca2+ channel opening and not the 

elevation of cytosolic Ca2+ itself was responsible for triggering the change in cell surface 

topography. This result was therefore consistent with the requirement for the opening of 

physiological Ca2+ channels. These data point to Ca2+ influx alone as being responsible for 

controlling the wrinkled morphology of the cell surface.



195 

Figure 4.11 The effect of elevating cytosolic Ca2+ using ionomycin on the cell surface 
topography. An example of a neutrophil loaded with the cytosolic Ca2+ indicator fluo4 and 
membrane DiI, sedimented onto a plastic film coated coverslip to which it cannot spread.  
The images show the DiI image (DiI) showing its location at the cell periphery, the cytosolic 
location of fluo4 (fluo4) and the phase contrast image (PC). The graphs below show the 
time courses of DiI fluorescence (black) and fluo4 intensity (blue). Ionomycin (4μM) was 
added (IONO) while fluo4 intensity, as a marker of cytosolic Ca2+, was monitored. DiI was 
photo-bleached both before and after the ionomycin-induced Ca2+ signal and 
characteristic times, for sdFRAP are shown. These data were typical of 3 experiments
undertaken on three separate days and neutrophils were sourced from three separate 
donors.

In
te

ns
ity

Time (sec)

0.5

0

1

0 50 100 150



196 

4.4 Discussion 

The novel approach developed in Chapter 3 depends simply on the incorporation of 

a fluorescent probe into the plasma membrane and monitoring recovery of fluorescence 

at a defined distance from the photo-bleach front (sdFRAP). This method clearly showed 

that the plasma membrane of neutrophils was significantly wrinkled (Chapter 3), but that 

globally during cell spreading or locally in the neutrophil tail, this wrinkling is lost. In this 

chapter, it is shown that during phagocytic cup formation and phagosome formation, the 

wrinkled plasma membrane becomes a smooth surface. These novel results are therefore 

consistent with the unwrinkling of the plasma membrane as being the reservoir of 

membrane in neutrophil shape change. This would explain the finding that ruffling of the 

neutrophil surface is inhibited if the cell is forced to adopt an extremely elongated 

morphology and resumes when the cell is severed to form two non-elongated forms 

(Houk et al., 2012). Our data suggest that the extremely elongated form takes up all the 

slack provided by the wrinkled topography, such that further deformation of the surface 

to form ruffles is prevented. On severing the cell, relaxation of the two cell fragments into 

non-elongated form would permit the slack in the membrane to become available again 

and the neutrophil would then resume surface ruffling. In that paper, the discussion was 

in terms of membrane tension. Membrane tension has also been implicated in both cell 

spreading (Gauthier et al., 2011) and phagocytosis (Masters et al., 2013). However, as 

ezrin is both a regulator of membrane tension (Brueckner et al., 2015) and the 

maintenance of non-smooth cell topographies such as microvilli and microridges 

(Bretscher et al., 1997; Lamb et al., 1997), membrane tension may be controlled by the 
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ability to form these surface structures (Brueckner et al., 2015) and so be intrinsically 

linked.

            It is obvious that there is an apparent increase in the cell surface membrane after 

internalisation of a phagocytotic target, which is sufficient to enclose the phagocytic target. 

It has been suggested that the additional membrane may come from the addition of extra 

membrane by fusion of membrane vesicles within the cell with the plasma membrane. 

However, it is difficult to arithmetically account for the extra membrane from this source 

(Hallett and Dewitt, 2007). An alternative proposal is that the “additional” membrane is held 

in a reservoir of membrane held within wrinkles at the cell surface. However, this has never 

been tested as there has been no methodology available to demonstrate a change in cell 

surface topography in living cells. There are also questions about how spatially restricted 

such unwrinkling might be. SEM images have been used but are difficult to quantify and 

could be criticised as they are images of fixed dehydrated cells, which may consequently 

have altered surface topography. The work presented in this chapter has therefore 

employed the technique which I developed in the earlier chapter (Chapter 3) aimed at 

quantifying changes in cell surface topography in living cells, subdomain FRAP. In this work 

here, I have extended sdFRAP to compare the topography of subregions of the membrane in 

neutrophils which were undergoing phagocytosis. In this way, I sought to answer the 

question of whether unwrinkling of the cell surface could be observed and if so whether the 

effect was global or localised to the region of the cell undergoing phagocytosis. 
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           It was found that there was a striking difference on the smoothness of the topography 

of membrane in closed phagosomes and the nearby plasma membrane (section 4.3.1). The 

lack of wrinkles in the phagosome was consistent with localised unwrinkling of the plasma 

membrane. The degree of wrinkling of the plasma membrane in neutrophils with 

phagosomes was not significantly different from inactive (non-phagocytic) neutrophils. This 

suggested that only a small fraction of the membrane reservoir had been used to form the 

phagosome. Of course, the wrinkles at the cell surface may have been globally released 

during phagocytosis and reformed before the sdFRAP measurements were taken. In order to 

investigate this, neutrophils were chosen which were in the process of phagocytosis and had 

forming phagocytic cups, but were yet to completed phagocytosis. Again it was found the 

phagocytic cup membrane was significantly smoother than the rest of the cell body and 

again that the cell body was wrinkled to a similar degree as in non-phagocytic cells.  

            By monitoring cytosolic Ca2+ changes during phagocytosis, it is known that the cells 

which had paused at the phagocytic cup stage had not yet fired a Ca2+ signal. Once the Ca2+

signal had fired, completion of phagocytosis was too quick to allow sdFRAP to be performed. 

The role of cytosolic Ca2+ was therefore addressed separately in cells in which the Ca2+ signal 

could be controlled experimentally. It was found that the cell surface topography was 

modified simply by uncaging cytosolic IP3, which releases stored Ca2+ and opens Ca2+ influx 

channels at the plasma membrane. This experimental procedure reduced the 

wrinkledness of the cell surface significantly even in cells which are prevented from 

spreading onto a glass surface. This finding would explain why Ca2+ influx permits an 
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increase in the rate of both neutrophil spreading and phagocytosis, as it makes wrinkled 

surface membrane available for the increase in surface area required. It is therefore 

proposed that cell surface topography, while previously little considered, is a controlled 

feature of cells, which is a key element in maintaining cell surface tension and permitting 

the apparent membrane expansion required for spreading and phagocytosis.

The possibility exists that ‘slack’ in the wrinkles would allow them to un-wrinkle a little 

without the need for a Ca2+ signal. Herant et al  (2002) have shown that using a micropipette 

to aspirate the cell surface of neutrophils, that only a small suction force need be applied 

locally to cause a small deformation of membrane into the mouth of the pipette (local 

membrane expansion) but that a considerably higher force must be applied to unwrinkle the 

membrane further. These authors suggested that the wrinkles are held together by a 

molecular “velcro” and modelled the slack as occurring at the wider base of the wrinkles and 

the tighter adhesion along the length of the narrow projection (as with the strength of 

macro-velcro). Ca2+ activated calpain may be able to cleave this molecular “Velcro” 

composed of cross-linking proteins, such as ezrin (cytovillin) and so may account for the 

acceleration phase. It has previously been proposed that a localised elevation of cytosolic 

Ca2+ (perhaps restricted to the wrinkles) would be sufficient to activate the Ca2+ activated 

protease calpain-1 to cleave ezrin specifically within the wrinkles. Mathematical modelling 

has shown that within wrinkles, Ca2+ influx could transiently elevate the Ca2+ concentration 

to 30-80M (Brasen et al., 2010). Before the Ca2+ signal was induced, i.e. early phagocytic 

cup formation, the data presented here suggest that there was sufficient extra membrane in 

the wrinkle “slack” such that complete unwrinkling was not required for this initial stage 
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(section 4.3.3). Under these conditions where multiple phagocytotic events were occurring, 

if all the slack were used by the multiple cups, the membrane remote from the phagocytic 

cups may be stretched and its slack also utilised. However, it was found that even with 

multiple phagocytotic cups, there was sufficient localised unwrinkling in the forming cup and 

that no change in surface topography at sites away from the phagocytic cup was required. 

This underlined the scale of the membrane reservoir within the cell surface wrinkles.  
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4.5 Summary

           In this chapter I have presented work using the novel technique that I developed in 

Chapter 3 to investigate neutrophil cell surface topography during phagocytosis. I discovered 

that the membrane of the closed phagosome is virtually smooth, showing that unwrinkling 

of the plasma membrane had occurred. In addition, the unwrinkling preceded phagosome 

closures as phagocytic cups were similarly unwrinkled. The time of unwrinkling was 

pinpointed to between adhesion and phagocytic cup formation. 
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Chapter 5 

Hyper-wrinkled neutrophils: 

Effects on cell spreading, chemotaxis and 

phagocytosis 
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5.1 Introduction

           In a previous chapter (Chapter 3), I have developed a methodology that allows 

changes in the cell surface topography to be monitored in living cells. This work showed that 

there was sufficient “additional” membrane within the cell surface “wrinkles” to account for 

the additional membrane required for phagocytosis and cell spreading. In addition, the work 

in Chapter 4 showed that during neutrophil shape change (phagocytosis and spreading), the 

degree of wrinkling was reduced and was totally lost in the phagocytic cup. It was thus 

hypothesised that the cell surface topography of neutrophils is important in providing a 

reservoir of membrane which is required for cell spreading and phagocytosis (see also 

Chapter 1). Although this hypothesis had been difficult to test directly, the work presented in 

Chapter 3 using sdFRAP to report on changes in the cell topography, showed that the cell 

surface topography of neutrophils could be altered experimentally by osmotic shrinking or 

swelling and also chemically by the addition of the membrane “expander”, deoxycholate. 

This opens the possibility of establishing the effect on the ability of neutrophils to change 

shape by experimentally changing the surface topography osmotically and chemically by the 

use of membrane expanders, such as deoxycholate, on these neutrophil functions.  

           The effect of these experimental manipulations may be anticipated. For example, 

osmotic shrinking, which I have shown increases the wrinkledness of the cell surface, may 

inhibit cell shape changes. The osmotically formed wrinkles would remain, even after 

triggering the release of the constraints holding the “physiological wrinkles” in place. This 
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would so prevent the expansion of the cell (fig 5.1 b). In contrast, adding extra cell surface 

area chemically with membrane expanders, which I have shown also increases the cell 

surface “wrinkledness”, may not be expected to inhibit the normal expansion of membrane. 

Under these conditions, the release of the constraints holding the “physiological wrinkles” in 

place would still be able to add available additional membrane for spreading (fig 5.1 a). It is 

unclear what cell swelling would do. If swelling was sufficient to take up the “slack” within 

the wrinkles, with the constraints still holding the “physiological wrinkles” in place 

remaining, there would be little effect. However, if swelling was sufficient to break apart the 

“molecular velcro” holding the “physiological wrinkles” in place, no further membrane 

expansion would be possible (fig 5.1 c). 

These are testable predictions from the hypothesis that the cell surface topography 

controls the ability of neutrophils to expand their apparent cell surface area. These will 

therefore be addressed in this chapter. 
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Figure 5.1 Summary of anticipated effects of experimental manipulation of neutrophil surface 
topography. The figure shows the effect of experimental manipulations on the neutrophil 
surface topography and its expected effect on the ability to expand in response to three 
different conditions. The upper left figure shows the normal neutrophil topographical 
architecture. The surface folds are held in place by cross-linking elements between the 
plasma membrane and the cortical polymerised actin. The arrow pointing to (a) indicates the 
effect of expanding the surface area by deoxycholate and the anticipated effect on neutrophil 
shape change behaviour is shown beneath the arrow. The arrow pointing to (b) shows the 
effect of hyperosmolarity, where surface wrinkles are formed via osmotic wrinkling of the 
cell. The arrow pointing to (c) displays the effect of hypo-osmolarity, which forces the 
physiological wrinkles to unwrinkle by mechanical stress.  
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5.2 Aim of the Chapter  

          The aims of the work in this chapter are to establish whether events which require 

neutrophil membrane expansion, such as phagocytosis and cell spreading, can be influenced 

by osmotic change and by chemical membrane expanders. The objectives of the work 

presented in this chapter, therefore, were to  

1. Test whether experimental alteration of the cell surface topography had an effect on 

the ability of neutrophils to change shape and undertake spreading, chemotaxis or 

phagocytosis consistent with the membrane reservoir hypothesis outlined above. 

2. If inhibition was observed, to establish whether the effect was explicable solely by 

the effects on cell surface topography or whether an inhibition of Ca2+ signalling 

events (the obligatory trigger) was also affected. 
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5.3 Results

5.3.1 Experimental manipulation of the cell topography 

         In Chapter 3, the effect of 3 experimental conditions (osmotic cell swelling, shrinking 

and the use of chemical plasma membrane expanders) were shown to affect of the sdRAP 

signal consistent with a change in the cell surface topography. This opens the possibility of 

using these experimental manipulations to investigate changes in cell surface topography on 

cell behaviour. It was, however, important to confirm the sdFRAP-derived conclusions by 

direct visualisation of the cell surface topography. As scanning electronic microscopy has 

sufficient resolution to visualise the cell surface in fixed cells, this was employed.  

Neutrophils were subjected to the three conditions found to affect the sdFRAP signal. 

Samples of the cells were examined by light microscopy and by sdFRAP and when the 

sdFRAP change had been confirmed, cell samples were immediately glutaraldehyde fixed in 

suspension to maintain the cell surface on the cells before adhesion. The fixed cells were 

sedimented onto the matrix of an SEM imaging “stud” by filtration and then gold coated (see 

section 2.9). In this way, the morphological alterations made to the normal topography of 

the neutrophils could be seen (fig 5.2). In the untreated neutrophils, the normal microridges 

and wrinkles were observed (fig 5.2 i). After osmotic swelling, the neutrophils were enlarged 

and more smooth with fewer wrinkles (fig 5.2 ii), as predicted from the sdFRAP 

measurements. Osmotic shrinking caused a dramatic increase in the appearance of wrinkles 

and increased the wrinkle coverage of the cell surface (fig 5.2 iii). Pre-treating the cells with 

the membrane expander Doc produced slightly enlarged cells with distorted microridges 
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decorated with microbleb-like structures (fig 5.2iv). Thus, SEM imaging confirmed visually 

the conclusion reached by sdFRAP measurements. It was therefore concluded that these 

three experimental manipulations could be used with confidence in the nature of changes in 

the cell surface topography which they generated. 



209 

Figure 5.2 Scanning electron micrographs of neutrophils treated as in the live cell 
experiments. (i) An untreated cell with numerous surface microridges (wrinkles), (ii) a cell 
after hypo- osmotic swelling with fewer surface wrinkles and increased cell volume, (iii) a cell 
after hyperosmotic treatment with a smaller cell volume and numerous additional cell 
surface features and (iv) a cell after treatment with deoxycholate showing additional cell 
surface features but a similar cell diameter. The micrographs were typical of similarly treated 
cells in the same microscopic field (n>50). Two separate experimental runs with neutrophils 
from two sources confirmed these observations. 
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5.3.2 Effect of chemical “membrane expanders” on neutrophil cell spreading  

The effects of two membrane expanders, deoxycholate and octanol, on the ability of 

cells to spread were tested. Neutrophils pre-treated with deoxycholate showed a typical 

transition from spherical to spread morphology (fig 5.3) with the kinetics not significantly

different from untreated control cells (fig 5.1). The mean sizes of the contact area of the cells 

before and after treatment with deoxycholate (0.4mM, 15 mins) were: initial area control

72.2 ± 1.8m2, treated 74.5 ± 1.4m2 and after spreading the contact areas were 126.7 ±

11.3m2 and 142.4 ± 17.4m2 respectively. The times taken for spreading were 177 ± 18.5 

sec and 124 ± 24.0s. It should be noted that these times are slower than in untreated cells 

because all cells, including the controls, were maintained at 37oC for 15 mins before the 

experiment. However, the times required for spreading were not significantly different 

between the deoxycholate-treated and control (fig 5.4). Neutrophils pre-treated with 

octanol were also able to spread and achieved spread areas similar to the untreated or the 

deoxycholate -treated cells (fig 5.4). However, they were significantly slower in the time 

required to reach their final spread size. The mean sizes of the contact area of the cells 

before and after treatment with octanol (0.4mM, 15 mins) were: initial area control 72.2 ±

1.8m2, treated 71.7 ± 1.5m2 and after spreading the contact areas were 126.3 ± 11.3 and 

133.1 ± 9.6m2 respectively. These were not significantly different (fig 5.4). The times taken 

for spreading, however, were 177 ± 18.5s and 287.5 ± 56.3s. This latter difference was 

significantly different at p<0.1. It was possible that Octanol had an additional toxic effect in 

addition to the effect on cell surface topography which slowed the spreading process. 

However, as DOC-treated cells with a demonstrably increased surface wrinkledness (see 
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section 3.3.7) could spread in a similar manner to control, this eliminated the possibility that 

the membrane expander-induced change in topography, by itself, was sufficient to prevent 

spreading.   
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Figure 5.3 Spontaneous spreading of deoxycholate-treated neutrophils. (1) Neutrophils pre-
incubated with Doc (0.4mM) showing “spherical morphology”. (2) The same microscopic field 
is shown three minutes later, showing the same neutrophils now with typical spread 
morphology. The initial and final contact areas of the cells were calculated from 
measurement of the radius of the spherical cell and the longest and short lengths of the
spread cell as shown. This result was typical of at least 30 other cells that were recorded 
before and after spontaneous spreading over seven different days, with four blood donors. 
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Figure 5.4 The effect of pretreatment with membrane expanders deoxycholate and octanol on neutrophil spreading. The spreading of individual 
neutrophils was captured microscopically and three parameters measured, the initial and spread contact area of the cell as show in fig 5.1) and 
the time required to transition from the initial area to the final area. (a) Compares the pretreatment of the cells (15 mins) with deoxycholate
(0.4mM) with sham treatment (15 min preincubation), (b) compares pretreatment of the cells (15 mins) with Octanol (0.4mM) with sham 
treatment preincubation and (c) compares pretreatment with the two membrane expanders (deoxycholate and octanol). The histogram shows
the mean and sd for each condition where n = 8 for deoxycholate, n = 9 for octanol and n = 8 for control. There was no significant difference in 
contact area under any of the parameters (i.e. Doc/control, Oct/control or Doc/Oct). However, Oct treated cells took significantly longer to 
spread than either control or deoxycholate treated cells (p<0.05 (t-test).

(a) Deoxycholate v control        (b) Octanol  v control        (c) Deoxycholate v Octanol           
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5.3.2 Effect of osmotically induced changes in cell surface topography on neutrophil cell 

spreading

           The effects of two osmotic conditions, hypo-osmolarity and hyperosmolarity on the 

ability of cells to spread were tested. It was shown in Chapter 3 (and fig 5.2) that the former 

condition produces a flattened surface topography whereas the latter increased cell surface 

wrinkledness. Neutrophils pre-treated with hypo-osmolar medium swelled visibly and often 

lysed before the experiment. However, approximately 70% of surviving cells which were 

clearly swollen, showed a typical transition from spherical to spread morphology (fig 5.5 a) 

but with a slowed kinetics significantly different from untreated control cells (fig 5.6). The 

mean sizes of the contact area of the cells were: initial area control 74.5 ± 1.7m2 and 

treated 90.3 ± 3.6m2. This was significantly different and confirmed that cell swelling had 

occurred. After spreading the contact areas were 260.0 ± 17.6m2 and 204.5 ± 30.49m2 

respectively. This was not significantly different. The times taken for spreading were 62.4 ±

9.6s and 180.5 ± 29.6s. It should be noted that, unlike the Doc-treated experiments there 

was no requirement for pre-treatment, the untreated spreading times were faster.  

However, the time for spreading of hypotonically treated cells were significantly different (t-

test p<0.05) (fig 5.6). Although they were significantly slower to reach their final spread size, 

the cells remained able to spread.   

        These data were in stark contrast to the effect of hyperosmotic shrinking. Neutrophils 

subjected to hyperwrinkling failed to spread despite being in contact with the surface for up 

to 25 mins (fig 5.5b). The initial contact area was 60.4 ± 2.1m2 significantly smaller than the 
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control cells consistent with a reduced cell volume (n = 10); in no experiments were any cells 

observed to increase this area or to spread within 25 mins while in contact with the surface 

(fig 5.6). This profound inhibitory effect was not the result of irreversible “damage” to the 

cells, as cells which failed to spread would spread normally when spun and re-suspended in 

iso-osmotic media. Also, the osmolarity increase was achieved with sucrose, so this was 

unlikely to be an ionic effect. 
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Figure 5.5 Spreading of osmotically treated neutrophils. (A) Shows two normal neutrophils on 
first contact with the glass coverslip, which are confirmed to be spreading after 48s in the 
next images and (B) displays two osmotically swollen neutrophils, which are shown on first 
contact with the glass coverslip as spherical cells. The next image is 3 mins later when both 
cells have spread onto the glass substrate. The passage of time can be seen by the arrival of 
another neutrophil sedimenting onto the slide and indicated by asterisk. (C) Shows one 
osmotically shrunk neutrophil on first contact with the glass coverslip. The shrunk and more 
wrinkled morphology can be seen. By 3 mins, another shrunk neutrophils had sedimented 
into the microscopic field (marked with asterisk). By 18 mins, smaller and less dense platelets 
began to sediment (marked by asterisk) in the field. Cells showed no spreading within the 25 
mins recording. These results were typical of at least 12 other experiments undertaken on 
four separate days with four different blood donors.      
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Figure 5.6 Spreading of osmotically treated neutrophils. The spreading of individual 
neutrophils was captured microscopically and the contact area of the cell measured on first 
contact (initial) and 25 mins later (final). The first pair of bars (a) shows the mean ± sem of 
neutrophil area without osmotic manipulation (iso-osmotic (n = 9)); the second pair of bars 
(b) shows the mean ± sem of neutrophil area in hypo-osmotic medium (150mOsM, n = 10); 
the third pair of bars (c) shows the data for neutrophils in hyperosmotic media (600mOsM, n 
= 10). There was a significant differences between the initial and final contact area for the 
neutrophils in iso-osmotic and hypo-osmotic media (p<0.05 (t-test)), but not for cells in 
hyperosmotic medium.  

*

*

NS
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         Furthermore, in cell populations, where no selection of cells for study can be made, the 

cell diameters of all the cells within the population can be measured objectively using a 

Cellometer (see methods Chapter 2) and a similar effect was observed. In establishing the 

Cellometer experimental parameters, cells with diameters less than 7m were not counted 

ensuring cell debris, platelets and contaminating lymphocytes were excluded. Cells larger 

than neutrophils, such a monocytes and cells of similar size e.g. basophils and eosinophils, 

cannot be excluded by this method. However, as neutrophils were the most numerous cell 

type (accounting for more than 90% of the cells used), the data mainly reflected neutrophil 

behaviour. 

          It was necessary to modify the Cellometer cell counter chamber so that the neutrophils 

could attach to the glass surface and for the imaging to be achieved at the contact surface. 

However, such experiments could not be performed at 37oC, but were undertaken at room 

temperature. This resulted in a far slower spreading time. However, it was helpful to see 

that the microscopic observations were confirmed in non-subjective cell population 

measurements. The initial distribution of cell sizes in the population (fig 5.7) showed that the 

majority of cells had a diameter 8-10m, as expected for neutrophils in suspension. The 

skewness of the population distribution with a long tail, with some cells having diameters up 

to 18m, may be explained by the presence of large non-neutrophilc cells, such as 

eosinophils, or some neutrophils which have already spread, or some cells aggregated. 

However, as the population was mainly of the expected size for neutrophils, the population 

was simply divided into cells with diameters smaller than and greater than 11m (i.e. pop1 
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<11m>pop2). As neutrophil spreading on the imaging chamber was allowed to proceed, a 

clear shift in the cell size distribution was observed (fig 5.8). This was used to document the 

progression of the cell spreading on the slides.   

            In hypo-osmotic media, it was found that the neutrophils in suspension had increased 

in diameter, as expected (fig 5.8). The Cellometer would record only intact cells, even though 

some cells may have bursted by the hypo-osmotic treatment. There was a clear further 

increase in cell diameter as cells adhered to the glass surface (fig 5.8). By calculating the 

change in the number of cells which crossed the 11m diameter cut-off, it can be seen that 

hypo-osmotically treated cells spread at a reduced rate compared to iso-osmotic cells (fig 

5.8c). However, non-lytic swelling of neutrophils sufficient to increase the cell diameter 

remained able to spread. This degree of osmotic swelling did not prevent the ability of 

neutrophils to spread. This confirms the single cell observations reported above.  

            In contrast to the lack of effect of swelling, osmotically shrinking the cells totally 

inhibited their ability to spread (fig 5.5 b). Initially, osmotic shrinking reduced the cell 

diameter of approximately 80% of the neutrophils to below 11m, this percentage did not 

change substantially over the subsequent 30 mins (fig 5.8). Again, the cell population 

measurement confirmed the earlier observation made microscopically. The difference 

between the untreated and hypotonic cells were not significantly (p = 0.18), but between 

the untreated and hypertonic cells were significantly different (p = 0.006)  
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Figure 5.7 The distribution of cells diameters measured by Cellometry. The figure shows the 
typical distribution determined by Cellometer analysis. It was necessary to exclude objects 
smaller than 7μm, as this included cell debris and contaminating platelets. The tail of the 
distribution above 11μm may represent a few eosinophils, or neutrophils that had begun to 
spread onto the imaging surface, or had small formed aggregates (2 cells). 
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Figure 5.8 The shift in the distribution of neutrophil diameters during spreading. (a) The time 
course of typical cell spreading assays of cells without osmotic manipulation (iso-osmotic), in 
hypo-osmotic medium (150mOsM) and in hyperosmotic media (600mOsM) are shown as 
indicated. The two lines show the percentage of cells analysed which were larger than 7μm but 
smaller or equal to 11μm (i.e. 7μm > cells ≤ 11μm) and the percentage with diameters above 
11mm. (b) shows the ratio of these two measurements to provide a single “population 
spreading parameter” (N (<11m)/N (>11m)) for comparison of the three conditions indicated. 
(c) Shows an alternative method of comparing spreading, by calculating the number of cells 
which changed their diameter and exceeded 11μm (cell(>11m)). This negates the difference 
in the initial cell size and shows more clearly the comparative rates at which cell spreading 
occurred. The error bars in (b) and (c) show the means ±  sem in the vertical and the time range 
over which the measurements were taken (horizontal). In all experiments, n>200.

7           
9           
11         
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5.3.3   Cytosolic Ca2+ signalling in hyperwrinkled neutrophils

           The sdFRAP studies showed that the cell surface was considerably more wrinkled 

under these hyper-osmotic conditions. However, as the spreading of untreated neutrophils 

onto glass triggers a cytosolic Ca2+ signal, which is obligatory to initiate cell spreading, it was 

important to establish whether shrunk cells were also able to elicit this Ca2+ signal. In fluo 4 

loaded neutrophils, the cytosolic Ca2+ level was recorded in individual neutrophils as they 

sedimented onto the glass. The interval between them appearing at the glass surface and 

the Ca2+ signal could thus be accurately measured in individual cells.  

           It was found  that untreated neutrophils produced a single large Ca2+ peak (“Ca2+ flash) 

between 20s to 60s after contact with the glass (3/3 cells). This was followed by a rapid cell 

spreading response (fig 5.9). This is in agreement with the reported obligatory requirement 

for a large Ca2+ signal to trigger cell spreading. However, osmotically shrunk neutrophils 

failed to signal Ca2+ after contact with the glass (fig 5.10). After osmotic shrinkage, 

restoration of osmolarity permitted both cell spreading and the Ca2+ signal (fig 5.11). The 

possibility, therefore, existed that the extremely wrinkled surface did not present sufficient 

area to the glass to exceed the threshold amount of integrin binding to initiate the Ca2+

signal.  

        It could not therefore be concluded simply that additional surface wrinkling inhibited 

cell spreading as a result of a restriction of the availability of the surface membrane, as the 
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Ca2+ signal is an absolute requirement for neutrophil spreading. In order to overcome this 

problem, two approaches were adopted; the first was to allow neutrophils to contact the 

glass in iso-osmotic conditions and impose an osmotic step-up after cells had elicited a Ca2+

signal. The second approach was to load the hyperwrinkled cells with caged IP3 so that 

optical uncaging of caged IP3 could be employed to force a Ca2+ signal in wrinkled neutrophils 

after contact with the glass. 
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Figure 5.9 The relationship between cytosolic Ca2+ and neutrophil spreading. A typical fluo4 
intensity trace showing the large transient elevation in cytosolic free Ca2+ prior to spreading of 
untreated neutrophils in the imaging plane. The upper series of images show the phase contrast 
images with corresponding fluo4 intensity images (Ca2+) at the times indicated. In this example, a 
pair of cells is shown, only one of which responded by an elevation in cytosolic Ca2+ and 
subsequently spreaded rapidly (Indicated by the arrow). The other cell which failed to generate a
Ca2+ signal did not subsequently spread. The lower graph shows the time course of the fluo4 
intensity changes in the spreading cell as relative intensity (F/F0) as a monitor of Ca2+. This 
experiment was typical of similar results obtained in at least three other donors on different days. 

10 �m
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Figure 5.10: Cytosolic Ca2+in non-spreading hyperwrinkled neutrophils. (a) A series of images 
pairs (fluo4 intensity and phase contrast) of hyperwrinkled neutrophil (hyperosmotic medium 
600mOsM) are shown for the times indicated. There were no Ca2+ signals or cell spreading 
during the time of imaging. (b) Images show a more magnified view of the lower pair of cells 
which show that although the cells changed shape slightly there was no ‘spreading response’ 
or Ca2+ elevation. (c) Graph shows the time course of relative flou4 intensity (F/F0) for 
comparison with the untreated neutrophil response shown in fig 5.8. This experiment was 
typical of four others from four different blood donors. 

(c)
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Figure 5.11 Normal spreading responses after osmotic shrinking and restoration of normal 
osmolarity. The image pairs show the phase contrast and fluo4 intensity images of (a) a 
neutrophil which had been osmotically shrunk for 15 mins before (b) restoring the osmolarity 
to normal and (c) the full extent of spreading at 100s. Increase in fluo4 intensity confirmed 
the Ca2+ signal occurred and cell spreading followed. (d) The complete time course of the 
fluo4 signal is shown with the contact time and onset of Ca2+ signalling shown. These data 
were typical of five other experiments performed on different days with three different 
donors.   
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5.3.5 The effect of dynamic osmotic change after Ca2+ signalling 

            By loading neutrophils with fluo4, which is a cytosolic Ca2+ probe, changes in cytosolic 

Ca2+ were recorded in real time after neutrophils had contacted the glass surface in isotonic 

medium. In this series of experiments, neutrophils which had generated a clear Ca2+ signal 

were then challenged by increasing the osmolarity to alter the cell surface wrinkledness. 

However, the speed at which cell spreading occurred once the Ca2+ signal had been 

generated was faster than it was possible to change the osmolarity and it was thus not 

possible to establish a clear inhibition of spreading at this stage. However, the cells were 

clearly arrested after the osmotic step-up and failed to show any subsequent cell shape 

change behaviour (see section 5.3.7). This was consistent with the inhibitory effect occurring 

after Ca2+ signalling and thus down-stream of the Ca2+ signal. However, it was necessary to 

design a further confirmatory experiment before accepting this conclusion. 

5.3.6 The effect of IP3 induced Ca2+ signalling on hyper-wrinkled neutrophils 

         In order to overcome the problem presented by the failure of hyper-wrinkled 

neutrophils to elicit a Ca2+ signal on contact with the glass surface,  neutrophils were loaded 

with both fluo4 (to monitor cytosolic Ca2+) and caged IP3. The latter was inert within the cell 

until photolysed by light of the appropriate wavelength (405nm diode laser), when 

biologically active IP3 is liberated within the cytosol and a physiological Ca2+ signal is elicited. 

This tactic has been used previously within our laboratory to trigger neutrophil spreading on 

demand (Dewitt et al., 2013).  
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         With osmotically hyper-wrinkled neutrophils which had failed to spread, this approach 

was used to force a cytosolic Ca2+ signal within the cells after contact with the surface. It was 

observed that hyper-wrinkled cells responded to the IP3-forced elevation of cytosolic Ca2+ by 

extending portions of membrane in an uncoordinated manner (fig 5.12). This uncoordinated 

spreading was not an irreversible consequence of hyper-osmolarity on the neutrophils, as 

neutrophils which had been exposed to hyperosmotic solutions and then the osmolality 

restored to normal, were able to both signal Ca2+ and spread normally. This series of 

experiments showed that the hyper-wrinkled neutrophils retained the ability to elevate 

cytosolic Ca2+ via the IP3   route, but could not respond with normal spreading, an 

interpretation of this data was that the unusual response to elevated cytosolic Ca2+ was the 

result of punctured membrane expansion. There would result from the unwrinkling of some 

physiological wrinkles (ezrin maintained) but not others which were osmotically induced 

wrinkles (see section 5.5 for further discussion).
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Figure 5.12 The effect of uncaging cytosolic IP3 to force a Ca2+ signal in hyperwrinkled 
neutrophils. The series of images show a hyper-wrinkled neutrophil loaded with both fluo4 
and caged IP3. The greyscale and fluorescence images in the sequence above (a - f) show the 
effect of IP3 uncaging on fluo4 intensity (cytosolic Ca2+) and the cell morphology (phase 
contrast). (g) Shows the complete time course for fluo4 intensity change (cytosolic Ca2+

signal) in the hyperwrinkled shrunk cell (upper trace) and the 405nm laser uncaging pulse 
(lower trace). This experiment was typical of three other experiments performed on different 
days with three different donors.   
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5.3.7 Effects of osmotic shrinking on neutrophil chemokinesis 

The effect on cell spreading of inducing additional cell surface wrinkles by osmotic 

shrinking suggested that this strategy limits the membrane availability for neutrophil shape 

change. This approach would therefore provide a way of testing the hypothesis that 

unwrinkling of cell surface wrinkles was required for other neutrophil shape change events 

such as during chemotaxis and phagocytosis. In order to test this hypothesis, neutrophils 

were allowed to adhere to glass surface and to undergo spontaneous chemotaxis in isotonic 

conditions. When a hyperosmotic step up (to 600mOsM) was induced using NaCl, the motile 

cells did not shrink. Presumably this was because they had already adopted a spread out 

morphology and the glass substrate prevented visible shrinkage. However, the motile cells 

immediately stopped moving and remained fixed in a motile conformation (fig 5.13 i). The 

cells were not lysed as they retained cytosolic dyes (such as fluo4) and no increased 

Brownian motion of cytosolic granules was observed. A similar result was observed in non- 

isotonic conditions through hyperosmotic step (up to 600mOsM) using sucrose (fig 5.13 ii).   

         As it was obvious that the cells were arrested in the process of chemotaxis, but were 

viable, a series of experiments were performed to establish the effect of restoration of 

osmolality. As this would allow the osmotically induced wrinkles to become unwrinkled, the 

cells may have been able to continue their normal chemotaxis. However, a surprising result 

was that after restoration of cell surface topography, cells were able to move but the 

polarity of the cell was lost. Pseudopodia formed at right angles to the adherence surface to 

form a conical (volcano) shape. The original “skirt” around the cells remained attached to 
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the glass and protrusions were formed at the free edges of the cell (fig 5.14). This 

phenomenon may have arisen because the polarity cues which maintain the chemotactic 

direction had been lost during the osmotic arrest period or after arrest and restoration that 

the Brownian Ratchet assembly of actin was released to form pseudopodia at any site with 

sufficient available membrane. 
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Figure 5.13 (i) The chemokinetic arrest by hyper-wrinkling with hypertonic conditions. Frames 
from a continuous recording of neutrophils undergoing spontaneous chemokinesis are shown 
to demonstrate the arrest of chemokinesis after the cells are subjected to a hyperosmotic 
step up from 300mOsM to 600mOsM using NaCl (150mM increase). ln the sequence, the first 
three images (a - c) show the motility of the cells with arrows highlighting extensions and 
pseudopodia. The lower three images (d - f) show the arrested nature of cell movement after 
hyperosmotic step-up. As the cells are stationary after hyperosmotic increase, frames look 
similar. The time bar below each frame shows the length of time that has elapsed. The time 
of each frame were as follows (a) 32s, (b) 72s, (c) 188s, (d) 298s, (e) 437s and (f) 943s. This 
experiment was typical of those performed on at least 5 occasions.

Normal Osmolarity 

Hyper Osmolarity (NaCl)

(i)
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Figure 5.13 (ii) The chemokinetic arrest by hyper-wrinkling with sucrose-induced hypertonic 
conditions. As above, frames from a continuous “movie” are shown to demonstrate the 
arrest of chemokinesis after the cells are subjected to a hyperosmotic step up (300mOsM to 
600mOsM) using sucrose (300mM added). In the sequences, the first three images (a-c) show 
the motility of the cells with arrows highlighting extensions and pseudopodia. The lower 
three images (d - f) show the arrested nature of cell movement after hyperosmotic step-up. 
As the cells are stationary after hyperosmotic increase, the positions of the cells look similar. 
The time bar below each frame shows the length of time that has elapsed. The time of each 
frame were as follows (a) 32s, (b) 72s, (c) 188s, (d) 298s, (e) 437s and (f) 943s. This 
experiment was typical of those performed on at least 5 occasions.    

Normal Osmolarity 

Hyper Osmolarity (SUCROSE)

(ii)
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Figure 5.14 The effect of restoring isotonicity to hyperosmotic arrested neutrophils 
undergoing chemokinesis. The series of images show frames which summarise the effect of 
restoring isotonicity to neutrophils after arrest of chemokinesis by hyperosmotic medium 
(600mOsM) as shown in detail in fig 5.12). The upper sequence shows the effect of 
hyperosmolarity increase using NaCl, and the lower series show the effect of hyperosmolarity 
increase using sucrose. Both (a) and (d) show fields of neutrophils undergoing spontaneous 
chemokinesis. (b) and (e) show  frames of the same fields of cells after arrest of chemokinesis 
by stepping up the osmolarity and show the effect of restoring osmolarity to the level that 
the cells experienced in images (a) and (f) respectively. In images (c) and (f) the retraction of 
the cell “skirts” can be seen as the cell body pushes upwards. In the recording (from which 
these frames were taken) the upward movement resembles that of an uprising volcano. The 
“volcano” effect shown was observed in the majority of cells and the images shown here 
were typical of at least 5 other experiments and the neutrophils were sourced from different 
blood donors on different days. 

Iso-osmotic                            Hyper-osmotic (NaCl)              Isotonicity restored

Iso-osmotic                  Hyper-osmotic (sucrose)       Isotonicity restored
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5.3.8 Effects of osmotic shrinking on neutrophil phagocytosis 

             A similar approach was adapted to test whether phagocytosis was also dependent on 

the cell surface wrinkled topography. In order to establish the role played by neutrophil 

surface topography in phagocytosis, the neutrophil surface wrinkledness was either 

increased or decreased using experimental procedures shown to have these effects (see 

Chapter 3). The phagocytic ability of neutrophils either osmotically swollen or osmotically 

shrunk was therefore determined (fig 5.15). Untreated cells challenged with iC3b -opsonised 

zymosan resulted in multiple internalisation events, with single neutrophils internalising up 

to 9 zymosan particles within a few minutes (fig 5.15 A). However, no neutrophils which had 

been osmotically shrunk were able to take up any zymosan (fig 5.15 C). Osmotically swollen 

neutrophils retained an ability to phagocytose, but the number of particles per neutrophil 

was greatly reduced; with only 1 or 2 particles taken up. Zymosan particles adherent to the 

cell surface or within a phagocytic cup were also observed in the swollen neutrophils (fig 

5.15 B).  

           These data are consistent with the physiological surface topography being important 

for providing a membrane reservoir for phagocytosis. After shrinking, the additional wrinkles 

which formed were unable to contribute to phagocytosis and hence phagocytosis could not 

occur. With swollen cells, the wrinkled surface tends to be smoothed out by the increased 

cell volume. However, it is difficult to swell neutrophils without them bursting. The reduced 

uptake suggested that most of the wrinkled surface was removed in the surviving cells, 

which consequently reduced the capacity for phagocytosis. 
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Figure 5.15 Phagocytosis by osmotically treated neutrophils. The triple images show the fluorescence from FITC-labelled zymosan particles, the 
phase contrast to show the cell and the overlay of the first two images to show the internalisation of the particles. Each panel shows 
representative images of neutrophils from different donors. (A) Untreated neutrophils, (B) osmotically swollen neutrophils (150mOsM) and (C) 
osmotically shrunk neutrophils (600mOsM). Fluorescently labelled zymosan particles were imaged using confocal laser scanning microscopy, so 
that their intracellular location was confirmed. As no particles were found within the “shrunk neutrophils”, lower magnifications are shown so 
that the presence of zymosan particles in the microscopic field can be confirmed but none are evident within cells.  

A) Normal Neutrophils B) Swollen Neutrophils C) Shrunk Neutrophils 

Donor 1

Donor 2

Donor 3
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5.3.9 Effect of dynamically hyperwrinkling neutrophils during phagocytosis 

          In order to investigate the dynamic effects of hyperwrinkling, neutrophils were 

permitted to undergo phagocytosis on the glass surface whilst imaging. Here, non-opsonised 

zymosan particles were attached to the glass, neutrophils were subsequently allowed to 

sediment and attach, then human serum was added while imaging. The surface of zymosan 

activated complement and both diffusible C5a is generated (which signals chemotaxis 

towards the particle) and the zymosan is iC3b-opsonised. Thus, the progress of movement 

towards the particle and its contact with the particle can be monitored. When a phagocytic 

cup had formed, the hyperosmotic step was imposed. In all cases studied, phagocytosis was 

arrested at that stage. The phagocytic cup failed to progress to full phagosome formation (fig 

5.16). This suggested that the wrinkled cell surface membrane reservoir was required for the 

progression from the formation of the cup, to completion of the phagosome.  

          When the osmolarity was restored, a few cells that arrested at cup formation 

continued and completed phagocytosis (fig 5.16). This suggested that signals from 

attachment to the zymosan particle had persisted and that once released from the osmotic 

tension holding back the unwrinkling process, the cell was free to complete the task. The 

reversibility presented a strong evidence that phagocytosis depended on the availability of 

membrane held on the cell surface. However, in the majority of cells, restoration of 

isotonicity released the cells from motion arrest, but direction finding was lost and, as with 

the chemokinesis experiments (section 5.3.7), cells often underwent the “volcano” response 



238 

pushing membrane away from the glass surface and failing to complete phagocytosis (5/7 

cells).     

          As it was found that osmotically shrunk neutrophils failed to signal Ca2+ when in 

contact with the glass surface, it was possible that the failure of phagocytic cups to progress 

was because the osmotic shrinking prevented Ca2+ signalling (an essential triggered for 

phagocytosis, see Chapter 1). This would occur if the shrinking step was imposed before 

integrin was fully engaged and the Ca2+ signal had not been evoked. As with the spreading 

experiments, the wrinkled membrane would present fewer intergins to bind to the zymosan 

and may be less than that required to trigger a Ca2+ signal. Both these possibilities were 

excluded by measuring cytosolic Ca2+ in the neutrophils undergoing phagocytosis. In order to 

eliminate these possibilities, neutrophils which had elicited a clear zymosan binding Ca2+

signal during phagocytic cup formation were examined (fig 5.17). This signal resulted in the 

rapid closure of the phagosome in untreated cells. However, at this stage, the osmotic step 

was imposed. Despite a previous Ca2+ signal, showing the interaction between the opsonised 

zymosan and the neutrophil had reached the critical stage for phagocytosis, stepping up the 

osmolarity after the Ca2+ signal still prevented completion of phagocytosis (fig 5.17). This 

placed the inhibitory effect of the osmotic step after Ca2+ signalling but before full release of 

additional membrane for completion of phagocytosis. 
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Figure 5.16 Effect of hyperwrinkling on phagocytosis arrest. (a) The first three images show 
the formation of a phagocytic cup around a zymosan particle in iso-osmotic medium (images 
at time zero, 50s and 70s). (b) At that point, the osmolarity was stepped up (to 600mOsM). 
The subsequent two images are at 100s and 200s. (c) Osmolarity was restored to normal at 
210s and the subsequent images show progression of phagocytosis at times 240s and 300s.  
The arrest of phagocytosis was typical of all experiments performed (7/7) but the recovery 
was not typical (2/7). A more typical lack of progression of phagocytosis is shown in the next 
figure.   
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Figure 5.17 Effect of increasing osmolarity during phagocytic cup formation and whilst measuring 
cytosolic Ca2+. (A) The Images represent the cytosolic Ca2+ concentration within a fluo4 loaded 
neutrophil on contact with a zymosan particle as the phagocytic  cup forms where (i) is before 
contact, the neutrophil having  low cytosolic Ca2+ (ii) at contact when the neutrophil Ca2+ is elevated 
and (iii) phagocytic cup formation. (B) Shows the time course of the cytosolic Ca2+ change with 
contact and phagocytic cup formation indicated. The point at which images (i), (ii) and (iii) were taken 
is also indicated. (c) Shows the effect of stepping up the osmolarity after phagocytic cup formation 
and the elevation of cytosolic Ca2+ (images 1, 2 and 3) and the resulting arrest of phagocytosis after 
hyperosmotic step up (images 4, 5 and 6 at 160s, 200s, 250s). Similar results were obtained in similar 
experiments with neutrophils from three other donors on different days. 
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 5.5 Discussion  

            In this chapter it has been demonstrated that changes in the cell surface topography 

induced by hyperosmolarity have a physiologically significant impact on human neutrophil 

function. The data presented in this chapter suggest that the wrinkled surface topography is 

required as a membrane reservoir for cell surface area expansion during spreading, 

chemokinesis and phagocytosis. The dramatic effects of cell shrinkage were interpreted as 

resulting from additional wrinkles being formed which were not controllable. The possibility 

that any means of disrupting the cell surface topography by increased wrinkledness were 

excluded by the use of membrane expanders. It was shown in Chapter 3, that membrane 

expanders increased the diffusion path-length for DiI and that this was due to the addition of 

artificial contours (see fig 5.1). These agents were predicted to make the membrane more 

“baggy” (lower membrane tension), but it was unclear whether this would affect the ability 

of the cell to change shape. However, it was found to have minimal impact on neutrophil 

shape change. 

         Since my work had shown that osmotic shrinking had a significant impact on the cell 

surface topography of neutrophil (using sdFRAP), I sought to establish whether this could be 

used to investigate the relationship of surface topography to neutrophil function. It was 

predicted that experimentally induced changes in the surface topography would impact on 

neutrophil behaviour. I found that osmotically swollen neutrophils either burst or were able 

to spread rapidly on to glass coverslips.  From measurement of the swollen cell radius, it was 
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calculated from volume increase that only 5% of the wrinkles or 5% of the surface area of 

each wrinkle was lost (see section 2.5.11.6).  

        This suggested that cell surface wrinkles still existed and that these could participate in 

the spreading response. Scanning electron microscopy of the cell surface of swollen 

neutrophils confirmed this (fig 5.2). I therefore investigated the effects of osmotic shrinking. 

I found that osmotically increasing the wrinkled state of the cell surface had a profound 

inhibitory effect on the ability of neutrophils to spread onto glass and to undergo 

phagocytosis. This indicated that the osmotic shrinking caused a lethal effect and so 

inhibited cell spreading and phagocytosis in that way. This was tested by restoring normal 

osmolarity of neutrophils which had been arrested at the phagocytic cup stage by shrinking.  

In the majority of cells, this procedure released the stasis of the neutrophil but they 

subsequently moved randomly (as was also seen with cells arrested during chemokinesis). In 

some cells, restoration of osmolarity caused the neutrophil to continue phagocytosis and 

complete phagocytosis in an apparently physiological manner (fig 5.16). It was clear that 

osmotic shrinking had not irreversibly impaired the ability of neutrophils to phagocytose.  

        In a series of experiments observing over 50 individual cells, no cell was found to spread 

following osmotic shrinkage. The Ca2+ signalling ability of these cells remained intact. When 

cells were allowed to adhere to glass first and then they were wrinkled osmotically, it was 

found that cell movement, pseudopod formation and ruffling were all inhibited dramatically. 

Restoring the osmolarity to normal allowed the cells to return to a motile state. I found that 

the same effect was observed regardless of whether osmotic shrinking was achieved 
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ionically (NaCl) or non-ionically (sucrose). Using this approach, I examined the role of 

wrinkling during phagocytosis. Again it was possible to arrest the progression of 

phagocytosis by changing the wrinkled state. If a cell was arrested during phagocytic cup 

formation but before completion of phagocytosis, completion would resume after returning 

the osmolarity to normal. A surprising result was that after restoration of cell surface 

topography, the polarity of the cell was lost. Cells migrating along the glass slide were often 

seen to form pseudopodia at right angles to the adherence surface to form a conical 

(volcano) shape. This suggests that cell polarity is maintained in some way by the established 

surface topography. 
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Figure 5.18 Proposed mechanism underlying the Ca2+ induced elongated bleb formation in 
hyper-wrinkled neutrophil. The cartoon on the right attempts to illustrate the hypothesis 
proposed to explain the abnormal cell shape change observed following Ca2+ signalling in 
osmotically shrunk neutrophils (left). The proposal rests on there being two sorts of wrinkle 
at the cell surface after osmotic shrinkage; physiological wrinkles held in place by membrane 
cross-linking proteins such as ezrin (shown in red), and the other is simply the result of the 
osmotically reduced cell volume (shown in yellow). After the forced elevation of cytosolic 
Ca2+, calpain is activated and ezrin is cleaved. Normally this permits a symmetrical expansion 
of cell surface area and permits uniform spreading of the cell. However, under the 
hyperwrinkled conditions imposed by the hyperosmolarity, the release of membrane only 
occurs in the ezrin-maintained wrinkles and expansion is thus limited by the non-ezrin 
wrinkles (as shown in the lower cartoon). 
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          In an attempt to force spreading of hyperwrinkled neutrophils, an interesting discovery 

was made that may be relevant to the understanding of the inhibition mechanism by 

osmotic shrinkage. I found that hyperwrinkled neutrophils were unable to signal Ca2+ on 

contact with the glass surface. These experiments thus pointed strongly to an inhibitory 

effect of hyper-wrinkling in reducing the availability of addition surface area required for 

effective neutrophil spreading. Caged IP3 was therefore used to elevate cytosolic Ca2+ within 

the hyperwrinkled cells. It was found that unusual surface structures were formed (see fig 

5.14). The most likely  interpretation of this data was that elevated cytosolic Ca2+ acted 

through the physiological route of calpain activation and ezrin cleavage ( see Chapter 1), but 

the result was punctated membrane expansion because other wrinkles were not maintained 

by ezrin, but by the osmotic effect (fig 5.18). Therefore, unwrinkling of some physiological 

ezrin-maintained wrinkles would occur but be prevented from extending in the usual way, 

because other membrane folds (which were osmotically induced wrinkles) remained and 

prevented full expansion, this is shown in fig 5.18. Interestingly, elongated bleb like 

structures have also been observed in neutrophils in which calpain has been partially 

inhibited (Dewitt et al., 2013). Although the route to achieve the generation of elongated 

bleb like structures was different, the underlying cause would be the same; namely partial 

release of wrinkles resulting in punctated release of membrane. It was suggested in these 

previous experiments that some wrinkles may have been released in advance of others as a 

result of inhibition of some calpain (which is activated by the Ca2+ signal). In the osmotically 

wrinkled cells, a similar effect may have occurred as the physiological wrinkles were forced 

to be released by uncaging IP3, but the osmotic wrinkles were retained (see fig 5.18). 
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             The inhibition of chemokinesis and phagocytosis may have a physiological relevance.    

Most types of cells are located in particular places within the body and do not experience 

changes in osmolarity. However, neutrophils migrate from the blood stream to the 

extravascular space in many different parts of the body, including the kidneys, lung and gut.  

At these sites, neutrophils may be exposed to large changes in osmotic conditions (Bryant et 

al., 1972). For example, the osmolarity in the renal medulla of the kidney may be as high as 

1400 mosmol. Similarly, the osmolarity in the interstitial fluid of enclosed inflammatory 

spaces is increased by the hydrolysis of macromolecules into smaller (osmotically active) 

fragments (Leak and Burke, 1974). Previous studies have also reported that osmotic 

conditions have an impact on neutrophil exocytosis (Kazilek et al., 1988), chemotaxis (Bryant 

et al., 1972) and even oxidase activation (Hampton et al., 1994). Nevertheless, the 

mechanism behind affecting these behaviours is not yet fully recognised. It is possible that 

changing the cells volume and hence their surface topography, which I have found here, is 

the underlying explanation for the changes to the usual behaviour of the neutrophil 

reported previously and in this chapter. 
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5.6 Summary 

The results in this chapter have demonstrated;

1. That hyper-wrinkling the neutrophil cell surface has an inhibitory effect on 

phagocytosis, cell spreading and chemokinesis.

2. And that this effect is partially the result of reduced receptor engagement, however, 

when signalling is intact, the inhibition results from a step between Ca2+ elevation 

and membrane expansion.

3. These data are consistent with the hypothesis that the cell surface wrinkles provide a 

necessary reservoir of additional membrane to permit phagocytosis and cell 

spreading.
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Chapter 6 

General Discussion 
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6.1 Overview  

            In this thesis, work has been presented which tested the proposal that when 

neutrophils undergo an apparent increase in cell surface area, such as during cell spreading 

and phagocytosis, there is a change in cell surface wrinkling, the unwrinkling of micro-ridges 

at the surface providing the additional membrane required. This proposal has been based on 

previous work, which has indirectly suggested this to be true. However, it has not been 

possible to directly test this proposal. The aim of the work in this thesis could only be 

achieved by developing a new approach to investigate the micro-ridges at the cell surface in 

living cells, preferably undergoing cell shape change. The earliest results chapter presents 

the development of subdomain FRAP as a way of establishing sub-microscopic changes in 

the neutrophil surface topography (Chapter 1). The approach was validated by changing the 

cell surface topography by experimental manipulation. In the subsequent chapters, this 

novel experimental approach was used to investigate whether changes in neutrophil 

topography occurred physiologically and could thus provide the explanation for increasing 

surface membrane availability. This work showed that an adaptation of manipulation was 

able to clearly demonstrate that large changes in the cell surface occurred and could be 

monitored by sdFRAP (Chapter 4). The last results chapter (Chapter 5), sought to establish 

whether these changes were necessary for neutrophil shape change. As it was shown that 

osmotic shrinking induced additional (non-physiological controlled) wrinkles, this simple 

approached showed that such a tactic could arrest neutrophils in the act of phagocytosis or 

chemotaxis and that this could be revered by simply restoring the osmolarity. Since other 

events within in the cell, such as Ca2+ signalling were not impeded, this was consistent with 
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the cell surface topography having an important role to play in controlling neutrophil 

behaviour. 

6.2 Summary of the results presented in this thesis 

6.2.1. Development of sdFRAP to monitor cell surface topography 

        It had not been possible previously to monitor changes in the cell surface topography of 

neutrophils (or any other cell type) undergoing cell shape change. Here, I have developed a 

method which allows monitoring of such changes. Chapter 3 presents the work which led to 

the use of sdFRAP and its validation. Obviously, the discoveries made in the work presented 

in this thesis depended on the success of producing such method. The theoretical basis for 

the method was that diffusion over a defined distance in the plane of the membrane was 

constant, so the time taken for diffusion would provide a measure of the path that had to be 

taken. If the surface was flat, diffusion followed the expected time course. This was shown 

by monitoring diffusion of DiI in flat region of the neutrophil membrane, such as the 

extended ‘tail’ of neutrophils, or by experimentally stretching the membrane osmotically to 

give a flat surface. In the first experiments undertaken with neutrophils in a ‘spherical’ 

configuration or in regions of neutrophils other than the flat ‘tail’, it was obvious that the 

diffusion time was significantly longer. This was the first time that a direct measurement of 

the wrinkledness of the cell surface has been made. The validity of this approach was tested 

by increasing the wrinkledness further by osmotic shrinking or by the addition of membrane 

expanders. In all measurements, these conditions increased the diffusion time still further. 

The method was therefore responsive to measurement of wrinkledness over the extremes 



251 

that may be expected (i.e. from absolutely flat to highly wrinkled) and could be used in the 

work presented here. As the method relied only on introducing a fluorescent marker to the 

plasma membrane and the equipment to photobleach and to spatially record fluorescence 

recoveries, it was relatively easy and robust and could be extended to other living cell types.      

6.2.2. Using sdFRAP to measure wrinkledness during neutrophil activity

            The purpose of developing the sdFRAP methodology was to study the cell surface 

topography in living neutrophils, especially as they change shape during spreading and 

locally during phagocytosis. The method was clearly able to detect differences in the 

wrinkledness during these activities. For example, during phagocytosis, the membrane 

around the developing phagosome or the phagocytic cup which was initially wrinkled was 

transformed to a smooth (non-wrinkled) surface. This was consistent with localised surface 

unwrinkling providing the additional membrane required to form the phagocytic cup and the 

complete phagosome. Likewise, neutrophils which had spread onto glass surface were 

significantly less wrinkled that spherical cells. The reduction in wrinkledness was not 

confined to any part of the cell body. Again, this was consistent with global surface 

unwrinkling providing the additional membrane required to transition from spherical to 

flattened (spread). 

6.2.3 Requirement of unwrinkling for neutrophil behaviour 

         The sdFRAP provided an observation of unwrinkling within certain neutrophil 

responses. This, of course, led to the hypothesis that unwrinkling caused or was permissive 
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for the neutrophil behaviour. As I had found that it was possible to alter the wrinkledness 

experimentally, these conditions were applied to neutrophils undergoing 

spreading/chemotaxis or phagocytosis. This data is presented in Chapter 5. In essence, 

simply by wrinkling the membrane osmotically, it was possible to freeze the neutrophil 

behaviour at the point of phagocytic cup formation or chemotaxis. Ca2+ signalling was 

unaffected by this wrinkling event and a cell could be chosen which had already signalled 

Ca2+ under normal conditions and still the osmotic wrinkling prevented the shape change 

response. This was strong evidence that the control of the wrinkled surface was important 

for neutrophil responses. 

          A remarkable finding was that after arresting neutrophils in the process of 

phagocytosis by osmotic wrinkling, restoration of isotonicity permitted some cells to 

continue in a co-ordinated manner. In other cells the directionality was lost. After the arrest 

of chemotaxis, restoration of isotonicity resulted in an uncoordinated attempt to continue to 

migrate. In no cell could a restoration of migration be observed and cell pushed out 

pseudopodia randomly, especially away from the adherence surface. It was not clear what 

the mechanism for this was, but it was clear that during the period of arrest, actin within the 

cell remained able to exert a force, but that key signals from the underlying substrate were 

lost. 

          It was interesting that adding artificial membrane expanders (deoxycholate), which 

increased the diffusion path-length as measured by sdFRAP, had little effect on the 
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behaviour of neutrophils. Although SEM imaging showed that the cells were ‘flabby’ with 

additional membrane, the phagocytic behaviour of the expanded cells was completely 

normally. Presumably, the actin- membrane linkage within physiological wrinkles was still 

controlled physiologically and additional deoxycholate wrinkles were not. The large 

physiological reservoir of wrinkled membrane which was required to unwrinkled during 

spreading on phagocytosis remained. 

6.3 New advances in cell membrane topography since the start of this work 

         The work presented in this thesis can be put into the context of recent developments 

published during the course of this work. At the onset of this work, the relationship between 

membrane tension and cell surface topography was little considered (Hallett and Dewitt, 

2007). However, during the course of the work reported in this thesis, this link between ezrin 

(which hold wrinkles in place) and membrane tension has also been reported (Brueckner et 

al., 2015). These workers showed that MDCK II cells either depleted of ezrin by siRNA 

technology or over expressing ezrin had different mechanical properties, when assessed by 

force indentation experiments. There was a substantial increase in membrane tension 

(stiffening) with increased cytoplasmic ezrin and a decrease in membrane tension in ezrin-

depleted cells. Interestingly, ezrin depletion also caused the loss of excess surface area, 

which would be indicative of reduced cell surface wrinkling (Brueckner et al., 2015).     

          While this work was not undertaken on cells which rapidly change shape and regulate 

their surface area, this work on a model cell type was in agreement with the topographical 
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surface changes found in neutrophils using the newly developed sdFRAP technique.  There is 

considerable interest in how the tension within the membrane is regulated and its 

consequences. Essentially, the relationship to ezrin shows that membrane tension is the 

outcome of how tightly linked the membrane wrinkles are. The more tightly linked the 

wrinkles are, the greater the force is required to distort the membrane experimentally. The 

work in this thesis has shown that the cell surface wrinkles can become flattened 

physiologically (Chapter 4) and that changing the degree of wrinkling has an effect on cell 

behaviour (Chapter 5). This work thus provides the experimental link between measured 

“membrane tension” and the actual cell surface topography. 

       Apart from changes in membrane tension allowing membrane expansion, there is an 

increasing number of reports that membrane tension can have effect on other properties of 

the cell. For example, the two stage process of phagocytosis reported here and elsewhere 

(Dewitt and Hallett, 2002) are reported to correlate with membrane tension as follows. The 

first phase of phagocytosis results from pseudopods extending rapidly by actin 

polymerization, pushing the plasma membrane forward, but the second phase occurs after 

the membrane area from available reservoirs is depleted (i.e. the slack in the wrinkles is 

taken up). This point is “sensed” by the cell as an increased membrane tension (Masters et 

al., 2013). They also report that the increased tension directly altered the small Rho GTPase 

Rac1, 3′-phosphoinositide and cytoskeletal organization. These authors propose that, during 

phagocytosis, biochemical signalling is “orchestrated by the mechanical signal of membrane 

tension” and that this puts “a simple mechanical signal at the heart of understanding 

immunological responses” (Masters et al., 2013). Unfortunately, Ca2+ signalling was not 
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looked at in this study and may have been responsible for some of the biochemical changes 

reported. However, the membrane tension alone could influence these biochemical events 

directly, as it was recently shown that a reduction in membrane tension has an influence on 

membrane protein density, presumably as a consequence of insertion and lateral diffusion 

(Shi and Baumgart, 2015). Although, membrane tension of the plasma membrane may be 

thought of as a whole cell mechanical property, the authors showed that it can be 

localised and involved in controlling cell polarity during cell migration (Tsujita et al., 2015). 

The authors showed that  FBP17 (marker of “membrane bending”) in migrating cells is at 

the leading edge, but that reduction of the global plasma membrane tension, results in a 

random distribution throughout the cell. This would indicate that although “membrane 

bending” as indicated by FBP17 occurred globally when global membrane tension was 

reduced, in the migrating cell and its location only at the leading edge showed that 

membrane tension was reduced only at these loci. These locations also correlated with 

actin polymerisation (marked by WASP/N-WASP) and it was suggested that this acts as a 

feedback loop that regulates cell migration. Of course, the actin polymerisation ratchet 

(Grebecki, 1994, see section 4.1.4) would also only operate in regions of the cell with 

locally reduced membrane tension. The mechanism by which localised membrane tension 

is reduced was not addressed by Grebecki (1994), but the work in this thesis supports the 

proposal that local unwrinkling of cell surface wrinkles releases additional membrane and 

so reduces membrane tension. This effect was extremely localised in phagocytosis (see 

Chapter 4). It has been proposed that localised Ca2+ influx triggered by localised receptor 

binding was the initiator of these events, but there is new evidence that some cells have a 

membrane-tension gated Ca2+ channel (He et al., 2017). It is known that neutrophils respond 
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to a mechanical stimulus by an increase in cytosolic Ca2+ (Laffafian and Hallett, 1995), so 

such a channel, if it exists on neutrophils, could be an initiator of Ca2+ influx in the 

absence of receptor ligation, since any contact with a solid object sufficient to stretch the 

membrane (i.e. increase local membrane tension) could trigger Ca2+ influx and 

unwrinkling to restore the tension to the lower level. 

6.4 Proposed Model  

        From the work in this thesis, a model can be proposed (fig 6.1). This shows the effects of 

experimental manipulations on cell surface topography and the expected consequence on 

neutrophil behaviour. The upper part of the figure explains why simply expanding the 

surface area by DOC had an effect on sdFRAP, which shows how the surface topography has 

been changed (is reported by sdFRAP as extra path length for diffusion), but that there was 

no effect on the ability of the cells to spread or undergo phagocytosis. This was because the 

physiological wrinkles were held in place by linkage to cortical actin via ezrin. When 

stimulated, these links are broken by Ca2+ activation of calpain and spreading occurs. This is 

in contrast to the second condition, osmotic wrinkling. In this condition, additional wrinkles 

are formed, as reported by sdFRAP, but these are not maintain by physiological molecular 

linkage to actin and cannot be released by Ca2+ activated calpain. Even after actin-linkage 

cleavage, the wrinkles are held in place by the osmotic effect. Once isotonicity is restored, 

the wrinkles are free to unwrinkle and spreading and shape change can occur. The last 

condition is osmotic swelling, which forces the physiological wrinkles to unwrinkle by 

mechanical stress. The surface topography is flat, as reported by sdFRAP. The resulting effect 

on neutrophil behaviour could be inhibition, because the cell is so swollen that there is no 
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slack in the membrane and actin cannot push against this force. This effect has been shown 

in neutrophils which were stretched to a point where pseudopodia formation could not 

occur (Houk et al., 2012). However, when the stretch part of the cell was severed by laser 

cutting, pseudopodia formation was restored. This effect was explained by the membrane 

tension effect. In the experiments reported here, if the tension was insufficient to pull apart 

the wrinkles, but only take up the slack in them, there would be no inhibition, as was seen. 

The problem with osmotic swelling is that once a cell swells to the point at which the cortical 

actin has been removed from the membrane, the membrane forms a geometrical shape 

(usually a semi-sphere) and the cell bursts. Cells which have not bursted during osmotic 

swelling thus probably still have some cortical actin to counteract the swelling effect and 

thus still have some wrinkles in place. 

          This model explains all the results reported here. Of course, there are other features, 

such as the loss of cell polarity which occurs when restoring isotoncity to osmotically 

hyperwrinkled neutrophils which are yet to be fully explained. 
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Figure 6.1 The effect of experimental manipulation of the neutrophil topography and its 
expected effect on the ability to expand in response to physiology demand. 
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6.5 Future Prospects 

The work presented in this thesis opens a possibility of answering some significant 

questions which underlie cell behaviour.  In the future, I envisage that sdFRAP will be used in 

a number of cell types and thus extend the findings here into other areas.  For example, a lot 

of work has been done using fibroblast and similar cell types. Although these cell are not 

phagocytic and cell spreading is considerably slower that neutrophils (hours rather than 

minutes), they have the advantage that molecular biological manipulations, such as 

expressing fluorescent proteins and knocking down specific proteins, can be achieved. The 

hypothesis generated here makes some specific predictions about the cell surface 

topography in these experimentally produced genetically manipulated cells. It would thus be 

interesting and very useful to utilise sdFRAP in these cells. 

          There is a considerable amount of work to be done on neutrophils. It would be useful 

to investigate the effect of inhibition of calpain (calpain inhibitors) on sdFRAP. It has been 

shown that inhibition of calpain has no effect on Ca2+ signalling but causes total inhibition of 

neutrophil spreading. Although this is consistent with the proposed role of calpain activation 

by a rise in cytosolic Ca2+, there is no direct evidence for a causal link with changes in cell 

surface topography. Obviously, sdFRAP could provide evidence for this link.  It would also be 

instructive to investigate the role played by actin polymerisation. Inhibitors of actin 

polymerisation, such as cytochalasins, can also totally inhibit neutrophil cell shape change. 

This is not surprising, as it is the Brownian Ratchet effect (see Chapter 1 and section 4.1.4) of 

actin polymerisation near the plasma membrane which “pushes” the membrane and 

provides the force required to “expand “the membrane.  It is predicted that in the absence 
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of this actin-mediated pushing the membrane out, non-spreading cells would still have a 

topographical change (as Ca2+ activated calpain activity would have occurred). These future 

studies would lead to a fuller understanding of the relationship between neutrophil cell 

surface topography and the ability to undergo rapid cell shape changes. 

          Another possibility for future work is that sdFRAP could be used in combination with 

other imaging techniques. For example, TIRF (total internal reflection microscopy) can image 

the wrinkles very near to the glass substrate (within 10nm) and can detect microridges as 

neutrophils roll (Prithu et al., 2010). This could be used to confirm and extend the findings

here. Moreover, imaging surface topography (non-quantitatively) together with sdFRAP 

(quantitatively) may give a further insight into the timing and loci at which membrane 

unwrinkling occurs. Also, it might be beneficial to monitor wrinkles in living cells 

simultaneously with monitoring elevated cytosolic Ca2+ changes and near membrane Ca2+

using TIRF microscopy. 

6.6 Relevance of the work presented here 

         Neutrophils are the major cell type and first type to be recruited from the blood to sites 

of inflammation. In order to achieve this, neutrophils have to change their shape and then 

move through the blood vessels walls before undergoing chemotaxis to the area of 

inflammation. Activated neutrophils on the blood vessel endothelium roll and bind,  assisted 

by selectins and ICAM-1 (Dewitt and Hallett, 2007). They then extravasate from the blood 

vessel to the tissue. However before they undergo this phase, they have to adhere and 
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spread out (Theler et al., 1995). These same processes occur during pathological or chronic 

inflammation, where neutrophils continually accumulate at the inflamed site and cause 

localised damage to the tissues. When neutrophils are attracted to an enclosed space, such 

as the joint space, they can accumulate to high cell densities. The essential step in the 

process of extravasation is cell spreading, without which neutrophils are unable to leave the 

bloodstream (Dewitt and Hallett, 2007). This then would provide a therapeutic target for the 

treatment of inflammatory diseases and knowledge of the mechanism controlling neutrophil 

shape change may lead to useful therapeutic drugs. 

          Neutrophils undergo a number of steps during extravasation, including spreading, 

adhesion and chemotaxis migration. Some theories and analyses have shown that large 

changes in the available surface area must occur. It has been established that intracellular 

Ca2+ in the neutrophils either during spreading or phagocytosis, are required for the 

membrane expansion (Davies and Hallett, 1998; Hillson et al., 2006; Hillson and Hallett, 

2007; Pettit and Hallett, 1997, 1998). In addition, activation of calpain, a Ca2+ activated 

protease in neutrophils, has been shown to be essential. The work in this thesis is consistent 

with the proposal that during neutrophil spreading, the  apparent increase in the area of cell 

surface membrane arises from a reservoir of extra membrane within surface wrinkles and 

that ‘un-wrinkling’ of the neutrophil membrane permits the cell  to spread out (Dewitt and 

Hallett, 2007). Therapeutic inhibition of plasma membrane unwrinkling would prevent 

excessive extravasation of neutrophils at pathological and chronic inflammatory sites.   
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6.7 Conclusion 

           In summary, the aim of the work in this thesis was to investigate the surface 

topography of neutrophils by developing a novel technique to image the diffusion rates of a 

fluorescent molecule, DiI, incorporated into the cell surface during phagocytosis, spreading 

and chemotaxis. This was achieved by photobleaching and monitoring recovery at a defined 

distance within the zone (a subdomain) and hence was called sdFRAP subdomain 

fluorescence recovery after photobleaching. Experimentation noted that differences in cell 

membrane surface topography were apparent during phagocytosis and shrinking, which 

were indicated by apparent differences in the diffusion. As sdFRAP reflects the cell surface 

topography at defined loci on the cell, this methodology opened a novel way of monitoring 

an important cell characteristic which has not been possible to study previously. These 

results are important as they not only validate the notion of topographic changes during 

biological activation of neutrophils, but also support the role of confocal microscopy in 

exploring these changes through the FRAP design. As such, future experiments should aim to 

replicate and develop these findings in order to provide a detailed overview of cell surface 

changes during neutrophil spreading and chemotaxis. 
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