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 3 

Abstract 4 

Soil erosion by water is accelerated by warming climate, and negatively impacts food 5 

and water security and ecological conservation. The Tibetan Plateau (TP) has 6 

experienced warming at approximately twice the rate observed globally, and heavy 7 

precipitation events lead to an increased risk of erosion. Here, the Revised Universal 8 

Soil Equation (RUSLE) was performed to assess current (2002–2016) erosion on the 9 

TP and then predicted the potential for soil erosion by water in 2050. We used 10 

publicly available data and the most recent earth observation to derive our estimates at 11 

1 km. To predict the soil loss in 2050, we first built a multiple linear regression 12 

(MLR) with the current rainfall erosivity data and a set of climatic and other 13 

covariates. Second, we generalised the coefficients of the MLR with climate 14 

covariates for 2050 derived from two representative concentration pathways (RCPs) 15 

and six global climate models (GCMs). Then, the soil erosion by water in 2050 was 16 

predicted by rainfall erosivity in 2050 and other erosion factors. The results show that 17 

the mean annual soil erosion rate on the TP under current conditions is 8.34 t ha
-1

 y
-1

, 18 

which is equivalent to an annual soil loss of 1,604×10
6
 tonnes. Our 2050 projections 19 

suggested that erosion on the TP will increase to 9.73 t ha
-1

 y
-1 

and 11.60 t ha
-1

 y
-1 

20 

under conditions represented by RCP2.6 and RCP8.5, respectively. The current 21 

assessment and future predicted soil erosion by water in the TP should be valuable for 22 

environment protection and soil conservation in this unique region and elsewhere.  23 
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 26 

1. Introduction 27 

Soil erosion by water has become one of the greatest global threats to the 28 

environment (Chappell et al., 2016; Navarro-Hevia et al., 2016). With soil erosion by 29 

water, soil condition, water quality, species habitats and the provision of ecosystem 30 

services are negatively affected (Amundson et al., 2015; Teng et al., 2016). It is 31 

important to quantify the impacts of soil erosion by water and to develop effective 32 

measures for soil and water conservation. Soil erosion models are often employed to 33 

assess the risk of soil loss (Karydas et al., 2014). Among them, the Revised Universal 34 

Soil Loss Equation (RUSLE; Renard et al., 1997) has been applied commonly to 35 

estimates long-term soil erosion rate from hillslope in large scale studies (Panagos et 36 

al., 2015; Teng et al., 2016). 37 

The effects of climate change on soil erosion by water have been described by 38 

researchers (Garcia-Fayos and Bochet, 2009; Li and Fang, 2016; Yang et al., 2003). 39 

The characteristics of rainfall (rainfall amount, intensity and spatio-temporal 40 

distribution) directly affect soil erosion. In addition, the rising temperature also 41 

indirectly affect soil erosion (Li and Fang, 2016). According to the Fifth Assessment 42 

Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) reports, the 43 

global mean precipitation and surface temperature have been have changed 44 

significantly, and suggests that these changes are very likely to continue in the 21st 45 

Century (IPCC, 2014). These effects still uncertain; therefore, the magnitude of the 46 

effects of climate variability on soil erosion needs to be investigated. 47 

The Tibetan Plateau (TP), which is often known as “the Third Pole” of the Earth 48 
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(Qiu, 2008), has an average elevation of more than 4000 meter above sea level. 49 

Regional and global climate change have effects on the TP thorough thermal and 50 

mechanical forcing mechanisms (Su et al., 2013). The TP, which is also known as the 51 

“Asian water tower” (Immerzeel et al., 2010), is the source of the major river systems, 52 

and proved water to more than 1.4 billion people (over 20% of the global population). 53 

The soil erosion by water in the upstream areas will impact the water quality and food 54 

security in the downstream areas. Thus, the TP is of immense importance to both the 55 

climate and the ecosystems of Asia and the world, and more attention should be paid 56 

to the erosion status over these regions (Du et al., 2004).  57 

The TP appears to be particularly sensitive to variations in climate and has 58 

become one of the most degraded ecosystems in the world (Baumann et al., 2009). In 59 

the 21st century, a warming trend of 0.47°C (10 yr)
-1

 to 0.73°C (10 yr)
-1

 over the TP 60 

under the representative concentration pathway 8.5 (RCP8.5) scenario has been 61 

predicted by the Global climate models from the fifth phase of the Coupled Model 62 

Intercomparison Project (CMIP5) (Su et al., 2013). Research of soil erosion by water 63 

in the TP may provide one of the last remaining chances to study the impact of climate 64 

change on water erosion over a large region because many of the natural ecological 65 

processes and feedbacks still intact in these areas (Chen et al., 2013). However, 66 

erosion prediction and risk assessment over the TP is great challenge, particularly if 67 

associated with climate change. 68 

The soil erosion by water in the TP has been estimated by several scientists, but 69 

these are mostly focused on catchment (Chaplot et al., 2005; Hren et al., 2007; Jiang 70 

and Zhang, 2016) or local scale (Pan et al., 2010; Wang et al., 2014; Xu et al., 2009). 71 

Due to the high altitude, harsh weather conditions, and remoteness of the Plateau, the 72 

quantitative and direct measurements of water erosion over the TP are difficult, 73 

expensive, time-consuming and almost impossible. There is limited knowledge about 74 
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the quantitative erosion rates over the whole TP. The lack of field measurement 75 

creates a need to develop new methods to predict soil erosion by water and the 76 

impacts of future climate change on erosion in this area. Modelling current and future 77 

erosion rates is a crucial for the assessment of the potential future environmental 78 

problems and land degradation in the TP (Wang et al., 2014).  79 

Thus, our aims here are to address both of these challenges: first, to predict the 80 

present soil erosion by water on the TP using RUSLE, second, to predict the rainfall 81 

erosivity factor value in the 2050s with climate projections from six CMIP5 Global 82 

climate models (GCMs), and third to estimate the soil erosion by water in the 2050s 83 

with the corresponding projected rainfall erosivity. Our assumption here is that soil 84 

erosion by water in the TP is driven largely by climate.  85 

2. Materials and methods 86 

In this study, the current soil erosion by water was estimated with RUSLE, where 87 

the factors were derived from various point and remote sensing data sets. The current 88 

rainfall erosivity value was modelled by using a multiple linear regression (MLR) 89 

under current climate conditions. We generalised this model but using the future 90 

climate data from six GCMs to predict the rainfall erosivity value in the 2050s. The 91 

potential soil loss in the 2050s was then predicted by these rainfall erosivity and other 92 

erosion factors. We describe our approaches below.  93 

2.1 RUSLE model 94 

RUSLE is a linear equation used to quantify the soil loss potential via water from 95 

hillslopes (Kinnell, 2010). RUSLE is suitable for predicting long-term soil erosion 96 

rates over large areas according to the following equation: 97 

                       (1) 
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where A is the average rate of soil erosion by water at each cell (t ha
-1 

y
-1

); R is the 98 

rainfall erosivity factor (MJ mm ha
-1

 h
-1

 y
-1

); K is the soil erodibility factor (t ha h ha
-1 

99 

MJ
-1 

mm
-1

); LS is the slope length and steepness factor; C is the cover management 100 

factor; and P is the support practice factor. We describe the derivation of the factors 101 

below. 102 

The R factor is an indicator of the potential of precipitation to detach and 103 

transport soil particles. In this study, daily observed precipitation data that provided by 104 

the National Climate Centre of the China Meteorological Administration (CMA) and 105 

Tropical Rainfall Measuring Mission (TRMM) were used in our calculation of R. For 106 

the fifteen-year period from 2002–2016, 105 rain gauge stations were available across 107 

the TP (Figure 1). We used rainfall estimates from the TRMM 3B42 Version 7, which 108 

have a spatial resolution of 0.25°×0.25° and a temporal resolution of 3 h (Ma et al., 109 

2017). The R factor was calculated following the approach presented in Teng et al., 110 

(2017). Collocated cokriging (ColCOK) was used to merge the daily rainfall data that 111 

from the rain gauge stations and TRMM measurements to improve the quality of the 112 

precipitation data. The merged daily rainfall data was then used to calculate R with a 113 

power function model, which was widely used in China and implemented by the 114 

National Water Conservancy Survey (Duan et al., 2016; Teng et al., 2017). 115 

        
 
   

 

   

 (2) 

where    is the R value of the i half-month (MJ mm ha
−1

 h
−1

); j is the number of 116 

days in the k half month;   
 
 is the effective precipitation for day i of the k half-month, 117 

which is no less than 12 mm for the ith day (Ma et al., 2014). Otherwise,   
 
 is equal 118 

to zero. The parameters m and n are defined as 119 



6 

                   (3) 

         
      

   
 

      

   
  (4) 

where d12 is the average daily rainfall (larger than 12 mm) and y12 is the yearly 120 

average rainfall for days with rainfall larger than 12 mm. 121 

 122 

 123 
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Figure 1. Location of rain gauges and soil samples used in this study across the 124 

Tibetan Plateau. The red triangles show the training rain gauges used to estimate 125 

annual rainfall erosivity. The green crosses represent testing rain gauge stations used 126 

to validate the result of annual rainfall erosivity. The black circles represent the 127 

locations for which soil samples were available to estimate soil erodibility. 128 

 129 

Annual and monthly R was aggregated by R value of each half-month. In this 130 

case, the outcome of R factor was averaged to obtain the mean R from 2002 to 2016 at 131 

a 0.25°×0.25° resolution. We downscaled the R factor to 1 km spatial resolution with 132 

Random Forest (RF) (Breiman, 2001) using a set of environmental variables at 1 km 133 

resolution (see Table 1). RF has been successfully used elsewhere for spatial 134 

downscaling (He et al., 2016; Hutengs and Vohland, 2016; Ibarra-Berastegi et al., 135 

2011). The 105 rain gauges were randomly separate into a training set (70) and a test 136 

set (35) (see Figure 1) before the application of ColCOK to obtain the merged daily 137 

rainfall data. The gauges in the test set were retained and used in an independent 138 

assessment of the performance of the model. The predictive performance of the R 139 

value was estimated by using the relevant statistical indices of the coefficient of 140 

determination (R
2
) and root mean square error (RMSE). 141 
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Table 1. List of the auxiliary environmental predictors in the downscaling model of rainfall erosivity map and DSM model of soil erodibility map. 142 

Factor Environmental variables Resolution Source 

Terrain DEM 90 m Shuttle Radar Topography Mission (SRTM)  

 Slope 90 m Shuttle Radar Topography Mission (SRTM) 

 Aspect 90 m Shuttle Radar Topography Mission (SRTM) 

 Curvature 90 m Shuttle Radar Topography Mission (SRTM) 

 Roughness Index (TRI) 90 m Shuttle Radar Topography Mission (SRTM) 

 Topographic Wetness Index (TWI) 90 m Shuttle Radar Topography Mission (SRTM) 

 MrVBF 90 m Shuttle Radar Topography Mission (SRTM) 

Climate Mean annual rainfall (Rain) 1 km China Meterological Administration (CMA)  

 Mean annual temperature (Temperature） 1 km China Meterological Administration (CMA)  

 Mean annual solar radiation (Radiation） 1 km Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (RESDC) 

 Mean annual evapotranspiration (ET)  1 km Moderate-resolution imaging spectroradiometer (MODIS) 

 Land Surface Temperature_day (LST_d） 1 km Moderate-resolution imaging spectroradiometer (MODIS) 

 Land Surface Temperature_night (LST_n） 1 km Moderate-resolution imaging spectroradiometer (MODIS) 

 Prescott Index (PI) 90 m Shuttle Radar Topography Mission (SRTM) 

Vegetation NDVI 250 m Moderate-resolution imaging spectroradiometer (MODIS) 

 NPP 1 km Moderate-resolution imaging spectroradiometer (MODIS) 

Land/Soil Land use type (LUCC) 1 km Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (RESDC) 

 Soil type 1 km Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (RESDC) 

 Sand 1 km Harmonized World Soil Database (HWSD) 

 Silt 1 km Harmonized World Soil Database (HWSD) 

 Clay 1 km Harmonized World Soil Database (HWSD) 

 TOC 1 km Harmonized World Soil Database (HWSD) 
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The soil erodibility factor, K, can be estimated using soil texture and soil organic 143 

carbon data (Sharpley & Williams, 1990). In this study, these data were collected 144 

from the 410 soil profiles analysed during the Second National Soil Survey (NSSO, 145 

1993, 1994a, 1994b, 1995a, 1995b, 1996, 1998). The locations of these data are 146 

shown in Figure 1. The K values at these points were calculated following 147 

recommendations of (Wischmeier and Smith, 1978). This model was also used in the 148 

National Soil and Water Conservation Survey of China.  149 

                                   
   
   

     
   

       
 
   

    
        

                    
     

       

                    
                 

where San is the sand content (0.05-2mm), %; Sil is the silt content 150 

(0.002-0.05mm), %; Cla is the clay content (<0.002mm), %; TOC is the soil total 151 

organic carbon content, %; and SN1=1-San/100. After multiplied by 0.1317, the K 152 

value is expressed in SI metric (t ha h ha
-1 

MJ
-1

 mm
-1

). In this model, the soil texture 153 

of international system was transformed into USDA system firstly using log-linear 154 

interpolation method. 155 

The K values were mapped over the TP at 1 km resolution, using environmental 156 

factors that were listed in the Table 1 and digital soil mapping technique (McBratney 157 

et al., 2003). It should be noted that the environmental variables of sand, silt, clay and 158 

TOC in the Table 1 were not included in the K mapping. The method that we used, 159 

which is similar to that described in (Teng et al., 2016) and (Viscarra Rossel and 160 

Chen, 2011), is a Cubist regression model. From the 410 data, we selected at random 161 

136 data for validation. The other 274 data was used for training the model, which we 162 

assessed by 10-fold cross validation. To assess its accuracy, the final model was 163 



10 

evaluated by the independent validation data set and we reported the R
2
 and RMSE of 164 

the predictions. 165 

The LS factor represents the influence of slope length and slope gradient on soil 166 

loss. In this study, we calculated the LS factor using the 3 arc-second grid Shuttle 167 

Radar Topography Mission (SRTM) DEM following to the methodology described in 168 

Wischmeier and Smith (1978). 169 

                (6) 

                                

 

(7) 

  
 

     
 (8) 

  
             

                  
 (9) 

   
                        
                 

  (10) 

where a is the slope length (m); α is the slope of DEM (%); and s is the slope gradient 170 

based on the slope of a standard RUSLE plot.  171 

The cover management factor, C, estimates the effects of canopy cover, surface 172 

vegetation, surface roughness, prior land use, mulch cover and soil organic material 173 

on the erosion (Mhangara et al., 2012). These factors are difficult and costly to 174 

measure over the whole TP and have great variability during the growing season. The 175 

support practice factor, P, which reflect the effect of contouring and tillage practices 176 

(Wischmeier and Smith, 1978), can be estimated based on land use according to the 177 

land cover type. In this study, C and P factors are derived from the best available land 178 

cover type for analysing the land cover over the TP, China’s 1 km resolution 179 

Land-Use/Cover Data set (CLUD), which is provided by the Data Centre for 180 

Resources and Environmental Sciences at the Chinese Academy of Sciences (RESDC) 181 
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(http://www.resdc.cn). C and P factor values derived from former studies were used to 182 

reclassify the CLUD (Table 2). 183 

http://www.resdc.cn/
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Table 2. The C and P factor values of different land use type in the Tibetan Plateau. 184 

Land use type C value Reference P value Reference 

Paddy fields 0.1 Dai et al., 2013; Li et al., 2013; Yang et al., 2003 0.01 Lu et al., 2013; Dai et al., 2013 

Dry cropland 0.22 Dai et al., 2013 0.4 Xu et al., 2013; Chen and Zha, 2016 

Dense forest 0.006 Li et al., 2013 1 Xu et al., 2013; Dai et al., 2013 

Scrubland 0.22 Fu et al., 2005; Du et al., 2016 1 Xu et al., 2013; Dai et al., 2013 

Sparse forest 0.02 Li et al., 2013 1 Xu et al., 2013; Dai et al., 2013 

Other woodland 0.44 Liu et al., 2015 0.7 Zhang, et al. 2016; Dai et al., 2013 

High coverage grassland 0.08 Yang et al., 2003 1 Zhang, et al. 2016 

Median coverage grassland 0.2 Yang et al., 2003 1 Zhang, et al. 2016 

Low coverage grassland 0.25 Yang et al., 2003 1 Zhang, et al. 2016 

Sandy land 0.35 Yang et al., 2003 1 Sun et al., 2014 

Gobi desert 0.35 Yang et al., 2003 1 Sun et al., 2014 

Saline-alkali land 0.35 Yang et al., 2003 1 Sun et al., 2014 

Marsh 0.05 Yang et al., 2003 1 Xu et al., 2013 

Bare soil 0.35 Yang et al., 2003 1 Zhang, et al. 2016; Dai et al., 2013 

Bare rock 0.35 Yang et al., 2003 1 Sun et al., 2014 

Other unused land 0.35 Yang et al., 2003 1 Xu et al., 2013 

 185 
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Having estimated all of the factors needed for the RUSLE (Eq. 1), we proceeded 186 

to calculate the current (2002–2016) soil erosion by water on the TP. 187 

2.2 Comparison of current erosion with other assessments 188 

The current estimates of soil erosion by water was compared to those derived by 189 

(Yue et al., 2016), who based his estimates on the Second National Soil Erosion 190 

Survey of China and included topographical, land use and remote-sensing inputs in 191 

addition to field survey data. The Second National Soil Erosion Survey reported soil 192 

erosion grades: Slight, Light, Moderate, Intense, Extremely Intense, and Severe, 193 

according to the Technological Standard of Soil and Water Conservation 194 

(SL190-2007), which was issued by the Ministry of Water Resources of China (Table 195 

3). They did not use erosion rates because of the uncertainties in the input data and the 196 

model they used (Yue et al., 2016). To compare our results, the estimated mean soil 197 

erosion by water in the TP was converted into six erosion grades according to Table 3. 198 

For each of the erosion grades (except for the Slight grade) in Table 3, the areas 199 

affected by soil erosion were calculated and then compared with those of (Yue et al., 200 

2016).  201 

 202 

Table 3. Conversion from soil erosion rate from erosion grade, with corresponding 203 

areas of each erosion grade and its proportion in the Tibetan Plateau. The standard of 204 

soil erosion classification was built by the Ministry of Water Resources of China 205 

(SL190-2007). 206 

Soil loss modules 

(t ha
-1

 yr
-1

) 

Erosion grade 

Area 

(×10
4 

km
2
) 

Ratio 

(%) 

< 10 Grade 1 (Slight) 203.58 84.56 
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10-25 Grade 2 (Light) 18.82 7.82 

25-50 Grade 3 (Moderate) 8.81 3.66 

50-80 Grade 4 (Intense) 4.04 1.68 

80-150 Grade 5 (Extremely Intense) 3.69 1.53 

> 150 Grade 6 (Severe) 1.81 0.75 

 207 

2.3 Spatial modelling and future prediction of soil erosion  208 

We developed a multiple linear regression (MLR) between our current R value 209 

and a set of the climate, terrain and soil variables (Table 4), obtained from the 210 

WorldClim Data Portal (Hijmans et al., 2005), the Shuttle Radar Topography Mission 211 

(SRTM) (Jarvis et al., 2008) and the Harmonized World Soil Database (HWSD, 212 

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), respectively. The WorldClim Data Portal 213 

provides a set of global-gridded bioclimatic variables with a spatial resolution of 1 214 

km. There are 19 variables derived from monthly temperature and rainfall that 215 

represent annual trends, seasonality and extreme or limiting environmental factors 216 

(Hijmans et al., 2005).  217 

The dataset (Table 4) used in the MLR was randomly separated into training and 218 

validation sets. Two-thirds of the dataset were assigned to the training set, and the 219 

remainder were assigned to the test set. Additionally, the performance of different 220 

spatial models was assessed by 10-fold cross validations and the boot-strap out-of-bag 221 

samples on the training set. The final model, which produced the best statistics, was 222 

used to predict the independent test. The performance of the model that was finally 223 

used in this study was assessed by statistical indexes of R
2
, RMSE, ME and MSE. 224 

 225 

 226 

http://onlinelibrary.wiley.com/doi/10.1111/gcb.13382/full#gcb13382-bib-0026
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Table 4. List of the auxiliary environmental predictors in the multiple linear regression 227 

model. 228 

Base model (B) 

/projection model (P) 

Factor Predictors 

Resolution Source 

BP Terrain DEM (m) 90 m SRTM 

  Slope (deg) 90 m SRTM 

  Aspect (deg) 90 m SRTM 

B Climate 

(current) 

Bio-climatic 

parameters 
a
  

1 km WorldClim 

P Climate 

(2050) 

Bio-climatic 

parameters 
a
 

1 km WorldClim 

BP Soil Sand (%） 1 km HWSD 

  Silt (%） 1 km HWSD 

  Clay (%） 1 km HWSD 

  TOC 1 km HWSD 

a
 Climate data derivatives (WorldClim BioClimatic Parameters, Current and 2050): annual mean 229 

temperature (bio1), mean diurnal range (mean of monthly (max temp−min temp)) (bio2), 230 

isothermality (bio3), temperature seasonality (standard deviation   100) (bio4), max temperature 231 

of warmest month (bio5), minimum temperature of coldest month (bio6), temperature annual 232 

range (bio7), mean temperature of wettest quarter (bio8), mean temperature of driest quarter 233 

(bio9), mean temperature of warmest quarter (bio10), mean temperature of coldest quarter (bio11), 234 

annual precipitation (bio12), precipitation of wettest month (bio13), precipitation of driest month 235 

(bio14), precipitation seasonality (coefficient of variation) (bio15), precipitation of wettest quarter 236 

(bio16), precipitation of driest quarter (bio17), precipitation of warmest quarter (bio18), and 237 
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precipitation of coldest quarter (bio19). 238 

 239 

In this study, a stepwise regression algorithm was employed to prevent 240 

overfitting the data and to find the optimal regression model. The MLR coefficients 241 

were multiplied with climate variables derived from the GCMs scenarios for the year 242 

2050 to produce future estimates of R factor. The residuals of the MLR were added to 243 

these predictions to obtain our estimates of the R factor in 2050 in the TP at 1 km 244 

resolution. Outputs of 19 bioclimatic variables from six GCMs (Table 5) in the 245 

CMIP5 are used to represent future climate factors. Two extreme representative 246 

concentration pathways (RCP); RCP2.6 and RCP8.5 (Taylor et al., 2009) were used 247 

for investigating the climate projections over the TP. The GCM-derived bioclimatic 248 

variables were downscaled and calibrated with WorldClim 1.4 by (Hijmans et al., 249 

2005). We obtained them from the WorldClim Data Portal 250 

(http://www.worldclim.org/). The final estimates of potential soil loss in 2050 was 251 

derived by using predicted R factor in 2050 and other erosion factors (K, LS, C, and P) 252 

which are considered indirectly affect by climate change in this study.   253 
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Table 5. Summary of the six GCMs from CMIP5. 254 

Model name Institution Country Resolution (Longitude Latitude) 

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration  China ~2.8125°  2.8125° 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory  United States 2.5° 2° 

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace France 3.75°  ~1.9° 

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies  

Japan ~2.8°  2.8° 

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)  Germany 1.875°  ~1.9° 

NorESM1-M Norwegian Climate Centre  Norway 2.5°  ~1.9° 

  255 
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3. Results 256 

3.1 Current rate of soil erosion by water 257 

Maps of the RUSLE factors on the TP are shown in Figure 2. Areas without soil 258 

(cities, rocks, water bodies, permanent glaciers and salt crusts) were masked from the 259 

maps and were not included in the results. 260 

The predicted map of the annual R factor on the TP at 1 km spatial resolution is 261 

shown in Figure 2a. The validation R
2
 and RMSE for the downscaled R factor in the 262 

RK model were 0.88 and 841.39 MJ mm ha
-1

 h
-1

 y
-1

, respectively. The mean annual R 263 

on the TP value was 309 MJ mm ha
-1

 h
-1 

y
-1

. The smallest values of R (< 10 MJ mm 264 

ha
-1

 h
-1

 y
-1

) were mostly observed in the northern part of the TP. The highest R value 265 

(> 2000 MJ mm ha
-1 

h
-1 

y
-1

) was observed in the south of the TP, which is consistent 266 

with the subtropical monsoon and humid climate in this region. Our calculation of R 267 

compared well to the 35 testing rain gauges data, with R
2 

= 0.81 and RMSE = 293.15 268 

MJ mm ha
-1 

h
-1 

y
-1

. 269 
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(a)  

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 2. Maps at a 1 km resolution of: (a) rainfall erosivity, R factor, (b) soil 270 

erodibility, K factor, (c) slope length and steepness, LS factor, (d) cover management, 271 

C factor, and (e) support practice, P factor. 272 

 273 
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The K factor map is shown in Figure 2b. The validation R
2
 and RMSE for the K 274 

map were 0.58 and 0.047 t ha h ha
-1 

MJ
-1 

mm
-1

, respectively. The mean K value of the 275 

TP was 0.034 t ha h ha
-1 

MJ
-1 

mm
-1

. Figure 2b shows that the least erodible soils (K 276 

values less than 0.030 t ha h ha
-1 

MJ
-1 

mm
-1

) are found mostly in the low-lying desert 277 

regions with sandy soil, soil rich in calcium carbonate, soil with a cemented layer 278 

known as caliche (typically in the Qaidam Basin) and consolidated Pedocal soil, 279 

which are not easily detached and transported by overland flow. The most erodible 280 

soils (K values in the range from 0.038 to 0.052 t ha h ha
-1 

MJ
-1 

mm
-1

) were found 281 

mostly in forests or mixed vegetative cover areas, and sites in the southern and eastern 282 

TP. Alfisols and Semi-Alfisols (the Chinese Genetic Soil Classification, Shi et al., 283 

2004) had the largest K values (Figure 2b).  284 

Figure 2c shows the LS factor map. On the TP, the mean LS factor value was 285 

3.13. The lowest value of LS factor (< 0.1) occurred in the lowest areas of the Qaidam 286 

Basin, while highest value of LS factor (> 10) occurred in the Hengduan Mountains 287 

and southern Himalayas. Figure 2c shows that the large LS values were consistent 288 

with high topographies and coincided with escarpments in the Himalayas and 289 

Hengduan Mountains, which rendered these areas extremely susceptible to erosion.  290 

The C factor map is shown in Figure 2d. The largest values of C occurred in the 291 

Qaidam Basin in areas with no vegetation cover, whereas the smallest C values 292 

occurred in evergreen broad-leaved forests within the rain forests of the southern 293 

slopes of the eastern Himalayas and tropical rainforest areas. The Kunlun Mountains, 294 

which are mainly covered by low coverage grassland and bare rocks, and the 295 

cultivated land in the valley regions of the southern TP, had relatively large C values. 296 

The west areas of the Plateau, which are mainly covered by shrubs and steppe, had 297 

moderate C values. 298 
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P-factor map is shown in Figure 2e, it reflects the reduction in soil erosion 299 

caused by anthropomorphic impacts. On the TP, human engineering activities are 300 

limited and primarily focus on farmland, which mainly occurred in the valley regions 301 

of the tropical forest areas, and on other woodland, especially on all kinds of garden 302 

areas. 303 

The resulting RUSLE map of the annual rate of soil erosion by water on the TP 304 

is shown in Figure 3a. On the TP, the average hillslope soil loss was 8.34 t ha
-1

 y
-1

, 305 

and the TP presented a potential annual soil loss of approximately 1,604×10
6
 tonnes 306 

(Table 6). Areas in the south and east of the Plateau showed to have the greatest 307 

erosion. Smaller rates (< 1 t ha
-1

 y
-1

) were evident in the centre and northern TP, 308 

particularly in the Qaidam Basin and southern Kunlun Mountains (Figure 3a).  309 

 310 

(a) 

 

(b) 

 

Figure 3. Maps of (a) predicted current (2002–2016) annual soil erosion by water and 311 

(b) soil erosion grade at 1 km resolution in the Tibetan Plateau. 312 

 313 

Other woodlands, including young afforested land, slash and all kinds of garden, 314 

have the largest rate of erosion, but because of their limited areas in the TP they have 315 

experience relatively little total soil loss. Scrublands, which are mainly occurred in the 316 
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areas of strong vertical zonality, have a relatively large erosion rate. Crop lands, 317 

including paddy fields and dry cropland, have erosion rates larger than the average 318 

value for the whole TP. The total erosion on the grasslands occupy 60% of the total 319 

erosion on the TP. The smallest average annual soil loss occurs on marsh, sandy, 320 

desert and saline-alkali lands (Table 8) 321 

Table 3 shows that erosion grade 1 (Slight) areas account for the largest 322 

proportion of the total erosional area and primarily occur in the central and northern 323 

TP, whereas erosion grade 6 (Severe) areas account for the lowest proportion of the 324 

total erosional area on the TP and primarily occur in the Hengduan Mountains and the 325 

border areas of eastern TP (Figure 3b).  326 

3.2 Comparing soil loss estimates with other assessments  327 

Figure 4 presents a map of the areas that were influenced by water erosion at 328 

different erosion grades on the TP and shows a comparison between our results and 329 

those of Yue et al. (2016). Compared to the estimates made by Yue et al. (2016), we 330 

obtained larger estimates in the Light and Moderate erosion grades of counties in the 331 

southern Plateau, and smaller estimates in counties of the north-eastern Plateau 332 

(Figure 4). In the regions of Extremely Intense and Severe erosion, there weren’t 333 

marked differences between our estimates of erosion areas and those of Yue et al. 334 

(2016), although our estimates were larger in regions of the south-eastern TP. 335 

 336 
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 337 

Figure 4. Difference maps between this study and second national soil erosion survey 338 

of China based on the erosion grade in the Tibetan Plateau. Red means larger estimate 339 

in this study, blue means smaller estimate in this study. 340 

 341 

3.3 Projected future soil loss potential on the Tibetan Plateau 342 

The parameters of the MLR are given in Table 6. In this section, stepwise 343 

regression was used to fit regression model and choose predictive variables. With 344 
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stepwise regression analysis the factor, temperature annual range (bio7), which had 345 

little influence on the R factor was excluded. Table 7 shows the validation statistics of 346 

the MLR modelling. The assessment statistics from the predictions of the test data set 347 

were close to those from the 10-fold cross validations and the OOB statistics. The 348 

results suggested that the MLR model that we built was robust and accurate (R
2
 > 349 

0.85 for each of the validation). Figure 5a shows the residual map of the MLR model. 350 

The Moran's I value of the residual map is 0.88 and indicate that the residual of the 351 

MLR model has an obviously spatial autocorrelation. The variogram of the residual 352 

map is shown in Figure 5b. 353 

 354 
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Table 6. The results of the stepwise multiple linear regression model. Note that the stepwise regression was used to fit regression model and 355 

choose predictive variables. 356 

Coefficients Estimate Std.Error t value 
Signif. 

Codes 
Coefficients Estimate Std.Error t value 

Signif. 

Codes 

Intercept -1765.00  11.77  -149.96  *** bio8 -0.05  0.02  -3.48  *** 

DEM -0.06  0.00  -104.61  *** bio9 0.22  0.01  22.54  *** 

Slope 1.81  0.01  148.93  *** bio10 49.98  0.18  271.40  *** 

Clay 1.98  0.02  101.41  *** bio11 -66.48  0.18  -364.38  *** 

Sand 0.34  0.01  39.97  *** bio12 3.80  0.01  490.83  *** 

Silt 0.19  0.01  14.71  *** bio13 16.36  0.04  412.55  *** 

toc -4.97  0.08  -61.70  *** bio14 82.88  0.20  407.59  *** 

bio1 12.93  0.10  133.48  *** bio15 1.03  0.01  71.77  *** 

bio2 -26.45  0.08  -320.49  *** bio16 -12.37  0.04  -335.06  *** 

bio3 91.71  0.26  347.44  *** bio17 -32.07  0.11  -284.24  *** 

bio4 -1.83  0.00  -443.81  *** bio18 0.81  0.03  28.52  *** 

bio5 14.99  0.07  226.30  *** bio19 1.26  0.05  27.69  *** 

bio6 -12.05  0.05  -244.05  ***      

Significance codes: ***<0.001 357 
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Table 7. 10-fold cross validation, out-of-bag (OOB) and independent test set 358 

validation statistics for the multiple linear regression model. Assessment with the 359 

coefficient of determination (R
2
), the root mean square error (RMSE), the mean error 360 

(ME), and the mean squared error (MSE). 361 

 R
2
 RMSE ME MSE 

Cross validation statistics 0.859 164.08 -0.02 26715.18 

Out of bag statistics 0.857 164.55 -0.16 27076.74 

Test set statistics 0.857 164.08 -0.02 26922.92 

 362 

 363 

(a) 

 

(b) 

 

 

 

 

 

Figure 5. Maps of (a) residual of the MLR model, and (b) its semi-variogram. 364 

 365 

The maps of the projected R factor and the corresponding potential soil erosion 366 

by water in 2050 according to six GCMs and two RCPs are shown in Figures 6a and 367 

6b. Figure 6a shows that high R value in 2050 mainly occur in the southeast tropical 368 

rainforest areas and the southeast border areas. Figure 6b shows that soil erosion will 369 

mainly occur in the south part of the TP. Figure 7a shows the major differences of R 370 

factor in 2050 between six GCMs and two RCPs occur in the middle and southwest 371 
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part of the Plateau. R factor in 2050 predicted by climate scenarios of MIROC-ESM 372 

and NorESM1-M showed increase in the middle part of the Plateau, whereas that 373 

predicted by climate scenarios of IPSL-CM5A-LR showed a decreasing tendency in 374 

most of these areas (Figure 7a). R factor in 2050 predicted by climate scenarios of 375 

GFDL-CM3 and MIROC-ESM showed decrease in the southwestern TP, while with 376 

climate scenarios of IPSL-CM5A-LR and MPI-ESM-LR an increasing tendency was 377 

observed in most of these areas (Figure 7a). From our estimates, erosion in the 378 

southeast tropical rainforest areas of the Plateau will increase in 2050 by climate 379 

scenarios of BCC-CSM1.1, GFDL-CM3, and IPSL-CM5A-LR by RCP2.6 and 380 

RCP8.5, whereas estimates using climate scenarios of MIROC-ESM and 381 

NorESM1-M by RCP2.6 and RCP8.5 show overall decrease in 2050 in these areas 382 

(Figure 7b). The estimates of the soil erosion remain stable in 2050 over the most of 383 

the middle areas of the Plateau according to the six GCMs and two RCPs (Figure 7b).  384 

 385 



28 

 386 

Figure 6. (a) Maps of rainfall erosivity factor by 2050 by Climate Scenarios and 387 

Representative Concentration Pathways (RCPs). First row: BCC-CSM1-1(RCP2.6, 388 

8.5). Second row: GFDL-CM3 (RCP2.6, 8.5). Third row: HadGEM2-AO (RCP2.6, 389 

8.5). Fourth row: IPSL-CM5A-LR (RCP2.6, 8.5). Fifth row: MPI-ESM-LR (RCP2.6, 390 

8.5). Sixth row: MIROC-ESM (RCP2.6, 8.5). (b) Maps of potential soil loss by 2050 391 

by Climate Scenarios and Representative Concentration Pathways (RCPs). First row: 392 

BCC-CSM1-1(RCP2.6, 8.5). Second row: GFDL-CM3 (RCP2.6, 8.5). Third row: 393 

HadGEM2-AO (RCP2.6, 8.5). Fourth row: IPSL-CM5A-LR (RCP2.6, 8.5). Fifth row: 394 

MPI-ESM-LR (RCP2.6, 8.5). Sixth row: MIROC-ESM (RCP2.6, 8.5). Units of (a) 395 

MJ mm ha
-1

 h
-1 

y
-1

, and (b) t ha
-1

 y
-1

. 396 

 397 
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 398 
Figure 7. (a) Change of rainfall erosivity factor by 2050 by Climate Scenarios and 399 

Representative Concentration Pathways (RCPs). First row: BCC-CSM1-1(RCP2.6, 400 

8.5). Second row: GFDL-CM3 (RCP2.6, 8.5). Third row: HadGEM2-AO (RCP2.6, 401 

8.5). Fourth row: IPSL-CM5A-LR (RCP2.6, 8.5). Fifth row: MPI-ESM-LR (RCP2.6, 402 

8.5). Sixth row: MIROC-ESM (RCP2.6, 8.5). Blue areas represent decrease and red 403 

areas represent increase in rainfall erosivity value (MJ mm ha
-1

 h
-1 

y
-1

) compared to 404 

current value. (b) Change of potential soil loss by 2050 by Climate Scenarios and 405 

Representative Concentration Pathways (RCPs). First row: BCC-CSM1-1(RCP2.6, 406 

8.5). Second row: GFDL-CM3 (RCP2.6, 8.5). Third row: HadGEM2-AO (RCP2.6, 407 

8.5). Fourth row: IPSL-CM5A-LR (RCP2.6, 8.5). Fifth row: MPI-ESM-LR (RCP2.6, 408 

8.5). Sixth row: MIROC-ESM (RCP2.6, 8.5). Blue areas represent decrease and red 409 

areas represent increase in potential soil loss (t ha
-1

 y
-1

) compared to current value.  410 

 411 
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Table 8 lists the estimated current mean and total soil loss (with standard 412 

deviations) on the Tibetan Plateau and our 2050 predictions for different land uses. 413 

The estimation in 2050 was the value that averaged by six GCMs. The average 414 

projected potential soil erosion by water, which based on the six GCMs, of the TP in 415 

2050 according to the RCP2.6 and RCP8.5 was 9.73 and 11.60 t ha
-1

 y
-1

, respectively. 416 

The TP presented a potential annual soil loss of approximately 1,825×10
6
 and 417 

2,148×10
6
 tonnes in 2050, respectively. Other unused land and gobi desert showed 418 

largest relative change of soil erosion rates in 2050 according to RCP2.6 and RCP8.5, 419 

while other woodland and scrubland showed the smallest relative change of mean soil 420 

erosion rates (Table 8). 421 

  422 
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Table 8. Estimates of annual potential soil loss in the Tibetan Plateau by land use type in current and 2050.（Units: t ha
-1

y
-1

; t×10
6
 y

-1） 423 

Land use Description 

Current RCP2.6(2050) RCP8.5(2050) 

Mean SD Total Mean SD Total 
Relative 

change 
Mean SD Total 

Relative 

change 

Other woodland 
Young afforested land, 

slash, all kinds of garden 
55.90 83.25 6.62 56.17 80.80 6.65 0.48 63.04 90.15 7.47 12.76 

Scrubland 

Scrubland with a crown 

density > 40% and height 

less than 2 m 

45.23 77.38 416.41 48.43 82.21 447.73 7.09 53.32 90.22 493.01 17.88 

Paddy fields 

flooded parcel of arable 

land used for growing 

semiaquatic rice 

20.09 35.61 0.04 22.37 39.60 0.05 11.36 21.66 38.46 0.05 7.82 

Dry cropland 

Rainfed cropland without 

water supply and 

irrigating facilities 

13.87 21.76 21.69 14.93 23.58 23.54 7.66 16.10 25.20 25.57 16.10 

Sparse forest 
Woodland with a crown 

density of 10%–30% 
12.88 34.56 29.87 13.95 38.08 32.51 8.35 15.25 42.90 35.54 18.41 

Dense forest 
Woodland with a crown 

density > 30% 
11.19 38.02 165.14 12.10 42.07 180.60 8.20 13.21 46.37 197.27 18.12 

Median 

coverage 

grassland 

Grassland with a coverage 

between 20% and 50% 
9.25 27.04 510.50 10.40 29.72 574.75 12.41 12.27 32.44 677.90 32.57 

High coverage 

grassland 

Grassland with a 

coverage > 50% 
6.38 19.0 264.17 7.38 22.00 306.26 15.67 8.85 25.08 367.15 38.65 
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Low coverage 

grassland 

Natural grassland with a 

coverage of 5%–20% 
3.47 15.36 174.06 4.35 17.48 218.17 25.15 5.76 20.48 289.27 65.90 

Other unused 

land 

Other unused land, 

including Alpine deserts 

and tundra. 

1.32 5.25 10.44 3.28 7.75 25.86 147.61 5.09 9.92 40.16 284.53 

Marsh 

Land with accumulated 

water and hygrocolous 

plants 

0.65 4.58 1.27 0.82 4.97 1.60 26.21 1.01 6.32 2.00 57.10 

Sandy land 
Land covered with sand, 

vegetation coverage < 5% 
0.37 2.97 1.60 0.50 3.61 2.18 36.07 0.74 4.58 3.23 102.00 

Gobi desert 

Stony and alpine deserts 

with a vegetation 

coverage < 5% 

0.22 1.06 2.11 0.50 1.69 4.80 127.91 0.89 2.57 8.54 305.51 

Saline-alkali 

land 

Land with more salt 

gathered on top soil 
0.14 0.91 0.40 0.23 1.49 0.66 65.38 0.41 2.19 1.15 187.41 

TP The Tibetan Plateau 8.34 31.37 1604.33 9.73 34.64 1825.36 16.65 11.60 38.67 2148.31 39.13 

*Relative change = (Mean2050-Meancurrent)/ Meancurrent *100 424 

 425 
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4. Discussion 426 

Soil erosion on the TP is complicated and diverse, it includes water erosion, 427 

freezing-thaw erosion, wind erosion, etc. Some studies have assessed soil erosion on 428 

TP, especially for the wind erosion (Han et al., 2014; Rohrmann et al., 2013; Xie et 429 

al., 2017; Yan et al., 2005; Yan et al., 2001; Zhang et al., 2007a) and freezing-thaw 430 

erosion (Guo et al., 2017; Guo et al., 2015; Yi et al., 2013; Zhang et al., 2007b). 431 

However, as a remote area that is sensitive to climate variability, the water erosion on 432 

the whole TP has been rarely reported quantitatively, and none of them has predicted 433 

future soil erosion risk on the TP. The work that we present here on the assessment 434 

and future prediction of soil erosion by water is timely because changing climatic 435 

conditions can potentially increase the risk of soil and land degradation on the TP 436 

(Wang et al., 2017), which can also affect its unique biodiversity and ecology. 437 

In this study, the soil erosion by water on the TP is based on the RUSLE. Our 438 

estimates of soil erosion by water on the TP will show more accuracy than those 439 

derived in previous assessments, not only because the new data source that we used to 440 

compute erosion factors, but also because the improved methodologies were 441 

incorporated into the calculation. The R factor in this study was calculated based on 442 

the merged daily rainfall data with rigorously quality control. Teng et al., (2017) 443 

demonstrated that the improved estimates of the R factor showed higher accuracy than 444 

the simple interpolated gauge-based approach. The K factor that we modelled in this 445 

study was based on the comprehensive soil properties and environment data sets 446 

currently available and geospatial methods. 447 

According to our result, land that is under forest have experienced relatively high 448 

erosion rates. However, this result showed inconsistency with other researchers. 449 

(Garcia-Ruiz et al., 2015) undertook a meta-analysis of published soil erosion data 450 
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from more than 4000 sites worldwide and showed that forests have relatively low 451 

erosion rates. (Panagos et al., 2015) estimated soil loss by water in Europe for the 452 

reference year of 2010 and found that forests have the lowest rate of soil loss. This 453 

inconsistency between our results and other studies can attribute to the specific 454 

geographical characteristics in the TP. Forest in the TP mainly distribute in the areas 455 

with precipitation more than 400 mm (Zhao et al., 2015). These areas mainly occur in 456 

the southern TP with high elevation and steepness. Thus, forest in these areas usually 457 

have high R and LS value, and explain the high rate of soil erosion.  458 

Compared to Yue et al. (2016), who assessed erosion for the whole of China 459 

based on the Second National Soil Erosion Survey, our estimates are continuous and 460 

at 1-km resolution, were made using modern geospatial modelling, using the best 461 

available data and specifically for the TP. The difference between our study and Yue 462 

et al., (2016) might be related to the different data source in the erosion factors 463 

estimation, especially to the R and K factors. The R value in the Yue et al., (2016) was 464 

obtained using interpolation of the calculated R value on the rain gauge stations that 465 

provided by the CMA. The accuracy of their estimates of R will depend on the spatial 466 

density of the interpolated rain gauges. However, these stations are unevenly 467 

distributed on the TP and very few are located in the southeast tropical rainforest 468 

areas. It may be for this reason that they estimated less erosion in the southeast areas 469 

of the Plateau. Our R factor map was also derived using data from the CMA. 470 

However, our estimates of R are likely to be better because we first merged rainfall 471 

data from the rain gauges and the TRMM satellite, and then downscaled R to produce 472 

estimates that are specific for the TP. The southeast tropical rainforest areas are 473 

influenced by the monsoon climate and have the highest amount of rainfall in the 474 

Plateau. A local study in southeast tropical rainforest areas conducted by Fan et al. 475 
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(2013) confirmed the larger R values and reported that it is around 12,189 MJ mm ha
-1

 476 

h
-1 

yr
-1

, which is similar to our results. 477 

Liu et al., (2014) calculated the K values of all the soil types on the TP based on 478 

the soil profile data and GIS. According to Liu et al., (2014), the K value on the TP 479 

range from 0.026 t ha h ha
-1 

MJ
-1 

mm
-1

 to 0.039 t ha h ha
-1 

MJ
-1 

mm
-1

, with a mean 480 

value of 0.03 t ha h ha
-1 

MJ
-1 

mm
-1

. The highest value of K factor in the Liu et al., 481 

(2014) occurred in the northeast of Qinghai Province, while the lowest value of K 482 

factor occurred in the Qaidam Basin. All these results are similar to ours. Our results 483 

also consist with Wang et al., (2004). Wang et al., (2004) showed that the southeast 484 

Tibet is more erodible than the northwest Tibet. Most areas of the TP have a relatively 485 

small value of K.  486 

Downscaling methods have been employed in former studies to assess the impact 487 

of climate change on soil erosion (Li and Fang, 2016). Among them, regression 488 

models, which have the characteristics of low computation requirements and ease of 489 

implementation, can be regarded as the most popular methods. In this study, MLR 490 

was used to calculate future R factor by testing the relationship between current R 491 

values and environmental factors, and to project them into 2050 by using the same 492 

regression coefficients. The soil erosion risk in 2050 was then predicted by the 493 

changing R factor in 2050. The approach in this study is similar to that used by Yigini 494 

and Panagos (2016), and it assumes that erosion, especially erosion factor of rainfall 495 

erosivity, is largely governed by climate.  496 

The future soil erosion prediction for the TP, using six models with respect to the 497 

regional climate, indicate that the southwest TP appears to be an area that is most at 498 

risk of erosion by 2050, especially if the conditions of scenario RCP8.5 occur, which 499 

corresponding to the pathway with the largest climate variability and highest 500 
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greenhouse gas emissions. This area is largely affected by the westerlies and monsoon 501 

with large precipitation occurring in the wet season. (Su et al., 2016) suggested that 502 

this area is more likely to experience future temperature increases compared to other 503 

regions in the TP. Changes in runoff across this area are closely linked to temperature 504 

and precipitation increases. The increasing trend of soil total runoff for this area under 505 

the scenario of RCP2.6 and RCP8.5 indicating the future erosion risk in 2050. The 506 

occurrence of increased soil erosion by water may influence local ecosystems in the 507 

TP and hence induce hydrologic variations in the rivers originating from the Plateau, 508 

such as the Yangtze River, the Yellow River and the Lantsang-Mekong River.  509 

There are some limitations to our approach, and there are also sources of 510 

uncertainty influence our results. The C factors in this study are related to the land use 511 

type. Conventionally, C factor is calculated as a product of canopy cover, canopy 512 

height, residual cover, below-ground biomass and time. However, these factors are 513 

difficult to measure for the whole TP. The method that we used in this study to 514 

measure C factor might not be fully capable of illustrating the content of the C factor, 515 

and might induce some uncertainty of our results. There are some uncertainties 516 

occurred in the procedures of the R downscaling and K mapping. These uncertainties 517 

will remain in the following calculation of soil erosion by water. We used two 518 

emissions scenarios for future projections that falls on the lowest and highest end of 519 

all warming scenarios. However, how much warming will actually occur on the TP 520 

still uncertain. The results of soil erosion that predicted by the six GCMs provide 521 

different trends in some regions of the TP, this reflect the high uncertainty of 522 

predicted future soil erosion. The six GCMs and two scenarios that we used here was 523 

attempted to avoid a larger part of the model bias. We believe the scenarios and 524 

projection models that we used provided a useful soil erosion threshold in 2050. 525 
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5. Conclusions 526 

The TP was demonstrated to be a sensitive area corresponding to climate change. 527 

Quantifying the impacts of climate change and its effect on soil erosion over the TP is 528 

important to assist policy-makers and land managers in adopting strategies for its 529 

protection and conservation. However, limited observations of water erosion in the TP 530 

have been reported quantitatively.  531 

This study produced the best estimates of current (2002–2016) erosion in the TP 532 

by RUSLE based on the most current and available data sets. Improved 533 

methodologies were applied to calculate the erosion factors of R and K. A MLR 534 

model was built between the current R value and sets of the climate, terrain and soil 535 

variables to predict R factor value and erosion in the year 2050.  536 

We found the average soil erosion by water on the TP is 8.34 t ha
-1

 y
-1

, which 537 

equates to potential annual soil losses of 1,604×10
6
 tonnes over this area. Areas that 538 

suffer from severe soil erosion occur in the Hengduan Mountains and the southeastern 539 

Himalayas. Land that is under other woodland and scrubland have the highest erosion 540 

rate. Our estimates of current erosion are comparable to those made by other 541 

researchers. 542 

Our predicted of soil erosion in 2050 suggests an increase under the six future 543 

climate models and two RCPs. The average projected potential soil erosion by water 544 

of the TP in 2050 according to the RCP2.6 and RCP8.5 was 9.73 and 11.60 t ha
-1

 y
-1

, 545 

respectively, which equates to potential annual soil losses of 1,825×10
6
 tonnes and 546 

2,148 ×10
6
 tonnes, respectively, over the TP. Water and soil conservation measures 547 

over the TP should be continued and strengthened. The southeast tropical rainforest 548 

areas and areas with high slopes and high altitudes are more sensitive to climate 549 

variability; therefore, the increased risk of soil erosion over these areas should be 550 
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further studied.  551 

The methods that we used in this study were useful for characterization of soil 552 

erosion by water over large areas. As it can process data input for large regions with 553 

sparse data, RUSLE can provide quantitative estimates of long-term soil erosion by 554 

water in the TP. The method that we used, which incorporated regression model, 555 

climate models and scenarios, can provide a threshold of future soil erosion rates in 556 

2050 with low bias. 557 
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