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ABSTRACT 

Future power systems will face a significant challenge due to the reduced stability of 

frequency. The reduction of inertia drives this challenge due to the increasing level of power 

electronics connected to renewable energy sources. In this thesis, new control techniques, 

such as a new secondary frequency control, a control of a population of water heaters 

(WHs), and a control of a population of battery energy storage systems (BESSs), are 

studied.  

A fuzzy logic-based secondary frequency controller was developed to supplement 

the conventional frequency control in large synchronous generators. This controller is 

suitable for the provision of mandatory frequency response in the Great Britain (GB) power 

system, where an additional 10% power output for primary response and 10% for secondary 

response are required within ten seconds and thirty seconds respectively. The controller 

was demonstrated using a simplified GB power system and a multi-machine benchmark 

power system. The results showed that, following a disturbance, the controller improved 

frequency deviation and error compared to the conventional PI controller. Thus, the 

controller provides a stable frequency control in future power systems. 

A hierarchical control of a population of WHs and BESSs was used to provide 

frequency response services. This was based on two decision layers. The aggregator layer 

receives the states of WHs/BESSs and sends a command signal to each WH/BESS control 

layer. The hierarchical control enables the aggregator to choose the number of controllable 

WHs/BESSs and set the desired amount of responses to offer different frequency response 

services. As a result, it reduces the uncertainty associated with the response of the 

population during a frequency event. The WH/BESS controller provides a response based 

on the last command signal from the aggregator, the value of frequency deviation (∆F) and 

the level of the water temperature or BESS state of charge (SoC). The WH/BESS controller 

provides a response even when a failure occurs in the communication with the aggregator 

control layer.  

The WH/BESS controller handles both negative and positive ∆F. Hence, the 

aggregated loads participate in both low and high frequency responses. The response of 

the population of BESSs goes from the highest to lowest SoC when the frequency falls and 

from the lowest to highest SoC when it rises. The response from WHs is from highest to 

lowest water temperature when the frequency drops. Thus, this reduces the risk of a 
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simultaneous power change in a large number of controllable loads at the same time, which, 

in turn, reduces the impact.  

The dynamic behaviour of a population of WHs/BESSs was modelled based on the 

Markov chain to allow the aggregator to offer different frequency response services. A 

Markov-based model was also used to evaluate the effective capacity of aggregated 

WHs/BESSs during the frequency event. The Markov-based model was demonstrated on a 

simplified GB power system and the South-East Australian power system, considering 

different aggregation case studies. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

        By 2050, in the United Kingdom (UK), it is anticipated that 65% of the total system 

power generation will be located behind the metre or on the distribution network.  A large 

part of this installed capacity is by an intermittent power generation. Most of this capacity is 

provided by renewable energy sources (RESs1), which is 63 GW of solar and 65 GW of wind 

generation [1].The National Grid, which is the UK system operator, has proposed four 

different energy scenarios for the future possibilities of energy sources. The 2017 future 

scenarios are as follows [1]: 

1. Two Degrees: In this scenario, policy interventions alongside innovations are effectively 

implemented to reduce greenhouse gas emissions. A higher level of growth for achieving 

carbon reduction is guaranteed with a top priority on environmental sustainability. 

2. Slow Progression: This scenario considers the economic conditions which are limiting 

the ability of transitions to a low carbon world. It also restricts the choices of low carbon 

technologies. Hence, the progress toward decarbonisation is slower than the ambitions 

of society.  

3. Steady State: In this scenario, electricity supply is dominated by the traditional sources 

of energy which are implemented with limited innovations in energy uses. 

1 ‘Energy is renewable if it is derived from natural processes and replenished more rapidly 

than expended’, such as: (i) wind, solar and hydro energy, (ii) bioenergy (energy from 

combustion of plant and animal matter), (iii) waste energy, such as landfill gas, (iv) 

aerothermal, geothermal and hydrothermal energy (heat from the air, ground and water, 

respectively).
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4. Consumer Power: This scenario is a wealthy and market-driven world with a high level 

of growth for a higher level of investment and innovation. Predominantly, new 

technologies will be adopted with a focus on the consumers’ desires to reduce 

greenhouse gas emissions.  

In 2015, the UK announced that it was three-quarters of the way towards its sub-target 

of producing 30% of electricity supply from RESs. As shown in Figure 1.1, in 2015, as 

22.31% of electricity, 5.64% of heat and 4.23% of transport fuel consumption were produced 

from RESs. 

Figure 1.1. A progress of UK energy from RESs in 2015 [2]. 

At lunchtime on Wednesday 7th June 2017, 50.7% of the UK’s electricity was 

produced from RESs, such as wind, solar, hydro and biomass. Adding nuclear power units, 

by 2 pm on the same day, 72.1% of electricity in Great Britain (GB) was produced from low 

carbon sources [3, 4].  

There are two main types of renewable energy generators: large-capacity units 

connected to transmission systems and small-capacity units connected to distribution 

networks. However, increasing the level of RESs in the generation introduces serious 
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challenges. For example, there are fluctuations of power output in some RESs, such as wind 

and solar, due to environmental conditions. Hence, it introduces a challenge for the 

operation and planning of power system [5]. Another challenge is reducing the total 

inertia2[6] of the power system due to the power electronics connected to RESs. As a result, 

the system’s ability to maintain the frequency deviation within acceptable limits is decreased. 

In addition, the rate-of-change-of-frequency is increased when the system is subjected to 

sudden disturbances, such as loss or increase in the demand or generation [6, 7]. 

The frequency of a power system is balanced by the active power generated and the 

load demand. Hence, the system frequency deviation remains within the acceptable limits, 

i.e. ±1% of the nominal system frequency (50.00 Hz) [6, 7].  In the GB power system, the 

primary response is the dynamic power generation that reaches its maximum in ten seconds, 

while the secondary response reaches full operation in thirty seconds. Frequency reserve 

services are divided into dynamic and non-dynamic; the former responds automatically to 

any change in the frequency, while the latter is triggered by load frequency relays [6, 7]. 

Performing primary frequency control using the only generation becomes not only 

expensive but also technically difficult due to the increasing needs of RESs. The 

combination of high wind and solar output along with a low demand means that a significant 

number of interventions by the GB system operator should be taken for balancing and 

operability reasons [8].  

Therefore, there are opportunities to further develop demand-side services during 

both periods of low and high demand. Demand-side frequency control presents a novel way 

to mitigate the increasing need for conventional power generators [9-11]. Further details of 

these concepts will be provided in Chapter 2 of this thesis. 

2 Inertia comes from rotating masses of large synchronous generators. The inertia response 

measures how the power system will act to overcome the sudden imbalance between the 

power generation and the electric demand.
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1.2 Control of frequency in the GB power system     

Frequency in a power system is a real-time changing variable that indicates the 

balance between generation and demand. In GB, the National Grid is the system operator 

that is responsible for maintaining the frequency response of the power system within 

acceptable limits. Two main levels define these limits: the operational limit, which is equal 

to ±0.2 Hz (i.e. 49.8 Hz to 50.2 Hz), and the statutory limit, which is equal to ±0.5 Hz (i.e. 

49.5 Hz and 50.5 Hz). Under a significant drop in the frequency (i.e. below 49.2 Hz), a 

disconnection by low-frequency relays is provided for frequency control of both the 

generators and demand. Table 1.1 describes the frequency containment policy in the GB 

power system [8, 12-15].  

Table 1.1. The frequency containment policy of the GB power system [12]. 

Frequency limits Case description

±0.2 Hz

System frequency under normal operating conditions 

and the maximum frequency deviation for a loss of 

generation or a connection of demand up to ±300 MW

±0.5 Hz

Maximum frequency deviation for a loss of generation 

bigger than 300 MW and less than or equal to 1,320 MW

-0.8 Hz

Maximum frequency deviation for a loss of generation 

bigger than 1,320 MW and less than or equal to 1,800

MW. The frequency must be restored to at least 49.5 Hz 

within 1 minute

Many of the interventions of the GB system operator should be adopted for balancing 

the frequency. This can be carried out by integrating different balancing services, such as 

(i) reserve services, (ii) system security services and (iii) frequency response services. 

These services aim to maintain the frequency within the acceptable limits and restore the 

frequency after sudden changes in the demand or generation. The services involve both 

generation and demand. The frequency response services include firm frequency response 
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(FFR), mandatory frequency response (MFR) and enhanced frequency response (EFR), as 

indicated below [13]: 

 Firm frequency response  

This provides a dynamic or non-dynamic response to the changes in the frequency. 

This service is acquired from generators, except for in generators that provide MFR. In 

addition, it is provided from the demand through a competitive process of tenders. These 

tenders can be assigned for a low or high-frequency event or both [13]. 

 Mandatory frequency response 

This refers to an automatic change in the output of the active power of a generator 

in response to a pre-set value of frequency deviation. The grid code in the GB power 

system requires the availability of this service in all large-capacity generators connected to 

the transmission system. Large generators can be defined as all generators with a capacity 

equal to or larger than 100 MW in England and Wales and equal to or larger than 10 MW 

in Scotland. These generators work at under an 80% load and must provide a primary 

response, a secondary response and a high-frequency response (see Figure 1.2), as 

stated below [8, 13]: 

1. The primary frequency response is an automatic 10% increase in the output of a 

generator in response to a frequency drop within ten seconds and can be sustained for 

a further twenty seconds. 

2. The secondary frequency response is an automatic 10% increase in the output of a 

generator in response to a frequency drop within thirty seconds and can be sustained 

for up to thirty minutes.

3. The high-frequency response is an automatic reduction in the output of a generator in 

response to a frequency rise within ten seconds and can be sustained indefinitely. 
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Figure 1.2. Primary and secondary frequency response in the GB power system 
defined by the MFR [8]. 

 Enhanced frequency response

The provision of 100% of the output of the active power within one second following 

a pre-set value of a measured frequency deviation and can be sustained for up to fifteen 

minutes [8]. Recently, the National Grid contracted a total of 201 MW of EFR services from 

energy storage systems through different providers. Most of these providers are expected 

to provide their services by the end of 2017. Figure 1.3 shows the timescale for the MFR 

and EFR services in the GB power system [8].  
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Figure 1.3. The timescale of MFR and EFR in the GB power system [8]. 

1.3 Scope of work and thesis layout 

 The flowchart shown in Figure 1.4 provides the layout and the main scope of each 

chapter in this thesis. 

1.4 Research objectives 

This work aims to introduce and develop new control techniques to face the 

challenge of a reduced frequency stability in future power systems due to the large amount 

of RESs. To achieve this aim, the following points are addressed: 

1. To design an optimal fuzzy-based secondary frequency controller for power generators 

with a structure that can supplement the conventional control rather than replace it. 

2. To design and model a hierarchical control of a population of water heaters (WHs) to 

provide frequency response services. 

3. To design and model a hierarchical control of a population of battery energy storage 

systems (BESSs) to provide frequency response services. 

4. To demonstrate the work on the simplified GB power system and a larger multi-

machine power system considering different case studies.  
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1.5 Contributions 

1.5.1 Chapter 3: The development of new secondary frequency control  

The proposed fuzzy-based secondary frequency controller improved the power 

system frequency response against the frequency collapse and parameters uncertainties 

than the conventional PI controller. The proposed controller could be used by a system 

operator to supplement the local frequency control rather than replacing it. In addition, it can 

be used in a broad range of real-time applications in both centralised and decentralised 

frequency control methods in future power systems.  

1.5.2 Chapters 4 and 5: Control of a population of WHs and BESSs for frequency 

response 

These chapters present a control of a population of WHs/BESSs to provide 

frequency response services when required. The contributions are: 

1. The proposed hierarchical control is based on two decision layers. The aggregator layer 

receives the states of WHs/BESSs and sends a command signal to each WHs/BESSs 

control layer. The proposed hierarchical control enables the aggregator to choose the 

number of controllable WHs/BESSs and set the desired amount of responses to offer 

different frequency response services. As a result, this reduces the uncertainty 

associated with the response of the population during a frequency event.  

2. The WHs/BESSs controller provides a response based on the last command signal from 

the aggregator, the value of frequency deviation ( ) and the level of the water 

temperature or the level of state of charge (SoC) of the BESS. Hence, the WHs/BESSs 

controller provides a response, even when a failure occurs in the communication with 

the aggregator. Therefore, the proposed method is not fully decentralised nor fully 

centralised in controlling large distributed controllable WHs/BESSs 

3. The measurements in the BESS controller are based on six levels of  and five levels 

of BESS’s SoC. The response from BESSs is from the highest to lowest SoC when the 
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frequency falls and from the lowest to highest SoC when it rises. Furthermore, the 

measurements in the WHs’ controller is based on four levels of  and four levels of 

water temperature. The response from WHs is from the highest to lowest water 

temperature when the frequency drops. Thus, it reduces the risk of a simultaneous 

power change of a large number of controllable loads at the same time, and the impact 

on the power system and the end users will be reduced. The WHs/BESSs controller 

handles both negative and positive . Hence, the population participates in both low 

and high frequency response services.  

4. The dynamic behaviour of a population of controllable WHs/BESSs was modelled based 

on the Markov-chain to demonstrate the potential for an aggregator to offer frequency 

response services. The dynamic switching behaviour of the population of WHs/BESSs 

during the frequency event was also modelled. The effective capacity of aggregated 

WHs/BESSs during the frequency event was evaluated using the Markov-based model 

by considering different aggregation case studies in a multi-machine power system.   

1.6 Applications  

This section presents a summary of the interests of the industry of each chapter in 

the thesis, as follows: 

1.6.1 The development of new secondary frequency control 

The fuzzy-based secondary frequency control was designed for the frequency 

controller in large synchronous generators to meet the requirements of Mandatory 

Frequency Response in the GB power system.  Moreover, the proposed design applies to 

the application of the load frequency control (LFC)/Automatic generation control (AGC) and 

to supplement conventional frequency control rather than replacing it in future power 

systems. 
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1.6.2 Control of a population of WHs and BESSs for frequency response 

A model of a population of WHs/BESSs was developed based on the Markov-chain, 

and it can be used to demonstrate the potential for an aggregator to offer different frequency 

response services, and to evaluate the effective population capacity during a frequency 

event.  

The proposed hierarchical control is applicable for the aggregation of WHs/BESSs 

in future power systems. The WHs/BESSs controller was developed to offer the capabilities 

of different frequency response services. Therefore, aggregators can use it to offer primary, 

secondary and high-frequency response services or to offer a steady state frequency 

regulation. The proposed hierarchical control enables aggregators to choose a number of 

their controllable loads. Therefore, it can be used in such applications as Virtual Power 

Plants. In addition, the proposed control can be applied for the aggregation of (i) Residential 

and non-residential WHs, (ii) Residential and non-residential BESSs, and (iii) Vehicle-to-grid 

(V2G) as storage.  
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1. Z. A. Obaid, L. M. Cipcigan, and M. T. Muhssin, ’Fuzzy Hierarchical Approach-Based 

Optimal Frequency Control in the Great Britain Power System’, Elsevier Electric Power 

Systems Research, Volume 141, December 2016, Pages 529–537. 

2. Z. A. Obaid, L. M. Cipcigan, and M. T. Muhssin,’ Power System Oscillations and Control: 

Classifications and PSSs’ Design Methods: A review’, Elsevier Renewable & 

Sustainable Energy Reviews, Vol. 79, P: 839–849, 2017. 



12

3. Z. A. Obaid, L. M. Cipcigan, and M. T. Muhssin, ’Frequency Control of Future Power 

Systems: Reviewing and Evaluating the Challenges and New Control Methods’, 

Accepted in Springer Journal of Modern Power Systems and Clean Energy. 

4. Z. A. Obaid, L. M. Cipcigan, and M. T. Muhssin, ‘Design of a Hybrid Fuzzy/Markov 

Chain-based Hierarchical Demand-side Frequency Control’, the 2017 IEEE Power and 

Energy Society General Meeting, Chicago, USA, 17-20 July 2017. 

5. Z. A. Obaid, L. M. Cipcigan, M. T. Muhssin, and S. S. Sami, ‘Development of a Water 

Heater Population Control for the Demand-side Frequency Control’, IEEE PES 

Innovative Smart Grid Technologies, Europe (ISGT Europe), 26-29 September 2017, 

Turin, Italy. 

6. Z. A. Obaid, L. M. Cipcigan, and M. T. Muhssin, ‘Analysis of the Great Britain’s Power 

System with Electric Vehicles and Storage Systems’, IEEE 18th International 

Conference on Intelligent System Application to Power Systems (ISAP), 11-16 Sept. 

2015, Porto, Portugal. 

1.7.2 Author unpublished work  

The section presents the remaining unpublished work in this thesis which is 

submitted to peer-review. 

7. Z. A. Obaid, L. M. Cipcigan, N. Jenkins, S. S. Sami, and M. T. Muhssin,’ Control of a 

Population of Battery Energy Storage Systems for Frequency Response’, Journal paper 

Progressing. 

1.7.3 Collaborative published work  

The section presents the published work with other colleagues but not included in 

the thesis chapters. 

8. M. T. Muhssin, L. M. Cipcigan, N. Jenkins, S. Slater, M. Cheng, and Z. A. Obaid, 

‘Dynamic Frequency Response from Controlled Domestic Heat Pumps’, IEEE 

Transactions on Power Systems, Vol. PP, Issue: 99. 



13

9. M. T. Muhssin, L. M. Cipcigan, N. Jenkins, S. S. Sami and Z. A. Obaid, ‘Potential of 

Aggregated Load Control for the Stabilization of the Grid Frequency’, Journal of Applied 

Energy, Vol. 220, 15 June 2018, P. 643–656. 

10. M. T. Muhssin, L. M. Cipcigan, Z. A. Obaid, W. F. AL-Ansari, ‘A novel adaptive 

deadbeat- based control for load frequency control of low inertia system in 

interconnected zones north and south of Scotland’, Elsevier International Journal of 

Electrical Power & Energy Systems, Vol. 89, 2017, Pages 52-61. 

11. M. T. Muhssin, L. M. Cipcigan, N. Jenkins, M. Cheng, and Z. A. Obaid, ‘Potential of a 

Population of Domestic Heat Pumps to Provide Balancing Service’, Journal Tehnički 

vjesnik/Technical Gazette, vol. 25, pp. 709-717, 2018. 

12. M. T. Muhssin, L. M. Cipcigan, Z. A. Obaid, ‘Small Microgrid Stability and Performance 

Analysis in Isolated Island’, IEEE conference proceedings, UPEC2015, Staffordshire., 

UK, 2015. 

13. M. T. Muhssin, L. M. Cipcigan, N. Jenkins, M. Cheng, and Z. A. Obaid, ‘Modelling of a 

population of Heat Pumps as a Source of load in the Great Britain power system’, IEEE 

International Conference on Smart Systems and Technologies (SST), 2016, pp. 109-

113. 

14. M. T. Muhssin, L. M. Cipcigan, N. Jenkins, M. Cheng, and Z. A. Obaid, ‘Load 

Aggregation over a Time of Day to Provide Frequency Response in the Great Britain 

Power System’, Presented at 9th International Conference on Applied Energy (ICAE), 

2017. 
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CHAPTER 2 

  Literature Review 

2.1 Inertia in the GB power system     

2.1.1 Source of inertia in the GB power system 

System inertia can be defined by the availability of the energy in the rotating mass 

of generators that are directly coupled to the power system [6]. System inertia determines 

the response of a power system to a frequency disturbance, such as a sudden loss of 

generation or load. In the GB power system, large-capacity synchronous generators provide 

about 70% of the system inertia. The rest is provided by smaller synchronous generators 

and synchronous demand [8].  

The National Grid is currently instructing conventional generators to run 

continuously, even if there are no economic profits since they are part-loaded. This creates 

a minimum level of available inertia to secure a capacity for frequency response [8]. This 

capacity is expected to be 30-40% more than the current capacity in the next five years [16]. 

However, these generators are expensive to operate and produce large amounts of 

greenhouse gas emissions. 

For example, the required capacity for the FFR service in the summer is higher than 

other seasons due to low demand. Hence, fewer synchronous generators are committed to 

supplying that demand. This capacity varies from 400 MW to 700 MW for the primary 

response, 1,200 MW to 1,450 MW for the secondary response and 0 MW to 150 MW for the 

high-frequency response [17]. As a result, the payments for frequency response services 

vary as well. Table 2.1 shows an example of the payments for July 2016 (summer) and 

January 2017 (winter) [18]. 
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Table 2.1. Payments for different frequency response services by National Grid in 
July 2016 and January 2017 [18]. 

Service type

Payment cost

July 2016 January 2017

MFR £2.4 million £2.33 million

FFR plus frequency control by demand 

management

£8.86 million £7.71 million

2.1.2 The challenges of an inertia reduction 

The absence of direct coupling between the machine and the power system in some 

RESs, e.g. wind generators due to their power electronics, prevent their rotating mass from 

contributing to system inertia [6]. Therefore, RESs reduce the total system inertia, and 

hence, lead to reduced power system stability and increase the difficulties of the operation 

and control of the power system. RESs have power fluctuations due to the change of the 

wind speed and solar, causing a significant impact on the stability of the frequency deviation.  

Figure 2.1 shows the frequency drop and the required frequency response capacity 

of a simulated GB power system done by National Grid. The simulations were performed for 

the system with 20 GW of demand during a generation loss of 600 MW and different values 

of the system inertia [6]. When the system inertia decreases, the frequency response 

services procured are increased to maintain an acceptable level of security, as shown in 

Figure 2.1 [6]. Table 2.2 shows some examples of the requirements of the frequency 

response for different values of inertia and generation loss. In addition, the inertia reduction 

across the entire power system will not have the same reduction levels; areas with high 

RESs have a higher frequency deviation than other areas [19, 20] (see Figure 2.2). 
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Figure 2.1.  Frequency simulation of 600 MW generation loss in the GB power 
system showing the impact of inertia reduction [8]. 

Table 2.2. Frequency response requirements for different values of inertia and 
generation loss. 

System inertia (GVA.s)

Generation loss (MW)

500 600

Response requirement (MW)

100 590 1,285

150 365 575

200 365 365
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Figure 2.2. Dynamic variation of frequencies measured shows different deviation 
values at different generator terminals in the GB power system [19]. 

A reduction in the system inertia will increase the rate of change of frequency 

(RoCoF) when the system is subjected to sudden disturbances such as loss or increase in 

the demand or generation. In this situations, it is highly recommended to minimise the 

settling time during the disturbance period [6, 7]. Therefore, the need for additional 

frequency control is increased [6, 7]. A fast frequency response from the generation side is 

one of the recommended solutions to mitigate the increased frequency deviation issue. Also, 

the RESs alongside with the classical generators have potential to provide frequency control 

as ancillary service [21, 22].  

The control system, which is responsible for controlling the frequency, must provide 

a fast and stable response [9], [23]. A rapid response to a high RoCoF is strongly 

recommended; however, a very quick response has a risk of system oscillations [9]. A 

flexible embedded real-time controller that offers higher flexibility versus low cost is required 

with the ability of event detection and response algorithm to any disturbance. The designed 

controller is preferable to have scalable parameters and fast controller latency to create a 

new adaptive protection system that is capable of standing against frequency collapse in 
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future energy networks. This scheme is intended to supplement local control, rather than 

replace it. Existing load shedding and governor-frequency control processes continue to be 

in place, but new forms of frequency control will reduce the extent to which the conventional 

response would be called on. This stage will allow the control scheme to be fine-tuned based 

on real-time measurements [6, 7]. 

2.2 Demand side frequency response 

With the increasing needs of RESs, performing primary frequency control using only 

the generation side becomes not only expensive but also technically difficult. In addition, the 

combination of high wind and solar output alongside with a low demand means that a 

significant number of interventions by the GB system operator should be taken for balancing 

and operability reasons. Therefore, there are opportunities to further develop demand-side 

services during both periods of low and high demand [8]. 

Demand-side frequency response presents a novel way to mitigate the increasing 

need in the conventional power generators [9-11]. The uses of the emergency power amount 

from the load side for the frequency reserve services presents a new challenge. The 

challenge is associated with the control of large distributed loads [24]. Especially, with the 

electric vehicles, residential BESSs, WHs, and cloth dryers. 

2.2.1 Demand-side integration   

        Demand-Side Integration (DSI) measures how to use the loads and local generations 

to support system management and to improve power supply. The term DSI refers to the 

relationship between the power systems, energy supply and end users. This relationship 

includes demand-side management and demand-side response [27]. The potential of DSI 

depends on customers, such as the duration and the timing of their demand response, the 

availability and the timing of the information provided to them, the automation of end-use 

equipment, metering, pricing/contracts, and the performance of the communications 

infrastructure [25]. 
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There are two types of programs for the application of DSI: price-based programs 

and incentive-based programs [26, 27]. In price-based programs, consumers adjust their 

energy consumption about the changes in electricity market price. In contrast, the latter is 

provided through curtailment or interruptible contracts where consumers are paid to shift or 

reduce their energy consumption [26]. 

 In the GB power system, a project estimated that the programs of DSI are more 

commercially viable for distribution network operators at medium voltage level than lower 

levels in term of investments [28]. 

 However, it is important to address the challenges associated with the demand side 

integration, such as changing the natural diversity of loads, which can create more 

unpredictable and undesirable effects. For example, the amount of recovered energy 

through the demand side response may be larger than the required load reduction [29]. 

2.2.2 Control methods of loads for frequency response 

      A flexible demand in industrial and public buildings, such as water supply companies, 

steelworks, the wastewater treatment industry, hospitals, factories, food markets and 

universities, can be controlled to provide frequency response in the GB power system [30-

32]. The estimated availability of this flexible demand from commercial and educational 

buildings is growing, and it was 2.5 GW in 2012 in the GB power system, as shown in Table 

2.3 [33]. The loads with a thermal storage showed suitable characteristics to provide a 

provision of demand-side frequency response than other types of loads [30, 34-36]. 

 Two control methods were used in the literature to control flexible demand units: 

centralised and decentralised control methods. Centralised control of the demand units 

relies on the infrastructure of information and communication technology to provide 

communications between the unit and the centralised control of the aggregator [37]. For 

example, a centralised frequency controller presented in [38] sends a signal to turn 

‘ON/OFF’ domestic air conditioning units and water heaters after a pre-set value of 
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frequency rise/dip. The centralised controller reduces the uncertainty in the response of 

controllable units. However, the establishment of communications in the centralised method 

presents real challenges, such as cost and latency. 

Table 2.3. The estimated flexible demand in the GB power system during a peak 
hour of a winter day [33]. 

Sector type Capacity (GW)

Retail 0.7

Education 0.3

Commercial 0.3

Other non-domestic sectors 1.2

Total capacity 2.5

       To overcome these challenges, decentralised frequency controllers were developed. 

A decentralised controller, presented in [35], regulated the set-points of the temperature of 

refrigerators according to the variation in frequency deviation and its power consumption 

was controlled. A dynamic decentralised controller was developed in [34] to change the 

aggregated power consumption of refrigerators in a linear relationship with a frequency 

change. The controller aimed to avoid affecting the primary cold supply function of 

refrigerators. Similar controllers were developed to provide a frequency response from 

industrial bitumen tanks [30] and melting pots [39].  

 The required availability of refrigerators to provide frequency response was 

estimated by work presented in [40]. It was estimated that approximately 1.5 million 

refrigerators are required to provide 20 MW of response. The total cost of frequency 

controllers added to each refrigerator was calculated in 2007 at a price of approximately £3 

million (£2 of an estimated cost for each controller) [35]. 
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2.2.3 Thermostatically based controllable loads 

Recently, the thermostatically-based controllable loads (TCLs) such as refrigerators, 

air-conditioners, and ceiling heaters have been widely considered in the literature due to the 

potential short-term modulation of their aggregate power consumption [19, 41-50]. TCLs 

have an electrical heating/cooling thermostat controlled-based device. It modulates the used 

power for cooling/heating to maintain the temperature nearly to the desired level (see Figure 

2.3). The most common implementation of these loads is that the thermostat takes the 

advantages of the temperature deadband around the desired level [44]. 

Figure 2.3. A typical temperature control of a thermostat-based heating device. 

 In GB’s power system, the demand-side response was evaluated and considered in 

the applications of the frequency control [45, 46, 51]. The aggregation of TCLs for the 

demand side frequency response in the GB power system was investigated in [45, 46]. The 

demand side response model was used to regulate the dynamic of the TCLs. The model 

was used to obtain the optimal power consumption and allocated sufficient ancillary 

services. The model was developed for a multi-stage stochastic unit commitment and 

integrated into a mixed integer linear programming formulation. It was proposed to deal with 

the future inertia reduction under future low-carbon scenarios. The study cases were 

focused on the total system cost and the produced amount of the CO2 emission [46]. 
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In addition, domestic refrigerators as an example of TCLs demand side frequency 

response in the GB power system was proposed in [45] to deal with the future inertia 

reduction. The method presented a non-real-time communication controlled TCLs. The 

aggregated power of the TCLs was controlled as a linear function of the local frequency 

change. A technique was developed in [45] for estimating the infeed loss and post-fault in a 

power system. 

Markov chain model was used to represent the aggregated power consumption of 

the TCLs population for demand side response [9-11, 52]. A hierarchical framework with two 

layers was presented in [52] for demand side response. The top layer is used to obtain the 

control gain of the drooping amount. This value was sent to the local layer which involves a 

population model including different devices. The local layer changed their power 

consumption of the controllable loads to meet the value of the control gain. The local layer 

had a Markov chain-based frequency controller to change the power consumption to meet 

the gain value probabilistically. The TCLs were designed according to three operation states, 

‘ON’, ‘OFF’, and ‘LOCK’ [52]. Similarly, the same framework was used in [9, 11] to represent 

the TCLs but with four operation states, ‘ON’, ‘OFF-Locked’, ‘OFF’, and ‘ON-Locked’.  

2.2.4 Water Heaters 

Electric WHs are ideal home appliances which can be controlled to provide 

frequency response by turning ‘ON/OFF’ the device in response to a pre-set value of 

frequency deviation [53-57]. There are two main types of water heaters: the electric 

resistance water heater (ERWH) and the heat pump water heater (HPWH), as shown in 

Figure 2.4. In addition, a hybrid type of water heater has both types incorporated in the same 

unit [58]. 

Both types of electric WHs have the same potential of providing different frequency 

services. The only difference is that HPWH has a compressor so that the response of the 

device will be different from ERWH regarding the number of responses. For example, when 



23

the compressor becomes ‘OFF’ during the service, it requires several minutes to be ‘ON’

again limiting the availability of these devices [56, 57, 59]. In contrast, the ERWH has no 

compressor so that the device can be switched ‘ON/OFF’ at any time during the service if 

the water temperature is still below the user-defined level [53, 60, 61]. 

                     (a)                                                                      (b) 

Figure 2.4. Types of WHs, (a) HPWH, (b) ERWH [58]. 

In general, WHs have advantages [53-57], for example:  

1. There is a large population of WHs in the present and future power system. The WH has 

a power consumption higher than other home appliances, such as dryers, washing 

machines and refrigerators. For example, in certain areas in the USA, water heaters 

consume about 30% of the household load, which contributes significantly to the peak 

load.  
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2. WHs can be used as energy storage devices by heating up water to a higher temperature 

than its normal range. Hence, no energy is wasted in providing balancing services, and 

there is no impact on customers comfort.  

The modelling and control of WHs devices are widely covered in the literature to 

support the frequency in power systems [53, 60, 61]. Markov chain was used to represent 

the aggregated power for a various controllable population of WHs for demand side 

frequency control [9-11, 52]. A hierarchical control framework for the demand side frequency 

control with two decision layers was presented in [62-64]. The top layer is the supervisory 

control of the aggregator, while the local layer is for the devices population and a frequency 

controller. The dynamic behaviour of the controllable load was represented by using Markov-

based states [62-64]. The ERHW was represented by two states (‘ON and OFF’) while the 

HPWH was represented by four states ‘ON’, ‘OFF-Locked’, ‘OFF’, and ‘ON-Locked’ [62]. 

Markov chain-based states are representing the dynamic behaviour of the switching in the 

end-user controllable water heater devices. Hence, it represents the population of those 

controllable devices. The controller changed the power consumption of controllable loads 

with an amount according to the gain value sent by the supervisory control layer. The gain 

value was calculated according to the number of the system loads and the controllable loads 

(see further details in [62-64]). 

2.2.5 Electric vehicles  

Recently, an increasingly ambitious target for a high level of electric vehicles (EVs) 

integration was announced around the world. An internationally high priority target was 

placed on deploying and developing the technology for EVs [22, 65]. It is assumed that the 

annual production of EVs would be over 100 million by 2050 [65]. The UK government has 

declared that EVs are anticipated to play a major role in future transport sectors. The 

increased interest in EVs leads to a significant impact on power systems [22]. 
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However, the high uptake of EVs introduces a new challenge to the planning and 

operation of current and future power systems. This challenge relates to the uncontrolled 

charging of EVs, or so-called ‘dumb charging’. This uncontrolled charging may create a new 

peak load, such as charging when EV owners return home from their last day trip [65]. 

EVs’ load can be controlled to provide frequency response in a power system. 

However, providing a primary frequency response from EVs in certain cases can introduce 

a negative impact on power system stability. This impact is due to insufficient load estimation 

of aggregated EVs [66]. The common approach to provide a demand-side frequency 

response from EVs is to control the charging/discharging rates of V2G. There are many 

types of control and management of loads (including EVs), such as reducing users’ bills, 

charging coordination of EVs and charging scheduling [67]. 

Load control with the integration of EVs and distributed generators was presented in 

[68] for the power regulation. The load-shifting optimisation problem was solved according 

to technical and market conditions. This approach is applicable for various distributed energy 

resources, such as the EVs’ smart charging [68].

2.3 Battery energy storage systems  

Energy storage systems are among key factors for future power systems [69-71]. 

BESSs are evaluated and considered in the literature for the frequency regulation [71-73]. 

Also, the estimated growth of storages in the GB power system by 2050 will be about 10.7 

GW based on the ‘Consumer Power Scenario’ [74]. Also, residential and non-residential 

BESSs are growing up day by day due to the technical developments and cost reduction as 

well as high levels of PV integration [73, 74]. A large number of these batteries are 

connected to distribution networks installed behind the meter [74]. The BESSs present a 

fast dynamic response to compensate the load variations in distribution networks. In the GB 

power system, many tenders were taken into consideration by the National Grid to provide 
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an EFR from BESSs [74, 75]. Figure 2.5 presents one of the most profitable BESSs projects 

to provide EFR. 

Figure 2.5. Element Power’s 12.5 MWh battery storage project, which secured one of 
the most remunerated contracts in last year’s EFR tender by National Grid [75]. 

The application of BESSs in direct load control (DLC) is proposed in [76]. The 

combination of electrical load, the load level in the building, and their controllable devices 

were considered to investigate the DLC application. The problem of controlling many 

distributed small-scale BESSs was highlighted as well. The scheme presented in [76] 

reduced the frequency deviation by controlling SoC of the batteries installed behind the 

meters [76]. A coordination method of batteries charging was presented in [72] for controlling 

neighbouring batteries to regulate the frequency and voltage. 

Markov-chain was previously used to represent dynamic behaviour of the battery 

SoC for EVs batteries [77] or PV charging-based batteries [78]. The modelling of the 

batteries SoC for the power supply availability from PV was presented in [78]. The model 

was used to improve the availability of photovoltaic generation and to understand the nature 
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of the charge/discharge rates of the batteries supplied by PV. The dynamic representation 

of BESS’s SoC was designed according to many states transitions, from zero to full charge 

and vice versa [78]. Various types of batteries and their applications were presented such 

as behind meter BESSs (home-based) [76], smart charging of EVs (as V2G) [79], and large-

scale BESSs (grid-scale BESS) [80]. The aggregation of these types is important in 

regulating the power system frequency [76, 79, 80].  

2.4 Control of distributed energy resources  

 Distributed energy resources (DERs) include energy storage systems, demand 

response and distributed generation (DG). Different approaches are presented in the 

literature to control and coordinate the operation of DERs. Many of these approaches aimed 

to actively integrate DERs into distribution networks rather than through a conventional 

passive connection to achieve a more secure and economical operation than with 

conventional methods. 

 Breaking the distribution network into smaller areas, such as microgrids, or wider 

control areas, such as CELLs, is one of the active approaches to manage DERs [25]. Both 

CELLs and Microgrids are aimed at managing and coordinating the DERs to supply their 

local demand. Virtual power plant (VPP) is another control approach, which was established 

to manage DERs. VPP aimed to aggregate different types of DERs to represent a special 

type of power unit to participate in the energy market [25]. 

 Microgrids 

A microgrid is a small area of a distribution network that involves different types of 

DERs (see Figure 2.6) and can operate in the island or grid-connected mode to supply 

local energy demand [81]. The control in a microgrid aims to regulate both frequency and 

voltage. The coordination of DERs within a microgrid presents a novel way to increase the 

benefits to the overall system performance, such as reducing losses of feeders, 



28

compensating the fluctuation of RESs, improving power quality and supporting local 

frequency and voltage [25, 81]. 

Figure 2.6. The general layout of a microgrid [82]. 

 Wider control area (CELLs) 

The ‘CELLs’ concept was introduced to overcome the challenges when more than 50% 

of the total generation capacity is from DG. The high penetration of DG introduces a 

fluctuated impact on the power system, as is the case in the Danish power system [25, 83]. 

Therefore, a CELL is a wide area in a distribution system with a group of controlled DERs 

[25]. 

 Like the microgrids, the control in this area covers both frequency and voltage and 

can work on the island or grid-connected modes. In the normal operation mode, CELL 

effectively manages its DERs. In the case of a regional emergency, such as a real risk of a 

blackout, it disconnects itself from the grid and moves to the islanded mode [25, 83]. 

 Virtual power plant 

VPP aggregates different types of DERs to make them visible to the system operator 

as a single controlled unit to participate in the ancillary services [84, 85]. The output of the 
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aggregated DERs in a VPP is arranged to be as a central generation unit with commercial 

and technical roles [84]. The commercial role of a VPP is driven by the activity of market 

participation, such as energy supplier. In contrast, the technical role of a VPP was driven by 

the activity of the system management and support [85]. Figure 2.7 shows the basic 

elements in VPP. 

Figure 2.7. An example of basic elements in a VPP [86]. 

2.5 Low-frequency oscillations in power systems 

As explained earlier, frequency response services are used to increase the stability 

of the frequency in a power system following different disturbances in low inertia system. 

However, other factors can lead to a reduced system stability such as low-frequency 
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oscillations. Therefore, due to their importance in multi-machine power systems, transient 

stability and power system oscillations are considered in the literature [87-93]. The 

disturbance might have an extreme impact on power system stability regarding large and 

small signal stability.  

The small signal stability is used to describe the oscillation modes related to the 

control of the excitation system in a synchronous generator. The term ‘excitation control 

system’ (see Figure 2.8) is used to distinguish the combined performance of the 

synchronous machine, power system and excitation system from that of the excitation 

system alone [94].   

The oscillation modes must be damped as much as possible to achieve optimal 

operating conditions of the excitation system. There is an oscillatory relationship between 

the synchronous machine and a power system, and between synchronous machines in the 

power system. This relationship should be carefully considered in the design of an excitation 

system [94]. Extended research has been conducted on small and large signal stability to 

study the effect of different types of oscillations [95, 96].  

Figure 2.8. Block diagram of the control of excitation system [94]. 

Various studies have been carried out and focused on the question of to what extent 

the automatic voltage regulator (AVR) and power system stabiliser (PSS) can play a major 
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role in the power system’s stability [97-107]. Essentially, the AVR and PSS trade off against 

one other. The high gain fast response of the AVR decreases the stability of low frequency 

oscillation and increases transient stability, and vice versa. In contrast, the PSS reduces the 

transient stability by overriding the voltage signal to the exciter and growing the oscillation 

stability [105].  

However, the design of AVR and PSS can be coordinated to provide optimal power 

stability for both transient and oscillation stability analysis [108]. Moreover, the actions of 

both devices are dynamically connected [105]. The PSS is a supplementary controller, which 

provides an additional damping signal to the excitation system in the AVR to damp the low-

frequency oscillation [109]. There are four main types of low-frequency oscillation in power 

systems, as follows: 

 Local machine/unit oscillation mode 

This oscillation type occurs when one or more synchronous generators, in a specific 

power station, swing together against the whole large power system or load centre. This 

may become a serious problem in power plants with high load and reactance tie lines. This 

type of oscillation usually occurs within a frequency ranging from 0.7 Hz to 3.0 Hz [94, 102, 

110-115]. 

 Inter/Wide-area oscillation mode 

Inter/Wide-Area oscillation has been widely investigated in the literature. Along with 

the local mode, most authors consider this mode to be the effective power oscillation mode. 

This mode occurs when a group of generators in one area swing against another group of 

generators located in another area of a wide-area power system within a range from 0.1 to 

0.7 Hz [110]. This impact is related to the generator’s location in the network and the PSS 

connection [94, 110]. Hence, in this mode, it is necessary to apply a reliable control and 

monitoring system, such as PSSs, to damp this oscillation and guarantee the stability of the 

wide power system with many generators [94, 110]. 
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 Inter-unit/plant oscillation mode 

This mode occurs when two or more synchronous generators, in the same power 

plant or nearby power plant, swing against each other in a frequency ranging between 1.5 

to 3 Hz. By adding a PSS, the oscillation might be damped or not depending on the PSS 

tuning. Therefore, the PSS must be re-tuned to tackle this type of oscillation [94, 116]. 

 Torsional oscillations mode 

Torsional oscillation usually occurs in turbo-machines (steam-driven systems). This 

mode takes place within the rotating elements of the unit, such as synchronous machines, 

turbine stages, or rotating exciters mounted on the same shaft. The frequency is usually 

higher than 10 Hz for turbines with 3600 rpm, and about 5 Hz for those with 1800 rpm. It is 

difficult for the generator’s operator to monitor this mode, as it contains frequencies that are 

higher than the normal PSS frequency range. When dealing with this mode, the excitation 

system with high gains can lead to shaft damage [94, 102, 117-120].   Therefore, multi-band 

PSSs, such as PSS2B and PSS4B, are strongly recommended to damp the torsional 

oscillations [94, 102, 117-120].  

Moreover, other elements can affect the damping of torsional oscillations, such as 

unbalanced faults, HVDC converter control, static VAR converter control, governor control, 

and transmission series capacitors. These can be named as the control/exciter oscillation 

mode [94, 116].  

Table 2.4 shows the complete summary of various oscillation types. The inter-unit 

mode has not been mentioned widely because its frequency range is within the local 

machine mode. Therefore, it was considered by the authors to be within the analysis of the 

local mode. When two modes occur together (e.g. local mode and inter-area mode), a 

complex power system oscillation is considered [121]. 



33

Table 2.4. Critical review summary of the oscillation modes in power systems. 

Local machine 
mode

Inter-area 
mode

Inter-unit 
mode

Torsional mode

Range of 
frequency

0.7 to 3 Hz 0.1 to 0.7 Hz 1 to 3 Hz
>10 Hz with 3600 

rpm turbine
>5 Hz with 1800 

rpm turbine

Occurs in
One or more 
Synchronous 
Machine

Group of 
generators in 
one area

Two or more 
generators in 
the same 
power plant or 
nearby power 
plant

Generator-turbine 
shaft of the unit

Swinging 
against

The whole 
power system or 
load centre

Another group 
in another area Each other

Create twisting 
oscillations in the 
same unit

Serious
effective 
elements

which may 
increase 
the mode

1- Generator 
with high load.

2- High 
reactance tie 
lines.

3- A fast-acting 
or wide 
bandwidth 
excitation.

1- Wide area 
power system.

2- Huge 
number of the 
synchronous
machine.

3- Generators 
with PSS and 
its allocation 
on the 
network.

1- Adding a 
PSS without a 
good tuning 
process.

2- A complete 
eigenvalue 
analysis must 
be executed.

1- Turbo system 
with a long shaft.
2- High gain 
excitation can lead 
to shaft damage.
3- Unbalanced 
faults.
4- HVDC converter 
control and static 
converter control.
5- Governor control.
6- Transmission 
series capacitors.

Application 
of PSS

1- Classic PSS.

2- Wideband
PSS is 
recommended.

3- Adaptive 
PSS.

1- Reliable and 
developed 
modern control 
system such 
as PSS is 
highly 
recommended

1- PSS might 
be used, but 
the designer 
should 
carefully tune 
its parameters.
2- Adaptive 
PSS with 
specific 
protection 
limiters can be 
used.

1- Single input PSS 
with notch filters.

2- Single input PSS 
with a wide band
exciter.

3- PSS2B is 
recommended.

4- PSS4B is highly 
recommended.

References [94, 102, 110-
115]

[94, 110]. [94 ,116] [94, 102, 117-120]

2.6 Monitored oscillations in the GB power system 

A recent study was performed on the GB power’s system for monitoring wide inter-

area power oscillations [110]. It was found that there are unknown inter-area oscillation 
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parameters following a significant disturbance. Figure 2.9 shows the response of the 

generators’ rotor speed following a disturbance. The generators in Scotland were swung 

against generators in England leading to inter-area oscillation modes. Also, local oscillation 

modes influence the monitored inter-area mode especially in the few seconds following a 

disturbance. Therefore, that leads to an oscillation in the active power flow over the Harker-

Hutton AC line as shown in Figure 2.10 [110]. 

Figure 2.9. Generator rotor speed oscillations after the disturbance in GB power 
system with different generation units. The graph displays various generators 

across England and Scotland, further details in [110]. 

Figure 2.10. Power flow oscillation over the simulated AC line between generators 
Harker and Hutton in England followed a disturbance [110]. 
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Moreover, the investigation of the oscillation damping control on GB transmission 

lines was considered in [122]. The classic structure of the PSS and the power oscillation 

damping controller (POD) were used with HVDC controller and conventional static VAR 

compensators (SVC). It was demonstrated that for an AC system connected to another DC 

system, any failure in the AC part will lead to an instantaneous power imbalance in the 

system and has a negative impact on the transient stability [122].  

PSS and POD have a real impact on reducing power oscillations when this situation 

occurs. It was recommended in [125] to use this method to the real GB power system 

especially with the integration of the RESs [122, 123]. In [124], it was found that adding a 

POD to the Western HVDC line of the GB power system could reduce the settling time of 

the inter-area oscillation from 33s to 12s after a disturbance. The optimal parameters of the 

POD compensators were obtained using generalised predictive control optimisation method. 

It was mentioned that a PSS was incorporated in 70% of the machines without further details 

of the PSS model or the effect of it [124].  

However, adding a centralised POD to the wide area GB power system might have 

drawbacks such as communications delays and the possibility of losing the signal of the 

remote controller with many machines. Therefore, it is important to design a more 

decentralised approach on a single machine and perform further analysis for the 

improvement of the local PSS performances. Although, an old work in the literature 

presented a little investigation of the frequency oscillation with and without PSS. The study 

focused on the dynamic instability of the power flow from Scotland to England from a series 

of tests which were conducted between 1980 and 1985. The results showed that the system 

damping was improved by adding a PSS on some generators in Scotland [125]. 

2.7 Benchmark power systems for control and stability analysis 

There are many dynamic benchmark models of power systems which were 

developed for the dynamic stability studies and to evaluate different controller designs [87]. 
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This section presents different benchmark models for multi-machines power systems. These 

benchmark power systems are: (i) the IEEE 4-machine power system [126], (ii) the IEEE 

10-machine New England power system, and (iii) IEEE 14-machine South-East Australian 

power system. These models were widely used in the analysis of dynamic stability and 

control of power systems (see [87, 127, 128] for further details). The models were built using 

MATLAB Simulink and are available for free download at ‘MATLAB File Exchange’.

2.7.1 IEEE 4-machine 2-area power system 

The model has 2-area with two generators in each area connected by weak tie-lines. 

The generators are symmetrical in both areas and have the same rating equal to 900 MVA, 

20 kV. The nominal voltage of the tie-lines is 230 kV (see Figure 2.11). The loads are 

distributed to allow area 2 to import about 413 MW from area 1. The system has a complex 

power system oscillation. Area 1 and area 2 have local modes equal to 1.12 Hz and 1.16 Hz 

respectively. The whole system has an inter-area mode at a frequency equal to 0.64 Hz 

[126].  

Figure 2.11. IEEE 4- machine 2-area test system [126]. 

2.7.2 IEEE 10-machine New England power system 

This system represents the New England - New York interconnected power system 

(it will be displayed in chapter 3 in Figure 3.15). The generators from G2 to G10 represent 

the New England while G1 represents the New York system side (further details in [129]).  
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2.7.3 IEEE 14-machine South-East Australian power system 

This model represents the southern and eastern Australian system (it will be 

displayed in chapter 4 in Figure 4.12).  It extends for some 5000 km from Port Lincoln in 

South Australia to Cairns in far north Queensland. Four connected regions represented the 

system [130, 131]. Five SVCs, as well as a series, compensated transmission line, are 

integrated into this system.  

5th or 6th order generator models were used, and two basic types of excitation 

systems were employed from IEEE Std. 421.5(2005): a static excitation system ST1A and 

a rotating AC exciter AC1A. The conventional PSS tuning procedure was carried out 

according to a range of system loading and interconnection power flow conditions. These 

conditions are represented by six different operating conditions, which are demonstrated in 

this benchmark model. Therefore, this benchmark system presents a solid basis to test a 

PSS’s tuning and other control techniques [131]. 

2.8 Summary of the review 

 Firstly, the impact of future inertia reduction on frequency stability was highlighted. 

This impact covered the possible challenges related to both large and small signal stability 

and control. The frequency control in the GB power system, the source of inertia, the 

challenge of inertia reduction, DSR through different DERs and the challenges of future low-

frequency oscillation modes were summarised and highlighted. 

2.8.1 Review summary of the large signal stability and control 

 Large signal stability refers to the transient stability and control of frequency in a 

power system following a disturbance. The frequency control limits in the GB power system 

are defined by two main levels: the operational limit, which is equal to ±0.2 Hz, and the 

statutory limit, which is equal to ±0.5 Hz. The frequency response services in the GB power 

system aim to maintain frequency within the acceptable limits and restore frequency after 

sudden changes in demand/generation. 
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Large-capacity synchronous generators provide about 70% of the total system inertia 

in the GB power system. The rest is provided by smaller synchronous generators and 

synchronous demand. Conventional generators are continuously run to create a minimum 

level of available inertia to secure a capacity for frequency response. This capacity is 

expected to be 30-40% more than current capacity in the next five years. However, these 

generators are expensive to operate and produce large amounts of greenhouse gas 

emissions. 

The absence of direct coupling between the machine and the power system in some 

RESs, e.g. wind generators due to the power electronics, prevent their rotating mass from 

contributing to the system inertia. Therefore, RESs reduce the total system inertia, and 

hence, increase the difficulties of the power system operation and control. RESs have power 

fluctuations due to environmental conditions causing a significant impact on the stability of 

the frequency. A reduction in the system inertia will increase the RoCoF when the system is 

subjected to sudden disturbances such as loss or increase in the demand or generation. In 

this situations, it is highly recommended to minimise the settling time during the disturbance 

period. Therefore, the need for additional frequency control is increased due to an increased 

level of RESs. A fast frequency response from the generation side is one of the 

recommended solutions to mitigate the increased frequency deviation issue.  

The control system, which is responsible for controlling the frequency, must provide 

a fast and stable response. A rapid response to a high RoCoF is strongly recommended; 

however, a very quick response has a risk of system oscillations. A flexible embedded real-

time controller that offers higher flexibility versus low cost is required with the ability of event 

detection and response algorithm to any disturbance. The designed controller is preferable 

to have scalable parameters and fast controller latency to create a new adaptive protection 

system that is capable of standing against frequency collapse in future power systems. This 

scheme is intended to supplement local control, rather than replace it. 
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With the increasing needs of RESs, there are opportunities to further develop 

demand-side services during both periods of low and high demand. However, the uses of 

the emergency power amount from the load side for the frequency reserve services presents 

a new challenge. The challenge is associated with the control of large distributed loads. 

Especially, with the EVs, residential BESSs, WHs, and cloth dryers. The estimated level of 

storage in the GB power system by 2050 will be about 10.7 GW based on ‘Consumer Power 

Scenario’. Also, residential and non-residential BESSs are growing up day by day due to the 

technical developments and cost reduction as well as high levels of PV integration. A large 

number of these batteries are in distribution and are connected to the meter. The BESSs 

present a fast dynamic response to compensate the load variations in distribution networks. 

In the GB power system, many tenders were taken into consideration by National Grid to 

provide EFR from BESSs. 

2.8.2 Review summary of the small signal stability and control 

A critical review of power system oscillation modes for the small signal stability and 

control has been carried by highlighting types of low-frequency oscillation modes and the 

serious, effective elements. In summary, it was found that: 

Both AVR and PSS can be coordinated to reduce the effects of power oscillations 

on the power system by using appropriate tuning, design techniques and fine-allocation of 

the PSSs. The parameters’ tuning and the location of the PSS on a generator play a major 

role in the whole power system stability. The effects of oscillation modes are interlinked with 

the generator’s output, the power flow in tie-lines and the action of the generator’s excitation 

system. The IEEE PSS4B stabiliser provides superior results to older models of PSS.  

Integrating more RESs, and therefore, reducing the total system inertia have a 

severe impact on the system’s stability. As a result, the risk of oscillations in future low-

inertia networks with the increased numbers of RESs will be magnified. Adaptive PSS was 

recommended to reach full stability in small and even large-signal stability. Integration of 
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adaptive techniques with the PSS4B will lead to a robust and modern design of PSS. In the 

case of power systems, such types of intelligent design can be considered as the key 

solution to RESs’ penetration and the improvement of the power systems’ efficiency. In 

addition, the implementation of PMUs and PSSs reduces the risk of inter-area oscillation.   

There were unknown inter-area oscillations in the GB power system following a 

significant disturbance. PSS and POD have a real impact on reducing power system 

oscillations during a failure when an AC system is connected to a DC system. Therefore, 

the damping of this oscillation can be improved by adding a centralised POD or by adding 

PSSs to particular generators. However, other solutions are recommended, for example, 

integrating a new POD with FACTS devices, such as SVC or TCSC.  
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CHAPTER 3

Developing a Secondary Frequency Control for Synchronous 

Generators

3.1 Introduction 

Integration of increasing level of power electronics leads to a reduction in the inertia 

of the power system. This reduction of inertia leads to a reduced system stability and 

increases the frequency deviation following a disturbance such as a losing generator or load. 

The grid code of the GB power system requires the provision of MFR so that each large 

generator working at under 80% output must supply 10% an increase of its rated power for 

a primary response within 10 seconds in the event of a decreased frequency below a pre-

set threshold. Another 10% increase in secondary response within 30 seconds is required 

[132-134].  

This secondary response can be provided by a secondary frequency controller that 

is connected to the generating unit to the governor’s reference load (RL) to provide an 

additional power output. A conventional PI controller can be used to compensate the 

required power and to reduce the error in the frequency. However, in this conventional 

control method, there is a real risk that these controllers may not be effective because of 

parameters uncertainty [9]. Therefore, the development of a new secondary frequency 

control is considered in this chapter, and its impact on frequency response is investigated. 

The proposed design supplements the conventional PI frequency control rather than 

replacing it to provide a more accurate frequency response than conventional control. 

3.2 Generalised model of the GB power system 

The model shown in Figure 3.1 represents the power system by the inertia constant 

(M=2H) and the damping factor of the generators (D). Two first order systems, as well as a 
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compensator filter, represent the turbine- governor. The secondary frequency controller is 

represented by K(s) and can be connected to RL to provide the desired amount of additional 

power for the secondary frequency response (  (see Figure 3.1). 

The inertia value in this model was taken to be that of the year 2020 to reflect the 

high penetration of the wind generation in the National Grid based on “2015 Gone Green 

scenario” [22]. The governor speed regulator ( was represented by the droop value equal 

to 11. This value was obtained by averaging all droop values of each generator in the system 

[71, 135, 136].  

Figure 3.1. A simplified model of GB power system with primary and secondary 
frequency loops. 

3.3 Proposed control and optimisation method 

Innovative solutions are required to provide a control system, which is fast acting, 

and stable. These solutions will become increasingly valuable in frequency control of power 

systems [20]. Therefore, in this chapter, control and optimisation method are proposed to 

supplement the conventional frequency control rather than replacing it as shown in Figure 

3.2. A particle swarm optimisation method (PSO) is applied to the classical controller to 

obtain its optimal gains. PSO was widely used in the application of PID/PID-like fuzzy logic 

controller. PSO provided superior response than other methods like a genetic algorithm or 

bee colony. It was widely used in the optimisation problems with power systems [137-139]. 

These optimal gains are used as inputs scaling gains to the fuzzy controller (see Figure 3.2). 

The main idea behind this approach was to use the simplicity of optimising the conventional 
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controller rather than optimising the fuzzy logic directly. 

Classical control algorithms have some limitations in a power system such as dealing 

with parameter uncertainties or changing the operation point. Intelligent methods such as 

fuzzy logic have been widely used in research due to its robustness, offering better control 

performance than classical methods. Fuzzy logic is widely used in real-time industrial 

applications and embedded systems. Fuzzy was applied widely in power systems, scaling 

gains are added to the inputs making the fuzzy controller act as a classical form of PD/PI/PID 

controller [140-142]. This option makes the fuzzy logic controller suitable to supplement the 

conventional secondary frequency control in the power systems knowing that the 

conventional PI controller is used in real-time power systems (see Figure 3.2). 

Figure 3.2. The structure of the proposed supplementary control. 

3.3.1 Structure of fuzzy logic controller 

A typical two-inputs one-output fuzzy logic controller is shown in Figure 3.3. The 

controller has two main parts: The fuzzy inference system (FIS) and the scaling gains of the 

inputs. This structure can be modified into different multi-input/multi-output fuzzy controller 

by adding a membership function (MSF) at each input or output.  
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Figure 3.3. Structure of a typical two-inputs fuzzy logic controller showing the 
inputs scaling gain and the FIS. 

As mentioned earlier, the scaling gains were added to the inputs making the fuzzy 

controller act as a classical form of PD/PI/PID controller. MSF with three linguistic variables 

is the least number in the application of PID-like fuzzy logic controller. Increasing the number 

of the linguistic variables in an MSF will increase the accuracy of the control action. However, 

increasing the number of linguistics variables will increase the number of fuzzy rules. For 

example, for MSF with seven linguistic variables, the design of three inputs PID-like fuzzy 

logic controller (PIDFLC) controller has fuzzy rules equal to 7x7x7= 343. This high number 

of fuzzy rules requires higher execution time with the consequence of slowing down the 

controller action [140, 141, 143]. Therefore, a fuzzy logic controller with the parallel structure 

of PIDFLC was developed as shown in Figure 3.4 to supplement the classical controller. 

This design has benefits in reducing the number of fuzzy rules. For example, for MSF with 

seven linguistic variables, the parallel structure of PIDFLC will reduce that large number to 

7x7+7x7 = 98 fuzzy rules instead of 343 (see Figure 3.4). 

Figure 3.4. Parallel structure of a three inputs PIDFLC. 
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Two versions of FIS were used in this research. The first design considers seven 

triangle linguistic variables at each MSF and 49 fuzzy rules (see Figure 3.5 and Table 3.1) 

while the second one with three triangle linguistic variables and nine fuzzy rules (see Figure 

3.6 and Table 3.2). Both versions with their parameters range are widely used with the 

PI/PID fuzzy logic controller, and they offered good results and fast execution time due to 

their ramp gradual transitions and simple mathematical representation [140, 141, 143, 144]. 

Fuzzy toolbox in MATLAB was used to design both versions of FIS (see Appendix A3.1). 

(a) 

(b) 

Figure 3.5. The version I of FIS, (a) inputs MSF, (b) output MSF. 

Figure 3.6. Input/outputs MSF of version II FIS. 
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Table 3.1. Fuzzy rule tables of the version I FIS. 

Input1( Kp)

NB NM NS Z PS PM PB

In
pu

t2
  (

Kd
/K

i)

NB NB NB NM NM NS NS Z

NM NB NM NM NS NS Z PS

NS NM NM NS NS Z PS PS

Z NM NS NS Z PS PS PM

PS NS NS Z PS PS PM PM

PM NS Z PS PS PM PM PB

PB Z PS PS PM PM PB PB

Table 3.2. Fuzzy rule tables of version II FIS. 

Input1 (Kp)

N Z P

In
pu

t2
  

(K
d/

Ki
) N N N Z

Z N Z P

P Z P P

3.3.2 Optimisation method 

The scaling gains of the fuzzy logic controller have a significant impact on tuning the 

MSF at each input of the controller. Trial and error method can be used to optimise these 

gains, but not offer an optimal value or good control performance. The benefits of these 

gains are to re-scale the range of the universe of discourse of the MSF. These values are 

very important to get better control performance.  

The simplest model of the PID controller is presented in equation (3.1) with parallel 

structure available in the MATLAB Simulink [136]. Where: P= Kp, I= Ki, D= Kd, and N are 

defined in this equation only as the controller gains and the filter coefficient, respectively. 

(3.1)

The built-in tuner of the PID block in the MATLAB Simulink can obtain the optimal 
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value of the controller’s parameters in any closed-loop linear system. However, in the 

applications of the complex and nonlinear systems, it is difficult to obtain the optimal value 

using this tuner. Therefore, the PSO was used to get the optimal values of these gains due 

to the high optimisation capability. The PSO was used along with the PID tuner in the 

MATLAB Simulink model of the GB power system presented in Section 3.2 to validate the 

effectiveness of the proposed method, which is using the fuzzy logic controller for controlling 

the frequency without adding any complexity to the control system.  

The primary function of the PSO is to obtain the optimal value of Kp, Ki, and Kd by 

minimising the fitness function to a minimum possible value. The fitness function was 

represented by the integral square error (ISE) presented in equation (3.2). The error 

represents the ∆F as shown in Figure 3.2. 
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0

2))((                                               (3.2) 

The proposed tuning method is looking to tune the existing classical controller to get 

the optimal values of its gains and to use these gains in the fuzzy supplementary controller 

(see Figure 3.2). The optimal condition in both Simulink PID tuner and PSO was set to 

for avoiding high value of the gains. The optimal controller’s gains value of both 

tuner and PSO were obtained once and were used in simulation results to prove the 

efficiency of the proposed tuning methods (see Table 3.3). These values were obtained by 

using the PID controller as a classical secondary frequency control (in Figure 3.2) in the GB 

power system model of Figure 3.1 to reuse them in the fuzzy controller.  

An event of 27th May 2008 was used as the load disturbance, where two generators 

were lost with a power equal with 1,320 MW of the total generation power of the GB power 

system [1], [12]. In this study, it was assumed that such disturbance occurs on an average 

weekday and the estimated loss was approximately 0.03 p.u. A PSO-based optimisation of 

the PID controller gains was applied for 30s simulation time (iteration) considering the 
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disturbance (see Appendix A3.2). The values in Table 3.3 are the optimal values which were 

obtained for a minimum value of ISE. 

Table 3.3. The optimal value of the PID controllers’ gains

Classical PID

Kp Ki Kd (N) Filter coefficient

Simulink tuner 23.22 10.906 3.48 1.089

PSO 30 14.247 30 100

3.4 Performance comparison of controllers 

 This section compares the control performance of different structures of the fuzzy 

controller and their optimal response using the simplified GB power system. Three 

simulation cases were used to evaluate the fuzzy logic controller as a supplementary 

secondary frequency controller as shown in Figure 3.2. The optimal gains presented in Table 

3.3 were used in all simulation cases.

3.4.1 Using two-inputs fuzzy controller and 49 Rules 

The typical PD fuzzy logic controller (PDFLC) shown in Figure 3.3 was used with the 

aid of the optimal PID gains and Version I FIS shown in Figure 3.5. The simulation results 

show high speed and improved transient frequency response as presented in Figure 3.7 

and Table 3.4. The PSO - based PDFLC controller had the best response with 0.016 

deviation value and 5s settling time. The classical PID controller provided a good response 

as well, but with a critical value of ∆F reaching -0.2 Hz with 9s and 11s settling time for tuner-

based PID and PSO-based PID, respectively.  
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Figure 3.7. Simulation results of the frequency deviation in the GB power system 
using two-inputs PDFLC and 49 rules. 

Table 3.4. Frequency response performance using two-inputs PDFLC and 49 rules 

Max value of ∆F (Hz) Settling time (s) Error (Hz)

C
on

tro
lle

r 

ty
pe

T-PID -0.2 9 0

PSO-PID -0.13 11 0

T-PDFLC -0.041 4 -0.0032

PSO-PDFLC -0.016 4 -0.0025

3.4.2 Using three-inputs fuzzy controller and 49 Rules 

This section presents the PIDFLC with the parallel structure of PIFLC+PDFLC (see 

Figure 3.4) and the version I FIS (see Figure 3.5). The structure of this controller offers 

greater stability versus fast response with only 3s settling time and -0.015 ∆F and zero error 

(see Figure 3.8 and Table 3.5). 
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Figure 3.8. The frequency deviation using three-inputs PIDFLC and 49 rules. 

Table 3.5. Frequency response performance using three-inputs PIDFLC and 49 rules 

3.4.3 Using fuzzy inference system with 9 Rules 

This section presents a comparison of fuzzy controllers but with version II FIS (see 

Figure 3.6) for testing the proposed control with the smallest number of fuzzy rules. Version 

II has a simple MSF of three linguistics variables and nine fuzzy rules. This number is the 

lowest number of rules used in the control applications of the fuzzy logic controller. PDFLC 

has an error bigger than other controllers while PIDFLC provides a better response 

performance than all other controller types with 0.1 deviation value and 9s settling time. 

Controller type Max value of ∆F (Hz) Settling time (s) Error (Hz)

PSO-PDFLC -0.017 6 -0.016

PSO-PIDFLC -0.015 3 00
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However, PID has a response with zero error but longer settling time (see Figure 3.9 and 

Table 3.6). 

Figure 3.9. Simulation results of the frequency deviation in the GB power system 
using fuzzy controllers with 9 rules. 

Table 3.6. Frequency response performance using fuzzy controllers with 9 rules 

Controller type Max value of ∆F (Hz) Settling time (s) Error (Hz)

PSO-PID -0.13 11 00

PSO-PDFLC -0.14 7 -0.033

PSO-PIDFLC -0.1 9 00

3.4.4 Robustness analysis against parameters uncertainties 

An analysis of parameter uncertainties of the GB power system was performed by 

using a different range of values. The simplified GB power system has many parameters 

that can be changed such as governor time constant (Tg), Damping factor (D), Inertia (H), 

and the value of the droop constant (R). The changes in each parameter (increase or 
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decrease) has a different effect on the system stability. For example, increasing D can 

reduce the frequency deviation of the system while increasing H can slower the system. 

Furthermore, increasing Tg can increase the frequency deviation resulting in a rise of 

system’s instability. The effect of changing each parameter on the primary frequency 

response of the simplified GB power system is presented in Appendix A3.3.Two different 

cases of parameters uncertainties of R, Tg, D and H were considered (see Table 3.7 and 

Figure 3.10) in the GB power system.  

Table 3.7. Uncertain parameters and the variation range for the simplified GB power 
system presented in Figure 2.1. 

Parameters Base case Variation range New value

C
as

e 
1

R 0.09 + 70% 0.123

Tg 0.2 - 50% 0.1

D 1 - 70% 0.3

H 3.42 + 50% 5.1

C
as

e 
2

R 0.09 - 70% 0.027

Tg 0.2 + 50% 0.3

D 1 + 70% 1.7

H 3.42 - 50% 1.7

3.4.4.1 Parameters uncertainties using fuzzy controllers with 49 rules 

By applying parameter uncertainties of study case 1 and 2 to the classical PID 

controller only (PSO-based PID), the supplementary PDFLC plus the classical (PSO-based 

PDFLC), supplementary PIDFLC plus the classical (PSO-based PIDFLC), and the 

supplementary PIDFLC without the classical (PSO-based:onlyFuzzy). It was found that the 

classical controller has a critical response to high oscillation and overshoot. In contrast, all 

the other types of supplementary fuzzy controller improve the frequency response and 

showed a robustness (see Figure 3.11, Figure 3.12, and Table 3.8). In addition, the response 

with fuzzy only is nearly identical to the fuzzy plus classical PIDFLC because that the fuzzy 

controller is the dominant controller as shown in the zoomed areas. 
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Figure 3.10. The frequency response of GB power system with parameters 
uncertainty comparison of case 1 and 2 without secondary frequency control. 

Figure 3.11. Comparison of controllers using case 1 parameters uncertainties and 
49 fuzzy rules. 
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Figure 3.12. Comparison of controllers using case 2 parameters uncertainties and 
49 fuzzy rules. 

Table 3.8. Performances comparison of parameters uncertainties for frequency 
response using fuzzy controllers with 49 rules 

∆F (Hz)

Case1  Case2

Settling time (s)

Case1  Case2

Error (Hz)

Case1    Case2

PSO-PID -0.13  -0.14 15  9 00             00

PSO-PDFLC -0.01   -0.028 9           5 -0.003       -0.0025

PSO-PIDFLC -0.009 -0.023 8           3 00             00

3.4.4.2 Parameters uncertainties using fuzzy controllers with 9 rules 

This section uses the version II FIS, having the simplest fuzzy MSF and rules for 

evaluating the behaviour of the three fuzzy controllers considering parameters uncertainties. 

The PIDFLC controller provides a better response than other controllers with high 

robustness. However, PID controller had also zero error but with higher frequency deviation 

(see Figure 3.13, Figure 3.14, and Table 3.9). 
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Figure 3.13. A comparison of controllers with case 1 parameters uncertainties and 9 
fuzzy rules. 

Figure 3.14. A comparison of controllers with case 2 parameters uncertainties and 9 
fuzzy rules. 
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Table 3.9. Performances comparison of parameters uncertainties for frequency 
response using fuzzy controllers with 9 rules 

∆F (Hz)

Case1  Case2

Settling time (s)

Case1  Case2

Error (Hz)

Case1    Case2
C

on
tro

lle
r 

ty
pe

PSO-PID -0.125    -0.14 14           4 00               00

PSO-PDFLC -0.15     -0.15 8            6 -0.035       -0.025

PSO-PIDFLC -0.095    -0.13 11      3 00              00

3.5 Demonstration of the proposed control on a multi-machine power system 

This section demonstrates the effectiveness of the proposed control method to 

supplement the local secondary frequency control rather than replacing it. The average 

overnight amount (0.023 p.u) of the secondary frequency capacity was used for January-

2016 in the GB power system [145]. This amount was applied to the IEEE 10-machine 

benchmark power system. The  IEEE 10-machine test system (see Figure 3.15) was widely 

used in the literature for testing new control techniques of the power system as it was 

explained in section 2.8.2 [127, 129]. Availability of this benchmark system is an opportunity 

to test the proposed controller using this time-domain power system to have more realistic 

frequency response behaviour. 

3.5.1 Integrate the controller in Generator 9 with sudden load rise  

The amount of the secondary frequency control (0.023 p.u = 23 MW) was applied at 

generator 9 (G9) for representing the MFR. A disturbance equal to 200 MW was applied and 

was represented as a sudden load rise on busbar 24 (see Figure 3.15). The proposed fuzzy 

controller showed a better response than classical PI secondary frequency controller. The 

absolute mean value (AMV) was obtained for each generator’s frequency response to clarify 

the difference in the frequency responses (see Figure 3.16).  



57

Figure 3.15. The 39-Bus, 10-machine New England test system (explained in section 
2.7.2 [127, 129] ). 

Figure 3.16. AMV of the frequency responses at generator G9 with and without the 
proposed controller (a disturbance equal to 200 MW). 
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3.5.2 Integrate the controller in generator 9 with three-phase fault  

The same amount of the secondary frequency control (0.023 p.u = 23 MW) was 

applied at generator 9 (G9) to represent the MFR. The case study was done by applying a 

three-phase fault in the transmission lines between busbar16 and busbar 17 (see Figure 

3.15). Figure 3.17 shows the AMV for the frequency responses comparison at generator G9. 

Figure 3.17. AMV of the frequency responses at generator G9 with and without the 
proposed controller (three-phase fault). 

3.5.3 Integrate the controller in generator 10 with sudden load rise  

 The same amount (0.023 p.u = 23 MW) was applied at generator 10 (G10) to represent 

the MFR. A disturbance equal to 200 MW was applied and was represented as a sudden 

load rise in busbar 24 (see Figure 3.15). Figure 3.18 shows the AMV for the frequency 

response comparison at generator G10. 
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Figure 3.18. AMV of the frequency responses at generator G10 with and without the 
proposed controller (a disturbance equal to 200 MW). 

3.5.4 Integrate the controller in generator 10 with three-phase fault  

The amount of about 10% of the total generator capacity (≈1000 MW) was applied 

at generator 10 (G10) to represent the 10% increase in the secondary frequency capacity 

to represent the MFR. A three-phase fault in the transmission line of generator 1 (G1 in 

Figure 3.15) and the sudden load change in the previous cases were applied. This case is 

to display the power generated from G10 following the disturbance. Figure 3.19 shows the 

power generated from generator G10 following the disturbance at t=4 seconds.  

Using the proposed fuzzy controller as a supplementary controller leads to an 

additional output power equal to 6.195 MW more than when only the classical PI controller 

was used. This improvement is equal to 1.7% following a disturbance (see Table 3.10). This 

improvement demonstrates that the developments in the controller’s design can play an 

important role in future frequency control in the case when the MFR requirements are 

applied.  
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Figure 3.19.  Comparison of power generated from generator G10 following a 
disturbance at t = 4s. 

Table 3.10. Power generated by generator G10 following a disturbance considering 
secondary frequency controllers 

Power output (MW) Improvements (%)

With the classical PI controller 585.692 0

With fuzzy controller 591.887 1.7

Recently, the development of the combined cycle gas turbine generators (CCGT) 

was carried out to get fast cycling and rapid start-up in the generated power to meet the 

requirements of MFR [132, 134]. The development of the CCGT was done by Siemens AG 

as explained in [132] to get Fast Cycling and Rapid Start-up in the generated power. The 

promising results, presented in [132], showed that +46 MW was obtained in 10 seconds and 

+66 MW in 30 seconds (see Figure 3.20). Therefore, the proposed frequency controller 

could be used in similar applications to get faster MFR and for generating faster power 

output in the CCGT or other technologies. 
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Figure 3.20. Results for the grid code support tests at the new Severn Power Station 
(CCGT), near Newport City, Wales, UK, by Siemens AG. The results for the MFR are: 
(i) Primary response achieved +46 MW (11%) in 10 seconds, (ii) Secondary response 

achieved +66 MW (15%) in 30 seconds [132]. 

3.6 Summary 

A developed optimal fuzzy logic-based secondary frequency controller was 

presented to get fast and accurate mandatary frequency control in the GB power system. 

The proposed frequency controller supplemented the local control rather than replacing it 

and provided a superior frequency response than the conventional PI-controller. The 

proposed design could be used for the application of the LFC or AGC. In addition, it applies 

to both decentralised and centralised control methods. Furthermore, the controller could be 

applied to have a faster MFR in the application of, for example, CCGT.
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CHAPTER 4 

Control of a Population of Water Heater Devices for Frequency 

Response 

4.1 Introduction 

Due to the increasing need for RESs, performing frequency control using only 

generation side becomes not only expensive but also technically difficult, as explained in 

Section 2.2.1 [9-11]. By 2025/26, the fluctuation of the feed-in of the wind and solar leads to 

a sharp ramp in the total system demand during the day. In addition, the combination of high 

wind and PV output alongside with a low demand means that a significant number of 

interventions by the GB system operator should be taken for balancing and operability 

reasons.  

Therefore, there are opportunities for demand-side services during both periods of 

low and high demand [8]. However, the uses of the emergency power amount from the load 

side for the frequency response services presents a new challenge. The challenge is 

associated with the control of large distributed loads such as WHs [24].   

Controlling large distributed load was done using centralised and decentralised 

control methods [15, 35, 38]. The centralised control method reduced the uncertainty in the 

response of controllable units. However, the centralised method has a real challenge related 

to the communications such as the cost and latency [15]. In contrast, the decentralised 

control method removes this challenge, but it introduces an uncertainty due to the 

independent response of these large distributed loads [15, 35, 38].  

However, to the best of the author knowledge, none of the previous work has 

considered providing a control method that compromises the advantages of both centralised 
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and decentralised control of WHs. Therefore, the problem of ‘smart management and 

control’ of the power consumption of controllable WHs are considered in this research.  

A hierarchical control of a population of WHs is proposed to provide frequency 

response services when required. A model of a population of controllable WHs is developed 

based on Markov-chain. The model demonstrates the potential for a WHs aggregator to offer 

frequency response service and evaluates the effective population capacity during a 

frequency event. 

4.2 Hierarchical control of water heaters 

The electric WH is an important home appliance which can be controlled to provide 

frequency response services by turning ‘ON/OFF’ the device in response to a pre-set value 

of frequency deviation. Electric WHs are widely deployed in different buildings for different 

residential and non-residential uses in power systems [55]. There are two types of WHs, the 

ERWH and the HPWH as well as a hybrid type [53, 55, 60, 61].  

The main aim of the proposed control is to use WHs devices to offer frequency 

response services when required. The aggregator aims to integrate a controller with each 

WH device to turn ‘ON/OFF’ the device after a pre-set value of frequency deviation. The 

proposed hierarchical control is based on two main decision layers; the aggregator layer and 

the device control layer as shown in Figure 4.1. 

The aggregator control layer receives the states of WHs and enables/disables the 

device control layer. A controller is integrated with each WH device to turn ‘ON/OFF’ the 

device according to the command signal received from the aggregator, the value of , and 

the level of the water temperature. It enables the population to provide the desired frequency 

response as shown in Figure 4.2, and to provide frequency response services when 

required.  

When the frequency drops, three frequency bands are considered, the priorities of 

the response of the device are in relation to their water temperature and the value of . 
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Therefore, the response will be from devices with the highest to lowest water temperature 

when the frequency drops. As a result, the aggregated devices will not respond at the same 

time and the risk of a simultaneous power change of a large number of controllable loads 

will be reduced. Hence, the impact on the power system and end-users will be reduced. In 

addition, when there is no frequency event, the devices are usually switched ‘ON’, therefore, 

for the frequency rise, the number of responsive devices is much lower than when it drops. 

As a results, for the high frequency service, one frequency band is considered. 

Aggregator Layer

Device 
controller 

ON/OFF

FGrid

enable/disable

Device Control Layer

Tr/Td

Device’s State
(ON/OFF)

Electric Resistance/Heat Pump 
Water Heater Tr: Measured Temperature

Td: User defined Temperature

ON/
OFF

Figure 4.1. Block diagram of the proposed hierarchical control of WHs. 
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Figure 4.2. The desired response of the WHs population, where = Measured 
temperature and =User defined temperature. 

4.3 Structure of the proposed device controller 

To provide the desired frequency response shown in Figure 4.2 by using the device 

controller, it is assumed that this controller is installed in each WH and aims to control their 

‘ON\OFF’ status. Therefore, the proposed water heater controller has three main 

components: (i) Measurements of frequency deviation, (ii) Measurements of water 

temperature and (iii) Logic gates. The latter is to control the device’s ‘ON\OFF’ according to 

(i), (ii), and based on the command signal received from the aggregator (see Figure 4.3).  

As shown in Figure 4.1, the aggregator collects the devices’ state and initiate the 

control signal to enable/disable each controller. So, the aggregator control signal is either 

logic 1 to enable the device controller or logic 0 to disable it. Therefore the aggregator could 

decide the required population capacity or control the time of the device response.  



66

Figure 4.3. The block diagram of the proposed WH controller. 

4.3.1 Measurements of frequency deviation 

The frequency measurements contain three bands for the negative  and one band 

for the positive  (see Figure 4.4), these logic bands are represented by equations (4.1)-

(4.4). These bands along with the temprature measurements (presented in the next section) 

are used to assign the priority for the device response reducing the impact on the system 

and maintain the end-user comfort level. However, the number of bands and their 

parameters (F1, F2, and F3) are changeable and could be set according to the aggregator’s 

preferences.  

Figure 4.4. Logic indication groups of the frequency deviation levels. 
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                                                 (4.1)

                                                 (4.2)

                                                  (4.3)

                                                 (4.4) 

4.3.2 Measurements of water temperature  

The desired frequency response (see Figure 4.2) considers the water temperature 

alongside ∆F. The frequency response is achieved from devices with the highest to the 

lowest water temperature when the frequency falls. The proposed water temperature 

measurements are based on four levels (see Figure 4.5) by comparing the User-defined 

Temperature ( ) with the Measured Water Temperature ( ). The resulted function ‘ ’ is 

shown in equation (4.5) by dividing the  over the . The logic indicators for these levels 

are implemented by using equations (4.6) - (4.9). However, the levels could be changed 

according to the aggregator preferences.  

Figure 4.5. The proposed measurements levels for the water temperature. 
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                                                 (4.5) 

                                                (4.6)

                                                (4.7)

                                                 (4.8)

                                                (4.9) 

4.3.3 Structure of logic circuit and logic control output 

The logic outputs of the  bands (see Figure 4.4) and the water temperature levels 

(see Figure 4.5) are used as inputs to the logic gates in the WH controller to generate the 

logic control output as shown in Figure 4.3. The control output is a logic control signal to 

switch ‘ON/OFF’ the devices, where 1 is for ‘ON’ and 0 is for ‘OFF’ control output. The 

desired response of the aggregated devices is shown in Figure 4.2, to generate this 

response, the output of the device controller should be assigned with the state conditions 

shown in Table 4.1 when the aggregator command signal is logic 1. The state conditions 

presented in Table 4.1 are implemented using the complete logic circuit shown in Figure 

4.6. The device controller will respond based on the last command signal received from the 

aggregator. Therefore, the WH will respond even when a failure occurs in the 

communication, the output of the controller is stored as a logic vector. 
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Table 4.1.  States conditions3 of the switching in the device controller (NC= no 
change) for the negative . 

NC NC
OFF=1

ON=0
NC

NC
OFF=1

ON=0

OFF=1

ON=0
NC

OFF=1

ON=0

OFF=1

ON=0

OFF=1

ON=0
NC

OFF=1

ON=0

OFF=1

ON=0

OFF=1

ON=0
NC

4.4 Modelling of a population of controllable water heaters  

It is assumed that all WHs devices receive logic 1 command signal from the 

aggregator to enable their controllers and provide frequency response services when 

required. Therefore, modelling the dynamic behaviour of the aggregated devices has two 

main parts: (i) Modelling the dynamic behaviour of devices’ population just before the 

frequency event with their nominal power (initial condition), and (ii) Modelling the dynamic 

switching ‘ON/OFF’ for the devices’ population during a frequency event. The latter is used 

to calculate the probability of the deviation of aggregated power from the nominal power of 

devices’ population (of part (i)) during the frequency event. Markov model is a way to model 

overlapping sets of information to reflect our understanding of regions. It provides a 

3 For Example: suppose that F1=0.015 Hz, F2=0.05 Hz, and F3=0.1 Hz (showed in Figure 

4.4), and there is a frequency deviation ∆ equal to -0.03 Hz. Therefore, the proposed 

controller will activate the device response by comparing value with the value of the 

device water temperature ‘ ’. According to Figure 4.4, the logic output is 1. Hence, in 

Figure 4.6, the G2 gate logic output is 1 if the device is at 

or temperature level. Hence, GFL_OFF will give an output equal to 1 and activate the 

‘Switching OFF’ device’s response. A similar mechanism is applied to the rest of the 

levels. When a positive is indicated, the GH gate is multiplied by logic 1 to activate the 

‘Switching ON’ device response.
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stochastic model of diffusion which applies to individual objects. As a result, it gives us the 

foundation for diffusion we’ve studied. Therefore, Markov chain was used to represent the 

dynamic behaviour of the states of the population of water heaters [9-11, 52]. Hence, a 

developed Markov-based representation is used for the modelling work. 

4.4.1 Modelling the dynamic behaviour of WHs population 

The representation of the ERWHs and HPWHs was achieved based on Markov 

Chain states diagram (see Figure 4.7). The device model was implemented by Markov Chain 

matrices to represent the deviation of the power consumption of the aggregated load. The 

HPWH was modelled using four operation states: ‘ON’, ‘OFF-Locked’, ‘OFF’, and ‘ON-

Locked’. To represent the nature of the compressor in HPWH, it was assumed that when 

the device is switched to ‘ON-Locked’ or ‘OFF-Locked’, it will remain in this state during the 

control period. The ERWH was modelled according to only two states ‘ON’ and ‘OFF’

because it has no compressor. The and (see Figure 4.7) are the switching probability 

factors from one state to another. The state diagram of the ERWH is modelled in the state 

transition matrix shown in equation (4.10), and for the HPWH the state diagram is modelled 

in equation (4.11) [62, 64]. 

(a)                                                          (b) 

Figure 4.7. Markov-based state transition diagram of the dynamic load behaviour, (a) 
A population of ERWHs, (b) A population of HPWHs (adapted from [62]). 

= (4.10)
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=                (4.11) 

Each state shown in Figure 4.7 has an initial condition which represents the capacity 

(represented by the nominal power) at the moment just before the frequency event. For 

example, ‘ON’ is the group of the devices which they are in ‘ON’ operation condition, and if 

they have a capacity, for example, equal to 0.1 p.u of the total population. It means that this 

group is representing 10% of the total summation of initial conditions of all states. The total 

initial condition (represented by the nominal power) of the ERWH is modelled by the matrix 

shown in equation (4.12) and for the HPWH in equation (4.13).  

=                (4.12) 

=                               (4.13) 

4.4.2 Modelling the dynamic switching of devices during a frequency event 

 The device control layer can measure the non-zero frequency deviation and 

probabilistically change their power consumption by switching ‘ON/OFF’ their controllable 

amount of power. The amount of the probabilistically switching factors is set according to 

the value of  and , as shown in Figure 4.7. The value of the  and  are between 0 

and 1 according to the basic concepts of the Markov Chain. The value is dynamically linked 

with the value of the  whether it is positive or negative. When a negative  is measured, 

this indicates that there is a rise in load or fall in the generation. Therefore, the population 

will start to turn ‘OFF’ the controllable end-user loads. Hence, will start to increase the value 

of  and decrease the value of , and vice versa when a positive  occurs.  

 In addition, the devices will not be directly turned ‘OFF’ at the same, this process will 

be done by a gradual sequence according to the amount of , and reach its maximum 
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amount after a pre-set  value. Therefore, fuzzy MSF was proposed to provide this gradual 

rise or fall in the switching process. The fuzzy membership functions are shown in Figure 

4.8 to model the dynamic switching behaviour of the switching probabilities  and , 

showed in Figure 4.7. 

 These membership functions can dynamically update the value of the switching 

probabilities (  and  with respect to the  using the switching rules shown in equations 

(4.14) and (4.15). The proposed MSF are implemented by equations (4.16) - (4.19). The 

start/end values (F1, and F3) are similar to the values of the frequency bands in the device 

controller. This process is simulating the population response to provide a frequency 

response services starting/ending at a pre-set value of 4.  

                 (4.14)

(4.15) 

                    (4.16) 

(4.17)

(4.18)

4 The value of ‘F1’ is related to the beginning of the service and the dead band value, for 

example, it is assumed to be 0.015 Hz. 
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(4.19)

(a) 

(b) 

Figure 4.8. Proposed MSF to represent the dynamic switching conditions in a 
population of WHs, (a) the switching into ‘ON’ state, (b) the switching into ‘OFF’ 

state. 

The updated values of the switching probabilities (  and  are used to 

dynamically re-update the state transition matrix showed in equations (4.10) and (4.11). 

After updating (  and , the initial condition (the nominal power) of the states is 

dynamically updated during a frequency event using equation (4.20).  Equation (4.21) is 

used to aggregate the total power capacity of the population, (where:  and 

 for ERWH and HPWH, respectively [62, 64]).  

  (4.20) 

        (4.21) 
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  The value of F1, F2, and F3 (shown in Figures 4.8) are important to have a good 

frequency response. The start (F1) is the value when start switching ‘OFF’ the devices while 

the end (F3) is the value when all devices should be switched ‘OFF’. Therefore, in the 

proposed model, the PSO was used to get the optimal value of ‘F1’ and ‘F3’ of Figure 4.8 

with a constrained optimisation algorithm between 0.01 and 0.25 Hz. The algorithm was run 

by using the disturbance of 2008 event sequence in the GB power system (shown in Figure 

4.10) which was approximately equal to 0.03 p.u. The optimal values are equal to 

‘F1=0.015’, and ‘F3=0.248’ by minimising the ISE of the  during the disturbance. The  

modeling process of the proposed controllable WHs is shown in Figure 4.9. 

Start

(F1)Hz ≤ ∆F ≤ (-F1)Hz No
End

Yes

Aggregate the  power 
consumption of the controllable 

devices

Calculate the final value of the 
population condition and response

Reserve service 
time occurred?

YesNo

Calculate the switching 
probabilities

Run the Markov-chain-based
representation of the dynamic behaviour 

of WHs

Activate the proposed controller to 
set devices’ response according to ∆F 

and water temperature

Set devices to their 
normal operation 

conditions 

Figure 4.9. Flowchart of the modelling process of the control of a population of 
WHs. 
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 4.5 Demonstration of the proposed control of WHs 

The Markov-based model presented in section 4.4 is developed to demonstrate the 

proposed hierarchical control of WHs. The following assumptions were considered for the 

initial values: for HPWH 30% in ‘ON’ state, 10% in ‘OFF-Locked’ state, 50% in ‘OFF’ state, 

10% in ‘ON-Locked’ state, and for ERWH 30% in ‘ON’, 70% in ‘OFF’ state.  

The water temperature measurement, as shown in Figure 4.5 and equation (5), is 

considered for the 20 seconds’ simulation period. Realistic water temperature demand 

profile of a water heater was considered from [146], covering: two bathing events, one in the 

morning and another in the evening. It also takes care of the hot water required for the 

washing and the cleaning purpose during noontime. The load profile showed that the change 

of the water temperature takes longer than the service time in the simulation period. 

Therefore, no noticeable change in  in equation (4.5) is observed of the temperature 

measurements during the frequency event in the simulation period. Hence, the value of 

was assumed to be equal to 0.2 in all cases.  

It is assumed that the frequency service from the controllable WHs is available for 

24 hours. The aggregators provide the full power of their controllable devices for frequency 

response services (i.e. primary + secondary). The modelling of the controllable WHs 

population and the simulation results were carried out in MATLAB PowerSim, and designs 

code is shown Appendix A4. The results were stored as vectors for visualising the 

comparison of the results.  

4.5.1 Simplified GB power system 

The simplified GB power system model (see Figure 4.10) is used for the aggregation 

of various generation units. The disturbance of 2008 event in the GB power system was 

applied and is equal to 0.03 p.u [71, 136, 147-149]. The Markov-based model of the 

controllable WHs was implemented in the block of controllable WHs shown in Figure 4.10. 



77

Figure 4.10. Simplified GB frequency control model with controllable WHs. 

The simulation results using the simplified GB power system showed that the 

aggregation of controllable WHs reduced the frequency deviation and error to a lower value 

than without using controllable WHs. (see Figure 4.11). 

Figure 4.11. The frequency response of the simplified GB power system following a 
disturbance. 
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4.5.2 The South-East Australian power system 

It is important to test the proposed model of controllable WHs in a multi-machine 

large power system. The South-East Australian model (IEEE 14-machine 59-bus, 5-area, 

and see Figure 4.12) was used for testing new control techniques (further details in section 

2.7.3 [130, 131] ). The model was developed in SimPower Systems, which is a 

MATLAB/Simulink package [130]. Each controllable load represents an aggregator with 

different size of controllable devices. Three different aggregators connected in different 

areas were implemented as shown in Table 4.2 and Figure 4.12. 

Table 4.2. The assumption of controllable WHs types for each aggregator. 

Aggregation of 
ERWH (MW)

Aggregation of 
HPWH (MW) Total (MW)

Aggregator 1 30 50 80

Aggregator 2 42 50 92

Aggregator 3 50 60 110

The disturbance occurred in 28\9\2016 in the South Australian power system was 

considered with a loss of wind generation units about 311 MW. The disturbance was applied 

at time t=5s in the simulation study cases. This disturbance was considered as a sudden 

increase in the load at busbar 405 in area 4 (see Figure 4.12). Three study cases of 

aggregators are used, case X1 is for the use of one aggregator, case X2 is for the use of 

two aggregators, and case X3 is for the use of three aggregators as shown in Table 4.3. 

Table 4.3. Study cases for the simulation results. 

Study cases
aggregator at: X1 (MW) X2 (MW) X3 (MW)

1-Bus 206 (area 2) 80 80 80

2-Bus 312 (area 3) 0 0 110

3-Bus 408 (area 4) 0 92 92

Total (MW) 80 172 282
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Figure 4.12. IEEE 14-machine 59-bus, 5-area, the South-East Australian power 
system [131, 150]. 

Aggregator 1

Aggregator 2

Aggregator 3
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Figure 4.13. Frequency response comparison at the power generation unit of busbar 
203-area 2. 

Figure 4.14. Frequency response comparison at the power generation unit of busbar 
301-area 3. 
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Figure 4.15. Frequency response comparison at the power generation unit of busbar 
404-area 4. 

Figure 4.16. Frequency response comparison at the power generation unit of busbar 
501-area 5. 
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The simulation results, with these study cases, are generated to display the 

comparison between the system frequency response with and without controllable WHs. 

Figure 4.13 – Figure 4.16 shows the simulation results at different generation units in the 

wide-area South-East Australian power system. The frequency deviation and the steady 

state error were improved by integrating the controllable WHs. Increasing the number of 

load aggregators (from case X1 to case X3), hence, increasing the controllable amount, 

leads to more frequency response improvement than without WHs aggregators.  

4.6 Summary 

A hierarchical control of WHs for frequency response was presented, and a WH 

controller was developed to provide frequency response services when required. A Markov-

based model was used to simulate the behaviour of controllable WHs. The proposed control 

of a population of WHs can be applied in the future aggregation of large distributed WHs to 

provide frequency response services. The WHs controller provides a response based on the 

last command signal received from the aggregator, the value of ∆F, and the level of water 

temperature. However, it responds independently in the case of losing communications. 

Therefore, the proposed hierarchical control of WHs is not fully centralised or fully 

decentralised method for controlling large distributed controllable loads. In addition, the 

developed Markov-based representation of controllable WHs proved to be a useful tool to 

demonstrate the potential for a WHs aggregator and to evaluate the effective population 

capacity during the frequency service. With an initial of 30% ‘ON’, an aggregation of 280 

MW of devices from different areas was effective in improving the frequency deviation and 

error following a disturbance in the South-East Australian power system with a system load 

base equal to 14.5 GW.
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Chapter 5 

Control of a Population of BESSs for Frequency Response 

5.1 Introduction 

It is estimated that the growth of electrical energy storage capacity in the GB power 

system by 2050 will be about 10.7 GW in one of system operator's future scenarios (for 

example, Consumer Power Scenario) [74]. The deployment of residential and non-

residential BESSs is increasing due to the technical developments and cost reduction as 

well as high levels of PV panels’ integration [73, 74]. A large number of these BESSs are 

connected to distribution networks and behind the meters [74, 76, 79, 80]. The capacity of 

BESSs is growing due to the improvements in their technologies as well as the cost 

reduction [151-153]. However, the efficient use of these systems for frequency response 

services is a new research field to explore. There are important challenges associated with 

the control of large distributed loads such as residential BESS [24].  

Many previous work have considered the control of BESSs in either centralised or 

decentralised control methods [72, 76, 79, 80]. However, and to the author knowledge, none 

of them has considered to develop a control method that compromises the advantages of 

both centralised and decentralised control methods. Therefore, a developed control of large 

distributed residential and non-residential BESSs is considered in this chapter to provide 

frequency response services in future power systems. 

5.2 Hierarchical control of BESSs 

It is assumed that BESSs with different capacities are distributed throughout the 

power system. A demand aggregator, which is a third party company, aggregates these 

BESSs to offer frequency response services when required. This is done by integrating a 

controller into each BESS to control its charging/discharging processes. The demand 
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aggregator has a central controller, which is represented by the aggregator layer (see in 

Figure 5.1). The aggregator layer collects the SoC of BESSs and sends command signals 

to enable/disable each BESS controller in the BESS control layer.  

Aggregator Layer

BESS and its inverter

BESS controller  

Charging

Discharging

SoC

FGrid

enable/disable

BESS Control Layer

Figure 5.1. The block diagram of the hierarchical control of BESSs. 

The relationship between the number of cycles and the depth of discharge of the 

battery has an impact on the degradation of the battery [154]. The lowest level of SoC is the 

lowest number of cycle, and therefore, the highest risk of reducing the life of the battery [153, 

154]. Hence, considering the level of the SoC for the aggregated responsive BESSs is 

important as there may be hundreds of cycles each year when providing frequency response 

service. 

Therefore, the BESS controller has pre-set frequency bands as shown in Figure 5.2. 

The response depends on the frequency deviation and the BESS SoC. This response 

depends on the ∆F and the BESS SoC. The, BESSs will respond starting from the highest 

SoC to the lowest SoC when the frequency drops below a nominal value. When a frequency 

rises above a nominal value, BESSs will respond staring from the lowest SoC to the highest 

SoC. As a result,   the risk of a simultaneous power change of a large number of BESSs 
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during low-frequency is reduced. In addition, prioritising the BESSs SoC reduces battery 

degradation. 

Figure 5.2. The desired response of a population of BESSs during a frequency 
event. 

5.3 Structure of the proposed BESS controller 

Figure 5.3 displays the BESS controller structure, which has three main components: 

(i) Measurement of SoC levels, (ii) Measurements of frequency deviation and (iii) The logic 

gates to control the BESS charging and discharging according to (i), (ii), and the aggregator 

enable/disable command signal. The command signals of the aggregator control layer are 

either logic 1 to enable the BESS controller or logic 0 to disable it.  

Collecting the SoC values of all BESSs allows the aggregator to decide the available 

response capacity from the population of BESSs. In addition, in the case of discharging the 

BESSs and injecting power back to the grid, the proposed hierarchical control allows the 

aggregator to decide the response time of the BESSs according to their SoC levels. 

Therefore, the uncertainty in the response of the aggregated BESSs will be reduced during 
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the frequency service period. In this work, it assumed that that all BESSs receive logic 1 

command signal to enable their controllers and provide frequency response when required. 

The design of each component is explained as follows: 

Figure 5.3. The block diagram of the BESS controller. 

5.3.1 Measurements of SoC level 

It is assumed that the SoC of a BESS lies within one of the following levels: 0%, 

25%, 50%, 75%, and 100% SoC as shown in Figure 5.2. The logic outputs of the indicators 

of these levels are C1, C2, C3, C4, and C5 for 0% SoC, 25% SoC, 50% SoC, 75% SoC, 

and 100% SoC, respectively (see Figure 5.4). Equations (5.1) - (5.5) were used to categorise 

all BESS into one of these indicators. These indicators are the input to the logic gates of 

BESS charging/discharging control (see Figure 5.3).  

Figure 5.4. Logic bands for measurements of SoC level. 
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(5.1) 

(5.2)

(5.3)

(5.4)

(5.5) 

5.3.2 Measurements of frequency deviation  

As shown in Figure 5.2, there are three levels of positive frequency deviations (i.e. 

∆FH1,2,3) and three levels for negative frequency deviations (i.e. ∆FL1,2,3). These levels 

represent six bands of logic indicators as shown in Figure 5.5. The system frequency 

deviations are located within one of these bands using equations (5.6) - (5.11), where ∆F = 

FGrid-50. The number of these bands is set according to the aggregators’ preferences and 

the preferred degree of the frequency response smoothness. Hence, the higher the number 

of bands is the smoother the response of a population of BESSs. The value of the ∆F-axis 

parameters, (a, a1, and a2) are set by the aggregator and can be updated if necessary. 

Figure 5.5. Six logic frequency bands in the BESS controller. 
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(5.6)

                       (5.7)

                       (5.8)

                      (5.9)

                     (5.10)

                     (5.11) 

5.3.3 Structure of logic gates and logic control output 

As shown in Figure 5.3, the output of the SoC measurements and frequency 

deviations measurements are used as inputs to the logic gates, the output of the logic gates 

and logic control output is either enable the charging /discharging of the battery when logic 

1 or disable it when logic 0. Some of the logic gates and the control output’s switches are 

controlled by the command signal received from the aggregator control layer. The command 

signal is either 1 to enable the BESSs controller or 0 to disable it. Therefore, when the 

command signal is logic 1, the BESS will provide a frequency response by 

charging/discharging the BESS as shown in the logic truth table in Table 5.1 and Table 5.2. 

As a result, the BESS controller provides a response based on the last command received 

from the aggregator control layer. Hence, the controller works independently when any 

failure occurs in the communication with the aggregator control layer. Therefore, the 

proposed control method is not fully centralised nor decentralised in controlling large 

distributed BESSs. The complete logic circuit of the BESS controller is shown in Figure 5.6.  
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Table 5.1. Truth table of the control output of the charging operation (NC=no 
change). 

0% SoC 25% SoC 50% SoC 75% SoC 100% SoC

NC NC NC NC 0

NC NC NC 0 0

0 0 0 0 0

1 1 NC NC NC

1 1 1 NC NC

1 1 1 1 1

Table 5.2. Truth table of the control output of the discharging operation (NC=no 
change). 

0% SoC 25% SoC 50% SoC 75% SoC 100% SoC

NC NC NC NC 1

NC NC NC 1 1

1 1 1 1 1

0 0 NC NC NC

0 0 0 NC NC

0 0 0 0 0
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5.4 Modelling of a population of controllable BESSs 

A model of a population of controllable BESSs was designed to demonstrate the 

potential of the proposed hierarchical control scheme for an aggregator and to quantify the 

effective response capacity during the provision of the frequency service. As described in 

section 5.2 and Figure 5.2, the dynamic behaviour of the population of BESSs will be 

grouped into five different states according to their SoC levels: 0% SoC, 25% SoC, 50% 

SoC, 75% SoC, and 100% SoC. Therefore, modelling the dynamic behaviour of the 

population was divided into two parts. (i) Modelling the population of BESSs before the 

frequency event based on their nominal power (i.e. their initial condition of BESSs according 

to the SoC levels). (ii) Modelling the dynamic switching of controllable BESSs’ 

charging/discharging operation during a frequency event.  

In part (ii), the probability of the aggregated power deviation from the population’s 

nominal power (i.e. of part (i)) during a frequency event is calculated. For example, if the 

population of BESSs is procured to provide the secondary frequency response service to 

the GB power system, its response could be sustained up to 30 minutes. Therefore, it is 

necessary to represent the dynamic behaviour of the aggregated power deviation of the 

BESS population during the event period. Markov-chain, in additions to the motivations 

explained in section 4.4, was previously used to represent dynamic behaviour of the battery 

SoC for electric vehicles batteries [77] or for PV charging-based batteries [77, 78]. Hence, 

a Markov-based model was developed to represent these two parts of the 

dynamic behaviour. 

5.4.1 Modelling the dynamic behaviour of the BESSs population  

A Markov-based state diagram representing the dynamic behaviour of the BESS’s 

population is shown in Figure 5.7, this figure was drawn based on [78]. Each state represents 

one group of the population according to their SoC level. The dynamic transition from/to 

each state was represented by the transition probabilities P1, P2, and P-1, P-2, where P1,2 and 
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P-1,-2 represent the charging and discharging operations, respectively. The probabilities of 

the states to remain at zero SoC and full SoC in Figure 5.7 are K11 and KNN.  

Figure 5.7. State diagram representing the dynamic behaviour of the BESSs 
population according to five levels of SoC (adapted from [78]). 

The state diagram of Figure 5.7 was represented by a 5x5 state transition matrix as 

presented in equation (5.12) since the population of BESSs are divided into five groups 

according to the SoC level. Each state has an initial condition at the moment just before the 

frequency event5. The matrix in equation (5.15) represents initial conditions of the five states, 

where  represents the BESSs population with 0% SoC, and  represents the BESSs 

population with 100% SoC. 

                           (5.12) 

5 For example, the state of ¼_chrg shown in Figure 5.7 represents the group of BESSs 

with 25% SoC, if we assume this group has a capacity equal to 0.1 p.u of the total BESSs 

population. That mean the BESSs with 25% SoC represent 10% of the total capacity of 

BESSs at the moment just before the frequency event.
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Where: 

                                (5.13) 

                               (5.14) 

=                             (5.15)   

5.4.2 Modelling the dynamic switching of BESSs during a frequency event 

The population of BESSs should start responding immediately after a nominal value 

of frequency deviation is achieved. Therefore, when switching ‘OFF’ charging of the 

population of BESSs, the switching probability (P1, P2) shown in Figure 5.7 will be set 

towards 0 to stop the charging. In contrast, the switching probability (P-1, P-2) of the 

population of BESSs will be set towards 1 to activate the discharging if necessary. Hence, 

the representation of the dynamic switching of (P1, P2) and (P-1, P-2) has a gradual transition 

from 0 to 1 during the frequency response provision period. This process is simulating the 

way a population of BESSs respond to a ∆F, which starts from a pre-set value and ends at 

a pre-set value (a and a2 in Figure 5.2). 

A triangle MSF has a gradual transition of its functions between 0 and 1 [136, 147-

149, 155]. Therefore, this MSF was used to represent this gradual transition behaviour of 

the (P1, P2) and (P-1, P-2) between 0 and 1 (see Figure 5.8) similar to Chapter 4. The 

population response starts with ‘a’ value of the first frequency band and ends with ‘a2’ value 

where all BESSs should respond. The MSF can dynamically update the value of the 

switching probabilities (P1, P2) and (P-1, P-2) of the BESSs population using switching rules. 

These switching rules are implemented by the mathematical equations of (5.16) - (5.17). 

The updated values of (P1, P2) and (P-1, P-2) are used to dynamically re-update the state 

transition matrix of equation (5.12). 
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(a) 

(b) 

Figure 5.8. MSFs for the switching of the BESSs population, (a) switching 
probabilities into ‘charging’ state, (b) switching probabilities into ‘discharging’ state. 

                  (5.16)

(5.17) 

After updating the switching probabilities (P1, P2) and (P-1, P-2), the initial condition of 

the five states are dynamically updated during a frequency event; this is done by using 

equation (5.18). 

                    (5.18) 
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Equation (5.19) is used to find the total responsive capacity of the population of 

BESSs after updating (P1, P2) and (P-1, P-2) and the states' initial conditions. Combining 

equations (5.19) and (5.20) results in equation (5.21), where P(1) to P(5) represent the 

updated initial condition of each state. 

                    (5.19) 

Where:   

                        (5.20) 

                        (5.21) 

The matrix ‘C’ is also used to represent the dynamic response of the population of 

BESSs. This is implemented by assigning the value of the matrix’s parameters (C1, C2 ….) 

to either 0 or 1 according to the value of ∆F as shown in Figure 5.2. For example, to force 

the population of BESSs with 75% SoC and 100% SoC to respond during the second 

frequency band, i.e. between ‘a1’ and ‘a2’ (see Figure 5.2), parameters C1, C2, and C3 are 

equal to 0, while C4 and C5 are equal to 1. The power deviation of the BESSs population is 

calculated using equation (5.22), where the controllable BESSs in (5.21) is subtracted from 

the total load ( ). Figure 5.9 shows the flowchart of the proposed control of the population 

of BESSs. Figure 5.9 shows the control design for the negative ∆F bands explained earlier 

only. Similarly, the control design for the positive ∆F bands is implemented. 

                    (5.22) 
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Calculations of Population 
Initial conditions 

Start

∆F≤ (-a) Hz
No End:

No Change

Yes

Run dynamic Representation 
of the BESSs Population
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C2=C3=0; 
C4=C5=1
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No

Dynamic aggregation of the 
BESSs population capacity

Reserve service 
time occurred? End

YesNo

Representing the BESS Controller

Updating the BESSs representation 
according to the value of ∆F

Figure 5.9. Flowchart of modelling process of the proposed control of a population 
of BESSs. 

5.5 Demonstration of the proposed control of BESSs 

The modelling and simulation results of the controllable BESSs are carried out using 

MATLAB® and MATLAB®/SimPowerSystems™. The results are stored as vectors to 

visualise and compare the results. The developed MATLAB code is presented in Appendix 

A5. 
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5.5.1 Simplified GB power system 

The simplified model of the GB’s power system (see Figure 5.10) was used (similar 

to the model in Chapter 4) to assess the performance of the controllable BESSs. This model 

captures the frequency response for different types of generation units. The operating 

generation capacity and the equivalent inertia (M) value were calculated according to the 

official reports from National Grid (the GB system operator).  

Figure 5.10. Simplified GB power system model for frequency control with 
controllable BESSs. 

Figure 5.11. Frequency deviations of the simplified GB model after the loss of 
generation. 
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The large frequency disturbance, equal to 0.03 p.u., which took place in 2008 in the 

GB power system, was simulated [71, 136, 147-149]. The system frequency is shown in 

Figure 5.11.  As shown in Figure 5.11, the frequency deviation was reduced due to the 

response from the population of BESSs through the proposed hierarchical control. The 

larger capacity of aggregated BESSs, the smoother system frequency response during a 

frequency even.   

5.5.2 The South-Est Australian power system 

The 14-machine South-East Australian power system was used to evaluate the 

proposed control scheme (see Figure 4.12 in Chapter 4). This model was used for testing 

new control techniques in a power system; further details were presented in section 2.7.3 

based on [130, 131].  Each group of controllable loads represents an aggregator with 

different size of BESSs. Three different aggregators in different areas are considered as 

shown in Table 5.3 and Figure 5.12. 

Table 5.3. Aggregators and their assumption of BESSs’ population. 

Non-residential 

BESSs (MW)

Residential 

BESSs (MW) Total (MW)

1-Bus 206 (area 2) 30 50 80

2-Bus 312 (area 3) 42 50 92

3-Bus 408 (area 4) 50 60 110

A large frequency disturbance was considered which recently took place on 28th of 

September 2016 in the south Australian power system to evaluate the proposed population 

control. The disturbance started when 123 MW of wind generation were lost followed by 

another loss of 192 MW wind generation after 6 seconds. This loss of approximately 311 

MW generation led to 560 MW interconnector tripping. This event of generation and 

interconnectors loss sequence was modelled and applied to the test system at t=5s, t=11s, 

and t=13s, and the simulation results were captured. This disturbance was simulated as a 
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sudden increase in the load at busbar 405 near generator GPS_4 in area 4 (see Figure 4.12 

in chapter 4). The load case 4 in reference [130, 131] was used as the base case of the 

system load which is approximately 14.5 GW. 

Three case studies are considered to represent three realistic possibilities to 

integrate different aggregators with different capacities, case X1 for the use of one 

aggregator, X2 for two aggregators, and X3 for three aggregators (see Table 5.4). Also, the 

initial condition of BESSs according to the level of SoC is assumed as shown in Table 5.5. 

In addition, the frequency bands parameters, a, a1, and a2 also have an impact on the 

population response. Therefore, three different values were considered for the simulation 

comparison as shown in Table 5.6. 

Table 5.4. Study cases for the South-East Australian power system (similar to the 
cases of capacities presented in Table 4.3). 

Study cases

aggregator at: X1 (MW) X2 (MW) X3 (MW)
1-Bus 206 (area 2) 80 80 80

2-Bus 312 (area 3) 0 0 110

3-Bus 408 (area 4) 0 92 92

Total (MW) 80 172 282

Table 5.5. Assumptions of initial conditions of the population of BESSs according to 
the level of SoC. 

0% SoC

(C1)

25% SoC

(C2)

50% SoC

(C3)

75% SoC

(C4)

100% SoC

(C5)

0.1 0.1 0.1 0.3 0.4

Table 5.6. Different values of frequency bands parameters. 

a a1 a2

Value 1 (Hz) 0.015 0.05 0.1

Value 2 (Hz) 0.015 0.03 0.05

Value 3 (Hz) 0.015 0.02 0.04
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5.5.2.1 Different cases of the aggregation capacity  

In this section, the aggregators’ cases shown in Table 5.4 and value 1 in Table 5.6 are 

considered. Increasing the number of aggregators and the amount of controllable BESSs 

leads to a significant reduction in the frequency deviation and frequency error (see Figure 

5.12). In case of X3, there are 282 MW of controllable BESSs with high SoC levels, which 

reduces the highest frequency deviation from 0.23 Hz to 0.14 Hz for the last disturbance 

sequence at t=13s. 

Figure 5.12. Frequency response at power unit (GPS_4) of busbar 404 using 
different aggregators’ cases in Table 5.4.
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5.5.2.2 Different value of frequency bands  

In this section, different values of ‘a, a1, a2’ (Table 5.6) and case X1 in Table 5.4 (80 

MW) were considered, these values are set by an aggregator and can be updated if 

necessary. Through these values, the BESS response can be controlled according to 

frequency bands and SoC. These values have an impact on the frequency response of the 

population of BESSs; the reduction in these values reduces the frequency deviations and 

vice versa (see Figure 5.13). 

Figure 5.13. Frequency response at power unit of busbar 404 using a different value 
of frequency bands in Table 5.6. 
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5.6 Summary 

A hierarchical control was proposed to aggregate different size of BESSs to provide 

frequency response services. Similar to the water heater controller presented in Chapter 4, 

the BESS controller can respond to either negative or positive frequency deviations. Hence, 

can participate in either high or low-frequency response services. However, the BESS 

controller has 3 different bands for the high frequency while the water heater controller in 

Chapter 4 has one band only. The BESS controller also enables BESS to work 

independently when any failure occurs in the communications with the aggregator. 

 A model of a population of BESSs was developed for the proposed hierarchical 

control to demonstrate the potential to provide frequency response service and to evaluate 

the effective capacity during a frequency event. The model divides the population of BESSs 

into five groups based on their SoC, and dynamically control the BESSs according to their 

SoC levels during the provision of frequency response services. 

The control scheme was demonstrated using various case studies on the 14-

machine South-East Australian power system. The response from an aggregation of 282 

MW of controllable BESSs in the system with a system load base equal to 14.5 GW was 

effective in reducing frequency deviations following a disturbance. 

 The proposed control of BESSs can be applied to (i) Residential and non- residential 

BESSs, (ii) Large-scale BESSs, and (iii) V2G. Therefore, it demonstrates the potential for 

aggregators to offer different frequency response services and it can be used in the 

applications of VPP. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions

6.1.1 The development of a new secondary frequency control 

An optimal secondary frequency control was designed based on fuzzy logic control 

to supplement conventional frequency control in future power systems. The fuzzy-based 

frequency controller was demonstrated on the simplified GB power system and the 10-

machines New England power system. It was concluded that:

The secondary frequency controller provided an improved frequency response with 

reduced error and transient deviation compared to the conventional PI controller. In the 10-

machine New England power system and following a disturbance, the output power of a 

generator with the fuzzy-based frequency controller was improved by 1.7%, which is 6.1

MW more than with the classical PI controller. In the simplified GB power system and 

following a disturbance, the fuzzy-based frequency controller provided high robustness 

against parameter uncertainties.

The fuzzy-based frequency controller offered a broad range of real-time applications 

in future power systems. It can be used by a system operator to supplement local frequency 

control rather than replacing it. It is suitable for the application of MFR in the GB power 

system. In addition, it can be used in the application of LFC/ AGC in future power systems.

6.1.2 Control of a population of water heaters and BESSs for frequency response 

A hierarchical control for a large population of distributed WHs/BESSs was 

proposed, and a WH/BESS controller was designed to provide frequency response services. 

The population of controllable WHs/BESSs was modelled based on the Markov-chain to 

demonstrate the potential for WHs/BESSs aggregators to offer frequency response 
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services. The Markov-based model was demonstrated on the simplified GB power system 

and the South-East Australian power systems by applying real disturbances. It was 

concluded that:  

The structure of the hierarchical control offered higher controllability and accuracy. 

This was based on two decision layers. The aggregator layer receives states and sends a 

command signal to enable/disable the WHs/BESSs control layer. Consequently, it reduces 

the uncertainty associated with the response of the aggregated WHs/BESSs during the 

service. The WHs/BESSs controller provides a response based on the last command signal 

from the aggregator, the value of frequency deviation and the level of water temperature or 

BESS SoC. However, it responds independently in the case of losing communications with 

the aggregator. Therefore, it is not fully centralised nor a fully decentralised method for 

controlling large distributed controllable loads. 

The WHs/BESSs controller was designed based on simple logic gates and logic 

indicators for frequency deviation, level of water temperature and level of BESS SoC. The 

response from WHs is from the highest to lowest water temperature when the frequency 

falls, while the response from BESSs is from the highest to lowest SoC when the frequency 

drops and from the lowest to highest SoC when the frequency rises. Therefore, the 

WHs/BESSs controller reduces the impact on the power system and end-users. The BESS 

controller was designed with six frequency bands and five SoC levels, while the WHs 

controller was designed with four frequency bands and four water temperature levels. 

However, the number and values of frequency bands, water temperature levels and SoC 

levels could be changed according to the aggregator preferences. Therefore, the structure 

of the WHs/BESSs controller offers higher flexibility for the aggregator to assign different 

frequency services. In addition, the WHs/BESSs controller can deal with both high and low-

frequency change. Hence, it can be used to provide primary, secondary, and high-frequency 

response services or to provide steady state frequency regulation. 
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The Markov-based model of a population of controllable WHs/BESSs demonstrated 

the potential for aggregators to offer frequency response services using the simplified GB 

power system and the large South-East Australian power system. The Markov-based model 

evaluated effective capacity during a frequency event in the large South-East Australian 

power system with a 14.5 GW system load base. Aggregation of 172 MW and 280 MW of 

controllable WHs/BESSs improved both the frequency deviation and frequency error 

following disturbances.  

The hierarchical control offered a broad range of applications for the demand side 

response and VPPs in future power systems. It can be used in the aggregation of (i) 

Residential and non-residential water heaters, (ii) Residential and non-residential BESSs, 

(iii) Large-scale BESSs and (iv) V2G as a load. 

6.2 Recommendations for future work  

The control of large distributed loads is an important topic for future power systems. 

This topic was covered in Chapter 4 and Chapter 5 for controlling WHs and BESSs to 

provide frequency response services. However, the availability of controllable devices, such 

as WHs and BESSs, is uncertain due to many reasons. For example, an accurate number 

of devices that are required to respond to a frequency event is not accessible due to 

communication and data problems. Therefore, developing a model based on the Markov 

chain to predict the availability of these devices during a day/week/year by using a realistic 

data could be an important topic. In addition, the level of SoC of a BESS is a variable 

parameter, especially in batteries which are used to compensate the grid-side power supply. 

Therefore, developing a model based on the Markov-chain to study the behaviour of BESS 

SoC and to identify different levels of SoC during different uses and periods is an interesting 

field of research. In addition, the rate of charge/discharge was assumed to be constant in 

this thesis, therefore, using more realistic equation to represent this rate is an interesting 

topic for future work. 
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Integration of more RESs in a power system leads to an increase in the level of new 

oscillation modes. A PSS can be used to damp different types of these modes. However, 

PSS and POD have a real impact on reducing power system oscillations during 

disturbances, such as when a failure occurs in an AC system when it is connected to a DC 

system [122, 123]. Therefore, the coordination between PSSs and POD in future low inertia 

power systems is important. In addition, the PSS allocation on generators is also significant. 

Hence, an interesting research topic could be to study the impact of PSSs’ allocation on 

damping different low-frequency oscillation modes applied to the GB power system.  

The IEEE PSS4B (multi-band PSS) gains with its high value are more aggressive 

and, therefore, more effective in the inter-area frequencies between 0.1 and 1 Hz [102]. 

Moreover, higher PSS gains are required in case of local oscillation mode to achieve a 

desirable performance on a weak grid. However, the high gain has a risk of instability 

margins in the strong grids [102]. Hence, it is necessary to keep this trade-off in control 

limits. Therefore, the integration of adaptive techniques with the multi-band PSS will lead to 

a robust and modern design of PSS. In the case of power systems, such intelligent design 

can be considered as the key solution to RESs’ penetration and the improvement of the 

power systems’ efficiency [156], while the implementation of PMUs and PSSs reduces the 

risk of inter-area oscillation [156-158].  Therefore, studying the integration of modern 

adaptive PSS/POD with the PMUs is an important topic. In addition, discussing the stability 

assessment of the whole work is also an important topic for future work. 
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Appendix 

A3. Design of Fuzzy-based secondary frequency controller 

This section displays some of codes and design in MATLAB program for Chapter 3 

A3.1 Design of Fuzzy Inference System (FIS) using MATLAB/Simulink Fuzzy Toolbox 

Figure A3.1.1. Fuzzy Inference System of Verion I in chapter 2 using MATLAB 
Fuzzy Toolbox. 
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Figure A3.1.2 Deriving Fuzzy Rules in Matlab Fuzzy Toolbox for Version I FIS in 

Chapter 3. 

A3.2 PSO M-file code in Matlab for the optimisation of Classical PID 
controller. 
------------------------------------------------------------------------
close all 
clear all 
clc 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % IPSO parameters 
 popsize = 10; % Population size 
 wmax = 0.9; % Initial weights, 
 wmin = 0.4; % Final weights, 
 CR = 0.65; % Crossover rate 
c1 = 2; % acceleration coefficient

 c2 = 2; % acceleration coefficient 
iter_max = 30; % Maximum iteration number

 minPID = 0; % Minimum gain value 
 maxPID = 30; % Maximum PID gain 
 Vmax = 5; % Maximum velocity of particles 
 Vmin = -5; % Minimum velocity of particles 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Initialize the poputation 
 iter = 0; 
 V = zeros(popsize,3); 
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 PID = maxPID*rand(popsize,3); % Initial population (PID gains) 
 PID = max(PID,minPID); 
 for k=1:popsize 
            P = PID(k,1); 
    I = PID(k,2); 
    D = PID(k,3); 
        sim('PSO_PID') % Run the simulink file "Zeyad.sim" 
        ISE(k,1) = error.signals.values(end); % Fitness alue of each particle 
%     ISE(k,1) = sum(error.signals.values); % Fitness alue of each particle 
    ISE(k,1) = trapz(error.time,error.signals.values); % Fitness alue of each particle 
     clc     
end 
 [minISE,i_best] = min(ISE); % Find the best particleand the best ISE in the current swarm  
 Gbest = PID(i_best,:); % The best particle 
 Pbest = PID; % The best position of each particle so far 
 PbestISE = ISE; % The best experience of each particle so far 
 minISE1 = minISE; 
 Gbest1 = Gbest; 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 for m = 1:iter_max 
    X = PID; 
 iter = iter+1; 
 w = wmax - (wmax-wmin)*iter/iter_max; 
 for i =1:popsize 
        for j = 1:3 
                V(i,j) = w*V(i,j) + c1*rand*( Pbest(i,j) - X(i,j) ) + c1*rand*( Gbest(1,j) - X(i,j) ); 
     end 
    end 
 V = min(Vmax,V); 
V = max(Vmin,V); 
 X = X + V; 
X = max(X,minPID);

X = min(X,maxPID); 
 %%%%%%%%%%%%%% 
 % Implementation of crossover operation 
 [r,c] = find(rand(popsize,3)>CR); 
 for k = 1:length(r) 
        X(r(k),c(k)) = Pbest(r(k),c(k)); 
 end 
 %%%%%%%%%%%%%% 
 PID = X; 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 for k=1:popsize 
        P = PID(k,1); 
    I = PID(k,2); 
    D = PID(k,3); 
        sim('PSO_PID') % Run the simulink file "Project_sim.sim" 
 %     ISE(k,1) = error.signals.values(end); % Fitness alue of each particle 
%      ISE(k,1) = sum(error.signals.values); % Fitness alue of each particle 
    ISE(k,1) = trapz(error.time,error.signals.values); % Fitness alue of each particle 
     clc 
        minISE 
%     Gbest1 
    end 
 %%%%%%%%%%%%%%% 
 for i =1:popsize 
        if ISE(i) < PbestISE 
                PbestISE(i) = ISE(i); 
                Pbest(i,:) = PID(i,:); 
            end 
        end 
 %%%%%%%%%%%%%%% 
 [minISE_s,i_best] = min(ISE); % Find the best particleand the best ISE in the current swarm  
 if minISE_s < minISE 
        minISE = minISE_s; % The best ISE so far 
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        Gbest = PID(i_best,:); % The best particle so far 
 end 
 %%%%%%%%%%%%%%% 
 minISE1 = [ minISE1; minISE ]; 
 Gbest1 = [ Gbest1; Gbest ]; 
%  
% minISE 
% Gbest 
 end 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
 plot(minISE1) 
grid on 
 P= Gbest(1); 
I = Gbest(2); 
D = Gbest(3); 
 figure 
sim('PSO_PID') % Run the simulink file "Project_sim.sim" 
plot(ef.time,ef.signals.values) 
grid on 
 P 
I 
D 
 minISE 
---------------------------------------------------------------------------------------------------------------------------------------------------
---- 

Figure A3.2.1. PSO-online optimization of the PID gains with the load disturbance for 30s 
iteration time. 

A3.3 Impact of Parameters uncertainties in the simplified GB power system. 
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Figure A3.3.1 Frequency response of GB power system with different values of damping 
coefficient D without secondary frequency control. 

Figure A3.3.2 Frequency response of GB power system with different values of system 
inertia coefficient H without secondary frequency control. 
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Figure A3.3.3 Frequency response of GB power system with different values of governor 
time constant Tg without secondary frequency control. 

A4. Control of a Population of Water Heaters 

Figure A4.1. MATLAB design of a population of Water Heaters. 
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Figure A4.2. Dynamic switching of devices to generate the switching 
probabilites. 

A5: Control of a population of BESSs 
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A5.1 The MATLAB code for modeling the switching of controllable BESSs during 
frequency event. 

Figure A5.1. Dynamic switching of devices to generate the switching probabilites of 
controllable BESSs. 
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Figure A5.2. Showing the parameters threee-phase dynamic load with an eternal PQ 
control signal, it was used in Chapter 4 and Chapter 5 for the integration of controllable 

aggregated load. 


