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 28 

Abstract  29 

Euthyroid multinodular goiter (MNG) is common but little is known about the genetic variation conferring 30 

predisposition. Previously we reported a family with MNG of adolescent onset in which some family 31 

members developed papillary thyroid carcinomas (PTC). We conducted a genome-wide linkage analysis 32 

and next generation sequencing to identify genetic variants that may confer disease predisposition. A 33 

multipoint nonparametric LOD score of 3.01 was obtained covering 19 cM on chromosome 20p. Haplotype 34 

analysis reduced the region of interest to 10 cM; analysis of copy number variation identified an intronic 35 

InDel (~1000 bp) in the PLCB1 gene in all 8 affected family members and carriers (an unaffected person 36 

who has inherited the genetic trait); this InDel is present in ~1% of ‘healthy’ Caucasians. Next generation 37 

sequencing of the region identified no additional disease-associated variant, suggesting a possible role of 38 

the InDel. Since PLCB1 contributes to thyrocyte growth regulation, we investigated the InDel in relevant 39 

Caucasian cohorts. It was detected in 0/70 PTC but 4/81 unrelated subjects with MNG [3 F, age at 40 

thyroidectomy 27-59 years, no family history of MNG/PTC]. The InDel frequency is significantly higher 41 

in MNG subjects compared with controls; X2 = 5.076, p= 0.024. PLCB1 transcript levels were significantly 42 

higher in thyroids with the InDel than without (p<0.02).  43 

The intronic PLCB1 InDel is the first variant found in familial multiple papilloid adenomata-type MNG 44 

and in a subset of patients with sporadic MNG. It may function through over-expression and increased PLC 45 

activity has been reported in thyroid neoplasms. The potential role of the deletion as a biomarker to identify 46 

MNG patients more likely to progress to PTC merits exploration. 47 

48 
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Introduction 49 

Euthyroid multinodular goiter (MNG) is common and affects at least 4% of the population, although the 50 

prevalence varies with ethnicity and the detection method employed (1). Furthermore, nodular goiter is far 51 

more prevalent in iodine deficient regions (2). Although solitary nodules are considered a risk for thyroid 52 

cancer (3) the situation for MNG is more controversial (4); the reported increase in the incidence of some 53 

thyroid cancers (5) may, in part, be due to increased use of diagnostic tools (6). BRAF mutations causing 54 

constitutive activation are the most frequent driver of papillary thyroid cancer (PTC) (7). Several genetic 55 

variations lead to sporadic thyroid cancers including, among others, RET chromosomal re-arrangements 56 

(8), translocations between chromosome 2 and 3 generating a PPARγ-PAX8 fusion protein (9), mutations 57 

in RAS genes (10) and poly-alanine tract length variation in FOXE1 (11, 12).   58 

Familial non-medullary thyroid cancers account for about 5% of thyroid cancers and have a younger age 59 

of onset than sporadic disease.  They are associated with 4 susceptibility loci (13-16) on chromosomes 60 

19p13.2, 2q21, 1q21 and 10q23 (PTEN). There is some overlap with familial goiter in which 8 predisposing 61 

loci have been identified (12, 17-20) on chromosomes Xp22, 3q26, 2q, 3p, 7q, 8p 14q13.3 and 14q32, the 62 

last two including the NKX2.1 (21) and the RNAse DICER1 genes respectively (22). A role for the 63 

predisposing loci on chromosomes 2q.35, 5q.24, 8p.12 and 14q.13 has been confirmed in Chinese families 64 

(23). Genes implicated in familial goiter and cancer generally differ from those in sporadic disease, with 65 

the exception of NKX2.1 (21) and FOXE1 (24).  66 

Previously, we reported a family (25) exhibiting a type of euthyroid MNG with papillary adenomas of 67 

adolescent onset affecting 8 individuals in 4 generations to date. MNG is known to have progressed to PTC 68 

in 2 of the 8 affected family members. We applied microsatellite analysis to exclude loci described above 69 

on chromosomes 14q, Xp, 3q 9p, 2q and 1q. Since one family member had co-existing breast cancer and 70 

another co-existing kidney disease we investigated genes co-expressed in these tissues and the thyroid, NIS 71 

and PAX8 respectively. Sanger sequencing revealed no abnormality in either gene. Subsequently, the PTEN 72 

gene has been fully sequenced in the family member with breast cancer and no mutations were detected. 73 
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The aim of this study was to apply genome-wide linkage analysis (GWLA) and next generation 74 

sequencing to identify the gene variant(s) responsible for the observed phenotype in this family. We then 75 

aimed to assess the frequency of any variant(s) detected in other relevant cohorts. 76 

 77 

Subjects and Methods 78 

 79 

Genome-Wide Linkage Analysis (GWLA) 80 

We undertook a GWLA of the family described in (25) and summarized in figure 1.  81 

All patient samples were obtained with informed consent and Local Research Ethics Committee (LREC) 82 

approval. Genomic DNA was extracted from whole blood from 18 family members (those labelled in the 83 

tree) of whom 8 were affected (7 females, 1 male), according to the manufacturer’s instruction (Qiagen) 84 

and quantified using a Nanodrop. Samples (250 ng) were processed following the manufacturer’s protocol 85 

and the DNA integrity monitored by agarose gel electrophoresis before being hybridized at 48°C for 18 86 

hours to Affymetrix Genechip™ Human Mapping 10K 2.0 Arrays. The chips were scanned using an 87 

Affymetrix GeneChip scanner 3000; data were acquired using GCOS and analyzed using GTYPE software 88 

respectively. 89 

Two quality control steps were performed; the first eliminated SNPs showing ‘no call’ in more than 4 90 

individuals. The second step would have eliminated data from any individual with >10% ‘no calls’, but this 91 

did not apply and the data of all 18 family members were retained. Graphical Representation of 92 

Relationships (GRR) software was used to determine how many alleles are shared [identity by state (IBS)] 93 

at each locus. Mendelian errors were tested using PedCheck software. PLINK, was used to merge family 94 

data (founders) with HapMap to investigate ethnicity. Multidimensional scaling (MDS) was performed on 95 

the family merged with HapMap data from 60 European individuals (CEU), 90 Chinese (CHB) & Japanese 96 

(JPT), & 60 Yoruba (YRI). The family were closest to the European cluster (data not shown) thus allele 97 

frequencies were based on CEU HapMap data. Using MERLIN software, the primary analysis was multi-98 

point non-parametric and the secondary analysis multipoint parametric dominant mode assuming 90% 99 
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penetrance in females, 50% in males and age of onset later than 12 years (based on clinical information 100 

summarized in figure 1). Single point analyses were also used to support the findings of multipoint analysis. 101 

Since data are derived from a single large family, there is considerable allele sharing and hence the Kong 102 

and Cox exponential (--exp) model was used (for non-parametric analysis) (26). 103 

 104 

Haplotype Analysis 105 

MERLIN software (--best) was also used to perform a haplotype analysis in the region of maximum LOD 106 

score on chromosome 20. The haplotype was also confirmed manually. 107 

 108 

Copy Number Variation Analysis (CNV) 109 

Genomic DNA for CNV analysis of the index patient was quantified and prepared for hybridization to 110 

Illumina Human 660W-Quad BeadChips according to the manufacturer’s instructions. Data were analyzed 111 

using PennCNV (27) software; CNVs were required to be 1 kb long and cover at least 10 consecutive 112 

markers (SNP or cnvi) to be considered positive. We focused on the region with a high LOD score identified 113 

in the GWLA. 114 

 115 

Next Generation Sequencing (NGS)  116 

Primer pools for preparation of DNA libraries were designed using Ampliseq 3.0.1 software 117 

(https://ampliseq.com/) according to the manufacturer’s protocol. A total of 429 primers were designed 118 

generating 100-300 bp amplicons. The primer pools (details in supplemental table 2) covered the exome 119 

sequences (all coding regions, intron/exon boundaries, proximal promoters and 3’ untranslated regions) of 120 

a region spanning from chr20: 8113337 to 11907302. Approximately 10 ng of the genomic DNAs of interest 121 

were amplified according to the manufacturer’s instructions. The amplified samples were partially digested 122 

by FuPa reagent (Life Technologies) and ligated with barcode/adapter mix. DNA libraries were then 123 

purified using Agencourt AMPure XP beads (Beckman Coulter), quantified by qPCR and adjusted to a final 124 

concentration of 100 pM, combined and prepared for Emulsion PCR with Ion OneTouch 2 (Life 125 
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Technologies). Following enrichment, the ion sphere particles were loaded onto an Ion PI Chip V2 and 126 

sequenced by Ion Torrent Proton sequencer. Sequencing data were analyzed by Ion Torrent Suite software 127 

(4.4.2), using the plug-in variant caller (v 4.2.10) and configuration with generic Personal Genome Machine 128 

(PGM) germ line settings and high stringency analysis mode. 129 

NGS was performed on 98 individuals, all 18 family members plus 80 unrelated subjects with MNG (please 130 

see below).  131 

Other variants identified in the family using NGS were interrogated in the SHIP cohort (Study of Health in 132 

Pomerania) (28). Relevant genotyping data were available from 986 individuals who were either unaffected 133 

or presented with diffuse goiter (as defined in (29)) and/or MNG (nodules identified by ultrasound). Figure 134 

2 details the filtering steps and evaluations undertaken to assess whether detected variants might be linked 135 

with disease.  136 

 137 

Defining deletion frequency  138 

Primers within and flanking the deleted region were designed using Primer 3 software (supplemental table 139 

2) for PCR amplification of genomic DNA from all family members and 105 unrelated euthyroid 140 

individuals from the UK. PCR amplicons were analyzed by agarose gel electrophoresis and PEG 141 

precipitated for Sanger sequencing using Big Dye Terminator Cycle Sequencing Ready Reaction (ABI 142 

Prism, PE Biosystems) and analysis on an ABI 3100 Genetic Analyser. 143 

Tissues from patients recruited in Australia (snap frozen and stored in liquid nitrogen) were also studied 144 

and consisted of 70 PTC and 81 MNG patients. [Ethics approval from the Northern Sydney Area Health 145 

Service Human Research Ethics Committee]. To avoid population stratification, only subjects with self-146 

reported white European ancestry were included; patient data and tissues were collected between 1992 and 147 

2012 at the Kolling Institute of Medical Research. Genomic DNA for genotyping was obtained from thyroid 148 

tissue using Qiagen kits and analyzed by PCR and Sanger sequencing as described above; these samples 149 

also underwent NGS. 150 

 151 
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High Throughput Screening of PLCB1 InDel, analysis of additional cohorts. 152 

We developed a qPCR based genotyping tool using primers within and flanking the PLCB1 InDel as 153 

described above (Supplementary table 2). The genotyping tool was used to screen 200 breast cancer 154 

patients. Initial optimization experiments revealed that greatest specificity was obtained using primers 155 

flanking the InDel. The qPCR obtained a difference of approximately 10 Ct for samples with and without 156 

the InDel. The qPCR was performed with approximately 100 ng Genomic DNA Input, 1x SyBR green 157 

master qPCR mix (Invitrogen) and 100 nM of each primer in a 25 μl reaction. QPCR conditions included 158 

an initial hold step at 50⁰C for 2 minutes, then 95⁰C for 2 minutes followed by 40 cycles of 95⁰C for 15 159 

seconds and 60⁰C for 30 seconds then a hold step at 95⁰C for 1 minute, 55⁰C for 30 seconds and 95⁰C for 160 

30 minutes. Samples found to harbor the InDel by qPCR were confirmed by Sanger sequencing. 161 

 162 

Transcript measurements of PLCB1 isoforms 163 

Thyroid tissue was obtained from 3 affected family members heterozygous for the InDel and five subjects 164 

undergoing thyroidectomy for autoimmune thyroid disease expressing two normal PLCB1 alleles (all 165 

confirmed by genotyping). Thyroid RNA was extracted, reverse transcribed using standard protocols and 166 

qPCR (SYBR Green incorporation measured on a Stratagene MX 3000) was used to measure transcript 167 

levels and evaluate proportions of PLCB1-a and PLCB1-b isoforms (primers in supplemental table 2, wild 168 

type amplicon identity confirmed by Sanger sequencing). Comparison with standard curves for transcript 169 

levels of isoform 1a and 1b permitted calculations of absolute values for each sample. Transcripts for a 170 

housekeeping gene (APRT) were also measured and values were expressed relative to this (transcripts/1000 171 

APRT). In a single qPCR experiment, all measurements were made in duplicate; the standard curve was 172 

also run in each reaction. Transcript levels of the various PLCB1 isoforms were compared between deletion 173 

affected and non-affected thyroids using the Mann Whitney U test and differences where p<0.05 taken to 174 

be significant. 175 

 176 
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Results 177 

 178 

Genome wide linkage, haplotype & copy number variation analyses 179 

We obtained a multipoint nonparametric LOD score of 3.01 over 19.5 cM on chromosome 20p (figure 3 180 

and supplementary figure 1). In secondary analysis, the same region gave a multipoint dominant LOD score 181 

of 2.16, based on a disease model with 0.01 allele frequency, 50% penetrance for males and 90% for 182 

females, both age >12. LOD scores on the remaining 21 autosomes and X chromosome were all below 1 183 

(figure3). Single-point analyses supported the multipoint data for both nonparametric and model-based 184 

linkage on all chromosomes (supplementary table1).  185 

Haplotype analysis was employed to identify a possible disease locus and reduced the region of interest to 186 

8.73 cM (3.7 Mbp), which includes 10 genes (supplemental figure 2 and 3). The haplotype was not found 187 

in 503 individuals from the 1000 genome European dataset, although one individual missed only the last 188 

marker suggesting a shorter version of the haplotype (red highlight in supplementary figure 3a). 189 

Analysis of copy number variation in an affected individual revealed a deletion of ~900 bp located in the 190 

3rd intron in one copy of phospholipase-C B1 (PLCB1) in the region of interest (supplementary figure 4; 191 

the log R ratio mean was -0.451, over 14 markers, with at least one marker below -1.00).  192 

 193 

Defining the deletion frequency in the family and selected cohorts 194 

The length of the deletion was confirmed to be 1077 bp by standard PCR and Sanger sequencing, using 195 

primers flanking and within the deletion, to reveal one copy of full-length and one deleted allele in all 196 

affected and obligate carrier II-3 but only the full-length product in family members free of any sign of 197 

MNG. The sequence of the allele bearing the deletion corresponds to that immediately upstream and 198 

downstream of the deleted region but with an additional ‘ATAA’ inserted at the junction, hence it is an 199 

InDel.  200 

Standard PCR was applied to genotype a selected cohort of 105 Caucasians in whom thyroid function 201 

testing was clinically indicated because of general fatigue. A woman in her forties, with no history of 202 
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thyroid disease, was heterozygous for the InDel. Further in silico analyses, using the database for genomic 203 

variants (30) identified a report which detected the InDel (variation 67651, LRR -0.645) in 2 of 180 204 

Caucasians but none in more than 450 people of other ethnicities (31). Combining our genotyping data with 205 

that of Conrad et al. (31) reveals 3 in 285 Caucasians harboring the InDel, suggesting that it is relatively 206 

rare (~1%). 207 

Subsequently, genomic DNA was extracted from thyroid tissue from 70 patients undergoing surgery for 208 

non-familial PTC and an additional 81 operated for non-familial MNG. We used PCR analysis to test for 209 

the InDel, as described above. The InDel was not detected in any of the PTC patients but 4 of the 81 MNG 210 

were heterozygous for the InDel and sequencing revealed the same ATAA insertion at the junction. 211 

Comparison of the frequency of the InDel in the general population with that in MNG gives a X2 value of 212 

5.076 (1 degree of freedom), p= 0.024 (two-tailed). The 4 MNG patients (3 women, 1 man) are unrelated 213 

and with no apparent family history of MNG or PTC at the time of their surgery. The age at thyroidectomy 214 

was between 27 to 59 years and the pathology is variously described as ‘oncocytic neoplasm with variable 215 

patterns of growth’ to ‘cystic degeneration with calcification’. We also investigated whether the PLCB1 216 

InDel might be implicated in breast cancer using the qPCR-based screening protocol. Prevalence in this 217 

cohort was similar to that of the general population, i.e. 1%, since just 2 breast cancer patients harbored the 218 

PLCB1 InDel. 219 

 220 

Next Generation Sequencing of the Chr20 high LOD score region 221 

The Proton Sequencer generated 9.9 Gbp of data, achieving 98% accurately mapped sequences with >88% 222 

of the percentage of target bases covered by at least 0.2 times the average base read depth. 223 

A total of 181 sequence variants between Chr20 8113405 and 11907285 were identified in the family with 224 

the minor allele being on the disease risk haplotype in 12 of these. Given the rarity of PTC and the expected 225 

high penetrance, we expect a pathogenic variant to have a very low population frequency. After referring 226 

to the UCSC genome browser, only 1 of the 12 variants was found to have a minor allele frequency <1%; 227 

its presence in affected family members was confirmed by Sanger sequencing. The variant is at Chr20 228 
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10036484 (rs56234782) with T (98.8%) or C (1.2%) in the 3’ UTR of the ANKRD5 gene. To investigate 229 

whether it is implicated in goiter and/or thyroid nodule formation, we investigated its frequency in the SHIP 230 

cohort. However, even though the minor allele was more prevalent in the entire cohort, the prevalence in 231 

the affected population (goiters 1.9% and nodules 2.54%) was lower than in the unaffected populations 232 

(2.79% and 2.85% respectively), thereby excluding a role for it in MNG.    233 

The MNG cohort was also submitted to NGS analysis. This identified more than 300 different sequence 234 

variants across the 80 patients, however, all were also present in the 1000 genomes cohort at a population 235 

frequency >1%. We therefore considered it unlikely that any of these variants are pathologically relevant 236 

to MNG, thereby confirming the relevance of the InDel. 237 

 238 

Transcript measurements of PLCB1 & effect of knock-down on thyroid growth 239 

Having confirmed that the InDel may contribute to the pathogenesis for MNG (perhaps in combination with 240 

other factors), we investigated how it might promote thyrocyte proliferation. The InDel is in the large 3rd 241 

intron of PLCB1, the phosphoinositide-specific enzyme which generates IP3 and DAG leading to PKC 242 

activation and also links signaling between the MAPK cascade and G protein coupled receptors (32). 243 

PLCB1 is present in several isoforms including PLCB1-a and PLCB1-b, with the latter having a 244 

predominantly nuclear location (33). To test the hypothesis that the InDel causes preferential transcription 245 

of certain PLCB1 isoforms, RNA was extracted from thyroids from the original family and from subjects 246 

undergoing thyroidectomy for benign disease. In all cases genomic DNA from the donor thyroid was tested 247 

for the PLCB1 deletion. 248 

QPCR analysis of InDel-affected thyroids did not indicate altered expression of the major PLCB1 isoforms 249 

a and b (sequenced to confirm they were wild type, data not shown). However, qPCR measurements 250 

indicated significantly higher PLCB1 transcript levels (p< 0.02) in thyroids from family members with the 251 

InDel, compared with those from benign thyroid disease who do not harbor the variant (figure 5).  Lack of 252 

thyroid tissue precluded analyzing PLCB1 protein levels.  253 

 254 
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 255 

Discussion 256 

Our GWLA led to the identification of an InDel in the family with a type of MNG, located in the large third 257 

intron of PLCB1, a gene encoding an enzyme with a central role in several signaling cascades involved in 258 

regulating thyrocyte growth. Subsequent NGS in the family failed to identify any other disease-linked 259 

variant, thus supporting a role for the PLCB1 InDel in the pathogenesis of MNG in this family. 260 

The InDel comprises the loss of 1077 bp with an ATAA inserted at the junction in all affected family 261 

members and the 4 unrelated patients with MNG. We suggest that this may indicate a ‘cut and paste’ event 262 

indicating transposon activity. Interestingly, a 11-kb transposon cluster has been identified immediately 263 

upstream of the 3.7 Mbp section on chr 20 displaying a non-parametric LOD score of 3.01 in the current 264 

study (34). Of note the LOD score of 3.01, whilst at the lower limit to be considered significant, is higher 265 

than the maximum estimated for a kindred having 8 affected individuals (35). 266 

We detected the same InDel in 1 subject of a selected cohort of 105 people in whom measuring thyroid 267 

function was clinically indicated. We also consulted the database of genomic variants and found several 268 

reports of relevance. Conrad et al. found the deletion in 2 of 180 Caucasians but insufficient detail is 269 

provided to know whether it is a simple CNV or the same InDel identified in our studies. Combining our 270 

genotyping data with that of Conrad et al. reveals that 3 in 285 Caucasians harbor the deletion, suggesting 271 

that it is rare (31). Several other authors did not observe this deletion, but aware of the difficulty in detecting 272 

small CNVs, we did not include these in our calculation. In addition, 200 patients with breast cancer have 273 

been screened for the InDel with only two harboring this deletion. Hence, the prevalence was similar to the 274 

general population suggesting that there is no connection of the InDel with breast cancer.  275 

We then considered how the deletion or novel PLCB1 InDel might exert its effects.  The region was 276 

explored using the Encyclopedia of DNA elements (ENCODE) (although compiled without inclusion of 277 

thyroid tissue or cell lines) (36), which revealed the existence of a binding site for the estrogen receptor 278 

alpha (ERα) within the deletion. This is of potential importance since all thyroid diseases are more prevalent 279 

in women than men (1). The incidence of thyroid disorders increases in the years immediately following 280 
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puberty and in vitro studies have demonstrated that estrogen can promote thyrocyte proliferation (37) by 281 

several mechanisms. The PLCB1 InDel is located in an intron; while many functional transcription factor 282 

binding sites are found in promoters, a systematic search for ERα binding sites in the human genome 283 

identified >1000 with >95% of them residing in introns and not promoters (38). 284 

We also conducted experiments to determine whether the deletion alters the ratio of PLCB1-a and PLCB1-285 

b, which are generated by alternative splicing. Differences in their C terminal sequence mean that only 286 

PLCB1-a has a nuclear export signal.   We found no alteration in the ratio of PLCB1-a and b isoforms but 287 

in all cases transcript levels for PLCB1 were higher in thyroids from people heterozygous for the InDel 288 

than in thyroids with two full-length copies. This suggests that the InDel may contribute to MNG 289 

development through overexpression of PLCB1. Furthermore, total PLC enzyme activity is elevated in 290 

thyroid neoplasms (39) but unfortunately PLC inhibitors lack the specificity required to identify which 291 

isoform is responsible. Increased PLCB1 expression has also been reported in small cell lung carcinoma 292 

(40) and expression of PLCB2 is substantially increased in breast cancer and is used as a prognostic marker 293 

(40).  294 

As mentioned above, PLC enzymes activate PKC and genes implicated in this signal pathway are 295 

upregulated in euthyroid MNG (41). They also link signaling via Gq (which can also be activated via the 296 

thyrotropin receptor) to the MAPK cascade and in the thyroid disruption of this pathway, by thyrocyte-297 

targeted Cre/Lox P knock-down of the Gqα subunit, produces mice which are resistant to goiter formation 298 

when fed a goitrogenic diet (42). However, when we performed western blots with protein extracts of 299 

thyroid tissue from family members with the PLCB1 InDel we were surprised to observe that pMAPK 300 

levels were substantially lower than in thyroid tissue from patients with autoimmune thyroid disease or 301 

MNG without the PLCB1 InDel (Supplementary Figure 5).  302 

In conclusion, the PLCB1 InDel identified in this family with MNG also occurs in a proportion of sporadic 303 

MNG, and may provide a biomarker to identify MNG patients more likely to progress to PTC. The PLCB1 304 

InDel appears to predispose to goiter formation, possibly by increasing PLCB1 transcription with 305 

subsequent downstream effects. 306 
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 307 

Supplemental Data 308 

The supplemental data comprises 5 figures and 2 tables;  309 

Supplemental Figure 1; LOD scores of all Chromosomes 310 

Supplementary Figure 2; Genes in high LOD score region chromosome 20 311 

Supplemental Figure 3; Haplotype Frequency in 1000 genomes European dataset 312 

Supplementary Figure 4; Copy number variation in high LOD score region chromosome 20 313 

Supplementary Figure 5; Densitometry ratios for pERK/total ERK 314 

Supplemental Table 1; Single point LOD scores all chromosomes  315 

Supplemental Table 2; Primers used for NGS and to define deletion frequency 316 

 317 

 318 

Web Resources 319 

The March 2006 human reference sequence (NCBI Build 36.1) produced by the International Human 320 

Genome Sequencing Consortium, was used as a reference genome (UCSC Genome Browser;http://genome-321 

euro.ucsc.edu/cgi-bin/hgGateway?hgsid=192302910&clade=mammal&org=Human&db=hg18). 322 
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