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Abstract 

 
The formation and function of neural networks is a key aspect of normal brain development, 

while a converging body of evidence from human genetic and clinical/preclinical studies 

strongly implicates altered synapse and network function in the aetiology of mental health 

disorders, including autism spectrum disorder (ASD). The advent of induced pluripotent stem 

cells (iPS cells) and protocols to differentiate them into functional neurons provides exciting 

opportunities for modelling human development and disease in vitro, although until recently 

the possibilities for investigating network function in such neurons have been limited. The 

work in this project describes the development of a platform for the analysis of network 

behaviour in iPS cell derived neuron cultures, based upon the use of multi electrode arrays 

(MEAs). The project also looks at the function of neurons derived from ASD patient iPS cells 

with heterozygous deletions of SHANK3, a post-synaptic density protein, mutations of which 

are strongly associated with ASD.  

 

Chapter 3 describes the formation of a pipeline for the analysis of MEA data. |t focuses on 

producing key statistics of basal excitably (e.g. Spike rate, number of bursts) and the 

analysis of synchronised activity states.  

 

Chapter 4 describes the adaptation of a neuron differentiation protocol using astrocyte 

conditioned medium (ACM) and hypoxic (2% O2) incubator environments to increase the 

functional maturity of iPS cell derived neurons. Cells cultured in ACM/2% conditions had 

hyperpolarised resting membrane potentials and increased induced and spontaneous action 

potential activity compared to neurons cultured in standard conditions.  

 

Chapter 5 describes the profiling of spontaneous network-driven activity in iPS cell derived 

neurons. MEA recordings of cultures showed that spontaneous activity changes markedly 

over development: up to 30 days post plating (DPP) activity is uncoordinated; between 30-

40DPP, coordinated activity emerges in the form of synchronised burst firing; activity from 

50DPP is characterised by synchronised oscillating periods of high and low activity each 

lasting > 5 seconds. Coordinated behaviour required both AMPA and NMDA receptor 

function and the interval between more active periods was attenuated by inhibitors of GABAA 

receptors and L-type voltage gated calcium channels, possibly via a common mechanism.  

 



	 iv	

Chapter 6 studies the function of iPS cell derived neurons from ASD patients with deletions 

of SHANK3. Patients neurons were less spontaneously active than control neurons as 

observed with both MEA recordings and calcium imaging, while also showing changes in the 

shape of calcium transients. Analysis of the shape of extracellular spikes from MEA 

recordings revealed a small population of spike shapes, characterised by a ‘double-peak’, 

that were unique to SHANK3 mutant neurons. 

 

This project presents a platform for the recording and analysis of network behaviour in iPS 

cell derived neuron over both development and in disease states. While the focus here has 

been on modelling ASD, the work provides a framework for the modelling of human neuron 

network behaviour in a range on neurodevelopmental disorders and, importantly, as method 

of screening novel therapeutics in a human cell context.        
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(m)EPSC (mini) Excitatory post synaptic current 

4-AP 4-Aminopyridine  

ACM Astrocyte conditioned medium 

aCSF Artificial cerebral spinal fluid 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA Analysis of variance  

APV ((2R)-amino-5-phosphonovaleric acid 

ASD Autism spectrum disorder 

ASDR Array wide detection rate 

BDNF Bone derived neurotrophic factor 

bFGF Basic fibroblast growth factor 

Bic Bicuculline  

BSA Bovine serum albumin 

CI Confidence intervals 

CNQX 6-cyano-7-nitroquinoxaline-2,3-dione 

CNV Copy number variation 

DAPI 4',6-Diamidino-2-Phenylindole, dihydrochloride 

DAPT N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-

butyl ester 

DBSCAN Density-based spatial clustering of applications with noise 

DMEM Dulbecco's Modified Eagle's medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DPBS Dulbecco's phosphate buffered saline 

DPP Days post plating 

EB Embryoid body 

ECF Extra cellular fluid 

EDTA Ethylenediaminetetraacetic acid 

EGF  Epidermal growth factor 

ES cell Embryonic stem cell 
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FBS Foetal bovine serum 

GABA γ-Aminobutyric acid 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hPS cell Human pluripotent stem cell 

iAP Induced action potential 

ICC immunocytochemistry 

iPS cell Induced plutipotent stem cell 

IPSC Inhibitory post synaptic current 

IsI Inter spike interval 

KO Knock out 

LAP Less active period 

LTCC L-type (voltage gated) calcium channel 

LTD Long term depression 

LTP Long term potentiation 

MAD Median absolute deviation 

MAP (interval)  More active period (interval) 

MEA Multi electrode array 

MEF Mouse embryonic fibroblasts 

mGluR Metabotropic glutamate receptor 

MHD Mental health disorder 

MRS MAX rise slope 

NHA Normal human astrocytes 

NMDA N-methyl-D-aspartate 

NPC Neural precursors 

PCA Principle components analysis  

PDL Poly-d-lysine 

PFA Paraformaldehyde  

Picr Pircotoxin 

PMDS Phelan McDermid syndrome 

PSD Post synaptic density 

RI Neuron input resistance 

RNA Ribonucleic acid 

ROI Region of interest 

sAP Spontaneous action potnetial 

SBF Synchronised burst firing 



 vii 

SD Standard deviation 

SEM Standard error of the mean 

SHANK3 SH3 and multiple ankyrin repeat domains 3 

SNV Single nucleotide variation 

Std Standard 

Tau or τ Neuron membrane capacitance 

VGCC Voltage gated calcium channels 

vGlut Vesicular glutamate transporter 

Vrest Neuron resting membrane potential 

WT Wild type 
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1. Introduction 
 

 

 

1.1 Overview 

 

 
Over the last few years technological advances and improvements in methodological processes 

have substantially increased the opportunities for modelling neurological diseases in vitro with 

human pluripotent stem cells (hPS cells). In particular, the use of induced pluripotent stem cells 

(iPS cells) derived from individual patients allows studying the influence of particular genetics to 

disease aetiology while opening up the potential for personalised therapeutics. The advent of 

large-scale genetics studies has provided a wealth of novel insights into the complex genetics of 

several mental health disorders (MHDs), including autism spectrum disorders (ASD). Together 

with iPS cell technologies and protocols to differentiate these cells into neurons, this provides a 

unique opportunity to study the cellular and molecular aspects of ASD in a model human 

system. However, as with other MHDs, converging genetic and experimental evidence strongly 

implicates a role for aberrant synaptic singling and circuit function in ASD. Advances in multi-

electrode array (MEA) technologies have opened up opportunities to study network function in a 

iPS cell model system, which has, until more recently, been limited. However, a key obstacle in 

investigating network function of iPS cell derived neurons is their relative immaturity compared 

to adult or primary rodent neurons, a limitation which must be addressed to observe complex 

network behaviour in vitro.  

 

This chapter provides a background to the use of hPS cells for modelling neuronal function in 

vitro and focuses on methods to improve the immaturity of hPS cell derived neurons. It 

subsequently then provides an overview of ASD and highlights the converging evidence 

implicating altered network function in the disorder. Finally, the chapter offers a background to 

the use of MEAs for studying neuron electrophysiology with an emphasis on the use of MEAs to 

record the activity of hPS cell derived neurons.     
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1.2 Stem cells and neuronal differentiation 

 

1.2.1 Human pluripotent stem cells 

 

The in vitro modelling of human neurons is based upon the use of human pluripotent stem cells 

(hPS cells). For several years this referred solely to human embryonic stem cells (ES cells), 

pluripotent cells derived from the inner cell mass of blastocysts (Thomson et al., 1998). The 

‘stem’ nature of these cells was shown by their ability to differentiate into teratomas 

encompassing cells from all three germ layers and their ability to be self-renew indefinitely in 

vitro (Richards et al., 2003). ES cells have provided a great deal of information about the nature 

of in vitro development and have been the basis for the creation of protocols to differentiate cells 

in to range of fates, including cardiomyocytes (Mummery et al., 2003), hepatocytes (Rambhatla 

et al., 2003), osteoblasts (Sottile et al., 2003) and a range of neuronal fates (see section 1.2.2). 

However, the use of ES cells is not without controversy (Orive et al., 2003). The deviation of the 

inner cell mass firstly requires a source of embryos, most of which are donated following in vitro 

fertilisation; and the collection of the inner cell mass requires destruction of the embryo. Never 

the less, ES cells have remained an important part of cell culture research and continue to be 

used for range of applications, especially as they are still regarded as the ‘gold standard’ hPS 

cells by some researchers.   

 

In 2006-07, a landmark series of studies by a number of groups showed the generation of hPS 

cells derived from adult somatic cells (Takahashi and Yamanaka, 2006; Okita et al., 2007; 

Wernig et al., 2007; Takahashi et al., 2007; Yu et al., 2007). These induced pluripotent stem 

cells (iPS cells) were generated by forced expression of a combination of the pluripotency 

associated transcription factors OCT3/4, SOX2, KLF4, c-MYC, NANOG and LIN28 in fibroblasts 

and produced stem cells which were very similar to ES cells, most importantly by demonstrating 

both self-renewal and differentiation into lineages from all three germ layers. In subsequent 

years the methods to produce iPS cells has continually improved to address some of the 

potential issues associated with the early incarnations. This includes includes the use of non-

integrating methods of gene delivery (Okita et al., 2008; Stadtfeld et al., 2008) , reduction and 

regulation of oncogene expression and methods to increase the efficiency of iPS cell production 

(Huangfu et al., 2008; Luo et al., 2013) . However, despite these improvements, there is still 

some debate over whether iPS cells are as ‘true’ a stem cell as ES cells. In particular, there is 
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some concern over differences in gene expression (Chin et al., 2009; Ghosh et al., 2010) and 

changes at the level of the epigenome. Both ES and iPS cells should possess a ‘reset’ 

epigenetic landscape, however it has been shown that some iPS cell lines show remnants of a 

DNA methylation signature characteristic of the somatic cells from which they were derived (Kim 

et al., 2010; Doi et al., 2009). Furthermore, epigenetic differences have been noted in different 

clones of iPS cells derived from the same pool of somatic cells, suggesting that inappropriate 

methylation may be the result of incomplete reprogramming (Polo et al., 2010). Finally, it has 

also been suggested that sporadic de novo mutations and larger chromosomal alterations occur 

in iPS cells more frequently than ES cells (Hussein et al., 2011; Laurent et al., 2011).  

 

Despite these reservations, the research potential of iPS cells was recognised immediately and 

they have become a routine part of human cell based research. The use of iPS cells from 

healthy individuals has provided a valuable alternative source of ‘WT’ stem cells without much 

of the controversy associated with the creation of ES cells. However, the biggest application of 

iPS cells is their use in disease modelling and especially for those diseases with complex 

genetic aetiologies. As well as being able to derive iPS cells from patients for whom specific 

causative mutations are known, they also allow the comparison between different patient 

derived cell lines with the same disease-implicated mutations, in the context of different genetic 

backgrounds. To enhance the use of iPS cells for disease modelling, technologies have been 

continuously developed to improve their accessibility from an increasing number of patients. 

Specifically, while early methods were based upon the use of fibroblasts as the source cells, 

which requires the collection of a skin biopsy, protocols have been optimised to allow of the 

reprogramming of a range of somatic cells, including keratinocytes (Aasen et al., 2008), blood 

tissues (Loh et al., 2010; Staerk et al., 2010) and renal epithelial cells present in urine samples 

(Zhou et al., 2012). The used of these less invasive cells is of particular interest in the study of 

developmental diseases where cells are ideally sourced from younger patients.  
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1.2.2 Neuronal differentiations and neuron maturity 

 

Although iPS cells can, in theory, be used to model any adult tissue system, perhaps their 

biggest application over the last few years has been in the modelling of neurons for studying 

both human development and disease. Protocols for differentiating stem cells into neurons were 

developed initially with ES cells but have been transferred successfully for use with iPS cells. 

Indeed, to date iPS cells have been used to create a wide array of neuronal subtypes including 

dopaminergic (Kwon et al., 2014), serotonergic (Lu et al., 2016b), medium spiny neurons (Arber 

et al., 2015), hypothalamic neurons (Wang et al., 2015) and GABAergic interneurons (Nicholas 

et al., 2013; Maroof et al., 2013). However, by far the most developed protocols are those used 

to produce ‘forebrain cortical neruons’, which, while encompassing an array of possible neuron 

types, has become a somewhat standard term to describe the production of mostly 

glutamatergic, excitatory neurons of a cortical fate (Muratore et al., 2014; Espuny-Camacho et 

al., 2013; Shi et al., 2012; Chambers et al., 2009). Unless otherwise stated, for the following 

sections ‘hPS cell derived neurons’ refer to neurons of this fate.    

 

The differentiation of neurons from hPS cells is based upon the in vitro modelling of the early 

embryonic environment in such a way as to promote the formation of (neuro)ectoderm, followed 

by neural progenitors and finally terminally differentiated neurons (Figure 1.1). This involves 

mimicking the expression of particular morphogenic signals present in the developing neural 

tube to produce a patterning of cells according to their eventual fate. The various stages of 

development can then be traced by the expression of certain protein markers in the cells. For 

excitatory forebrain neurons, this first requires the production of telencephalic precursors 

expressing FOXG1 and OTX1/2; followed by PAX6 / EMX1/2 positive dorsal telencephalic 

progenitors; and finally determined cortical projection neurons which express a variety of 

proteins, including MAP2, TBR1 and VGLUT1/2 (Watanabe et al., 2005; Rakic, 2009). In 

general, there are two main routes to produce neurons from iPS cells, one based upon the 

formation of 3D embryoid body aggregates (EBs) and another based upon monolayer cultures. 

EB methods were originally developed from protocols used to differentiate neruons from mouse 

ES cells and while they still remain an important part of stem cell culture methods, have perhaps 

been superseded in more routine differentiations by monolayer protocols. These are based 

upon inhibiting SMAD signalling in hPS cells, via two independent routes 
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Figure 1.1 – Differentiation of neurons from human pluripotent stem cells (hPS cells). (A) hPS 
cells are derived from two sources: embryonic stem cells (ES cells) are isolated from the inner cell 
mass of a blastocyst; induced plutipotent stem cells (iPS cells) are derived from adult somatic cells 
(e.g. fibroblasts or keritinatocytes) by reprogramming cells using forced expression of pluripotentcy 
transcription factors, typically OCT3/4, SOX2 and NANOG. hPS cells can self renew in vitro and can 
be used to produce neurons via differentiation protocols. Monolayer protocols to produce cortical 
projection neurons are based upon inducing a neural fate by dual – SMAD signalling inhibition. At 
each stage of the protocol, the fate of the cells can be determined by anlsysi their expression of 
certain patterning markers (orange writing). Produced neurons are routinely described as ‘mature’ if 
they show expression of a number of neuronal and synaptic markers. However, electrophysiologically 
they remain immature compared to cortical mouse neurons (B). A was produced using graphics 
adapted from Mertens et al., 2016. The hPS cell neuron data in B was calculated by taking an 
averages of the statistics presented in Shi et al., 2012, EspunyCamacho et al., 2013 and Bardy et al., 
2015. The mouse data in B was taken from the Cell Types Database @ The Allen Brain Atlas and 
represents data from a typical layer IV pyramidal neuron.   

	 hPS	cell	
neurons	

Mouse	
cortical	
neurons	

Passive	
Vrest	(mV)	 -42.9	 -70	

Input	resistance	(GΩ)	 1.7	 0.2	
Membrane	capacitance	(pF)	 32.9	 80	
Action	potentials	

AP	threshold	(mV)	 -32.1	 -53	
Amplitude	(mV)	 53.4	 93	

Half	–	width	(ms)	 5.2	 0.8	

A	

B	
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(termed dual SMAD inhibition), which, in the presence of pro-neural medium, is sufficient to 

induce a neural fate in a high proportion of stem cells (Chambers et al., 2009; Muratore et al., 

2014).    

 

One of the key outstanding issues surrounding hPS cell derived neurons is that of maturity. 

While almost all protocols and studies describe the end point neurons as mature, this is relative 

in the context of developing hPS cell neurons. In real terms, these neurons are still immature 

when compared to adult human neurons and rodent primary neurons across a number of 

physiological measures. For example, hPS cell neurons rarely have resting membrane 

potentials (Vrest) below -50 mV, compared to around -70 mV for adult glutamatergic cortical 

neurons (Kandel, 2013); possess high input resistances greater than around 500 MΩ, compared 

to under 200 MΩ for cortical pyramidal neurons (input resistance is a key measure of neuronal 

maturity and describes the extent to which cells express functional ion channels; (Allen Brain 

Atlas, 2015; Figure 1.1); and while hPS cell neurons can posses functional NMDA receptors, 

these very rarely contain GluN2A, the subunit expressed in the majority of cortical synapses in 

adult brain (Cull-Candy et al., 2001). The relative immaturity of hPS cells neurons is perhaps not 

a surprise given the nature of culturing procedures and the fact that even an 80-day protocol 

going from stem cells to post mitotic ‘mature’ neurons lasts only around a third of the typical 

human gestation period. Indeed, comparison of hPS cell neuron (derived using a monolayer 

protocol) and human developmental transcriptomes revealed that stem cell neurons most 

closely resembled human neurons from the late first to early second trimester (Brennand et al., 

2014).    

 

Overall, neuronal differentiation protocols are relatively long, taking on average around 8 weeks 

for the development of mature neurons, potentially introducing productivity limitations into any 

planned experiments. Furthermore, many of the earlier protocols in particular showed highly 

variable conversion efficiencies, produced heterogeneous populations of cells and could be 

inconsistent between different cell lines. As such, the attention of many protocol optimisation 

studies has been on on the homogeneity of cultures, the production of purer neuronal 

populations and efforts to improve the timescale of neuron production. This includes using 

combinations of small molecules (Li et al., 2011), heterologous expression of transcription 

factors (Zhang et al., 2013) and the direct conversion of fibroblasts into neurons using 
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transcription factors (Tian et al., 2012; Pfisterer et al., 2011) or microRNAs (Yoo et al., 2011). 

However, although studies usually present results regarding the maturity of neurons, this has 

often primarily been determined by the expression of proteins, for example which mark neuron 

‘maturity’ (e.g. MAP2, NEUN), mark cortical layer fate (e.g. SATB2, CTIP2) or mark the 

development of synapses (e.g. PSD-95, Synaptophysin and GluN1). 

 

It is only more recently where a functional analysis of neurons in terms of their 

electrophysiological properties has become more routine and the optimisation of protocols has 

focused more on physiological maturity. An interesting study explicitly looking at maturity over 

neuronal development using a standard protocol highlighted that while hPS neurons do 

functionally mature over time, this development is slow, variable and ultimately often limited (Prè 

et al., 2014). A number of subsequent studies have developed protocols which have shown 

impressive improvements in hPS cell-neuron maturation. Bardy et al. identified a number of 

compounds present in more standard differentiations basal mediums (almost all of which are 

based upon DMEM/F12 and/or neurobasal) which may impair the development and function of 

physiological neuron activities (Bardy et al., 2015). Consequently, they developed a basal 

medium centred upon replicating the physiological characteristics of aCSF, which was shown to 

improve the functional maturity of hPS cell neurons, including increased induced and 

spontaneous activity, increased synaptic events and reduced input resistance, although this was 

still relatively high (>1 GΩ). Taking a different approach, Telezhkin et al. described a protocol 

based upon the development of a batch of novel media formulations, with a DMEM/F12 base, 

containing a range of small molecules including mitotic inhibitors, the BDNF receptor agonist 

LM22A4, the GSK3β inhibitor CHIR99021 and GABA (Telezhkin et al., 2016). Neurons 

produced with this protocol showed good spontaneous and induced action potential formation, 

relatively hyperpolarised resting membrane potentials and input resistances often below 

800MΩ, all of which appeared within 21 days of the start of differentiations. Finally, Gunhanlar 

et al. recently described the development of relatively simple protocol, based upon DMEM/F12 / 

neurobasal medium, which in their hands produced neurons with impressively hyperpolarised 

resting membrane potentials of < -55 mV, some spontaneous action potentials and 

spontaneous post-synaptic currents (Gunhanlar et al., 2017).  
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While these three studies together present good progress in terms of neuron physiology, it is 

clear that certain properties may be enhanced by the specific optimisation methods used and 

that there is a certain degree of variation seen depending on the source cell lines (Bardy et al., 

2015; Bardy et al., 2016). Furthermore, some of these protocols require non-standard reagents 

and the use of multiple small molecules which may be prohibitive in some research 

circumstances. Instead, there has been some interest in the use of more simple and accessible 

protocol modifications, based upon improving the physiological nature of the culturing system. 

The following sections will focus on two of these protocol manipulations: culturing neurons with 

medium pre-conditioned by primary astrocytes and maintaining developing cultures in hypoxic 

conditions.  
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1.2.3 Co – culturing neurons and astrocytes 

 

 

Over the last few years a strong body of evidence has developed implicating astrocytes in the 

functional maturation of neurons and especially in the development of the synapse (Ullian et al., 

2004; Hama et al., 2004 and reviewed in Clarke and Barres, 2013). At the most basic level, 

astrocytes are essential for neuron survival throughout development in vivo, as they regulate 

both blood flow and metabolic resources (Attwell et al., 2010; Pellerin et al., 2007). At the 

synapse, support can be in the form of physical contacts between astrocytes and developing 

neurons, where local interactions promote synaptogenesis via activation of protein kinase C 

(Hama et al., 2004). Astrocytes also provide support via the secretion of pro-synaptogenesis 

molecules, including those which promote synapse formation (e.g. thrombospondins; Risher 

and Eroglu, 2012 and hevin; Kucukdereli et al., 2011), the activation of ‘silent’ synapses early in 

development via the requirement of functional AMPA receptors (glypicans; Allen et al., 2012); 

and molecules which may regulate functional synapses by the inhibition of synapse formation 

(e.g. SPARC; Kucukdereli et al., 2011). Interestingly, there is also evidence to suggest that 

astrocytes secrete different molecules depending on the type of synapse being formed 

(excitatory/inhibitory; Hughes et al., 2010; Elmariah et al., 2005). Finally, astrocytes are also 

involved in the activity-dependent pruning of synapses, via mechanisms involving phagocytosis 

(Chung et al., 2015).  

 

The role of astrocytes in developing hPS cell neurons is less understood. In hPS cell neural 

differentiations, astrocytes do form natively but the process is delayed such that during early 

neuron development and synaptogenesis, there is few astrocytes present and those that are 

there are likely to be immature (Roybon et al., 2013; Itsykson et al., 2005; Serio et al., 2013). 

Protocols have been specifically developed for the differentiation of astrocytes from hPS cells, 

involving a range of molecules including BMPs (Krencik and Zhang, 2011), CNTF (Shaltouki et 

al., 2013) and the undefined combination of factors present in fetal bovine serum (FBS) 

(Hayashi et al., 2011). However, while some of these have been adapted into neuron 

differentiation protocols to produce a mixed population of cells, it is very hard to control the 

continued growth of astrocytes over that of the post-mitotic neurons. Another approach involves 

co-culturing astrocytes and neurons by introducing exogenous astrocytes, either primary rodent 

or human, into neurons. This method has has shown to increase the maturity of cultures by a 
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number of measures, including promoting more physiological resting membrane potentials, 

increased synapse formation and enhanced spontaneous excitably (Kaczor et al., 2015; Hu et 

al., 2016; Odawara et al., 2014 and reviewed in Livesey et al., 2015). Again however, it can be 

difficult to control the proliferation of astrocytes relative to neurons, and without the use of 

mitotic inhibitors there can be a tendency for astrocytes to overwhelm the culture and form 

astrocyte-only aggregates. Finally, for larger differentiations of neurons the requirement to set 

up co-culture systems may become logistically prohibitive. 

 

Using a different approach, several studies have shown that pre-conditioning neuron 

differentiation medium with human or rodent astrocytes can enhance the development and 

maturation of neuron cultures (Hama et al., 2004; Rushton et al., 2013). In this way, astrocytes 

are cultured in differentiation medium for several days allowing them to secrete the pro-

maturation factors described above (thrombospondins, hevin etc.) and others including GDNF, 

TGFβ and CCL5 (Chang et al., 2003). The conditioned medium (astrocyte conditioned medium; 

ACM), is then used as usual on neuronal cultures, exposing the developing neurons to these 

factors. Of course, this approach does not allow any physical interactions between neurons and 

astrocytes and therefore prevents any potential benefits that contact may provide. However, by 

hopefully exposing neurons to pro-maturation factors, in particular those which promote 

functional synapse formation, ACM aids in the development of hPS cell derived neurons which 

can be easily adapted and scaled to a range of differentiation protocols. 
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1.2.4 Culturing neurons in hypoxic conditions   

 

Typically, all cell cultures including neuron differentiations are incubated at 37ºC in an 

atmosphere of 95% air and 5% CO2, leading to a chamber O2 concentration of around 20%. This 

level of oxygen is highly un-physiological compared to that of mammalian brain tissue and 

especially the developing brain (Erecińska and Silver, 2001; Goda et al., 1997; Silver and 

Erecińska, 1998). Indeed, the average partial pressure of O2 in the rat is between 0.1% and 

5.3%, depending on brain region. The reason for this discrepancy is perhaps partly one of 

protocol routine and partly one of logistics, as differentiating neurons are often cultured in the 

same incubator as stem cells, which do require the higher oxygen levels. Nevertheless, several 

studies dating back a number of years have reported the benefits of reduced oxygen on neuron 

culturing, including on neuron/progenitor survival (Studer et al., 2000; Cheng et al., 2014; 

Brewer and Cotman, 1989) and neuron maturation, dendrite arborisation and synaptogenesis 

(Studer et al., 2000; Liu et al., 2009). While the exact mechanisms for these responses are not 

clear, it has been suggested that the low O2 conditions promote the expression and production 

of neuroprotective and pro-maturation trophic factors, including FGF8 and erythropoietin (Epo; 

(Studer et al., 2000)). FGF8 is most commonly thought of as one of the key morphogens 

involved in the fate determination of midbrain dopaminergic neurons (for a review see Arenas et 

al., 2015) and indeed FGF8 is thought to be essential for the differentiation of stem cell derived 

dopaminergic neurons in vitro (Lim et al., 2015; Barberi et al., 2003). However, there is evidence 

to suggest that FGF8 is also involved in cortical neuron development, after 

prosencephalic/mesencephalic specification. At this point, FGF8 may act to control localised 

cortical populations, acting with EMX2 and PAX6 to control the development of cortical 

progenitors (Grove and Fukuchi-Shimogori, 2003; Rebsam et al., 2002). Epo is the primary 

hormone that regulates the production of red blood cells in bone marrow. Epo and its associated 

receptor are known to be expressed in the developing mammalian brain, although its function 

during this period is not well understood (Yu et al., 2002; Juul et al., 1998). However, several 

studies have shown that Epo has neuroprotective effects on several different neuronal types, 

especially following hypoxia-induced excitotoxicity (Lykissas et al., 2007; Celik et al., 2002; 

Morishita et al., 1997). The mechanism by which Epo acts in this way is again, not well 

understood, however work has shown that multiple signalling pathways could be implicated, 

including those involving PI3-K, ERK1/2 and AKT-1/PKB (Sirén et al., 2001; Chong et al., 2002).  
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Importantly, several studies have reported the improved survival of hPS cell derived neural 

progenitors with hypoxic (or ‘normoxic’; 2.5 – 5% O2) compared to ‘standard’ (20% O2) incubator 

atmospheres (Bilican et al., 2014; Santilli et al., 2010; Stacpoole et al., 2011). Furthermore, 

Bilican et al., also report that neurons cultured in lowered O2 conditions display enhanced 

functional maturation compared to cells in ambient oxygen, as shown by increases in cell 

excitability, cell capacitance and functional excitatory synapse formation.    
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1.3 Autism spectrum disorders 

 

1.3.1 Clinical overview of ASD 

 

Autism spectrum disorder (ASD) represents a group of related heterogeneous developmental 

neurological conditions with onset typically in early childhood. Symptoms are broadly 

characterised into two key domains: social and communicative, including delayed speech 

development, limited vocabulary and an unwillingness to interact with peers; and repetitive and 

restrictive behaviours including limited and recurring routines, uncreative playing and highly 

specific and limited interests. ASD is associated with a range of comorbidities including motor 

deficits (McPartland and Klin, 2006), sleep abnormalities (Malow et al., 2012) and seizures 

(Tuchman and Rapin, 2002), along with other neurological disorders including anxiety (White et 

al., 2009) and ADHD (Reiersen and Todd, 2008). However, the most common comorbidity is 

that of intellectual disability (ID), which is thought to occur in around 30-40% of ASD patients 

(Emerson and Baines, 2010).  

 

ASD affects around 1 in 100 people in the UK, however diagnosis rates are around 4 times 

higher in males than females (Brugha et al., 2009; Baird et al., 2006). The reason for this 

difference is currently unknown but a concept gaining increasing interest is the idea of a female 

protective effect (FPE). Under this model, females are protected from risk of developing ASD by 

an as yet unidentified trait absent in males, while carrying an increased etiological burden than 

even affected males (Werling and Geschwind, 2013; Robinson et al., 2013). While evidence for 

this model remains inconclusive, genetic studies have shown that the incidence of rare 

deleterious mutations (see next section) is higher in female than male ASD patients (Sanders et 

al., 2012; Gilman et al., 2011).  
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1.3.2 Genetic overview of ASD 

 

In common with other mental health disorders (MHDs), the broad aetiology of ASD is thought to 

be a combination of genomic and environmental factors. Studies with families and twins have 

shown that ASD is a highly heritable disorder with concordance rates ranging from 5-14% in 

siblings up to 70-90% in monozygotic twins (Hallmayer et al., 2011; Sandin et al., 2014; Ronald 

and Hoekstra, 2011). Genetic risk in ASD is conferred by a range of different types of variation 

which have unique patterns of inheritance and disease penetrance. Figure 1.2 shows examples 

of the major types of genetic mutations that may contribute to ASD, with their respective 

inheritance patterns. By far the most researched component of ASD genetic risk is that 

conferred by rare and de novo single nucleotide variation (SNVs; Yuen et al., 2016; Neale et al., 

2012; Sanders et al., 2012; De Rubeis et al., 2014b; Iossifov et al., 2014b) and copy number 

variations (CNVs; Levy et al., 2011; Bucan et al., 2009; Szatmari et al., 2007; Sebat et al., 

2007). A large number of studies have shown an enrichment of SNVs and CNVs in ASD 

patients compared with healthy controls, or, in the case of de novo variation, protein disrupting 

mutations identified in the patient but not in either parent (Iossifov et al., 2014a). In some cases, 

individual genes have been identified which harbour strongly ASD associated mutations, 

including CHD8 (Bernier et al., 2014), SCN2A (Weiss et al., 2003), TBR1 (Chuang et al., 2015) 

and GRIN2B (Pan et al., 2015). It should be noted though that due to study sample sizes and 

the rarity of these mutations, no single gene mutation has reached genome-wide significance for 

ASD association.  

 

Rare and de novo deleterious mutations are thought to have high penetrance for ASD – i.e. their 

presence in an individual is likely to be a key aetiological factor in disease development. 

However, across the ASD population, these mutations can explain only a very small amount of 

the genetic risk for disease development. For example, mutations in CHD8 are some of the 

most strongly associated with development of ASD and indeed may even confer a subtype of 

the disorder (Bernier et al., 2014; Barnard et al., 2015). CHD8 mutations therefore have high 

disease penetrance but are estimated to only be present in around 0.21% of the ASD population 

(De Rubeis et al., 2014a). Instead, it is thought that the biggest contributor of genetic risk for 

ASD is inherited common variations (Gaugler et al., 2014; Klei et al., 2012). These are mostly 

non-exonic SNVs with a population wide minor allele frequency of > 0.05, each which may 

contribute a tiny degree of risk for developing ASD (i.e. have low penetrance). However, when 
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many of these mutations are inherited, the risk burden increases and, together with 

environmental influences, contribute to the development of disease. While this polygenic model 

is shared with other MHDs such as schizophrenia and depression (Lee et al., 2013; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), unlike those 

disorders no single loci has reached genome wide significance for ASD association.  

 

The genetic variations which show the highest penetrance for disease are those which are 

known be causative in a range of complex developmental syndromes. These consist of both 

specific exonic point mutations (e.g. Timothy syndrome, CACNA1C; Tuberous sclerosis 

complex, TSC1 & TSC2) and CNVs (e.g. Phelan McDermid syndrome, Velo-cardial facial 

syndrome), which can be both inherited and de novo. While these conditions are rare in the 

ASD population as a whole, they show up to 80% penetrance in individuals (Phelan et al., 2001; 

Splawski et al., 2004). These syndromic disorders are highly heterogeneous both in the 

specifics of their genetics and in the presentation of symptoms, such that patients with differing 

mutations may present with very similar symptoms, while other patients with identical mutations 

may not share identical indications. Furthermore, due the nature of these disorders, a diagnosis 

of ASD can precluded by or difficult to dissociate from other neurological presentations.  
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Figure	1.2	-		Overview	of	the	genetic	variation	identified	in	autism	spectrum	disorder.	The	genetics	of	
autism	spectrum	disorder	(ASD)	is	complex	and	involves	various	methods	of	inheritance	and	types	of	
mutations.	A	number	of	rare	inherited	and	de	novo	mutations	(exonic	single	nucleotide	variations;	SNVs)	
have	been	identified	in	several	genes	including	CHD8,	DYRK1A	and	SCN2A.	Along	with	several	syndromic	
conditions	with	known	causative	mutations	(Phelan-McDermid,	Timothy,	CHARGE	syndromes	etc),	these	
represent	genetic	variation,	with	various	methods	of	inheritance,	which	have	strong	ASD	penetrance	but	
account	for	only	a	very	small	percentage	of	ASD	cases.	In	contrast,	inherited	mutations	in	the	form	of	
common	intronic/intergenic	single	nucleotide	variants	(SNVs)	provide	a	tiny	degree	of	risk	individually,	
but	can	provide	summative	burden	of	risk	when	many	are	inherited	together.	This	low	penetrance	
common	variation	thought	to	explain	around	49%	of	genetic	risk	in	ASD.	Figure	is	adapted	from	one	
appearing	in	DeLaTorreUbieta	et	al.,	2016.											
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1.3.3 Converging evidence of synapse and network dysfunction in ASD 

 

To date, over 800 genes have been implicated to varying degrees in increased risk for ASD, 

including single genes part of CNVs for which associative evidence is available (Abrahams et 

al., 2013). However, recent focus has been on the convergence of these implicated loci on a 

few molecular pathways, namely protein translation (e.g. NF1, MAPK1, RPS6KA3), WNT 

signalling (e.g. PRICKLE1/2, CTNNB1, CHD8) and, importantly, synaptic signalling (e.g. 

SHANKs, SYNGAP1, NRXN1, NLGN1; Figure 1.3A). Together with the genetic evidence, there 

has also been a convergence of evidence from a range of human patient and model sources 

implicating aberrant synaptic signalling and network function in ASD.  

 

Studies in patients have provided a range of evidence implicating aberrant circuit and network 

behaviour and the level of whole brain function. Several EEG studies using event-related 

potentials have reported deficits in the way that children with ASD respond to various audio 

cues, suggesting that there is disturbances in the way that such cues are processed in the brain 

(Gomot et al., 2002; R et al., 2003; Oram Cardy et al., 2005). Using similar approaches, other 

studies have shown that ASD patients have deficits in the dissociation of faces from other 

objects and in the spatiotemporal processing of emotional facial expressions (Akechi et al., 

2010; Wong et al., 2008; Dawson et al., 2002). These findings have been corroborated by fMRI 

studies which have shown that deficits in face- and expression-recognition in ASD are 

associated with aberrant circuit activity involving several brain regions, inducing the fusiform 

gryus and the amygdala (Kleinhans et al., 2011; Dalton et al., 2005). Other brain imaging 

studies have focused on executive functioning and have reported that decreased connectivity of 

cortical inhibition networks may be responsible for alterations to executive processing, which 

may manifest as inflexible cortical processing leading to the repetitive and restrictive behaviours 

often observed in ASD (Hill, 2004; Schmitz et al., 2006; South et al., 2007). Similar studies have 

shown decreased connectivity between language centres and higher processing regions of the 

frontal cortex and in areas associated with the comprehension of sentences (Just et al., 2004; 

Kana et al., 2006). A number of reports have implicated aberrant circuit behaviour involving 

anterior cingulate networks (Mundy, 2003) and orbitofrontal-amygdala connections in deficits 

seen in the self regulation of socio-emotional behaviour (Bachevalier and Loveland, 2006). 

Finally, there is evidence to suggest that ASD can be thought of as a more global disconnection 

disorder caused by irregular neurodevelopmental processes (Geschwind and Levitt, 2007), with 
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recent diffusion tensor imaging studies reporting altered cortical axonal connectivity (Conturo et 

al., 2008; Solso et al., 2016). For reviews of human studies of networks in ASD see Belger et 

al., 2011 and Hernandez et al., 2015.  

 

Human neuropathological studies using post-mortem tissue have also provided evidence of 

altered neural structure is ASD, although it should be noted that these studies can often be 

limited by comorbidities and small sample sizes. Several studies have reported altered numbers 

of neruons, neuron size and positioning of neurons in ASD. These changes have been 

consistently identified in the hippocampus and amygdala (Bauman and Kemper, 1985; 

Lawrence et al., 2010; Raymond et al., 1996; Schumann and Amaral, 2006) but have also been 

reported in several region of the cortex (Courchesne et al., 2011; van Kooten et al., 2008; 

Simms et al., 2009). Altered neuronal morphology including aberrant dendritic arbor formation 

has also been identified in limbic regions and the cortex (Wegiel et al., 2010; Zikopoulos and 

Barbas, 2010; Hutsler and Zhang, 2010), a region which has also showed altered minicolumn 

formation (Casanova et al., 2002; Buxhoeveden et al., 2006). Finally, altered glial structure in 

ASD brains has also been reported, including inappropriate microglia infiltration (Vargas et al., 

2005; Tetreault et al., 2012), which may lead to impaired connectivity (Rodriguez and Kern, 

2011). 

 

Single gene rodent models of ASD have delivered a good body of evidence that implicates 

aberrant synaptic signalling and circuit function in ASD. As with all rodent models of disease 

however, phenotypes have to be viewed in the context of their association to the mutation used 

as the model, rather than directly to the disease itself. This is especially important when 

modelling ASD as genetic rodent models are based upon those genes for which clear 

associations are known. This therefore generally limits ASD rodent modelling to those rare and 

de novo mutations which, while have high disease penetrance, are overall rare in the ASD 

population. Furthermore, models are often used because of the associated behavioural 

phenotypes purported to mimic certain ASD symptoms including impaired social interactions, 

repetitive behaviours and altered communications.  

 

Deficits in neurogenesis and neuronal migration have been reported in a number of genetic 

rodent models including CADPS2 (Sadakata and Furuichi, 2009), CNTNAP2 (Peñagarikano et 

al., 2011), FMR1 (Irwin et al., 2000) and TSC1 (Tsai et al., 2012). All of these models also had 
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neurons with aberrant dendritic arborisation, a feature that was also seen in MECP2 (Jiang et 

al., 2013), PTEN (Kwon et al., 2006) and SHANK2 (Schmeisser et al., 2012) deficient mice. 

SHANK2 mutant mice also had altered synaptic signalling, specifically showing changes to 

NMDA and AMPA receptor signalling and altered excitatory post synaptic potentials 

(Schmeisser et al., 2012; Won et al., 2012). Aberrant synaptic signalling in the form of both 

excitatory and inhibitory post synaptic potentials was a hallmark of SCN1A (Han et al., 2012), 

EXT1 (Irie et al., 2012), NRXN1 (Etherton et al., 2009), NRXN2 (Born et al., 2015) and UBE3A 

(Smith et al., 2011) mutant models, while an overall shift in the E/I balance was reported by a 

number of studies across a range of models (Etherton et al., 2009; Etherton et al., 2011; Smith 

et al., 2011; Won et al., 2012; Schmeisser et al., 2012). Importantly, one of the most common 

findings across rodent studies is impaired LTP, having been reported with NF1 (Molosh et al., 

2014), FMR1 (Irwin et al., 2000), SHANK2 (Schmeisser et al., 2012) and TSC2 (Auerbach et al., 

2011) mutant mice. Together, this evidence strongly supports an important role for altered 

synaptic and network function in ASD, as all of these models are based upon genes for which 

strong genetic associations to ASD exist. It should be noted however that except for the TSC2, 

FMR1 and UBE3A mice (the latter being a duplication), all of these models involved 

homozygous deletions of the gene of interest.   

 

Modelling ASD using iPS cells is an attractive proposition as it allows the potential to study 

cellular and molecular aspects of the disease in a human setting. As well as the possibility of 

studying the disease impact of specific mutations (hetero- or homozygous) in the context of a 

controlled isogenic background, for example by using CRISPR-Cas9 technology with ES or WT 

iPS cells, there is perhaps greater potential in studying the behaviour of neurons derived from 

ASD patient iPS cells. This not only allows studies using cells from patients with identified rare, 

de novo mutations and syndromic ASDs with high penetrance but also from the majority of 

patients where there is no such identified mutations. A number of studies have used these 

approaches to model ASD with hPS cell neurons and have provided molecular and cellular 

evidence in a human context which corroborates some of the rodent findings.  

 

iPS cell derived neurons from Rett syndrome patients with mutations in MECP2 showed 

reduced synapse number, spine density and soma size compared to controls (Marchetto et al., 

2010). Moreover, these neurons also had reduced excitatory and inhibitory PSPs and reduced 

spontaneous activity. Similar dendritic changes and reduced synaptic activities were also 
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reported by two studies using iPS cells derived from Timothy Syndrome patients with gain-of-

function mutations in CACNA1C (Paşca et al., 2011; Krey et al., 2013), while a striking reduction 

in neuron process formation was found in neurons derived from Fraglie X patients with 

trinucleotide expansions in FMR1 (Sheridan et al., 2011). Finally, an interesting study using iPS 

cells from patients with idiopathic ASD reported altered neurogenesis, changes in synaptic 

signalling and changes to the number of GABAergic interneurons (Mariani et al., 2015).  
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Figure	1.3	-		The	role	of	synaptic	proteins	and	SHANK3	in	ASD.	Converging	genetic	evidence	strongly	
implicates	synaptic	dysfunction	in	the	aetiology	of	ASD.	While	most	genetic	risk	for	ASD	is	conferred	by	
common	variation,	many	of	the	rare	and	de	novo	mutations	with	high	penetrance	for	ASD	development	
are	found	in	synaptic	proteins	(A).	These	include	proteins	involved	in	synapse	formation	(NRXN,	NLGN),	
NMDA	receptors	(GRIN2B),	L-type	voltage-gated	calcium	channels	(CANCA1C),	voltage-gated	sodium	
channels	(SCN1A),	synaptic	translation	(UBE3A)	and	post-synaptic	density	scaffolding	(SHANKs).	
Mutations	in	SHANK3	are	some	of	the	most	strongly	associated	with	ASD.	SHANK3	is	a	key	scaffolding	
protein	at	the	excitatory	synapse,	involved	in	linking	glutamate	receptors	to	the	actin	cytoskeleton	via	
multiple	functional	domains	(B).	SHANK3	lies	at	the	distal	end	of	chromosome	22	and	is	one	of	the	key	
genes	deleted	in	most	cases	of	Phelan	McDermid	Syndrome	(PMDS;	also	called	22q13.3	deletion	
syndrome)	which	is	the	syndrome	with	the	highest	penetrance	for	ASD	(C).	SHANK3	also	harbours	several	
point	mutations	associated	with	increased	risk	for	ASD	development,	several	of	which	are	within	the	
functional	domains.	Two	isoforms	of	SHANK3	have	been	confirmed	in	humans	but	the	presence	of	
several	intragenic	promoters	suggests	that	there	could	be	several	more,	possibly	with	as	yet	unknown	
unique	functions.	A	is	adapted	from	de	la	Torre	Ubieta	et	al.,	2016;	B	is	adapted	from	Kreienkamp,	2002;	
C	is	adapted	from	Jiang	et	al.,	2013.	
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1.3.4 SHANK3 and ASD 

 

One of the implicated genes most commonly modelled is SH3 and multiple ankyrin repeat 

domains 3 (SHANK3). Mutations involving SHANK3 are, except for FMRP (mutations in which 

cause Fragile X syndrome), the most strongly associated with development of ASD. Rare and 

de novo deleterious SNVs in SHANK3 have been identified in ASD patients (Waga et al., 2011; 

Moessner et al., 2007; Durand et al., 2012; Boccuto et al., 2013; Gauthier et al., 2009) and 

small CNVs, (both deletions and duplications) have been associated with sub-types of ASD 

(Levy et al., 2011; Okamoto et al., 2007; Durand et al., 2007). Importantly, heterozygous 

deletions of SHANK3 are thought to be the key aetiological factor in the majority of cases of 

Phelan-McDermid syndrome (Phelan and McDermid, 2012).  

 

Phelan-McDermid syndrome (PMDS; also known as 22q13.3 deletion syndrome) is a complex 

developmental disorder characterised symptomatically by neonatal hypotonia, delayed speech, 

moderate to severe developmental delay, ASD or autistic traits, dysmorphias and, in rare cases, 

seizures (Phelan and McDermid, 2012). The genetics of PMDS is also complex: in ∼80-85% of 

patients it is caused by a de novo deletion of chromosome 22 (around 22q13.3) but the exact 

location and size of these mutations varies considerably, such that deletions have been 

observed that range from 150 kb to >8.5 Mb (Wilson et al., 2003). Moreover, while simple 

deletions are most common, PMDS is also caused by translocations and the formation of ring 

chromosomes (MacLean et al., 2000). Around 90 genes have been implicated in deletions 

associated with PMDS but by far the most commonly involved is SHANK3 – indeed, PMDS 

diagnosis have been given to patients with deletions that only effect the SHANK3 gene (Leblond 

et al., 2014). It should be noted however that there is still no consensus as to whether the 

involvement of SHANK3 is required for PMDS diagnosis (Phelan et al., 2015; Disciglio et al., 

2014). Importantly, while PMDS is thought to account for < 1% of ASD cases, SHANK3 

associated PMDS is the genetic alteration which has the strongest penetrance for ASD, with 

around 80% of SHANK3 PMDS individuals having an ASD diagnosis.              
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SHANK3 is a member of the SHANK family of post-synaptic density scaffolding proteins. The 

SHANK3 gene has 22 exons which code for a multi-domain protein of around 184 kDa. 

Alternative splicing produces two confirmed functional isoforms in humans, although the 

presence of several intragenic promoters allows the the prediction of up to ten (Wang et al., 

2014). The key functional domains include a region of ankyrin repeats, an SH3 region, a PDZ 

domain, a homer binding region, an actin binding region and a SAM domain (Figure 1.3B&C). In 

humans, SHANK3 is strongly expressed in the heart, lungs, spleen and the brain, where is it 

expressed almost universally, with an enrichment of expression in the hippocampus (Uhlén et 

al., 2015). SHANK3 expression is low in early human development, progressively increases 

throughout gestation and reaches adult levels around birth (Miller et al., 2014). In rodents, the 

pattern of regional and developmental expression has been shown to vary between isoforms, 

raising the prospect of isoform specific functions (Lim et al., 1999).  

 

SHANK3 is localised to the PSD of glutamatergic excitatory neurons, where it acts as a key 

scaffolding molecule linking glutamatergic signalling complexes to the underlying actin 

cytoskeleton via its various functional domains (Figure 1.3B). The six ankyrin repeat domain has 

been shown to interact with alpha II-spectrin (SPTAN1), which may in turn be involved in actin 

cross-linking (Böckers et al., 2001). The PZD domain is the key region involved in the binding to 

the NMDAR complex, where it interacts with GKAP1, which in turn forms associations with the 

NMDAR-linked PSD95 (Naisbitt et al., 1999). Interestingly, the PDZ region has also been shown 

to directly interact with the GluR1 subunit of AMPA receptors (Uchino et al., 2006). SHANK3 

also interacts with mGLuR receptors via homer proteins, which bind to the eponymous domain 

of the protein (Tu et al., 1999; Hayashi et al., 2009). Directly next to this region is a domain 

which binds to cortactin, which acts as the primary link between SHANK3 (and indeed the 

‘upper’ PSD elements) to the cytoskeleton (Naisbitt et al., 1999). Finally, the SAM domain has 

been shown to bind to other SHANK3 molecules in the formation of protein oligomers and is 

also known to be involved in the correct assembly and localisation of the protein to the PSD 

(Baron et al., 2006).        
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1.3.5 SHANK3 as a model of ASD 

 

The strong genetic evidence implicating various risk mutations together with the key role of the 

protein at the synapse has meant that SHANK3 mutant rodents have been one of the most 

studied ASD models. In fact, it is probably more accurate to say that these are primarily models 

of SHANK3 – associated PMDS, as they almost all involve deletions of at least part of the gene. 

Moreover, homozygous SHANK3 KOs are viable and, as with the other ASD models previously 

described, is the approach taken by several studies meaning that phenotypes must, in some 

cases, be viewed in the context of absent SHANK3 expression. Both hetero- and homozygous 

SHANK3 models have however provided evidence for ASD-like behavioural phenotypes in 

mice, including reduced social interactions (Bozdagi et al., 2010; Zhou et al., 2016), alterations 

in ultrasonic vocalisations (Wang et al., 2011; Yang et al., 2012), an increase in repetitive 

behaviours (Peça et al., 2011; Wang et al., 2011) and impaired hippocampal–dependant 

learning (Bozdagi et al., 2010; Jaramillo et al., 2016; Kouser et al., 2013). While reported 

behaviours vary between these studies, an interesting common finding is an increase in 

repetitive self grooming, which in some cases is self-injurious (Jaramillo et al., 2016; Yang et al., 

2012; Wang et al., 2011; Bozdagi et al., 2010; Peça et al., 2011). Of course, as with all rodent 

models, the extent to which these behaviours are representative of human ASD symptoms is 

worth consideration. However, it is noticeable that very similar if not identical mutations of 

SHANK3 confer varying phenotypes in mice in a manner not dissimilar to the heterogeneity 

seen in the human condition.   

 

SHANK3 KO mice also recapitulate several of the cellular and molecular phenotypes seen with 

other ASD genetic models. SHANK KO mice show changes to dendritic density, reduced spine 

formation, including reduction to activity-dependent spine plasticity (Wang et al., 2011), (Peça et 

al., 2011; Hung et al., 2008; Durand et al., 2012) and also a reduction in the thickness of the the 

PSD (Wang et al., 2011). Many studies have shown altered excitatory synaptic signalling, 

including changes to mEPSC amplitudes and frequencies (Bozdagi et al., 2010), and reduced 

AMPA and NMDA signalling (Wang et al., 2011; Yang et al., 2012; Jaramillo et al., 2016) . 

NMDA hypo-function has also been identified in a rat in vitro model using SHANK3 knock-down 

(Duffney et al., 2013). Several studies also report changes in the expression of other PSD 

proteins, including Homer1b/c, GKAP, PSD93, PSD95, GluA1/2 (AMPARs) and GluN2A/B 

(NMDARs) (Bozdagi et al., 2010; Wang et al., 2011; Peça et al., 2011; Jaramillo et al., 2016); 
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although the region and level of change differs considerably throughout the reports. 

Interestingly, SHANK2 expression (a related key PSD scaffolding protein) was shown to be 

increased in a full SHANK KO model, providing the possibility of a degree of compensation 

(Schmeisser et al., 2012). Importantly, another consistent finding from these mouse studies has 

been the reduction in hippocampal LTP across a range of plasticity protocols (Kouser et al., 

2013; Jaramillo et al., 2016; Bozdagi et al., 2010), strongly suggesting that these mice may 

have deficits in excitatory network signalling. Indeed, it has also been shown that alterations to 

activity dependant signalling mechanisms in development may lead to aberrant cortical 

connectivity. Moreover, there is good evidence to suggest that loss of SHANK3 causes an 

increase in the excitatory/inhibitory balance in the cortex, possibly due to developmental 

changes to interneuron maturation and function. Importantly, a recent study involving 

dissociated primary cortical neurons cultured on and recorded using multi electrode arrays 

(MEAs) showed altered network-driven firing patterns in neurons from SHANK3 KO mice, which 

relied on both excitatory and inhibitory signalling (Lu et al., 2016a; see section 1.4.3).  

 

To date there have been two full reports on studies involving neurons derived from iPS cells 

with SHANK3 haploinsufficiency. The first is currently the only study to use neurons derived 

from iPS cells from PMDS patients (diagnosed with ASD) and found several phenotypes which 

corresponded well with rodent studies. PMDS neurons were produced in few numbers than 

control neurons, with remaining neurons showing reduced expression of AMPA and NMDA 

receptors, increased cell input resistance, increased evoked excitability (action potentials), and 

decreased AMPA and NMDA dependent EPSCs (Shcheglovitov et al., 2013). The deficits in 

excitatory neurotransmission could be rescued with with both SHANK3 overexpression and 

IGF1 treatment. The second study introduced heterozygous conditional mutations of SHANK3 

into ES cells and produced neurons which showed reduced dendritic arborisation, increase 

input resistance, increased evoked excitability, decreased spontaneous excitability, a reduction 

in excitatory EPSCs, and decreased amplitude of mEPSCs (Yi et al., 2016). While this second 

report does not use ASD patient cells, it is important as it corroborates several of the findings 

from the Shcheglovitov study, supporting the suggestion that many of the phenotypes seen in 

PMDS are caused by a reduction of SHANK3.     

 

 

 



1. Introduction 
 

 27 

1.4 Studying networks in vitro and multi electrode arrays 

 

      

1.4.1 Studying neural networks in vitro 

 

In vitro studies of neural networks using patch clamping methods, such as those described in 

section 1.3.3, are limited by the number of neurons that can be patched simultaneously. While 

there have been studies reporting the patching of eight cells concurrently, realistically only up to 

four is probably routine for most research groups. Furthermore, in rodent slice work the 

probability of patching only two synoptically connected cells, while variable depending on brain 

regions, is unlikely to be be greater than 50% (Debanne et al., 2008). These probabilities are 

decreased further for dissociated primary neurons although it should be noted that dual-pipette 

plasticity protocols have been accomplished successfully in dissociated hippocampal cultures 

(Molnár et al., 2011). To date, there have been no reports of multiple pipette patch clamping or 

successful induction of LTP/LTD in hPS cell derived neurons. Finally, patch clamp based 

studies of network interactions in cultures are also limited by the stability of individual recordings 

and the fact that the same cultures cannot be used multiple times, meaning that developmental 

experiments required several different   

 

Over the last few years, the use of multi electrode arrays (MEAs) for studying neuronal network 

in vitro has gained a significant amount of interest. MEAs are actually not a new technology, 

having been first developed in the 1970’s and 1980’s to record extracellular field potentials from 

invertebrate neurons and mammalian heart and CNS tissue (Thomas et al., 1972; Gross et al., 

1982; Regehr et al., 1989). However, it is only more recently with the advent of more accessible 

and user friendly systems, increases in computing power and advances in analysis techniques 

that the technique has been more routinely exploited. MEA systems are based upon the 

culturing of neurons (or other excitable tissues) directly on or within a panel of substrate-

embedded electrodes. In general, MEAs record the local extracellular ionic movements 

associated with neuron activity, although there have been a number of methods developed 

which allows the engulfment of protruding electrodes by neurons, providing, to various degrees 

intracellular-like recordings (Duan et al., 2011; Robinson et al., 2012; Hai et al., 2009). For the 

purposes of this project, the following sections will focus only on planar based MEA systems 
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which are by far the most widely used and are the only format which currently allows reliable 

and stable long-term (> 1 week) recordings of mammalian neuron populations.  

 

1.4.2 Overview of MEAs 

 

Planar MEAs have become the method of choice largely down to the ease of which neurons can 

be cultured on them without drastic changes to culturing protocols. Typically, flat inert-metal 

electrodes (around 50 – 200) are embedded within a glass or plastic culturing surface allowing 

neurons to be cultured directly above with the aid of standard cell coatings (e.g. poly-d-

lysine/lammin). Figure 1.4A shows a typical single MEA with 60 titanium electrodes embedded 

within a glass culturing surface. As mentioned, MEAs record neuronal activity by detecting the 

extracellular potentials caused by localised changes in ionic concentrations. The properties of 

MEA recordings therefore differ to patch-clamp recordings in a number of ways. Figure 1.4B 

presents schematic diagrams showing the equivalent electrical circuits for the standard whole-

cell patch clamping technique and for planar MEA recordings. In whole cell patch clamping, a 

tiny region of neuron membrane is disrupted, after formation of a high-resistance seal, leading 

the intracellular fluid of the cell to become in direct contact with the pipette solution and 

therefore an electrode. A simple series circuit of resistors is established comprising the 

resistance of the pipette (Rpipette), the resistance of the patch (more strictly, the access to the 

cell; Raccess) and the resistance of the neuronal membrane (Rm). Providing that the leak (seal) 

resistance is high (Rleak), this circuit therefore allows full amplitude detection of currents flowing 

through the neuron membrane as Rm is much greater than the combined resistance of Rpipette 

and Raccess. For MEAs, the neuron-electrode interface is more complex and consists of three 

elements: a neuron with multiple compartmentalised membranes, including one at the neuron-

electrode junction, each with individual parallel RC circuits (simplified to two compartments in 

Figure 1.4B); a cleft comprising of the gap between the neuron and the electrode, filled with 

extracellular fluid or culture medium; and the embedded electrode with its own resistance and 

capacitance. Action potentials in neurons cause localised extracellular conductances which 

causes fractional differences in the potentials at each membrane compartment. A voltage is 

created between the membrane junction and the non-junctional membrane which is directly 

regulated by a resistance formed by the fluid containing cleft (Rseal). As such, the degree to 

which these voltages are successfully detected is largely due to the value of Rseal, which 
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practically is determined by the quality of the adherence of the neuron to the 

electrode/substrate. 

 

The consequence of the differences described above is that while patch-clamping provides a full 

scale recording of changes in cell currents, MEA recordings are severely limited in their 

amplitude resolution, such that an action potential recorded with patch clamping will be detected 

by MEAs with an amplitude of, at best, around 100x less (Spira and Hai, 2013). Moreover, MEA 

recordings are not able to detect sub-threshold events, meaning that without pharmacological 

interventions, they cannot provide any information about the nature of any produced action 

potentials (Figure 1.4C). While these limitations of MEA recordings should be acknowledged, 

they perhaps allow the benefits of MEAs to be utilised more effectively. Specifically, unlike 

patch-clamping, MEAs allow the simultaneous recording of action potentials from large 

populations of neurons, which in turn can provide information surrounding possible networked 

behaviour; allow recordings of the same cells over an extended period of time; and provide the 

potential for simplified large scale screening of pharmacological agents. 
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Figure	1.4	–	Using	Multi	electrode	arrays	(MEAs)	for	neuron	electrophysiology.	Planar	MEAs	have	a	grid	
of	electrodes	embedded	into	a	culturing	surface,	onto	which	neurons	can	be	attached.	In	A,	a	grid	of	59	
titanium	electrodes,	each	with	a	diameter	of	20	µm,	spaced	200	µm	apart	are	integrated	into	a	glass	
culturing	surface.	The	red	inset	highlights	the	arrangement	of	the	electrodes.	Scale	bar		=	400	µm.	MEAs	
record	neuron	activity	as	extracellular	potentials,	in	contrast	to	patch	clamp	techniques	which	record	
intracellular	ionic	changes.	As	such,	the	electronics	involved	in	the	recording	methods	differ	substantially.	
B	shows	schematic	diagrams	for	the	equivalent	circuits	for	the	whole-cell	method	of	patch	clamping	and	
planar	MEAs.	In	patch	clamping,	the	intracellular	fluid	of	the	cell	is	in	direct	contact	with	the	pipette	
solution	and	an	electrode.	A	series	circuit	forms	comprising	the	resistance	of	the	pipette	(Rpipette),	the	
resistance	of	the	patch	(Raccess)	and	the	resistance	of	the	neuronal	membrane	(Rm).	A	high	seal	resistance	
(Rleak)	allows	full	amplitude	detection	of	whole-cell	currents	as	Rm	>	Rpipette	+	Raccess.	In	MEA	recordings,	the	
neuron-electrode	interface	consists	of		a	neuron	with	several	compartmentalised	membranes,	including	
one	at	the	neuron-electrode	junction,	each	with	individual	RC	circuits	(simplified	here	to	two	
compartments);	an	extracellular	fluid	filled	cleft	comprising	of	the	gap	between	the	neuron	and	the	
electrode;	and	an	electrode	with	its	own	RC	circuit	.	Localised	extracellular	conductances	cause	fractional	
differences	in	the	potentials	at	each	membrane	compartment,	which	creates	a	voltage	between	the	
membrane	junction	and	the	non-junctional	membrane.	The	size	of	this	voltage	is	directly	related	to	the	
resistance	formed	by	the	fluid	containing	cleft	(Rseal).	As	a	result	of	the	difference	in	recording	methods,	
MEAs	are	limited	in	their	ability	to	record	sub-threshold	events	and	detect	voltage	changes	with	around	
100x	less	resolution	(C).	Unlike	patch-clamping,	MEAs	cannot	be	used	to	determine	the	source	of	action	
potentials	(excitatory	innervations,	rebound	spikes	etc.).	In	A,	the	full	MEA	image	is	take	from	Multi	
Channel	Systems;	In	B,	the	patch	clamp	circuit	is	adapted	from	Molleman,	2003;	the	MEA	circuit	in	B	and	
C	is	adapted	from	Spira	et	al.,	2013.					
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1.4.3 MEAs for studying network function in vitro 

 

In recent years, MEAs have been used to study a range of in vitro models of both 

developmental and disease states. Rodent studies using acute slices were the some of the first 

to show that network behaviours could be observed using MEAs (Maeda et al., 1995). This 

behaviour manifested as coordinated high-frequency bursts which, in some cases, could be 

traced to a particular layer of the cortex (Sanchez-Vives and McCormick, 2000). This 

synchronised behaviour was extended further in a more recent slice model of epilepsy which 

reported extended coordinated firing of neurons in response to 4-AP application (Grosser et al., 

2014). Using a similar approach, a highly technical study showed that similar coordinated inter-

ictal like discharges could be induced in acute hippocampal slices from tissue resected from 

patients with temporal lobe epilepsy (Hsiao et al., 2014). Several studies have reported 

observations of network like behaviour in dissociated rodent neurons. While in some studies this 

behaviour is limited to short, culture-wide synchronised burst firing (SBF; Chiappalone et al., 

2003; Raichman and Ben-Jacob, 2008), other studies have shown the establishment of more 

complex network driven behaviour in the form of slow, culture wide oscillations comprising 

periods of high activity and low activity, each lasting tens of seconds (Wagenaar et al., 2006; 

Sun et al., 2010; Mok et al., 2012; Lu et al., 2016a). The establishment of such behaviour is 

likely to be driven by the balance between excitatory and inhibitory neuronal activity: while 

excitatory transmission forms the majority of connections, synchronised firing is regulated by 

feedback mechanisms acting via GABAergic interneurons. Indeed, it has been shown that the 

dynamics between these oscillatory states can be regulated by changing the ratio of 

interneurons present in primary cultures (Chen and Dzakpasu, 2010).  

 

More recently, a number of studies have built upon the work reviewed above to use MEAs to 

investigate networked behaviour in rodent models of ASD. The first of these explored 

spontaneous network activity in hippocampal neurons from mice harbouring expanded 

trinucleodtide repeats in FMR1 (FMRP) as a model of fragile X syndrome (Cao et al., 2012). It 

reported that mutant neurons showed hyper-excitation and hyper-synchronisation caused by an 

imbalance in excitatory/inhibitory signalling, possibly by a mechanisms involving interneuron 

mGLuR1/5 receptors. A second study found strikingly similar phenotypes in a mouse model of 

Tuberous Sclerosis Complex (TSC), where mutant hippocampal neurons showed an m-TOR 

signalling dependant increase in spontaneous SBF (Bateup et al., 2013). This again was 
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attributed to an increase in the E/I balance, driven by a reduction in the amplitude and frequency 

of inhibitory PSCs. It should be noted that this study was performed with homozygous Tsc1 KO 

mice. Finally, an important recent MEA study evaluated the network behaviour of cortical 

neurons dissociated from mice with homozygous deletions of Shank3 (Lu et al., 2016a). This 

reported that as well as mutant neurons showing reduced basal rates of spontaneous activity, 

they also showed alterations in slow, synchronised culture wide oscillations, with both the period 

of high activity (More Active Period; MAP) and the interval between these periods (MAP interval) 

attenuated compared to WT neruons. These phenotypes could be rescued back to WT only by 

using a combination of AMPAR and GABAAR positive modulators, strongly suggesting 

impairment to both inhibitory and excitatory network signalling.  

 

The three studies reviewed above are important as they highlight the clear potential for 

investigating network behaviour in ASD models using MEAs. They also highlight the potential 

for using MEAs to study hPS cell models. While, as previously described, there are alternatives 

to MEAs to investigate circuit behaviour in rodent models, except in very rare cases there is no 

access to ‘intact’ human neural tissues which would allow similar experiments. Therefore, the 

application of hPS cell derived neurons, especially those derived from patient iPS cells, together 

with MEAs provide exciting opportunities to investigate aspects of neural behaviour which would 

otherwise be unattainable. However, to date only a small number of studies have investigated 

hPS cell activity using MEAs. The first such study reported that hES cell derived neurons 

developed spontaneous activity and fired high frequency bursts which were sensitive to AMPA 

and NMDA receptor inhibition (Heikkilä et al., 2009). However, coordinated activity was rare and 

limited to sporadic, short burst firing. In the following years a number of studies using similar 

approaches reported improved spontaneous activity which matured over development (Ylä-

Outinen et al., 2010; Kapucu et al., 2012; Odawara et al., 2014; Amin et al., 2016). Importantly, 

these studies highlighted that, later in development, much of this activity was driven by AMPA 

and NMDA synaptic activity. It was only in 2016 that a study showed consistent culture-wide 

synchronised firing in iPS cell derived neurons which was sensitive to AMPA inhibition 

(Odawara et al., 2016). However, this behaviour took over 20 weeks to develop and was limited 

to SBF lasting no more than 2 seconds. A such, to date there have been no reports of the more 

complex oscillatory network behaviour seen in rodent studies having been observed in hPS cell 

derived neuron cultures. This can possibly be partly attributed to the the immaturity of the 

neurons in the culture – indeed, in all of the studies above, differentiation protocols were largely 
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standard. It therefore remains to be determined whether increasing the maturity of the neurons 

produced could promote the development of more complex network patterns detected in hPS 

cell MEA cultures. Finally, to date there have been no studies investigating hPS cell ASD model 

function using an MEA approach.        
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1.5 Summary 

 

The use of hPS cells and, in particular, iPS cells provide unique opportunities to study the 

function of human neurons in development and disease states. However, while protocols to 

differentiate hPS cells into neurons have improved over the last few years to allow more rapid 

and efficient neuron production, it is only more recently that focus has shifted on to the 

physiological maturity of hPS cell derived neurons, which, compared to adult neurons, remains 

immature. While a number of more recent studies have described protocols which show good 

improvements in a number of electrophysiological properties, these were, in general, based 

upon the use of non-standard mediums or multiple small molecules. Instead, a body of evidence 

over number of years supports a role of astrocyte co-culture and hypoxic incubator atmospheres 

in neuron maturation, two relatively simple physiological protocol manipulation which, in theory, 

can be adapted to arrange of differentiation methods.   

 

Recent genetics studies have highlighted the strong role of a range of inherited and de novo 

variations have on increased risk for the development of ASD, a group of common related 

neurodevelopmental conditions. Importantly, many of the genes which harbour these mutations 

are those that produce proteins with functions at the excitatory post-synaptic density. One of the 

genes most strongly associated with ASD is SHANK3, which codes for a key PSD scaffolding 

protein involved in linking glutamate receptors with the actin cytoskeleton. This genetic evidence 

together with that from human and model studies strongly implicates impaired synaptic 

signalling and aberrant network function in ASD aetiology.  

 

While several methods exist for the observation of circuit behaviour in rodent models, there is 

less opportunities to study similar function in hPS cell derived neurons. The advent of more 

user-friendly MEA systems has provided an opportunity for the long-term culturing and 

recording of hPS cell derived neuron activity using mostly routine protocols. However, while 

MEA studies with dissociated rodent neurons show a wide and complex array of single unit and 

coordinated network activity, to date similar activity in hPS cell neurons has not been observed, 

perhaps largely owing to the maturity of the neurons used in MEA cultures. Finally, using an 

MEA approach to investigate network function in a iPS cell model of ASD has not been 

reported.         



1. Introduction 
 

 36 

1.6 Project aims 

 

Based upon the work reviewed above, the overall objective of this project is to develop a 

platform for the investigation of network behaviour in iPS cell derived neurons over both 

development and in an in vitro model of ASD. To achieve this, the project has the following four 

key aims:  

 

1. To optimise a neuronal differentiation protocol to increase the physiological maturity of 

iPS cell derived neurons. This will be based upon the use of astrocyte-conditioned 

medium (ACM) and hypoxic culturing environments to develop a protocol that can be 

adapted for a range of applications.  

2. To develop a pipeline for the analysis of data from MEA experiments. This will focus on 

the analysis of both basal excitability and network driven characteristics 

3. To establish an in vitro platform for the observation and recording of network driven 

behaviour in iPS cell derived neurons. This will be based upon the use of planar MEAs 

and will build upon the work of the previous aims to provide a reliable method of 

monitoring the change in activity across development.  

4. To investigate the network behaviour of iPS cell derived neurons from ASD patients with 

heterozygous deletions of SHANK3. This will involve the use of the developed MEA 

platform to monitor such activity over neuronal development and will be supported by 

other functional assessments.   
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2. Materials and methods 

 
 

2.1. Plasticware and consumables 

 

Item Supplier Catalogue 
number 

Cell culture treated multiwell plates 

Thermofisher (Nunc) 

 
4 well 176740 
6 well 140675 

12 well 150628 
24 well 142475 

Polypropylene centrifuge tubes (sterile) 
Thermofisher (Fisherbrand) 

 
15 ml 14-959-70C 
50 ml 06-443-19 

1.5 ml Polypropylene microcentrifuge tubes  Thermofisher 11569914 
0.5 ml polypropylene microcentrifuge tubes  VWR 211-0027 
0.2 ml polypropylene PCR tubes VWR 732-0546 
30ml polystyrene universal tubes Thermofisher (Sterilin) 128C 
Cell culture treated single well dishes 

Thermofisher (Nunc) 
 

10cm 172958 
6cm 150326 

Cell culture treated flasks 
Thermofisher (Nunc) 

 
25 cm2 163371 
80 cm2 153732 

Serological pipettes  

VWR 

 
2 mL 612-3704 
5 mL 612-3702 

10 mL 612-3700 
25 mL 612-3698 
50 mL 612-3696 

Pipette tips   
10 µL filter 

Clearline 

028200CL 
20 µL filter 035220CL 

200 µL filter 035230CL 
200 µL non-filter DD713140 

1250 µL filter 134000CL 
1250 µL non-filter DD713137 

1.8 ml Cryovials Thermofisher (Nunc) 479-6843 
2 well chamber slide Sigma-Aldrich C6682 
20 cm petri dishes VWR 391-0561 
Costar Spin-X tube filters (500 µL; 0.22 µm pore) Sigma - Aldrich CLS8161 
Round glass coverslips 

VWR 
 

13 mm 631-0150 
18 mm 631-0153 

Microscope slides ThermoFisher P4981 
0.22 µm PVDF syringe filter Millipore SLGV004SL 
Transfer pipettes    

5 mL VWR 612-5549 
1.5 mL  612-4468 
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2.2. Stem Cell Culture 

 

2.2.1. Cell line and maintenance 

 

The IBJ4 iPS cell line used for the work in Chapter 4 and Chapter 5 in this project was a gift 

from Josh Chenoweth from the Lieber Institute for Brain Development, MD, USA. The iPS 

line was derived by that group from the BJ fibroblast line (ATCC, #CRL-2522) using the non-

integrating STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus Kit (Millipore, 

#SCR531). Figure 2.1 shows representative images of IBJ4 iPS cells, stained with the key 

markers of pluripotency, SOX2, OCT3/4, NANOG, Tra-1-60, Ssea-4 and KI-67.    

 

All iPS cells were maintained as feeder-free cultures in mTeSR1 medium (Stem Cell 

Technologies, #05850; prepared according to the manufactures instructions) and on a matrix 

layer of Matrigel (Corning, #354234). To prepare all cultureware for iPS cells (see Table 

2.1), slowly thawed aliquots of frozen 100% Matrigel stock were diluted 1:85 in DMEM/F12 

1:1 (Thermo Fisher, #12634-010) and plated onto plastic culture ware at 1 mL/9.6 cm2. 

Coated plates were incubated for at least 1 hour at 37˚C, after which plates were washed 

with DPBS (Thermo Fisher, #14190094) and maintained with DPBS until use. Used diluted 

Matrigel was reused once on a further plate before being discarded. 

 

Frozen 1 mL vials of iPS cells were rapidly thawed at 37˚C, before being added into 9 mL of 

mTeSR1 medium containing 10 µM of the Rock/Rho pathway inhibitor Y27632 (referred to 

herein as Y27; Stem Cell technologies, #72302) and centrifuged at 200g for 6 mins. Y27 has 

been shown to improve the survival of human pluripotent stem cells after thawing and single-

cell dissociation (Li et al., 2009; Watanabe et al., 2007). After aspirating all the medium, cells 

were resuspended in 3 mL of mTeSR1 with Y27 and plated into 1 well of a 6 well plate pre-

coated with Matrigel as described. After 24 hours, the medium was aspirated; cells were 

washed twice with DPBS to remove cell debris and replenished with 3 mL of fresh mTeRS1 

without Y27. iPS cells were maintained in mTeSR1 with media changes every other day until 

70-80% confluency, at which point cells were passaged using the enzyme free reagents 

Gentle Cell Dissociation Reagent or ReLeSR (both Stem Cell Technologies, #07174 and 

#05872 respectively).  
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2.2.2. iPS cell passaging 

 

For standard passaging, following aspiration of medium and washing with DPBS, 1 mL 

Gentle cell dissociation reagent was added per well of cells and incubated at 37˚C for 2 

mins. The reagent was then aspirated; cells were carefully washed with DPBS and then 

covered with 1 mL mTeSR1. Cells were then lifted from the culture surface by scratching 

with a 2 mL stereological pipette and were collected into a 30 mL universal centrifuge tube. 

Cells were then diluted to the desired concentration by adding an appropriate amount of 

mTeSR1. For routine maintenance of the line, cells were passaged and diluted based on the 

number of wells being passaged and the number of wells required.  

 

In situations when cell colonies were uneven or regions of cells were undergoing 

spontaneous differentiation, ReLeSR was used to isolate the pluripotent cells from those that 

were differentiating. Following aspiration of medium, 1 ml ReLeSR was added to each well 

and then rapidly aspirated off after around 50 seconds. Cells were then incubated without 

any medium for 1.5 – 2 mins, after which 1 ml of fresh medium was added. To selectively 

remove pluripotent cells, the plate was firmly tapped against the palm of a hand for 60 

seconds, after which detached cells were collected up and then diluted and plated in the way 

described above.  

 

 

2.2.3. iPS cell freezing  

 

To freeze IPS cells for storage, 10 µM Y27 was first added to cells 2 hours before freezing. 

Cells were frozen in a cryoprotection medium of mTeSR1 containing a final concentration of 

10% dimethyl sulfoxide (DMSO; Sigma-Aldrich, #D2650). An initial freezing medium 

containing 20% DMSO in mTeSR1 was made fresh and stored at 4 °C for 2 hours before 

cell freezing. Cells were dissociated for freezing following the same protocol as that 

described for standard cell passaging with gentle cell dissociation reagent. Once collected, 

cells were then centrifuged at 200g for 6 mins. After aspiration of medium, cells were gently 

re-suspended in half of the total medium required for freezing. Cells were not counted prior 

to freezing – instead, one confluent well of a 6 well plate was frozen into 1 ml final volume of 

cryoprotection medium. In this way, pooled wells of cells were frozen according to the 

number of wells being frozen. After cell resuspension, the same volume of cryoprotection 

medium was then added dropwise, giving a final DMSO concentration of 10%. 1 ml of re-
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suspended cells were added per cryovial and vials were placed in a CoolCell freezing box 

(Biocision) and transferred to a -80 °C freezer. Cells were transferred to liquid nitrogen for 

long terms storage within 48 hours. 
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Figure 2.1 – IBJ4 iPS cells show expression of key markers of pluripotency. IBJ4 cells were 
fixed and stained to determine the expression pattern of six key pluripotency markers. Oct4, Sox2 and 
Nanog are the three primary transcription factors that regulate the pluripotency pathways in stem 
cells. Tra-1-60 and Ssea-4 are both proteins expressed on the membrane of pluripotent stem cells. 
Ki67 is a nuclear protein present in all dividing cells. Panels show representative images of IBJ4 iPS 
cells. Fixed cells were of passage number 5-8. Scale bars show 50 µm.     
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2.4. Neural media formulations 

 

  
Component 

(stock 
concentration) 

Supplier Cat.# Volume for 150 mL total medium (+ final 
concentration supplement) 

   N2B27-RA N2B27+RA Shank3 Brainphys Astrocyte 
DMEM/F12 1:1 

(1x) ThermoFisher 12634010 97.5 mL 97.5 mL - - 133.5 mL 

Neurobasal (1x) ThermoFisher 21103049 49 mL 49 mL 145.5 
mL - - 

BrainPhys Basal 
(1x) StemCell 05790 - - - 145.5 mL - 

B27-RA 
supplement (50x) ThermoFisher 12587010 

1 mL (1x 
with respect 

to 
neurobasal) 

- - - - 

B27+RA 
supplement (50x) ThermoFisher 17504044 - 

1 mL (1x 
with respect 

to 
neurobasal) 

3 mL 
(1x) 3 mL (1x) - 

N2 supplement 
(100x) ThermoFisher 7502001 

 

1 mL (1x 
with respect 

to 
DMEM/F12) 

1 mL (1x 
with respect 

to 
DMEM/F12) 

- - - 

FBS (100%) Biowest S1810 - - - - 15 mL 
(10%) 

PSG (100x) ThermoFisher 10378016 1.5 mL (1x) 1.5 mL (1x) 1.5 mL 
(1x) 1.5 mL (1x) 1.5 mL 

(1x) 
β - 

mercaptoethanol 
(100mM) 

Sigma-Aldrich M3148 150 µL (0.1 
mM) 

150 µL (0.1 
mM) - - - 

Ascorbic acid 
(200 mM) Sigma-Aldrich A4403 - - 

75 µL 
(100 
µM) 

15 µL (20 
µM) - 

BDNF (20 µg/mL) Tocris 2837 - 

150 µL (20 
ng/mL; when 
required as 

per protocol) 

150 µL 
(20 

ng/mL) 

150 µL (20 
ng/mL) - 
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2.5. Differentiation of glutamatergic neurons from IBJ4 iPS cells 

 

Presented here is the basic protocol used within the research group for the production of 

forebrain glutamatergic projection neurons. This is a well characterised protocol based upon 

the dual-SMAD inhibition methods described by Chambers et al. 2009 and Shi et al. 2012 

The basic outline of the protocol is shown in Figure 2.2.  

 

2.5.1. Neural induction and formation of neural precursors 

 

Two days before the start of neural induction (D0), confluent wells of iPS cells were collected 

with GCD reagent as described and plated onto 12 well plates pre-coated with reduced 

growth factor Matrigel (Corning, #354230) as required (standard passage ratios were around 

1:6 – 1:8). Cells were maintained with mTeRS1 until 80% confluent after which cells were 

washed once with DPBS and refilled with N2B27-RA (Table 2.4) containing 100 nM 

LDN193189 (LDN; Sigma-Aldrich, #SML0559) and SB431542 (SB; Sigma-Aldrich #S4317). 

Both these molecules act through the TGF-β signalling pathway and are indirect inhibitors of 

R-SMAD proteins; receptor–regulated transcription factors which regulate the expression of 

over 500 genes (Massagué et al., 2005), the inhibition of which has been shown to induce 

neural fate in human pluripotent stem cells (Chambers et al., 2009; Elkabetz et al., 2008; 

Lee et al., 2007). LDN acts through the BMP/GDP branch of the pathway to prevent the 

phosphorylation (activation) of SMADs1, 5 and 8 via the inhibition of the BMP type 1 

receptors ALK2 and ALK3 (Yu et al., 2008). SB acts via the TGF-β/activin/nodal branch of 

the pathway to prevent the phosphorylation and nuclear translocation of SMAD2 and 3 

(Hjelmeland et al., 2004).  

Figure 2.2 – Overview of the protocol to differentiate iPS cells to cortical forebrain neurons. 
Neural induction of iPS cells is achieved by dual-SMAD inhibition using LDN193189 and SB431542 in 
N2B27-RA medium. At day 9-12, cells are passaged onto fibronectin (FN) – coated plates at a ratio of 
1:1.5 (with respect to culture area). After a further 10 days, cells were deemed precursors (NPCs) were 
either passaged onto coverslips coated with poly-D-lysine (PLL)/laminin (LAM); or frozen for later use. 
From this point, cells were cultured in N2B27 + RA with 10 µM DAPT for 5 days. At day 26, DAPT was 
removed and BDNF was added to medium until the end of the culture. For multi electrode array (MEA) 
experiments, cell were re-plated onto arrays at Day 40-45.  
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iPS cells were maintained in this neural induction medium, with half medium changes every 

2 days, for around 9-12 days after which point multi-layered colonies of cells could be seen. 

For the 1st passage, cells were initially pre-treated for 2 hours with 10 µM Y27, after which 

the medium was removed from cells and kept for use later. After washing with DPBS, 500 µL 

of 0.05 mM EDTA (Sigma-Aldrich #E8008) was added to each well and cells were incubated 

for 10 mins at 37 °C. After EDTA aspiration and DPBS washing, 500 µL of fresh N2B27-RA 

with 10 µM Y27 was added to each well and cells were detached from the plate by 

scratching using a 2 mL stereological pipette. All collected cells were then pooled into a 50 

mL tube(s) and diluted with the conditioned medium and/or fresh medium to obtain a 

passage ratio of 1:1.5 (with respect to culture area) and to allow plating of 1.5 ml of cells per 

well. Medium was added such that final composition of the diluted cells contained fresh 

medium (with Y27) and conditioned medium at a ratio of 1:1. 1.5 ml of cells were then plated 

onto fresh 12 well plates pre-coated with fibronectin (Millipore; #FC010). After 24 hours, all 

medium was aspirated from cells and replaced with 2 ml fresh N2B27-RA alone. Cells were 

maintained in this way with half medium changes every two days for around 9-10 days, after 

which multilayer colonies comprising neural rosettes were visible. At this point (D18-22), 

cells were deemed to be neural precursors (NPCs) and differentiations were either 

continued to produce neurons or NPCs were frozen for storage and later use. 

 

2.5.2. Terminal differentiation of forebrain precursors 

 

To continue differentiations, the 2nd passage was performed as described above for the 1st 

passage with the following alterations: depending on the future application of the neurons, 

cells were either passaged with EDTA as described or with Accutase (Thermo Fisher, 

#A1110501), which allows single – cell dissociation and passaging. Accutase was generally 

used for applications such as single cell electrophysiology and immunocytochemistry where 

clear separation of individual cells was required, while EDTA was used for cells that were 

earmarked for RNA or protein extraction. For single cell dissociation, cells were first pre-

treated 2 hours before passaging with 10 uM Y27. Following medium aspiration and DPBS 

washing, 500 uL of accutase was added to each well and cells were incubated for 10 mins at 

37°C. 500 ul of medium was then added to each well and cells were dissociated by gently 

triturating with a 1 ml pipette tip. After collection, cells were centrifuged at 200g for 6 mins, 

counted using a haemocytometer and subsequently re-suspended in appropriate volumes of 

medium obtain the required densities for the application (see Table 2.4). For EDTA 
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passaging, cells were split at a ratio of 1:4. Following either dissociation method, cells were 

plated onto 13 mm glass coverslips (in 24 well plates; 1ml per well) or 12 well plates (1.5 ml 

per well) coated with 0.1 mg/mL poly-D-Lysine (Sigma-Aldrich, #P7886) and 20 µg/ml 

laminin (Roche, #11243217001). To promote the terminal differentiation of neurons, 24 

hours after plating all medium was replaced with N2B27+RA (Table 2.4) and 10 µM DAPT. 

DAPT is an indirect inhibitor of the notch signalling pathway acting via γ-sectretase. This 

action has been shown to control cell proliferation (Androutsellis-Theotokis et al., 2006) and 

promotes the formation of neurons during stem cell differentiation (Crawford and Roelink, 

2007; Elkabetz et al., 2008). After 5 days, DAPT was removed from the medium and 

neurons were maintained in N2B27+RA supplemented with 2 µg/ml BDNF until the end of 

the culture, with half-medium changes every other day. 

 
 
 
 
 
 
 
 
 
 

Table 2.3 – Plating density of iPS cell derived neurons as 
required for different applications 

 
 
 
 
 
 
 
 
  

Application Dissociation 
reagent 

Plating 
density 

cells/mm2 
RNA extraction EDTA 1300 

Immunocytochemistry Accutase 750 
Patch Clamping Accutase 400 
Calcium imaging Accuatse 400 

Multi electrode arrays Accutase 1800* 
*Estimated density - see text for MEA plating methods  



2.  Materials and methods 

 47 

2.5.3. Freezing of neural precursors 

 

The freezing of NPCs was carried out following the same protocol as that for iPS cells with 

the following alterations: Cells were dissociated from plates using EDTA as described for 

passaging, with cells kept as much as possible as larger aggregates rather than single cells; 

cells were frozen in a medium of N2B27-RA with 10% DMSO (and N2B27 was used for all 

stages of the freezing); wells of NPCs were pooled and were then frozen such that 2 or 3 

wells of cells were frozen together (in 1 mL total medium) to increase cell density and 

viability after thawing.  

 

2.5.4. Thawing of neural precursors and terminal differentiation 

 

Frozen 1 mL vials of NPCs were rapidly thawed at 37˚C, before being added into 9 mL of 

N2B27-RA with 10 µM of Y27 and centrifuged at 200g for 6 mins. After aspirating medium, 

cells were resuspended in 1.5 mL of N2B27 with Y27, 20 ng/mL bFGF and 20 ng/mL EGF. 

These growth factors have been shown to promote the proliferation of neural precursors and 

therefore allows the expansion of NPCs after thawing (Cheng et al., 2014; Li et al., 2011). 1 

vial of NPCs was plated into 1 well of a 12 well plate pre-coated with PDL/laminin 1:1 as 

described in section. After 24 hours, the medium was aspirated; cells were washed twice 

with DPBS to remove cell debris and replenished with 2 mL of fresh N2B27-RA with bFGF 

and EGF but without Y27. Cells were expanded and maintained as precursors until the 

desired number of cells was available, however bFGF and EGF were only used for a 

maximum of 7 days. In general, one vial of thawed NPCs could successfully be expanded 

1:4, so for example a to get a full 12 well plate of NPCs, 3 vials of cells were required to be 

thawed. Any passaging required during this step was done with EDTA as described in 

section 2.2.1. Once all wells of NPCs were confluent, terminal differentiation was carried out 

as described in section 2.2.2. At this point, cells were deemed to be precursors equivalent to 

day 19-22.  
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2.6.  Culture and differentiation of ASD (SHANK3) patient cell lines 

 

The Two ASD patient lines and two control lines of NPCs used in this study (Chapter 6) 

were a gift from with Jack Price from the Institute of Psychiatry, King’s College London as 

part of an ongoing collaboration. The genetic lesions present in the patient lines are 

presented in Chapter 6 but both include heterozygous deletions of SHANK3. iPS cells from 

two control and two ASD patients were derived from keratinocytes as described in Cocks et 

al., 2014. Briefly, cells were cultured on a MEF feeder layer in a low-calcium serum-free 

keratinocyte growth medium. Reprogramming was achieved using a polycistronic lentivirus 

co-expressing OCT4, SOX2, KLF4 and c-MYC, excisable with Cre recombinase. Cells were 

then gradually switched to ES cell medium before colony isolation. 

 

All four cell lines used in this study were received as frozen vials of NPCs. The protocol for 

the production of the precursors can be found in appendix 1. As with the protocol described 

in section 2.5, this protocol is based upon monolayer differentiation and dual-SMAD 

inhibition.  

 

Vials of NPCs were thawed following the protocol in section 2.2.4, with the only alterations 

being the use of Shank3 medium instead of N2B27 (Table 2.4) and the thawing of cells into 

1 well of 6 well plate, pre coated with PDL/laminin 1:1. After 72 hours, cells were re-plated 

onto glass coverslips in 24 well plates. Cells were first dissociated into single cells using 

accutase as described. Cells were counted and re-suspended in Shank3 medium with Y27 

to allow a plating density of 500 cells/mm2, when plated at 1 ml per well. After 24 hours, cells 

were topped up with 1 ml extra Shank3 medium without Y27 and half the medium was 

changed following a further 2 days culture. After 5 days, the medium was gradually changed 

to astrocyte conditioned BrainPhys (Table 2.4; see section 2.7) by half – medium changes 

every 2 days over a period of 6 days. BrainPhys is a defined medium for the culture and 

differentiation of stem cell derived neurons that provides a much more physiological 

extracellular environment that media based on Neurobasal alone (Bardy et al., 2015). This 

allowed the recording of extracellular spikes without the need for changing into recording 

medium. Neurons were maintained in BrainPhys for a total of 14 days before being re-plated 

onto MEAs for analysis (see section 2.11).  
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2.7. Culture of primary normal human astrocytes and medium conditioning 

 

Primary normal human astrocytes (NHAs) were bought initially from Lonza (#CC-2565). 

Vials of the original stock were thawed as described for previous cell lines into astrocyte 

medium (Table 2.4) onto un-coated 6 well plates. Once confluent, cells were passaged using 

TryplE Express (ThermoFisher #12604021). After DBPS washing, 1 mL TryplE was added 

to each well and cells were incubated for 10 min at 37°C. 1 mL Astrocyte medium was then 

added to each well and cells were dissociated and collected by triturating with a 1 ml pipette 

tip. After spinning at 220g for 6 mins, cell pellets were re-suspended in astrocyte medium 

and plated in T75 flasks (20 ml cells+medium/flask). Astrocytes were then maintained and 

expanded in T75 flasks and for up to 5 passages. Flasks of astrocytes were frozen up to P3 

in astrocyte medium as described for NPCs. 5x 1 mL vials of astrocytes were frozen from a 

confluent T75 flask. Subsequent vials of expanded astrocytes were then thawed and used 

as described.  

 

For astrocyte conditioning of differentiation media, 60-80% confluent flasks of <P5 NHA 

were used. After aspiration of astrocyte medium and 2x DPBS washes, 50 mL of medium 

(either N2B27+RA or BrainPhys) was added to flasks and astrocytes were cultured in this 

medium for 72 hours at 37°C in 20% O2. After this period, the conditioned medium was 

removed from flasks, sterilised using a 0.22 µm syringe PVDF filter and stored at at 4ºC for 

use with 7 days or -20°C for longer storage. Astrocytes were then used again to condition 

further medium (after a 2 day recovery period with astrocyte medium), passaged as 

described or discarded. Conditioned medium was used 1:1 with fresh medium for neural 

differentiations as required.  
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2.8. Single-cell patch clamping of iPS cells derived neurons 

 

 

Neurons for patch clamping were plated on glass coverslips as described in section 2.5. 

Patch clamping was performed on neurons between days 30-34 and 50-54 after single cell 

passaging onto coverslips. These time periods represented two distinct maturation points, 

simplified as 30PP and 50DPP, with 4 days allocated for data collection of that time point. 

For example, cells patched on D54 were collected as part of the D50 time point. This 4-day 

window allowed the collection of enough data for each time point, while keeping the neurons 

as similar possible in terms of their maturity. 

 

Cells were patched using the following electrophysiology rig: 

 

• Olympus BX51 WI upright microscope with brightfield, IR-DIC and epi-fluorescence 

• Olympus 10x objective and 40x water immersion objective 

• Olympus TH4-200 halogen light source 

• CoolLED pE-300 LED source 

• Q-imaging Rolera Bolt CMOS camera 

• Luigs and Neumann motorised stage and table 

• Luigs and Neumann Junior manipulators 

• Axon Instruments HS-2 Unity gain headstages 

• Axon Instruments Multiclamp 700B amplifier 

• Axon Instruments Digidata 1550B 

• PC running Multiclamp commander; pClamp v10 and Q-image 

 

2.8.1. Patching pipettes and solutions 

 

Cells were patched using borosilicate filament glass (Sutter; BF100-58-15) forged into 

pipettes using a Flaming/Brown puller (Sutter Instruments, #P97), resulting in resistances of 

5-8 MΩ. All cells were patched at room temperature (around 22°C) in a basic physiological 

extracellular fluid (ECF) comprising 142 mM NaCl, 2.5 mM KCL, 2 mM CaCl2, 1 mM MgCl2, 

10mM HEPES buffer and 30 mM D-glucose; pH adjusted to 7.4 with 4 M NaOH. The 

intracellular solution for pipettes consisted of 142 mM potassium gluconate, 1 mM CaCl2, 2 

mM MgCl2, 10 mM HEPES and 11 mM EGTA; adjusted to pH7.4 with KOH. The osmolality 
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of internal solutions was adjusted to 290 mOsm, using a Vapour pressure osmometer 

(ELITech).  

 

2.8.2. Current – clamp recording of neurons 

 

Initial cell patching was done in voltage-clamp mode, V=0. After identifying target cells and 

correcting for electrode off-sets, patch pipettes were brought into close contact with cells and 

giga-ohm seals were made by applying negative pressure to the pipette. Appropriate seals 

were determined by applying a 5 mV, 50 Hz square wave through the electrode. After 

applying compensation for fast and slow capacitive transients and setting holding voltage of 

around -40 mV, cell break in was achieved by applying short bursts of negative pressure 

and/or short (50-200 µs) 50 pA pulses of current at 50 Hz (‘Zap’ function of Multiclamp 

Commander). Immediately after break in, the commander was switched to current-clamp 

mode, I=0. Series resistance (bridge balance) values were corrected after break in and were 

monitored throughout experiments. Typical compensation values  = 15.68 ± 1.31 MΩ (mean 

± SEM, n = 11).  

 

For basic recording of intrinsic properties and action potentials, the following protocols were 

applied for each cell: 

 

1. To determine resting membrane potential: 2 minutes gap free recording, I=0; 

assessed immediately after cell break-in. 

2. For I-V characteristics: episodic recording (10 s sweep), 1 s current injections 

beginning at – 100 pA, Δ10pA steps, total 20 sweeps; followed by -10pA 1 s step to 

determine input resistance; cell held at -70 mV (current required dependent on cell, 

typically around -30 pA) 

3. For rheobase and action potential characteristics: episodic recording (5 s sweeps), 1 

s current injections beginning at + 10 pA, Δ10pA steps, total 20 sweeps; cell held at – 

70 mV (note other starting and delta currents were sometimes used. e.g. + 5 pA and 

Δ5 pA). 

4. Spontaneous action potentials were observed with gap free recording with cells at 

resting membrane potential, I=0.  

 

Recordings were taken using Clampex 10 (Molecular Devices, USA) and were subsequently 

analysed using Clampfit 10 (Molecular Devices, USA), Excel and Graphpad Prism.   
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2.8.3. Patch-clamp analysis 

 

Resting membrane potentials (Vrest) for each cell were determined as the mean observed 

voltage across the 2 min gap-free recording. Input resistance (RI) was determined by 

injecting small current steps into cells and recording the voltage response. At least 10 

sweeps were performed for each cell and the RI was determined as ! = #/%, where # was 

the mean maximum voltage deflection for the sweeps and % was the input current step. 

Membrane time constant (tau) values for each cell were calculated by determining the time 

at which the voltage fell to 1/e (~63%) of the final voltage following a current step. This was 

done by using the equation #& = 	#()*+ ,&/-.  where /01 2 = 	!3. Membrane capacitance 

values were not reported in this project but none the less calculated as 3 = 	 4- . Occurrence 

of induced action potentials (iAPs) was determined by holding cells at around -70mV and 

injecting positive current steps (Δ5-10pA) until APs were seen. If no APs were seen when 

the membrane potential reached -10 mV, it was assumed none would be seen at all. iAP 

categorisation of cells was based on visual assessment of traces. To be deemed a full AP, 

the overshoot had to be greater than 0 mV otherwise they were deemed as ‘attempted’. AP 

trains were determined as two or more full APs (as described) seen within the stimulus time 

period (1 second in all cases).  

 

Action potential events for analysis were detected using a threshold based method in 

Clampfit. The baseline for detection was set as the threshold for AP initiation of each 

individual cell. This was found by taking the first derivative of the first induced action 

potential seen in each cell, 	6 = 	 ∆8∆& , finding the point of major upward deflection and 

aligning this to the voltage trace of the action potential (see Chapter 4). As for cell 

classification, the threshold for individual event detection was set as 0 mV. There was no 

minimum rate of upward deflection or maximum event time used, although individual events 

were manually inspected after detection to remove noise. Along with the AP threshold for 

each cell, three properties were recorded for each event: amplitude, half-width (the width of 

the event at half the maximum height), and the maximum velocity of the rising slope (Max 

Rise Slope). As the number of events detected in each cell was highly variable (following the 

same current step protocols for each cell), the average values for each property per cell 

were subsequently weighted relative to the number of events detected in that cell and 

averaged to give a single value for each time point or condition. The same approach was 

used to calculate the average variances.   
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2.9. Immunocytochemistry 

 

2.9.1. Cell preparation and staining 

 

Coverslips of cells for immunocytochemistry (ICC) were fixed as required using 4% 

paraformaldehyde solution (PFA; Sigma #P6148). After medium aspiration, cells were 

washed three times with DPBS. 0.5 mL of PFA was then added to each coverslip and 

incubated at room temperature for 15 mins. After aspirating PFA, coverslips were washed 3 

times in DPBS before storing in DPBS at 4°C in the dark until use. 

 

For staining, cells were first permeabilised using 0.1% Triton X-100 (Sigma; X100PC) diluted 

in DPBS, incubated at room tempertature for 10 minutes. Cells were subsequently washed 

three times with DPBS. Coverslips of cells were then blocked to prevent non-specific binding 

by incubating with 1% bovine serum albumin (BSA; Sigma #A2153) in PBST (DPBS + 0.1% 

Tween 20; Sigma #P1379) for 30 mins at room temperature. Primary antibodies were then 

diluted as required (Table 2.4) in PBST + 1% BSA. Cells were incubated in primary antibody 

solutions over night at 4°C. The next day, cells were washed three times with DPBS, each 

for 5 minutes with gentle agitation. Cells were then incubated with secondary antibodies 

diluted in DPBS + 1% BSA as required (Table 2.4) for 1 hour at room temperature in the 

dark. Following three 5 minute washes with DPBS, cells were counter stained by incubating 

for 1 minute with 0.1 µg/ml DAPI (ThermoFisher #62248) and subsequently washed twice 

with DPBS. Before mounting, cells were firstly rinsed with distilled water to remove salts and 

subsequently dried to remove excess liquid. Coverslips were then mounted onto slides using 

DAKO fluorescence mounting medium (Agilent # S3023), sealed with clear nail polish and 

then stored at 4°C in the dark until visualisation.  
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2.9.2. Imaging and analysis 

 

Stained cells were imaged using the following microscope set up: 

 

• Leica DMI6000 inverted microscope with automated x, y and z movement 

• Leica 10x, 20x, 40x and 100x (oil immersion) objectives 

• Leica DMC3500 CCD camera 

• Leica EL6000 light source 

• PC running LAS X 

 

In some cases, images were acquired using the microscope system described in section 

2.10 

 

Regions of interest were imaged at the desired magnification using stacks of z-plains to 

capture an increased focal range. Captured images were processed initially using the 

deconvolution plugin of LAS X to correct for multiple plains of focus. Images were then 

processed for presentation using Fiji.    
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Table 2.4 – Primary and secondary antibodies used for immunocytochemistry 

 
 
  Antibody Species Supplier Cat # Dilution 

Primary antibodies 
Nestin Rabbit Millipore ABD69 1/500 
FOXG1 Rabbit Abcam  Ab18259 1/250 
PAX6 Mouse Abcam Ab78545 1/300 
TBR1 Rabbit Abcam Ab31940 1/500 
TBR2 Rabbit Abcam Ab23345 1/300 
SOX2 Mouse Abcam Ab97959 1/400 
OCT4 Goat Santa Cruz sc8628 1/500 

NANOG Goat R&D systems AF1997 1/200 
KI-67 Mouse BD Biosciences 550609 1/ 200 

Tra-1-60 Mouse Millipore MAB4360 1/500 
SSEA4 Rat Millipore MAB4303 1/500 
MAP2 Chicken Millipore AB5622 1/1000 
TUJ1 Chicken Neuromics CH23005 1/200 
GABA Rabbit Sigma - Aldrich A2052 1/500  
GAD67 Mouse Millipore mab5406 1/500 
CTIP2 Rat Abcam ab18465 1/500 
SATB2 Mouse Abcam ab51502 1/250 
PSD95 Mouse Antibodies Inc. 73-028 1/40* 
GLUN1 Mouse Antibodies Inc. 73-272 1/40* 

VGLUT1 Mouse Antibodies Inc. 75-066 1/500 
*Note TC supernatant 

Secondary antibodies 
Alex Fluor 488     

α mouse Goat ThermoFisher A32723 All 1/10000 
α rabbit Goat A11034 
α rabbit Donkey A21206 
α Goat Donkey A11055 

α chicken Goat A11039 
α rat Goat A11006 

Alex Fluor 594   
α mouse Goat A11032 
α rabbit Goat R37117 
α rabbit Donkey R37119 
α Goat Donkey A11058 
α rat Goat A11007 

Alex Fluor 647   
α mouse Goat A32728 
α rabbit Goat A21244 
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2.10. Calcium Imaging 

 

2.10.1. Cell preparation and imaging 

 

Single cell calcium imaging of neurons was performed using Fluo-4 AM (ThermoFisher; 

#F14201). Coverslips of cells were initially transferred into a 2-well chamber slide to allow 

compatibility with the heating system described below. Cells were then exposed to a cocktail 

of reagents comprising of 1 µl/ml of Fluo-4 AM, 1 µl/ml of 20% pluronic acid (ThermoFisher; 

# P3000MP) and 0.5 µl/ml of cell loading reagent (ThermoFisher; #I14402) diluted into 1 mL 

of culture medium (Brainphys). After 30 minutes incubation at 37°C, medium was aspirated 

and cells were washed three times with DPBS. 1 mL of fresh medium was then added to 

cells and incubated for a further 30 minutes. After this incubation, medium was aspirated 

and replaced with 1 mL fresh Brainphys in which cells were recorded.  

 

Cells were calcium imaged using the following microscope rig: 

 

• Zeiss Axio Observer inverted microscope 

• Ziess 40x objective (LD Plan-Neofluar 40x/0.6) 

• Zeiss 38 HE filter set 

• Lumencor SpectraX LED light source  

• Hammamatsu Orca-Flash 4.0 CMOS camera 

• Multi channel Peristaltic pump for solution exchange 

• Ibidi chamber heating system 

• Zeiss Zen software 

 

Chambers of cells were transferred to the microscope room, placed onto into the plate 

heated at 37°C and covered with a lid heated at 40°C to prevent the formation of 

condensation. After identifying regions of cells, fluorescent images were taken at a rate of 10 

Hz using the constant streaming mode of the camera at a resolution of 1000x1000 pixels 

(2000x2000 with 2x binning). Regions were imaged for 5 minutes per experiment.  
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2.10.2. Analysis 

 

Recorded stacks of images were imported into Fuji (Schindelin et al., 2012) and four equal 

square sub-regions were extracted and saved as .tif files (full stacks were extracted for each 

sub-region with each region around 500x500 pixels). Region of interests (ROIs) were then 

identified in each sub-region using the Matlab based NeuroCa package (Jang and Nam, 

2015), which adopts an approach based upon circular Hough transforms (Jiang and Ehlers, 

2013). ROIs were limeited to cell bodies only and were detected using a radius threshold of 

2 – 7 pixels. While ROI masks were created with NeuroCa, the actual analysis of calcium 

events was performed with the Matlab based FluroSNAAP (Patel et al., 2015). In order to 

use the ROI mask created with NeuroCa in FluroSNAAP, mask files were converted 

accordingly using a custom written Matlab script. Files were then processed in FluuoSNAAP 

using the batch processing function to analyse single ROI events only. No network or 

connectively analysis was performed. Results from the analysis were then imported into 

Excel for processing and subsequently into Prism for statistical evaluation.    
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2.11. Multi electrode array culturing and recordings 

 

2.11.1. Equipment 

 

60MEA200/30iR-Ti-gr MEAs were used throughout this project (Multi channel systems; 

MCS). These are planar MEAs with a grid of 60 titanium nitrate electrodes (59 + 1 internal 

reference) embedded within a silicon nitrate substrate. Each electrode has a diameter of 30 

µm, with 200µm spacing between electrodes (an image of the MEAs used can be seen in 

Chapter 3). MEAs were recorded using a MEA2100-HS2x60 headstage amplifier, attached 

into MSC-IFB-3.0 analogue/digital interface board. Cultures were recorded using the 

MC_Rack data acquisition software running on a high-performance PC.  

 

The following MEA hardware settings were used throughout the project: 

 

 

 

 

 

 

 

 

 

Amplifier offsets were checked every month and corrected when required. Cultures were 

kept at 37°C with a TC02 temperature regulator controlled by the PC-based TCX software. 

The recording head stage was isolated within a custom made faraday cage.  

 

2.11.2. Preparing arrays and care 

 

Clean MEAs (see below for cleaning procedures) were stored at 4°C in the dark, with the 

cultured area submerged in distilled water. Before cell plating, MEAs were first pre-treated 

with 1 ml FBS for at least 1 hour at 4°C in the dark. This made sure the culturing surface of 

the array was as hydrophilic as possible. After FBS, MEAs were washed 3 times with 

distilled water. Culture surfaces were then treated with 0.01% PEI (50% stock; Sigma; 

#03880) and incubated for 1 hour at 37°C. Arrays were then washed once with distilled 

water and left to dry completely in a sterile cell culture hood.  

  

Amplifier MEA 2100 

Signal voltage range (µV) -2000 – 2000 

Gain 5 

Input voltage range (mV) -9.8 – 9.8 

Sampling frequency (Hz) 25000 

Sample depth 16 bit 
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2.11.3. Culturing cells for use on arrays 

 

Coverslips of cells earmarked for extracellular electrophysiology were re-plated onto MEAs 

at D40-45 (D0 = iPS cells; see Figure 2.2). 1 hour prior to re-plating, revitacell was added to 

wells (final concentration = 1x) and cells were incubated at 37°C until use. Neurons were 

dissociated from coverslips by aspirating medium (which was saved), washing cells once 

with DPBS, adding 0.5 ml accutase and incubating for 10 minutes at 37°C. Coverslips were 

then visualised under a phase contrast microscope to check cell detachment. If neurons 

remained secure, cells were incubated for a further 3-5 minutes. After addition of 0.5 ml 

fresh medium, cells were collected by gently pipetting the medium until all cells were 

dissociated from the coverslips (this was checked with microscope observation). Cells from 

each coverslip were then pooled into a 30 ml universal tube and cells were further 

dissociated by gentle pipetting. Cells were then centrifuged at 200g for 6 minutes. After 

medium aspiration, the cell pellet was re-suspended in 1 or 2 ml of fresh medium depending 

on the number of cells. Cells were then counted using a haemocytometer and preparations 

were diluted/concentrated as required to allow a high plating density of 50,000 cells / 20 µL, 

which equated to around 1800 cells / mm2. 3 µL revitacell (100x) and 3 µL of 500 µg/mL 

laminin was then added to each 20 µL of cell/medium suspension. 25 µl of cell/medium mix 

were then dropped directly on top of the electrode grid of each MEA. Ideal drops were those 

that formed small domes of cells which remained self-supporting (Figure 2.3). MEAs were 

then each placed in a standard 20 cm petri dish with the lids replaced and carefully 

transferred into an incubator for 1 hour at 37°C. After 1 hour, 1 mL of a 1:1 mix of the saved 

conditioned medium and fresh medium with 1x revitacell was then carefully flooded into 

each MEA. After a further 24 hours incubation, 1 ml of fresh medium was added to each 

array, bringing the total to 2 mL. 1 mL of medium was then replaced every 3 days with 

fresh/ACM medium at a 1:1 ratio as described in section 2.6.       
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2.11.4. Recording and analysis 

 

Raw MEA data was recorded with MC Rack at a sample rate of 25000 Hz. Electrode data 

was filtered online with a 200 Hz high pass and a 5000 Hz low pass filter (both 2nd order 

butterworth). A maximum of two arrays could be recorded simultaneously and arrays were 

kept at 37°C throughout recordings. Recordings typically lasted for 5 or 10 minutes. Data 

was stored as .mcd files which contained the filtered continuous traces for each electrode 

together with the spikes detected using the online threshold detection built into MC_Rack. 

After selecting electrodes for analysis (between 15-30), chosen data was then converted to 

ascii files for offline analysis suing the MC Data tool (MCS). Offline analysis was achieved 

with custom scripts written in Matlab. A detailed description of the analysis measures 

developed and employed in the project for the processing of MEA data is presented in 

Chapter 3. Breifly, spikes were detected from filtered data using an automatic threshold-

based method set at -5.5 x 9, where 9 is an estimate of the noise of each electrode. Spike 

timestamps were analysed to provide statistics on the general excitability of cultures. 

Network activity was analysed by creating array–wide spike detection rate (ASDR) plots with 

a bin width of 200 ms. ASDR peaks were detected using a threshold of 70-80% of the 

maximum sized bin. All data was processed for comparative statistics using Graphpad 

Prism.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Plating iPS cell derived neurons onto MEAs. To achieve the required density and 
survival of cells, neurons were plated onto MEAs as drop cultures. 50000 cells were resuspended 
in 20 µL of medium, together with 3µL of laminin and 3 µL of revitacell. Cells were then dropped 
onto completed dry MEAs, pre coated with PEI, to create a drop of cells/medium directly above 
the electrode area. After 1 hour of incubation at 37C, the culture well was flooded with 1 mL 
medium.   
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2.11.5. MEA cleaning 

 

After use, TryplE was used to dissociate cell cultures from array surfaces. One cell debris 

was removed, MEAs were washed with Alconox Tergazyme (ThermoFisher; #16-000-199), 

an anionic and protease based detergent. Arrays were placed into a large volume of 1% 

Tergazyme solution and soaked overnight with very gentle agitation. The next day, arrays 

were rinsed with distilled water and left to soak in fresh water for a further 24 hours. MEAs 

were rinsed for a final time before being steam-autoclaved, in individual autoclave pouches, 

for 15 minutes at 120•C in a bench-top autoclave. After cooling, the well of each array was 

filled with distilled water and stored at 4°C in the dark until use.  
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2.12. Statistical analysis  

 

All descriptive and comparative statistics in this project were completed with Prism 6 

(Graphpad). However, to determine the route of analysis (parametric or non-parametric), 

data was first processed using histograms, q-q plots and normality tests (kurtosis and skew 

tests) in R (RDevelopment, 2012). Where groups of data from the same experiment, 

presented with contrasting distributions, parametric tests were used as they are, in general, 

better equipped to cope with non-gaussian distributed data. The statistical tests used for 

each of the experiments are described in the results of each chapter. While the significance 

or otherwise of each relevant comparison is reported where appropriate, in general only 

significant differences were detailed in tables along with the average differences and 

corresponding variance. All p values reported are two-tailed. Unless otherwise stated, all 

summary plots of data show means + standard deviation. N numbers for each experiment 

vary and are reported in individual figures. However, except in a couple of cases involving 

smaller experiments, all results presented here were collected from at least three 

differentiations.      
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3. The development of a pipeline for the analysis of iPS cell derived 

neuron multi electrode array data 
 

 

 

 

3.1 Introduction 

 

The advent of more user-friendly and reliable multi-electrode array (MEA) systems together with 

advances in techniques for multi-unit recording in vivo has led to renewed interest in the 

development of methods to process the captured neuronal activity. In particular, one of the 

primary advantages of planar MEAs over single cell patch clamping is the ability to culture 

neurons following a relatively standard protocol but which allows the simultaneous recording of 

activity from a large population of neurons. This extends the analysis of single unit behaviour to 

the level of small networks, therefore providing an opportunity for the study of the functional 

development of neuron populations in vitro and investigating the behaviour of cell based models 

of disease. This opportunity is extended further with the use of iPS cell derived neurons, 

allowing the study of how these cells behave throughout their development and allowing the 

possibility to investigate network function in human models of disease.  

 

The analysis of MEA data is inherently complex and computationally challenging. The arrays 

used throughout this project have 60 electrodes, each recording raw data at a rate of tens of kilo 

hertz (kHz) leading to very large data files (>3 Gbs) which need to processed offline. Decisions 

are then required about the analysis of the raw data at several points, most noticeably 

surrounding how spikes are identified, quality control of spike data, how statistics are inferred 

from spikes, the analysis and handling of spike waveforms and finally, the processing of data 

concerning the activity of neural networks. Over the last few years, there have been a number of 

both proprietary and open source tools made available for the analysis of multi-channel 

electrophysiological data (including MEA data, in vivo extracellular recordings etc.) many of 

which package a range of analysis measures aimed at providing a comprehensive solution to 

the processing challenge (Wagenaar et al., 2005; Georgiadis et al., 2015; Hazan et al., 2006; 

Vato et al., 2004; Egert et al., 2002; Quian Quiroga et al., 2004). 
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At the onset of this project, a number of these tools were tested to identify one which would be 

suitable for the types of analysis required. However, a number of issues were identified which 

limited their potential use. Firstly, although the majority of the tools are written in Matlab and 

therefore, theoretically should be functional across platforms and releases, several procedural 

errors were encountered which either prohibited analysis or introduced a sufficient enough 

hurdle as to limit the speed of processing. This was especially an issue with the open source 

tools as these tended to lack the documentation and support to allow useful troubleshooting. 

Secondly, the beginning of this project and the development of the protocols for successful MEA 

culturing and recording was in parallel with the learning of the analysis techniques and the 

Matlab coding language. The existing Matlab based tools are, in general, fairly comprehensive 

in their analysis scope and have been written by experienced researchers and informaticians, 

often meaning that the level of coding complexity is high. This therefore meant that it was 

difficult in some circumstances to determine how certain parameters were controlled, how 

specific analysis measures were performed and how particular statistics were arrived at. Thirdly, 

many of the existing tools place an emphasis on the analysis of spike waveforms and in 

particular, feature extraction and shape clustering, being a key factor in the analysis of multi 

electrode recording in vivo. While the analysis of spike shapes was something which was of 

potential interest, it was not the primary aim of the process to be used here. Finally, the existing 

tools had all been developed based upon data recorded from rodent neurons, either in vivo or 

dissociated cultures in vitro. For some analysis measures, the use of iPS cell derived neurons 

did not affect the outcome measure. However, for others, such as the determination of baseline 

noise and the identification of bursts, these tools often mis-represented the true activity. In fact, 

it is perhaps more accurate to say that certain characteristics were mis-represented in the 

context of their nature as iPS derived neurons, owing to their relatively immaturity and therefore 

inactivity compared to primary neurons. 

 

In light of the limitations of existing analysis tools described above, it was decided to develop a 

new analysis pipeline tailored for the types of analysis that were required throughout this 

project. As well as providing a way of controlling every aspect of the analysis process, this 

would also provide a greater understanding about the nature of the activity being recorded from 

iPS cell derived neurons, which in turn would inform some of the key decisions being taken 

about how the analysis should take shape to best suit this type of cell.  
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3.2 Chapter Aims 

 

This chapter aims to develop a pipeline of computational tools for the analysis of MEA data, 

focusing on the processing of extracellular recordings from iPS cell derived neurons. The 

chapter will aim to produce a toolkit which focuses on the calculation of two key groups of 

statistics, those based upon the general excitability of individual neurons and those based upon 

the development of network driven behaviours in the cultures. The pipeline will also aim to 

provide a clear and intuitive set of analysis steps which will allow accessible processing of data 

for users relatively new to MEA recordings.   
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3.3 Development and description of analysis measures 

 

3.3.1 General Overview 

 

The development of an analysis platform was based upon four key steps: online data 

acquisition, spike detection, spike waveform extraction and analysis of network behaviour. This 

was supplemented with an additional step to extract feature information from waveforms and 

performing clustering to identify specific populations of spike shapes. Figure 3.1 presents a 

schematic of the general approach taken for the development of the pipeline and highlights the 

key decisions required regarding the methodological approach within each step. From these 

steps, primary analysis outcomes will be devised based around two areas of focus: basic 

excitatory properties of the cultures based around single unit statistics and analysis of network 

function based around patterns of coordinated firing.  

 

For several reasons the pipeline was developed and written entirely within Matlab (Mathworks 

Inc., 2010; except for the acquisition and filtering of data). Firstly, although a proprietary 

software, Matlab is widely available through institutional licences and is supported by an 

extensive recourse database, including many user-created plugins, toolboxes and guides. 

Secondly, the type of data to be analysed, essentially large databases of continuous data which 

is then manipulated within the rows and columns, is a strong feature of Matlab. Finally, a 

number of aspects of the analysis are based upon those developed elsewhere, either as part of 

similar Matlab based electrophysiology packages, or from tools available from various Matlab 

resource databases.   
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Figure	3.1	-	Workflow	of	the	analysis	pipeline	developed	in	this	project.	The	pipeline	was	based	around	
5	key	areas	of	processing:	online	data	acquisition,	spike	detection,	extraction	of	spike	waveforms,	
analysis	of	network	behaviour	and	clustering	of	spike	waveforms.	Each	of	these	steps	has	numerous	
decisions	associated	with	them	regarding	the	development	of	the	analysis	methods	(left	side	of	grey	
panels).	The	pipeline	will	be	used	to	deliver	two	primary	sets	of	outcome	measures,	statistics	based	
around	general	excitability	at	the	level	of	single	units	(‘Basic	Spike	Statistics’)	and	those	concerning	the	
activity	of	culture-wide	networks	(‘Network	Statistics’).				
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3.3.2 Online data acquisition 

 

As described in Chapter 2, iPS cell derived neurons were cultured on 60 electrode planar MEAs 

and recorded using an equipment package from Multi Channel Systems (MCS). Recordings 

were taken from arrays using the MC Rack tool (MCS) which allows fully customisable 

acquisition of data from up to four MEAs simultaneously (note a maximum of two were recorded 

concurrently in this project). Hardware settings were as described in Chapter 2 and were not 

altered throughout all of the MEA recordings.  

 

Data arriving from each electrode of an MEA is in the form of continuous raw time-voltage 

traces. In all cases, raw data was sampled at a rate of 25000 Hz. In order to perform spike 

detection and subsequent analysis, the data must first be filtered. A high pass filter is required to 

remove low frequency field-potentials and any potential 50 Hz AC noise, while a low pass filter 

provides ‘cleaning’ of the signal for higher frequencies. For all experiments used in this project, 

raw electrode data was filtered online through a butterworth 2nd order high-pass filter, set at 200 

Hz, followed by a butterworth 2nd order low-pass filter at 5000 Hz. Figure 3.2A&B shows the 

gain attenuation and phase plots for each of the filters used. Although it has been shown that 

filters of different types and parameters, particularly causal filters such as that used here, can in 

some circumstances affect the shape of detected spikes (Quian Quiroga, 2009), using the 

online filtering was chosen as it allowed the filtered data to be the basis of the subsequent 

offline analysis. Furthermore, building the spike detection algorithms with an additional step of 

retrospective filtering proved to be computationally challenging due to the size of the files being 

handled. Figure 3.2C shows a trace of data from one electrode before and after band pass 

filtering. The variable baseline of the unfiltered signal is due to slow field potentials (<100 Hz) 

and hinders the reliable detection of extracellular spikes. Filtering the signal using the 

parameters described above produces a stable baseline from which spikes can be easily 

identified and readily detected computationally and without supervision. 

 

For each electrode of an array, filtered data was recorded and stored in .mcd format, the 

standard file associated with all MCS software. To allow offline analysis of data with Matlab, 

data was then converted to tab-delimited ASCII format using the MC Data tool (MCS). It was at 

this point that electrode data from each array experiment was chosen to be taken forward for 

analysis. With a sample rate of 25000 Hz and recordings up to 10 minutes long, analysing the 
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data from all 60 electrodes of an array was prohibitive as files were > 20 Gb. Moreover, it was 

also almost always unnecessary, as despite the optimisation of culturing protocols described 

elsewhere in this project, very rarely did all 60 electrodes record neuron activity. Instead, for 

each recording experiment, a selection of between 16-25 electrodes were taken forward for 

analysis. Electrodes were chosen to represent the activity of the cultures as a whole and as 

such were taken from across the array. At least 2 electrodes were taken from each column and 

no two electrodes could be adjacent, whether between columns or rows. This was to control for 

the possibility that adjacent electrodes were recording activity from the same neuron, although 

this has been shown to be very unlikely (Lin et al., 2005). The chosen electrodes for each 

experiment are shown where required throughout the project.  
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Figure	3.2	–	High/low	band	pass	filtering	of	raw	data	from	multi	electrode	arrays	(MEAs)	is	required	to	
perform	spike	detection	and	analysis.	Raw	data	recorded	from	MEAs	contains	both	fast	and	slow	wave	
components	that	require	filtering	before	the	data	can	be	processed	further.	Low	frequency	field	
potentials	cause	a	consistently	fluctuating	baseline	making	reliable	detection	of	extracellular	spikes	
challenging;	high	frequency	noise	can	influence	the	shape	of	detected	spikes	and	produce	artefacts.	All	
MEA	recordings	used	I	this	project	were	filtered	though	a	2nd	order	butterworth	high	pass	filter	at	200	Hz	
(A),	followed	by	a	2nd	order	butterworth	filter	low	pass	filter	at	5000	Hz	(B).	Top	panels	in	A	and	B	show	
the	gain	response	of	the	filter	against	the	normalised	frequency	while	bottom	panels	show	the	phase	
response	against	the	normalised	frequency.	C	shows	the	raw	data	from	one	electrode	(top	panel)	and	the	
same	data	after	filtering	(bottom	panel).	Filter	response	plots	were	calculated	using	a	sample	rate	of	
25000	Hz.	Scale	bars	in	C	=	1	second.									
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3.3.3 Spike detection  

 

The next stage in the pipeline, and the first to be done offline, is the detection of spikes from the 

filtered data of each electrode to be analysed. The most common method is by using a voltage 

threshold above (or below in the case of extracellular events) which events are classed as 

‘spikes’. Of course, the threshold required for each electrode is a balance between one that is 

high enough to minimise the capturing of false-positives through random changes in baseline 

noise but not so high as to miss true lower-amplitude spikes. Perhaps the most accurate way to 

set a threshold for each electrode is to do so manually, such that each threshold best 

represents the best possible trade off for that particular data trace. However, this clearly 

introduces a time and user intensive step into the analysis and reduces the scalability of the 

pipeline. As such, a threshold was determined automatically for each electrode, based upon 

calculations of the baseline noise.  

 

One of the most commonly used methods for automatic thresholding is based upon taking an 

overall assessment of the standard deviation of the noise, where noise = background signal + 

spikes (Vato et al., 2004; Mok et al., 2012; Chiappalone et al., 2006). Indeed, this is also the 

approach taken by the online spike detection in the MC Rack software. Based upon the number 

of tools that seemed to have validated this method, together with the relative simplicity of its 

implementation, it was decided to use this approach for the pipeline developed here. 

 

The automatic threshold was determined as 𝑇ℎ𝑟 = 	𝑘	×	𝜎), where 𝑘 is the multiple to determine 

the level of threshold and 𝜎) is the standard deviation of the voltage values for the entire 

electrode trace. Throughout the project, only negatively deflecting spikes were captured, as 

these represented the vast majority of events. A threshold multiple of 5.5 was chosen as it 

provided a level which detected very few recording artefacts. Together this gives a 𝑘 of -5.5.  

 

Using this method of automatic thresholding (called herein the SD method) seemed to 

successfully calculate appropriate thresholds for individual electrodes. However, it became clear 

in certain circumstances, some thresholds may in fact be too high. Figure 3.3A&B show filtered 

data traces from two different electrodes (not from the same array) which recorded different 

patterns of neuron firing. In A, the neuron is firing at a consistent rate of around 0.75 Hz. In 

situations similar to this, the SD method of threshold determination appears to perform well. 
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However, the situation in Figure 3.3B shows bursts of high frequency firing in between quieter 

periods of low frequency and, importantly, lower amplitude firing. The overall firing rate for this 

example is 2.59 Hz. It is in these situations where it was noticed that the automatic threshold 

was perhaps too high, as it appeared that several spikes in the lower frequency firing periods 

were not being detected. In fact, this is a phenomenon which has been previously studied, with 

the authors concluding that during high frequency firing, the SD estimation of noise is 

overrepresented, as the increase in voltage peaks (due to more spikes) disproportionally skews 

the true baseline (Quian Quiroga et al., 2004). To overcome this issue, the authors proposed 

another method of estimating signal noise, based upon using the median absolute deviation. 

 

For this method, the threshold is still calculated as 𝑇ℎ𝑟* = 𝑘	×	𝜎)	but in this case, the estimation 

of noise is given as 𝜎) =
*+,-.) /

0.2345
 , where 𝑋  is the absolute values of the voltages for the 

entire electrode trace and 0.6745 is derived from the cumulative distribution function for 

normally distributed data (which, for the purposes of this equation, the signal data is assumed to 

be).  

 

The two methods were compared with the two different activity scenarios in Figure 3.3. k for 

both methods was maintained at -5.5. In Figure 3.3A&B, the red lines indicate the thresholds 

calculated using the median absolute deviation (MAD) method and the green lines show the 

thresholds calculated with the SD method. Figure 3.3C shows the summaries of the calculated 

noise estimation, threshold and number of spikes detected with each method. In both A and B 

firing situations, the estimation of noise and therefore the threshold for detection is higher with 

the SD method. However, while in the the low firing state this difference is around 1 µV, this 

increases to a difference of 3.72 µV in the high bursting state. This therefore meant that with 

bursting activity, around 25% of spikes detected by the MAD method were not picked up with 

the SD method, while this same value was around 10% in the tonic firing state. Finally, the ratio 

of change in noise to change in spike rate highlights the extent to which the estimation of noise 

using the SD method increases faster than the for the MAD method, for a given increase in 

spike rate.  

 

It could be argued that as long as the method for spike detection is kept constant throughout the 

entirety of the project’s experiments, the actual method used is less important. However, 
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because one of the primary aims of this project is to investigate network function using the 

MEAs, its was anticipated that changes in spike rate within experiments is likely to be a 

common occurrence which needs to be addressed. As such, it was decided to use the MAD 

method for noise estimation, owing to its superior handling of higher rate firing. Therefore, for all 

experiments analysed in the project, the automatic threshold for each electrode was determined 

using the following formula: 

 

𝑇ℎ𝑟 = 	−5.5	×	𝜎) where 𝜎) =
*+,-.) /

0.2345
 .  

 

Spikes were then subsequently detected using the findpeaks function in Matlab. All parameters 

were kept as standard, except that the ‘minimum peak prominence’ option was selected, with a 

value of 2. This guaranteed that there was a clear vertical drop after the peak to ensure that a 

small ‘shoulder’ in the spike was not counted as a separate spike.  
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A	

B	

C	

SD	method	
MAD	method	

Low	rate	tonic	firing	(mean	=	0.75	Hz)	
	 Standard	Deviation	 Median	absolute	

deviation	
Estimate	of	Noise	(µV)	 3.81	 3.61	

Threshold*	(µV)	 -20.96	 -19.89	
Spikes	detected	 511	 565	

%	difference	in	spikes	 10%	
High	rate	bursting	(mean	=	2.59	Hz)	

	 Standard	Deviation	 Median	absolute	
deviation	

Estimate	of	Noise	(µV)	 5.19	 4.69	
Threshold*	(µV)	 -28.56	 -24.84	
Spikes	detected	 1557	 2052	

%	difference	in	spikes	 25%	
Δ	noise/Δ	rate	(µV	Hz-1)	 0.75	 0.48	
*Threshold	=	-5.5	x	noise	estimate	
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Figure	3.3	–	Comparison	of	methods	for	offline	spike	detection	from	MEA	data.	Two	different	threshold	
based	methods	of	spike	section	were	trialled	in	two	different	firing	situations:	one	with	a	low	rate	of	
consistent,	tonic	firing	(A)	and	one	with	periods	of	low	firing	in	between	high-rate	burst	firing	(B).	Both	
methods	set	automatic	thresholds	for	each	electrode	trace	with	the	formula	𝑇ℎ𝑟 = 𝑘	×	𝜎)		where	𝑘	is	
the	manually	determined	threshold	scale	(constant	for	all	electrodes)	and	𝜎)	is	the	estimation	of	noise	
(baseline	signal	+	spikes).	The	standard	deviation	(SD)	method	calculates	an	estimation	of	noise	by	taking	
the	standard	deviation	of	the	voltage	values	for	the	electrode	data;	the	median	absolute	deviation	

calculates	an	estimate	of	noise	by	the	formula	𝜎) = 	
*+,-.)	( 0 )

2.4567
,	where	|𝑋|	is	the	absolute	values	of	the	

electrode	voltage	data.	Red	lines	in	A	and	B	show	the	threshold	calculated	with	the	MAD	method,	green	
lines	show	the	thresholds	calculated	with	the	SD	method.	C	shows	the	details	of	the	values	of	estimated	
noise,	thresholds	and	spikes	detected	with	each	of	the	methods.	The	SD	method	produced	higher	
thresholds	than	the	MAD	method	in	both	firing	sates.	However,	the	difference	was	bigger	with	high-
frequency	bursting,	meaning	that	a	higher	percentage	of	spikes	that	were	captured	with	the	MAD	
method	were	missed	by	the	SD	method.	This	was	highlighted	by	calculating	the	change	in	noise:	change	
in	rate	ratio,	which	shows	that	the	SD	method	increases	the	estimate	of	noise	faster	than	the	MAD	
method	for	a	given	increase	in	spike	rate.			
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3.3.4 Spike waveform extraction 

 

After spike detection, each spike waveform was saved by extracting the 40 samples previous to 

the peak and the 70 samples after the peak from the continuous filtered electrode trace. This 

gave a total of 111 samples, corresponding to 2.7 ms of data, with all spikes aligned to their 

peaks at the 41st sample point. Spike shapes were stored both at the individual electrode level 

and as a pooled database for the entire array. Plots of spikes shapes included an overlaid trace 

to show the average shape of the waves in that electrode or array. This was calculated as the 

median value for each of the 111 samples across each of the spikes being analysed. 

 

In general, the analysis of spike shapes was not used as a key measure in this project. Instead, 

observation of spikes shapes was primarily used as a quality control method to confirm that 

detected events were extracellular spikes. Any events that were identified as clearly noise or 

artefacts (either by shape or by very large amplitude) were then traced back and removed from 

the analysis. 

 

An exception to this is some of the work presented in Chapter 6, which uses spike shapes as a 

method of comparing activity between cell lines. For this, the analysis of spike shapes was 

taken further with feature extraction and clustering and is described in section 3.3.7.   
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3.3.5 Basic Statistics 

 

After detection of individual spikes from each of the chosen electrodes from an array, the stored 

time stamps were then used as the basis for the first batch of analysis measures, based upon 

general culture excitably. This analysis group consisted of six primary measured outcomes: 

Total number of spikes, average number of spikes per electrode, average spike rate, max spike 

rate, average inter spike interval (IsI) and total number of detected bursts. This section will 

describe the derivation of each of these analysis measures.  

 

Total number of spikes. The simplest statistic, this is a measure of the total number of spikes 

detected from all of the analysed electrodes and is a primary determinant of general culture 

excitably. However, this is not a useful measure for comparing between arrays or experimental 

repeats etc. as it may be the case that a different number of electrodes were analysed from 

each array. Instead, the average spikes per electrode was developed as the primary measure of 

excitability. 

 

Average spikes per electrode. To provide a measure of the number of spikes that could be 

compared across arrays and experiments, an average for the number of spikes in each 

electrode was given as 𝐴𝑣𝑔𝑠𝑝𝑖𝑘𝑒𝑠/𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛	(𝑆𝑝𝑖𝑘𝑒𝑠KL, … , 𝑆𝑝𝑖𝑘𝑒𝑠K)). The median 

was chosen as it provided a control for electrodes that were much more or less active than 

others and gave a more representative overview of the activity of the array as a whole.  

 

Average spike rate. To allow comparisons between arrays and experiments and to provide a 

measure of the overall activity of a culture, an average spike rate was calculated from across 

the electrodes. Firstly, the average spike rate for each electrode (E) was calculated as  

𝐴𝑣𝑔𝑆𝑝𝑘𝑅𝑎𝑡𝑒K = 	
QR*S+T	UV	WX-Y+WZ

[\]^
, where 𝑡*._ is the total length of the recording in seconds. 

Then, to give a spike rate for the entire array (A), 𝐴𝑣𝑔𝑆𝑝𝑘𝑅𝑎𝑡𝑒` =

𝑚𝑒𝑑𝑖𝑎𝑛	(𝐴𝑣𝑔𝑆𝑝𝑘𝑅𝑎𝑡𝑒KL, … , 𝐴𝑣𝑔𝑆𝑝𝑘𝑅𝑎𝑡𝑒K)). As with average spikes/electrode, the median of the 

electrode spikes rates was used to control for especially high or low firing rates.  

 

Maximum spike rate. This was simply determined as the highest electrode spike rate 

(𝑆𝑝𝑘𝑅𝑎𝑡𝑒K) calculated. 
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Average inter spike interval (IsI). As with spike rate, a single value for IsI was calculated per 

array to allow comparisons with other cultures. First, the individual IsIs were determined for 

each electrode by finding the difference between each of the spike time-stamps. Then, the 

average electrode IsI was determined as 𝐴𝑣𝑔𝐼𝑠𝐼K = 𝑚𝑒𝑎𝑛(𝐼𝑠𝐼L, … , 𝐼𝑠𝐼)). Finally, as with spike 

rate, the average array IsI was given as 𝐴𝑣𝑔𝐼𝑠𝐼 = 𝑚𝑒𝑑𝑖𝑎𝑛	(𝐴𝑣𝑔𝐼𝑠𝐼KL, … , 𝐴𝑣𝑔𝐼𝑠𝐼K)).  

 

Number of detected bursts. The detection of bursts in spontaneously activity neural cultures is 

a topic which has received a large amount of discussion, primarily because there is no standard 

definition for what counts as neuron burst. Methods for bursts detection include using an IsI 

threshold (Chiappalone et al., 2005; Wagenaar et al., 2006) , a hybrid of parameters based 

upon IsI and instantaneous spike rate (Bakkum et al., 2013), and methods based upon 

evaluating a cumulative moving average for IsI distributions {Kapucu 2012 (Kapucu et al., 

2016). Despite the appeal of the methods developed by Kapucu et al., especially as they have 

been adapted for use with developing iPS cell neurons, it was decided to use a more basic 

approach based upon a maximum IsI threshold. This was primarily down to the difficulty found 

in adapting the cumulative moving average algorithms for use in Matlab. Two parameters are 

required for burst detection using an IsI based approach: the number of spikes required in a 

burst and the maximum IsI between each of those spikes in the burst. The number of spikes 

required for a burst should be, of course, at least two but is in fact mostly decided at the 

researcher’s discretion. Here, the minimum number of spikes required for a burst was set at 3. 

Determining the threshold for the maxium IsI interval was achieved by plotting histograms of the 

total IsIs for each array. Figure 3.4 shows IsI histograms from two different arrays, plotted with 

bin widths of 10 ms. The threshold for maximum IsI was determined as the nearest 50 ms 

greater than the major ‘short interval’ peak + 50 ms (dotted red lines in Figure 3.4; 300 ms in A, 

150 ms in B). This threshold was fixed for every set of experiments, not every array and as such 

was a compromise based on the firing properties of the cohort of arrays being analysed. The 

maximum IsI interval used was 300 ms.    
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Figure	3.4	-	Determination	of	maximum	inter-spike	interval	(IsI)	for	the	detection	of	burst	firing	in	MEA	
cultures.	To	determine	the	maximum	IsI	threshold	for	burst	firing,	histograms	of	IsI	from	across	a	single	
array	were	created	with	bin	widths	of	10	ms.	A	and	B	show	the	IsI	histograms	for	two	different	MEA	
cultures.	Thresholds	(red	dotted	lines)	were	determined	manually	as	the	nearest	50	ms	greater	than	the	
major	short	interval	peak	+	50	ms.							

A	

B	
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Figure 3.5A shows a raster plot of spikes for 10 electrodes all which show sustained mid-rate 

firing. When arrays with consistent culture-wide firing such as this are analysed, the outcome 

measures as described above performed well. However, Figure 3.5B shows an array of 10 

electrodes where 5 of electrodes are either very inactive or silent. In this situation, it was found 

that the average spike rate and average IsI were being disproportionally reduced, even with the 

control of medians. While each electrode was manually chosen for analysis as described in 

section 3.3.3, in some circumstances, electrodes were chosen because of their activity at an 

earlier or later time point. For example, to maintain the consistency of analysing cultures 

throughout development, electrodes were chosen based upon their activity across the entire 

experimental time frame (e.g. 60 days), such that as far as possible, the exact same electrodes 

were analysed for every time point for each array. This however meant that in some cases, an 

electrode was silent for a particular time point, therefore introducing error into the calculations of 

average array wide measurements.  

 

To control for this eventuality, a threshold for electrode analysis was set such that only 

electrodes with a certain number of spikes would be counted in the measurements. The 

threshold was calculated as the following: 

 

 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒	𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎 , where 𝑎 = dX-Y+WZ\]^
L00

	𝑥	5, where 𝑆𝑝𝑖𝑘𝑒𝑠K*._ is the 

number of spikes in the most active electrode. This therefore determines that the threshold is 

set at the nearest integer corresponding with 5% of the number of spikes seen in the most 

active electrode in the array.  

 

Figure 3.5C shows the summaries for the statistics calculated using the standard methods, and 

the adjusted values calculated from only those electrodes which pass the electrode analysis 

threshold. When the activity in a culture is consistent across the array, as in figure 3.5A, the 

adjusted analysis is identical to the standard method, as all 10 electrodes pass the activity 

threshold. However, where array wide activity is inconsistent, as in Figure 3.5B, the adjusted 

statistics only include the 6 electrodes which contained at least 5% of the number of spikes of 

the most active electrode (most active electrode had 2321 spikes, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	 = 	 fgfL
L00	

×5 = 116). 

This corrects the measurements involving averages to better represent the activity of the 
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culture, while having little effect on the the total spike count or the number of bursts as the 

majority of these are already contained in the most active electrodes.  

 

For all MEA experiments in this project, the presented statistics were calculated as described 

above, with the additional adjustment to control for variable electrode activity.     
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Figure	3.5	-	Controlling	for	variable	electrode	activity	in	the	calculation	of	basic	MEA	statistics.	When	
the	majority	of	analysed	electrodes	across	an	array	are	detecting	consistent	activity	(A),	the	standard	
methods	for	calculating	statistics	are	useful.	However,	when	there	is	large	variability	in	the	amount	of	
firing	detected	in	some	electrodes	(B),	the	calculated	statistics	are	often	misrepresentative.	To	account	
for	this	variability,	an	adjusted	method	of	calculation	was	devised	such	that	only	those	electrodes	
showing	at	least	5%	of	the	number	of	spikes	detected	in	the	most	active	electrode	are	included	(C).	This	
adjustment	provided	statistics	that	better	reflected	the	activity	of	the	culture.	Raster	plots	show	activity	
over	10	minutes.						

A	

B	

C	
Consistent	firing	

	 Standard	 Adjusted*	
Electrodes	analysed	 10	 10	

Total	spikes	 9865	 9865	
Spikes/electrode	 530	 530	

Avg	Spike	Rate	(Hz)	 0.70	 0.70	
Avg	IsI	(ms)	 1350	 1350	

Bursts	 409	 409	
Variable	firing	
	 Standard	 Adjusted*	

Electrodes	analysed	 10	 6	
Total	spikes	 8571	 8499	

Spikes/electrode	 133.5	 388	
Avg	Spike	Rate	(Hz)	 0.22	 0.89	

Avg	IsI	(ms)	 3550	 1541	
Bursts	 217	 217	

*Threshold	for	electrode	inclusion		=	containing	at	least	5%	of	the	
number	of	spikes	seen	in	most	active	electrode	
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3.3.6 Network Analysis 

 

The second primary group of analyses used was that concerning the activity of a culture as a 

whole and in particular the analyses of coordinated network behaviour. These measures were 

based upon the creation of array wide spike detection rates (ADSR), which have been used by 

a number of previous studies for the analysis of synchronised behaviour in MEA cultures (Sun 

et al., 2010; Lu et al., 2016; Mok et al., 2012). ASDRs were calculated by firstly dividing 

individual electrode data into 200 ms bins and counting the number of detected spikes within 

that bin. The bin ASDR is then determined by summing the number of spikes seen in each 200 

ms bin culture-wide (Figure 3.6A). ASDR plots can then be created by plotting the total number 

of spikes in each bin serially for the length of the recording (Figure 3.6B). For cultures showing 

synchronised culture-wide activity, the ASDR plots appear as periods of oscillating peaks (More 

Active Periods; MAPs) and troughs (Less Active Periods; LAPs). For cultures showing this type 

of behaviour, two statistics were determined: 

 

Max ASDR. This simply describes the maximum of spikes detected in a single 200 ms bin 

culture wide i.e. the summed number of spikes see in each electrode for that bin. This provides 

a good measure of how synchronised the activity is across the culture as increased 

synchronicity leads to more spikes being detected in that particular bin. 

 

Average MAP interval. The interval between the MAP peaks of ASDR plots serves as a 

primary measure of network activity in cultures. As with all outcomes measures, a single value 

was derived per array. To detect MAP peaks from the remaining ASDR data, threshold was first 

determined over which peaks had to appear. This ensured any secondary peaks within the 

same MAP were not counted. The MAP threshold was determined as 𝑀𝐴𝑃	𝑇ℎ𝑟 = 	l._`dmn
L00

×𝑛, 

where max ASDR is the measure described above and 𝑛 determines the threshold level. The 

threshold level was typically between 40 and 50% but was determined for each individual set of 

experiments (and kept constant throughout those experiments). The findpeaks function of 

Matlab was then used on the binned spike counts (bin ASDRs) data with a MinPeakProminence 

of 4 and a MinPeakHeight corresponding to the MAP threshold. The intervals between each 

MAP peak (excluding the first detected peak) were then calculated. In some cases, two or more 

peaks with very similar heights were detected within the same MAP, therefore giving very small 
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MAP intervals. To ensure that these were not included in analysis, ‘true’ MAP intervals had to 

have a value of > 4000 ms. The overall average MAP interval for each array was then 

calculated as 𝐴𝑣𝑔	𝑀𝐴𝑃	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑀𝐴𝑃	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙L, … ,𝑀𝐴𝑃	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) , (see figure 

3.6C).  
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Figure	3.6	-	Calculation	of	array	wide	spike	detection	rates	(ASDRs)	for	the	analysis	of	network	activity	
in	MEA	neuronal	cultures.	ASDRs	are	calculated	by	first	counting	the	number	of	spikes	detected	in	each	
200	ms	bin	in	each	electrode	analysed.	The	total	summed	spikes	across	all	electrodes	is	the	ASDR	for	that	
bin	(A).	ASDR	plots	show	the	total	number	of	culture	wide	spikes	per	bin	plotted	serially	across	the	length	
of	the	recording	(B).	Synchronised	culture-wide	activity	is	characterised	by	ASDR	peaks	(More	Active	
periods;	MAPs)	and	troughs	(Less	Active	Periods;	LAPs),	which	highlights	the	slow	cyclic	nature	of	the	
firing.	The	intervals	between	the	peaks	(red	numbers	in	B)	are	calculated	and	the	median	value	
represents	the	average	MAP	interval	for	that	array	(C).	A	shows	a	representative	calculation	of	ASDRs	for	
the	first	10	bins	(2	seconds	in	total)	across	5	electrodes.	B	shows	a	complete	ASDR	plot	for	a	culture	of	iPS	
cell	derived	neurons	showing	coordinated	firing.	The	red	line	shows	the	threshold,	above	which	MAPs	are	
determined	and	is	calculated	as	40%	of	the	maximum	number	of	spikes	seen	in	an	individual	bin.	C	shows	
the	calculation	of	the	average	(median)	MAP	interval	for	the	culture	shown	in	B.										

1	

2	
3	

4	

5	

6	

7	 8	 9
10	

11	
12	

A	

B	

C	

	 Spike	counts	
Bin	N°	(200	ms	width)	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Electrode	12	 0	 0	 3	 5	 6	 3	 2	 0	 0	 0	
Electrode	23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
Electrode	45	 0	 0	 1	 0	 0	 0	 1	 1	 0	 0	
Electrode	64	 0	 0	 2	 0	 1	 2	 1	 0	 1	 1	
Electrode	82	 1	 0	 1	 0	 1	 0	 1	 2	 1	 2	

Bin	total	(ASDR)	 1	 0	 7	 5	 8	 5	 5	 3	 2	 3	
	

ASDR	Peak	 1	 2	 3	 4	 5	 6	 Median	
MAP	

Interval	=		
45800	

Interval	(ms)	 N/A	 23800	 64000	 52600	 45800	 58200	
ASDR	Peak	 7	 8	 9	 10	 11	 12	

Interval	(ms)	 42600	 49200	 51000	 36000	 42400	 38600	
	

AS
D

R
 (s

pi
ke

 c
ou

nt
s/

bi
n)

 



3. Development of an MEA analysis pipeline 

 87 

3.3.7 Wave feature extraction and clustering 

 

For some of of the experiments presented in Chapter 6, spike waveforms were isolated and 

subsequently compared between different cell lines. To allow the analysis of different sub-

populations of spike shapes within a bigger population, features were extracted from spike 

waveforms and subsequently clustered into distinct groups.  

 

Several approaches are available for the extraction of feature information from spike shapes 

including using the maximum spike amplitude, spike width, ratio of amplitude:width (Lewicki, 

1998) and wavelet transformation of the waveforms (Takekawa et al., 2010; Quian Quiroga et 

al., 2004). Here, it was decided to use principle component analysis (PCA) which provides both 

feature extraction and data dimension reduction. This was chosen as it provided a relativity 

powerful method of feature extraction which was simple enough to integrate into the existing 

parts of the pipeline and provided output values than could be inputted into clustering algorithms 

without further manipulation. PCA was performed on the standard voltage (amplitude) data for 

the spike waveforms. While transformations of this data have also been used in similar 

approaches (e.g. using the first or second derivatives of the waveform), these data 

manipulations here did not improve feature separation.  

 

Plotting of the first two principle components from the waveform PCA data provided an idea 

about the number of groups, if any, that the data could be clustered into. Figure 3.7A shows 

some representative PCA data of a population of spikes shapes containing three clear sub-

populations as described by the first two principle components (coloured ovals show manual 

identification of clusters). Two different algorithms were then tested to compare their ability to 

cluster such data: k-means clustering is a unsupervised learning algorithm based upon the 

clustering of data about defined centre (Kanungo et al., 2002); DBSCAN is a density based 

clustering tool based upon the grouping of data in terms of the density of nearby 

neighbourhoods (Schubert et al., 2017). 

 

K-means clustering was performed on the PCA data using the built in function in Matlab. Figure 

3.7B shows the results of the ‘best’ achieved k-means clustering, using cityblock distance 

calculations, a cluster number of 3 and 10 replications. While cluster 2 (blue) corresponds OK 

with the leftmost group (red) seen in 3.7A, it was unable to detected the small green cluster in A 
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and instead split the large blue cluster in A between two different groups. Figure 3.7B highlights 

well some of the limitations of k-means clustering: because the number of clusters into which 

the data is being grouped is a key part of the algorithm (and therefore needs to be known a 

priori ), data is ‘forced’ into a cluster despite the fact it may not logically belong and furthermore, 

there is no concept of ‘noise’ such that all data points are clustered one way or another; the 

algorithm also often struggles, as here, when clusters are of different shapes, sizes and do not 

have discreet borders.  

 

To help overcome these issues, DBSCAN clustering was performed on the same PCA data. 

DBSCAN clustering was achieved using a plugin containing an implementation of DBSCAN 

developed for Matlab (Kalami Heris, 2015). Figure 3.7C shows the results of the ‘best’ DBSCAN 

clustering achieved, with an ε = 40 and min points = 250. This clustering method performed 

much better than k-means, identifying well the three manually identified clusters in 3.7A. 

Furthermore, one of the primary benefits of DBSCAN is its handling of data points which do not 

fit its clusters, identifying them instead as un-clustered ‘noise’. 

 

Based on its superior performance grouping this type of data, clustering was therefore 

performed in the project (Chapter 6) using DBSCAN. It should be noted however that one of the 

disadvantages of DBSCAN (and an advantage of k-means) is its high computational workload 

and processing time, which increases dramatically with larger datasets. Furthermore, unlike k-

means clustering, DBSCAN cannot be implemented with parallel processing, again increasing 

the calculation times.  
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Figure	3.7	-	Principle	components	analysis	and	clustering	of	spike	waveform	data.	Feature	extraction	
and	dimension	reduction	was	firstly	achieved	with	principle	component	analysis	(PCA).	The	plotting	of	
the	first	2	principle	components	allowed	the	visualisation	of	feature	distribution	and	the	manual	
highlighting	of	clusters	(A).	k-means	clustering	of	the	PCA	data	did	not	successfully	identify	the	three	
highlighted	clusters	(B).	Clustering	was	achieved	using	cityblock	distance	measurements	and	10	
replications.	DBSCAN	clustering	performed	much	more	efficiently,	clustering	the	data	broadly	into	the	
three	groups	manually	identified	(C).	DBSCAN	clustering	was	achieved	with	ε	=	40	and	minpoints	=	250.							
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3.4 Summary  

 

This chapter has presented a set of computation tools for the analysis of MEA data which have 

been specifically designed for use with extracellular recordings of iPS cell derived neurons. 

While perhaps not as comprehensive as pre-existing packages, this toolset performs a step-by 

step analysis of data in a way which is hopefully clear and intuitive for users who are less 

experienced both with the computational aspects of the procedures and the methodology used 

at each each step. Moreover, because this toolset has been developed in parallel with MEA 

culturing and recording of iPS cell derived neurons and has been optimised for the analysis of 

such cells, it should allow a greater understanding about the nature of these neurons throughout 

their development. The toolset focuses on the calculation of two key groups of outcome 

measures, those based upon general excitability at the level of individual units (Avg spike rate, 

Avg IsI, detected bursts etc.) and those based upon the activity of the cultures when exhibiting 

network driven behaviours (Max ASDR, Avg MAP interval). While the general excitability 

measures are relatively standard, the additional controls and adjustments implemented here 

should provide statistics which are more representative of the activity of cultures and allow 

reliable comparisons both within and between experiments. Compared to other methods of 

network analysis (e.g. correlation analyses, coherence etc.) the network statistics produced 

here are relative simple. However, they should provide a clear and intuitive method of 

quantifying changes in any such network behaviour, especially when tracking MEA cultures 

throughout their development.        
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4. Optimising culturing conditions to improve the physiological 

maturity of hPS cell - derived neurons 
 

 

 

 

4.1 Introduction 

 

 

Protocols for the differentiation of human pluripotent stem cells (hPS cells) into neurons have 

improved immeasurably over the last 10 years, such that reliable and repeatable procedures 

now exist for the formation of numerous specific neuronal types including glutamatergic (Shi et 

al., 2012a), GABAergic (Maroof et al., 2013), cholinergic (Hu et al., 2016) and dopaminergic 

(Kwon et al., 2014) neurons. For understandable reasons, the primary focus of such 

approaches has been on the homogeneity of cultures and the production of purer populations of 

neuronal types with increasing efficiency and speed. For example, in general protocols for 

differentiating neurons from hPS cells are long - often in the order of several months – which 

may introduce practical limitations in terms of the productivity associated with such experiments. 

Moreover, the efficiency of early protocols could be relatively poor and variable, especially 

between different stem cell lines. Consequently, in the years since the first presentation of a 

standard method of neural differentiation (e.g. Chambers et al, 2009), a number of studies have 

reported optimised protocols aimed at speeding up the differentiation process and increasing 

neuron yield (Zhang et al., 2013; Shi et al., 2012b).  

 

Until more recently, the physiological maturity of the neurons produced using such 

differentiation protocols has perhaps been of lower priority. Although most studies carry out 

investigations regarding the maturity of neurons, this is often primarily determined by the 

expression of certain proteins, for example which mark neuron ‘maturity’ (MAP2, NEUN etc.) or 

the development of functional synapses (PSD-95, Synaptophysin etc.). Assessing the functional 

maturity of hPS cell derived neurons is important however as these cells have been repeatedly 

shown to be immature by several physiological measures, including resting membrane 

potentials (Vrest) and the formation of spontaneous action potentials. Moreover, investigating the 
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function of developing hPS cell derived neurons plays a key part of increasing our 

understanding about their use as a model system, especially with regards to modelling 

neurodevelopmental diseases and developing potential therapies.  

 

Recently a number of studies have described differentiation protocols which have produced iPS 

cell derived neurons with often impressive improvements in a number of physiological measures 

(Bardy et al., 2015; Telezhkin et al., 2016). However, these protocols either require the use of 

multiple small molecule supplements or non-standard medium which may not be appropriate in 

certain circumstances. Over a number of years, a body of evidence has shown that the use of 

astrocytes either in co-culture with neurons, or to pre-condition differentiation medium can 

enhance the maturity of neurons, with particular improvements in functional synapse formation 

(Elmariah et al., 2005; Kucukdereli et al., 2011; Allen et al., 2012; Rushton et al., 2013). 

Moreover, several studies have also shown that maintaining neuronal cultures in incubators with 

hypoxic atmospheres improves the survival and growth of rodent and hPS cell derived neural 

precursors (Bilican et al., 2014; Struder et al., 2000; Liu et al., 2009). Together, these relatively 

simple physiological modifications provide an opportunity to increase the functional maturity of 

neurons without large changes to differentiation protocols.  

 

The overall goal of this project is to develop a reliable platform for the analysis of neural network 

function using extracellular recordings via MEAs. A key prerequisite of the neurons to be studied 

therefore is that they are sufficiently mature as to form functional synapses and show 

spontaneous action potentials. Preliminary patch-clamping experiments of iPS cell derived 

neurons using the dual-SMAD inhibition based protocol described in Chapter 2 showed that 

even after an extended differentiation period (>80 days), neurons were functionally immature by 

several measures, including polarised resting membrane potentials (Vm), high input resistance 

(RI), low numbers of induced action potentials (current-induced action potentials; iAPs) and, 

importantly, very few spontaneous action potentials. In light of these preliminary studies and 

evidence in the recent literature, it was decided to study the optimisation of the differentiation 

protocol with a primary aim of increasing the functional maturity of iPS cell neurons, with a view 

to aiding the development of the MEA-based analysis platform. In order to permit minimal 

changes to the protocol and to allow relatively seamless integration with MEA culturing, it was 

decided to adapt and develop the current protocol based upon culturing neurons with medium 

pre-conditioned by human astrocytes and maintaining cells in hypoxic incubator conditions.   
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4.2 Chapter Aims 

  

This study combines the two physiological conditions described above as experimental 

variables to the standard differentiation protocol used in the group for the production of 

glutamatergic forebrain neurons. The aim of the study is to assess the effect of human astrocyte 

conditioned differentiation media and hypoxic incubator conditions on the functional maturity of 

hPS cell derived neurons. This will primarily be assessed by single – cell patch clamping of cells 

at different points throughout development to study intrinsic passive properties and both induced 

and spontaneous excitability.   
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4.3 Results 

 

 

In this chapter, forebrain cortical neurons were produced using the protocol described in chapter 

2 within the following experimental groups: For ACM/2% conditions, neurons were switched to 

1:1 ACM/fresh N2B27 medium and were transferred to an incubator maintained at 37ºC with 5% 

CO2 and 2% O2 at D20-22, 2 days after the second passage. They were cultured in these 

conditions until the end of the experiments. For standard conditions, cells were maintained in 

standard N2B27 and incubated at 37ºC in 5% CO2 and 95% air.  

 

 

 

4.3.1 Intrinsic electrophysiological properties of neurons 

 

Neurons cultured in both the standard and ACM/2% conditions for these experiments were 

patched at 30 and 50DPP as described in Chapter 2. Figure 4.1 shows a representative 

selection of the patched cells, visualised by filling cells with Alexa Flour 594.  

 

Resting membrane potentials. Neuron resting membrane potentials (Vrest) provide a good 

initial measure in determining the relative maturity of developing cells: As neurons mature, Vrest 

becomes more polarised as more channels and transporters are expressed in line with the cells 

development. Here, it was first determined that there was a clear and significant variation of the 

Vrest of neurons both in terms of experimental conditions and developmental time point (Figure 

4.2A&B; see table 3.1 for statistics). In standard culturing conditions there was no change in the 

median Vrest of neurons cultured in standard conditions between 30DPP (-25 mV, CI[-28.8, -

20.43]) and 50DPP (-26.65 mV, CI[-30.7, -22.8]). However, there was a significant decrease in 

Vrest between the time points in the ACM/2% neurons, from median of -30.62 mV CI[-36.52, -

26.55] to -39.5 mV CI[-43, -37]. Looking within the time points, while cells cultured in ACM/2% 

conditions and patched at 30DPP had hyper-polarised Vrest compared to control conditions, this 

difference was not significant. By 50DPP however, the Vrest in ACM/2% neurons was 

significantly decreased compared to control conditions (see Table 3.1). The cumulative 

probability distributions in Figure 4.2B highlight the changes in recorded Vrest over both 

development and between the experimental conditions. It can be seen that at both time points 



	

Figure	4.1	–	Representative	images	of	iPSC	derived	cortical	neurons	patched	in	this	study.	Patched	neurons	were	filled	with	10mM	Alexa	Fluor	594	within	the	internal	
solution.	Fluorescent	images	were	taken	using	a	Q-Imaging	Rolera	Bolt	camera	mounted	to	an	Olympus	BX51	WI	microscope,	using	an	Olympus	10X	water	immersion	
objective,	with	light	provided	by	a	CoolLED	pE-2	LED	system.	Captured	images	were	processed	with	Q-Capture	Pro	7	(Q-Imaging)	and	Fiji.	The	images	presented	here	
are	all	taken	from	cultures	patched	at	50DPP	in	either	Standard	or	ACM/2%	conditions.		Scale	bars	show	100	µm.							95   
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the distribution of Vrest in the ACM/2% conditions are shifted towards more hyper-polarised 

values. In fact this also shows that for the most part, Vrest values are lower in the ACM/2% 

conditions at 30DPP compared to standard conditions at 50DPP. Finally, Figure 4.2B highlights 

that the neurons recorded at 50DPP in the ACM/2% conditions clearly represent the most 

functionally mature cells in terms of Vrest.  

 

Input Resistance. A second key intrinsic property of neurons, input resistance (RI) describes 

the voltage change recorded in a neuron when injected with a known low current-step. A high 

input resistance implies fewer, closed ion channels while a low input resistance implies more 

open ion channels and as such, RI is expected to decrease throughout development as neurons 

express more functional channels. Here, it was first noticeable that calculated RI values were 

highly variable within each’s groups population. This was especially the case at 30DPP where 

the means ± SD were 2.342 GΩ ± 1.122 and 2.524 GΩ ± 1.34 for the Std and ACM/2% groups 

respectively (Figure 4.2C). Perhaps surprisingly given this intra-group variability, a one way 

ordinary ANOVA of all groups showed that there was significant variation between the 

population means over time and between the conditions (see Table 3.1). Post-hoc Tukey’s 

multiple comparisons revealed that the only significant difference was between day 30DPP and 

50DPP within the ACM/2% group. There were no differences seen between experimental group 

at either time point. The cumulative probability distributions in Figure 4.2D highlight that only 

neurons recorded at 50DPP in the ACM/2% conditions had RI values shifted lower compared to 

the other three groups.  

 

Membrane time constant. The final passive neuron property analysed here is that of the 

membrane time constant (tau or τ), which describes the rate at which a neuron returns to a 

steady resting membrane state after a receiving a current input. It serves as a measure of 

neuron maturity as, in a similar way to RI, tau is anticipated to decrease over neuron 

development due to greater expression of functional channels and transmembrane transporters. 

In this study, as with RI, the observed values of tau within each of the four groups were variable. 

Again this was especially noted at 30DPP where the mean tau ± SD was 91.76 ms ±46.33 and 

95 ms ± 54.15 for the Std and ACM/2% groups respectively (Figure 4.2E). It was also clear that 

both in terms of development and between experimental groups that there was little change in 

the average tau values recorded. Indeed, an ordinary one-way ANOVA of all four groups 



4. Optimising culturing conditions of hPS cell derived neurons 

 97 

confirmed that there was no difference between the distributions (Table 3.1). As with Vrest and 

RI, it was the neruons recorded at 50DPP in the ACM/2% conditions which showed the most 

mature phenotype, with an average tau of 74.44 ms ± 37.35. However, as can be seen in Figure 

4.2F, there was no clear separation of the cumulative probability distributions for this group as 

was observed for the other intrinsic properties.  

 

Finally, to gain further understanding about the nature of the passive properties of these 

neurons, current-voltage (I-V) curves were calculated for each patched cell. These report the 

voltage change of the neuron in response to increasing steps of current, beginning with negative 

current injections and provide a good overview of the cells passive properties with regards to 

neuron maturity (Figure 4.3A). Here, at both 30 and 50DPP, patched neurons exhibited linear I-

V responses, especially with negative current injections (Figure 4.3B&C). At both time points, 

there is a plateauing of the voltage response with more positive current injections. No 

differences were observed in the I-V curves between the cells cultured in standard and ACM/2% 

conditions recorded at either time points, or between the same experimental group at each time 

point.  

 

Overall these results show that the ACM/2% conditions generally have a positive effect on the 

intrinsic properties of iPS cell derived neurons. In particular, the conditions induced a hyper-

polarising shift in the Vrest of neurons compared to standard conditions at both 30 and 50DPP. 

Moreover, while there was no change in the Vrest over development in the standard conditions, 

in ACM2% conditions Vrest significantly decreased between the time points, suggesting that the 

conditions aid the functional maturation of the neurons. ACM/2% conditions had more limited 

effects on RI and tau, two properties linked strongly to the integrity of the cell membrane and the 

expression of functional ion channels.  
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Table 4.1 – Summaries of statistics for the comparisons of intrinsic electrophysiological properties 
between neurons cultured in standard and ACM/2% conditions. 

 

 

 

 

 

 

 

 

  

Resting membrane potential (mV) 

 Kruskal –
Wallis test Dunn’s multiple comparisons 

  Mean rank difference Adjusted p value 
30DPP Std vs 50DPP Std 

H(3)= 31.37, 
p=<0.0001 

2.49 >0.9999 
30DPP ACM/2% vs 50DPP ACM/2% 40.69 < 0.0001 

30DPP Std vs 30DPP ACM/2% 16.95 0.3251 
50DPP Std vs 50DPP ACM/2% 38.2 < 0.0001 

    
Input resistance (GΩ) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std F(3,85) = 2.892, 

R2=0.0926, p 
= 0.04 

0.1758 [-0.714 – 1.066] 0.9263 
30DPP ACM/2% vs 50DPP ACM/2% 0.8755 [0.054 – 1.697] 0.0321 

30DPP Std vs 30DPP ACM/2% -0.1823 [0.956 – 0.592] 0.9547 
50DPP Std vs 50DPP ACM/2% 0.5175 [-0.414 – 1.449] 0.4688 

    
Membrane time constant (ms) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std F(3,78) = 0.323, 

R2=0.0318, p 
= 0.809 

No post – hoc comparisons 30DPP ACM/2% vs 50DPP ACM/2% 
30DPP Std vs 30DPP ACM/2% 
50DPP Std vs 50DPP ACM/2% 
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Figure	4.2	-	Intrinsic	properties	of	iPS	cell	derived	neurons	cultured	in	standard	and	ACM/2%	
conditions	recorded	at	30	and	50	days	post	plating	(DPP).	iPS	cell	derived	neurons	were	patched	at	
two	time	points	to	assess	changes	in	intrinsic	cell	properties	over	development	and	between	neurons	
cultured	in	standard	conditions	and	those	cultured	with	astrocyte	conditioned	medium	(ACM)	and	in	
a	hypoxic	(2%)	incubator	environment.	A	shows	individual	data	points	together	with	medians	±	95%	
confidence	intervals.	C	and	E	show	individual	data	together	with	means	±	SD.	B,	D	and	F	show	the	
cumulative	probability	distributions	of	the	four	populations	for	each	property.	The	resting	membrane	
potential	(Vrest)	of	neurons	cultured	in	ACM/2%	conditions	was	significantly	lower	at	50DPP	than	
neurons	in	standard	conditions.	There	was	no	effect	on	input	resistance	or	membrane	time	constant	
(τ	or	tau)	from	culturing	condtions.	p	values	are	result	of	post-hoc	multiple	comparison	tests	
following	ordinary	or	nonparametric	one	way	ANOVA.	n	=	28	(30DPP	Std),	25	(30DPP	ACM/2%),	19	
(50DPP	Std)	and	23	(50DPP	ACM/2%)	across	3	differentiations.				
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Figure	4.3	–	Current-Voltage	relationships	of	iPS	cell	derived	neurons	cultured	in	standard	and	ACM/2%	
conditions	patched	at	30	and	50	Days	Post	Plating	(DPP).	1	second	pulses	were	injected	into	cells	being	
held	at	around	–	70	mV.	Initial	pulses	ranged	between	-50	and	-100	pA	with	subsequent	pulses	increases	
by	around	5-20	pA,	both	depending	on	the	input	resistance	of	the	cell.	15	sweeps	were	performed	in	total	
for	each	cell	(A).	The	was	no	differences	in	the	shape	of	the	average	I-V	profile	between	neurons	cultured	
in	standard	conditions	or	those	in	ACM/2%	conditions	at	either	30DPP	(B)	or	50DPP	(C).	Indeed,	in	all	four	
groups	the	average	profile	was	generally	linear	until	around	+20	pA.	Each	point	in	B	and	C	represents	the	
mean	voltage	response	seen	across	all	cells	in	that	group.	Bars	show	±S.E.M.	The	average	current	step	for	
each	time	point	was	calculated	as	the	mean	of	the	15	individual	steps	for	each	cell.	n	=	28	(30DPP	Std),	25	
(30DPP	ACM/2%),	19	(50DPP	Std)	and	23	(50DPP	ACM/2%)	across	3	differentiations.							
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4.3.2 Cell classification by induced action potentials 

 

 

The intrinsic properties of neurons are closely linked to the function of the cell, in particular to 

the ability of developing neurons to produce action potentials when injected with increasing 

steps of current (induced action potentials, iAPs). The classification of neurons based upon their 

iAP state is a useful measure in determining general cell excitability and is a simple but clear 

marker of maturity at the time of recording. To compare the iAP state of neurons in standard 

and ACM/2 conditions, cells were categorised into five groups based on their ability to produce 

iAPs, ranging from none to trains of APs (Figure 4.4A). Criteria for iAP classification is described 

in Chapter 2. Due to the fact that the Vrest of many of the cells was above the threshold for iAP 

initiation, all cells were held at ∼ -70 mV during these recordings.  

 

55.17% of neurons cultured in standard conditions and patched at 30DPP were classed as 

active, which included showing single APs (27.59%), single with train attempts (13.79%) and full 

AP trains (13.79%; Figure 4.4B). At the same time point, ACM/2% neurons were much more 

excitable, with 79.16% classed as active and a greatly increased 37.50% showing full AP trains. 

This trend was also seen with cells patched at 50DPP, as 62.96% of cells were active in the 

standard conditions compared to 83.88% in ACM/2%. At both time points there was a 

noticeable increase in the number of ACM/2% neurons showing trains of iAPs compared to 

standard conditions (23.71% and 14.81% increases at 30DPP and 50DPP respectively). 

Interestingly, changes within the same experimental group between the two time points were 

less pronounced. Within the standard conditions group, there was a small increase in all three 

active classes, leading to a 7.79% increase in the number of active cells. Within the ACM/2% 

group, while there was also a small (4.72%) increase in the total number of active cells (driven 

by an increase in single AP and single-attempted cells), there was a small decrease in the 

number of cells showing AP trains and an increase in the number of cells which showed no 

activity. 
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Single	+	
Attempted	
Trains	 

AP	Trains Figure	4.4	–	Classification	of	iPS	cell	derived	neurons	in	standard	and	ACM/2%	differentiation	
conditions	by	induced	action	potential	(iAP)	state.	Neurons	were	held	at	∼	-70	mV	and	
injected	with	Δ+5	pA	current	steps.	Cells	were	classified	according	to	five	states	of	iAP	
observed	(A).	Full	iAPs	(including	within	trains)	had	to	reach	0	mV	or	were	deemed	attempted.	
Neurons	cultured	in	ACM/2%	conditions	were	more	active	at	both	30DPP	and	50DPP	time	
points,	with	more	cells	showing	single	iAP,	attempted	trains	or	trains	of	iAP.	Neurons	were	also	
more	active	at	50DPP	compared	to	their	same-condition	counterparts	at	30DPP.		The	boxed	
‘Active’	percentage	refers	to	the	total	of	these	three	states	(B).	n	=	28	(30DPP	Std),	25	(30DPP	
ACM/2%),	19	(50DPP	Std)	and	23	(50DPP	ACM/2%);	across	3	differentiations.		

A	 B	
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4.3.3 Intrinsic properties grouped by AP classification 

 

The results presented so far in this section provide some evidence that the ACM/2% culturing 

conditions improve the functional maturity of differentiated neurons. However, they have also 

shown that a high degree of variability exists within the cell populations, especially with regards 

to the intrinsic properties RI and tau. To investigate more fully the relationship between the three 

intrinsic properties and action potential formation, and to allow a greater understanding about 

the physiological nature of these neurons, intrinsic property results from both time points and 

experimental conditions were pooled and subsequently re-grouped according to the iAP 

classification described in section 4.3.2.  

 

Resting membrane potential. The pooled values for Vrest from all recorded cells across each 

experimental group at both 30DPP and 50DPP were re-categorised according to the iAP 

classification of the neuron from which they came (Figure 4.5A). This analysis showed clearly 

that active neurons (i.e. showed at least single iAPs) had hyperpolarised Vrest compared to 

inactive neurons (No iAPs and attempted iAPs), with the mean Vrest for inactive cells -21.85 mV 

±5.75 compared to -31.57 mV for those grouped in the three active classifications. Following 

one-way ANOVA, Tukey’s post-hoc multiple comparisons revealed that the mean values for 

each of the active groups were significantly hyperpolarised compared to that of both of the 

inactive classifications (six significant comparisons in total; see Table 3.2). Interestingly, there 

was no differences observed between the average Vrest of the three active groups, although with 

a mean of -35.2 ± 6.60 mV, neurons producing trains of iAPs had the most ‘mature’ phenotype 

of all classification groups.  

 

Input resistance and tau. It was unsurprising that when pooled RI values were re-grouped 

according to iAP class, each category showed a large amount of variation, similar to that seen in 

the time point/condition analysis (Figure 4.5B). Importantly, there were no differences in the 

mean RI values of active neurons compared with those classed as inactive (2.35 GΩ ±1.27 for 

two inactive classes; 2.16 GΩ ± 1.01 for three active classes), which was confirmed by one-way 

ANOVA. It was interesting to note that unlike Vrest, the cell classification with the most mature 

phenotype was not those producing iAP trains but those showing single iAPs (mean = 1.72 ± 

0.81 GΩ). A very similar pattern was seen when the pooled observations for tau were re-
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grouped according to neuron classification (Figure 4.5C). Again, the intra-group variance was 

high and there was little change in the mean value of tau between the five cell classifications, 

confirmed by one-way ANOVA (Table 3.2). However, similarly to RI, the cell classification group 

with the most mature phenotype was neurons showing single iAPs, with a mean value of 67.25 

± 35.71 ms).  

 

The three intrinsic properties analysed here were chosen partly based on the assumption that 

they would be good markers of neuron maturity and would therefore show a degree of change 

either in terms of experimental condition, developmental time point or indeed the iAP ability of a 

specific neuron. However, the results presented above suggest that, in this study, only Vrest is a 

reliable marker of neuronal function and therefore maturity. Moreover, these results suggest that 

the three measures do not represent co-ordinated read outs of cell maturity in these neurons – 

i.e. hyperpolarising Vrest is not necessarily linked to a reduction in RI or increase in tau. To test 

these associations, each intrinsic property of every patched cell was correlated with its 

respective other two parameters (Figure 4.5D-E). This analysis, showed that, as was suggested 

by the results in figure 4.5A-C, values of neuron Vrest do not correlate with the RI (Pearson’s 

correlation; R2 = 0.03466, p = 0.0807; figure 4.5D) or tau (R2 = 0.0056, p = 0.4988; figure 4.5E). 

Unsurprisingly given both their reliance on membrane properties, individual neurons RI and tau 

values correlated very strongly (R2 = 0.6515, p < 0.0001; figure 4.5F). 

 

Overall the results presented so far suggest that the ACM/2% conditions do improve the 

functional maturity of iPS cell derived neurons as shown in an increase in the number of 

patched cells showing iAP formation. This appears to be primarily driven by a reduction in Vrest , 

which is the only intrinsic property clearly associated with increased iAP firing. Furthermore, 

decreased Vrest does not appear to be associated with either decreasing RI or increasing tau, 

suggesting that these intrinsic measures are not necessarily linked in development and 

represent different aspects of neuron maturity. To investigate further the role of ACM/2% 

conditions on neuron maturity, cells were next analysed for any changes to the properties of the 

action potential produced.    
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Resting membrane potential (mV) 
 One way 

ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
No AP vs Single AP 

F(4,82) = 6.702, 
R2=0.246, p = 

0.0001 

9.8 [0.5848 – 19.02] 0.0314 
No AP vs Single – attempted 6.06 [-4.166 – 16.28] 0.0460 

No AP vs AP trains 9.81 [0.562 – 19.06] 0.0320 
Attempted vs Single AP 11.23 [3.701 – 18.75] 0.0007 

Attempted vs Single - attempted 7.482 [-1.278 – 16.21] 0.0128 
Attempted vs AP trains 11.24 [3.67 – 18.8] 0.0008 

    
Input resistance (GΩ) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
No AP vs Single AP 

F(4,82) = 0.923 , 
R2=0.0441, p = 

0.454 
No post – hoc comparisons 

No AP vs Single – attempted 
No AP vs AP trains 

Attempted vs Single AP 
Attempted vs Single - attempted 

Attempted vs AP trains 
    

Membrane time constant (ms) 
 One-way 

ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
No AP vs Single AP 

F(4,82) = 1.605, 
R2=0.0769, p = 

0.182 
No post – hoc comparisons 

No AP vs Single – attempted 
No AP vs AP trains 

Attempted vs Single AP 
Attempted vs Single - attempted 

Attempted vs AP trains 

Table 4.2 – Summaries of statistics for the comparisons of intrinsic electrophysiological 
properties of neurons classified by iAP state. 
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Figure	4.5	–	Intrinsic	properties	of	IPS	cell	derived	neurons	in	relation	to	cell	classification	by	induced	
action	potential	(iAP)	formation	and	the	relationships	between	individual	cell	properties.	Values	of	three	
intrinsic	properties	of	neurons	were	pooled	from	standard	and	ACM/2%	cultured	neurons	at	both	30	and	

50DPP	and	subsequently	re-grouped	according	to	the	AP	classification	of	the	neurons	from	which	they	

came	(A	resting	membrane	potential,	B	input	resistance,	C	membrane	time	constant).	Active	neurons	

(those	showing	at	least	single	iAP)	had	hyperpolarised	resting	membrane	potentials	compared	to	inactive	

cells	(A),	while	there	was	no	relationship	between	cell	class	and	either	input	resistance	or	membrane	time	

constant	(B	and	C).	In	D,E	and	F,	all	values	were	pooled	into	one	group	and	correlated	with	their	respective	
other	properties	for	each	cell.	There	was	no	relationship	seen	between	Vrest	and	input	resistance	or	tau	but	

a	strong	correlation	between	tau	and	input	resistance	(F).	R
2
	and	p	values	correspond	to	Pearson’s	

correlations.						
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4.3.4 Action potential analysis 

  

Single action potential events from each neuron patched at 30 and 50DPP in both experimental 

groups were extracted and analysed to study the role of ACM/2% culturing conditions on 4 key 

action potential properties: iAP threshold, iAP amplitude, iAP half-width and max rise slope. 

While there are several measures which can be analysed when looking at single events, these 

four were chosen here to provide a good overview of the action potential features. Figure 4.6A 

provides a description of the properties of action potentials analysed here. 

 

Action potential threshold. In line with the Vrest of developing neurons, the threshold for AP 

initiation polarises as the cell matures, although it should be noted that this is not necessarily a 

linear relationship and can be specific to neuron type. The threshold for iAP initiation was 

calculated for each cell using the first derivative method described in section 2… and shown in 

figure 4.6A. In this study, there was little effect of developmental time point on neurons in both 

standard and ACM/2% conditions on the threshold for iAPs (Figure 4.6B). Moreover, there was 

no difference in AP threshold between standard and ACM/2% cells at both time points. These 

findings were confirmed with one-way ANOVA (Table 3.3). However, as with Vrest, the neurons 

with the most hyperpolarised iAP thresholds were those cultured in the ACM/2% conditions and 

patched at 50DPP, presenting with a mean threshold of -26.32 ± 7.154 mV. The cumulative 

probability plots shown in Figure 4.6C highlights that there was little change in the distributions 

across the four groups, although the extended tail of the 50DPP ACM/2% trace shows the 

presence of some hyperpolarised thresholds within that population.  

 

Action potential amplitude. During neuronal development, the profile of an action potential 

changes as the cell matures. APs begin smaller (in terms of amplitude) and slower (both in 

terms of width and the time taken to reach peak maxima) and as an increased number of 

functional ion channels are expressed on the cell membrane through development, APs 

become larger, thinner and faster. Here, there was little change to the amplitude of detected 

iAPs both over development and in response to the ACM/2% culturing conditions (Figure 4.6D), 

which again was confirmed with one-way ANOVA (Table 3.3). ACM/2% neurons patched at 

50DPP again presented with the most developed phenotype. (45.09 ± 7.88 mV).  
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Action potential half-width. The half-width of an action potential describes the width of the 

event at the voltage which is half that of its maximum amplitude. It provides a standardised way 

of measuring how wide any action potential is and used often as a key identifier of the nature of 

the spikes being produced by a particular neuron, especially in relation to physiological maturity. 

In this study, the half width of recorded action potentials were effected both by the age of the 

cells and by the culturing conditions (Figure 4.6E). Firstly, in both the standard and ACM/2% 

conditions, the half-width of iAPs reduced markedly between patching at 30DPP and 50DPP, 

falling from 6.36 ± 2.84 ms to 5.09 ± 1.51 ms and 7.53 ± 3.16 to 4.29 ±1.29 respectively. 

Following one-away ANOVA, Tukey’s multiple comparison showed that both of these changes 

were significant, highlighting that AP half width appears to be strongly linked to neuron 

development (Table 3.3). Interestingly, the mean AP half-width of cells in the ACM/2% group at 

30DPP was actually significantly wider than those in the standard conditions at the same time 

point (Table 3.3), suggesting that perhaps the ACM/2% conditions counter the maturation of AP 

width. Conversely, the mean AP half-width of cells in the ACM/2% conditions at 50DPP was 

significantly narrower than that in the standard culturing conditions (Table 3.3). It’s worth noting 

that as with a number of the other neuron properties discussed above, the ACM/2% cells 

patched at 50DPP, with a mean AP half width of 4.29 ± 1.29 ms, presented as the most mature 

of the four populations.  

 

Max rise slope. The speed at which an AP reaches its peak amplitude is another useful 

measure in profiling neuron maturity, as it relates to the functional expression of voltage gated 

ion channels, in particular voltage gated sodium channels which are primarily responsible for the 

rising phase of an AP. As the velocity the upward phase of an AP is dynamic over time, the 

maximum velocity of the rising phase is often used as a static measure of this property (herein 

called ‘max rise slope’ or MRS). Here, the MRS for detected iAPs followed a similar pattern as 

that seen for AP half width (figure 4.6F). Firstly, the mean AP MRS seen in both standard and 

ACM/2% groups at 50DPP was significantly increased compared to their respective groups at 

30DPP (Table 3.3). As with AP half-width, there was conflicting results in terms of changes to 

MRS related to ACM/2% conditions. At 30DPP, the mean AP MRS of neurons in the ACM/2% 

group was similar compared to those in the standard group, while at 50DPP there was a 

significant increase in the mean MRS between neurons cultured in ACM/2% and standard 

conditions (Table 3.3). Finally, with a mean AP MRS of 38.02 ± 11.98 mV ms-1, the neurons 
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patched at 50DPP in the ACM/2% group again presented as the most mature in terms of this 

analysis measure.  

 

The results from this section present a mixed picture in terms of the effect of ACM/2% culturing 

conditions on the properties of iAPs. The conditions had little effect on the iAP threshold or the 

iAP amplitude at either 30 or 50DPP and these properties were also not effected by the neurons 

development. However, both the AP half-width and MRS were sensitive to time point, with both 

measures significantly more mature at 50DPP compared to 30DPP. It was these measures that 

were also effected by culture conditions, as both half-width and MRS were improved further by 

ACM/2% conditions at 50DPP. This suggests that these conditions may be having a positive 

effect only on those aspects of neuron maturity which are natively dynamic in these iPS cell 

neural differentiations.       

 

 

Action potential threshold (mV) 
 One way 

ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std 

F(3,84) = 1.093, 
R2=0.0572, p = 

0.36 
No post – hoc comparisons 30DPP ACM/2% vs 50DPP ACM/2% 

30DPP Std vs 30DPP ACM/2% 
50DPP Std vs 50DPP ACM/2% 

    
Action potential amplitude (mV) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std F(3,994) = 1.526 , 

R2=0.0795, p = 
0.118 

No post – hoc comparisons 30DPP ACM/2% vs 50DPP ACM/2% 
30DPP Std vs 30DPP ACM/2% 
50DPP Std vs 50DPP ACM/2% 

    
Action potential half-width (ms) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std F(3,994) = 110.5, 

R2=0.25, p < 
0.0001 

 

1.27 [0.5287 – 2.011] < 0.0001 
30DPP ACM/2% vs 50DPP ACM/2% 3.24 [ 2.766 – 3.714] < 0.0001 

30DPP Std vs 30DPP ACM/2% -1.17 [-1.763 – 0.577] 0.001 
50DPP Std vs 50DPP ACM/2% 1.1 [0.149 – 1.45] 0.0086 

    
Max rise slope ( mv ms-1) 

 One-way 
ANOVA Tukey’s multiple comparisons 

  Difference in means [CIs] Adjusted p value 
30DPP Std vs 50DPP Std F(3,994) = 146.3, 

R2=0.306, p < 
0.0001 

 

-8.83 [-12.43 – -5.231] <0.0001 
30DPP ACM/2% vs 50DPP ACM/2% -17.69 [-20.64 – -15.52] <0.0001 

30DPP Std vs 30DPP ACM/2% 3.13 [0.252 – 6.008] 0.0668 
50DPP Std vs 50DPP ACM/2% -5.86 [-9.017 – -2.703] 0.0004 

Table 4.3 – Summaries of statistics for the comparisons of properties of action potentials 
produced by neurons cultured in standard and ACM/2% conditions. 
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Figure	4.6	–	Properties	of	action	potentials	recorded	from	iPS	cell	derived	neurons	in	standard	and	ACM/2%	
culturing	conditions.	Neurons	cultured	in	standard	and	ACM/2%	conditions	were	patched	at	30	and	50	days	
post	plating	(DPP)	and	iAPs	were	induced	with	positive	current	steps	while	holding	cells	at	∼70	mV.	iAP	events	
were	detected	and	extracted	using	a	threshold	based	method,	where	the	peak	maximum	had	to	reach	at	least	0	
mV.	The	AP	threshold	for	each	cell	was	determined	by	the	first	derivative	method,	where	the	point	of	major	
upward	deflection	of	the	derivative	trace	of	the	AP	corresponded	to	AP	threshold.	Three	further	properties	of	
detected	APs	were	then	analysed	(A).	Neither	development	or	culture	conditions	had	an	effect	on	AP	threshold	
(B	&C)	or	amplitude	(D).	AP	half	width	(E)	was	decreased	and	maximum	rise	slope	(MRS;	F)	was	increased	at	
50DPP	with	the	ACM/2%	conditions	enhancing	these	changes	further.	All	Bars	show	means	±	SD.	All	statistics	
show	results	of	post-hoc	Tukey’s	multiple	comparisons	following	one-way	ANOVA.	n	values	are	as	follows	for	
each	group	(number	of	AP	detected;	number	of	neurons	patched):	30DPP	Std	(159;	28),	30DPP	ACM/2%	(383;	
25),	50DPP	Std	(131,	19)	&	50DPP	ACM	(325;	23).	Cells	were	patched	across	3	differentiations.									

A 

B C D 

E F 
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4.3.5 Spontaneous action potentials  

 

One of the primary reasons for attempting to improve the neuron differentiation protocol in terms 

of functional maturity was to aid in the development of an MEA platform for the recording and 

analysis of neuron activity and, in particular, neural network function. As previously described, 

MEA recordings are based upon the detection of extracellular spikes. This therefore requires 

neurons that are able to reliably produce spontaneous AP (sAPs), i.e. without the need for 

depolarising current injections. sAP occurrence in patched neurons was analysed to study the 

effect of both development and the ACM/2% conditions on the spontaneous activity of iPS cell 

derived neurons.   

 

The occurrence of sAPs in neurons can be detected while patching cells as they are clearly 

seen while performing current-clamp gap free recordings with the cell at its Vrest (I = 0 pA; Figure 

4.7A). For both standard and ACM/2% groups at each time point, the total number of cells 

showing sAPs (pooled across all differentiations) were counted and expressed as a percentage 

of the total number of cells patched for that group (Figure 4.7B). It should be noted that as 

counts from each differentiation were pooled, ‘n’ essentially became 1, meaning that statistics 

were not possible for this analysis measure. Nevertheless, it can be seen from Figure 4.7 that 

the percentage of cells showing sAPs was higher at day 50DPP compared to 30DPP in both the 

standard condition group (3.5% vs 13.5%) and the ACM/2% group (14.6% vs 25.5%). 

Furthermore, at both time points, there was a greater number of neurons showing sAPs in the 

ACM/2% conditions compared to the standard conditions (3.5% vs 14.6 % at 30DPP, 13.5% vs 

25.5% at 50DPP). Interestingly, the percentage of cells showing sAP at 30DPP in the ACM/2% 

group was very similar to that in the standard conditions at 50DPP.   

 

Due the practicalities of single-cell electrophysiological recordings, a total of 121 neurons were 

patched as part of these experiments, meaning that the actual number of cells showing sAPs 

was low. To establish fuller understanding of whether the ACM/2% conditions improved the 

spontaneous excitability of a larger population of neurons, a small MEA experiment was 

performed. Neurons were cultured in standard and ACM/2% conditions as described in Chapter 

2 for 10 days, at which point they were re-plated onto MEAs. After 10 days of further culturing 

on the arrays under the same respective conditions, cells were recorded for 10 minutes and the 

basic properties of any detected spikes were analysed as described in Chapter 3. 
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Representative raster plots of detected spikes from MEA-cultures in both standard and ACM/2% 

conditions are shown in figure 4.8A, while figure 4.8B highlights the results summaries for two 

basic cell excitation properties: average spike rate and the number of detected bursts. For both 

of these measures, neurons cultured in ACM/2% conditions had significantly increased average 

values compared to neurons cultured in standard conditions (Table 4.4).  

 

The results from this section provide good evidence that ACM/2% conditions improve the 

spontaneous activity of iPS cell derived neurons. Patch clamping experiments showed that the 

number of cells showing sAPs increased over development and that ACM2% conditions 

considerably augmented this improvement. However, it should be noted that overall the number 

of patched cells showing sAPs was low, with even the most active group (50DPP – ACM/2%) 

having less than 40% of neurons with sAPs. A small MEA experiment using a limited number of 

array cultures corroborated the patch-clamp findings, with neurons in ACM/2% conditions 

showing increased spontaneous activity compared to neurons in standard conditions.  

 

 

        

  

  

 

 

 

  

 Standard ACM/2%  T-test summaries* 

 Mean SD Mean SD  

Average Spike Rate (Hz) 0.73 0.023 2.71 0.612 t(2.004) = 5.601; CI[0.462 – 3.489]; p = 0.0303 

Total detected bursts 24.75 7.182 240.67 66.365 t(2.035) = 5.611; CI[53.05 – 378.8]; p= 0.0292 

* All standard t-tests with Welch’s correction for unequal variances. CI represents 95% confidence intervals of the difference 

between group means. p values are all two-tailed. n = 4 arrays for Std, 3 arrays for ACM/2%.  

Table 4.4 – Statistic summaries of three basic properties of spontaneous activity recorded in from 
neurons in standard and ACM2% conditions using multi electrode arrays 
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																																																																																										A	

B	

Figure	4.7	–	Spontaneous	action	potentials	(sAPs)	recorded	in	iPS	cell	derived	neurons	in	both	standard	
and	ACM/2%	culturing	conditions.	sAPs	were	detected	in	30DPP	and	50DPP	neurons	using	gap-free	current	
clamp	recording	(I=0;	at	Vrest)	for	4	minutes.	Representative	trace	shown	in	A.	The	proportion	of	patched	
cells	showing	sAPs	 increased	over	development	in	both	conditions	and	was	higher	in	neurons	cultured	 in	
ACM/2%	conditions	at	both	time	points	(B).	The	frequency	of	observed	sAPs	was	also	higher	in	those	cells	
cultured	in	ACM/2%	conditions	(pooled	neurons	from	both	30	and	50DPP;	C).	The	frequency	of	sAPs	refers	
to	the	mean	frequency	across	the	4	minute	recordings.	n	=	28	(30DPP	Std),	25	(30DPP	ACM/2%),	19	(50DPP	
Std)	and	23	(50DPP	ACM/2%);	Patched	across	3	differentiations	but	data	was	pooled	for	B.	Data	in	C	shows	
means	±	SD.	
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Figure	4.8	–	Spontaneous	action	potentials	of	iPS	cell	derived	neurons	cultured	in	standard	and	
ACM/2%	conditions	and	recorded	with	multi	electrode	arrays.	To	determine	whether	astrocyte	
conditioned	medium	and	hypoxic	incubator	environments	(ACM/2%)	had	any	effect	on	the	spontaneous	
excitability	of	neurons	cultured	on	and	recorded	with	multi	electrode	arrays	(MEAs),	neurons	were	plated	
onto	arrays	and	recorded	and	analysed	after	10	days	of	culturing	in	standard	and	ACM/2%	conditions.	A	
shows	representative	raster	plots	showing	the	activity	of	one	MEA	culture	in	standard	and	ACM/2%	
conditions.	These	conditions	significantly	increased	the	average	spike	rate	and	the	number	of	detected	
bursts	compared	to	standard	conditions	(B).	Summary	plots	in	B	show	means	+	SD.	p	values	are	results	of	
t-tests	with	Welch’s	correction.	n	=	4	arrays	for	standard	and	3	arrays	for	ACM/2%	conditions.	 



4. Optimising culturing conditions of hPS cell derived neurons 

 118 

4.4 Discussion  

 

 

The results presented in this chapter have shown that, overall, culturing iPS cell - derived 

neurons with astrocyte conditioned medium (ACM) and in a 2% oxygen atmosphere can 

increase the electrophysiological maturity compared to neurons cultured in standard conditions. 

Neruons in both conditions were patched at 30 and 50 days post plating (DPP), which revealed 

variable effects of both development and culturing conditions across a range of intrinsic and 

active neuron properties. Neurons cultured in ACM/2% conditions had lower resting membrane 

potentials, had a greater proportion of cells showing iAP activity and, at 50DPP, had faster and 

thinner action potentials. Importantly, these were measures which generally improved 

throughout development within each experimental group. Conversely, for other properties 

including membrane time constant, iAP threshold and iAP amplitude, there was little change 

over neuron development or effect of the ACM/2% conditions. This suggests that the ACM/2% 

conditions may specifically enhance those phenotypes which appear to mature natively in these 

cultures. Importantly, neurons cultured in ACM/2% conditions showed increased spontaneous 

activity, both at the single-cell level and in MEA cultures recording extracellular activity. 

Furthermore, these results showed that regardless of age or culture conditions the activity of 

these iPS cell derived neurons is clearly linked to the Vrest of the cells but less so to the passive 

membrane properties of input resistance and time constant. 

 

It is well established that the Vrest of neurons becomes more polarised as the cell develops and 

as such is a key measure of neuron maturation (Tyzio et al., 2003; Rusu and Borst, 2011; 

Elston and Fujita, 2014). In this study, the Vrest of neurons cultured in standard conditions did not 

change over development, while it became more negative over the same period in neurons 

cultured in ACM/2% conditions. Moreover, ACM/2% neurons had significantly lower Vrest than 

standard neurons at 50DPP. The establishment of the negative Vrest is down to a combination of 

the relative concentration gradients of Na+ and K+, due to Na-K-ATPase, and the fact that even 

at early points in neuron development, the cell membrane is more permeable to potassium than 

sodium. This leads to the passive efflux of potassium, down its concentration gradient, driving 

the intracellular potential more negative and towards the potassium reversal potential (around -

90 mV). Furthermore, throughout development an increasing number of potassium ‘leak’ 

channels are expressed, allowing increased K permeability. While there are several types of 
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potassium channels, many of which are able to provide a degree of leak, one group is of 

particular interest regarding the maintenance of membrane potentials. The two-pore domain K 

channels (TPDKs) are a large group of potassium channels, characterised by the presence of 

two pores formed by two pairs of two transmembrane domains, high K+ selectivity, relatively 

weak conductance (which can be inwardly or outwardly rectifying) and being sensitive to 

regulation by mechanical stress, pH and endogenous lipids (Goldstein et al., 2001; Lesage, 

2003). While TPDK channels are highly expressed in the adult human brain (Medhurst et al., 

2001), less is known about their developmental expression or their function in hPS cell derived 

neurons, although an online database of iPS cell derived neuron expression data suggests that 

a number of TPDKs are expressed throughout development (van de Leemput et al., 2014). Of 

most interest for this study is the function of a group of three TDPK channels, TREK-1, TREK-2 

and TRAAK, all of which have relatively high conductance, are outwardly rectifying and can be 

functionally regulated by mechanical deformation and, importantly, cellular lipids (Patel and 

Honoré, 2001). One of the lipids to which these channels are sensitive is arachidonic acid (AA) 

which causes reversible opening of the pores and increased potassium efflux (Fink et al., 1998; 

Lesage et al., 2000). AA is known to be released from astrocytes (Stella et al., 1994; Mishra, 

2017; Newman, 2015) and therefore, could potentially be one of the key molecules found in 

ACM. In this way, AA released from astrocytes and present in the ACM could lead to a 

potentiation of potassium leak currents via TREK-1, TREK-2 and TRAAK and therefore the 

hyperpolarisation of Vrest seen in neurons cultured in the ACM/2% conditions.        

 

In this study, ACM/2% conditions had limited effect on neuron input resistance (RI) or 

membrane time constant (tau). Furthermore, there was little ‘maturation’ of these measures over 

development, except in the ACM/2% neurons which did show a small (but statistically 

significant) decrease in RI. It is worth noting that even the most mature values for both RI and 

tau recorded in these neurons (in ACM/2% neurons at 50DPP) are relatively un-physiological 

when compared to nature human or rodent neurons. For example, during development, the RI of 

post-natal rat hippocampal neurons is around 1 GΩ at P0 and rapidly decreases to around 0.1 

GΩ by around P5 (Tyzio et al., 2003). In many of the studies involving hPS cell derived neurons, 

RI (and to a lesser extent tau) have been reported as high regardless of other factors, including 

Vrest, cell excitability or synaptic maturity (Prè et al., 2014; Bardy et al., 2015; Shi et al., 2012b; 

Telezhkin et al., 2016). For example, Pré et al. differentiated iPS cells into forebrain neurons 
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which showed average Vrest of around -45 to -50 mV, produced trains of iAP, showed 

spontaneous synaptic currents but had minimum RI of around 2 GΩ. It is possible that the high 

RI reported in this chapter and by other studies could be due to the relative rate of functional 

neuron development versus morphological development. Vrest is generally thought to be 

primarily product of ion channel function, transporter expression and ionic permeability, 

particularly at the soma (Ambrogini et al., 2004). However, both RI and tau are more dependent 

on the volume of the soma, the extent of proximal dendrites and the integrity of the cell 

membrane (Espósito et al., 2005). If an increase in membrane area, due to increased branching 

and dendritic arborisation, is not matched by a concomitant increase of functional expression of 

ion channels in those dendrites, it is possible that RI and tau remain stable while Vrest polarises 

in response to channel expression at the soma.   

 

At both 30 and 50DPP, neurons cultured in the ACM/2% conditions were more active compared 

to neurons cultured in standard conditions, as shown by the cell classification analysis in section 

4.4.2. The ability to produce action potentials is largely down to the expression of functional 

voltage gated Na and K channels (Nav and Kv), especially at the axon hillock and axon initial 

segment (AIS). A key protein involved in the architectural organisation of channels at the AIS is 

Ankyrin G. While many studies, including recent high-resolution imaging studies, have shown 

the importance of Ankyrin-G in correct channel placement and excitability in rodent neurons 

(Kole and Stuart, 2012; Leterrier et al., 2015; Rasband, 2010), little is known about the 

expression of Nav, Kv and ankyrin in hPS cell neurons and their relation to cell maturity. Several 

studies have reported that hPS cell neurons have measurable Nav and Kv currents (Prè et al., 

2014; Bardy et al., 2015; Telezhkin et al., 2016; Zhang et al., 2013), although this has not 

routinely been viewed as part of a continuous scale of development. A recent study used a 

similar neuron iAP classification approach as here which was then followed up with single-cell 

RNA-seq (Bardy et al., 2016). Interestingly, this showed that those neurons showing trains of 

iAPs had the highest expression of ANK3 (which codes for Ankyrin G) and increased expression 

of several Nav (including SCN2A and SCN7A) and Kv channels.  

 

In this chapter, the activity of neurons corresponded well to the Vrest of neurons, such that cells 

producing iAP trains had the most polarised Vrest. However, as iAPs were produced in these 

neurons while holding the cell at -70 mV, it is perhaps difficult to link Vrest directly with iAP 

classification of the cell, although it is clear that in these neurons, Vrest is a good marker of 
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functional development. Vrest can more directly be linked to the formation of spontaneous action 

potentials (sAPs), which are observed in cells without holding of the membrane potential and 

current injection. In this study, both single cell patching and a small MEA experiment showed 

that neurons cultured in ACM/2% conditions have a greater number of sAPs than neurons in 

standard conditions. The Vrest of a neuron can be linked to sAP formation as the membrane 

potential regulates several aspects of AP initiation. Firstly, for sAP to occur, Vrest must be more 

negative than the threshold for action potential initiation. As with Vrest, AP threshold has been 

shown to polarise throughout neuron development but while Vrest is more dependent on passive 

potassium conductance, the AP threshold relies more on Nav function (Platkiewicz and Brette, 

2010). Here, at both time points and in both conditions, the average Vrest was at or below the 

average AP threshold for each group. Secondly, sAP occurrence relies on Vrest to be sufficiently 

polarised as to remove the voltage inactivation of Nav channels, which, while variable between 

neuron types, is thought to be around -30 mV for excitatory cortical rat neurons (Platkiewicz and 

Brette, 2010). Interestingly, there is some evidence that this inactivation is in fact more 

dependant the value of Vrest relative to the threshold potential, as it has been reported that in 

adult rat hippocampal neurons around 80% of Nav channels were ‘available’ at Vrest (∼ 70 mV), 

compared to 23% at AP threshold (∼ -55 mV; Fricker et al., 1999). As such, in the iPS cell 

derived neurons in this chapter, it is possible that the ACM/2% conditions promote a polarised 

Vrest, driving it sufficiently below the AP threshold, therefore allowing the subsequent activation 

of Nav channels and the occurrence of sAPs. Finally, while sAPs can occur innately (e.g. due to 

fluctuations in the membrane potential) the appearance of sAPs is increased by functional 

synapses allowing depolarising excitatory inputs. Although not studied in this chaper, ACM 

conditions have been shown to increase the number of synaptic events in both rodent primary 

(Ullian et al., 2004; Hughes et al., 2010) and iPS cell derived neurons (Rushton et al., 2013), 

while low oxygen culturing environments have been shown to increase synaptogenesis in 

rodent and human primary cells (Studer et al., 2000; Liu et al., 2009; Brewer and Cotman, 

1989).    

 

In general, the action potentials produced by neurons get larger, faster and thinner throughout 

development, although the timing, extent and exact nature of these changes is highly variable 

between neuron populations and is especially dependent on the type of firing that the cells 

produce (Bean, 2007). In this chapter, which studied neurons produced following a protocol to 
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yield glutamatergic forebrain neurons, there was no change in the iAP amplitude over 

development or between culturing conditions. However, neurons patched at 50DPP produced 

faster and thinner AP than neurons at 30DPP, which was potentiated if neurons had been 

cultured in ACM/2% conditions. The rising phase of an AP is regulated by the action of various 

Nav channels and as such are generally thought to be responsible for the speed of this rising 

phase and the final amplitude of the spike (Bean, 2007; Martina and Jonas, 1997). The 

expression of Nav channels increases throughout both human and rodent neuronal development 

(Mechaly et al., 2005; Miller et al., 2014; Lein et al., 2007) and in hPS cell derived neurons, the 

expression of several types of Nav channels increases throughout differentiation (van de 

Leemput et al., 2014; Shi et al., 2012b). While the increased developmental expression of Nav 

channels could explain the increase in max rise slope observed here, it is unclear why this 

would not also cause an increase in AP amplitude. The falling phase of an AP is driven by the 

opening of Kv channels, which are also thought to primarily responsible for the width of APs. 

The family of Kv channels is large and the specific subtypes of channels thought to be 

responsible for AP width vary between cell type (Nowak et al., 2003). For example, the 

narrowing and increasing speed of APs from neurons in the superior paraolivary nucleus are 

thought to be due to increased expression of Kv1.1 channels (Felix et al., 2013), while increased 

Kv3 currents are known to be responsible for the development of narrow spikes seen in fast 

spiking interneurons (Du et al., 1996; Rudy and McBain, 2001). In developing hPS cell neurons, 

both the size of Kv currents and the expression of certain subtypes of Kv1 and Kv3 channels has 

been shown to increase over time (van de Leemput et al., 2014; Nicholas et al., 2013).  

 

At 50DPP, the neurons cultured in ACM/2% conditions had thinner and faster APs compared to 

those cultured in the standard conditions, suggesting that the ACM/2% conditions further 

augmented the maturation of the AP shapes seen over development. However, at 30DPP, the 

ACM/2% neurons had wider and marginally slower APs than those in the standard conditions, 

suggesting that at this time point the ACM/2% conditions had a detrimental effect on AP shape. 

Its not immediately clear why the ACM/2% conditions would have contrasting effects at different 

time points, especially as the conditions improved the Vrest and excitability of neurons at both 30 

and 50DPP. One possibility is that the average for this time point was inflated by values 

observed in neurons from one particular round of differentiation. However, even when excluding 

these observations, the 30DPP ACM/2% neurons still presented with the slowest and widest 

APs, suggesting that there is an underlying physiological cause. Another key neuropeptide 
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released from astrocytes is thyrotropin releasing hormone (TRH), which has been shown to 

have a number of neurotrophic and pro-maturation roles (Fernández-Agulló, 2001; Kasparov et 

al., 1994). However, TRH has also been shown to increase the half-width and decrease the 

amplitude of APs produced by rat cortical pyramidal neurons via a mechanism involving g-

protein mediated signalling (Rodríguez-Molina et al., 2014). As such, it is possible that at 

30DPP, the ACM/2% conditions have negative effects on individual APs, through the action of 

TRH present in the ACM. By 50DPP, it is possible that due to other pro-maturation effects of the 

ACM/2% conditions described earlier, the detrimental effect of TRH is masked. For example, 

the action of the ACM/2% conditions on Vrest and potassium conductance earlier in development 

may mean that by 50DPP there is bigger K+ gradient in these neurons compared to controls 

(due to increased Kv channel expression) driving a larger Kv current which presents as faster 

and thinner iAPs. Finally, another of the ways in which ACM is thought to contribute to neuron 

maturity is via the regulation of available calcium (Ullian et al., 2004; Rushton et al., 2013). 

Recently, it has been shown that the calcium-activated KCa channels, which are thought to be 

expressed later in development, also contribute to AP width (Kimm et al., 2015).    

 

Overall, the results presented in this chapter have shown that culturing differentiations in 

ACM/2% conditions improve the functional maturation of neurons by a number of measures 

including Vrest and, importantly, both induced and spontaneous AP activity. This is likely to be 

primarily driven by an earlier increase in potassium permeability and ion channel expression, 

caused by the action of several neurotrophic molecules present in the ACM and augmented by 

the pro-maturation and pro-synaptogenesis effects of the 2% O2 environment. Importantly, the 

increased maturity and activity of the neurons in ACM/2% conditions should aid in the 

development of the platform for investigating network activity in iPS cell derived neurons in both 

development and disease states.    
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5. Investigating network development in iPS cell derived neurons 
 

 

 

 

5.1 Introduction 

 

 

While multi-electrode arrays (MEAs) are not a new technology, it has only been in the last few 

years with the advent of more modern, user-friendly systems that they have begun to be 

exploited again for the study of neuronal function. In particular, the nature of MEAs allows for 

the study of neuron function across a population of cells and therefore the study of neural 

networks. Understanding neural networks, both locally and at the whole brain level, is a key part 

of investigating brain function throughout development and in models of neurological disease. 

Indeed, the study of neural networks in vivo and intact brain slices has been a key part of the 

neuroscience field for many years. However, the study of the development and function of 

dissociated cultures and in particular, neurons derived from human iPS cells, is less understood.  

 

A number of studies have provided good evidence that dissociated primary rodent neurons form 

functional networks in vitro (Maeda et al., 1995; Chiappalone et al., 2006; Hales et al., 2010). 

This takes the form of spontaneous, self-organising, coordinated bursting behaviour which is 

detected by multiple electrodes across the culture (Sun et al., 2010; Raichman and Ben-Jacob, 

2008). After around a 2-week period of non – synchronous firing, culture wide coordinated 

behaviour develops and is correlated with an increase in firing rate and neuron burst firing. 

Recently, it has been shown that this synchronous behaviour may in some cases develop 

further, such that culture-wide activity can be divided into low and high activity periods lasting for 

tens of seconds (Lu et al., 2016). Furthermore, this network behaviour is sensitive to 

pharmacological manipulation and in particular, requires AMPA receptor activity.  

 

Much less is known about the development of networks in hPS cell derived neurons. As 

described in Chapter 4, the relative immaturity of these neurons might suggest that the 

formation of functional neural networks is precluded, or at least, sufficiently delayed such that 
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any observation becomes practically limiting. However, a number of studies have shown that 

hPS cell derived neurons can be cultured on MEAs and do show spontaneous activity which, in 

general, increases over time (Odawara et al., 2014; Ylä-Outinen et al., 2010; Odawara et al., 

2016; Amin et al., 2016). Furthermore, these studies have shown that one of the key 

applications for MEA – culturing is likely to be for pharmacological profiling and drug screening, 

as it has been shown that neuronal spiking, at the single unit level, can be manipulated both by 

ionic changes to extracellular solutions and drug application. To date, only one study has 

provided good evidence for the development of network behaviour in hPS cell derived neurons, 

highlighted by the formation of array – wide synchronised burst firing (SBF) after several weeks 

in culture. However, this behaviour takes an extended period of culturing to appear – at least 20 

weeks – and the nature of the SBF seems to change little over development (Odawara et al., 

2016).  

 

The work presented in Chapter 4 showed that the optimisation of the differentiation protocol 

based around ACM/2% culturing conditions produced neurons that were more mature in terms 

of their physiology. Importantly, neurons produced with this developed protocol exhibited a 

greater number of spontaneous action potentials, observed with both patch clamping and a 

small MEA experiment. To extend the work from Chapter 4 and to determine whether these 

neurons could be cultured on and recorded using MEAs for an extended period of time, this 

chapter describes a series of experiments to study the development of spontaneous activity.  

 

The creation of a platform for studying network activity in iPS cell derived neurons would provide 

a useful tool for the investigation of how these cells develop and how they function in vitro. 

Moreover, if successful, it would provide a valuable asset in the study of iPS cell models of 

neurological disorders, including autism spectrum disorders, for which aberrant network 

signalling is thought play a key aetiological role. Importantly, such a platform should enable 

reliable and repeatable detection of spontaneous neural activity and the establishment of 

coordinated firing, as seen by Odawara et.al, to allow the study of network development. Finally, 

the nature of the arrays allows the simple addition of pharmacological agents to the cultures 

during recordings. This, therefore, allows both the profiling of any detected activity and opens 

the possibility for screening potential therapeutic compounds.    
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5.2 Chapter Aims 

 

The work in this chapter aims to study the formation and development of networked behaviour 

in iPS cell derived neurons. It will aim to track the spontaneous activity of neurons over long-

term culturing of cells on MEAs, will study the establishment of any coordinated activity and 

monitor this behaviour throughout development. It further aims to profile the observed behaviour 

in terms of the response of activity to a range of pharmacological agents. In particular, it aims to 

study the underlying nature of any networked behaviour and how this may lead to a better 

understanding about the nature of iPS cell neurons. Finally, this chapter aims to establish the 

use of an MEA system as a reliable and valuable platform for the study of iPS cell neurons in 

development and disease states.  
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5.3 Results 

 

5.3.1 Differentiations of IBJ4 iPS cells produce neurons with a cortical projection neuron identity 

 

The work in Chapter 4 described the development of the differentiation protocol to produce the 

neurons used in this project. The ‘base’ protocol was one initially developed in the institute for 

the production of forebrain excitatory neurons and has been characterised elsewhere. However, 

to provide a further understanding about the state of the neurons produced with the optimised 

protocol (i.e. using astrocyte conditioned medium and a 2% O2 incubator atmosphere), a 

selection of cultures parallel to those used for or on MEAs were fixed and stained at two time 

points. Cells were first stained at day 20-22 (day 0 = iPS cells) to determine the expression of 

specific proteins at the neural precursor cell (NPC) stage. At this time point, cultures were seen 

primarily as ‘rosettes’ of polarised cells, a hallmark of NPC generation in 2-dimentional 

differentiations (Shi et al., 2012; Figure 5.1). The cells expressed the primary marker of NPCs in 

the intermediate filament protein NESTIN, as well as three key markers of cortical neuron fate: 

FOXG1, a transcription factor expressed by telencephalic precursors; PAX6, a transcription 

factor marker of dorsal telencephalic progenitor patterning; and TBR2 a key marker of 

intermediate progenitor cells. These three proteins are frequently used as key determinants of a 

forebrain projection precursor identity in stem cell models (Muratore et al., 2014). 

 

Coverslips of cells were also stained at 50 days post re-plating (50DPP), corresponding to 50 

days after cells were re-plated for MEA experiments. At this time point, cells were stained to 

determined their identity as more mature neurons with organised synapses. Firstly, all neurons 

expressed MAP2, the neuron specific microtubule associated protein which, in hPS cell 

neurons, is expressed from around 30 days (Figure 5.2A). Furthermore, neurons also showed 

expression of vGLUT1, a transporter involved in the uptake of glutamate into synaptic vesicles, 

suggesting that neurons had glutamatergic identity. Higher magnification observations of fixed 

neurons revealed that cells also expressed the key excitatory synaptic markers PSD95 and 

GluN1. GluN1 is the compulsory glycine-binding subunit of NMDA receptors while PSD95 is a 

key scaffolding protein involved in the assembly and function of the NMDA receptor complex.  
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Neurons were also stained for a number of proteins that have been identified a markers of 

cortical layer fate (Figure 5.2B). Many neurons expressed TBR1, a transcription factor 

subsequently expressed in post-mitotic neurons after TBR2 (Englund et al., 2005). TBR1, 

therefore, is also considered a marker of early-born deep layer neurons, specifically those of 

layer 6 (Bedogni et al., 2010). Many neurons also expressed CTIP2, a second key marker of 

deep layer neurons, identifying cells primarily belong to layers 6 and 5a. Finally, a few neurons 

also expressed SATB2, a transcription factor involved in the regulation of cell fate in upper 

layers of the cortex, especially in layers 4 and 3 (Britanova et al., 2008). Overall, these results 

clearly show that the cells being produced with the developed protocol are, by 50DPP, primarily 

glutamatergic cortical neurons, most of which express makers of an early, deep cortical layer 

fate and express proteins required for functional excitatory synapses.    
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Figure	5.1	–	IBJ4	IPS	cells	differentiate	into	neural	precursors	with	a	forebrain	projection	neuron	
identity.	IBJ4	cells	were	differentiated	towards	neural	precursors	(NPCs)	following	an	a	dual	SMAD	–
inhibition	protocol.	To	confirm	the	identify	of	these	precursors,	cells	were	fixed	and	stained	with	markers	
for	progenitors	and	early	neurons	20-22	days	after	the	start	of	differentiations	(as	iPS	cells).	At	this	point,	
cells	showed	expression	of	nestin,	the	intermediate	filament	protein	of	neural	precursors;	TBR2	a	
transcription	factor	involved	in	the	regulator	pathways	in	radial	glial	cells;	and	FOXG1	and	PAX6,	two	key	
transcription	factors	expressed	by	telencephalic	and	dorsal	telencephalic	progenitors	respectively.		
Panels	show	representative	images	from	differentiations	of	IBJ4	iPS	cells.	Scale	bars	show	50	µm.	
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Brightfield	



	
	

	

	
	
Figure	6.3	–	IBJ4	iPS	cells	differentiate	into	neurons	with	a	cortical	glutamatergic	fate.	To	provide	an	understanding	about	the	nature	of	the	neuons	produced	
with	the	differentiation	protocols	developed	in	this	project	later	in	development,	cells	were	fixed	and	stained	at	50	days	post	replating	(50DPP).	Cells	showed	
expression	of	the	neuron	marker	MAP2,	the	vesicular	glutamate	transporter	vGLUT1,	the	excitatory	post	synaptic	density	structural	protein	PSD95	and	the	
universal	subunit	of	NMDA	receptors,	GLuN1	(A).	Neurons	also	expressed	the	markers	of	cortical	layer	fate	SATB2,	CTIP2	and	TBR1.	Image	show	representative	
images.	Scale	bars	in	all	images	show	50	µm.	
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1	
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5.3.2 Development of network behaviour in iPS cell derived neuronal cultures 

 

 

To study the development of network activity in iPS cell derived neuronal cultures, differentiating 

cells were replated onto MEAs after around 40 days and subsequently cultured for an extended 

period (see Chapter 2). Cells were re-plated onto MEAs as drop cultures to provide the required 

density and to achieve high rates of cell survival. Figure 5.3 shows DIC images of cells re-plated 

onto MEAs at 5DPP (days post plating) and highlights the rapid recovery of cells to form dense 

morphologically complex cultures.  

 

Figure 5.4 shows the changes in spontaneous activity seen in one MEA culture, recorded for 10 

minutes every 10 days for 50 days post-plating (DPP) and represents recordings from the same 

12 electrodes at every time point as shown in the array map inset. Figure 5.5 presents the 

summary data for five key excitability characteristics as analysed for all developmental 

experiments (up to 10 arrays across 4 differentiations in total). 10 days after replating, very low 

level spontaneous firing is seen across the culture with an average firing rate of 0.065 ± 0.021 

Hz (Fig 5.5A) and with no bursts detected (Fig 5.5B). By 20DPP, the firing rate had increased to 

0.75 ± 0.21 Hz, with 232 ± 103 bursts now observed, indicating that the culture had become 

much more active over the first 20 days of culturing. However, at both these time points activity 

is random and uncoordinated across the culture. This is highlighted by the blue ASDR plots in 

figure 5.4 which shows low-rate firing for the duration of the recording and an absence of any 

pattern in the rate of firing across the cultures at both 10 and 20 DPP. The lack of synchronicity 

can also be seen in Figure 5.5C, which shows a low max array-wide spike detection rate (max 

ASDR; (10 ± 5.23 spikes/bin). This measure presents the maximum number of spikes detected 

across the culture in a single 200 ms bin and is a useful measure of culture-wide synchronicity 

(see Chapter 2).  

 

The raster plot for the recording at 30DPP in Figure 5.4 again appears to show that activity in 

the culture is still largely uncoordinated. However, the corresponding ASDR plot suggests that in 

fact there is some synchronicity across the array, highlighted most clearly by the first two ASDR 

peaks, which coordinate with short bursts of firing seen across the culture and visible in the 

raster plot. The recordings at 30DPP also showed a increase in general neuronal excitability 

compared to the first two time points, with average spike rate increasing to 2.1 ± 0.8 Hz and 559 
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± 208.1 bursts now detected (Figure 5.5A&B). While there is still a low max ASDR observed 

(15.67 ± 5.5; Figure 5.5C), for the first time a MAP (more active period) interval can be 

calculated in some of the cultures (Figure 5.5D; 4700 ± 2702 ms). This represents the median 

time interval between MAP peaks and can therefore only be calculated when cultures show 

coordinated array-wide activity. It should be noted that about 50% of cultures at 30DPP showed 

coordinated behaviour and 50% did not.  

 

By 40DPP, a clear pattern had emerged in the activity seen across the culture (Figure 5.4). The 

raster plot for this time point shows that apart from three electrodes, the array shows short, 

coordinated busts of activity across the entire culture. This is highlighted by the ASDR plot 

which shows regular mid-frequency firing peaks across the culture for the duration of the 

recording. Furthermore, the MAP interval had increased by 40DPP from 4700 ± 2702 ms at 

30DPP to 14700 ± 5730 ms (Figure 5.5D). Note that by 40DPP, 100% of the cultures recorded 

exhibited coordinated culture-wide behaviour. Interestingly, the general excitability of cultures 

was broadly similar to that at 30DPP, with a firing rate of 1.78 ± 1.09 Hz and a burst rate of 485 

± 264.1 (Figure 5.5A&B). However, there was an increase in the max ASDR to 51 ± 21.76, 

highlighting that many more spikes across the culture appear in the same 200 ms bin, due to 

the increase in coordinated firing.  

 

50 days after replating the nature of the activity in the culture in Figure 5 had changed markedly. 

Now, the activity is characterised by periods of very low-level activity (less –active period; LAP), 

lasting for 10s of seconds, punctuated by periods of higher culture – wide activity (more active 

period; MAP) again lasting for 10s of seconds. Each of these MAPs begins with a very high 

frequency burst seen across the culture, before resting at a period of medium frequency firing 

for around 35 seconds. Both the raster and ASDR plots highlight clearly the extent of the 

synchronised behaviour at this time point. While it should be noted that not every culture tested 

at this time point showed such sustained MAPs, the interval between these peaks was 

consistently higher in all cultures than at 40DPP, giving an average MAP interval of 78333 ± 

37845 ms (figure 5.5D). Similarly, the maximum array-wide spike rate increased from 40DPP to 

69.67 ± 31.51 further highlighting the increased degree of synchronous firing. There was also a 

small increase in general firing rate in the cultures at 50DPP back to around the rate seen at 

30DPP (2.13 ± 1.44 Hz; Figure 5.5A) while there was a small decrease in the overall number of 

bursts detected to 421.7 ± 221.2.   
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Figure	5.3	–	Immature	iPS	cell	derived	neurons	re-plated	onto	multi	electrode	arrays	(MEAs)	quickly	
reform	dense	complex	cultures.	To	record	spontaneous	extracellular	activity,	differentiating	neurons	are	
re-plated	onto	MEAs	at	around	day	40.	Cells	are	plated	on	poly-d-lysine/laminin	using	drop-cultures	of	
∼40,000	cells,	to	achieve	a	dense,	localised	culture	(A;	circular	nature	of	plated	cells	can	be	seen	in	the	
lower	half	of	image).	Around	24	hours	after	re-plating,	neurons	begin	to	re-form	axons	and	dendrites	and	
continue	to	differentiate	as	normal.	The	enlarged	central	area	presented	in	B	highlights	the	density	of	
cultures	required	for	reliable	MEA	recordings;	while	the	area	in	C	shows	the	edge	of	the	drop	culture	
where	individual	neurons	can	be	identified.	Images	are	representative	of	MEA	cultures	using	neurons	
derived	from	IBJ4	iPS	cells	and	show	cells	5	days	post	re-plating.	Scale	bars	show	50	µm.					
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Figure	5.4	The	development	of	network	activity	in	iPS	cell	derived	neurons	cultured	on	and	
recorded	with	MEAs.	After	plating	onto	MEAs,	neuron	settle	and	within	10-20	Days	post	plating	(DPP)	
begin	to	fire	spontaneous	action	potentials.	Up	to	around	30DPP,	this	activity	is	generally	confined	to	
un-coordinated	spikes	at	the	single-unit	level.	Between	30	and	40DPP,	spiking	across	the	whole	
culture	becomes	coordinated,	except	for	a	few	electrodes,	and	is	generally	characterised	by	short	
bursts	of	spikes.	By	50DPP,	culture-wide	activity	can	be	characterised	by	‘more	active’	(MAP)	and	‘less	
activity	periods’	(MAP).	During	LAPs,	random,	uncoordinated	spikes	are	seen	throughout	the	array.	
During	MAPs,	electrodes	detect	high-frequency	synchronised	firing	across	the	whole	culture,	lasting	
for	10s	of	seconds.	The	data	shown	is	the	development	of	network	activity	seen	in	the	same	culture.	
For	each	time	point,	the	top	panels	show	raster	plots	of	detected	spikes	from	the	same	16	electrodes	
(highlighted	in	inset);	bottom	panels	show	the	array-wide	spike	detection	rate	plots	(ASDR	plots)	for	
each	culture,	where	spikes	counts	for	each	electrode	are	parsed	into	200ms	bins	and	subsequently	
summed	across	the	array	for	each	bin.	Vertical	scale	bars	in	ASDR	plots	show	80	spikes/bin.	Horizontal	
scale	bar	represents	100	seconds.	The	presented	behaviour	was	observed	in	at	least	7	cultures	across	
4	differentiations.					
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Figure	5.5	–	Developmental	excitability	properties	of	iPS	cell	derived	neurons	cultured	on	and	
recorded	using	MEAs.	Differentiating	neurons	were	replated	onto	MEAs	between	Day	40	and	Day	45	
(post	iPS	cells)	and	cultured	for	up	to	50	further	days.	The	properties	of	the	firing	behaviour	of	the	
cultures	changed	markedly	over	development.	Between	10	and	30	days	post	plating	(DPP)	there	was	
large	increases	in	the	number	of	spikes	detected	(A	-	bars),	the	average	spike	rate	(A	–	coloured	line)	
and	the	number	of	bursts	detected	(B)	in	the	cultures.	This	trend	was	partially	reversed	between	30	
and	50DPP.	The	maximum	array	wide	spike	detection	rate	(ASDR)	represents	the	maximum	number	
of	spikes	detected	across	all	analysed	electrode	in	a	single	200	ms	bin.	Between	10	and	30DPP,	the	
maximum	AWSR	was	stable	but	then	increased	dramatically	at	40	and	50	DPP	(C),	reflecting	the	
increased	synchronisation	of	firing	seen	at	these	time	points.	A	similar	trend	was	seen	in	the	MAP	
interval,	which	represents	the	median	interval	between	the	more	active	periods	(MAPs)	in	each	
culture	(D).	N/A	at	10	and	20DPP	represent	the	fact	that	no	MAP	interval	could	be	measured	as	the	
was	no	coordinated	activity	present	at	these	time	points.	Between	30	and	50DPP,	there	was	a	large	
increase	in	the	MAP	interval,	highlighting	the	changing	nature	of	the	network	activity	at	these	points.	
The	data	presented	shows	the	mean	±	S.D,	except	spike	rate	which	shows	mean	±	SEM.	All	the	data	
shows	the	summaries	of	at	least	3	MEAs	per	differentiation	over	3	differentiations.		
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5.3.3  Pharmacological profiling of iPS cell derived neurons during early development 

 

 

The data presented in the previous section showed that the activity of neurons cultured on and 

recorded with MEAs changes throughout development, such that initial low-level, uncoordinated 

activity matures to high-level synchronised behaviour later in the culture. To establish a better 

understanding about the physiological nature of this activity throughout development, 

pharmacological agents were applied to cultures at different time points. To investigate the 

underlying nature of the activity early in development, with cultures showing un-coordinated 

events, a panel of agents were firstly applied to the cultures at 20DPP. As described in Chapter 

2, drugs could not be applied to the cultures during recordings but instead were diluted in 

recording medium and applied serially along with washes to the cultures to be recorded.  

 

To identify the role of excitatory synaptic communication in driving spontaneous AP activity in 

these neurons, inhibitors of NMDA and AMPA receptors were applied to the cultures. Figure 

5.6A shows raster plots of the response of one culture to the drugs, both individually and 

simultaneously while Figures 5.6B-D show summary data for four excitability characteristics 

from all profiling experiments at this time point. Overall, it is noticeable from these experiments 

that there was no dramatic change in neuron excitability when the cultures are exposed to 

CNQX, APV or both drugs concurrently, as shown by the representative raster plots in Figure 

5.6A. Both CNQX and APV applications alone caused a modest reduction in average spike rate 

from 1.56 ± 0.81 Hz to 1.14 ± 0.82 Hz and 1.10 ± 0.71 Hz respectively (figure 5.6B), with a 

correspondingly small increase in average inter-spike interval (IsI; Figure 5.6C). A larger 

decrease was seen in the number of detected bursts seen over the length of recordings, falling 

from 751.5 ± 242 in standard conditions to 512.8 ± 132.3 in the presence of CNQX and 426.5 ± 

86.2 in the presence of APV (Figure 6.4D). The simultaneous application of both CNQX and 

APV produced similar changes to excitability as each drug alone and did not seem to produce a 

summative effect. For example, the average spike rate for cultures with APV+CNQX was 1.10 ± 

0.48 Hz compared to 1.14 ± 0.82 Hz and 1.10 ± 0.71 Hz for CNQX and APV alone respectively. 

All the changes observed here were relatively small and several of the analysis measures were 

associated with a high degree of variation across the samples. Indeed, one-way ANOVA of 

each of the variables indicated that there was no significant variation due to application of the 

drugs (Table 5.1).  
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Figure	5.6	–	Early	glutamatergic	profiling	of	the	activity	recorded	from	iPS	cell	derived	neurons	
cultured	on	and	recorded	with	MEAs.	20	days	after	plating	(20DPP),	cultures	were	exposed	to	50	µM	
CNQX,	50	µM	APV	or	both	simultaneously	to	study	the	contribution	of	glutamate	neurotransmission	
to	detected	spikes.	Serial	application	of	CNQX,	APV	and	both	combined	on	a	single	array	culture	
shows	modest	decreases	in	the	number	of	detected	spikes,	with	very	little	difference	between	the	
drug	types	(A).	Basic	excitatory	analysis	of	all	profiled	cultures	confirmed	that	there	were	no	
significant	changes	in	the	number	of	spikes	detected	and	spike	rate	(B),	the	average	inter	spike	
interval	(IsI,	C)	or	in	the	number	of	bursts	detected	culture-wide	(D)	with	either	drug	or	both	
concurrently.	A	shows	raster	plots	of	the	16	highlighted	electrodes	(inset)	across	the	drug	
applications.	Scale	bar	shows	100	seconds.	The	data	presented	in	B,	C	and	D	show	the	mean	values	±	
SD,	except	average	spike	rate	which	presents	means	±	SEM.	The	summary	plots	represent	data	from	6	
cultures	across	3	differentiations.		
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To investigate any role of inhibitory synaptic activity in these cultures at this early time point, a 

GABAA receptor antagonist, bicuculline, and GABA itself was applied to cultures at 20DPP. 

Figure 5.7A shows activity raster plots of a representative culture throughout the experiments 

while Figure 5.7B-D shows summary data of four analyses measures for all cultures profiled at 

this time point. The application of bicuculline to the neuronal cultures, induced a small increase 

the average spike rate increased from 1.33 ± 0.73 Hz to 1.71 ± 0.78 Hz (Figure 5.7B). This was 

accompanied by a small corresponding decrease in the average IsI (Figure 5.7C) and an 

increase in the number of detected bursts (5.7D). A one-way ANOVA of these analysis 

measures showed that while the variation due to inhibitory drug application was significant, 

Tukey’s multiple comparisons showed that the changes associated with bicuculline application 

were not significant (Table 5.1).   

 

One of the key physiological milestones in neuronal development is the excitatory/inhibitory 

switch of GABA signalling. In early development, activation of ionotropic GABAA receptors leads 

to an efflux of Cl- ions and depolarisation of Vm, while in more mature neurons, activation of the 

same receptors leads to influx of Cl- ions and membrane hyperpolarisation. This change is due 

to the shift in the reversal potential of chloride, driven by a developmental change in the relative 

expression of the K+/Cl- co-transporters, NKCC1 and KCC2. To determine the chloride maturity 

of the neurons being cultured at 20DPP, 10 µM GABA was applied to arrays and the activity 

recorded. The application of GABA to the arrays produced a dramatic decrease in the 

excitability of the cultures. This can be seen clearly for the culture represented by the raster plot 

in Figure 5.7A, where only around half of the electrodes showed any spike actvity and those that 

did presented with very few. This trend was seen across all the cultures where an average spike 

rate of 1.21 ± 0.62 Hz (1st wash) decreased dramatically to 0.07 ± 0.12 Hz (Figure 5.7B). Again, 

this reduction in spike rate corresponded with a large increase in the average IsI (Figure 5.7C) 

and a decrease in the number of detected bursts from 423 ± 145.6 to 137 ± 107 (Figure 5.7D). 

Tukey’s multiple comparisons following one-way ANOVA showed that these changes were 

significant compared to the corresponding preceding wash (Table 5.1). Importantly, all three 

characteristics returned to baseline following washes, although unlike CNQX and APV, this 

required an extended period of washing. These results strongly suggest that, even at this 

relatively early time in development, activation of GABAA receptors leads to inhibitory 

hyperpolarisation of iPS cell derived neurons.  
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Excitatory profiling 
 One way ANOVA Tukey’s Multiple comparisons 
  Mean difference [ 95% CI] Adjusted 

p value 
Average Spike rate (Hz) F(9, 40) = 0.508; R2 

= 0.1026 p = 0.859 

No post – hoc comparisons Average inter spike interval (ms) F(9, 40) = 0.321; R2 
= 0.063 p = 0.962 

Bursts F(9, 40) = 1.147; R2 
= 0.256 p = 0.3624 

    
Inhibitory profiling 

 One way ANOVA Tukey’s Multiple comparisons 
  Mean difference [ 95% CI] Adjusted 

p value 
Average Spike rate (Hz) F(5, 15) = 3.770; R2 

= 0.557 p = 0.021 
  

Wash 1 vs GABA 1.139 [-0.384 – 2.662] 0.0328 
Average inter spike interval (ms) F(5, 16) = 3.957; R2 

= 0.553 p = 0.0158 
  

Wash 1 vs GABA -94505 [-174995 – -14015] 0.0168 
Bursts F(5, 15) = 3.471; R2 

= 0.536 p = 0.078 
  

Wash 1 vs GABA 361.8 [-162.9 – 886.4] 0.0323 

Table 5.1 – Summary of the statistics for the comparisons of general excitability 
characteristics of iPS cell derived neurons recorded with MEAs in response to 
pharmacological profiling at 20DPP.   
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Figure	5.7	–	Early	inhibitory	profiling	of	IPS	cell	derived	neurons	cultured	on	and	recorded	with	
MEAs.	To	determine	any	role	of	GABAergic	activity	in	the	MEA	cultures	at	20	days	post	plating	
(20DPP),	neurons	were	exposed	to	the	GABAA	antagonist	bicuculline	and	GABA	itself.	10	µM	
bicuculline	slightly	increased	the	excitability	of	cultures,	in	terms	of	spike	number/rate	rate	(B),	
inter-spike	interval	(IsI,	C)	and	the	number	of	detected	bursts	(D).	1	µM	GABA	almost	entirely	
blocked	all	spontaneous	activity.	A	shows	the	spontaneous	activity	as	raster	plots	in	response	to	
drug	application	for	one	representative	MEA	culture,	showing	the	same	16	electrodes	across	the	
experiment.	The	selected	electrodes	are	shown	in	the	inset.	B-D	show	summary	plots	of	the	four	
analysis	measures	from	at	least	4	arrays	across	two	differentiations.	Bars	show	means	+	SD,	except	
for	average	spike	rate	where	they	show	means	±	SEM.											
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5.3.4 Excitatory pharmacological profiling of iPS cell derived neurons in late development  

 

The experiments in section 5.3.3 highlighted the limited role of glutamatergic synaptic activity on 

spontaneous action potentials at 20DPP, a time point a which culture-wide activity was un-

coordinated. To study the role of glutamatergic function on the network behaviour detected in 

these cultures later in development, a similar set of experiments with CNQX and APV was 

performed on MEA cultures at 50DPP. Figure 5.8 presents the raster and ASDR plots for one 

array culture exposed serially to CNQX and APV (with washes), while Figure 5.9 presents the 

summary data of five characteristics for all the cultures profiled.  

 

Firstly, it was clear that application of both CNQX and APV had a dramatic effect on the 

synchronised network behaviour of the culture seen in the standard conditions (Figure 5.8). 

Indeed, the presence of both drugs (individually) completely attenuated the coordinated activity 

seen across the culture. This effect was seen across all the profiled cultures, highlighted by the 

large significant decrease in the max ASDR with the application of both CNQX and APV (Figure 

5.9C; Table 5.2) and the lack of calculable MAP intervals for these conditions (Figure 5.9D). 

Washes following exposure to either compound restored both the synchronised behaviour and 

the analysis measures back to baseline. This clearly suggests that both AMPA and NMDA 

receptor mediated neurotransmission is required for the synchronised behaviour seen in these 

cultures at later time points and that this behaviour is indeed the manifestation of functional 

neuronal networks.   

 

Although both CNQX and APV caused a loss of the synchronised behaviour, they had 

differential effects on some more basic excitatory characteristics. Specifically, it was interesting 

that CNQX application caused a small increase in the average spike rate from 3.13 ± 1.12 Hz to 

4.01 ± 0.79 Hz, while treatment with APV caused a decrease in spike rate, from 3.1 ± 1.31 Hz 

(Wash 1) to 2.65 ± 0.49 Hz (Figure 5.9A), although these comparisons were not significant 

following one-way ANOVA. However, these contrasting effects can be seen in the example 

presented in Figure 5.8, with both the raster and ASDR plots highlighting a higher rate of firing 

in the culture when treated with CNQX over APV. Both CNQX and APV exposure caused a 

decrease in the number of detected bursts, falling from 881.3 ± 321.6 to 622 ± 420.1 for CNQX 

and a larger decrease from 1204 ± 402.8 (wash 1) to 490.7 ± 256.3 for APV (Figure 5.9B), 
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although this variation was not significant (Table 5.2). Washes following exposure to either 

compound rescued both spike rate and detected bursts back to or above baseline.        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Excitatory profiling 

 One way ANOVA Tukey’s Multiple comparisons 
  Mean difference [ 95% CI] Adjusted p value 
Average Spike rate (Hz) F(11, 10) = 0.453; R2 = 

0.1534 p = 0.768 No post – hoc comparisons Bursts F(11, 10) = 1.892; R2 = 
0.431 p = 0.188 

Max ASDR (spikes/bin) 

F(11, 10) = 4.466; R2 = 
0.545 p = 0.014 

  
Std vs CNQX 53 [ -35.86 – 141.9] 0.038 

CNQX vs Wash1 -97 [ -185.9 – -8.138] 0.023 
Wash1 vs APV 98.75 [9.88 – 187.6] 0.026 
APV vs Wash2 -67.75 [-156.6 – 21.11] 0.028 

MAP interval (ms) No ANOVA possible 
    

Inhibitory profiling 
 One way ANOVA Tukey’s Multiple comparisons 
  Mean difference [ 95% CI] Adjusted p value 

Average Spike rate (Hz) F(9, 14) = 2.338; R2 = 
0.505 p = 0.092 No post – hoc comparisons 

Bursts F(9, 14) = 3.915; R2 = 
0.626 p = 0.0166 

  
Wash 2 vs GABA 894 [-0.771 – 1789] 0.0203 
GABA vs Wash 3 -609.3 [-1504 – 285.4] 0.0497 

Max ASDR (spikes/bin) F(9, 14) = 2.411; R2 = 
0.475 p = 0.0416 

  
Wash 2 vs GABA 192 [-20.49 – 334.5] 0.0377 

 GABA vs Wash 3 -126.3 [-308.8 – 56.16] 0.0428 
MAP interval (ms) 

F(9, 18) = 2.411; R2 = 
0.553 p = 0.0081 

  
Std vs Bic 9775 [504.7 – 19045] 0.0345 

Bic vs Wash 1 -6725 [-15995 – 2545] 0.0315 
Wash 1 vs Picr 5707 [-3564 – 14977] 0.0402 
Picr vs Wash2 -6332 [-15602 – 2939] 0.0263 

Table 5.2 – Summary of the statistics for the comparisons of excitability and network 
characteristics of iPS cell derived neurons recorded with MEAs in response to 
pharmacological profiling at 50DPP.   
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Figure	5.8	–	Neural	network	behaviour	of	iPS	cell	derived	neurons	requires	both	AMPA	and	NMDA	
receptor	mediated	synaptic	activity.	Neurons	cultured	for	50	days	post	plating	(DPP)	form	networks	

which	manifest	on	MEA	recordings	as	cyclic	culture-wide	synchronised	firing.	This	behaviour	is	

abolished	with	both	application	of	CNQX	and	APV	(both	50	µM)	and	can	be	recovered	with	washes.	

For	each	condition,	top	panel	shows	raster	plots	of	detected	spikes	from	the	16	culture-wide	

electrodes	highlighted	in	the	inset;	bottom	panel	shows	ASDR	plots	which	present	the	summed	

number	of	spikes	seen	across	the	culture	in	200ms	bins,	y	units	=	spikes/bin.	The	data	presented	here	

is	from	the	same	culture,	with	conditions	recorded	serially.	The	same	behaviour	has	been	observed	in	

at	least	7	cultures	across	3	differentiations.	Scale	bar	=	100	seconds.								
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Figure	5.9	–	Glutamatergic	pharmacological	profiling	of	iPS	cell	derived	neurons	cultured	on	and	
recorded	with	MEAs	50	days	after	plating.	After	culturing	neurons	on	arrays	for	50	days,	the	activity	of	
cultures	was	synchronised,	such	that	activity	could	be	divided	into	less	active	and	more	active	periods	
(LAPs	and	MAPs).	To	determine	whether	this	coordinated	activity	was	caused	by	underlying	local	
networks,	50	µM	APV	and	50	µM	CNQX	were	applied	to	cultures	at	this	developed	stage	to	identify	the	
role	of	NMDA	and	AMPA	receptors	respectively.	Application	of	both	drugs	completely	attenuated	the	
coordinated	activity,	shown	here	by	the	reduction	in	max	array-wide	spike	rate	(C)	and	median	MAP	
interval	(D).	Drug	application	also	had	small	but	insignificant	effects	on	the	number	of	detected	bursts	(B)	
but	generally	limited	effects	on	basal	excitability	of	cultures	(A).	In	A-D,	data	show	means	+	SD,	except	
average	spike	rate,	which	shows	means	±	SEM.	Summary	data	shows	results	from	at	least	3	arrays	from	
three	differentiations.						
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5.3.5 Inhibitory pharmacological profiling of iPS cell derived neurons in late development 

 

The previous section established that the synchronised activity that develops in these array 

cultures is mediated by glutamatergic signalling via AMPA and NMDA receptors. However, in 

intact neural systems, the regulation of functional networks is thought to also involve 

interneurons and GABAergic signalling. To investigate the role of inhibitory signalling in these 

iPS cell derived cultures later in development and its contribution to the network function 

observed here, two GABAA inhibitors and GABA itself were applied acutely to cultures and 

recorded. Both bicuculline and picrotoxin were used for these experiments to gain a fuller 

understanding about the nature of the GABAergic contribution to the network behaviour and to 

provide confidence that any detected alterations are down to GABA signalling itself. While 

bicuculline is a classical orthosteric competitive antagonist of GABAA receptors, picrotoxin is 

thought to act as non-competitive channel blocker or as an allosteric inhibitor which binds to 

ligand-bound form of the receptor complex. As before, Figure 5.10 presents raster and ASDR 

plots of the recorded activity from one culture over the course of the experiment, while Figure 

5.11 presents summary data from five analysis measures for all cultures in the experiment.  

 

The application of both bicuculline and picrotoxin to the array culture in figure 5.10 induced a 

number of interesting changes in the culture’s activity. First, the presence of both antagonists 

caused a reduction in the interval between the the MAPs. This can be seen most clearly on the 

ASDR plots which show an increase in the number of peaks detected across the 10 minute 

recordings in both drug conditions. Indeed, this effect was seen in all the profiled cultures with 

bicuculline causing an average reduction in MAP interval from 25167 ± 6561 ms to 14533 ± 

4086 ms, while picrotoxin induced an attenuation from 22300 ± 3236 ms (1st wash) to 16091 ± 

5237 ms (figure 5.11D). The variation caused by these drugs to the MAP interval was found to 

be significant by one-way ANOVA, with the comparisons of bicuculline/picrotoxin to their 

respective standard conditions also significant (Table 5.2). Second, the ASDR plots in figure 

5.10 show clearly that both bicuculline and picrotoxin caused a decrease in the number of 

spikes seen in each MAP peak, with picrotoxin having a stronger effect than bicuculline. Again, 

this trend was seen across all cultures, where an average max ASDR reduced from 195.5 ± 

77.5 to 101.5 ± 49.5 and from 147.5 ± 84.5 to 84.5 ± 37.48 with bicuculline and picrotoxin 

respectively (figure 5.11C), although these changes were not found to be significant (Table 6.2).  
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The raster plots of the array shown in figure 5.10 also hint at a change in the general excitability 

of the culture when treated with both GABAA antagonists. Overall, bicuculline and picrotoxin 

exposure appeared to induce a general decrease in the number of spikes detected across the 

array. However, closer examination of this particular culture shows that the antagonists are 

having a larger effect on those electrodes which continue to fire continuously thought the length 

of the recording, for example, the 2nd 3rd and last electrode trace on the raster plots. Across the 

cultures as a whole, bicuculline had very little effect on the average spike rate of cultures, while 

picrotoxin decreased the average spike rate from 3.56 ± 1.34 Hz (1st wash) to 1.93 ± 0.72 Hz 

(figure 5.11A), although this decrease was not significant.  

 

The early profiling at 20DPP described in section 5.3.3 suggested that even at that early time 

point, the action of GABA neurotransmission was inhibitory as shown by the widespread loss of 

activity. To assess the function of GABA signalling at this later time point, 10 µM GABA was 

applied to cultures in the same way. Unsurprisingly, exposure to GABA caused almost complete 

loss of activity in the cultures, as shown by the representative activity plots in figure 5.10 and the 

almost complete attenuation of average spike rate (figure 5.11A), detected bursts (5.11B), max 

ASDR (5.11C) and loss of calculable MAP interval (figure 5.11D; see table 5.2 for statistics). All 

activity characteristics were returned to bassline following media washes.     
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Figure	5.10	–	Inhibitory	profiling	of	iPS	cell	derived	neuronal	cultures	exhibiting	synchronised	
network	behaviour.	Neurons	cultured	for	50	days	post	plating	(DPP)	form	networks	which	manifest	
as	cyclic	culture-wide	synchronised	firing.	This	behaviour	is	characterised	by	more	active	periods	
(MAPs)	which	present	as	peaks	on	array	wide	spike	detection	rate	(ASDR)	plots.	The	interval	between	
these	peaks	(MAP	interval)	is	attenuated	with	the	GABAA	competitive	antagonist	bicuculline	(10	µM)	
and	the	allosteric	GABAA	channel	blocker	pictotoxin	(2	µM).	This	effect	is	rescued	following	media	
washes.	Application	of	1	µM	GABA	to	the	culture	blocked	the	synchronised	behaviour	and	almost	
completely	blocked	all	activity.	Both	spontaneous	activity	and	coordinated	culture	wide	activity	
returned	following	media	washes.	For	each	condition,	top	panel	shows	raster	plots	of	detected	spikes	
from	the	16	culture-wide	electrodes	highlighted	in	the	inset;	bottom	panel	shows	ASDR	plots	which	
present	the	summed	number	of	spikes	seen	across	the	culture	in	200ms	bins,	y	units	=	spikes/bin.	The	
data	presented	here	is	from	the	same	culture	and	from	the	same	16	electrodes	shown	in	the	inset,	
with	conditions	recorded	serially.	The	same	behaviour	has	been	observed	in	at	least	4	cultures	in	2	
differentiations.	Scale	bar	=	100	seconds.								
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Figure	5.11	–	Late	inhibitory	profiling	of	iPS	cell	derived	neurons	cultured	on	and	recorded	with	MEAs.	
50	days	after	plating,	neuronal	cultures	showing	coordinated	network	activity	were	exposed	to	two	
GABAA	inhibitors,	bicuculline	(Bic;	10µM)	and	picrotoxin	(Picr;	2	µM),	and	GABA	(1	µM)	to	assess	the	role	
of	inhibitory	signalling	in	these	cultures	and	to	the	network	behaviour.	While	bicuculline	had	very	little	
effect	on	the	average	spike	number/spike	rate,	picrotoxin	induced	small	but	insignificant	reduction	in	
both	(A).	Both	antagonists	caused	an	insignificant	increase	in	the	number	of	detected	bursts	in	the	
cultures	(B).	Importantly,	both	drugs	had	noticeable	effect	on	the	network	activity	of	the	cultures:	both	
induced	a	reduction	in	the	maximum	array	wide	spike	rate,	indicating	that	the	peaks	of	the	more	active	
periods	(MAPs)	contained	less	spikes	culture	wide	than	control	conditions	(C);	both	drugs	also	caused	a	
significant	reduction	in	the	average	MAP	interval	–	the	period	between	the	peaks	of	synchronised	
cultured	wide	activity	(D).	Application	of	GABA	caused	a	dramatic	reduction	in	basal	excitably,	number	of	
bursts	and	Max	ASDR.	It	also	blocked	all	synchronised	activity	meaning	a	MAP	interval	was	not	calculable.	
Wash	recordings	after	all	applications	showed	a	return	to	baseline	for	all	measures.	The	final	wash	
condition	represents	recordings	following	two	washes	over	period	of	30	mins.	All	summary	plots	show	
means	±	SD	except	average	spike	rate	which	shows	means	±	SEM.	p	values	show	results	of	Tukey’s	
multiple	comparisons	following	one-way	ANOVA.		The	data	presents	summaries	from	at	least	5	arrays	
from	two	differentiations.										
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5.3.6 IBJ4 iPS cells derived neuronal cultures contain GABAergic interneurons  

 

The results presented in section 5.3.3 and 5.3.5 clearly highlighted a role for interneurons in 

these iPS cells derived cultures, both in terms of general excitability and the regulation of 

synchronised network activity. However, the differentiation protocols used here are based on 

those used to produce glutamatergic projection neurons – indeed, the immunocytochemistry 

results presented in 5.3.1 strongly suggest that this is the identify of the majority of neurons. 

Furthermore, the differentiation of interneurons from hPS cells generally requires additional 

morphogens (e.g. sonic hedgehog) in order to ventralise cells, mimicking interneuron 

development within the medial ganglionic eminence. To determine whether interneurons could 

be identified in these cultures, as suggested by the pharmacology MEA experiments, cells were 

fixed and stained at 50DPP for GAD67, one of the primary enzymes involved in the synthesis of 

GABA. 

 

Fixed cultures from two differentiations only were available for GAD67 staining, however this 

provided enough cells to permit a limited quantification of stained neurons. In total, 10 images 

across two coverslips per differentiation were counted. Interestingly, a small number of GAD67 

+ve neurons were identified in coverslips from both of the differentiations assessed (Figure 

5.12A; neuronal identify confirmed with MAP2 staining). Quantification of the number of 

GAD67/MAP2 +ve neurons in each imaged region determined that a mean of 4.7 ± 2.0 % and 

3.94 ± 2.32 % of MAP2 +ve neurons were also GAD67+ve for the two differentiations 

respectively (Figure 5.12B). Therefore, based on these results it can be determined that these 

cultures contain around 4-5% interneurons. It should be noted that all staining is performed on 

cells parallel to the array cultures – it is possible that the composition of these neuron 

populations varies compared to that on the MEAs.    
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Figure	6.12	–	Cultures	of	IBJ4	iPS	cells	derived	cortical	projection	neurons	contain	a	small	
population	of	interneurons.	Pharmacological	experiments	with	multi	electrode	array	(MEA)	
cultures	recording	spontaneous	network	activity	provided	strong	evidence	for	the	presence	of	
GABAergic	interneurons	in	cultures	and	their	role	in	the	regulation	of	network	activity.	To	
determine	whether	interneurons	could	be	observed	in	these	differentiations,	parallel	cultures	on	
coverslips	were	stained	for	GAD67,	a	key	enzyme	responsible	for	the	production	of	GABA.	
Assessment	of	interneuron	populations	was	limited	to	two	differentiations	following	identical	
protocols.	Panels	in	A	show	images	from	each	differentiation	and	represent	culture	regions	with	
higher	than	average	GAD67	staining	to	highlight	expression.	Cells	were	stained	at	50DPP.	A	
limited	quantitative	assessment	of	GAD67	+ve	neurons	in	the	two	differentiations	showed	that	
interneurons	account	for	around	4-5%	of	Map2+ve	neurons	in	the	cultures	(B).	Summary	plots	
show	means	of	counts	from	at	least	7	regions	across	2	coverslips	per	differentiation.	Error	bars	
show	SD.															
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5.3.7 Synchronised network activity in MEA cultures is regulated by L-type calcium channels 

 

To investigate further the physiology of the neuron cultures at the developed time point and to 

study what other underlying mechanisms could be contributing to the network activity observed 

in these cultures, an inhibitor of L-type calcium channels, diltiazem, was applied acutely to the 

cultures during recordings at 50DPP. This target was chosen for a number of reasons. Firstly, 

calcium signalling via L-type channels has been shown to be involved in the regulation of 

oscillatory behaviour in some brain regions (He et al., 2005; Przewlocki et al., 1999). Secondly, 

NMDA mediated network signalling is thought to be regulated via calcium homeostasis 

mechanism, partly through L-type calcium channels (Wang et al., 2013; Lee and Chung, 2014). 

Finally, recent genetic studies have implicated L-type calcium channels in increased risk for a 

range of neurological disorders, including schizophrenia, autism, depression and epilepsies; all 

pathologies with strong evidence for aberrant network signalling (Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014; Zamponi et al., 2015).  

 

Very little is known about the action of diltiazem on cell cultures and especially on neurons 

derived from hPS cells. To determine the range of any action of diltiazem on these neurons, a 

series of concentrations were applied acutely and serially to cultures. Figure 5.13 presents the 

results of these experiments from one representative culture in the form of raster and ASDR 

plots while figure 5.14 presents the summary data from all profiled cultures. 

 

The exposure of four concentrations of diltiazem to the array cultures had several effects on the 

firing patterns of the neurons. Most strikingly, application of diltiazem induced a reduction in the 

MAP interval of the synchronised cultures, with the extent of this attenuation dependent upon 

the dose of the drug (Figure 5.13). This effect was seen across all the cultures, where the 

average MAP interval decreased from 62650 ± 37309 ms in standard conditions, to 39575 ± 

11359 ms (1 µM), 22900 ± 12709 ms (2 µM) and to 20525 ± 9412 ms (5 µM; Figure 5.14D). 

One-way ANOVA showed that this variation was significant and Tukey’s multiple comparisons 

revealed that the decrease in MAP interval reached significance at 2 µM (Table 5.3). Exposure 

to 10 µM diltiazem ablated the synchronised behaviour of the cultures such that a MAP interval 

could not be calculated. Media washes restored the network activity and the average MAP 

interval to 30200 ± 4042 ms. Exposing cultures to diltiazem also had effects on the number of 
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spikes seen in the MAP peaks. Up to 2 µM there was little change on the max ASDR however 

with both 5 and 10 µM treatment there was an attenuation of this rate, falling from 35 ± 15.68 to 

15.75 ± 13.52 at 5 µM and to 10.5 ± 12.34 at 10 µM (Figure 5.14C). While the overall variation 

of max ASDR due to diltiazem was significant, no post-hoc comparisons were (Table 5.3). The 

max array wide spike rate returned back to baseline following washes.     

 

Concentrations of diltiazem up to 5 µM had mixed effects on the tonic excitation of the cultures. 

Overall there was little change to the average spike rate (Figure 5.14A) or the number of bursts 

(Figure 5.14B) up to 2 µM. From 5 µM, the was a decrease observed in both average spike rate 

and the number of bursts, although this change was not significant (Table 5.3). Indeed, while 

these changes in basal activity up to and including 5 µM treatment cannot be observed in the 

representative culture shown in figure 5.13, it is very clear that 10 µM exposure causes a 

dramatic reduction in activity. This could perhaps represent the threshold at which diltiazem is 

acting specifically on L-type channels and instead has affinity for calcium channels more 

broadly.  

 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

L-type calcium channel profiling 
 One way ANOVA  Tukey’s Multiple comparisons 
  Mean difference [ 95% CI] Adjusted p value 
Average Spike rate (Hz) F(9, 16) = 2.523; R2 = 

0.440 p = 0.724 No post – hoc comparisons Bursts F(9, 16) = 1.652; R2 = 
0.341 p = 0.203 

Max ASDR (spikes/bin) F(9, 10) = 2.708; R2 = 
0.429 p = 0.043 No significant post – hoc comparisons 

MAP interval (ms) F(9, 16) = 5.281; R2 = 
0.627 p = 0.0047 

  
Std vs 2 µM 39750 [-1792 – 81292] 0.0378 
Std vs 5 µM 42125 [583.2 – 83667] 0.0359 

Table 5.3 – Summary of the statistics for the comparisons of excitability and network 
characteristics of iPS cell derived neurons recorded with MEAs in response to the L-
type calcium channel blocker diltiazem.   



	

Standard	

		1µM	

5µM	

Wash	
	

10µM	
	

		2µM	
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Figure	5.13	–	The	interval	between	more	active	periods	(MAPs)	observed	in	synchronised	iPS	cell	
derived	neuronal	cultures	is	attenuated	by	blocking	L-type	calcium	channels.	Neurons	cultured	for	
50	days	post	plating	(DPP)	form	networks	which	manifest	as	cyclic	culture-wide	synchronised	firing.	
This	behaviour	is	characterised	by	MAP	peaks	representing	high-frequency	firing	across	the	culture.	
The	interval	between	these	peaks	(MAP	interval)	is	attenuated	by	application	of	the	L-type	calcium	
channel	blocker	diltiazem,	in	a	dose-dependent	manner.	Application	of	10	µM	diltiazem	inhibits	the	
majority	of	culture	activity.	For	each	condition,	top	panel	shows	raster	plots	of	detected	spikes	from	
the	16	electrodes	highlighted	in	the	inset;	bottom	panel	shows	ASDR	plots	which	present	the	summed	
number	of	spikes	seen	across	the	culture	in	200ms	bins,	y	units	=	spikes/bin.	The	data	presented	here	
is	from	the	same	culture	and	the	same	electrodes,	shown	in	the	inset,	with	conditions	recorded	
serially.	The	same	behaviour	has	been	observed	in	at	least	5	cultures	across	2	differentiations.	Scale	
bar	=	100	seconds.								
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Figure	5.14	–	Network	activity	in	iPS	cell	derived	neural	cultures	is	regulated	by	L-type	calcium	
channels	in	a	dose	dependent	manner.	MEA	cultures	at	50DPP	were	exposed	to	increasing	
concentrations	of	diltiazem,	a	specific	L-type	calcium	channel	blocker	during	recordings.	Diltiazem	
had	limited	effects	on	spike	number/spike	rate	(A)	and	number	of	detected	bursts	(B)	up	to	5	µM;	
after	which	activity	decreased.	This	trend	was	also	seen	in	the	maximum	array	wide	spike	detection	
rate	(C)	which	describes	the	maximum	number	of	spikes	seen	across	the	culture	in	a	given	200	ms	
bin.	Diltiazem	had	a	dose	dependant	attenuation	effect	on	the	more	active	period	interval	(MAP	
interval);	which	describes	the	interval	between	coordinated	culture	wide	MAPs	(D).	10	µM	diltiazem	
blocked	network	activity	entirely,	meaning	a	MAP	interval	was	not	calculable.	All	summary	plots	
show	means	+	SD,	except	average	spike	rate	which	shows	means	±	SEM.	Plots	represent	summary	
data	from	5	arrays	across	two	differentiations.									
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One of the most interesting aspects of the response of the cultures to diltiazem was the 

similarity to the effects caused by exposure to the GABAA inhibitors, bicuculline and picrotoxin, 

although it should be noted that the response to neither bicuculline or picrotoxin was dose 

dependant in the manner of diltiazem. Specifically, both classes of drug induced a reduction in 

the MAP interval of coordinated cultures and caused a decrease in the maximum height of the 

ASDR peaks. To investigate whether the action of these drugs could be acting via a common 

mechanism, both bicuculline and diltiazem were applied simultaneously to cultures. A 

concentration of 5 µM diltiazem was chosen for these experiments as it represented a dose 

which induced changes in both MAP interval and max array wide spike rate, inline with the 

GABAA inhibitors.  

 

Figure 5.15A presents the response of one array culture (61DPP) to the combined exposure of 

bicuculline and diltiazem. First, the culture responded to bicuculline alone in the same way as 

seen for the cultures in section 5.3.6, with a reduction in the MAP interval and an attenuation of 

the number of spikes in the ASDR peaks. Following the addition of 5 µM diltiazem to the 

medium, there was no further change in the interval between peaks but there was a further 

reduction in the maximum number of spikes in the peaks. These trends continued when profiling 

a small cohort of arrays, where the average MAP interval significantly reduced from 33100 ± 

3121 ms in standard conditions to 19400 ± 4243 ms with bicuculline (Tukey’s multiple 

comparison following one-way ANOVA; p = 0.0406) and subsequently remained at 19700 ± 

5798 ms when in the presence of both bicuculline and diltiazem (Figure 5.15E). After washes, 

the MAP interval returned to 27100 ± 3567 ms. The average max array wide spike rate of the 

cultures attenuated to 42 ± 18.4 in the presence of bicuculline from 68.5 ± 19.9 and then further 

reduced with the addition of diltiazem to 24 ± 5.825 (Figure 5.15D). This deficit was somewhat 

restored to 58.8 ± 9.78 following washes. 

 

In terms of basal excitability, bicuculline alone induced a modest increase in the average spike 

spike rate of the cultures (Figure 5.15B), although the high variation seen across the different 

arrays perhaps suggest that bicuculline has little effect on basal spike firing, as seen in section 

5.3.6. However, similarly to that seen in section 5.3.6, there was a small increase in bursts 

detected with application of bicuculline (Figure 5.15C). It was more clear that the addition of 

diltiazem and bicuculline simultaneously caused a decrease in both spike rate and burst number 
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back to around or below baseline (Figure 5.15B&C). This corresponds favourably to the 

inhibitory effect on tonic excitation caused by 5 µM diltiazem alone as described earlier in this 

chapter. The results from this section strongly suggest that both GABAA and L-type calcium 

channel signalling play a regulatory role in the network activity of iPS cell derived neurons. 

Moreover, these final set of results indicate that both of these signalling pathways could be 

acting via a common underlying mechanism, as the action of diltiazem was precluded by 

application of bicuculline.   
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Figure	5.15	–	The	attenuation	of	more	active	period	(MAP)	intervals	in	synchronised	iPS	cell	derived	
neuronal	cultures	by	inhibitors	of	L-type	calcium	channels	and	GABAA	receptors.	The	interval	
between	synchronised	more	active	periods	(MAP	interval)	observed	in	iPS	cell	derived	neuron	
cultures	after	50	days	of	culturing	was	attenuated	by	L-type	calcium	channel	blocker	diltiazem	and	
the	GABAA	antagonist	bicuculline.	However,	application	of	both	drugs	together	did	not	produce	a	
summative	effect,	suggesting	a	potential	shared	mechanism	of	action.	For	each	condition	in	A,	top	
panel	shows	raster	plots	of	detected	spikes	from	the	same	12	electrodes	of	one	culture	highlighted	in	
the	inset;	bottom	panel	shows	ASDR	plots	which	present	the	summed	number	of	spikes	seen	across	
the	culture	in	200ms	bins,	y	units	=	spikes/bin.	Limited	changes	were	seen	overall	in	average	spike	
rate	(B)	or	number	of	bursts	(C)	but	the	co-application	of	drugs	caused	a	large	decrease	in	the	max	
ASDR	(D).	Bicuculline	caused	a	significant	decrease	in	the	MAP	interval	but	remained	stable	when	
diltiazem	was	added	(E).	Scale	bar	in	A	=	100	seconds.	Summary	data	in	B-E	shows	means	+	SD	except	
average	spike	rate	which	shows	means	±	SEM;	taken	from	4	array	cultures	across	two	differentiations.										
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5.4 Discussion  

 

 

The work in this chapter has shown that iPS cell derived neurons can be cultured on MEAs for 

an extended period of time and that the pattern of spontaneous activity recorded in these 

cultures changes markedly throughout development. Specifically, neurons re-plated onto MEAs 

take around 10 days to exhibit spontaneous activity; between 10 and 30 DPP activity increases 

but remains uncoordinated; between 30 and 40 DPP activity becomes more synchronised in the 

form of short coordinated culture-wide bursts (synchronised burst firing; SBF) and finally by 50 

DPP, the majority of culture activity is synchronised into periods of lower activity (LAPs) and 

more activity (MAPs), which oscillate over a period of 10s of seconds. Importantly, the work 

here showed that the synchronised behaviour is a manifestation of underlying local excitatory 

networks, as the coordinated activity required both NMDA and AMPA signalling. Furthermore, 

the network activity in the cultures is regulated by both GABAergic and L-type calcium channel 

signalling, as inhibitors of both of these pathways attenuated the period between MAPs seen in 

synchronised arrays later in development. Importantly, results here suggest that the action of 

both of these pathways may be acting via a common underlying mechanism. Overall, this 

chapter has shown that iPS cell derived neurons form mature, complex cultures on MEAs and 

the recording of their spontaneous activity can be used as a platform for studying network 

activity throughout development and, importantly, in models of neurological disease.  

 

While MEA technology has been around for many years, it is only in the more recent past with 

the advent of more user friendly and reliable systems that its use in neurobiology has been 

more keenly exploited. In particular, the use of planar MEAs onto which neurons can be cultured 

in a more or less standard way lends itself ideally to the study of network behaviour in 

developing neurons. Here, iPS cell derived neurons developed a synchronised pattern of firing 

from around 30 DPP, which progressed further to more fully coordinated behaviour by around 

50DPP as described. This behaviour compares well to what has previously been described by a 

number of groups using very similar MEA systems to study networks in dissociated rodent 

primary neurons (Wagenaar et al., 2006; Mok et al., 2012; Chiappalone et al., 2006; Sun et al., 

2010). In particular, the activity seen here at around 50DPP compares, in general, to what is 

seen in these studies at around 20DPP. In rodent neurons, this behaviour appears to extend 

further, such that the oscillations between a MAP and LAP, which here reached a maximum of 



5. Investigating network development in iPS cell derived neurons 

 166 

around 30 seconds, is seen lasting for several minutes (Mok et al., 2012; Lu et al., 2016). The 

fact that coordinated activity progresses further in rodent neurons is likely to be due to the 

increased maturity of such cells and their accelerated developmental timeline. Interestingly, a 

very similar development of slow culture-wide oscillations was also seen by a study which 

computationally modelled a small network (∼1000 cells) of rodent neurons (Compte et al., 

2003).  

 

Very few studies have looked at the function of iPS cell derived neurons using MEAs. The work 

from this project is in agreement with those studies that have, in terms of a general increase in 

excitability seen throughout culture development (Odawara et al., 2014; Ylä-Outinen et al., 

2010; Odawara et al., 2016; Amin et al., 2016), although overall the neurons here present as 

being more active at corresponding developmental time points. Only one study to date has 

shown the development of synchronised culture-wide activity in iPS cell neurons (Odawara et 

al., 2016). However, the coordinated activity observed in this study does not progress further 

than what was observed here at around 40DPP, namely short burst-firing which is synchronised 

across the cultures (SBF). The Odawara study does not report the extended periods of 

oscillatory firing seen here from 50DPP and furthermore, the onset of synchronised behaviour 

takes around 14 weeks (98 days) to develop compared to between 30-40 days here. It should 

be noted that the protocols differed greatly between this project and the work by Odawara et al., 

most noticeably as cells were proprietary ‘hiPS cell neurons’ and took an extended period of 

culturing to reach a basic level of physiological maturity (at least 6 weeks). Nevertheless, as far 

as can be determined, the work from this chapter presents for the first time a model of network 

behaviour in iPS cell derived neurons which compares favourably to that seen in dissociated 

rodent neurons and which appears and develops in a practically useful time period.  

 

The pharmacology experiments in this chapter provided useful information abut the underlying 

nature of the activity recorded with the MEAs at particular time points. The experiments at 20 

DPP, at point in development where culture activity is uncoordinated, highlighted that a majority 

of the detected spikes were not sensitive to CNQX or APV, suggesting that they were not 

dependant on AMPA or NMDA signalling. There was however a reduction in the number of 

detected bursts, suggesting that synaptic activity is perhaps required more for this type of firing. 

These results are broadly in line with what has previously been reported with iPS cell derived 

neurons at around this point in development (Odawara et al., 2016; Odawara et al., 2014); the 
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authors of these papers report a decrease in spikes of around 40% with CNQX application. 

Overall, this suggests that at this time point neurons are not sufficiently mature to have 

developed a significant number of functional excitatory synapses. Instead, detected spikes are 

primarily the result of intrinsic mechanisms within individual neurons, possibly due to to their 

relative immaturity. For example, it is perhaps likely that the resting membrane potential (Vrest) of 

these neurons at this time point is around -25 to -30 mV – indeed, the single cell 

electrophysiology work in chapter 4 suggests that this would likely be the case. Furthermore, the 

work in chapter 4 also highlighted that earlier in development, the action potential threshold is 

fairly close to the Vrest of the neuron. As such, it is possible that many of the spikes detected at 

this time point are due to random fluctuations in membrane potential that, due to the the 

immaturity of the cell, push the neuron over the threshold for action potential initiation.  

 

Perhaps the more interesting result of the pharmacology at this time point was the response of 

the neurons to bicuculline and GABA. Application of bicuculline to the cultures induced a small 

increase in both the number of spikes/average spike rate and the number of detected bursts. 

This suggests that at least some of the neurons within the cultures express functional GABAA 

receptors and more importantly that there is a degree of basal GABAergic tone. Furthermore, 

the direction of the change in excitably with bicuculline suggests that the action of that basal 

GABA tone is inhibitory. This was confirmed with application of GABA itself to the cultures which 

resulted in an almost complete loss of spontaneous activity. This is perhaps a surprising finding 

based on what is known about the function of GABA throughout neural development. In early 

development, activation of GABAA receptors leads to efflux of Cl- ions and depolarisation of Vm, 

while in more mature neurons, activation of these receptors leads to influx of Cl- ions and 

membrane hyperpolarisation. The change seen throughout development is due to a shift in the 

reversal potential of chloride, driven by a change in the relative expression of the NKCC1 and 

KCC2 K+/Cl- co-transporters. In rodents, KCC2 expression, the transporter responsible for the 

shift to inhibitor action of GABA, only becomes reliably detectable around P0, around when the 

major shift is also seen (Wang et al., 2002; Rivera et al., 1999). Interestingly, KCC2 mRNA was 

detected in humans as early as 18-24 PCWs, depending on brain region (Sedmak et al., 2015).  

 

Expression of KCC2 in hPS cell derived neurons is not well understood. A recent study looked 

at the transcriptome of iPS cell neurons using single-cell RNA-seq and determined that very few 

neurons expressed detectable levels of KCC2 mRNA, while almost all neurons showed good 
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expression of NKCC1 (Bardy et al., 2016). Conversely, a further study could in fact detect low 

levels of KCC2 protein in iPS cell neurons, which increased gradually over development (Tang 

et al., 2016). Interestingly, the internal concentration of chloride ions in hPS cell neurons has 

been shown to decrease over a period of around 7 weeks, which was matched by increase in 

KCC2 mRNA expression (Livesey et al., 2014). Unfortunately, neither RNA or protein levels 

were able to be determined in the neurons used in this project. As such, based on the 

pharmacology, it can only be assumed that there is enough expression of KCC2 in these 

neurons to provide the switch in chloride reversal potential required for an inhibitory effect of 

GABA.  

 

The synchronised network activity seen in these cultures was completely eliminated with 

application of either APV or CNQX. Firstly, this provides compelling evidence that the 

synchronised behaviour observed is indeed caused by underlying neural network activity and is 

not an artefact of the culturing conditions. Secondly, it shows that at this time point in 

development, these neurons are now showing good expression of functional AMPA and NMDA 

receptors and thirdly, it strongly suggests that the formation and maintenance of this network 

behaviour requires signalling via both AMPA and NMDA receptors. This finding is in agreement 

with the only other study to identify a degree of synchronised activity in iPS cell neurons, which 

found that this behaviour was abolished with CNQX and APV, although the latter only at early 

time points (Odawara et al., 2016). 

 

It was perhaps somewhat surprising that antagonism of both AMPA and NMDA receptors 

induced an identical effect on the network activity of these cultures. Indeed, there is evidence to 

suggest that blockade of NMDA but not AMPA receptors, abolishes slow coordinated activity 

both in vivo and in in vitro slices (Harsch and Robinson, 2000; Lazarewicz et al., 2010; Hakami 

et al., 2009; Molina et al., 2014). Interestingly however, work with dissociated rodent neurons, 

including some of the earlier generation of MEA studies, has shown that the coordinated burst 

firing identified is indeed blocked by both AMPA and NMDA receptor inhibition (Maeda et al., 

1995; Sanchez-Vives and McCormick, 2000; Chiappalone et al., 2003; Lu et al., 2016). It is 

possible that the difference seen in dissociated neurons compared to ‘intact’ models is a 

function of the more random and heterogeneous nature of such cultures, which lack the lack the 

intrinsic complexity, highly regulated developmental structure and region specific networking 

seen in slices and in vivo.  
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While inducing the same effect in cultures with regards to the network activity, APV and CNQX 

caused contrasting changes in terms of more basal excitability, with APV causing a decrease in 

spike rate and detected bursts, while CNQX application lead to increased in overall average 

spike rate. In general, AMPA receptors are thought to be responsible for the majority of ‘basal’ 

action potentials, due to the fact that their activation requires only the binding of glutamate. 

NMDA receptors however act as coincidence detectors, requiring binding of both glutamate and 

glycine as a co-agonist, together with a depolarisation – dependant unblocking of pore-

associated Mg2+ ions (driven primarily via AMPA receptor currents). Counter-intuitively, 

functional NMDA receptors are expressed before functional AMPA receptors in mammalian 

development, suggesting that, in fact, at early time points NMDA receptors are the primary 

source of excitatory communication (Pickard et al., 2000; Durand et al., 1996). The Mg2+ block 

of NMDA receptors is not ‘all or nothing’, instead while practically 100% of receptors are blocked 

at -70 mV, around half are ‘empty’ at -20 mV (Nowak et al., 1984; Vargas-Caballero and 

Robinson, 2004). This therefore leads to the suggestion that in the iPS cell derived neurons 

used here, NMDA activity is perhaps more prominent owing to the relative immaturity of the 

resting membrane potential compared to adult or rodent primary neurons.  

 

Application of both bicuculline and picrotoxin to the cultures during synchronised network 

behaviour attenuated the interval between the more active periods (MAP). While bicuculline is a 

competitive antagonist for GABAA receptors, picrotoxin is thought to act via an allosteric 

mechanism, strongly suggesting therefore that the effect of both of these drugs is down to the 

inhibition of GABAergic signalling. This finding compares well to what has previously been 

reported with both rodent dissociated primary cultures (Chiappalone et al., 2003; Chiappalone et 

al., 2006; Lu et al., 2016) and iPS cell derived cultures (Odawara et al., 2014; Odawara et al., 

2016). The regulation of coordinated network firing by GABAergic interneurons is well 

documented. This ranges from coordinating oscillatory activity across brain regions (Blatow et 

al., 2003; Bruno and Sakmann, 2006; Sanchez-Vives and McCormick, 2000), synchronising 

networks within structures (e.g. the hippocampus; Mann and Paulsen, 2007; Bartos et al., 2002) 

to regulating the behaviour of smaller more localised networks (Cobb et al., 1995; Hu et al., 

2014). Furthermore, GABAergic activity is thought to be highly important throughout 

development, where it has been implicated in the correct formation of networks and the 

regulation of synaptic plasticity (Higley and Contreras, 2006; Tremblay et al., 2016; Takada et 
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al., 2014). Importantly, GABAergic malfunction leading to an unphysiological inhibitory/excitatory 

balance is thought to underlie several neurological disorders including schizophrenia, autism 

and epilepsies. Therefore, the fact that inhibitory activity can be manipulated pharmacologically 

in these iPS cell derived MEA cultures allows for the study of inhibitory regulation of networks in 

disease – relevant models.  

 

The response of the cultures to the GABA antagonists and indeed GABA itself at the later time 

point corroborates the pharmacology from earlier in development, in suggesting that these 

cultures must contain a source of GABAergic drive. Indeed, this was further confirmed with the 

staining for GAD67 +ve cells, which, although a limited quantification study, suggested that 

around 4-5% of neurons in the cultures were of an GABAergic identity. In terms of the protocols 

used for the production of neurons in this study, the finding that interneurons are present in 

cultures, albeit in small numbers, is perhaps surprising. The basic outline of the protocol used 

here involves the neuralising of iPS cells using dual SMAD inhibition, followed by routine cell 

culture with a medium containing the neuronal supplements B27 and N2. While several different 

approaches exist for the differentiation of interneurons, a common step is the addition of 

morphogens involved in cell patterning across the dorsal-ventral axis, to promote the 

developmental model of neurons arising from the medial ganglion eminence, in particular, 

agonism of sonic hedgehog signalling and inhibition of wnt signalling (Kim et al., 2014; Goulburn 

et al., 2012; Nicholas et al., 2013; Maroof et al., 2013). As such, without the addition of these 

molecules in the protocol used here, it can only be assumed that there is a low-level intrinsic 

source of such molecules in these cultures that promotes the formation of a small interneuron 

population. However, in light of the evidence discussed above for the role of interneurons in 

network function, the presence of these cells regardless of their origin, is welcome.       

 

Perhaps the most interesting result from this chapter, aside from the development of such 

complex network behaviour in these neurons, was the response of cultures to the L-type 

calcium channel (LTCC) blocker diltiazem. Application of diltiazem caused a dose dependant 

attenuation of the MAP interval of synchronised activity up to 10 µM, which induced a complete 

loss of networked behaviour. At low concentrations, diltiazem is a selective pore-blocker of 

LTCCs (both Cav1.2 and Cav1.3 channels) however above around 20 µM, has been shown to 

act on other voltage gated calcium channels, including P/Q-type (Dobrev et al., 1999), and 
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ionotropic 5-HT3 receptors (Gunthorpe and Lummis, 1999; Hargreaves et al., 1996). As such, it 

is perhaps likely that in these cultures, concentrations of diltiazem above around 5 µM may start 

to act in a non-specific manner, as this represented the dose which no longer attenuated MAP 

interval but did begin to causes a decrease in overall excitability. 

 

LTCCs are a class of voltage gated calcium channels characterised by a large single channel 

conductance, a high threshold of voltage activation and a delayed voltage dependant 

inactivation (Zamponi et al., 2015). The Cav1.2 and Cav1.3 subtypes (coded for by CACNA1C 

and CANCA1D genes respectively) are expressed throughout the mammalian brain and are 

involved in wide array of calcium regulatory mechanisms (Hell et al., 1993; Schlick et al., 2010). 

In particular, LTCCs are strongly implicated in NMDA-dependant LTP/LDT, via regulation of 

local intracellular calcium concentrations (Moosmang et al., 2005; Malenka and Bear, 2004; 

Zucker, 1999). This regulation of synaptic plasticity is thought to underlie the alterations to 

hippocampal – dependant learning seen with decreased or absent expression of LTCCs 

(Moosmang et al., 2005; White et al., 2008; Hofmann et al., 2014). Furthermore, similar rodent 

KO studies have implicated LTCCs in hippocampal-independent mechanisms of fear learning 

(Cain et al., 2002; McKinney et al., 2008; Lee et al., 2012; Langwieser et al., 2010), regulation of 

axon growth (Enes et al., 2010), trafficking of AMPA receptor subunits (Schierberl et al., 2011) 

and gene expression (Wheeler et al., 2012; Gomez-Ospina et al., 2006).   

 

A role for LTCCs has also been described in a range of oscillatory neural activity in rodent cells. 

Synchronised calcium transients have been shown to be mediated and controlled by LTCCs in 

dissociated primary neurons (He et al., 2006; Przewlocki et al., 1999), while further studies have 

shown that these channels can regulate calcium oscillations in intact systems (Inglefield and 

Shafer, 2000; Bengtson et al., 2013; Wang et al., 2013). Importantly, it has also been shown 

that LTCC currents can modulate the network response of neurons during physiological 

oscillatory behaviour in the hippocampus (Mohajerani et al., 2007; Hansen et al., 2014; Bukalo 

et al., 2013) and during modelled epileptiform activity (Straub et al., 2000; Empson and Jefferys, 

2001). Involvement of LTCCs in these systems is likely to be down to their role in the regulation 

of the post-burst after-hyperpolarisation (AHP), a period of hyper-polarisation which terminates 

high frequency firing (Lima and Marrion, 2007). LTCCs have been shown to be a key mediator 

of the size and duration of the AHP and therefore act as regulators of neuron burst behaviour 

(Shah and Haylett, 2000; Lima and Marrion, 2007; Gamelli et al., 2011). 
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The evidence reviewed above provides good support for the role of LTCCs in regulating 

synaptic activity and their possible involvement in the control of neural circuits. Moreover, the 

majority of this evidence is based upon studies of LTCCs at excitatory synapses and as such, 

provides a potential mechanism for how these channels may be regulating the NMDA and 

AMPA dependant synchronised network activity seen here. However, the action of the LTCC 

blocker diltiazem induced an identical effect on this network behaviour as that caused by 

inhibition of GABAA receptors. Furthermore, application of diltiazem and bicuculline concurrently 

did not produce a summative effect on the interval between culture MAPs, strongly suggesting 

that the two drugs are acting via a common underlying mechanism. A potential scenario is that 

diltiazem is acting via presynaptic LTCCs on GABAergic interneurons nerve terminals. Indeed, 

LTCCs have been shown be expressed in presynaptic terminals in the hippocampus (Tippens et 

al., 2008) and in interneurons (Westenbroek et al., 1998). While a role for P/Q and N type 

calcium channels in presynaptic vesicular release is well documented (Evans and Zamponi, 

2006), there is less direct evidence for a similar role for LTCCs. However, LTCCs have been 

shown to interact with aspects of the exocytotic pathways and facilitate neurotransmitter release 

in certain neuronal populations (Wiser et al., 1996; Wiser et al., 1999). Furthermore, calcium 

currents via LTCCs have been shown to act through the MAPK ERK1/2 signalling pathway, 

which its self has been implicated in the regulation of vesicular exocytosis (Ren and Guo, 2012; 

Dolmetsch et al., 2001). Importantly, this link has been observed directly as inhibition of the 

ERK1/2 pathway was shown to increase neurotransmitter release via increased calcium influx 

via LTCCs (Subramanian and Morozov, 2011). This therefore provides a potential mechanism 

by which LTCCs may be acting to regulate the activity of GABAergic interneurons in these iPS 

cell derived cultures: Synchronised network activity develops in cultures after maturation of 

functional synapses and is dependant on both AMPA and NMDA signalling; this activity is 

regulated by GABAergic innervation, inhibition of which attenuates the period between high 

frequency culture-wide firing; blocking LTCCs mimics the effect of GABAA antagonism by 

reducing vesicular release at the interneuron-projection neuron synapse.  
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6. Functional phenotyping of autism spectrum disorder patient iPS 

cell derived neurons 
 

 

 

 

6.1 Introduction 

 

 

The SHANK3 protein is a key part of the excitatory post-synaptic density (PSD), acting primarily 

as scaffolding protein involved in the recruitment and assembly of NMDA and AMPA receptors 

and as link between these receptors, via interactions with other proteins such as PSD95 and 

HOMERs, and the actin cytoskeleton (Naisbitt et al., 1999; Hayashi et al., 2009). Mutations in 

SHANK3 have been implicated in several neurological disorders, including schizophrenia (de 

Sena Cortabitarte et al., 2017; Guilmatre et al., 2014) and epilepsy (Han et al., 2013). However, 

by far the most understood implication for SHANK3 is its role in autism spectrum disorder 

(ASD). Large scale genetic studies have shown that rare and de novo mutations in SHANK3 are 

a major risk factor for development of ASD and have suggested that mutations in the gene are 

present in up to 1% of the ASD population (Gauthier et al., 2009; Boccuto et al., 2013; Leblond 

et al., 2014). Heterozygous deletions of SHANK3 are also present in almost all cases of 

22q13.3 or Phelan-McDermid syndrome (PMDS), a complex neurological disorder characterised 

by heterogeneous symptoms including developmental delay, intellectual disability and ASD 

(Phelan and McDermid, 2012; Wilson et al., 2003). Importantly, SHANK3 associated PMDS is 

the genetic implication with the highest penetrance for development of ASD, with around an 

80% rate of diagnosis.   

 

Mouse models of PDMS have revealed an array of phenotypes associated with SHANK3 

haploinsufficiency, including reduced spine formation and complexity of dendritic branching 

(Hung et al., 2008; Durand et al., 2012), decreased excitatory synaptic activity (Wang et al., 

2011; Yang et al., 2012) and behavioural deficits (Lee et al., 2015; Bozdagi et al., 2010) . 

However, one of the most consistent findings from mouse studies has been a reduction in LTP 

associated with SHANK3 mutations across a range of plasticity protocols (Kouser et al., 2013; 
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Jaramillo et al., 2016; Bozdagi et al., 2010), suggesting that reduced SHANK3 expression may 

lead to altered signalling within neural networks. A number of these deficits have also been 

identified in neurons derived from hPS cells with heterozygous expression of SHANK3, 

including iPS cells from patients with mutations in SHANK3. In particular, SHANK3 mutant hPS 

cell neurons show decreased spontaneous activity, alterations to NMDA/AMPA mediated 

synaptic currents, aberrant calcium signalling and changes to dendritic morphology 

(Shcheglovitov et al., 2013; Darville et al., 2016; Yi et al., 2016).  

 

Recently, a study investigated the network behaviour of homozygous Shank3 KO primary 

mouse neurons using extracellular recordings via an MEA system very similar to that used in 

this project (Lu et al., 2016). The authors found that Shank3 mutant neurons were less 

spontaneously excitable than control neurons and, importantly, found that synchronised network 

activity was altered in mutant cultures. Furthermore, these deficits could only be fully rescued 

with application of positive allosteric modulators of AMPA and GABAA receptors, suggesting a 

role for both excitatory and inhibitory circuit signalling. Although conducted with mouse primary 

neurons with homozygous mutations, the Lu et al. study provides a good comparison for the 

work in this project, and offers a template to study the network function of heterozygous 

SHANK3 neurons, which, to date, has not been studied in hPS cell derived neurons.  

 

This chapter therefore focuses on investigating the function of neurons derived from ASD 

patient iPS cells with heterozygous mutations of SHANK3. The cells have been provided for use 

in this project as part of a collaboration with Jack Price at King’s College, London (KCL) and 

include two ASD patient lines and one control line. All three of the iPS cell lines were derived 

from keratinoctyes and were reprogrammed using a polycistronic lentiviral vector. For use in this 

project, lines were received as neural precursors (NPCs) which were produced by the group in 

KCL using the protocol described in Appendix 1. NPCs were subsequently terminally 

differentiated into neurons for use here following the protocol described in Chapter 2. 
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The two ASD patient lines both contain heterozygous deletions of chromosome 22q13.33 

including SHANK3 and are described below. Figure 6.1A highlights the location of the lesions 

within 22q13.33.  

  

Shank3_M1 (S3_M1). Derived from a 4-year old male with absent speech, developmental delay 

and ASD diagnoses. Heterozygous deletion at chromosome 22q13.33 of ∼ 50kb extends from 

the end of the third exon of SHANK3 to near the start of the neighbouring gene, ACR. 

 

Shank3_F1 (S3_F1). Derived from female child, age unknown, with ASD diagnosis. Other 

diagnoses unknown. Heterozygous deletion at chromosome 22q13.33 of ∼ 80kb extents from 

the end of the third intron of SHANK3 to near the end of the RABL2B gene (transcribed from 

minus strand). S3_F1 cells therefore also have heterozygous deletions of ACR, which codes for 

the spermatozoa-specific protease acrosin.  

 

The control NPC line used in this chapter is Ctl_M1. It was derived from a healthy male of 

unknown age with no diagnoses of ASD or any mental health disorder. It has two full copies of 

SHANK3.         
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Figure	6.1	–	Schematic	diagrams	of	the	genetic	lesions	present	in	the	two	neural	precursor	cell	lines	derived	
from	patients	with	autism	spectrum	disorder	(ASD)	and	the	experimental	outline	used	in	this	study.	(A)	Both	
the	S3_M1	and	S3_F1	lines	were	derived	from	_patients	with	confirmed	ASD	diagnoses.	Comparative	genomic	
hybridisation	arrays	revealed	that	both	lines	had	small	heterozygous	deletions	of	a	distal	region	of	
chromosome	22q13.33,	including	the	majority	of	the	SHANK3	gene.	For	S3_M1	(red	block	and	text),	the	
deletions	spans	from	the	end	of	the	third	exon	to	near	the	beginning	of	the	neighbouring	3’	gene,	ACR;	in	the	
S3_F1	line,	the	deletion	range	from	the	end	of	the	third	intron	to	just	before	the	end	of	the	RABL2B	gene	(on	
reverse	strand)	and	therefore	also	includes	heterozygous	deletion	of	ACR,	which	codes	for	acrosin,	a	protease	
specific	to	spermatozoa.	This	genetic	analyses	were	conducted	by	Jack	Price	at	KCL,	London.	(B)	Overview	of	
the	protocol	and	experimental	timeline	for	the	work	in	Chapter	6.	Thawed	precursor	lines	were	cultured	for	
20-24	days	in	SHANK3	medium.	Cells	were	then	re-plated	onto	either	MEAs	or	coverslips	as	required	for	
calcium	imaging	and	immunocytochemistry.	After	re-plating,	medium	was	gradually	changed	to	Brainphys	over	
a	period	of	4-6	days.	DPP	=	days	post	(re)plating.									

A	

B	
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6.2 Chapter Aims 

 

The primary aim of this chapter is to investigate the electrophysiological function of iPS cell 

derived neurons harbouring heterozygous deletions of SHANK3. This will primarily be studied 

by monitoring the change in spontaneous activity using MEA cultures and recording over an 

extended period of development, using the platform established in Chapter 5. While general 

excitability and the response to pharmacological agents will be analysed, the key focus will be 

on the development and nature of coordinated network driven activity. Additionally, this chapter 

will also introduce the analysis of extracellular spike shapes, recorded by MEAs, with the aim of 

investigating changes to spike shape that may be caused by SHANK3 heterozygosity. Finally, to 

support the MEA work, the chapter aims to study the nature of single-cell calcium events from 

SHANK3 mutant neurons, with a view to investigating potential underlying physiological 

phenotypes.  
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6.3 Results 

 

6.3.1 Identification of neural precursor and determined neuron fate  

 

While the primary focus of this chapter was on the electrophysiological function of SHANK3 

mutant neurons and not the developmental biology of such lines, it was important to establish 

the differentiation state of the neurons being tested. This was especially important as the 

protocol used was a hybrid of that developed in KCL and that used for the differentiations in 

Chapters 4 and 5. To gauge the identity of the cells replated onto MEAs, neurons from Ctl_M1, 

S3_F1 and S3_M1 lines were fixed for immunocytochemistry at two time points: 20-24 days 

after NPC thawing (24 hours before replating onto MEAs/coverslips) and 50 days after replating 

(50 DPP). Note, a quantitative comparative analysis between the cell lines was outside the 

scope of this study. Figure 6.1B presents a schematic of the protocol and timetable for the 

experiments conducted in this chapter.  

 

Figure 6.2 shows representative images from each of the cells lines showing stained early 

neurons. First, brightfield images showed that, morphologically, the early neurons from each of 

the cell lines were virtually identical just before replating. While the brightfield image of the 

S3_M1 line shows noticeably fewer cells that the other lines, this was because NPCs were 

plated at vial density which varied between the cell lines. Cell numbers were then normalised 

when replated onto MEAs/coverslips. Cells at 20-24 days post thawing from all three lines 

showed expression of several key markers of early projection neurons including nestin, an 

intermediate filament protein and primary marker of neural progenitor cells, and TBR2, a marker 

of intermediated progenitor cells. Importantly, neurons from all three cell lines also expressed 

PAX6 and FOXG1, two key proteins involved in the patterning of forebrain glutamatergic 

neurons. While FOXG1 is expressed by telencephalic precursors, PAX6 is a marker of the more 

specific dorsal telencephalic NPCs. This staining therefore suggests that cells at this early time 

point from both SHANK3 mutant lines and the control line are (dorsal) telencephalic neural 

precursors with the potential to develop into populations of glutamatergic forebrain neurons.  

 

To attempt to provide an identify for the cells at a more developed time point, coverslips of 

neurons were stained at 50 days after replating (50DPP). This was to provide an indication 

about the state of the neurons and in particular the formation of synapses at a time point where, 
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as shown in Chapter 5, functional networks may exist in the culture. As with the previous 

chapter, it was not possible to stain the neurons on the arrays themselves; instead, coverslips of 

parallel cultures were used (see Figure 6.1B). Along with ubiquitous expression of the neuron 

marker class III β-tubulin (Tuj1), 50DPP cells from all three cell lines expressed VGLUT1, one of 

primary vesicular transporters of glutamate that is thought to be universally expressed in cortical 

neurons (Figure 6.3). Neurons from all lines also expressed two key markers of mature 

glutamatergic synapses: PSD95 and GLUN1. While GLUN1 is the required universal subunit of 

NMDA receptors (coded for by GRIN1), PSD95 is a key protein involved in the assembly and 

the scaffolding of the NMDA/PSD complex at excitatory synapses. The pattern of staining seen 

on all of these neurons is worth noting. For both PSD95 and GLUN1, a ‘punta’ type staining was 

seen, in line with what would be expected for synaptic proteins. However, in both cases, this 

appeared mostly on the cell bodies rather than within dendrites, although it is possible that 

dendritic staining would be better observed with higher resolution imaging. Overall, the staining 

at 50DPP confirms that the neurons produced from all three cell lines are primarily excitatory 

glutamatergic neurons and show evidence of functional synapse formation.   
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Figure	6.2	-	iPS	cell	derived	neural	progenitors	from	SHANK3	mutant	patient	cells	show	a	telencephalic	
progenitor	phenotype.	Neural	progenitors	from	a	control	(Ctl_M1)	and	two	SHANK3	mutant	(S3_F1,	
S3_M1)	cell	lines	were	stained	at	day	20-24,	prior	to	replating	onto	multi	electrode	arrays.	Coverslips	of	
cells	were	fixed	and	stained	with	markers	to	determine	the	identity	of	the	early	neurons.	Cells	from	all	
three	lines	expressed	nestin,	a	key	marker	of	neural	progenitors,	TBR2,	a	marker	of	mitotic	precursor	cells	
and	FOXG1	and	PAX6,	markers	of	telencephalic	and	dorsal	telencephalic	progenitors	respectively.	Panels	
show	representative	images	from	each	cell	line.	Scale	bar	in	each	panel	=	50	µm.				
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Figure	6.3	-	iPS	cell	derived	neurons	at	50DPP	from	patients	with	heterozygous	deletions	of	SHANK3	
show	a	glutamatergic	excitatory	neuron	phenotype.	Immunohistochemistry	of	Ctl_M1	and	S3_F1,	
S3_M1	neurons	was	performed	at	50	days	post	replating	(50	DPP)	on	parallel	cultures	to	those	replated	
onto	MEAs.	The	control	line,	Ctl_M1	and	both	SHANK3	mutant	lines,	S3_F1,	S3_M1	showed	expression	of	
the	neuron	marker	TUJ1,	the	vesicular	glutamate	transport	vGLUT1,	the	post	synaptic	density	protein	
PSD95	and	the	universal	subunit	of	NMDA	receptors,	GluN1.	Together	the	staining	suggests	that	these	
neurons	are	of	a	glutamatergic	projection	neuron	fate	and	form	excitatory	NMDA	receptor	containing	
synapses.	Panels	show	representative	images	from	each	cell	line.	Scale	bars	in	all	images	show	50	µm.							
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6.3.2 Investigating the development of spontaneous activity in SHANK3 mutant neurons 

 

The work presented in chapter 5 showed how the spontaneous activity of iPS cell derived 

neurons changes over development, such that maturing networks within the cultures drive a 

synchronised firing behaviour at later time points. To study both the general excitability of 

neurons derived from SHANK3 patient iPS cells and any change in activity over a prolonged 

period of neural development, two SHANK3 mutant lines and one control were plated as 

immature neurons onto MEAs and cultured and recorded for 60 days. It should be noted that 

although there were differences in the initial culturing protocols for the Shank3 (and control) 

lines prior to MEA-replating, after replating the procedures remained identical to those used for 

the work in Chapter 5 (see Chapter 2 and Figure 6.1B).  

 

Figure 6.4 presents raster plots showing representative spontaneous activity of neurons derived 

from Ctl_M1, S3_F1 and S3_M1 lines over a period of 60 days culturing. First, the clearest 

observation was the absence of the development of synchronised activity after 30DPP in either 

SHANK3 line or the control line, in contrast to what was observed in Chapter 5. Note, it is for 

this reason that the raster plots in Figure 6.4 are presented without their corresponding ASDR 

plots as these offer little further insight about the nature of firing in the absence of coordinated 

behaviour. In fact, across a total of around 60 cultures across 4 differentiations of all three cell 

lines, no synchronised behaviour was detected even after 70+ days of culturing. The fact that 

this activity was not cell-line specific clearly signals that this was not an effect of genotype and 

instead, despite efforts to overcome the issue, was likely due to technical differences in the way 

that these neurons have been cultured compared to the cells in Chapter 5.  

 

Despite the absence of coordinated behaviour, the plots in Figure 6.4 provided interesting 

insights into the general excitably of the SHANK3 mutant neurons. In both mutant lines, it 

appears that, in terms of the number of visible spikes, the neurons are less spontaneously 

active compared to the control cells. This is especially noticeable in recordings 30DPP, where 

several of the S3_F1 and S3_M1 plots show a number of ‘silent’ electrode traces, indicating that 

no spikes could be detected. This observation was confirmed when looking across the 

experimental cultures as a whole. Figure 6.5A shows the average spike rate of 

cultures recorded across 60 days for all three cell lines. The summary bar plots highlight that  
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Figure	6.4	–	The	development	of	spontaneous	activity	in	neurons	derived	from	iPS	cells	from	patients	
with	heterozygous	SHANK3	deletions,	cultured	on	and	recorded	with	MEAs.	Immature	neurons	from	two	
SHANK3	mutant	lines,	S3_F1	and	S3_M1,	and	a	control	line,	Ctl_M1,	were	plated	onto	MEAs	after	a	20	
days	period	of	standard	culturing.	Within	10	days	post	(re)plating	(DPP),	neurons	from	all	three	lines	begin	
to	fire	spontaneous	action	potentials,	however	there	is	noticeably	less	firing	observed	in	both	mutant	lines	
compared	to	control	line	at	this	time	point.	Overall,	the	activity	of	all	three	lines	increases	over	
development	up	to	60DPP.	In	both	S3_F1	and	S3_M1	lines,	the	increase	in	activity	up	to	around	30DPP	is	
clearly	less	than	that	in	the	control	line.	After	30DPP,	there	is	a	noticeable	increase	in	both	mutant	lines,	
suggesting	that	perhaps	the	development	of	these	cells	is	delayed	compared	to	the	control	line.	
Furthermore,	in	these	selected	cultures,	at	60DPP	the	spontaneous	activity	in	mutant	lines	is	still	
observably	less	than	the	control	line.	The	data	shown	is	the	development	of	activity	seen	in	the	same	three	
cultures,	representing	one	cell	line	each.	For	each	time	point,	the	raster	plots	show	detected	spontaneous	
spikes	from	the	same	16	electrodes	within	each	cell	line.	Scale	bar	represents	100	seconds.						
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 2 Way ANOVA (Genotype 
variation) 

Tukey’s Multiple comparisons 

  Mean difference  [95% 
CI] 

Adjusted   p 
value 

Average Spike rate 

F(2, 86) = 9.438; p = 0.0002 

  
10DPP   

Ctl_M1 vs S3_F1 0.816 [-.0149 – 1.782] 0.034 
Ctl_M1 vs S3_M1 1.138 [0.173 – 2.104] 0.0166 

30DPP   
Ctl_M1 vs S3_F1 0.968 [0.0378 – 1.898]  0.0395 
Ctl_M1 vs S3_M1 0.934 [0.004 – 1.865] 0.0486 

50DPP   
Ctl_M1 vs S3_M1 0.888 [-0.045 – 1.812] 0.0445 

Bursts 

F(2, 82) = 0.741; p = 0.4798 

  
10DPP   

Ctl_M1 vs S3_F1 429.8 [37.17 – 822.3] 0.0285 
Ctl_M1 vs S3_M1 455.7 [97.29 – 814] 0.0089 

Max ASDR 

F(2, 83) = 1.343; p = 0.2666 

  
10DPP   

Ctl_M1 vs S3_F1 8.75 [1.51 – 15.99] 0.0285 
Ctl_M1 vs S3_M1 7.667 [1.058 – 14.28] 0.0089 

 

 throughout the duration of the experiment, the firing rate of both S3_F1 and S3_M1 neurons 

was generally lower than Ctl_M1 neurons. These differences reached significance at certain 

time points, most noticeably at 10 and 30DPP, with Table 6.1 presenting a summary of the 

statistics for the significant variation seen across the culturing period. The firing behaviour of 

both S3_F1 and S3_M1 neurons developed in a similar manner to Ctl_M1 neurons, such that 

spontaneous activity increased over the 60-day period. This was also in line with the pattern of 

change reported in Chapter 5. However, from 40DPP, the rate of firing in both SHANK3 mutant 

lines is around the level seen at the previous time point for the control neurons, suggesting that 

the development of activity in the mutant lines is delayed by around 10 days.   

 

A high degree of variation was observed in the average spike rate, especially in the Ctl_M1 

neurons, highlighting the variability of MEA cultures in general and contributing to the large 

errors associated with certain time points here. To try to gain a broader overall picture of the 

excitability of the SHANK3 mutant neurons, average firing rate data from all time points were 

pooled for each of the cell lines and plotted as cumulative probability distributions (Figure 6.5B). 

This highlighted that, across the full length of the experiment, the spontaneous excitably of both 

SHANK3 mutant lines was lower than control cells, as shown by shifting of the SHANK3 

distributions towards lower firing rates. Kolmogorov – Smirnov tests of the distributions showed 

Table 6.1. Summary of the significant variation observed in measurements of 
basic excitably properties in control and SHANK3 mutant iPS cell derived 
neurons 
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however that only the firing rate of S3_M1 neurons was significantly lower compared to Ctl_M1 

(D = 0.2571, p = 0.0172). 

 

Neuron bursting is a second key measure of neuronal maturity and excitability, with an increase 

in bursts anticipated as the cell develops, owing to an increase in expression of synaptic ligand- 

and voltage- gated ion channels. In this study, the number of detected bursts increased 

throughout the experiment in both SHANK3 mutant lines and the control line (Figure 6.5C). A 

notable exception to this trend was the number of bursts detected at 10DPP in the Ctl_M1 

neurons, which presented with an average of 475 ± 306.22 bursts, over double the number 

detected at 20DPP (180.6 ± 148.11) and 30DPP (183.6 ± 294.40). Indeed, due to this 

exception, 10DPP was also the only time point to show a significant difference between the 

control and both SHANK3 lines (see table 6.1 for statistics). Across the remaining time points 

the was no differences observed in the number of bursts detected between the SHANK3 lines 

and the control line. As with average spike rate, to gain an overall picture of the number of 

bursts detected across the experiment, pooled data over all time points for each cell line was 

processed as cumulative probability distributions (Figure 6.5D). This shows clearly across the 

experiment as a whole that there was no difference in the number of bursts detected in the S3 

lines compared to the Ctl_M1 line. 

 

Finally, as discussed and shown in Figure 6.4, there was no development of synchronised 

network behaviour in any of the cultures across all three cell lines. As described in Chapters 3 

and 5, one of the most useful measures for analysing the synchronicity of cultures is the 

maximum array-wide spike detection rate (max ASDR), which represents the average maximum 

number of spikes detected across the whole culture in a single 200 ms bin. Figure 6.5E shows 

the development of the max ASDR for both SHANK3 lines and the control line across the 60 

days of the experiment. Throughout the cultures development, there is an overall increase in the 

number of spikes counted in 200 ms bins across all three cell lines, which corresponds to the 

increase in general excitability already reported. Again, there is an exception at 10 DPP, where 

the max ASDR in Ctl_M1 neurons was higher than observed at 20DPP to 40DPP and there was 

significant difference between control neurons and both SHANK3 lines. As with detected bursts, 

at all other time points there was no difference between the control and SHANK3 lines. 

However, the most important aspect of this analysis was that it it highlighted how low the max 

ASDR was even at the most developed time point compared to what was observed for a 
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corresponding time point in Chapter 5 (Figure 6.5E; ‘C5 50DPP’). At every time point in this 

study, the max ASDR is below 20 for all three cell lines, which compares to around that reported 

for the neurons up to 30 DPP in Chapter 5, before the development of synchronised behaviour. 

This strongly suggests that the cultures in this chapter are not approaching a state of network-

driven coordination. Finally, Figure 6.5F presents the cumulative probability distributions of the 

pooled max ASDR data from all six time points for both SHANK3 cell lines and the control line. 

While this showed a slight shift in the distributions of both SHANK3 lines, especially in S3_M1 

neurons, towards fewer spikes per bin, this is essentially a correlate for the general excitability 

described in Figure 6.5A&B. K-S tests of the distributions showed that neither the S3_F1 or 

S3_M1 populations were significantly different to the control population.     
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Figure	6.5	–	Analysis	of	spontaneous	excitatory	behaviour	in	developing	iPS	cell	derived	neurons	from	
patients	with	heterozygous	deletions	in	SHANK3	cultured	on	and	recorded	with	MEAs.	Two	NPC	cell	
lines	harbouring	mutations	in	SHANK3,	S3_F1	and	S3_M1,	and	one	control	line,	Ctl_M1,	were	
differentiated	into	forebrain	projection	neurons	and	re-plated	onto	MEAs	after	2	weeks	of	standard	
culturing.	On	arrays,	neurons	were	cultured	for	60	days	and	10	minute	recordings	of	spontaneous	action	
potentials	were	taken	every	10	days.	A,	C	and	E	show	the	summary	plots	of	the	data	recorded	at	each	
time	point	for	each	cell	line;	B,	D	and	F	represent	cumulative	probability	distributions	for	the	pooled	data	
of	all	time	points	for	each	cell	line.	General	spontaneous	activity,	in	the	form	of	average	spike	rate,	
increased	over	development	in	both	SHANK3	and	control	cell	lines,	however	mutant	lines	were	less	active	
overall	than	control	lines	with	differences	reaching	significance	at	10,	30	and	50	DPP	(A).	This	trend	was	
seen	when	looking	at	the	spike	rate	across	the	whole	experiment	time	course	(B).	The	number	of	bursts	
detected	in	cultures	generally	increased	in	all	three	cell	lines	over	development,	however	there	were	no	
differences	between	the	mutant	and	control	neurons	except	at	10DPP	(C).	Across	the	entire	population	
time	course,	there	was	no	difference	in	the	number	of	burst	detected	between	the	cell	lines	(D).	E	shows	
the	maximum	array	wide	spike	detection	rate	(max	ASDR)	which	represent	the	maximum	number	of	
spikes	detected	across	the	cultures	in	a	single	200	ms	bin.	For	all	cell	lines,	this	increased	throughout	the	
experiment	(with	a	notable	exception	at	10	DPP	for	Ctl_M1	neurons)	however	it	remained	very	low	for	all	
time	points,	indicating	that	neuronal	activity	from	all	three	lines	did	not	develop	to	become	coordinated	
later	in	development.	This	is	highlighted	by	the	C5	50DPP	bar	which	shows	the	extent	of	the	max	ASDR	
from	the	work	in	Chapter	5,	where	cultures	did	become	synchronised.	Summary	plots	A,	C	and	E	show	
means	+	S.D	and	statistics	represent	Tukey’s	multiple	comparisons	following	2-way	ANOVA.	All	data	
represents	recordings	from	at	least	10	arrays/time	point/cell	line	across	3	differentiations.													
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6.3.3 Interneuron populations in SHANK3 mutant and control cultures 

 

The work in Chapter 5 suggested an important role for GABAergic interneurons in the regulation 

of synchronised network activity in iPS cell derived cultures. It also showed that, despite 

differentiation protocols tailored for the production of forebrain projection neurons, around 5% of 

the neurons expressed GAD67, a key marker of GABAergic interneuron fate. The previous 

section highlighted that, despite repeated attempts, coordinated network-driven activity was not 

observed in cultures from all three of the cell lines used in this chapter. To determine whether 

the neruons produced in this study, with different protocols, also contained a population of 

interneurons, a quantitative assessment of GAD67 +ve cells was performed. Neruons at 50 

DPP from both SHANK3 mutant lines and the control line did show some limited expression of 

GAD67 (Figure 6.6). The images in Figure 6.6A show the regions imaged which represented the 

highest number of observed GAD67 +ve neurons for each line. Quantification of this staining 

showed that an average of fewer than 1% of MAP2 +ve neurons also expressed GAD67 across 

all three cell lines (Ctl_M1: 0.905 ± 0.36%; S3_F1: 0.8 ± 0.29%; S3_M1: 0.73 ± 0.21%; Figure 

6.6B). There were no differences between the number of GAD67 +ve cells between SHANK3 

mutant and control neurons. Importantly, the number of interneurons present in these cultures 

here are considerably below what was observed in the cultures used in Chapter 5 (around 5%), 

suggesting that a lack of inhibitory tone in these cultures here could be responsible for the 

absence of observed network activity.     



	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	6.6	–	Neuronal	cultures	derived	from	both	patient	SHANK3	mutant	and	control	iPS	cells	contain	very	few	interneurons.	To	determine	whether	
interneurons	in	neuronal	cultures	could	be	the	cause	of	unsynchronised	activity	detected	with	MEA	recordings,	parallel	cultures	of	Ctl_M1,	S3_F1	and	S3_M1	
neurons	were	stained	for	GAD67	and	MAP2	at	50	days	for	plating	(50DPP).	Due	to	technical	limitations,		2	coverslips	was	available	for	staining	for	each	cell	line	
across	2	differentiations.	Very	few	GAD67	+ve	neurons	were	seen	in	any	of	the	regions	imaged	across	any	of	the	cell	lines.	The	images	shown	in	A	are	the	regions	
from	each	of	the	cell	lines	that	represented	the	highest	number	of	GAD67	+ve	neurons	seen	in	each.	B	shows	the	number	of	GAD67	and	MAP2	+ve	neurons	as	a	
proportion	of	the	total	MAP2	cells,	in	the	limited	quantification	available.	Bars	show	means	+	SD.	Scale	bars	in	A	=	50µm.	
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6.3.4 Pharmacological profiling of SHANK3 mutant and control neurons 

 

Section 6.3.2 presented results which suggested that, in general, neurons derived from iPS cells 

with heterozygous SHANK3 deletions are less spontaneously excitable than those from control 

neurons. To establish an understanding about the physiological nature of the spikes being 

produced by neurons from both SHANK3 and control lines, pharmacological profiling was 

performed on a sub-set of arrays at 41DPP, exposing neurons to APV, CNQX and bicuculline. 

As in Chapter 5, this was performed serially on cultures, in between washes where required, 

with a 10 minute period of equilibration in an incubator.  

 

Figure 6.7A shows raster plots of one array culture (S3_F1 cell line) throughout the profiling 

experiment, excluding intermediate washes. Although difficult to determine accurately by eye, 

the raster plots suggest that there is very little effect of any four drug combinations used for the 

experiment – indeed, it is for this reason that representative raster plots for one cell line only is 

presented as there was little observable difference between any of the corresponding plots. It 

should be noted that due to the high degree of both inter- and intra- cell line variation observed 

when assessing average spike rate and bursts, the summary plots of actual means for each 

condition were difficult to visually resolve. As such, it was decided to present summary data as 

the ratio of change, relative to a baseline determined as the first recordings in standard medium 

for each cell line (‘Std’ on graphs; e.g. mean Ctl_M1 APV spike rate / mean Ctl_M1 Std spike 

rate). Figure 6.7B and C therefore present the normalised change in average spike rate and 

detected bursts respectively, for Ctl_M1, S3_F1 and S3_M1 neurons in the presence of APV, 

CNQX and bicuculline.  

 

Overall, these results present a very variable picture of the response of these neurons to the 

drugs. For example, it appears that exposing S3_F1 and S3_M1 neurons, but not Ctl_M1 

neurons, to APV causes a reduction in the average spike rate. However, while subsequent 

washes do rescue the reduction seen in the SHANK3 neurons, these washes actually reduce 

the average spike rate of the control neurons. Furthermore, the application of CNQX together 

with APV does not produce the same effect on SHANK3 neurons as APV alone, strongly 

suggesting that the observed changes seen are a result of variation within the experiment. 

Indeed, although 2-way ANOVA detected that there was a contribution of drug condition to the 

variation seen across the recordings (F(9,45) = 5.422, p <0.0001), no intra-cell line post-hoc 



6. Functional phenotyping of ASD patient neurons 
 

 195 

multiple comparisons were significant for normalised average spike rate. Similarly, application of 

biccuculline induced an increase in average spike rate in SHANK3 mutant neurons only, 

however this increase was not significantly different to either the standard conditions or the 

control cells with bicucculline.  

 

As similarly variable pattern was seen with the number of bursts detected in response to drug 

application (Figure 6.7C). As with average spike rate, it appears that with application of certain 

drugs there is a differential response of neurons between the SHANK3 and control cell lines. 

However, as before, these changes are not consistent and suffer from a high degree of 

variation. For example, application of CNQX seems to reduce the number of bursts detected in 

both SHANK3 lines, while application of both CNQX and APV actually causes an increase in the 

number of busts detected in the S3_M1 line compared to baseline. A 2 way ANOVA of the 

results showed that the contribution of drug condition to the variation in detected bursts was 

significant (F(10,45) = 4.196, p = 0.006) but again no intra-cell line post-hoc multiple comparisons 

were significant.  

 

The results from this section overall indicate that neurons from both SHANK3 lines and control 

lines are, at 41 DPP, largely insensitive to pharmacological manipulation. This in turn suggests 

that the spikes being produced by these neurons are primarily not driven by synaptic 

communication and are instead caused by intrinsic membrane potential fluctuations.    
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Figure	6.7	–	Pharmacological	profiling	of	spontaneous	activity	in	neurons	derived	from	patients	
with	heterozygous	SHANK3	deletions	and	control	iPS	cells.	MEA	cultures	of	two	SHANK3	mutant	

lines,	S3_F1	and	S3_M1,	and	a	control	line,	Ctl_M1,	were	exposed	to	50	µM	APV,	50	µM	CNQX	and	10	

µM	bicuculline	during	recordings	at	41	days	post	plating	(DPP).	Drug	application	was	applied	serially	

to	cultures,	with	10	minute	incubation	periods	between	media	changes	and	array	recordings.	A	shows	
raster	plots	from	one	culture	(S3_F1	line),	excluding	intermediate	washes.	Across	the	experiment	as	a	

whole,	the	application	of	these	inhibitors	had	very	variable	effects	on	the	spontaneous	firing	of	the	

neurons	from	all	cell	lines,	in	terms	of	average	spike	rate	(B)	and	Number	of	bursts	(C).	There	were	no	
differences	between	the	response	of	the	SHANK3	mutant	neurons	compared	to	the	control	neurons.	

The	plots	in	B	and	C	show	the	mean	values,	normalised	to	the	first	Std	condition	for	each	of	the	cell	

lines	(e.g.	Ctl_M1	APV	/	Ctl_M1	Std).	Error	bars	show	the	SD	of	the	normalised	change.	Total	analysed	

cultures	were	at	least	4	arrays	in	3	differentiations.	Scale	bar	in	A	shows	100	seconds.			
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6.3.5 Investigating the shape of extracellular spikes produced by SHANK3 mutant neurons  

 

Throughout this project, the analysis of the shape of the spikes being produced by neurons has 

largely been limited to quality control measures: confirming that the detected events are 

extracellular spikes, isolating noise and the dissociation of groups of waveform traces in the 

event that a single electrode is detecting the activity of multiple units. The analysis of the 

waveforms themselves has not been a focus of this project, partly because similar data can be 

obtained more accurately using single cell electrophysiology and partly because the informatic 

protocols required for the analysis of such data has been more difficult to develop. However, 

routine inspection of the spike shapes being produced by neurons from both SHANK3 patient 

lines revealed the presence of shapes previously unobserved throughout all this projects 

experiments. Figure 6.8A&B shows the waveforms of extracellular spikes for 16 electrodes 

recording the activity of a Ctl_M1 and S3_F1 culture at 40DPP. The S3_F1 traces highlighted in 

red and expanded in Figure 6.8C show the electrodes recording noticeably different spike 

shapes. These spikes appear markedly wider than other shapes across either culture and 

surprisingly, some appear to have a ‘double-peak’ shape, which manifests as a shoulder when 

the waveforms from that electrode trace, including more standard spike shapes, are averaged 

(Figure 6.8C; E31 - thick black trace shows median waveform for the electrode). Importantly, it 

should be noted that the majority of the spike shapes produced by this SHANK3 mutant culture 

appear identical to the range of shapes that are seen in the Ctl_M1 neurons and are also in line 

with the waveforms seen throughout the work in Chapter 5. However, visual inspection of 

waveforms from all of the recordings done as part of the experiments for this chapter, suggested 

that these wider ‘double-peak’ spikes only appeared in neurons derived from SHANK3 mutant 

lines. Moreover, examples of these waveforms were identified in every time point examined and 

in every round of neuron differentiation.   
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Figure	6.8	–	iPS	cell	derived	neurons	with	deletions	in	
SHANK3	produce	extracellular	spikes	with	novel	shapes.	
The	analysis	of	the	shape	of	the	spikes	being	produced	by	
neurons	is	primarily	used	as	a	‘quality	control’	measure	for	
more	general	analysis	or	to	identify	multi-unit	activity.	
However,	visual	observations	of	several	of	the	electrode	
traces	from	SHANK3	mutant	neurons	revealed	the	presence	
of	markedly	different	spike	shaped	that	appeared	unique	to	
these	cell	lines.	A	shows	the	spike	shapes	for	the	16	
analysed	electrodes	for	a	recording	of	Ctl_M1	neurons	at	
40DPP,	B	shows	the	shapes	for	the	16	electrodes	analysed	
for	a	recording	of	S3_F1	neurons	at	40DPP.	The	traces	
highlighted	in	red	and	enlarged	in	C	show	the	electrodes	
which	contained	spike	shapes	which	appeared	broader	and	
in	some	cases,	with	a	‘double-peak’.	Black	waveforms	show	
the	median	trace	shape	for	each	electrode.	
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To try to determine objectively whether these new spike shapes were unique to SHANK3 

mutant neurons, waveform feature extraction followed by unsupervised clustering was 

performed. In order to achieve the most complete analysis possible of the waveforms, the spike 

shapes from 3 arrays per cell line (control: Ctl_M1, two SHANK3: S3_F1 and S3_M1) for 6 time 

points (10DPP to 60DPP) across 2 differentiations were pooled together to create a 

comprehensive database of spike shapes throughout development of these neurons. The 

resulting data pool was a total of 401394 spikes, which ultimately proved too large for effectual 

handing. However, feature extraction could be performed on the dataset in the form of principle 

component analysis (PCA) of the waveform amplitude. This was chosen over using transformed 

data, such as the first or second derivative of the waveform, as this did not provide any benefit 

in terms of separation of shapes but added another step in analysis. Figure 6.9A shows the 

distribution of the first two principle components of the wave forms for all 401349 spikes. This 

showed that the vast majority of waveforms cluster together in a central region, with 4 or 5 

satellite clusters presumably representing spikes with different shapes. As mentioned, the use 

of the full pooled data set was logistically prohibitive. Instead, a random sample of 20000 

waveforms from the full dataset was extracted to provide a set which, as far as possible, 

represented the total dataset in terms of the variety and respective ratios of spike shapes, while 

allowing a comprehensive analysis of the data. The distribution of the first two principle 

components for the waveforms in this random sample is presented in Figure 6.9A, along with 

the stacked traces for each of the 20000 waveforms. PCA profiling of the sample dataset 

(referred to herein as the ‘20k set’) produced a data spread similar to that of the full set, with a 

central cluster surrounded by smaller, less dense clusters. In order to objectively cluster the 20k 

set and to allow identification of the spikes within each cluster, the density-based clustering 

algorithm DBSCAN was used. DBSCAN was chosen over other methods such as k-means 

clustering as it does not require the pre-determination of the number of clusters in the sample, 

can sort data with a variety of cluster shapes and sizes and allows the concept of unclustered 

noise (see Chapter 2 and 3 for clustering details).  

 

The PCA data of the 20k set was put through DBSCAN with the optimised parameters ε = 28.2, 

min points = 20. This analysis produced three distinct clusters in the data: a large central cluster 

comprising the majority of data points, and two smaller surrounding clusters (Figure 6.9B). It 

should be noted that around 50% of the spikes were not successfully clustered and were 

excluded as noise. The spike shapes from each cluster were then extracted and are presented 
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in Figure 6.9B. This showed clearly the differences in the spike waveforms of the three clusters 

and, importantly, identified that clusters 2 and 3 were comprised entirely of the wide double-

peak waveforms that were observed initially in SHANK3 mutant cultures. Furthermore, this also 

highlighted that the double - peak nature of these spikes are the cause of the markedly 

increased width. It is interesting that two spatially distinct clusters are identified which represent 

spike shapes that appear visually to be very similar – or, at least, as dissimilar as many of the 

spike shapes that appear in the albeit larger central cluster 1.  

Finally, to determine whether these wider spikes were unique to SHANK3 mutant neurons, 

individual waveforms from each of the clusters was traced back to the array from which it was 

recorded. Strikingly, this corroborated the initial observations that these wider double-peak 

spikes were only produced by neurons with SHANK3 mutations (Figure 6.9C). In fact, the 

majority of clustered spike shapes from both S3_F1 and S3_M1 neurons appeared in cluster 1 

(45.29% and 41.5% respectively) along with 55.43% of Ctl_M1 spikes (representing 100% of 

the clustered control spikes). However, both S3_F1 and S3_M1 neurons had a small 

percentage of spikes which appeared in clusters 2 (11.46% and 6.11%) and 3 (4.58% and 

2.99% respectively). No Ctl_M1 spikes appeared in Clusters 2 or 3. 

 

The results from this section have revealed the presence of a small population of spike shapes 

that are unique to neurons derived from SHANK3 mutant iPS cells. These spikes are 

dramatically wider than any other observed waveform, due to the presence of notable double 

‘peak’. Importantly, the majority of spikes produced by SHANK3 mutant neurons have standard 

shapes in line with that observed from control neurons. Moreover, these unique shapes are not 

detected by every analysed electrode of a particular array, suggesting that these shapes are not 

produced by all SHANK3 mutant neurons. Instead, the double-peak waveforms appear in a 

small number of electrode traces, often together with more standard spike shapes, possibly 

implying that they are produced by a small number of SHANK3 mutant neurons which are also 

capable of producing standard spikes. Importantly, the waveforms were observed in arrays from 

all developmental time points and across multiple differentiation repeats.      
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Figure	6.9	–	Clustering	of	spike	shapes	from	patient	SHANK3	mutant	iPS	cell	derived	neurons	reveals	a	
unique	population	of	waveforms.	Spike	wave	forms	were	extracted	from	array	recordings	comprising	3	arrays	

per	cell	line	across	6	developmental	time	points	and	over	two	differentiations	of	a	control	line	(Ctl_M1)	and	

two	SHANK3	mutant	lines	(S3_F1	and	S3_M1)	and	pooled	together.	This	comprehensive	developmental	

database	of	spike	shapes	totalled	401394	spikes	–	too	large	for	effectual	handling	and	analysis.	However,	

plotting	of	the	first	two	principle	components	following	principle	components	analysis	(PCA)	was	possible	and	

showed	the	presence	of	a	main	central	cluster	surrounded	by	several	satellite	clusters	(A).	To	provide	a	
representation	of	waveforms	from	across	development	which	could	be	processed,	a	random	sample	of	20000	

spike	shapes	was	taken	from	the	complete	pool	(first	2	PCs	and	waveforms	shown	in	A).	To	objectively	cluster	
the	dataset,	DBSCAN	clustering	was	performed	on	the	PCA	data	from	the	sample	data	set	with	the	parameters	

ε	=	28.2,	min	points	=	20	(B).	This	identified	1	central	cluster	surrounded	by	2	smaller	clusters,	which	contained	

the	spikes	shapes	shown	in	the	wave	plots.	Importantly,	the	analysis	pulled	out	unique	‘double-peak’	spike	

shapes	present	in	the	smaller	clusters	2	and	3.	Each	spike	waveform	was	traced	back	to	to	the	array	and	cell	

line	from	which	it	came	and	the	proportion	of	each	clustered	waveform	present	in	each	cell	line	was	calculated	

(C).	Strikingly,	the	double-peak	wave	forms	were	only	present	in	SHANK3	mutant	cell	lines.	Bars	in	C	show	the	
percentage	of	clustered	waveforms	that	appeared	in	each	cluster	from	each	cell	line.	Note	that	roughly	half	of	

the	spike	shape	from	each	line	could	not	be	successfully	clustered.						
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6.3.6 Pharmacological profiling of spike shapes in SHANK3 mutant neurons 

 

The previous section showed that in a sample dataset of spikes recorded across neural 

development, a minority of spikes produced only by SHANK3 mutant neurons present with a 

markedly different shape. As described in Chapter 1, many of the key interactions of SHANK3 at 

the synapse are as part of the extended NMDA receptor complex. To determine whether the 

double-peak spikes produced by SHANK3 mutant neurons could be caused by an underlying 

alteration in the NMDA receptor complex, the spikes shapes from the pharmacology 

experiments described in 6.3.3 were analysed. For this, the data from two arrays of both S3_F1 

and S3_M1 cultures that underwent the pharmacological profiling was pooled and processed 

using PCA followed by DBSCAN clustering of the waveforms, as described in the previous 

section. To maintain consistency of the analysis, the same parameters were used for the 

clustering of each condition (ε = 30, min points = 20). 

 

Figure 6.10A shows the results of DBSCAN clustering of the spike wave forms of SHANK3 

neurons in standard conditions and in the presence of APV and CNQX, which was used as a 

control for the APV application. Each plot shows the distribution of first two principle 

components together with the clustered spikes as determined by DBSCAN. The blue and green 

insets show the waveforms of clusters 2 and 3 for each condition, which only contain spikes 

showing the double peaks. Firstly, its noticeable that there is not a clear visible difference 

between the distributions and the clustering results when the cells are exposed to APV or 

CNQX. All four conditions show, as in the previous section, a central main cluster surrounded by 

two satellite clusters containing the two similar but spatially distinct groups of double-peak 

spikes. Its worth noting that, due to the more focused data set on which this analysis was 

performed (i.e. a total of 4 cultures, serially recorded four times each, all at 41 DPP) a more 

efficient clustering of the data was achieved, with fewer data points excluded as noise than 

those in section 6.3.5. Quantification of the number of cluster 2 and 3 spikes detected across 

drug applications confirmed that there was no difference in the proportion of each cluster 

representation with APV or CNQX treatment compared to standard conditions (Figure 6.10B). 

These results therefore suggest that the double-peak spike shapes identified from SHANK3 

mutant neurons are not driven by NMDA (or AMPA) receptor mediated synaptic activity.    



	

Standard	 APV	 CNQX	 Wash	
A	

B	 Figure	6.10	–	Extracellular	spike	shapes	from	iPS	cell	derived	neurons	with	mutations	in	
SHANK3	are	not	sensitive	to	NMDA	and	AMPA	receptor	inhibition.	A	minority	of	the	
spikes	produced	by	SHANK3	mutant	neurons	have	a	unique	waveform	shape,	with	a	
‘double-peak’	and,	subsequently,	a	wider	profile.	To	determine	whether	these	spikes	
may	be	driven	by	NMDA	receptor	activity,	of	which	SHANK3	is	part	of	the	wider	NDMA	
protein	complex,	the	spike	shapes	of	a	sample	of	MEA	array	cultures	with	SHANK3	
mutant	neurons	(both	S3_F1	and	S3_M1	lines)	were	analysed	over	the	course	of	a	
pharmacological	profiling	experiment.	A	shows	the	results	of	DBSCAN	clustering	of	the	
principle	components	of	the	pooled	waveform	data	from	two	arrays	each	of	S3_F1	and	
S3_M1	neurons	during	exposure	to	APV	(50	µM)	and	CNQX	(50	µM).	DBSCAN	parameters	
were	set	at	ε	=	30,	min	points	=	20	for	each	analysis.	Coloured	insets	for	each	show	the	
resulting	waveforms	for	the	corresponding	green	or	blue	clusters.	The	analysis	showed	
that	there	was	no	change	in	the	number	of	these	double-peak	spikes	with	APV	or	CNQX	
exposure,	as	a	percentage	of	the	total	clustered	spikes	(B).	In	each	treatment,	the	
majority	of	clustered	spikes	all	appear	in	cluster	1.	The	number	of	spikes	analysed	for	
each	treatment	is	noted	in	each	plot.	Bars	show	%	of	clustered	spikes	+	Wilson/Brown	
proportion	confidence	intervals.			
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6.3.7 Investigating spontaneous calcium events in SHANK3 mutant iPS cell derived neurons 

 

Section 6.3.2 highlighted that neurons derived from patient iPS cells with heterozygous 

SHANK3 deletions showed decreased excitability, in terms of spontaneous action potentials, 

compared to control neurons. As part of its scaffolding function at excitatory synapses, SHANK3 

is associated with several aspects of intercellular calcium levels, including entry via NMDA and 

AMPA receptors, activity of post-synaptic L-type calcium channels and regulation of mGluR5 

receptor – linked intracellular calcium storage. To investigate whether reduced spontaneous 

neuronal activity could be driven by underlying alterations to cellular calcium transients, neurons 

from both SHANK3 mutant lines and the control line were subjected to calcium imaging.  

 

As described in Chapter 2, calcium imaging was achieved with acute exposure of the cells to 

the labelled calcium indicator Fluo-4, allowing visualisation of the cells and calcium movements 

with a 488 nm wavelength filter set (Figure 6.11A). Images of chosen regions were captured at 

10 Hz for 5 mins for all experiments. Following image processing, regions of interest (ROIs) 

were selected using a semi-automated segmentation algorithm based in the Matlab based 

package NeuroCa. For all of these experiments, calcium transients were only analysed in 

somas, therefore all ROIs were confined to individual cell bodies (Figure 6.11B). Analysis of 

fluorescence traces from each ROI and the detection and analysis of individual calcium events 

was performed using the Matlab based FluoroSNNAP (Figure 6.11C), where four key 

characteristics were chosen for comparisons: inter-spike interval (IsI), event amplitude, rise-time 

and fall-time (Figure 6.11D).  
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Figure	6.11	–	Calcium	imaging	of	iPS	cell	derived	neurons.	Differentiating	
neurons	were	analysed	for	spontaneous	calcium	events	using	Fura	4	dye	
at	40	–	45DPP.	After	exposing	neurons	to	the	dye	and	accessory	agents,	
neurons	were	imaged	using	epifluorescence	with	a	488	nm	excitation	filter	
set.	Images	were	captured	at	10	Hz	for	5	minutes	(A).	Individual	ROIs	(cell	
bodies)	were	found	using	a	circular	Hough	transform	-	based	method	via	
NeuroCa	software	(B).	The	analysis	of	single	cell	fluorescence	traces	and	
detection	and	analysis	of	calcium	events	was	performed	using	
FluoroSNNAP,	where	events	were	selected	based	upon	a	combination	of	
threshold	and	template	matching	(C).	Analysis	of	calcium	events	was	
limited	to	the	level	of	single	cells	–	no	network	or	cluster	analysis	was	
completed.	Along	with	inter-spike	interval	(IsI)	as	a	proxy	for	general	cell	
excitability,	three	key	event	characteristics	were	selected	as	analysis	
measures:	event	amplitude,	event	rise	time	and	event	fall	time	(D).												
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The use of dye-based calcium imaging in iPS cell derived neurons can often lead to confusion 

over the nature of any detected activity, particularly because of the potential for poor signal-to-

noise ratios and the often-slow nature of calcium events compared to those recorded from 

rodent neurons. To first establish an understanding about the events being recorded here and to 

determine any role of synaptic function in the calcium transients, coverslips of neurons from the 

control line Ctl_M1, and both SHANK3 mutant lines, S3_F1 and S3_M1, lines exposed to APV 

and CNQX during imaging at 40DPP. Figure 6.12A shows representative normalised 

fluorescence traces (ΔF/F) from the Ctl_M1 line of the same 10 ROIs (using the same 

segmentation mask) over the period of the experiment. Strikingly, application of APV induced an 

almost total loss of calcium events in all ROIs, which was rescued following drug washout. 

Application of CNQX attenuated the activity less, with some traces showing a reduction of 

events while others remaining broadly similar. These trends were mirrored in the full 

experimental analysis, where APV exposure caused a dramatic and significant reduction in the 

average number of events detected per ROI in the control line and both SHANK3 lines (Figure 

6.12B, change compared to respective Std values; Tukey’s multiple comparisons following 2-

Way ANOVA, see Table 6.2). Application of CNQX to the neurons caused a smaller but still 

significant reduction in the number of calcium events compared to standard conditions, with an 

average decrease of 38% across the three lines (see Table 6.2 for statistics). Calcium transient 

activity returned to baseline after washout following application of both drugs. Note, the average 

number of events was presented in this initial analysis rather than average inter spike interval 

(as presented in the following section) due to the low number of events in the APV conditions 

and the subsequent difficulty of calculating a representative average inter spike interval for each 

ROI. 

 

These results show that the events being detected by these calcium imaging experiments on 

control and SHANK3 mutant neurons are, for the most part, calcium transients being driven by 

glutamatergic synaptic activity. Moreover, the results strongly suggest that the majority of the 

calcium events require NDMA receptor function, while around 40% require AMPA receptor 

function. This is notable as these results are in contrast with those reported with the MEA 

experiments in section 6.3.4, where extracellular – recorded action potential activity was largely 

unaffected by AMPA or NMDA receptor inhibition. Never the less, these results provide 

confidence that any genotype effects that may be observed in subsequent calcium imaging 

experiments can be analysed in the context of functional synaptic activity.  
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2-Way ANOVA, within genotype effects only - F(10, 2352) = 4.459, p < 0.0001 

Tukey’s Multiple Comparisons 

 Mean Difference (± S.E.) p value 

Std Vs APV   

Ctl_M1 43.34 ± 1.908 p < 0.0001 

S3_F1 35.63 ± 1.458 p < 0.0001 

S3_M1 36.74 ± 1.573 p < 0.0001 

Std Vs CNQX   

Ctl_M1 16.95 ± 1.75 p = 0.0016 

S3_F1 18.18 ± 2.048 p < 0.0001 

S3_M1 7.99 ± 1.961 p = 0.0002 

Table 6.2. Summaries of statistics of the calcium imaging 
experiments profiling SHANK3 mutant and control iPS cell 
derived neurons in the presence of APV and CNQX.  
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Figure	6.12	–	Detected	single-cell	calcium	transients	from	iPS	cell	derived	neurons	are	
sensitive	to	both	NMDA	and	AMPA	receptor	antagonism.	Two	neural	precursor	lines	
derived	from	patients	harbouring	heterozygous	deletions	of	SHANK3	(S3_F1	and	S3_M1)	
and	one	control	line	(Ctl_M1)	were	differentiated	into	forebrain	neurons.	40	days	after	
replating,	coverslips	of	neurons	were	exposed	to	fluo-4	calcium	sensitive	dye	and	somatic	
spontaneous	calcium	transients	were	recorded	and	analysed.	To	assess	whether	the	
events	being	recorded	were	mediated	via	synaptic	communication,	50	µM	APV	and	50	µM	
CNQX	were	perfused	into	the	recording	chamber	during	imaging.	A	shows	the	
fluorescence	traces	(ΔF/F)	for	the	same	10	neurons	(Ctl_M1	cell	line)	during	the	drug	
profiling	experiments.	Exposure	of	the	neurons	to	APV	blocked	most	calcium	activity	in	all	
10	ROIs,	while	CNQX	application	inhibited	some	activity	in	some	neurons.	This	trend	was	
seen	more	generally	across	all	three	cell	lines,	where	APV	exposure	caused	an	almost	
complete	block	of	calcium	events	while	CNQX	caused	around	a	50%	decease	in	activity	(B).	
Note,	for	each	condition	the	same	segmentation	mask	was	used	for	each	ROI.	Vertical	
scale	bar	in	A	shows	0.4	(ΔF/F);	horizontal	bar	shows	100	s.	Data	in	B	shows	means	±SD.	All	
statistics	are	Tukey’s	multiple	comparisons	following	2-way	ANOVA.	n	=	150	ROIs	for	all	
cell	lines	across	4	imaging	regions	over	2	coverslips/line.	
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To investigate the effect of heterozygous SHANK3 deletions on the spontaneous calcium 

activity of iPS cell derived neurons, the full cohort of cells across three differentiations were 

imaged and analysed, focussing on the four characteristics described in figure 6.11B. For all 

experiments, neurons were imaged at between 40 and 45 DPP. Neurons derived from both 

SHANK3 mutant lines were less excitable in terms of calcium events compared to the control 

neurons, as shown by a significant increase in average inter spike interval (IsI), from a median 

of 3.25 s CI[3.85 – 4.37] in Ctl_M1 cells to 3.91 s CI[4.68 – 5.62] and 3.85 s CI[4.67 – 5.64] for 

S3_F1 and S3_M1 respectively (Figure 6.13A, Dunn’s multiple comparisons following Kruskal-

Wallis test, see Table 6.3 for statistics). Figure 6.13A also presents the corresponding 

cumulative probability plot, which clearly highlights the shift in distributions towards increased 

IsIs in both SHANK3 mutant lines.  

 

Calcium transients from SHANK3 mutant neurons also exhibited changes in event shapes 

compared to those from control neurons. Most noticeably, calcium events from both S3_F1 and   

S3_M1 cells had significantly larger amplitudes (ΔF/F) compared to Ctl_M1 neurons (Figure 

6.13B; Table 6.3 for statistics), where transients from control neurons had a median amplitude 

of 0.08 CI[0.09 – 0.09] compared to 0.1 CI [0.09 – 0.11] and 0.11 CI[0.09 – 0.12]. Again, these 

changes were highlighted with the corresponding cumulative frequency plot (Figure 6.13B). 

There was also changes to the timing of the calcium events from SHANK3 mutant neurons. 

While there were no differences in the rise time of events between mutant and control neurons  

(Figure 6.13C), there was a small decrease in the fall time of events in both mutant lines 

compared to controls, falling from 0.94 CI[0.89 – 0.98] to 0.85 CI[0.79 – 0.90] and 0.85 CI[0.77 – 

0.91] for S3_F1 and S3_M1 respectively (Figure 6.13D). However, only the decrease observed 

in S3_M1 neurons reached statistical significance (Table 6.3). 

 

Together, these results suggest that heterozygous deletions of SHANK3 causes aberrant 

changes in the synaptically driven spontaneous calcium events observed in iPS cell derived 

neurons. The results corroborated the findings from the MEA experiments showing decreased 

neuronal excitability in SHANK3 mutant cells and also showed that these neurons had small but 

significant alterations in the shape of calcium events.   
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 Kruskal wallis test Dunn’s multiple comparisons 

  Mean rank diff Adjusted p value 

Inter Spike interval H = 19.51; p < 0.0001   
Ctl_M1 vs S3_F1 -73.98 0.0023 
Ctl_M1 vs S3_M1 -88.83 0.0004 
S3_F1 vs S3_M1 -14.85 > 0.9999 

Event Amplitude H = 28.47; p < 0.0001   
Ctl_M1 vs S3_F1 -110.8 < 0.0001 
Ctl_M1 vs S3_M1 -79.08 0.0019 
S3_F1 vs S3_M1 31.67 0.6696 

Event Rise time H = 0.42; p = 0.812   
Ctl_M1 vs S3_F1 No post-hoc comparisons 
Ctl_M1 vs S3_M1 
S3_F1 vs S3_M1 

Event Fall time H = 7.86; p = 0.0197   
Ctl_M1 vs S3_F1 48.23 0.088 
Ctl_M1 vs S3_M1 55.28 0.0487 
S3_F1 vs S3_M1 7.044 > 0.9999 

Table 6.3. Summary of the statistics calculated for the calcium imaging 
experiments on neurons derived from control iPS cells and iPS cells from 
patients harbouring heterozygous mutations in SHANK3.  
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Figure	6.13	–	iPS	cell	derived	neurons	from	patients	with	heterozygous	SHANK3	deletions	show	
changes	in	single	cell	calcium	events.	Two	neural	precursor	lines	from	iPS	cells	derived	from	two	patients	
harbouring	heterozygous	deletions	of	SHANK3	(S3_F1	and	S3_M1)	and	one	control	line	(Ctrl_M1)	were	
differentiated	into	forebrain	neurons.	After	40	days,	coverslips	of	neurons	were	exposed	to	fura-4	
calcium	sensitive	dye	and	somatic	spontaneous	calcium	transients	were	recorded	and	analysed.	Neurons	
from	both	S3_F1	and	S3_M1	were	less	excitable	than	those	from	control	cells,	as	shown	by	a	significant	
increase	in	the	inter-spike	interval	(A).	Both	mutant	lines	also	showed	changes	in	the	shape	of	calcium	
events,	with	a	significant	increase	in	event	amplitude	seen	in	both	(B)	and	a	decrease	in	the	fall	time	of	
events,	although	only	the	events	from	S3_M1	reached	significance	(D).	There	was	no	change	in	the	rise	
time	of	events	(C).	For	each	group,	the	left	panel	summary	plots	show	the	median	value	+	95%	
confidence	intervals;	right	panels	show	cumulative	probability	plots	of	all	the	grouped	data.	All	statistics	
show	results	of	Dunn’s	multiple	comparisons	following	Kruskal-Wallis	tests.		n	=	507	(Ctl_M1),	482	
(S3_F1)	&	443	(S3_M1)	ROIs	across	at	least	5	image	regions	on	at	least	2	coverslips	repeated	over	3	
differentiations.							
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6.4 Discussion 

 

The results from this chapter have highlighted several functional phenotypes in neurons derived 

from ASD patient iPS cells harbouring heterozygous deletions of SHANK3. Firstly, throughout 

development, SHANK3 mutant neurons were less spontaneously active than control neurons, 

as determined with extracellular recording of spikes with MEAs. As well as showing a reduced 

average spike rate, SHANK3 mutant neurons also produced fewer action potential bursts than 

control neurons. This reduced excitability was also seen when recording single cell calcium 

transients, with both S3_F1 and S3_M1 neurons having increased inter spike intervals (IsIs) 

between spontaneous calcium events compared to control cells. Single cell calcium imaging 

also highlighted a subtle but significant difference in the shape of the events produced by 

SHANK3 mutant neurons, where calcium events had increased average amplitudes and 

decreased fall times compared to control neurons. Finally, analysis of the shape of the 

extracellular spikes recorded across development using MEAs revealed a small population of 

novel spike shapes that were produced only by SHANK3 mutant neurons. These spikes were 

wider than standard due the presence of a double peak and were observed at all points across 

development.   

 

The primary aim of this chapter was to investigate the electrophysiological function of 

heterozygous SHANK3 iPS cell derived neurons across an extended period of development. 

More specifically, it was to utilise the platform for analysing network function, developed in 

Chapter 5, to study the effect of SHANK3 mutations in the development of coordinated network 

driven behaviour. However, one of the most striking results from this chapter was that the 

synchronised culture-wide activity, observed in cultures in Chapter 5 after around 30 days of 

MEA culturing, did not develop at any point in these cultures in either SHANK3 mutant or control 

neurons. This was despite repeated differentiations and optimisation of the culturing protocol to 

bring it in line with, as much as possible, the protocol used with the cells in Chapters 4 and 5, 

including the use of astrocyte conditioned medium (ACM) and a 2% O2 incubator. However, a 

key difference between the protocols still remained: while the IBJ4 neurons used in Chapters 4 

and 5 were differentiated from iPS cells following the protocols used in the institute and 

developed as part of this project, the cells used for this Chapter (both the SHANK3 lines and the 

Ctl_M1 line) were differentiated from iPS cells to NPCs by the group in KCL, following a different 
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protocol, and subsequently cultured from precursors to neurons following the optimised protocol 

developed in this project.  

 

Overall, the neurons produced by the two different protocols were similar. Both protocols 

produced mostly glutamatergic forebrain neurons, as is their design, and showed similar levels 

of baseline excitation early in development with MEA experiments. However, a key difference 

was the percentage of GAD67 +ve neurons identified in the cultures, a key marker of 

GABAergic interneurons. While around 5% of the neurons present in the cultures at 50 DPP in 

Chapter 5 were identified as interneurons, under 1% of the neurons from all three lines used in 

this chapter at the same time point were GAD67 +ve. While the work in Chapter 5 highlighted 

the possibility of a role of interneurons in the regulation of network activity in iPS cell cultures, 

the results presented here strongly suggest that a certain level of interneuron innervation is 

required for the formation and development of synchronised network behaviour. 

 

The role of interneurons in the development and function of networks in vivo and in intact (slice) 

networks in vitro is well understood. Interneurons are required for the generation of 

synchronised oscillations in the hippocampus (Xu et al., 2016; Amilhon et al., 2015) and cortex 

(Chen et al., 2012; Kuki et al., 2015). Moreover, during development, selective inhibition of 

interneuron populations causes a deficit in the synchronisation of cortical networks in adulthood 

(Takada et al., 2014). These studies implicate, primarily, a role for phasic interneuron activity in 

network function, however there is also evidence to suggest that tonic GABAergic tone is also 

important in the development of coordinated networks. While phasic inhibition is driven by 

interneuron innervation, tonic inhibition consists of activity caused by basal levels of 

extracellular GABA, mediated via alpha 4/5/6 (Caraiscos et al., 2004; Chandra et al., 2006) and 

delta (Marowsky and Vogt, 2014) subunit containing GABAA receptors. Tonic GABA 

conductance has been shown to be required for oscillatory activity in the hippocampus and 

cortex (Pavlov et al., 2014; Mann and Mody, 2010). 

 

The contribution of interneurons in hPS cell derived cultures is less understood. A number of 

studies have identified a role for a required level of GABAergic activity in the maturation of 

individual neurons. Specifically, this involves the activation of GABAA receptors early in 

development, which is thought to act via regulation of calcium and an augmentation the ratio of 

KCC2/KCC1 in an activity dependant manner, which in turn increases the maturity of neurons 
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(Rushton et al., 2013; Kirmse et al., 2017; Kemp et al., 2016). Furthermore, a recently study 

mapping the development of interneurons in hPS cell cultures highlights the importance of these 

cells in the development of functional excitatory synapses (Close et al., 2017). In the few studies 

which have looked at culture wide activity of hPS cell neurons using MEAs, the numbers of 

interneurons in cultures has not been assessed. However, in the most recent study of this kind, 

cultures responded to both GABAA agonists and antagonists after around 20 weeks in culture 

(Odawara et al., 2016). Taken together, this provides good evidence for an important role of 

interneurons in hPS cell cultures, both in neural development and in the formation and 

regulation of networked behaviour. Therefore, it is likely that the lack of such activity in the 

cultures used in this chapter can be attributed to limited numbers of GABAergic neurons, across 

both SHANK3 lines and the control line.   

 

This study showed that the spontaneous activity of SHANK3 mutant iPS cell derived neurons 

was, in general, lower than that of control neurons. This finding is in line with previous studies 

which have investigated SHANK3 mutations in neurons in a range of models. Firstly, mouse 

SHANK3 mutant primary neurons were less spontaneously active than control neurons in a 

study using using MEAs (Lu et al., 2016), the study which also identified altered network activity 

in the SHANK3 mutant primary cultures. Several studies involving patching of hippocampal 

slices have also shown decreased excitability in SHANK3 mutant mice (Jaramillo et al., 2016; 

Lee et al., 2015; Zhou et al., 2016). Importantly, in almost all of these studies, the reduction in 

baseline excitation was attributed to attenuated excitatory synaptic transmission and in some 

cases this was linked more specifically to a reduction in the NMDA/AMPA current ratio (Kouser 

et al., 2013; Jaramillo et al., 2016). It is worth noting that one of the most consistent findings 

among rodent electrophysiological studies is a reduction in NMDA receptor mediated long term 

potentiation (LTP) (Yang et al., 2012; Kouser et al., 2013; Wang et al., 2011; Bozdagi et al., 

2010). Indeed, it is this evidence which informed the work of Lu. et al who studied the activity of 

networks at the population level and provided the primary focus of this chapter.  

 

Reduced spontaneous activity, determined by single cell electrophysiology, was also seen in 

iPS cell derived neurons from patients with mutations in SHANK3 (Shcheglovitov et al., 2013). 

Importantly, this reduction in activity was attributed to impaired excitatory synaptic transmission, 

including reduced NMDA-EPSP amplitude and frequency, which could be rescued by viral 

expression of SHANK3. Reduced spontaneous activity was also seen in a SHANK3 conditional 
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heterozygous KO of hES cells (Yi et al., 2016). Interestingly, both of these studies (which are, to 

date, the only two to study the electrophysiology of SHANK3 mutant hPS cells) also showed 

that SHANK3 mutant neurons have a higher input resistance than control cells. This actually 

manifested in increased induced action potentials when neurons are held at – 70 mV, due to the 

more resistive nature of the cell membrane (Yi et al., 2016).  

 

Single cell calcium imaging experiments in this study corroborated the work using the MEAs, 

with neurons from S3_F1 and S3_M1 cell lines producing significantly fewer calcium events 

than control neurons. This was in line with a similar study which showed that neurons derived 

from two different patient SHANK3 mutant iPS cell lines, produced fewer calcium events 

compared to control neurons, which then could be rescued with VPA and lithium treatment 

(Darville et al., 2016). Here, SHANK3 mutant neurons produced calcium transients that had 

larger amplitudes and slightly reduced fall times compared to controls. As far as can be 

determined, this is a novel finding in terms of both human and rodent SHANK3 mutant neurons, 

although a number of studies have also shown alterations to spontaneous calcium transients in 

other mutant models (Zhang et al., 2014; Lee et al., 2017) and in iPS cells from idiopathic ASD 

patients (Schmunk et al., 2017). 

 

While reduced excitation appears to be a common phenotype in both rodent and human 

SHANK3 mutant neurons, the underlying mechanism for how these mutations may confer 

aberrant signalling is less well understood. The prominent role of SHANK3 as part of the NMDA 

receptor complex suggests that mutations in SHANK3 will primarily affect signalling via this 

receptor and its associated proteins. Indeed, several rodent studies have shown altered NMDA 

mediated conductance in SHANK3 mutant neurons, although the mechanism by which this 

occurs is unclear (Kouser et al., 2013; Bozdagi et al., 2010). One of the primary roles of 

SHANK3 is thought to be in the trafficking and assembly of NMDA receptors, with rodent studies 

showing that the functional expression of several NMDA receptor subunits is reduced in 

SHANK3 mutant neurons (Peça et al., 2011; Mei et al., 2016). While all NMDA receptors 

possess two GluN1 subunits, the remaining subunits can be a combination of GluN2/3, of which 

there are several isoforms. GluN2 A and B are the most highly expressed subunits in the 

majority of the brain and importantly, posses different channel kinetics and unique 

developmental expression patterns. In general, the majority of immature NMDA receptors 

contain primarily GluN2B subunits, which switches to predominantly GluN2A subunits later in 
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development (Cull-Candy et al., 2001; Monyer et al., 1994). Importantly, the correct assembly of 

NMDA subunits requires the involvement of several PSD proteins, including SHANK3 (Sans et 

al., 2000; Horak et al., 2014), deficiency of which has been shown to lead to incorrect subunit 

assembly (Duffney et al., 2013). Additionally, the expression of other PSD proteins such as 

HOMER1 and PSD-95 have also been shown to be reduced in SHANK3 mutants (Peça et al., 

2011; Wang et al., 2016), suggesting that loss of SHANK3 protein has implications for the 

correct assembly and function of the wider PSD. 

 

One of the most consistent findings in studies of SHANK3 haploinsufficiency are the 

morphological changes to neurons, in particular a reduction in the complexity of the dendritic 

arbor and a reduction in the number of spines (Zhou et al., 2016; Hung et al., 2008; Peça et al., 

2011; Mei et al., 2016). Together with the evidence for the altered synaptic function, this 

perhaps provides a template for reduced spontaneous excitation in SHANK3 mutant neuronal 

cultures: heterozygous SHANK3 neurons produce fewer connections with other neurons, and 

those connections contain excitatory synapses with misassembled NMDA complexes, including, 

perhaps, miss-trafficked NMDA subunits. However, more recent evidence implicates an 

additional mechanism involving the metabotropic glutamate receptor mGluR5 and Homer1, a 

PSD protein involved in the synaptic assembly of mGluR5. Mice with heterozygous KO of 

SHANK3 showed aberrant synaptic localisation of both mGluR5 and Homer1 (Wang et al., 

2016; Vicidomini et al., 2017), which lead to altered synaptic activity, changes to glutamate 

mediated calcium activity and increased induced action potentials (in line with the work by Yi et 

al., 2016 attributing increased induced excitability to increased neuron input resistance). 

Importantly, both these studies reported the rescue of functional deficits to control levels by 

application of positive modulators of mGluR5 receptors, strongly suggesting that reduced 

excitation in SHANK3 mutant neurons can partly be attributed to the miss-assembly and 

function of mGluR5 receptors.       

 

An interesting aspect of the work in this chapter was the response of cells of all geneotypes to 

pharmacological profiling, both in terms of the extracellular spike recording and the single cell 

calcium imaging. Individual application of APV and CNQX had limited but variable effects on the 

rate of spontaneous firing recorded with MEAs at 41 DPP, such that no response could clearly 

be attributed to the action of either of the drugs. However, application of APV to neurons during 

calcium imaging dramatically reduced the number of spontaneous calcium transients observed 
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at 40 DPP to bellow 10% of standard condtions, while CNQX application reduced the number of 

events by around 50%. This clearly suggests that the majority of the recorded calcium events 

were driven by synaptic activity, whereas the sAPs recorded with MEAs were caused primarily 

by intrinsic fluctuations in membrane potentials. In fact, the MEA profiling results at 40 DPP from 

this chapter are more inline with the results from Chapter 5, where spontaneous activity in iPS 

cell derived neurons at 20 DPP were largely insensitive to both CNQX and APV application. 

When profiled at a later time point (50DPP), the neurons in Chapter 5 responded dramatically to 

application of both drugs, more in line with the calcium imaging experiments in this chapter. This 

therefore suggests the that the neurons produced in this chapter could be developmentally 

delayed, in terms of physiological function, compared to those produced in Chapter 5. As 

discussed earlier, it is possible that the lack of GABAergic tone in these neurons contributes to a 

more immature phenotype at the level of individual cells, including lower expression of mature 

PSD complexes. However, there is clearly a degree of NMDA and CNQX function present, as 

shown by the response of the neurons during calcium imaging. It is therefore possible that the 

calcium transients recorded in these cells, while clearly mediated by NMDA and AMPA 

receptors, do not represent events that underlie action potential activity, perhaps because of 

delayed cell wide maturity.  

 

Finally, perhaps the most interesting result of this chapter was the finding that neurons derived 

from SHANK3 heterozygous patient iPS cells produce a small population of unique spike 

waveforms that are not present in control neurons. Moreover, the nature of these waveforms, 

being larger, wider and most noticeably possessing a double-peak, is a shape that has not been 

seen in any MEA experiments throughout this project, or indeed, anything broadly similar, 

except for those involving S3_F1 or S3_M1 neurons. While these spike shapes represented a 

small minority of total recorded waveforms from these cell lines, they were repeatedly observed 

at all time points across multiple rounds of neuron differentiation. It should be noted however 

that these spikes were not seen in all neurons as most electrode traces presented with normal 

spike shapes. Instead, a small number of electrodes (on average around 3 per 16 analysed 

electrodes) recorded activity which included these double-peak spikes. In the majority of cases 

these were the only spikes present in the electrode trace but in rare cases they were seen as 

part of a complex of spike shapes, which probably represented multi-unit activity. These unique 

spikes did not appear to be caused specifically by NMDA or AMPA driven synaptic activity, as 

there was no change in the proportion of these spikes when neurons were recorded in the 
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presence of APV or CNQX. However, this is perhaps not a surprise given the insensitivity of 

neurons in general to these compounds that was observed here.   

 

The underlying identify and cause of these spikes unique to the SHANK3 neurons is not clear. 

Is it possible that these spikes represent an artefact of the extracellular recording process and 

the subsequent analysis pipeline? Several aspects of the experiments suggest however that this 

is unlikely. Firstly, these spikes were routinely and objectively only observed in either S3_F1 or 

S3_F1 neurons. After initially identifying the spikes by visual observations during experiment 

analysis, they were objectively identified as unique in a random sample of spikes drawn from a 

pool of control and SHANK3 mutant spikes taken across neuronal development. Furthermore, 

as previously mentioned, these spike shapes have not been seen in any other experiments 

throughout this wider project. Secondly, an artefact with a shape as seen here would suggest a 

downsampling effect, perhaps masking a very short burst of two spikes. However, all MEA 

recordings were taken with a sample rate of 40,000/second, which was filtered below 200 Hz 

and above 6000 Hz. This low-pass rate is still well above the firing rate for even the fastest 

spiking interneurons (∼120 Hz; Hu et al., 2014) and as such should be more than able to reliably 

record all of the activity form these stem cell derived neurons, which in this project, have 

achieved a maximum single unit firing rate of around 10 Hz. 

 

A theoretical underlying cause for the appearance of these double spikes could involve 

hyperpolarisation-activated cyclic nucleotide-gated channels (HCN channels). These are ligand 

gated non-selective cation channels, coded for by four genes (HCN1-4) and mediate an Ih-

current, which depolarises membrane potentials towards action potential threshold (Postea and 

Biel, 2011). As such, these channels are involved in the regulation of resting membrane 

potentials, integration of synaptic inputs and basal excitability (Benarroch, 2013; Nolan et al., 

2004). Changes in the activity of HCN channels have been shown to lead to alterations in the 

way that certain populations of mouse neurons produce bursts of action potentials, primarily 

driven by regulation of the currents following membrane depolarisation (Kodirov et al., 2016). 

Furthermore, increased seizure like activity, including spontaneous bursting, is associated with 

both reduced HCH channel expression and channel misfunction (Chen et al., 2001; Dibbens et 

al., 2010; Huang et al., 2009). Most interestingly, a recent study investigating the role of 

SHANK3 haploinsufficiency on neuronal activity in hPS cells found that changes in excitability 

were caused by an impairment of Ih – currents (Yi et al., 2016). The authors found that in ES 
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cells with conditional heterozygous KO of SHANK3, increased induced excitability, reduced 

spontaneous excitability and reduced synaptic events was mediated via altered currents through 

HCN channels. Importantly, they also found that SHANK3 directly binds to HCN channels 

(although this was achieved using heterologous expression of the proteins in HEK293 cells) and 

that heterozygous SHANK3 neurons had decreased levels of endogenous HCN protein.  

 

While the studies described above do not provide direct evidence for a role of HCN channels in 

action potential shape, they do provide good insight into their role in neuronal excitability and, 

importantly, an interaction with SHANK3. It is therefore possible that in this study, the spike 

shapes unique to SHANK3 mutant neurons are the result of aberrant HCN currents. 

Furthermore, because these spikes have been recorded with extracellular electrodes, it is 

possible that shapes observed are an extracellular manifestation of these complex 

transmembrane currents when temporally couple to spontaneous burst firing. However, it is 

clear that further investigations surrounding the biological nature of these spikes are required 

before an understanding of their link to SHANK3 function is determined. 
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7. General Discussion 
 

 

 

7.1 Results chapter summaries 

  

7.1.1 Chapter 3 – Development of a pipeline for the analysis of MEA data 

 

At the onset of this project, a number of analysis packages were trialled for use with the data 

collected from initial MEA experiments with hPS cell derived neurons. However, it was decided 

to create a new package of tools, based in Matlab, to allow a tailored approach to the analysis 

of such neurons and to aid in the understanding about the nature of firing seen in these cells. 

Chapter 3 described the development of the tools and measures used for the analysis of MEA 

data throughout the remained of the project.  

 

Key aspects of the developed analysis pipeline: 

 

• Raw data sampled at 25 kHz; filtered online between 200 Hz and 5000 Hz. 

• Spikes detected using an automatic thresholding method where an estimate of 

noise is determined by the median absolute deviation of the filtered signal. 

• Key basic excitability statistics included average spikes per electrode, average spike 

rate and number of bursts. Variable array-wide activity was controlled for by the use 

of an electrode activity threshold to eliminate ‘quiet’ electrodes from analysis. 

• Bursts were detected using a maximum inter-spike interval method determined by 

histogram analysis. Max interval used was 300 ms.  

• Network statistics were determined by the creation of array wide spike detection 

(ASDR) plots comprising the total number of array–wide spikes detected in serial 

200 ms bins. This included the the average MAP interval, which reports the interval 

between the more active periods of coordinated firing cultures.  

• For spike waveform analysis, feature extraction was achieved with principle 

component analysis of the spike amplitude and was followed by a DBSCAN 

algorithm for the objective clustering of spike shapes.     
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7.1.2 Chapter 4 – Optimising culturing conditions to improve the physiological maturity of hPS 

cell derived neurons 

 

While many protocols exist for the differentiation of hPS cells into neurons, several physiological 

characteristics of the cells are immature, even after extended culture periods. Chapter 4 

described the extension of a dual – SMAD inhibition differentiation protocol to include two 

physiological adaptations which have previously been shown to increase the functional maturity 

of neurons: astrocyte condition medium (ACM) and hypoxic (2%) oxygen incubator 

environments. The Chapter focused on the intrinsic and excitability characteristics of iPS cell 

derived neurons using primarily single-cell patch clamping at two points in development and 

aimed to study the effect of ACM/2% conditions on the physiological maturity of neurons a view 

of aiding the formation of the MEA – based platform discussed in Chapter 5.  

 

Key findings of Chapter 4: 

 

• Neurons cultured in ACM/2% conditions had hyperpolarised resting membrane 

potentials compared to neurons in standard conditions. The resting membrane potential 

of neurons became more negative over development in ACM/2% cells but not in 

standard conditions. 

• The input resistance and membrane time constant of neurons was largely unaffected by 

either developmental stage or ACM/2% conditions, although a small reduction of input 

resistance was observed in ACM/2% conditions over the two time points.  

• Neurons cultured in ACM/2% conditions had increased excitability compared to standard 

condition neurons, with a increase in the number of cells showing at least single induced 

action potentials 

• The induced activity state of a neuron was strongly related to the resting membrane of 

the cell, but not to either input resistance or membrane time constant. 

• Neurons cultured in ACM/2% conditions displayed significant higher levels of 

spontaneous action potentials, as shown by patch-clamping and a small MEA 

experiment   
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7.1.3 Chapter 5 – Investigating network development in iPS cell derived neurons 

 

The advent of more accessible multi electrode array (MEA) systems has ignited opportunities 

for studying neural networks in dissociated cultures. While several studies have shown that 

rodent neurons form networks with complex activity patterns in vitro, evidence for similar 

behaviour in hPS cell derived neuron cultures has been limited. The work in Chapter 5 used the 

analysis measures described in Chapter 3 and the protocol adaptations described in Chapter 4 

to study the development of spontaneous network driven activity in iPS cell derived neurons 

using an MEA system.     

 

Key findings of Chapter 5:  

 

• The spontaneous activity of iPS cell derived neurons cultured on and recorded with 

MEAs changed markedly over development. Up to 30 days post plating (30DPP), 

spontaneous activity increased but remained uncoordinated across the culture. Between 

30 and 40DPP, array – wide activity began to coordinate in the form of culture wide 

synchronised burst firing. After 50 days of culture, array-wide activity was highly 

organised into high/mid frequency periods (more active periods; MAPs) and low 

frequency firing periods (low activity periods) each lasting for a number of seconds.  

• Early in development, the observed spontaneous activity was largely insensitive to 

NMDA, AMPA or GABAA receptor inhibition. However, application of GABA to the 

cultures dramatically reduced excitability, showing that even at this early point of 

development, GABA currents are inhibitory. 

• The network driven synchronised activity observed later in development was dependant 

on both NMDA and AMPA mediated synaptic activity.  

• The interval between more active periods (MAP interval) of synchronised cultures was 

attenuated with GABAA antagonists and a blocker of L type calcium channels in a dose 

dependant manner. The application of these two drugs together did not produce a 

summative effect suggesting that they may be working via a common pathway          
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7.1.4 Chapter 6 – Functional phenotyping of autism spectrum disorder patient iPS cell derived 

neurons 

 

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder for which 

converging genetic and modelling evidence implicates aberrant synapse and network function 

as a key aetiological factor. iPS cell technologies together with MEA systems provide a unique 

opportunity for studying the network function of neurons derived from ASD patients. Chapter 6 

focused on investigating the development of spontaneous activity in neurons derived from 

patient iPS cells with heterozygous deletions of SHANK3, a synaptic scaffolding protein 

mutations of which are strongly associated with ASD.  

     

Key findings of Chapter 6: 

 

• iPS cell derived neurons with heterozygous deletions of SHANK3 were less 

spontaneously excitable that control neurons. While activity increased over development 

in SHANK3 cells, it appeared to be delayed by ∼10 days compared to control cells 

• Neurons derived from neither SHANK3 mutant or control lines showed development of 

the network-driven behaviour described in Chapter 5. Immunocytochemistry revealed 

that the cells produced with the protocol used in this chapter had noticeably fewer 

interneurons that the cultures in Chapter 5, suggesting that the absence of synchronised 

activity could be due to lack of inhibitory tone. 

• Analysis of the spike shapes produced by neurons revealed the presence of a small 

population of waveforms that were unique to SHANK3 mutant cells. These spikes were 

much wider than others due the presence of a ‘double-peak’ and their occurrence were 

not sensitive to NMDA or AMPA receptor inhibition. 

• Single cell calcium imaging corroborated the findings from the MEA experiments that 

neurons with heterozygous SHANK3 deletions were less excitable than control neurons. 

Calcium events from mutant neurons also had larger amplitudes and shorter fall times 

than those from control neurons. 

• Pharmacology experiments showed that calcium transients were dependant on NMDA 

and AMPA receptor signalling but spontaneous action potentials detected by MEAs were 

not.  
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7.2 Context and points of discussion 

 

7.2.1 Modelling network behaviour with hPS cells derived neurons 

 

The study of neural networks and circuits has been a key part of neurobiological research for 

many years. Studies with both wild type and genetic rodent in vitro slice models, together with in 

vivo work, has provided a wealth of information surrounding the nature of circuit formation and 

function throughout development and in disease states. However, until more recently the study 

of networks in human neurons has been limited to that at the level of the whole-brain or regions, 

for example with EEG or imaging studies. The development of iPS cell technologies and neuron 

differentiations protocols together with the advent of modern multi-electrode array (MEA) 

systems has provided exciting opportunities to study the the network function of human neurons 

during development and in disease – relevant models. The work in Chapter 4 and 5 of this study 

presented the formation of an MEA – based platform to study the development of network 

behaviour in iPS cell neurons. This is not the first study to have combined hPS cells and MEAs 

to investigate the firing patterns in such neurons, with the first reports appearing in 2009 

(Heikkilä et al., 2009). However, while a number of subsequent studies showed that the 

complexity of spontaneous firing increases over development and that synchronised behaviour 

may appear at latter stages (Ylä-Outinen et al., 2010; Kapucu et al., 2012; Odawara et al., 

2014), it was only in 2016 that consistent network driven coordination was reported in hPS cell 

derived neuron cultures (Odawara et al., 2016). Importantly though, the behaviour reported by 

Odawara et al. was limited to short synchronised burst firing (lasting around 2 seconds) and 

developed over a period of > 20 weeks. The work presented here in Chapter 5 showed the 

extension of SBF in cultures to a more complex pattern of synchronised firing, characterised by 

periods of high and low activity each lasting >10 seconds. Moreover, equivalent SBF was seen 

in neurons here at between 30 – 40 days post plating, with the extended synchronicity seen 50+ 

DPP, a vastly increased time scale to that previously reported. The nature of the behaviour 

reported here is in fact much closer to that reported by MEA studies involving dissociated rodent 

neurons (Wagenaar et al., 2006; Mok et al., 2012; Lu et al., 2016). While the timeline for the 

development of spontaneous activity is shorter in these rodent studies, the slow oscillatory firing 

observed is remarkably similar to that reported here in Chapter 5. Therefore, as far as can be 

determined, the platform developed in this project presents the most complex pattern of 

coordinated network driven behaviour observed in hPS cell derived neurons.         
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It is perhaps likely that one of the reasons that the behaviour reported in this project was closer 

to dissociated rodent neurons was the fact that the differentiations used in Chapter 5 produced 

a small population of GABAergic interneurons within primarily glutamatergic cortical projection 

neurons. Indeed, the absence of any detectable synchronised activity in the experiments in 

Chapter 6 together with the very low number of interneurons identified in those cultures strongly 

suggests a key role for interneurons in the development of network behaviour in these cells. 

This should perhaps not be surprising based upon the strong body of evidence that implicates 

interneurons in the formation of functional networks throughout development (Takada et al., 

2014; Zecevic et al., 2011) and the maintenance of synchronised behaviour in adulthood (Mann 

and Mody, 2010; Kuki et al., 2015). Nevertheless, it is important the the role of interneurons is 

not forgotten when utilising iPS cell neuron models. Indeed, although the presence of 

interneurons in the cultures in Chapter 5 was not specifically designed, it has highlighted that 

their presence is probably necessary for these cells to be thought of as a robust physiological 

model. This is especially important when modelling neurodevelopmental disorders with iPS cell 

neurons, such as ASD, for which a good body of evidence exists implicating interneuron 

dysfunction as a key aetiological factor.  

 

Overall, the platform and protocols presented here should provide a reliable technique for the 

investigation of spontaneous network development function in a human neuron context. The use 

of the platform described here could be used in conduction with traditional single – cell patch 

clamping methods to provide a comprehensive package of techniques for the analysis of hPS 

cell derived neuron function. A primary limitation of the MEA recordings is the resolution of 

amplitudes and the inability to determine the nature of underlying sub-threshold currents – some 

of the key strengths of single cell patch clamping. However, MEAs allow the recording and 

analysis the same small population of neurons over the period of development typical for hPS 

cell neuron differentiations, while the relative simplicity of introducing pharmacological agents 

onto cultures during recordings allows a comprehensive profiling of activity at various stages of 

development. Furthermore, while single-cell electrophysiological techniques can provide 

detailed information surrounding the nature of interactions between two or possible three 

neurons, MEA techniques, especially as developed and described here in Chapter 5, can reveal 

the varied and complex array of both coordinated and uncoordinated firing present in hPS cell 

neuron cultures. Finally, perhaps one of the biggest applications for the methods developed 

here is that, unlike other electrophysiological techniques, the use of MEAs can be adapted with 
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relative simplicity for high-throughput screening of hPS cell derived neuron function. For 

example, this could take the form of a large cohort of the 60 electrode arrays as used in this 

study or the protocols and analysis measures could be adapted for use with multi-well MEA 

systems, comprising 24/48 well plates each with 12 electrodes. Such methods could be 

exploited to provided large-scale pharmacology/toxicology studies in developing neurons and, 

importantly, can be routinely used for the high-throughput screening of novel pharmaceuticals 

aimed at rescuing functional phenotypes identified in human neuron models of neurological 

disease. As such, the work presented here forms the basis for a unique and valuable method for 

investigating the function of hPS cell models of disease and the development of novel therapies.                    

 

 

7.2.2 Functional differences in cell lines  

 

As previously discussed, the results presented in Chapter 6 were in contrast to those in Chapter 

5, in terms of the development of coordinated network behaviour in iPS cell derived neuron 

cultures. While, as suggested in Chapter 6, this could be due to the lower numbers of GAD67 

+ve neurons identified in the cultures, it is worth considering whether, in fact, the variable 

observations were due to differences in the methods used to differentiated the iPS cells to 

neurons. All the cell lines used in Chapter 6 (one control and two Shank3 mutant lines) were 

received as neural progenitors and were subsequently cultured identically to the IBJ4 cells used 

in Chapters 4 and 5. However, the protocols used to derive the precursors differed in several 

key ways to those to used to create the IBJ4 NPCs. In the 18-20 days between the start of 

differentiations and the formation of NPCs, cells are passaged twice following the ‘Cardiff’ 

protocol as used for IBJ4 cells: at D8-10 onto fibronectin at a ratio of 1:1.5 and at D18-20 onto 

PDL/laminin at various ratios (typically around 1:3-1:5). Following the ‘King’s’ protocol, used to 

derive all the NPC lines used in chapter 6, cells are passaged four times during the same time 

period: at D7 (1:1), D12 (1:1), D15/16 (2:3) and D18/19 (1:2). After each passage, cells are 

replated back onto geltrex (a matrigel analogue). These passages were also each performed 

with accutase and while cells were kept as clusters until D15/16, were passaged as single cells 

from then on. IBJ4 cells were passaged firstly with EDTA (as clusters) and then with 

EDTA/accutase as clusters or single cells depending on the application. Finally, in the King’s 

protocol, N2B27 medium is changed fully every 24 hours; for IBJ4 cells, half the medium is 

changed every 48 hours.  
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While it is difficult to acutely identify what could be the defining difference in the two procedures, 

it is clear that enough differences are present as to potentially alter the functional outcome of 

the mature neurons, especially perhaps in the variation of the frequency and methods used to 

passage cells. In fact, information that has come to light since the work on this project from 

collaborators working with these exact cell lines (starting from the same NPC stocks) who have 

determined that although the cells show functional expression of Nav and Kv channels, form 

action potentials and show expression of proteins of the excitatory synapse, no synaptic activity 

could be detected with voltage clamping experiments. This, together from the work in this 

project, therefore suggests that there is something in the protocols used to create the NPCs 

which is precluding the development of functional excitatory synapses in these neurons. This 

lack of synaptic tone would suitably explain the absence of network behaviour observed with all 

of the cell lines used in Chapter 6.              

 

 

7.2.3 L-type calcium channels, network function and mental health disorders 

 

One of the most interesting findings from this project was the dose-dependent attenuation of 

MAP intervals observed in synchronised cultures by the L-type voltage gated calcium channel 

blocker (LTCC) diltiazem, reported in Chapter 5. Cav1.2 and Cav1.3 (coded for by CACNA1C 

and CANCA1D genes respectively) LTCCs are expressed throughout the brain and are involved 

in a range of calcium homeostatic functions, including regulating NMDA receptor – dependant 

LTP (Moosmang et al., 2005), hippocampal dependant learning (Hofmann et al., 2014), 

trafficking of AMPA receptors (Schierberl et al., 2011) and regulation of gene expression 

(Wheeler et al., 2012). Importantly, LTCCs have also been implicated in the modulation and 

control of oscillatory and circuit behaviour (Bengtson et al., 2013; Hansen et al., 2014; Bukalo et 

al., 2013). Mutations in genes coding for subunits of LTCCs, in particular CACNA1C, are some 

of the most strongly associated with psychiatric disorders. Genome wide association studies 

(GWAS) have identified a number of common single nucleotide variations (SNVs) present in 

CACNA1C which are enriched in patients diagnosed with bipolar (Ferreira et al., 2008), major 

depressive disorder (Green et al., 2010) schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) and ASD (Cross-disorder group of Psychiatric 

Genomic Consortium, 2013). Moreover, rare exonic mutations in CACNA1C have also been 

identified in schizophrenia patients (Purcell et al., 2014) and de novo SNVs in both CACNA1C 
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and CACNA1D have been identified in ASD patients (De Rubeis et al., 2014; Jiang et al., 2013). 

Finally, specific gain of function mutations of CACNA1C are known to cause Timothy syndrome, 

a rare neurodevelopmental disorder characterised by cardiac arrhythmia (Long Q-T), facial 

dysmorphologies and ASD in around 80% of patients for whom assessment is possible 

(Splawski et al., 2004).      

 

The results presented here in Chapter 5 represent the response of iPS cell derived neuron 

cultures to increasing doses of a LTCC blocker, effectively modelling variable loss of function. It 

should be noted however that genetic lesions resulting in effective haploinsufficiency have not 

been reported for any LTCC. Moreover, it is not clear whether and to what extent the intronic 

common SNVs in CACNA1C effect functional gene expression, with reports of both increased 

(Bigos et al., 2010) and decreased (Gershon et al., 2014) brain mRNA levels detected post-

mortem in individuals carrying the risk allele. Interestingly though, brain imaging studies 

involving healthy carriers of the same common SNVs have shown altered regional activity and 

connectivity involving circuits implicated in schizophrenia and ASD (Bigos et al., 2010; Paulus et 

al., 2014). However, due to the difficultly in modelling common variation and the gain of function 

mutations in Timothy syndrome, heterozygous mice models of CACNA1C have been more 

routinely studied. These reports have shown that decreased CACAN1C expression is 

associated with a reduction in hippocampal neurogenesis (Volkening et al., 2017), aberrant 

regional activity patterns (Kabir et al., 2017) and reduction of NMDA independent LTP 

(Moosmang et al., 2005). Ongoing work in the institute where this project was completed has 

also shown reduced regional connectivity and alterations to NMDA – independent LTP in 

heterozygous CACNA1C rats.     

 

The finding in Chapter 5 that the regulation of LTCC activity can modulate network driven 

activity therefore provides an interesting insight into the function of these channels both 

throughout development and in disease relevant contexts. Of course, without single-cell voltage 

– clamping experiments it is not possible to determine an IC50 for diltiazem and it is also not 

clear at what concentrations the drug remains specific for LTCC in these neurons. Nevertheless, 

the fact that the response observed was dose-dependant strongly suggests that it was caused 

by modulation to LTCC activity. The fact that this response was very similar to that observed 

with two inhibitors of GABAA receptors was also interesting and was discussed in detail in 

Chapter 5. These results suggested that the action of these drugs could have a common 
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underlying mechanism involving regulation of interneuron activity. Together, these results 

provide an interesting and potentially revealing set of preliminary findings which implicate LTCC 

function in the regulation of network activity in iPS cell derived neurons.                     

 

 

7.2.4 Network function and iPS cell modelling in ASD 

 

The advent of large scale human genetic studies has provided a wealth of information about the 

genetic component of autism spectrum disorder (ASD) and has identified a number of genes in 

which rare and de novo protein deleterious mutations are thought to be highly penetrative for 

development of the disorder (Sanders et al., 2012; O'Roak et al., 2012; Iossifov et al., 2014). 

Similarly to other mental health disorders, such as depression and schizophrenia, many of these 

genes code for proteins with functions at the synapse (Kenny et al., 2014; De Rubeis et al., 

2014; Gilman et al., 2011). Together with human imaging studies (Belger et al., 2011; 

Hernandez et al., 2015), neuropathological studies (Courchesne et al., 2011; Wegiel et al., 

2010), and single gene transgenic rodent models (e.g. Schmeisser et al., 2012; Auerbach et al., 

2011; Molosh et al., 2014) this evidence points for a strong aetiological role of aberrant synapse 

and network function in ASD. The work here in Chapter 6 focused on SHANK3, a key post-

synaptic density scaffolding protein, heterozygous deletions of which cause Phelan McDermid 

syndrome (PMDS) and are one of the most highly penetrative genetic lesions in the formation of 

ASD. 

 

A primary aim of Chapter 6 was to extend the work in Chapter 5 to utilise the MEA platform to 

investigate the development of network function of iPS cell neurons derived from patients with 

heterozygous deletions of SHANK3. Unfortunately, as previously described, synchronised 

network-driven behaviour was not observed in either the SHANK3 mutant or the control lines 

and therefore this aim was not achieved. Nevertheless, a key finding of Chapter 6 was the 

reduction of spontaneous neuron activity, detected with both MEA experiments and calcium 

imaging, which corroborated with that reported by studies investigating hPS cell derived neuron 

function from PMDS patient cells (Shcheglovitov et al., 2013) and with isogenic hES cells with 

heterozygous deletions of SHANK3 (Yi et al., 2016). Reduced spontaneous excitably was also a 

feature of dissociated cortical neurons from mice with homozygous deletions of Shank3, 

detected using a very similar MEA approach as here (Lu et al., 2016).  
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It is likely that the deficit in spontaneous firing seen with both human and rodent SHANK3 

mutant neurons is a product of aberrant synaptic signalling. Indeed, altered excitatory synaptic 

activity has been reported in both Shank3 transgenic rodent studies (Bozdagi et al., 2010; Yang 

et al., 2012) and with hPS cell derived neurons (Shcheglovitov et al., 2013). While the formation 

of an action potential, especially in hPS cell derived neurons, does not definitively require 

depolarising synaptic inputs, they are generally regarded as the key determinate of basal 

neuron excitability. As such, the extent of spontaneous excitability can se seen as a correlate of 

basic culture maturity and connectivity, albeit at the level of single-cell communication. 

 

The physiological function of SHANK3 as a key part of the excitatory post synaptic density 

clearly implicates aberrant protein function in altered synaptic signalling and connectivity. For 

example, the PZD domain of SHANK3 is known to interact with NMDA receptors via PSD95 

(Naisbitt et al., 1999) and directly to GluR1 subunits of AMPA receptors (Uchino et al., 2006), 

which provide the key associations required in its role in the correct recruitment and assembly of 

NMDA and AMPA receptors at the excitatory synapse. As such, it is not a surprise that 

alterations to synaptic signalling is also a key feature of Shank3 rodent models (e.g. Wang et 

al., 2011; Yang et al., 2012). However, as previously mentioned, an increasing body of evidence 

from a range of sources implicates aberrant circuit function and connectivity in ASD more 

generally. At the level of the synapse, genetic studies have identified a number of other ASD 

associated genes with key synaptic functions, including cell adhesion molecules (e.g. neurexins, 

Vaags et al., 2012; and neuroligins, Jamain et al., 2003), GABAA receptor subunits (Piton et al., 

2013) and the scaffolding protein gephyrin (Lionel et al., 2013). Allied with human post-mortem 

pathology studies and rodent transgenic models involving these genes, this represents a strong 

set of cellular and molecular evidence for altered signalling. Importantly, the involvement of both 

excitatory and inhibitory synaptic architectures strongly point to potential abnormalities in the 

general excitatory /inhibitory balance. More globally, patient studies using EEG techniques and 

MRI imaging have described a range of network and connectivity deficits in ASD patients, most 

of whom have no identifiable genetic lesions (Belger et al., 2011; Hernandez et al., 2015).          

 

While altered synaptic function is clearly a key trait associated with SHANK3 haploinsufficiency 

and is thought to be involved in ASD pathology more generally, it is worth considering the 

suitability of SHANK3 as a model of ASD. Indeed, while mutations in SHANK3 are some of the 
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most strongly genetic factors associated with ASD, they account for only a very small 

percentage of ASD cases. Moreover, identifiable rare and de novo mutations in any gene 

overall appear in probably no more than 4-5% of ASD cases (de la Torre-Ubieta et al., 2016; 

Vorstman et al., 2017) meaning the majority of ASD cases are regarded as idiopathic. Is 

studying the phenotypes associated with SHANK3 mutations therefore useful in progressing our 

understanding about the neurobiology of ASD more generally?  

Firstly, studies with Shank3 mutant mice recapitulate several of the specific findings seen with 

other transgenic models harbouring mutations in ASD – associated genes. For example, the 

reduced social interaction and increased repetitive behaviours seen in SHANK3 mutant mice 

(e.g. Bozdagi et al., 2010; Zhou et al., 2016) has also been reported in mice with deletions of 

Fmr1 (Auerbach et al., 2011), Tsc1 (Tsai et al., 2012), Ngl3 (Etherton et al., 2011), Nrxn1 (Born 

et al., 2015), Scn1a (Han et al., 2012) and Cntnap2 (Peñagarikano et al., 2011). Furthermore, 

Shank3 mutant mice have been repeatedly shown to have altered excitatory synaptic signalling, 

a deficit also identified in Fmr1 (Auerbach et al., 2011), Tbr1 (Huang et al., 2014) and Nrxn1 

(Born et al., 2015) knock out mice. Finally, the impaired LTP routinely reported in SHANK3 

mutant mice is also seen in mice with mutations in Nf1 (Molosh et al., 2014), Tsc2 (Young et al., 

2010) and Fmr1 (Auerbach et al., 2011). It should be noted that in many of these studies mice 

have homozygous deletions of the associated gene.  

 

Secondly, as described above, the finding in Chapter 6 of reduced spontaneous excitability is in 

line with the two previous SHANK3 heterozygous hPS cell neuron studies. Importantly this is a 

finding which has also been reported in iPS cell derived neurons from patient with deletions of 

MECP2 (Kim et al., 2011) and FMR1 (Sheridan et al., 2011). Unfortunately, a recent study 

investigating neurons derived from idiopathic ASD patient iPS cells did not report on the state of 

spontaneous excitability, although it did find increased production of GABAergic progenitors and 

an increase in the number of inhibitors PSDs (Mariani et al., 2015).  

 

Finally, despite their rarity, mutations of SHANK3 are clearly and directly associated with ASD. 

A diagnosis of ASD is thought to occur in around 80% of PMDS patients, although this could 

potential be even higher as an autism diagnosis can be precluded by the appearance of more 

‘conspicuous’ neurological symptoms (Phelan et al., 2015). Moreover, while up to 90 genes 

have been implicated in PMDS, the majority of cases involve at least partial deletions of 
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SHANK3 and a diagnosis of PMDS has been given in cases where only SHANK3 is affected 

(Leblond et al., 2014).  

 

Together with the growing evidence that implicates the synapse and network dysfunction in 

ASD, the points addressed above provide good substantiation for the use of heterozygous 

SHANK3 deletions as model for ASD. In terms of providing opportunities to study the disease in 

a range of systems (e.g. patients, iPS cells and rodent models) it is only possible to focus on 

individual genes (or CNVs) for which strong associations are known but which are rare in the 

ASD population. In this way, using mutations of SHANK3 is a strong candidate for ASD 

modelling. In terms of iPS cell research alone, there is the potential to study the function of 

human neurons from patients with idiopathic ASD, which, together with neurons with known 

mutations, represents a unique possibility to link the two aspects of disease research.      

 

Although the work in this project was not able to directly investigate the network function of iPS 

cell derived neurons from ASD patients with deletions of SHANK3, it has provided the basis for 

studying such behaviour and, with further optimisation of culturing procedures, should still 

provide a unique and valuable tool in linking patient studies with rodent models of ASD.    
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7.2.5 hPS cell derived neuron maturity 

 

The results presented in Chapter 4 showed that culturing differentiations in ACM/2% conditions 

improved the functional maturity of iPS cell derived neurons, specifically with regards to resting 

membrane potential and both induced and spontaneous AP activity. For the purposes of this 

project overall, the physiology of the neurons produced with this adapted protocol was 

satisfactory, as they exhibited the complex network driven behaviours described in Chapter 5. 

However, it should be noted that by several measures the neurons remained immature, not 

least in the observed values of input resistance and membrane time constant as discussed in 

Chapter 4. A number of recent studies have reported the production of hPS cell derived neurons 

with more mature phenotypes than observed here, although they would still be considered foetal 

in terms of normal human development (Bardy et al., 2016; Telezhkin et al., 2016) Gunhanlar et 

al., 2017). This issue of hPS cell neuron maturity is important to consider when attempting to 

model neurological disease and especially in the case of neurodevelopmental disorders such as 

ASD. In some ways, the immaturity of neurons is perhaps a benefit as it allows insights into the 

way in which neurons mature, synapses establish and connections form. However, the highly 

plastic nature of the brain during early development means that the function of fully mature 

neurons may not represent their early physiology, due to various molecular and cellular 

compensation mechanisms. As such, it is important to view all findings with hPS cell derived 

neurons in the context of their immature state, especially with regards to modelling 

neurodevelopmental disorders. The fact also remains that regardless of what protocol 

improvements might be able to achieve, hPS cell neurons are unlikely to achieve physiological 

maturity comparable to that of post-natal cells. Overall, the extent to which neuron maturity 

becomes a limiting factor is therefore primarily down to the experimental questions being 

addressed and the knowledge that these cells will remain a model of true neuron function.  
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7.3 Study limitations 

 

7.3.1 Neuron maturity and patch-clamping 

 

For the work in Chapter 4, iPS cell derived neurons were patched at two time points, 30 and 

50DPP, which corresponded to a period of 4 days from that time point (e.g. 30 – 34DPP). This 

was to allow the collection of enough data from each condition at each time point. If around 8-10 

cells were patched per day, allowing 2 days for each condition meant that around 20 cells were 

patched per condition per time point for each differentiation. While over a total of three 

differentiations this should around 60 cells per time point per condition, various technical issues 

meant that in fact the highest total number of cells patched in one group was 41. While this is 

not too dissimilar to the reported number of cell patched in similar studies (Telezhkin et al., 

2016; Prè et al., 2014; Gunhanlar et al., 2017), the high degree of variation seen here in some 

of the measures suggests that the neuron cultures were fairly heterogeneous. Increasing the 

number of patched cells over a greater number of differentiations may aid in the understanding 

about the nature of the intrinsic properties of the neurons produced.  

 

The adaptations to the differentiation protocol in Chapter 4 consisted of ACM together with a 2% 

oxygen incubator environment. Based upon the reports of previous studies, it was decided to to 

combine these measures and compare cells cultured in these conditions to those in standard 

conditions. This therefore meant that any changes observed in the ACM/2% conditions could 

only be directly attributed to these conditions together and therefore the individual actions of 

each component was unknown. While individual actions could be suggested based upon the 

existing literature, to provide a full understanding about the contributions of any effects to each 

component of the conditions, a larger experiment with 4 experimental groups should be 

performed.   

 

The physiological maturity characteristics described in Chapter 4 were based around intrinsic 

neuron properties and formation of action potentials. However, a prerequisite of functional 

networks is the formation and maturation of synapses. While the work in Chapter 5 highlighted 

the role of both NMDA and AMPA receptor mediated synaptic activity in synchronised 

spontaneous activity, synaptic activity at the level of individual cells was not successfully 

determined. Spontaneous synaptic potentials can, in theory, routinely be recorded while 
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patching cells using a gap-free current clamp protocol. However, while individual events were 

observed, the membrane potential could not be routinely adequately stabilised to detect enough 

events for a quantative comparison.  

 

Finally, all patch-clamp experiments were achieved in current-clamp mode, recording the 

change in voltages throughout the cell. As discussed in Chapter 4, a key factor regulating the 

physiological maturity of neurons is the functional expression of voltage gated sodium and 

potassium channels. Voltage-clamping experiments showing the ionic currents associated with 

individual neurons would establish a fuller understanding about the functional maturity of the iPS 

cell derived neurons used in chapter 4 and 5 and could provide additional insight into the action 

of the ACM/2% culturing conditions.   

 

7.3.2 Variability in MEA recordings  

 

The development of network driven activity in iPS cell derived neurons described in Chapter 5 

was, overall, observed consistently in number of array cultures and over at least 4 

differentiations. However, activity was, in some cases, highly variable between individual arrays, 

both at the level of basal excitability and during coordinated firing. For example, while many 

cultures did show the extended synchronised behaviour which cycled over a number of 

seconds, some cultures did not progress beyond short synchronised burst firing. This variability 

was also seen in the cultures in Chapter 6, albeit in non-coordinated cultures, highlighting that it 

is likely a feature of this technique. This variability can be somewhat reduced by increasing the 

number of array-cultures per experiment but this is limited by the availability of arrays for a given 

experiment.    

      

7.3.3 SHANK3 expression in ASD patient derived neurons  

 

A number of limitations were associated with the work with the ASD patient lines in Chapter 6. 

Firstly, although the two patient lines used were presented with their respective genetic lesions 

showing, more or less, full heterozygous deletions of SHANK3, no data surrounding the 

expression levels of the gene transcripts or the protein were shown. Investigating the 

expression of SHANK3 protein was precluded by the unavailability of an antibody which could 

reliably give results either with western blots, including with adult human brain tissue, or 
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immunocytochemistry. This is an issue not specific to this project as the group in King’s College, 

London from where these cell lines came have also been unable to identify a useful antibody. 

Instead, that group has relied on determining the levels of SHANK3 mRNA in neurons derived 

from the patient iPS cells, which in their hands is routinely reduced by around 50% compared to 

control neurons (Personal communication, April 2017). A similar approach was attempted here, 

however consistent levels of SHANK3 mRNA were not detected, prohibiting any meaningful 

conclusions about the levels of SHANK3 expression in the patient neurons. While any indication 

surrounding mRNA levels would be beneficial, it is worth considering that the relationship 

between mRNA levels and protein expression of individual is not necessarily linear, and in some 

cases, poorly correlated (Gong et al., 2017; Koussounadis et al., 2015). As such, the ideal 

outcome would be the identification of a reliable antibody that could determine SHANK3 protein 

expression.           

 
The experiments looking at the extracellular spike shapes produced by the neurons in Chapter 6 

revealed the presence of a population of shapes unique to SHANK3 mutant cells. These 

experiments however were limited by the number of spikes shapes that could be effectively 

processed: the total number of spikes shapes that were available for analyses was >400000 but 

handling was limited to a random sample of 20000 spikes. While this sample was, as far as 

possible, a good representation of the entire population, ideally a larger, if not the full, dataset 

would have been used. With increased computing power, the full data set could be analysed in 

exactly the same way. However, an alternative method would be to use a second machine 

learning algorithm which uses a random sample of the dataset as training data, and then 

subsequently takes further random samples to test any conclusions against the data set as a 

whole. This would allow analysis of the entire dataset without a necessary increase in handling 

capability and at the same time provide a computational method of making many objective and 

statistically verifiable comparisons of the spike waveform data.    
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7.4 Future directions  

 

7.4.1  L-type calcium channels  

 

An interesting finding from this project was the modulation of network activity in iPS cell neurons 

by the L-type calcium channel blocker diltiazem. As discussed earlier, mutations in LTCCs and 

in particular Cav 1.2, coded for by CACNA1C, are associated with several MHDs, including ASD. 

It would be very interesting to therefore investigate the network function of iPS cell neurons with 

mutations in CACNA1C. This could involve patient cells with common intronic SNVs or 

modelling haploinsufficiency by introducing deletions into WT iPS cells. This would therefore 

allow the comparison of function between neurons with a general reduction of LTCC function 

(i.e. with diltiazem) and specific loss of the disease associated Cav 1.2.   

 

Another interesting finding from was the suggestion that the action of GABAA antagonists and 

diltiazem may be acting via a common underlying mechanism to attenuate the interval between 

more active periods of synchronised cultures. While Chapter 5 discussed some of the possible 

pathways by which these two drugs may be acting, it would be highly attractive to study this 

shared action further. These studies would likely be focussed on the role of interneurons within 

the cultures and the functional expression of L-type calcium channels within these cells. 

Targeted patch-clamping of interneurons allied with voltage-clamping experiments could initially 

determine whether these channels are expressed while extended pharmacology experiments 

with MEAs could help determined whether interneuron function is required for the action of the 

L-type calcium channels.    

 

7.4.2 Observing network behaviour in SHANK3 mutant (and control) neurons 

 

A curious result in this project was the absence of observed network driven behaviour in the 

neurons produced in Chapter 6, regardless of genotype. Analysis of the number of interneurons 

present in these cultures suggested that this was perhaps due to a lack of inhibitory tone, as it 

appeared that there was fewer than half the GABAergic neurons present in these neurons 

compared to those in Chapter 5. An initial solution to this could be as simple as treating the 

SHANK3 mutant cells (+ controls) identically to the in chapter 5, rather than using the hybrid 

protocol which began with neural precursors. In theory, by using the protocols developed in 
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chapters 4 and 5, sufficient interneurons would be produced to drive network driven behaviour. 

However, there is also the opportunity to study the role of interneurons in the development of 

hPS cell derived cultures more generally. This could take the form of exploring the effect of 

known numbers of interneurons within spontaneously activity excitatory neuron cultures or by 

harnessing targeted optogenetics to control the action of interneurons during activity 

experiments. This could also then open up the possibility to study the role of interneurons in 

neurons with heterozygous deletions of SHANK3 and hPS cell models of ASD models more 

generally.  

        

7.4.3 Unique spike shapes of SHANK3 mutant neurons 

 

One of the most interesting findings in this project was the appearance of small population of 

extracellular spikes, unique to SHANK3 mutant neurons, which were wider than other spikes 

observed due to the presence of a ‘double-peak’. It would initially be interesting to study these 

spike shapes in the context of more complex spontaneous behaviour – i.e. in coordinated firing. 

The previous section described how an initial approach to observe network behaviour in the 

SHANK3 cells would be to adopt the protocols used in Chapters 4 and 5. This would hopefully 

allow observation of these unique spike shapes during synapse-dependant synchronised 

activity and would also provide an additional control for the appearance of the shapes as, while 

the genotype of the cells would remain constant, the protocols to produce the neurons would be 

different.     

 

The appearance of these unique spikes shapes with extracellular recordings strongly suggests 

that a spike phenotype would be also observed with single cell patch-clamping, although it is 

perhaps likely that the manifestation of the aberrant firing would be different inside the cell. 

Moreover, while the double-peak spikes were only seen in SHANK3 mutant cells, they 

contributed to a small minority (< 10%) of the overall spikes detected from these neurons. As 

such, it may be difficult to routinely detect any changes to intracellular spike shape without 

patching a large number of neurons. Nevertheless, it is important to pursue single cell 

electrophysiology with the SHANK3 mutant neurons to better understand some of the more 

basic function properties of the cells and to investigate any potential underlying causes for the 

shapes seen with the MEA experiments here.    
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7.4.4 Extending the analysis of networks 

 

The quantative analysis of network behaviour in this project was focused on two measures: Max 

ASR and MAP interval. While these measures are useful and will remain a key part of the 

analysis process, it would be beneficial to develop further methods of describing the observed 

activity. In a number of the experiments in this project, it was noticeable that the length of the 

more active period (MAP) of synchronised cultures may also be dynamic both over development 

and in response to synaptic agents. As such, it would be useful to devise a method for 

quantifying the length of MAPs to complement the MAP interval, provide a more detailed 

description about the nature of the coordinated firing. Indeed, a measure of MAP length was in 

development in this project but could not be suitably optimised to provide a reliable and 

objective statistic across a range of firing. Furthermore, it would also be interesting to develop 

tools to look at the pattern of firing within the MAPs, which also appears to vary depending on 

development state or conditions and in particular it would be useful to demine the firing rate 

within both the more and less active states.    
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7.4.5 Conclusions 

 

The work in the project has presented a platform for the observation and analysis of network 

driven activity in iPS cell derived neurons. This platform, based upon MEA recordings, provides 

an effective method of investigating such behaviour in human neurons, which, until recently has 

been limited. Moreover, the adaptions to the neuron differentiation protocols described here, 

based upon the physiological adaptions of astrocyte conditioned medium and hypoxic 

environments, has allowed, as far as can be determined, the development of complex network 

driven activity which has not previously been reported in iPS cell neurons. This project then 

studied the function of neurons derived from ASD patient iPS cells with heterozygous deletions 

of SHANK3, a mutation strongly associated with development of the disorder. Although the 

network function of these neurons was not successfully analysed, the work did provide 

interesting insights into their spontaneous activity and revealed a interesting phenotype in the 

shape of the spikes recorded by MEAs, thereby highlighting further possible application of the 

platform. Overall, the work of this project has shown that the techniques, protocols and analysis 

measures developed here can provide a valuable tool for investigating the function of hPS cell 

derived neurons in both development and disease modelling. The platform can be simply 

adapted and used as part of studies into hPS cell models of many neurological diseases and, 

importantly, provides a unique opportunity for the screening of compounds in the development 

of novel therapeutics.              
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1 PURPOSE	
	
The	purpose	of	this	SOP	is	to	describe	the	procedure	for	differentiating	iPSCs	to	neural	progenitors.	

2 INTRODUCTION	
	
iPSCs	are	plated	in	6	well	plates	at	high	density	and	treated	with	two	inhibitors	of	SMAD	signalling	–	
Dorsomorphin	and	SB431542	–	for	7	days	to	induce	neural	conversion.	Subsequent	passaging	allows	
for	expansion	of	progenitors	which	may	then	be	differentiated	to	neurons	or	cryopreserved.		

3 DEFINITIONS		
	
SMADi;	SMAD	Inhibitor	
Rocki;	Rock	Inhibitor	
DMEM;	Dubecco’s	Modified	Eagle	Medium	
HBSS;	Hank’s	Balanced	Salt	Solution	
NP;	neural	passage	

4 RESPONSIBILITY	
	
It	is	the	responsibility	of	the	Lab	Manager	or	designates	to	ensure	that	all	staff	comply	with	the	SOP	
till	the	end	of	their	post.	To	minimize	the	chance	of	contamination,	all	manipulations	of	reagents	and	
cells	in	open	containers	are	performed	using	appropriate	aseptic	cell	culture	techniques	in	the	
Microbiological	safety	cabinet	by	personnel	trained	in	safe	aseptic	cell	culture	techniques.	

5 PRODUCTION	MATERIALS	AND	EQUIPMENT	
5	mL/10mL	serological	pipette	
p10/p200/p1000	micropipettes		
6-well	tissue	culture	treated	plate	
	
Culture	media	and	reagents	
Geltrex	(Life	Technologies;	A1413302)	
HBSS	(Invitrogen;	14170146)	
Versene	(Lonza;	BE17-711E)	
E8	Medium	(Life	Technologies;	A1517001)	
Ri	(Sigma;	Y0503)	
Accutase	(Invitrogen;	a1110501)	
N2	Supplement	(Life	Technologies;	17502-048)	
DMEM	(Sigma;	D6421)	
B27	Supplement	(Life	Technologies;	17504-044)	
Neurobasal	Medium	(Life	Technologies;	21103-049)	
Glutamax	(Life	Technologies;	35050-038)	
SB431542	(Cambridge	Bioscience;	ZRD-SB-50)	
LDN193189	(Sigma;	SML0559)	
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6	 PROCEDURE	
	
NOTE	-		For	experiments	requiring	them,	a	biological	replicate	is	defined	as	a	culture	that	has	been	
passaged	independently	since	at	least	D7.	See	Biological	Replicates:	Example	Schematics	for	visual	
representation.	As	three	biological	replicates	are	required,	a	minimum	of	three	(thereafter,	multiples	
of	three)	wells	must	be	neuralised	at	D0.	
	
Day	-1	
	
Note:	Plate	iPSCs	in	E8	medium	onto	6	well	geltrex-coated	plates,	at	a	density	that	will	ensure	cells	
reach	approaching	100%	confluence	within	24	hours	of	plating	24	hours	prior	to	desired	
neuralisation	start	time.	Cells	should	be	~60%	confluent	prior	to	replating.		
See	Appendix	for	details	regarding	timing	-	If	cells	do	not	reach	total	confluence	by	D-1	+3d,	discard	
them.	Allowing	cells	to	remain	at	high	confluence	for	longer	periods	of	time	diminishes	iPSC	quality	and	
results	in	variable	growth	across	the	well,	as	well	interfering	with	the	timing	of	subsequent	passages.		
iPSC	passage	number	must	fall	between	20	–	50	at	the	start	of	neuralisation.		
	

1. 		Inspect	iPSCs	for	quality	and	estimate	passage	ratio.		
	

2. Coat	plates	with	geltrex	(see	TC.27:	Preparation	and	coating	of	geltrex).	While	plates	are	
incubating,	remove	any	differentiating	iPSCs.	

	
3. Aspirate	total	volume	of	media	from	each	well,	and	rinse	with	HBSS	at	room	temperature	(RT)	

(1mL/well)	to	remove	calcium.	
	

4. Add	1mL/well	RT	versene	(EDTA)	and	incubate	(37°C;	5%	CO2;	5%	O2)	for	3-5	minutes.	
Periodically	check	plates	for	signs	of	colonies	detaching.	

	
5. 		Aspirate	total	volume	of	versene	and	replace	with	1mL/well	RT	E8	media.	Working	rapidly,	

use	a	cell	lifter	to	gently	detach	colonies	from	plate.	
	

6. Using	a	1000μL	pipette,	carefully	pipette	up	and	down	once	(collect	cells,	pipette	suspension	
across	well,	collect)	to	achieve	a	homogenous	suspension	of	large	iPSC	clusters.		

	
Note:	Breaking	the	colonies	up	too	much	will	delay	iPSCs	in	reaching	100%	confluence.	
	

7. 			Using	the	same	procedure,	collect	suspension	from	all	wells	into	a	50mL	tube.	With	a	10mL	
stripette	add	to	existing	cell	suspension	the	correct	volume	of	RT	E8,	such	that	you	have	twice	
the	volume	of	suspension	as	you	do	geltrex	coated	wells.	

	
8. Aspirate	geltrex	and	aliquot	E8	across	plates	at	1mL/well.		

	
9. Using	a	10mL	stripette	transfer	(a	well	at	a	time)	2mL	cell	suspension	to	each	well.	

	
10. 	Rock	plates	to	distribute	cells	evenly	across	wells,	and	incubate	(37°C;	5%	CO2;	5%	O2)	for	24	

hours.	
	

11. Following	24	hour	incubation,	check	plates.	If	cells	are	not	approaching	100%	confluent/are	
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loosely	packed	or	appear	to	have	suffered	during	passage,	change	media	(3ml/well	RT	E8)	
and	wait	an	additional	day	before	neuralisation.		

	
Day	0	
	
Note:	Cells	must	be	100%	confluent,	or	approaching	100%	confluence	prior	to	start	of	neuralisation.	
Inducing	neuralisation	while	cells	are	<100%	confluent	will	result	in	differentiation	towards	neural	
crest	or	nonspecific	cells.	
	

12. 		Aspirate	total	volume	of	E8	medium	from	each	well,	and	replace	with	2mL/well	warm	50%	
N2/50%	B27	+	100nM	LDN193189	+	10µM	SB43	(SMAD	inhibitors	(SMADi))	(henceforth	
referred	to	as	“neuralisation	medium”).	Incubate	plate	for	24	hours	(37°C;	5%	CO2;	20%	O2).		
	

13. Following	24	hour	incubation,	aspirate	neuralisation	medium	and	replace	with	2mL/well	
warm	neuralisation	medium.	Incubate	plate	for	24	hours	(37°C;	5%	CO2;	20%	O2).	Continue	
replacing	medium	every	24	hours	until	Day	7,	or	until	formation	of	a	uniform	
neuroepithelial	sheet	occurs.	

	
Note:	A	substantial	amount	of	cell	death	occurs	within	the	first	24	hours	of	neuralisation;	shake	plates	
to	resuspend	dead	cells	prior	to	aspirating	medium	on	Day	1.	Cell	layer	thickens	during	initial	stage	of	
neuralisation	–	take	care	when	changing	media	(especially	from	~	Day	5	onwards),	as	forceful	pipetting	
can	cause	cell	layer	to	detach	from	plate.		
	
Day	7	–	np1	
	
Note:	At	this	stage	cells	must	be	passaged	1:1.	
		

14. Remove	plate(s)	from	incubator	and	allow	to	equilibrate	to	room	temperature	(~10	
minutes).	At	the	same	time,	remove	HBSS	from	fridge.		

	
15. Aspirate	total	volume	of	medium	from	each	well,	and	rinse	with	1mL/well	cool	(~10˚C)	HBSS.	

Let	sit	for	30	seconds.		
	

16. 	Remove	total	volume	of	HBSS	and	add	1mL/well	cold	(4˚C)	accutase	(keep	protected	from	
light).	Immediately	transfer	plate	to	incubator	and	incubate	for	2	–	5	minutes	(37°C;	5%	CO2;	
20%	O2),	until	material	can	be	lifted	with	gentle	pipetting.	

	
17. 	Prepare	15mL	tubes	containing	RT	DMEM	at	twice	the	volume	of	accutase	to	be	added	to	the	

tubes.	
	

18. 	Using	a	p1000	micropipette,	attempt	to	lift	all	cells	by	pipetting	up	and	down	as	gently	and	as	
little	as	possible	no	more	than	5	times.		

	
Note:	Any	remaining	attached	cells	can	be	collected	by	rinsing	the	plate	with	1mL/well	RT	DMEM.	
	

19. 	Collect	cells	in	accutase,	and	transfer	directly	into	DMEM.		
	
Note:	Do	this	one	well	at	a	time	(i.e.	collect	cells	and	transfer	to	DMEM	before	detaching	cells	from	
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adjacent	well)	to	minimize	exposure	of	cells	to	accutase.	Avoid	exposing	cells	to	air	–	do	not	introduce	
air	bubbles;	transfer	cells	in	accutase	directly	into	DMEM.	Attempt	to	produce	a	homogenous	
suspension	of	large	cell	clusters.	
	

20. Rinse	plates	with	DMEM	(1mL/well).	Add	to	tube(s)	containing	accutase/DMEM/cells.	Invert	
tubes	to	mix.		
	

21. Centrifuge	cell	suspension	(900	RPM	for	2	minutes)	and	carefully	remove	supernatant,	
leaving	~50µL	atop	pelleted	cells.	

	
22. Add	RT	DMEM	(at	a	volume	equal	to	the	number	of	wells	transferred	to	the	tube)	to	tube,	and	

gently	flick/shake	to	resuspend	pellet.		
	
Note:	Pellet	should	resuspend	very	easily	–	if	it	doesn’t,	try	to	break	it	up	by	pipetting	up	and	down	
gently	with	a	10mL	stripette.	If	it	still	doesn’t	resuspend,	continue	on	to	step	23	regardless.		
	

23. 	Centrifuge	cell	suspension	(900	RPM	for	2	minutes).	
	

24. 	Prepare	plates.	Aspirate	geltrex	and	aliquot	fresh	neuralisation	medium	+	10µM	ROCKi	
across	plates	at	1mL/well.		

	
25. 	Carefully	remove	supernatant	from	tubes,	leaving	<50µL	atop	pelleted	cells.	Add	RT	

neuralisation	medium	+	10µM	ROCKi	to	tube,	at	a	volume	equal	to	the	number	of	wells	
passaged.	Resuspend	by	gently	pipetting	up	and	down	using	a	10mL	stripette.		

	
Note:	If	pellet	failed	to	resuspend	during	step	22,	it	probably	won’t	resuspend	at	this	point.	Pipette	up	
and	down	with	a	10mL	stripette	to	break	up	pellet	as	much	as	possible,	and	allow	any	cell	clusters	that	
fail	to	resuspend	to	settle	to	the	bottom	of	the	tube.	Try	not	to	carry	these	over	to	your	new	plate	–	
remove	any	unbroken	clusters	that	are	transferred	using	a	p100	pipette.		
	

26. 	Aliquot	cell	suspension	across	plates	(1mL/well,	one	well	at	a	time).	Rock	plate	to	distribute	
cells,	and	incubate	for	24	hours	(37°C;	5%	CO2;	20%	O2).	

	
27. Following	incubation,	remove	total	volume	of	medium	and	replace	with	2mL/well	N2:B27	

ONLY	(i.e.	discontinue	use	of	SMADi).	Incubate	plate	(37°C;	5%	CO2;	20%	O2)	for	24	hours.	
Continue	replacing	medium	with	fresh	N2:B27	every	24	hours	until	Day	12.	

	
Day	12	–	np2	

	
28. 		Passage	cells	at	Day	12,	following	steps	14	–	27	and	replating	1:1	in	N2:B27	+	10µM	ROCKi.	

Continue	replacing	medium	with	fresh	N2:B27	every	24	hours	until	Day	15/16.	
	
Day	15/16	–	np3	
	

29. 	Passage	cells	at	Day	15/16,	following	steps	14	–	27	and	replating	2:3	in	N2:B27	+	10µM	
ROCKi.	
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Note:	Passaging	cells	as	clusters	at	Days	7	and	12	is	critical	for	survival	of	the	culture.	Following	Day	
15/16	cells	can	and	should	be	passaged	as	single	cells,	to	promote	proliferation	and	further	
differentiation.	To	this	end,	previous	restrictions	implemented	in	order	to	minimise	fragmentation	of	
the	cell	layer	should	now	be	removed.	Use	RT	HBSS	and	accutase,	and	use	a	p1000	micropipette	to	fully	
dissociate	cells.	Cells	may	be	resuspended	using	a	5mL	stripette.	From	this	point	forward,	centrifuge	
cells	at	1250RPM	for	2	minutes	when	passaging.	
	
N.B.	–	np3	falls	on	a	Friday	to	allow	cells	to	grow	to	confluence	over	the	weekend.	To	this	end,	Days		
15/16	are	treated	as	equivalent	(no	distinction	is	made	between	passaging	cells	for	np3	at	Day	15	and	
doing	so	at	D16	–	any	cultures	that	were	previously	out	of	step	may	be	re-synchronized	at	this	point.	
	

30. Continue	replacing	medium	with	fresh	N2:B27	every	24	hours	until	Day	18/19.	
	
Day	18/19	–	np4	

	
28. 	Passage	cells	at	Day	18/19,	following	steps	14	–	27	and	replating	1:2	in	N2:B27	+	10µM	

ROCKi.	
	

29. 	Gently	shake	flasks	to	evenly	distribute	cells,	and	incubate	(37°C;	5%	CO2;	20%	O2)	for	24	
hours.	

	
PROCEED	TO	TC.37	“TERMINAL	PLATING	OF	NEURAL	PROGENITORS”	
	
	
	
	
	
	
	

7				DATA	ANALYSIS	
n/a	
	
	
	
	
	
	
	

	

	

	
 
 



                                   

Appendix	1	

8			APPENDICES	
	
Timings	
	
To	avoid	weekend	work	beyond	media	changes,	it	is	advised	to	stick	to	the	following	schedule:	
	
Week	1	
Monday	–	No	action	
Tuesday	–	Day	-1	–	Replate	cells	so	that	they	are	ready	to	be	neuralised	on	Wednesday	
Wednesday	–	Day	0	OR	Day	-1	–	Begin	neuralisation	OR	continue	to	allow	iPSCs	to	grow	to	confluence	
Thursday	–	Day	1	OR	Day	0	–	Change	media	OR	begin	neuralisation	
Friday	–	Day	2	OR	Day	1	–	Change	media	
Saturday	–	Day	3	OR	Day	2	–	Change	media	
Sunday	–	Day	4	OR	Day	3	–	Change	media	
	
Week	2	
Monday	–	Day	5	OR	Day	4	–	Change	media	
Tuesday	–	Day	6	OR	Day	5	–	Change	media	
Wednesday	–	Day	7	OR	Day	6		–	Np1	OR	Change	media	
Thursday	–	Day	8	OR	Day	7		–	Change	media	OR	Np1	
Friday	–	Day	9	OR	Day	8	–	Change	media	
Saturday	–	Day	10	OR	Day	9	–	Change	media	
Sunday	–	Day	11	OR	Day	10	–	Change	media	
	
Week	3	
Monday	–	Day	12	OR	Day	11	–	Np2	OR	Change	media	
Tuesday	–	Day	13	OR	Day	12	–	Change	media	OR	Np2	
Wednesday	–	Day	14	OR	Day	13	–	Change	media	
Thursday	–	Day	15	OR	Day	14		–	Change	media	
Friday	–	Day	16	OR	Day	15	–	Np3	passage	2:3	
Saturday	–	Day	17	OR	Day	16	–	Change	media	
Sunday	–	Day	18	OR	Day	17	–	Change	media	
	
Week	4	
Monday	–	Day	19	OR	Day	18	–	Np4	-	passage	1:2	
Tuesday	–	Day	20	OR	Day	19	–	Change	media.	Prepare	plates	for	terminal	plating.	
Wednesday	–	Day	21	OR	Day	20	–	Terminally	plate	or	freeze	cells	
	
	
 

	


	Title
	Acknowledgements
	Abstract_2
	Contents
	Abreviations
	Intro_Combined_AVFinal
	1-1_hPCSs_2
	Genetics
	Literature Review2_AVFinal
	MEAs
	SYN_S3

	Materials and methods_AVFinal
	Pipeline_Combined_AVFinal
	3.1_Workflow1
	3.2_Filtering
	3.3_Spike Detection2
	3.4_IsI
	3.5_Selected_Electrodes2
	3.6_ASDR2
	3.7_Clustering
	Pipeline_F

	Maturity_Combined_AVFinal
	10DPP_MEA
	4.2_Intrinsic
	4.3_IV
	4.4_APClassification
	4.5_Intrinsicbyclass
	4.6_APAnalysis
	4.7_sAPs
	Fig4.1_RepI
	Neuron Maturity_AVFinal

	Development_Combined_AVFinal
	5.1_IBJ4_NPCs
	5.10_Late_In_Prof
	5.11_Late_In_Stats
	5.12_Interneurons
	5.13_L-type_Dose
	5.14_Dil_Stats
	5.15_Dil+Bic
	5.2_D50_ICC
	5.3_MEA
	5.4_NetworkDevelopment
	5.5_Developmental_Stats2
	5.6_Early_Excitatory
	5.7_Early_Inhibitory
	5.8_Late_Ex_Prof
	5.9_Late_Prof_Stats
	Network Profiling_AVFinal

	Shank3_Combined_AVFinal
	6.1_Genetics
	6.10_Wave_Prof
	6.11_Ca_Prof
	6.12_Ca_Prof_Stats
	6.13_Shank3_Ca_Stats
	6.2_D20_ICC
	6.3_D50_ICC
	6.4_Shank3_Developmental
	6.5_S3_Development_Stats
	6.6_Shank3_Interneurons
	6.7_Shank3_D30_Prof
	6.8_Selcted_Shapes
	6.9_WaveCluster
	Shank3_AVFinal

	General discussion_AVFinal
	References
	Appendix1

