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Abstract 

 

The yellow fever mosquito Aedes aegypti is the main vector for several important 

arboviral diseases such as dengue, yellow fever, chikungunya and zika. With the 

advent of genetic control strategies, new species-specific tools have emerged for 

the control of Aedes aegypti. This thesis describes attempts at building different 

gene drive systems aiming for both population suppression or population 

replacement, as well as exploring the possibility of inserting exogenous 

sequences in the male locus of Aedes aegypti. An underdominance system, 

consisting of two mutually rescuing killers, was investigated in Drosophila 

melanogaster. It did not work as expected in the configuration tested. The chosen 

NIPP1 killer gene could not be upregulated by tTAV when under the control of 

hsp83, UAS and tetO. tetO and tTAV2 resulted in a lethal positive-feedback loop. 

Gal4Groucho and LexAGroucho fusion proteins, previously used as corepressors 

in the literature, were lethal when under the control of the tetO-tTAV system. 

Males showed the expected feminisation phenotypes, invovling male palp 

shortening and less feathery antennae, upon Nix knock-out using CRISPR-Cas9. 

However, subsequent homology directed repair into the Nix gene in the male 

locus of Aedes aegypti did not succeed even after reiterated injections. Setting 

out from the hypothesis of Act4 haploinsufficiency in Aedes aegypti, the building 

of two different gene drive systems was attempted; female-specific 

underdominance and RIDL with drive. A CRISPR-Cas9 driven act4 knock-in 

unexpectedly confirmed act4 haplosufficiency in Aedes aegypti. Whilst the 

initially devised gene drive systems could not function as such, act4 

haplosufficiency marked the finding of a new female-specific recessive flightless 

target (effectively sterile) for use in future population suppression drive systems. 
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 Introduction Chapter 1 -

 

1.1 Mosquito-Borne Diseases 

 

1.1.1 An overview 

Mosquito borne-diseases affecting humans such as dengue, malaria and yellow 

fever represent a major international health concern. More than 50% of the 

world’s population live in areas at risk of these diseases according to the World 

Health Organisation (September 2017, WHO: http://www.who.int/en/). They are 

transmitted by mosquitoes from Aedes, Anopheles, and Culex genera (Table 1.1).  

 

Table 1.1: An overview of mosquito-borne diseases: 
An overview of infectious diseases transmitted by mosquitoes (WHO: 

http://www.who.int/mediacentre/factsheets/fs387/en/).  

Infectious Disease Mosquito Vector 

Malaria Anopheles 

Dengue Fever 

Aedes 

Chikungunya 

Rift Valley Fever 

Yellow Fever 

Zika 

Japanese Encephalitis 
Culex 

West Nile Fever 

 

1.1.2 Malaria 

Malaria is the most deadly mosquito-borne disease causing between 0.8 to 1.2 

million deaths and more than 250 million clinical cases per year (Vaughan and 

Kappe 2012). The disease agents are protozoan parasites of the Plasmodium 

genus of which there are five species known to infect humans (Singh and 

Daneshvar 2013). It is transmitted by Anopheles mosquitoes and more than a 
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30% of the world’s population lives in malaria endemic areas (Figure 1.1). 

Although a vaccine has been developed, RTS, S/AS01 (RTS 2015), a concern 

over its relatively limited efficacy has called for further development on other 

vaccines or alternative strategies (Mahmoudi and Keshavarz 2017). 

 

 

Figure 1.1: Areas at risk of transmission of malaria in 2010: 
Taken from Autino et al. 2012. The distribution of territories at risk of malaria transmission in 

2010 is shown above. 

 

1.1.3 Dengue 

Dengue is a viral infection transmitted between humans by mosquitoes 

(Simmons et al. 2012). Dengue viruses (DENVs) are arboviruses of the 

Flavivirus genus (family Flaviviridae), and are related to other clinically 

important arboviruses such as yellow fever and Japanese encephalitis (Messina et 

al. 2014). They consist of positive-sense single-stranded RNA genomes of 
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approximately 10kb in size. Since the first isolation of DENV in 1943 (Hotta 

1951), four different serotypes of the virus have been found to be readily 

transmitted in humans (DENV1-4) (Gubler 2002). Recently, a new serotype has 

been found to be able to infect humans, DENV5, even though its prevalence 

appears to be relatively low (Mustafa et al. 2015). A recent study on dengue 

distribution was given by Bhatt et al. 2013, where 390 million dengue infections 

per year were estimated to occur worldwide, of which 96 million of them 

manifest clinically.  
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Figure 1.2: Evidence consensus on presence and risk of Dengue in 2010: 
Taken from Bhatt et al. 2013. (A) National and subnational evidence consensus on complete 

dengue presence (red) through to complete absence (green). (B) Probability of dengue 

occurrence at 5km
2
 spatial resolution. A high probability of occurrence is marked with red and a 

low probability is marked in green. 

 

Dengue is the most prevalent and widespread of mosquito-borne viral diseases, 

with 2.1-3.7 billion people at risk of infection worldwide (Brady et al. 2012). 

Although rare, dengue can cause haemorrhagic fever, its most life-threatening 

symptom. Dengue causes fewer deaths than malaria, however, the case fatality 

rate of dengue can be as high as 15% or as low as 1% depending on the country 

(Gubler 2002). Its more than 30-fold increase in incidence in the last 30 years 

makes it a major infectious disease concern. The main vectors of dengue are the 
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mosquitoes Aedes aegypti and Aedes albopictus which are also vectors for other 

arboviruses such as Chikungunya and yellow fever. Infection of the salivary 

glands in mosquitoes occurs 7 to 10 days after up taking the virus upon a blood 

meal. This lifelong infection of the mosquito allows further spread to humans 

during subsequent blood meals (Salazar et al. 2007). 

 

Human infection with a particular DENV serotype is thought to provide long-

term serotype-specific immunity but only short-lived immunity to the other 

serotypes (Simmons et al. 2012). Development of a dengue vaccine has 

historically proven difficult due to the need to address all serotypes 

simultaneously. A recombinant, live, attenuated tetravalent dengue vaccine 

(CYD-TDV) has been recently developed and tested in two phase 3 trials. 

Although relatively promising with a 56-61% efficacy against symptomatic 

dengue, it did significantly increase the risk of hospitalised dengue cases 

amongst the 2-5 year age group (Hadinegoro et al. 2015). Since then, the vaccine 

has been licensed for use in individuals of 9-45 years of age, however, further 

evidence of vaccine-enhanced disease across different age groups has been 

reported (Halstead 2017). The potential to induce a harmful immune response 

with a dengue vaccine has been stated before due to the nature of dengue 

immunity itself; protective immunity after dengue infection increases the risk for 

more severe forms of dengue such as dengue shock or dengue hemorrhagic fever 

upon a secondary infection (Rothman and Ennis 2016). Two new tetravalent 

vaccines (NIH/Butantan and DENVax) are currently in Phase III trials (Screaton 
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and Mongkolsapaya 2017). However, given the challenges for dengue vaccine 

development, effective vector control still remains an important tool for dengue 

control. 

 

1.1.4 Yellow fever 

Yellow fever is caused by another Flavivirus which is also transmitted by Aedes 

mosquitoes, the main vector being Aedes aegypti. It is less widespread than 

dengue or malaria and is mainly endemic in rainforests of Africa and South 

America (Figure 1.3). Upon human infection with yellow fever virus, after an 

incubation period of 3 to 6 days, most individuals only suffer mild fever. 

However, this develops into a serious illness in about 15% of the cases. 

 

 

Figure 1.3: Global distribution of yellow fever: 
Taken from Barrett and Higgs 2007. Territorial distribution of yellow fever virus in Africa and 

South America.  
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The virus has two main transmission cycles; sylvatic and urban. The sylvatic 

cycle involves transmission of the virus between a range of mosquito species and 

lower primates. When a mosquito, which normally bites monkeys, incidentally 

bites a human, potentially transmitting the viral pathogen, the urban cycle can 

develop. Anthropophilic mosquitoes such as Aedes aegypti then start 

transmission between humans in an urban setting (Barrett and Higgs 2007).  

 

Yellow fever outbreaks were drastically reduced following the introduction of 

the live-attenuated 17D and FNV vaccines in the late 1930s allowing for a low-

incidence period of about 25 years. A relaxation in vaccination and mosquito-

control programs have led to a resurgence of yellow fever in recent years 

(Monath and Vasconcelos 2015). Although the urban yellow fever cycle is 

currently rare in South American countries there is a considerable risk of urban 

yellow fever returning to the Americas, given the presently widespread sylvatic 

cycle and increasing urbanisation (Barrett and Higgs 2007).  

 

1.1.5 Chikungunya 

The chikungunya (CHIKV) virus is an arbovirus of the Alphavirus genus (family 

Togoviridae). Chikungunya is a positive-sense single-stranded RNA virus with a 

genome of approximately 12kb (da Cunha and Trinta 2017). Similarly to dengue, 

chikungunya is rarely fatal except for the more vulnerable in a population 

(Pialoux et al. 2007). The symptoms usually involve acute fever followed by 

severe and persistent arthralgia (joint paint) during the chronic stage of the 
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disease (Burt et al. 2017). In some patients this debilitating joint pain can last for 

years. The main vectors for the disease are also Aedes aegypti and Aedes 

albopictus. Chikungunya is still a less pressing health concern than dengue or 

malaria, however, its rapid and recent spread across the world is alarming. Since 

the year 2000, the incidence of chikungunya outbreaks has increased with recent 

spread of the virus to previously non-endemic regions. Outbreaks have been 

detected in both Southern Europe and the Americas (Figure 1.4). With no current 

treatment or vaccine available chikungunya makes a strong case for mosquito 

vector control. 

 

 

Figure 1.4: The spread of different chikungunya virus lineages across the globe: 
Taken from Burt et al. 2017. The East Central South African (ECSA) lineage spread and 

diverged to the Indian Ocean islands (IOLs) and Asia. The Asian lineage in turn spread to the 

Americas in 2013 whilst the ECSA spread to Brazil in 2014.Outbreaks were also identified in 

Italy (2007) and France (2014). 
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1.1.6 Other mosquito-borne diseases 

Zika is also an arbovirus from the Flavivirus genus (family Flaviviridae). The 

main vectors of Zika are Aedes aegypti and Aedes albopictus although other 

Aedes species are also thought to be capable of transmission (Song et al. 2017). 

Mosquitoes from other genera, Culex and Anopheles, have also been found to 

carry Zika virus (Diallo et al. 2014). Presence of the virus does not necessarily 

mean the species are Zika vectors, and hence more field studies are required to 

clarify which species can effectively transmit it. Although clinical aspects of 

Zika are yet to be explored in more detail, the symptoms are thought to range 

from acute febrile illness, neurological complications and adverse fetal outcomes 

(Petersen et al. 2016). Although known for the last 70 years, the virus has only 

spread recently. Within the span of a year, Zika virus reached Brazil from the 

Pacific Islands and thereafter spread rapidly throughout the Americas (Plourde 

and Bloch 2016).  

 

Rift Valley fever virus (RVFV) is a mosquito-borne virus of the genus 

Phlebovirus (family bunyaviridae). The virus causes Rift Valley fever in both 

ruminants and humans. Current cases in humans are usually asymptomatic, and 

usually cases which develop clinical symptoms involve a short febrile illness 

with no chronic effects. However, a small number of cases still develop into 

severe Rift Valley fever (Mansfield et al. 2015). Both Aedes and Culex 

mosquitoes are thought to be involved in the disease transmission cycle, and 
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recent outbreaks outside of Africa are indicative of its potential geographical 

spread (Al-Afaleq and Hussein 2011). 

 

Japanese encephalitis (JEV) and West Nile virus (WNV), both closely related, 

are also arboviruses of the Flavivirus genus (family Flaviridae) and are in this 

case transmitted by Culex mosquito species. Both viruses depend on avian 

reservoirs and infection in humans tends to be asymptomatic. However, cases of 

serious viral encephalitis have been reported (Turtle et al. 2012).  

 

Due to the limitations of vaccines and preventative treatment in the mosquito-

borne diseases outlined above, a case can be made in favour of reinforcing 

mosquito vector control. 
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1.2 The Yellow Fever Mosquito, Aedes aegypti 

 

1.2.1 Morphology and life-cycle 

Aedes aegypti (Linnaeus, 1762) is commonly known as the yellow fever 

mosquito. Adults are medium sized mosquitoes of approximately 4 to 7 mm in 

length (Clemons et al. 2010). Size is largely dependent on larval diet. It has a 

distinctive lyre shaped markings of white scales on the dorsal side of the thorax 

which are also present on abdominal tergites and as bands on their legs.  

 

 

Figure 1.5: Characteristic white scale markings in an Aedes aegypti female: 
Taken from McBride et al. 2014. Red dots do not serve a purpose here, but were used to 

measure scale colour in the cited study. (A) Lyre pattern of white scales on the dorsal part of the 

thorax. (B) White scales can be appreciated on the abdominal tergites. 

 

Like most mosquito species, blood is required for egg development in females. 

Eggs take 3-5 days to develop after a blood meal (Crampton et al. 1997). Adult 

females can produce around five egg batches in their lifetime, and lay around 70-

200 eggs per oviposition (Clemons et al. 2010). Eggs are resistant to desiccation 

and can be stored as long as a year (under optimal low humidity conditions) 

before hatching. Eggs hatch in response to stimuli, where submersion in water is 
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a critical stimulus and low oxygen tension is a further stimulus. The four larval 

stages (L1-L4) and the pupal stage are strictly aquatic. Eggs take around 3-4 days 

to hatch after oviposition and larvae typically take 6-9 days to pupate, although 

this is highly dependent on temperature and food availability. Aedes aegypti 

larvae have the distinctive ability to enter a diapause state under starvation 

conditions allowing them to remain alive for months (Crampton et al. 1997). 

This diapause state of larvae, together with the long term survivability of eggs, 

make Aedes aegypti both a suitable insect in terms of lab maintenance and a 

difficult pest to control. Pupae take around 48 hours to eclose into adults which 

become sexually mature in about 1 to 2 days (Lea 1968). Females are capable of 

taking blood meals 2 to 4 days after eclosion. 

 

1.2.2 Genetics and genomics 

A draft genome for Aedes aegypti (Liverpool strain) was published in Nene et al. 

2007. The presented genome was approximately 1.38 Gb in size which makes it 

about 5 times larger than the published Anopheles gambiae genome (Holt et al. 

2002). However, this increase in size is not due to a greater number of protein 

coding genes (Table 1.2) but an extensive expansion of transposable elements. 

Nearly 50% of the Aedes aegypti genome consists of transposable elements 

(Nene et al. 2007). Of the 15, 419 protein coding genes in Aedes aegypti, 67% of 

them were found to have orthologues in Anopheles gambiae, whilst 58% of them 

had orthologues in Drosophila melanogaster. This is consistent with the fact that 

estimated divergence from Drosophila lineages occurred ~250 million years ago 
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(Gaunt and Miles 2002) and ~150 million years ago from Anopheles lineages 

(Krzywinski et al. 2006).  

 

Both Aedes aegypti and Anopheles gambiae show a considerable level of synteny 

between the three pairs of chromosomes in each species. However, the once 

proposed whole-arm synteny is now thought to not be fully preserved as a 

number of pericentric inversions have been found (Timoshevskiy et al. 2014). 

Nevertheless, the main difference is that sex chromosomes are homomorphic in 

Aedes aegypti whilst they are heteromorphic in Anopheles gambiae. A putative 

male-determining factor, Nix, has been recently found in the M-locus of Ae. 

aegypti’s chromosome 1 (Hall et al. 2015). 

 

Table 1.2: Comparison of Aedes aegypti, Anopheles gambiae and Drosophila 

melanogaster genomes: 
Adapted from Nene et al. 2007. Statistics were derived from the Aedes aegypti genome 

presented in Nene et al. 2007, the Anopheles gambiae R-AgamP3 assembly, and the Drosophila 

melanogaster R-4.2 assembly. The data reflects a 5 fold size difference between the Ae. aegypti 

and Anopheles gambiae genomes. However, the bigger genome size of Aedes aegypti is not 

reflected in a significant increase in the number of genes or average protein-coding gene length. 

This is explained in turn by the larger intron and intergenic region size in Aedes aegypti.  
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1.2.3 Systematics and behaviour 

Aedes aegypti is a species of African origin where domestication is thought to 

have occurred. Aedes aegypti individuals are divided into two subspecies Aedes 

aegypti formosus (native African) and Aedes aegypti aegypti (spread 

internationally as well as in Africa). Aedes aegypti formosus is less 

anthropophilic and hence is associated with sylvan rather than urban 

environments. The Aedes aegypti aegypti subspecies is thought to have 

originated from an Aedes aegypti formosus population in West African forests, a 

hypothesis supported by population genetic analyses. Whilst the urban or 

domestic form usually acquires a browner colour, Aedes aegypti formosus 

remains a darker black colour (Figure 1.6). A recent study found that a change in 

an odorant receptor gene, Or4, is behind the human ‘domestication’ of the Aedes 

aegypti aegypti subspecies from the Aedes aegypti formosus subspecies 

(McBride et al. 2014). 

 

Aedes aegypti are decidedly anthropophilic and this has a strong impact on many 

aspects of behaviour. For instance, females prefer to take recurrent blood meals 

instead of relying on sources of sugar for energy reserves (Scott et al. 2000). The 

reason for this adaptation may be behind the fact that sugar sources in an urban 

environment may be scarcer than blood meals themselves. This adaptation has 

serious and negative consequences for humans as Aedes aegypti females become 

more efficient vectors of disease. Females of Aedes aegypti are monogamous as 

they are not receptive to sperm uptake after their first mating (Craig 1967). 
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Although it is not as strict as initially reported, given that polyandry does occur 

freely 2 hours after the first mating (Degner and Harrington 2016).This 

behaviour contrasts with that of males which will attempt mating multiple 

females. Mating of Aedes aegypti occurs in flight but it does not involve 

swarming as it happens mainly around the host. Males, also anthropophilic, will 

mate with females before and after they take blood meals from their human 

hosts. Males are drawn to the host by a combination of pheromones (Nijhout and 

Craig 1971) and the sound frequency of female flight (Arthur et al. 2014). 

Experiments restraining females, and attracting males to the females (with the 

use of tuning forks at the correct female flight frequency), showed that the males 

would approach the sound but in no case copulate with the females (Jones and 

Wheeler 1965). This highlights the critical importance of female flight in 

successful Aedes aegypti mating.  

 

 

Figure 1.6: Colour variation between urban and sylvan Aedes aegypti individuals: 
Taken from McBride et al. 2014. Two Aedes aegypti females are compared for their difference 

in coloration. The domestic or urban form, Aedes aegypti aegypti, is shown on the left. The 

forest or sylvan Aedes aegypti aegypti is shown on the right. 
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1.2.4 An invasive species 

Anopheline mosquitoes have been present worldwide before the spread of 

Plasmodium parasites, the disease causing agents of malaria. Malaria parasites 

originally from Africa have remarkably adapted to new vectors (distinct 

Anopheles species) when introduced into the New World around the 16
th

 century 

(Molina-Cruz and Barillas-Mury 2014).  

 

The spread of dengue worldwide, however, did not require adapting to a different 

human feeding vector. The anthropophilic Aedes aegypti, originally from Africa, 

colonised the New World during transatlantic shipping in the 16
th

 to 18
th

 

centuries and Asia in the 19
th

 century (Gloria-Soria et al. 2016). The pattern of 

vector spread is now matched by the spread of the dengue serotypes 1 to 4. 

Moreover, a closely related species; Aedes albopictus, originally from Southeast 

Asia, has spread quickly across the world in the last 40 years now being present 

in North/South America, parts of Africa, parts of Europe, and Australian 

overseas territories (Bonizzoni et al. 2013).  

 

1.3 Vector Control Strategies 

 

1.3.1 The importance of vector control 

Since humans have gradually occupied a larger surface of the earth, habitats have 

changed for the native species. Native species in human-invaded habitats have, or 

have had, two main outcomes; i) to face or suffer extinction, ii) to evolve some 
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sort of commensalism, i.e. ‘domestication’, with humans. When arthropods 

requiring a vertebrate as a blood source have undergone, or are in the process of, 

domestication the consequences have been devastating for human health (Powell 

and Tabachnick 2013). Supporting this concept is the fact that many of the 

current human vector-borne pathogens infect also animals or have close relatives 

that do, i.e. malaria or yellow fever. Given the relatively new addition of humans 

to the earth’s biota, around 2.6 million years ago (White et al. 2009), and the 

much longer presence of blood-feeding insects, more than 100 million years ago 

(Powell and Tabachnick 2013) this ‘incomplete domestication’ is expected.  

 

This highlights the importance of vector control as well as tackling the diseases 

themselves as a pressing and constant challenge. Granting human immunity for a 

particular virus serotype through vaccines is unlikely to eliminate the problem. 

The closest vaccine to eliminate the problem has been the yellow fever vaccine, 

which although very effective is not a permanent solution due to yellow fever 

sylvatic cycles (Frierson 2010). Perhaps, even eliminating a particular mosquito 

species will not be a permanent solution. Nonetheless, specific diseases in 

specific vectors may be easier to control, or are more likely to show a tangible 

benefit on human health from trying. Hence, disease eradication, the ultimate 

objective, will require awareness of the magnitude of the problem and all efforts 

possible. Interestingly, climate change poses an extra challenge as it has been 

linked to recent expansions of mosquito vectors, e.g. the introduction of Aedes 

albopictus in ~25 European countries (Medlock and Leach 2015).   
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1.3.2 Bed nets and insecticides 

Insecticide impregnated bed nets and insecticide spraying of households are one 

of the most common methods in vector control. Insecticide-treated nets have 

been largely effective in vector control of Anophelines. They have been used 

historically as a protection against vector-borne diseases, for instance by the 

Russian, German and US armies during World War II. A meta-study on the 

effectiveness of insecticide-treated nets concluded that child mortality can be 

reduced by one fifth and malaria infections by half (Lengeler 2004), however, 

large scale coverage is difficult to achieve. Nevertheless, this only works well 

with Anophelines since females are night-time biters. Aedes mosquitoes are 

generally daytime biters and hence insecticide-impregnated bed nets are not an 

effective vector control measure against them. The use of bed nets may also 

favour the behavioural shift of mosquitoes from night to day biting or from 

indoor to outdoor biting (Russell et al. 2011). However, the main disadvantage is 

that the development of insecticide-resistance in mosquitoes is sped up greatly by 

their use. Moreover, their usually broad-spectrum action is lethal to a range of 

species which can pose a serious threat to biodiversity. Indoor residual spreading 

is thought to be more specific as it targets the resting surfaces of human biting 

mosquitoes such as Anopheles gambiae (Larsen et al. 2017). 

 

1.3.3 Environmental management 

Domestication of mosquitoes has caused a shift in the oviposition habits of 

females. In natural environments eggs tend to be oviposited in small pools of 
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water in tree-holes or leaf axils. Urban environments have provided analogous 

sites such as pots, drainage ditches or tyres which the domesticated mosquitoes 

prefer (Crovello and Hacker 1972). Essentially any receptacle containing water 

may potentially be an artificial breeding site for mosquitoes. Hence, a close 

control of these sites can reduce the numbers of disease-transmitting adults. 

Water management is especially effective in big cities, were a majority of 

breeding sites are artificial. However, implementation is not always simple. In 

Singapore, the “Control of Vectors and Pesticides Act” (Chapter 59 – Part IV) 

took effect in 1998 which sets firm law-enforced prohibitions on creating 

conditions favourable to vectors in private properties, and yet it has not fully 

tackled the endemic problem of dengue in the area. 

 

1.3.4 Biological vector control 

Biological control involves the use of natural predators or pathogens against 

mosquitoes. Deployment of larvivorous copepods has been successful in 

eliminating mosquitoes on a local scale in Vietnam (Kay and Nam 2005; Nam et 

al. 2012), but has not been proven to work in other contexts. However, the risk 

with biological control strategies is that the control agent can colonise an 

environment and become the pest themselves (Rupp 1996).  
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1.4 Mosquito Genetic Engineering 

 

1.4.1 Transposable elements transgenesis 

piggyBac is a class II transposable element and belongs to the TTAA-specific 

family. It was first discovered in a baculovirus genome after passage in 

Trichoplusia ni cells (Fraser et al. 1983). These cells are an established insect 

cell line from the cabbage looper, Trichoplusia ni, a moth from the Noctuidae 

family (Hink 1970). The original piggyBac element isolated was 2.4kb long, 

containing a long open reading frame, and flanked by 13bp terminal inverted 

repeats as well as by two 19bp inverted repeats (Cary et al. 1989). The open 

reading frame of an autonomous piggyBac element encodes a transposase which 

nicks the inverted repeats of the transposon, allowing it to integrate into TTAA 

sites in the genome (Elick et al. 1996, Figure 1.7).  

 

However, for transgenesis applications the piggyBac transposase and piggyBac 

are carried in separate plasmids, so as to allow integration but not remobilisation. 

A wide range of different species belonging to four different orders have been 

successfully transformed with piggyBac including species from Coleoptera, 

Diptera, Hymenoptera and Lepidoptera (Gregory et al. 2016). Crucially, 

piggyBac works both in Drosophila melanogaster (Handler and Harrell 1999) 

and Aedes aegypti (Kokoza et al. 2001).  
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Figure 1.7: piggyBac mediated transposition: 
Taken from Woodard and Wilson 2015. IRs stand for inverted repeats. Expressed transposase 

from a plasmid (or from the mobile element in autonomous piggyBac sequences) binds the 

piggyBac IRs and induces nicking and 3’ hydrophilic attack of the TTAA ends. Hairpin 

formation then occurs. Joining to the genomic DNA occurs at a TTAA nucleotide sequence 

resulting in TTAA duplication as well as the integration of the transgene. Should transposase 

still be expressed the element can be excised thereby recreating the original TTAA target site 

without any ‘scar’. 

 

The P element is also a class II transposon, but in this case discovered in 

Drosophila melanogaster. The P element works by the same ‘cut and paste’ 

mechanism of piggyBac and its use in transgenesis is analogous to piggyBac, 
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although it is only used in Drosophila melanogaster transgenesis (Majumdar and 

Rio 2002). 

 

1.4.2 Site-specific recombinases 

An issue with transposon mediated transgenesis is that its quasi-random nature 

results in positional effects in transgene expression. Since enhancers and 

silencing elements can affect neighbouring sequences, the genomic environment 

for a transgene will be a key determinant of its expression and thereby function. 

A recent study comparing 27,000 distinct reporter integrations using piggyBac in 

mouse embryonic stem cells showed more than ~1, 000 fold differences in 

expression levels (Akhtar et al. 2013). Moreover, there is an issue with imposing 

different fitness costs in the transgenic organism, depending on which elements 

of the genome are disrupted or not. 

 

Site-specific recombinases provide a solution to the problem as they allow 

insertion of transgenes into specific genomic sites which normalises the position 

effect rather than overcoming it. FLP-FRT and Cre-loxP recombinase systems 

have been shown to work in a range of organisms including Ae. aegypti 

(Haghighat-Khah et al. 2015). However, these systems are both reversible which 

provides certain transgene instability should any residual recombinase be present. 

An alternative integrase system, ΦC31-att, involves recombination between 

specific phage and bacterial attachment sites (attP and attB respectively), 

resulting in hybrid sites attL and attR. Since these new sites are not recognised by 
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the ΦC31 integrase this makes the integrations irreversible and hence grants 

more efficient transgenesis. The ΦC31-att requires a ‘docking site’ in the 

genome, preferably attP before a transgene of sequence can be inserted into an 

attP target. The transgenesis efficiency of the ΦC31-att system in Aedes aegypti 

ranges from 4.7 to 12.5% (Nimmo et al. 2006). 

 

1.4.3 HDR gene editing in Aedes aegypti 

Homology directed repair in a sequence specific manner using directed DSB 

nucleases has been successful in Aedes aegypti. Both TALENs and CRISPR-

Cas9 sequence specific nucleases have been used to catalyse the repair from a co-

injected donor plasmid with the appropriate genomic flanks (Basu et al. 2015). A 

comprehensive CRISPR-Cas9 HDR study in Aedes aegypti was carried out in 

Kistler et al. 2015. HDR involved supplying a donor plasmid with the relevant 

genomic flanks to site specific double strand breaks directed by sgRNA CRISPR-

Cas9 activity. The paper also suggests that HDR only occurs in females, and 

hence G0 male adults were discarded instead of crossed to screen their G1 

progeny. 
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Figure 1.8: Schematic representation of CRISPR-Cas9 driven HDR in Aedes 

aegypti: 
Taken from Kistler et al. 2015. A WT Aedes aegypti lays fertilised eggs, which are 

microinjected as embryos (Section 3.2.3) with Cas9 protein, sgRNA, and a donor plasmid 

including a marker flanked by homology arms matching the targeted genomic site. Site-specific 

double strand breaks in the genome can lead to INDELs, through NHEJ repair, and HDR events 

through HR repair. NHEJ repair driven deletions are more likely caused by the use of multiple 

sgRNAs as shown. Screening of mutant G1 mosquitoes will involve checking for a fluorescence 

marker in case of successful HDR, and checking for mutation phenotypes specific to the gene of 

interest. 

 

Kistler et al. 2015 used flanking homology arms of 766 to 2058kb in length, 

inserts of 2150 to 2321kb in length (including cassettes for ubiquitous marker 

expression), a single sgRNA per gene and injected Cas9 protein for 4 different 

genes. HDR was detected by fluorescence for 3 of the genes, with an efficiency 

of 16.4, 3.5 and 1.9% respectively. For one of the injections 0% percent of 

founders resulted in fluorescent offspring, even though a similar amount of 

founders was obtained for each injection (between 41 and 100). Successful HDR 

was initially determined by marker expression in G1s, however subsequent PCR 
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analysis showed that some of the HDR events had been off-target since the 

targeted genes remained intact and did not have the expected insert. Successfully 

directed HDR only occurred for two genes and it had an efficiency of 16.4 and 

0.9% respectively, given that a proportion of 4 out 11 from screened HDR events 

were actually not inserted into the target locus. 

  

A more recent study, (Li, Bui, et al. 2017), carried out CRISPR-Cas9 HDR in 

Aedes aegypti and compared HDR efficiencies between an integrated Cas9 

source (exu-Cas9) and protein co-injection. Transformation efficiencies in this 

paper were atypically calculated as a percentage of marker-positive G1s, which 

makes comparison with other studies difficult but allows a valid comparison 

within the study. HDR efficiencies were found to be more than 2 orders of 

magnitude more efficient when using the integrated Cas9 source with respect to 

Cas9 protein injection. Hence, this highlights the importance of integrated vs 

injected Cas9 as well as the value of finding promoters for maternal egg-

deposition, such as exu (Li, Bui, et al. 2017). 

 

1.4.4 The common fruit fly, Drosophila melanogaster as a model for Aedes 

aegypti 

Since the seminal work by Thomas Hunt Morgan in elucidating the role of 

chromosomes in heredity, Drosophila melanogaster has been one of the most 

studied model organisms (Morgan 1910). Its short generation time, 10 days at 

25°C, as well as the simple food and space requirements make it a very easy 
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insect to work with. Its genetics are very well understood and many genetic tools 

to facilitate research have been developed in the last century. Balancer 

chromosomes, with large inversions preventing recombination as well as both 

recessive and dominant markers exist for the three main D. melanogaster 

chromosomes. Such a tool, absent in mosquitoes, greatly facilitates research 

involving genetic crosses (Beckingham et al. 2005).  

 

Both Ae. aegypti and D. melanogaster are dipteran insects which makes D. 

melanogaster the most closely related model organism for yellow fever 

mosquitoes. Although genetic systems designed to function in Ae. aegypti will 

always need to be tested in the mosquito, there are cases were testing a genetic 

system in the better understood D. melanogaster is advisable. Where a complex 

and relatively unknown genetic system is to be tested, interpretation of results 

would prove harder in Ae. aegypti than in D. melanogaster. Therefore, it may be 

worth carrying out the experiments in the common fruit fly first, where 

understanding the system would be easier and faster. 
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1.5 Genetic Vector Control Strategies 

 

There are many naturally occurring selfish genetic elements, able to spread 

through their hosts irrespective of their fitness costs (Hurst and Werren 2001; 

Burt and Trivers 2006), which hold unexploited potential in insect vector control. 

The concept of insect vector replacement with engineered gene drive systems 

was established long ago (Curtis 1968; Curtis and Graves 1988; Knipling et al. 

1968); however, it has only recently become feasible to attempt a design of such 

a system.  

 

For the purpose of disease vector population replacements it should ideally; i) be 

strong enough to tolerate fitness costs and reach gene fixation on a relatively 

short time-scale (Sinkins and Gould 2006; Boëte and Koella 2003), ii) be able to 

spread multiple genes so as to reduce the chances of cargo being mutated or lost 

(Marshall 2008), iii) be as safe as possible i.e. allowing for population isolation 

(Hay et al. 2010), and finally, iv) be possible to remove it from the wild type 

population in case of unforeseen negative effects of cargo genes or other 

components (Moreira et al. 2004).  

 

Genetic control designs can be classified within a spectrum of persistent to 

invasive drives where persistent drives are generally self-limiting and invasive 

drives self-sustaining (Alphey 2014). Furthermore, the further down the self-

limiting side of the spectrum the easier drive reversal is. Several naturally 
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occurring selfish genetic elements have been proposed to be used as gene drive 

mechanisms. These encompass transposons (Charlesworth et al. 1994), homing 

endonucleases (Burt 2003; Deredec et al. 2008), Medea (Chen et al. 2007) and 

Wolbachia elements (Stouthamer et al. 1999). However, each has their own 

advantages and disadvantages.  

 

Although different applications would benefit from more or less invasive 

approaches, homing endonucleases, Medea and transposons are relatively 

invasive examples, meaning that reversal and population isolation would be a 

challenging issue (Marshall and Hay 2012). If worked as predicted they could 

become global drives (Noble et al. 2016), i.e. capable of worldwide spreading, 

which is something to be avoided due to safety concerns and the simple fact that 

regulatory bodies dealing with gene drive do not operate worldwide (Alphey 

2014). Self-limiting genetic control designs such as RIDL or simple sterile-male 

releases provide this safety aspect and ease of control. However, in this case 

release numbers and frequencies required for population suppression or 

population replacement (introgression by inundative release) may be too high for 

many applications. Such large releases may not be currently feasible due to the 

limitations in mass rearing itself and the prohibitive cost it may suppose. Figure 

1.9 shows a spectrum of genetic control mechanisms ranging from self-limiting 

to self-sustaining strategies. 
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Figure 1.9: A spectrum of invasiveness for different genetic control mechanisms: 
Taken from Alphey 2014. Genetic systems for vector control can be classed as self-limiting or 

self-sustaining. Reversibility or control over releases is mostly provided by the fitness cost of 

the genetic themselves, which would be eliminated from a population by natural selection at a 

rate dependent on the severity of the fitness cost and the persistence/invasiveness of the genetic 

system. The more severe the fitness cost, or the more self-limiting the genetic system the more 

frequent or larger the releases would have to be for effective population suppression or 

replacement (depending on the mode of action of the genetic system). Generally, self-limiting 

strategies involve population suppression systems and self-sustaining strategies involve 

population replacement systems, however this is not always the case. Along this continuum, 

more invasive approaches would reduce the size and/or frequency of releases required, but 

would make restriction of a genetic system within a target population challenging, as well as the 

removal of the genetic system from the targeted population itself. On the other hand more self-

limiting approaches would allow for easier control and reversal whilst increasing the size or 

frequency of releases, and in turn increase the cost. Abbreviations: Sterile insect technique 

(SIT), release of insects carrying a dominant lethal (RIDL), incompatible insect technique (IIT), 

homing endonuclease genes (HEGs), female specific RIDL (fs RIDL), multi-locus assortment 

(MLA), underdominance (UD), CRISPR-Cas9 (Clustered Regularly Interspaced Short 

Palindromic Repeats-CRISPR associated protein 9).  

 

1.5.1 tetO-tTAV system and the release of insects carrying a dominant lethal  

The tetO-tTAV2 system consists of an enhancer (tetO) which is normally bound 

by a transactivator (tTAV or tTA) except in the presence of tetracycline (Gossen 

and Bujard 1992). The system was created, in the cited study, by fusing a 

tetracycline repressor (tetR) domain (which normally blocks expression from the 

tetracycline operator, tetO) to the transcription activator C-terminal domain of 

VP16 from Herpes simplex virus (HSV). A tetO binding transactivator able to 

respond to tetracycline was synthesised (Gossen and Bujard 1992). Two versions 

of the transactivator exist, one that becomes inactive in the presence of 



CONFIDENTIAL 

30 

 

tetracycline (Tet-Off system) and one that becomes active instead (Tet-On 

system) (Lycett et al. 2004).  

 

The Tet-Off system has been used to engineered repressible genetic sterility in 

insects (Thomas et al. 2000). This involved a two-component system whereby 

the tTAV is under the control of a tissue-specific promoter, and an exogenous 

lethal gene under the control of tetO. In the absence of tetracycline the lethal 

gene was upregulated through the interaction of the tetO enhancer and the hsp70 

minimal promoter (Figure 1.10). A simplified version of this system, a one-

component positive feedback system, was devised; placing tTAV under the 

control of a minimal promoter and an adjacent tetO sequence (Gong et al. 2005). 

The minimal promoter, in the absence of tetracycline, would express a basal level 

of the transactivator which in turn would enhance its own expression through 

interaction with tetO. Since the excessive accumulation of VP16 in a cell is toxic 

due to transcription squelching (Berger et al. 1990), tTAV is both the lethal 

effector and the transactivator (Figure 1.10).  
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Figure 1.10: Tetracycline-repressible systems for genetic sterility in insects: 
The Tet-Off systems are repressible by tetracycline. tTA (tTAV) is the transactivator open 

reading frame. Minimal promoters are not shown. Tc stands for tetracycline (A-B) In the 

absence of tetracycline the expressed tTA leads to the upregulation of a lethal effector and hence 

killing the organism. In the presence of tetracycline, this upregulation is prevented. (C-D) In the 

absence of tetracycline tTA is first expressed at a basal level by the action of a minimal 

promoter which then starts the positive-feedback loop between tetO-tTAV which ultimately 

leads to a lethal accumulation of VP16. In the presence of tetracycline, this positive-feedback 

loop is prevented. 

 

Insects carrying either of the systems can be reared in the lab under the presence 

of tetracycline as homozygous and then released into the wild as a refined 

version of the sterile-insect technique (SIT). Hence the name of this variant of 

the technique, release of insects carrying a dominant lethal (Thomas et al. 2000). 

Given the higher fitness of RIDL insects (Massonnet-Bruneel et al. 2013) 

compared to traditionally irradiated SIT insects (Helinski et al. 2009), a RIDL 

program should be more effective upon release as well as more economic due to 

the lower release numbers required. Female-specific RIDL (fsRIDL) systems 

have been devised in both Ae. aegypti and albopictus using the Aedes Act4 

promoter to lead to female-flight muscle cell death and hence flightless females 

(Fu et al. 2010; Labbé et al. 2012). This not only facilitates genetic sexing upon 
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release but it creates a stronger version of RIDL in the field. RIDL homozygous 

carrier males crossed to WT females will result in heterozygous RIDL males 

which will not die themselves and in turn add to the population suppression 

effect in subsequent generations. 

 

1.5.2 Sequence-specific drives: HEGs, ZFNs, TALENs, and CRISPR-Cas9 

With the advent of the highly specific and efficient CRISPR-Cas9 system 

(Barrangou 2012), homing drives have gained traction as an effective system in 

mosquito control (Hammond et al. 2016). As further described in Chapter 4, a 

wide range of gene drive systems, in terms of different persistence/invasiveness, 

can be derived from these sequence-specific endonucleases. 

 

Homing is defined as the transfer of an intervening sequence to a homologous 

allele lacking the sequence (Chevalier and Stoddard 2001). Homing is carried out 

by an endonuclease capable of recognising and cleaving the target site, causing a 

double strand break (DSB), in the homologous allele. Such endonucleases are 

encoded within the intervening sequence itself. This ability was first described 

for mobile introns and hence the endonucleases encoded by these introns are 

referred to as homing endonucleases (Dujon et al. 1989). Homing endonuclease 

genes (HEGs) have been described in the three biological domains and their 

proteins share common structural motifs with a higher degree of similarity than 

amongst type II restriction enzymes. In addition, they bind to DNA recognition 

sequences of 12-40bp (Belfort and Roberts 1997). Due to this ability, HEGs have 
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been proposed for engineered gene drive systems (Burt 2003; Burt and 

Koufopanou 2004; Deredec et al. 2008).  

 

Although not HEGs, strictly speaking, other endonucleases have been proposed 

for engineered gene drives due to their homing ability (Simoni et al. 2014; Gantz 

and Bier 2015). These include zinc finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs), and CRISPR-Cas9 (Gaj et al. 2013). 

All of these endonuclease based systems would share the same homing 

mechanism if designed appropriately (Figure 1.11). RNA-guided nucleases such 

as CRISPR-Cas9 have recently shown the most promise out of the available 

homing mechanisms due to their high effectiveness and specificity, but especially 

for simplicity of assembly. In contrast to other systems mentioned above, 

CRISPR-Cas9 does not rely on specific protein domains for sequence recognition 

but rather relies on RNA guide(s) for sequence specificity. This RNA guided 

specificity is much easier to change to a new sequence (or reprogram) than 

protein domain driven specificity. Only 18-21bp sgRNAs (single guide RNAs) 

are required to guide the Cas9 and hybridise with the genome sequence for in situ 

cleavage (Radzisheuskaya et al. 2016). A disadvantage of the Cas9 system is that 

the sequence ‘NGG’ (protospacer adjacent motif or PAM site) must follow the 

sgRNA sequence in the genome. This poses some restriction over which 

positions can be chosen for targeting in the genome (Gaj et al. 2013). However, 

‘GG’ sequences are sufficiently common for it to not cause a major challenge. 

Another way around this is the use of other class 2 CRISPR effectors (Cas9-like 
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proteins) such as Cpf1 (CRISPR from Prevotella and Francisella 1). Cpf1 has a 

different PAM site; i.e. ‘TTN’ (Zetsche et al. 2015). 

 

Although sequence-specific homing systems are very precise, effective and 

especially suited for gene drives they also have their caveats. Sequence-

specificity can in turn become a disadvantage when considering the genomic 

variation of wild type populations or the potential generation of resistant alleles 

(Hammond et al. 2017). This becomes a special challenge when assembling a 

CRISPR-Cas9 drive chain, i.e. a daisy chain drive (Noble et al. 2016) where 

several components must undergo sequence-specific homing effectively. 

Sequence independent drives, such as underdominance, avoid these hurdles 

whilst facing others.  
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Figure 1.11: Endonuclease driven homing: 
Adapted from (Burt and Koufopanou 2004). When an endonuclease is embedded within its 

recognition sequence (RS) in the genome a homing mechanism is obtained. The translated 

protein from an integrated endonuclease will recognise the RS of the neighbouring allele and 

lead to a double strand break. In the event of homology directed repair in a diploid genome the 

endonuclease bearing chromosome will be used as a repair template and hence carrying out the 

copying/ homing of the endonuclease. 

 

1.5.3 Suitability of Aedes aegypti for genetic vector control 

Genetic control systems work in a species-specific manner, which is an 

advantage in terms of reducing environmental impact, but also a challenge in 

terms of tackling several species at once. The fact that there are fewer Aedes 

species transmitting arboviral diseases than species of Anopheles transmitting 
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malaria make Aedes species more suitable for genetic control. The high genomic 

variation amongst anopheline vectors of malaria compromises the 

implementation of sequence-specific gene drives (Deitz et al. 2016; Feng et al. 

2017). Conversely, the comparatively recent expansion of Aedes populations 

worldwide should be reflected with a lower genetic variability which would in 

turn facilitate the implementation of sequence-specific gene drives. 

 

1.6 Scope of Work 

This thesis describes three main lines of research. The first is the investigation of 

an underdominance gene drive system in Drosophila melanogaster (Chapter 2) 

which was undertaken at Cardiff University. The second is the exploration of the 

use of homology directed repair to insert exogenous sequences into the M-locus 

of Aedes aegypti with the outlook of male specific linkage of components for 

future gene drive applications (Chapter 3) which was undertaken at Oxitec. 

Finally, this thesis explores the genetics of Act4, a putative gene for flight in 

Aedes aegypti females, in the attempt to create distinct gene drive systems 

(Chapter 4) which took place at the Pirbright Institute.  
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 Underdominance Gene Drive in Chapter 2 -

Drosophila melanogaster 

 

2.1 Introduction 

 

2.1.1 Project aim 

The aim of the project was to develop an underdominance-based gene drive 

system in Drosophila melanogaster, through a synthetic biology approach, to 

spread desirable genes through a population of wild type disease-vectors in the 

face of natural selection. Desirable genes would in this case render the vectors 

resistant to disease itself. Such genes are often referred to as refractory genes.  

 

2.1.2 Insects as disease vectors 

As indicated in Chapter 1, insect-borne diseases have a devastating impact on 

health around the globe. Mosquito-transmitted diseases cause over 1 million 

deaths every year. DALY (disability-adjusted life year), a measure of disease 

impact, is based on the number of years lost due to mortality and/or morbidity 

caused by a disease (McGraw and O’Neill 2013). DALY more accurately reflects 

a disease burden than simple mortality counts since many infectious diseases 

may be severely debilitating but self-limiting, to keep the host alive. It is 

estimated that around 17% of the world’s infection-related DALY is caused by 



CONFIDENTIAL 

38 

 

insect-transmitted diseases, whilst 90% of this fraction is attributed to mosquito-

borne diseases alone (WHO 2004) (Figure 2.1).  

 

Indicators such as DALY or simple mortality counts are very useful but they also 

underestimate the disease burden on communities as they do not account for its 

social and economic aspects. When considering infection cases per year, malaria 

is the most widespread, infecting between 200 and 500 million people annually. 

Dengue is only second to malaria, infecting an estimated 390 million people 

annually (Bhatt et al. 2013), and is a rapidly growing mosquito-transmitted 

disease. Therefore, the impact is not fully appreciated without considering the 

great social and economic effects of malaria or dengue on communities where 

these are endemic (McGraw and O’Neill 2013). Hence, there is a need for 

effective strategies to reduce mortality in the journey towards disease eradication. 

 

 

Figure 2.1: Vector-borne disease burden on the world: 
Taken from (McGraw and O’Neill 2013). (A) The map shows the deaths per million caused by 

vector-borne diseases, showing much greater incidences amongst developing countries. (B) A 

log scale graph shows DALY estimates for different vector-borne diseases. It is worth noting 

how mosquito-vectored diseases are responsible for most of insect-borne DALY. 
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2.1.3 Tackling insect-borne diseases 

Due to the severity of the problem, many different attempts to solve it have taken 

place. There has been a focus of the medical research community to develop 

vaccines against the malaria parasite or the dengue virus. However, the complex 

life cycle of the malaria parasite has challenged this, and it has become apparent 

that multiple vaccines for the different life stages may be required (Vaughan and 

Kappe 2012), which hinders the approach. Similarly, vaccine development for 

dengue has been challenging due to the multiple serotypes of the arbovirus which 

causes the disease (Wan et al. 2013). The use of insecticides has shown to be 

effective in targeting of mosquitoes (Ramirez et al. 2009), in a wider range of 

contexts. Nevertheless, the high economic and ecological costs of insecticide 

application, together with the development of resistance in their targets make 

these methods insufficient for disease eradication, although still useful as an 

effective control method (McGraw and O’Neill 2013). Control of vector species 

through genetic modification has recently arisen as a promising tool in the efforts 

to combat insect-borne diseases.  

 

2.1.4 Underdominance gene drive 

The available tools described in Chapter 1 seek to achieve population elimination 

or population replacement of disease-vectors to reduce vector competence. 

Population elimination involves developing technologies such as RIDL (Release 

of Insects with a Dominant Lethal), which is an improved version of the sterile 

insect technique (SIT) that consists of copious releases of sterile males to reduce 
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successful mating of wild type females (Thomas et al. 2000; Alphey et al. 2010; 

Fu et al. 2007). RIDL is capable of highly efficient sex separation facilitating (Fu 

et al. 2007) the release of only male populations and hence has been shown to be 

more cost-effective than previous SIT techniques (Atkinson et al. 2007).  

 

Population eradication could, however, open a niche for other species to continue 

disease transmission and also have detrimental effects for the environment. On 

the other hand, population replacement would reduce the disease transmission 

competence of vectors by introducing novel traits into a population without 

removing it from the environment (Hay et al. 2010). Nevertheless, such a novel 

trait generated through transgenesis is likely to be associated with a fitness cost, 

at least from the insertion itself (Marrelli et al. 2006). In addition, the genetic 

background of lab-reared insect strains is likely to be sub-optimal in the wild, 

hindering the spread of such a trait under natural selection (Sinkins and Gould 

2006). Therefore, there is a need for molecular mechanisms to force an 

engineered allele into a population in the face of natural selection (Hay et al. 

2010). 

 

As mentioned in Chapter 1, whilst the relatively strong drives above offer a low 

release cost, they would be difficult to control. Hence, it would be useful to have 

a middle ground system capable of persisting in a target population for an 

extended time but not so invasive as to be predicted to spread significantly 

beyond the target population, even when accounting for expected levels of 
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migration. This would not be ideal for all applications, but it would fill a much 

needed niche, of less invasive gene drives, in the varying range of genetic control 

mechanisms available.  

 

An underdominance gene drive could be such a middle ground system, between 

both ends of the spectrum. This project focused on engineered underdominance 

as a gene drive mechanism, which draws on a naturally occurring process. 

Underdominance is the advantage of homozygous states over heterozygotes. In 

extreme cases, heterozygotes are inviable. The simplest underdominance system 

would consist of a single locus for which the heterozygote is less fit than either 

homozygote. Such a proposed system involves the use of a pair of alleles; each 

one contains a killer factor, and an antidote to the killer factor produced by the 

other allele. Thus the alleles mutually suppress the deadly effects (Figure 2.2). 

The presence of both engineered alleles, which would suppress their individual 

fitness costs, isn’t strictly speaking homozygous. However, for arguments sake, 

this transheterozygote can be regarded as a ‘homozygous state’ for engineered 

alleles, whereby the wild type homozygous state and our engineered 

‘homozygous state’ have an extreme advantage over a heterozygous mix of both 

these states, i.e. the presence of just one of the engineered alleles. More complex 

systems have been proposed to be engineered at two loci (Davis et al. 2001). 
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Figure 2.2: Proposed mechanism for engineered underdominance: 
Taken from (Davis et al. 2001). Alleles α and β are shown in the diagram, where each allele 

contains a lethal gene under a different promoter. Each allele contains a different suppressor 

which blocks the expression of the lethal gene in the opposite allele. This results in a form of 

underdominance, as both alleles are required for survival. A desirable gene can then be carried 

or spread through a population as long as it is linked with the alleles. 

 

The key aspect of underdominance is that it is a frequency-dependent drive, i.e. 

releasing above or below a threshold frequency will offer distinct population 

dynamics. The advantage of underdominance is that to achieve an unstable 

equilibrium between WT and engineered alleles a relatively high release would 

be required. In this unstable equilibrium, alleles of higher frequency will tend to 

increase, whilst lower frequency alleles tend to decrease over time (generations). 

The release size required, or threshold frequency, will depend on the inherent 

fitness costs carried by the alleles for engineered underdominance (or the cargo 

itself). For equal fitness costs between WT and engineered alleles the required 

release frequency would likely be of 50% of the total population. Hence, 

depending on the size of the release, this unstable equilibrium can be reached, 

surpassed, or simply not met (Edgington and Alphey 2017).  
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Below this threshold release frequency the element will have a higher chance of 

decreasing in a population over time, whilst above it there will be a higher 

chance of increasing in frequency over time (Figure 2.3). This unstable 

equilibrium, or threshold frequency, can be seen as the invasion threshold and 

will vary with the intrinsic properties of the genetic element as well as with its 

inherent fitness costs. Although deterministic models appear to convey a 

certainty in the predicted spread or disappearance of the genetic element when 

above or below the invasion threshold respectively, they are merely indicating 

the likely spread or removal of a particular element for a given release frequency 

and set parameters (Jansen et al. 2008).  

 

 

Figure 2.3: Frequency-dependent nature of releases of genetic systems such as 

underdominance: 
Taken from (Alphey 2014). The unstable equilibrium frequency, or invasion threshold, is 

marked by a horizontal dashed line. Release frequencies of a particular element above or below 

its invasion threshold will tend to increase or decrease respectively over time, usually expressed 

as generations. The element can then increase to fixation, i.e. present in 100% of individuals, or 

attain an alternative equilibrium short of fixation depending on the intrinsic properties of the 

genetic system and its fitness costs. Graphs show frequency development over time, for two 

hypothetical systems (with (a), a high or (b), a low invasion threshold) for a range of different 

release frequencies on the y-axis. 
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As a result, underdominance drives can be relatively weak, requiring relatively 

large releases of insects for fixation, and can therefore be reversed with 

comparative ease
 
(Marshall and Hay 2012). In addition, the modification of the 

environment is minimal compared to population eradication techniques. Single-

locus underdominance, provides the advantage of population isolation, as any 

mating with the wild type population will be futile
 
(Altrock et al. 2010; Magori 

and Gould 2006). Population isolation is useful to prevent invasion of WT insects 

in other areas. This could be a useful tool if only a local population had to be 

eliminated or to fulfil regulatory body requirements. On the other hand, two-loci 

underdominance provides a more effective gene drive profile as it allows some 

gene-flow between the wild-type and engineered population. Figure 2.4 

illustrates how this system would result in higher than Mendelian inheritance 

rates of engineered alleles and hence allow for gene drive. Moreover, it would 

still allow for a relative confinement of the engineered alleles as migration rates 

would have to be high for fixation in neighbouring populations to occur 

(Marshall and Hay 2012). Finally, two-locus underdominance can carry extra 

copies of refractory genes, maximising the chance of full refractoriness. To 

minimise the chance of resistance to refractoriness two different refractory alleles 

could be used, one for each underdominance allele. This could be implemented 

for both one-locus and two-loci systems making it a general advantage of 

underdominance gene drives. 
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Figure 2.4: Engineered underdominance alleles increase in frequency when 

introduced into a wild population: 
First generation hybrids between wild type and the released drive strain (homozygous for each 

of the two underdominance drive constructs) are heterozygous for at both loci.  Such individuals 

have two lethals but are viable as they also have a suppressor for each lethal.  These may mate 

wild type, or other such hybrids, or the release strain, for example.  Outcomes of the first two of 

these potential crosses are shown.  Parents labelled engineered ‘homozygous’, are actually 

transheterozygotes for engineered alleles in two different loci. Progeny which do not inherit at 

least one copy of each allele will not be viable. Each of the crosses have several non-viable 

progeny classes.  Consequently, these F1 hybrids are less fit than either parental type, other 

things being equal, which establishes an under-dominant situation and the basis for a gene drive 

system. 

 

2.1.5 Synthetic Biology 

Synthetic biology is a developing field, with the ultimate aim of bringing the 

‘engineering’ into genetic engineering. Synthetic biology is the assembly of 

novel and modular biological components in a rational attempt to construct a 

complex system with a desired new function
 
(Kwok 2010). This project will 

make use of these concepts in the optimisation of underdominance-based 

constructs. The progression of synthetic biology relies on the characterisation of 
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simple molecular components with the ultimate goal of being able to combine 

parts to obtain a predictable complex output (Sprinzak and Elowitz 2005; 

Nandagopal and Elowitz 2011). Any components characterised in this project 

may become part of the wider toolset in synthetic biology, available for use 

beyond intended purposes
 
(Andrianantoandro et al. 2006). 

 

The characterisation of novel modular components is likely to be able to expand 

the available synthetic biology toolset for uses beyond the contrived gene drive 

system. The gene drive system devised could be adapted for other uses; such as 

in genetically modified crops, which are in need of population isolation 

mechanisms to guarantee confinement and improve public acceptance (Kwit et 

al. 2011). The successful underdominance-based gene drive would have many 

applications beyond the mosquito species Aedes aegypti, which is the target of 

this project. The characteristics of such a drive; relative confinement in a local 

population, ease of reversal and considerable longevity makes it an ideal system 

for field trials. Ultimately, this project could allow for a safe control of a wide 

range of insect vector species, with minimal environmental impacts, that could 

potentially save many communities from devastating diseases such as malaria 

and dengue (McGraw and O’Neill 2013). 
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2.1.6 Prototypes for an underdominance system 

The starting underdominance prototypes proposed for this project were 

constructed by Oxitec (Figure 2.5); tetO-LexA-NIPP1-AeHex1g-tTAV2-tetO-

Gal4Groucho and tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho.  

 

The validation of the constructs will involve their injection into D. melanogaster 

and the generation of stable transgenic lines, following procedures described in 

Materials and Methods 2.2. Transposable elements (piggyBac and P element) 

will be used for transgenesis instead of site directed systems. This is to provide a 

range of transgenic line expression strengths with which to optimise the system. 

Drosophila will be fed with tetracycline to inhibit killer elements to allow 

individual generation of transgenics. Both the prototypes and individual 

components will be tested for their required output, i.e. correct spatial expression 

of fluorescence, or expected damage of certain tissues. Finally, validation would 

ideally continue in an analogous manner in other more relevant vector species 

such as Aedes aegypti. 
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Figure 2.5: Proposed prototype constructs for underdominance: 
NIPP1 is the killer protein, as it is a nuclear inhibitor of PP1 (Protein phosphatase 1) and its 

overexpression has been shown to be cell lethal in a range of tissues and developmental stages 

in Drosophila (Parker et al. 2002). DsRed2 and AmCyan1 are transformation markers (eye 

expression). tTAV2 is the activator which drives expression of components from tetO enhancers 

in the absence of tetracycline. AeHex1g promoter (Hex) drives the expression of tTAV2; the 

cell, tissue and developmental activity of this promoter defines the activity of the whole system, 

since expression of all components apart from the transformation marker depend on tTAV2 

presence (ignoring basal expression). AeHex1g is derived from the promoter of Hex1γ in Aedes 

aegypti (Totten et al. 2013); the promoter fragment used is predicted to drive expression in the 

female fat body in late larval stages (Telfer and Kunkel 1991; Korochkina et al. 1997). Finally, 

the Gal4 Groucho repressor, in the first construct, suppresses expression of NIPP1 by binding at 

the UAS sequences and the LexA-Groucho repressor, in the second construct, binds the LexA 

sequences for NIPP1 suppression.  
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2.2 Materials and Methods 

 

Figure 2.6 shows a flow-chart summary for Materials and Methods showing the 

different subheadings in this Section in an approximate chronological order. 

 

Figure 2.6: Materials and Methods summary: 
This flow chart, starting from the top, states the different methods in chronological progression. 

This chronological order is only approximated since methods such as stock maintenance were 

carried out throughout the project. 

 

2.2.1 Egg-laying bottles 

For the collection of D. melanogaster embryos, adult w
1118

 flies were kept in 

inverted plastic bottles which were capped by laying pots containing an egg-

laying mix. The w
1118 

strain carries a null allele of white which includes a 
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deletion of exon 1 (Kurkulos et al. 1991). The bottles were kept in a 25°C 

incubator in the dark and laying pots were changed every 40 minutes to collect 

the embryos at the desired stage for injection (Section 2.2.5) 

 

2.2.2 Egg-laying mix for adults 

Female D. melanogaster are encouraged to lay eggs on a fruit food based surface. 

An agar-based fruit mix was prepared to fill the laying pots and serve as the egg-

laying surface for the flies. The egg laying mix was prepared in a final volume of 

260ml. 6g of sucrose (Fisher Scientific) were weighed into 60ml of blackcurrant 

fruit juice (Ribena) and the mix was warmed until the solute was dissolved. 6g of 

agarose were weighed into 200ml of distilled water and were boiled until the 

solute dissolved. The fruit juice mix was then added to the agarose mix and 3ml 

of 10% Nipagen/90% Ethanol were added to prevent fungal growth. After letting 

the mix cool 2 to 4 minutes at room temperature, it was poured into laying pots to 

have around 5ml of mix per pot. In addition, the same final mix would be poured 

into petri dishes that would then be used to incubate the injected embryos as they 

hatch into larvae (Section 2.2.5). All of the prepared pots and petri dishes were 

stored at +4°C and were used within two weeks to avoid potential fungal 

contamination. 

 

2.2.3 Transgenic line and stock maintenance 

All injections were carried out in a w
1118

 D. melanogaster background and all 

adult survivors after injection were crossed to the same stocks. These stocks were 
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maintained in plastic bottles containing D. melanogaster food and were kept in 

an incubator at 25°C. An approximate total of 10 bottles were kept at any one 

time, and stock bottles were turned over every two weeks.  

 

Transgenic individuals were named with a number (according to the G0 adult 

they originated from) and a letter for every independent insertion found from the 

same G0 adult. Transgenic lines were then reared On- or Off-Tet as required. On-

Tet stands for rearing or feeding on a tetracycline containing diet, whilst Off-Tet 

stands for feeding or rearing on a diet lacking tetracycline. 

 

Tetracycline was used at a final concentration of 30µg/ml. Tetracycline stocks 

were prepared and kept at a concentration of 5mg/ml in 70% Ethanol at -20°C. 

Tetracycline food vials were also prepared in the same manner for developing 

injection survivors (Section 2.2.6) and for subsequent adult crosses (Section 

2.2.7).  

 

2.2.4 Cloning DNA constructs 

The following DNA constructs used in this project were provided by Oxitec; the 

industrial partner in this project; OX4784, OX4785, OX4755, OX5126, and 

OX4772 (Figure 2.7). 20μl of mini-prep DNA was received for each of these 

constructs and these samples were subsequently transformed into competent 

bacterial cells (JM109), grown into a 200ml culture volume of LB Broth 
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(Sigma), and DNA extracted using an Endo-Free Plasmid DNA Maxi-kit 

(Omega) to have DNA ready for injection.  

The following DNA constructs used in this project were not provided by Oxitec; 

CU1, CU2, CU3, CU4, and CU5 (Table 2.2). These were cloned by excising the 

functional cassettes from OX4772, OX4784, and OX4785 and subcloning them 

into the pCaSpeR4 vector.  

 

2.2.5 Embryo injections 

Prior to the collection of D. melanogaster embryos, the construct DNA mix was 

prepared for injection. The injecting DNA mix consisted of 700μg/μl of DNA 

construct, 250μg/μl of Piggy-Bac or P element helper construct in an injection 

buffer. The helper is essential since it encodes for the transposase which will use 

the piggyBac or P element sites of the DNA construct to insert it in the D. 

melanogaster genome. 3μl of the injection mix were loaded on the microneedle 

(Femtotips®II, Eppendorf). 

 

Embryos were collected at pre-cellularisation stages (before 2 hours post-

fertilisation) to maximise the chances of the injected DNA reaching germ cell 

nuclei since cell membranes would not yet have formed a barrier. Embryos were 

collected from egg-laying pots every 40min and would then be dechorionated. 

For the dechorionation of the embryos, two pieces of double sided sticky tape 

(Scotch) were stuck to two different glass slides and the embryos were collected 

from the laying pots using a fine paintbrush to be transferred onto one of the 
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slide’s sticky tape. A 0.5mm thick copper wire was placed in-between both slides 

to prevent crushing the embryos and then the sticky slides were pressed together 

to stick the chorions of the embryos on both slides. The slides were then prised 

apart to break open the chorions and leave the embryos exposed to the air.  

 

At a dissection microscope (Olympus SZ51), embryos were individually picked 

using the tip of a pair of tweezers and were transferred onto a glued 22x22mm 

coverslip (Menzel-Gläser) on a microscope slide (0.8-1.0mm thick) to put them 

in the right orientation and immobilise them for injection. To prepare the glued 

coverslip, 10cm of double sided sticky tape was added to a 15ml tube containing 

10ml of 100% heptane and the mix was left on a shaker until the glue dissolved. 

This mix was then pipetted slowly as a strip at the edge of a coverslip, leaving a 

strip of glue as the heptane quickly evaporated. Embryos were lined up and 

orientated on a coverslip/slide so as to have the posterior end of the embryo at the 

microneedle side of the microscope.  

 

Dechorionation was simultaneous with this method for each batch of embryos 

and ensured that all embryos would desiccate at the same rate. Embryos were 

allowed to desiccate on the glued coverslip for around 10min to prevent them 

from bursting upon injection. Subsequently, the embryos were covered in oil 

(Halocarbon Oil 700) to prevent further dehydration. The slides were then 

transferred to the injection microscope (Nikon Eclipse Ti-S) and the joystick 

control (TransferMan NK2, Eppendorf) was used to position the microneedle at 
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the same plane as the embryos. The embryos were then subsequently injected. 

The microneedle was always inserted at the posterior end of the embryo since 

pole cells form at this end and hence injecting at this end maximised the chances 

of germ cell DNA insertion. The injection air pressure was provided 

automatically (Femtojet, Eppendorf) and a compensatory pressure of 70hPa was 

used to get a constant flow of DNA from the microneedle. If the flow was 

inadequate, the compensatory pressure was adapted. Once a round of embryos 

were injected, the coverslips would be removed from the slide and transferred 

onto a petri dish containing egg-laying mix and small yeast balls to attract the 

hatching larvae. Subsequent rounds of injections were then carried out every 

40min. 

 

2.2.6 Larval survivor recovery 

The petri-dishes containing the coverslips with injected embryos were then 

incubated in the 18°C room inside a humid chamber. The humid chamber 

consisted of a closed plastic box with wet tissue paper around the petri dishes to 

maintain a hydrating environment for the embryos. Surviving larvae were 

collected during the following 3 days and transferred into tetracycline food vials 

(30µg/ml) and grown at 25°C until hatching into adults. 
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2.2.7 Adult survivor crosses 

As soon as pupae from Section 2.2.6 eclosed into adults, these were crossed 

individually with w
1118

 D. melanogaster flies. Female w
1118

 were selected to be 

virgin. The vials used for the crosses would also contain tetracycline food. 

 

2.2.8 Transgenic screening 

The progeny from the adult crosses from Section 2.2.7 was anaesthetised using 

CO2 and was screened using a fluorescence microscope (Leica) using DsRed or 

AmCyan light filters to detect fluorescence markers depending on the construct 

injected. Tissue-specific transformation marker expression amongst the screened 

progeny would indicate the presence of the construct in the organism. Markers 

included cyan fluorescent eyes from 3xP3-AmCyan1, red fluorescent eyes from 

3xP3-DsRed2, red fluorescent bodies from 3xP3-DsRed2, and red pigment eyes 

from w
+
 (Figure 2.7 and Table 2.2). 

 

2.2.9 RNA extraction and cDNA synthesis 

Samples for RNA extraction were prepared by homogenising selected tissues 

(heads or whole bodies) in 100μl of lysis buffer from RNAqueous™-Micro Total 

RNA Isolation Kit (Invitrogen, Ambion). RNA extraction was then performed 

following the kit guidelines. cDNA was made from the whole RNA extracts 

using oligo dT primers and otherwise following the guidelines of the 

SuperScript™ III Reverse Transcriptase kit (Invitrogen). 
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2.2.10 qPCR 

qPCR was performed using a SYBR Green kit (Applied Biosystems). Reactions 

were performed in triplicate in 20μl volumes. cDNA was diluted 1 in 10 and 1μl 

of diluted cDNA template was used for each reaction. Primers used for product 

amplification are shown in Table 2.1. qPCR was optimised by melt curve 

analysis, primers were redesigned until a single product peak was observed. 

Fold-expression values were calculated by using the Ct (cycle threshold value) 

value differences between tested primer and RNA pol II subunit 1 control primer 

reactions. The control reference for qPCR was previously validated by the lab, 

and as relative values, rather than absolute values between the different tested 

components were to be measured a single control reference seemed 

appropriate.Values were then normalised with respect to w
1118

 control samples. 

Each reaction was run in triplicate, representing the technical replicates. The 

standard deviation was calculated for the technical replicates and error bars were 

plotted to display it. Each D. melanogaster sample had either tissue coming from 

1 or 2 individuals, the number of biological replicates per experiment is indicated 

in the respective figure legends. Statistical analysis with sufficient power could 

not be carried out due to the low number of biological replicates. Nevertheless, 

the qPCR data was in agreement with the phenotypes observed.  
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Table 2.1: qPCR primers used: 
RNA polymerase II primer pair was used to control the amount of DNA input. tTAV2 and 

NIPP1 primer pairs were used to assay levels of expression of these components. All primer 

pairs were designed to have a melting temperature close to 60°C and to generate an amplicon of 

no more than 200bp. 

Primer Name Sequence 

FW RNA pol II CCACCCGGCCACGTAAG 

RV RNA pol II AAGAGGGAGAAACACTCGGC 

FW tTAV2 TCTGCGGATTGGAAAAGCAAC 

RV tTAV2 CGGGGCATCATCATCCGG 

FW NIPP1 TCCAGCAGAGCCTAGTTGAC 

RV NIPP1 TTTCGGCCGGTAGACCTTG 

FW LexAGroucho CTGCCGGAGAATAGCGAGTT 

RV LexAGroucho TCCAGTGTATCGGCGATGGT 

FW Gal4Groucho CCAGCTGACCGTGTCCTATC 

RV Gal4Groucho CGTTCCAGTGTATCGGCGAT 
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2.3 Results and Discussion 

 

2.3.1 Underdominance transgenic lines were generated 

The initial strategy involved injecting the prototype constructs for 

underdominance, tetO-LexA-NIPP1-AeHex1g-tTAV2-tetO-Gal4Groucho and 

tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho (Figure 2.7). Injection 

of both constructs was carried out (Section 2.2.5) on eggs from parents fed on 

tetracycline. Similarly, the surviving larvae from these injections were raised on 

tetracycline. This was essential to prevent the constitutive expression of the lethal 

NIPP1 and hence the loss of any stable insertions of the transgenes. These 

constructs were provided by Oxitec and genomic integration relied on the 

piggyBac transposition system. Survival rates from embryo to adult were 6.7% 

and 4.5% respectively. 170 and 10 G0s were individually crossed and no 

transgenic adults found amongst their progeny (Table 2.2). Survival rates from 

embryo to adult after microinjection in D. melanogaster normally range between 

12.5% and 37.5%, and is strongly user-specific (O’Connor and Chia 2002). The 

low survival rates and the lack of transgenic adults called for a different 

approach. With the evidence available, it was difficult to determine the source of 

the low survival rate; whether it was transient expression toxicity from the 

construct, the lack of injection experience, or a mix of both factors.  

 

To address both potential explanations an alternative strategy involving injecting 

individual components into D. melanogaster was chosen. Initially, the first set of 
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individual components were provided by Oxitec and relied on the piggyBac 

transposition system for transgenesis. These were tetO-UAS-NIPP1 (the killer 

component of prototype OX4785), AeHex1g-tTAV2 (putative abdomen specific 

expression of tTAV2 activator), and GMR-tTAV2 (eye specific expression of 

tTAV2 activator) (Figure 2.7 B and C). Upon injection survival rates from 

embryo to adult were 11.9%, 6.4%, and 8.4% respectively. These were higher 

survival rates than for the previous injections which suggested better injection 

technique, or lower transient expression toxicity of the components. 

Interestingly, tTAV2-containing sequences resulted in the low survival rates 

observed up to this point. 

 

Transgenic lines were established for AeHex1g-tTAV2 and GMR-tTAV2 but not 

for tetO-UAS-NIPP1 (Table 2.2). Given that both constructs, for which I had not 

been able to generate transgenics, shared 3xP3-DsRed as the transgenic marker, 

subcloning of tetO-UAS-NIPP1 into a pCaSpeR4 vector was pursued. pCaSper4 

carries a mini-white gene which produces eye colour in the white mutant 

background (w
1118

). Transgenesis efficiency was not compromised by making use 

of P element transposition which is at least as efficient as piggyBac transposition 

in D. melanogaster with regards to transformation rate (Venken and Bellen 

2005). 

 

The new construct, PC4-tetO-UAS-NIPP1, was injected and resulted in a G0 

survival rate of 16.8% (Table 2.2). Transgenic adults were found amongst the G1 
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progeny, selected by w
+
 marker expression. A lack of visible DsRed2 in the w

+ 

transgenic G1 progeny, and the fact that 21 out 73 of G0 adults gave transgenic 

progeny clearly indicated that DsRed2 was not being expressed in the previous 

tetO-UAS-NIPP1 injections. Even though P element transformation is more 

efficient than piggyBac the results above cannot be explained just by that fact. 

 

The prototype construct tetO-LexA-NIPP1-AeHex1g-tTAV2-tetO-Gal4Groucho, 

potentially having also the same faulty 3xP3-DsRed2 marker as tetO-UAS-NIPP1 

did not result in transgenic adults after injection even when in the pCaSpeR4 

vector. To attempt to circumvent this problem the DsRed2 marker was replaced 

by AmCyan1 as a parallel strategy. The new construct, AmCyan-tetO-LexA-

NIPP1-AeHex1g-tTAV2-tetO-Gal4Groucho, did not result in transgenic adults 

after injection either (Table 2.2). This version of the prototype never yielded 

transgenics in any of its forms. Other transgenics, detailed below, (Figure 2.7 and 

Table 2.2), were used to analyse the behaviour of the elements of this construct. 

In light of these results it was clear that generating a transgenic line of tetO-

LexA-NIPP1-AeHex1g-tTAV2-tetO-Gal4Groucho, in any of its forms, was 

unnecessary. 

 

A second attempt at injecting the other prototype construct tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-LexAGroucho was carried out given that only 224 embryos 

were injected in the first round, and presumably 3xP3-AmCyan expression would 
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work just as in AeHex1g-tTAV2 transgenic lines. Transgenic adults were obtained 

from these injections, and transgenic lines were established (Table 2.2). 

 

Finally, to help analyse the underdominance based system the remaining 

individual components were subcloned into pCaSpeR4 vectors and injected. 

These were tetO-LexA-NIPP1, tetO-LexAGroucho, and tetO-Gal4Groucho 

(Figure 2.1), all of which resulted in transgenic lines being established (Table 

2.2). 

 

When looking at survival rates across the different injections, there is no 

evidence of a strong improvement over time. However there was a modest 

improvement of user injection technique as higher survival rates were obtained 

(16.4%) than at the beginning (6.4% and 4.7%), and confidence in injection 

proficiency increased. The lack of a stronger improvement in survival rates could 

be explained by the fact that transient expression in injected embryos may have 

been causing lethality. Indeed, NIPP1, tTAV2, and even Groucho overexpression, 

as determined below in Section 2.3.8, were potentially lethal components. Larval 

to adult survival rates, ranging from 21% to 48%, were low (Figure 2.7), which 

further supports the idea of injection derived lethality. 

 

Functional analyses of all these constructs are described below (Section 2.3.2 to 

2.3.8). The analyses revealed that having only one of the prototype constructs in 

transgenic lines was sufficient for the conclusions made about this system. 
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Figure 2.7: An underdominance system was studied by cloning both individual and combined components into injection constructs: 
Constructs with the OX code were constructed by Oxitec. Injection data are shown in Table 2.2. Some of the construct variants in Table 2.2 are not shown here. 

Unsuccessful transgenesis of OX4784 is marked with a red X. Transgenic visual markers used are either the mini w
+
 gene in D. melanogaster or tissue specific 

fluorescent markers. Promoters are shown as black arrows (minimal promoters are smaller). Visible marker proteins are coded with their respective colours. 

Enhancers are coded in green. Terminators are coded in orange and CDSs are coded in blue. (A) Both prototype constructs for underdominance are shown here as 

described in (Section 2.1). (B) Both tTAV2 components are shown as individual driver lines under the control of tissue specific promoters GMR and AeHex1g. tTAV2 

should upregulate both killer and rescue components in this system. (C) Both NIPP1 components are shown as individual killer lines. Each construct has a different 

promoter sequence (UAS/LexA) which in this case should function as a corepressor binding site. (D) Both DNA-binding and corepressor protein fusion constructs are 

shown. They should work as sequence specific corepressors of NIPP1 expression, via LexA/UAS binding sites respectively.
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Table 2.2: Injection of underdominance-based components provided enough transgenic lines for subsequent characterisation of the system: 
Constructs with the OX code were cloned and provided by Oxitec. Constructs are listed in a roughly chronological injection order. A summary of the number of 

injected embryos, surviving adults, embryo to adult survival rates in brackets, and established transgenic stock lines is provided. ≈ Marks approximate values where 

exact numbers were not recorded. Visible transgenic markers and transposable elements for transgenesis are indicated. In the transgenic lines column the number in 

brackets represents the number of transgenic-yielding G0 adults. Transgenesis efficiency was calculated as a percentage of transgenic-yielding G0 adults.Although 

no transgenic lines could be established for prototype tetO-LexA-NIPP1-AeHex1g-tTAV2-tetO-Gal4Groucho in any of its variants, established lines for the other 

prototype and all individual components were sufficient to investigate the function of the whole system. 

Constru

ct 

Code 

Construct Marker 
Transposable 

Element 
Embryos Larvae 

Larval to Adult 

Survival Rate 
G0 Adults 

Transgenic 

Lines 

Transgenesis 

Efficiency 

OX4784 

tetO-LexA-NIPP1-

AeHex1g-tTAV2-tetO-

Gal4Groucho 

3xP3-DsRed2 piggyBac 2525 

357 (14.1%) 48% 

170 (6.7%) 0 0% 

CU3 

PC4-tetO-LexA-NIPP1-

AeHex1g-tTAV2-tetO-

Gal4Groucho 

w
+
 and (3xP3-

DsRed) 
P element ≈800 

≈70 (≈8.8%) ≈43% 

≈30 (≈3.8%) 0 0% 

CU6 

AmCyan-tetO-LexA-

NIPP1-AeHex1g-tTAV2-

tetO-Gal4Groucho 

3xP3-AmCyan1 piggyBac ≈800 

≈60 (≈7.5%) ≈45% 

27 (≈3.8%) 0 0% 

OX4785 

tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-

LexAGroucho 

3xP3-AmCyan1 piggyBac 

224 26 (11.6%) 38% 10 (4.5%) 0  

≈500 ≈60 (≈12%) ≈48% 29 (≈5.8%) 20 (4) 13.8% 

OX5126 GMR-tTAV2 Hr5E1-DsRed2 piggyBac 520 125 (24%) 34% 42 (11.9%) 10 (3) 23.8% 

OX4755 AeHex1g-tTAV2 3xP3-AmCyan1 piggyBac 342 106 (31%) 21% 22 (6.4%) 13 (10) 45.5% 

OX4772 tetO-UAS-NIPP1 3xP3-DsRed2 piggyBac 1158 317 (27.4%) 44% 138 (11.9%) 0 0% 

CU1 PC4-tetO-UAS-NIPP1 w
+
 P element 434 187 (43.1%) 39% 73 (16.8%) 38 (21) 28.8% 

CU4 tetO-LexAGroucho w
+
 P element ≈400 ≈30 (≈7.5%) ≈37% 11 (≈2.8%) 12 (2) 18.2% 

CU5 tetO-Gal4Groucho w
+
 P element ≈600 ≈90 (≈15%) ≈44% 40 (≈6.7%) 18 (4) 10% 

CU2 tetO-LexA-NIPP1 w+ P element ≈400 ≈100 (≈25%) ≈40% 40 (≈10%) 10 (2) 5% 
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2.3.2 tTAV2 expression is detected 

To monitor function, mRNA expression levels of components were determined 

by RT-qPCR as described (Section 2.2.10). One of the first questions was 

whether tTAV2 expression was high enough and capable of NIPP1 upregulation. 

In turn, would high NIPP1 levels lead to the expected cell lethality effect (Parker 

et al. 2002).  

 

Since construct integration in the genome was not site-directed, the expression 

levels of the individual components were checked prior any crosses or functional 

analysis was done. Transgenic lines, established from G1 marker positive 

progeny were named with a number (corresponding for the G0 adult number) and 

a letter (corresponding to the different lines established from the same G0 

parent). tTAV2 expression levels vary amongst the eight transgenic lines picked 

for RT-qPCR analysis for both AeHex1g-tTAV2 and GMR-tTAV2 (Figure 2.8). 

The AeHex1g promoter, which is a promoter derived from and tested in the 

Aedes aegypti mosquito with female fat body specific expression (Zakharkin et 

al. 2001), had not had its spatial expression characterised in D. melanogaster. 

Expression appears to be present in both sexes and present in head, thorax and 

abdomen fractions (Figure 2.9). It is not restricted to the fat body as in Aedes 

aegypti, nor does it show its expected female specific expression (Totten et al. 

2013). 
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Figure 2.8: tTAV2 expression varies across insertions for both GMR-tTAV2 and 

AeHex1g-tTAV2 driver lines: 
Relative expression of tTAV2 with respect to w

1118
 is shown on the y-axis for different driver 

line insertions on the x-axis. w
1118

 is used as a control given that it has no expression of tTAV2, 

the high relative expression values are an artifact as they are fold differences with respect to 0, 

however it is the relative expression of tTAV2 between the different lines that is relevant. 

Relative expression values are normalised for the cDNA input by comparing to RNA 

polymerase II control amplification. Error bars display the standard deviation for triplicated 

technical replicates. (A) GMR-tTAV2 lines are shown here. Each cDNA sample was prepared 

from 2 D. melanogaster female adult heads, i.e. 2 biological replicates. tTAV2 expression seems 

higher for lines 29A and 40A. (B) AeHex1g-tTAV2 lines are shown here. The y-axis is on a 

logarithmic scale to facilitate the comparison of the strongly expressing lines 9B and 11B and 

the rest of the insertions. Each cDNA sample was prepared from 2 D. melanogaster female 

adults, i.e. 2 biological replicates. tTAV2 expression seems much higher for lines 9B and 11B. 
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Figure 2.9: AeHex1g driven expression of tTAV2 does not reproduce the expression 

pattern of this promoter in Aedes aegypti: 
Relative tTAV2 expression with respect to w

1118
 on the y axis on a logarithmic scale is shown for 

different cDNA samples on the x axis. Expression level values are normalised for the amount of 

cDNA input by comparing to RNA polymerase II control reactions. Error bars display the 

standard deviation for triplicated technical replicates. Expression fold changes are expressed 

with respect to the level of tTAV2 in w
1118

 control which is given a value of 1. Expression values 

are indicated above the error bars. cDNA samples were prepared from 1 D. melanogaster adult 

per sample (whole or split), i.e. 1 biological replicate. tTAV2 expression seems highest in the 

male abdomen of AeHex1g-tTAV2-11B and varying across the other body fractions. 

 

2.3.3 NIPP1 expression detected 

Having detected tTAV2 expression the next question was whether NIPP1 was 

expressed in the UAS-NIPP1 lines in the absence of GAL4 (basal expression). 

Unlike the varying tTAV2 expression amongst the assayed lines, NIPP1 

expression levels were very similar amongst the three stock lines picked for RT-

qPCR analysis. The three lines show basal (or leaky) expression of NIPP1 when 

compared to w
1118

 endogenous expression, by using primers capable of 

amplifying both endogenous and transgene NIPP1 sequences. This could be due 

to the 5xUAS sequences and minimal promoter sequences present (Figure 2.10). 
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Although UAS sequences should need Gal4 for upregulation, UAS and/or hsp83 

sequences could be resulting in the observed basal expression. Given the lack of 

solid evidence for UAS-only basal expression as it has been reported to be very 

low in the absence of Gal4 (Potter et al. 2010), and that it is usually present 

beside a minimal promoter in Drosophila (Pfeiffer et al. 2010), the basal 

expression of NIPP1 is most likely driven by hsp83 (Xiao and Lis 1989), the 

minimal promoter in this system.  

 

 

Figure 2.10: Basal NIPP1 expression is similar across tetO-UAS-NIPP1 lines: 
Relative expression of NIPP1 with respect to w

1118
 is shown on the y-axis for different killer line 

insertions on the x-axis. Expression level values are normalised for the amount of cDNA input 

by comparing to RNA polymerase II control reactions. Error bars display the standard deviation 

for triplicated technical replicates. Expression fold changes are expressed with respect to the 

level of endogenous NIPP1 in w
1118

 control which is given a value of 1. Expression values are 

indicated above the error bars. cDNA samples were prepared from 2 D. melanogasterfemale 

adult heads per sample, i.e. 2 biological replicates. The reason behind using just heads being 

that NIPP1 upregulation was to occur in the eyes upon crossing to GMR-tTAV2. NIPP1 basal 

expression in UAS-NIPP1 lines results in an extra 3 to 4 fold NIPP1 expression when detecting 

endogenous and transgene NIPP1 sequences in this RT-qPCR assay. gDNA was digested with 

TURBO DNase (Thermo Fisher Scientific).   
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2.3.4 tetO-LexA/UAS-hsp83-NIPP1 do not respond to tTAV2 upregulation as 

expected 

Having established that the driver is expressed, and there is some leaky 

expression of the responder, the next question was whether tTAV2 was able to 

upregulate the expression of the responder and result in a phenotype. tetO-UAS-

NIPP1 lines were crossed to AeHex1g-tTAV2 and GMR-tTAV2 lines expecting to 

see cell lethality throughout the body and eye tissues respectively (Figure 2.11). 

The expected phenotype of pupal or adult lethality (with AeHex1g-tTAV2) and 

loss of eye tissue (with GMR-tTAV2) was not observed in any of the crosses. 

Upregulation of NIPP1 was detected with the presence of tTAV2 in both crosses 

but the increase was very low (Figure 2.12). Upregulation of NIPP1 expression 

in the presence of tTAV2 was 12 fold at its highest, but typically 2 fold. The lack 

of phenotype could be due to insufficient upregulation of UAS-NIPP1 

expression. 

 

Similarly, tetO-LexA-NIPP1 lines were crossed to AeHex1g-tTAV2 and GMR-

tTAV2 lines expecting to see cell lethality throughout the body and eye tissues 

respectively (Figure 2.11). Upregulation of NIPP1 was detected with the 

presence of tTAV2 in both crosses but the increase was again very low (Figure 

2.13). The expected phenotype was not observed in any of the crosses. 

Upregulation of NIPP1 expression in the presence of tTAV2 was 16 fold at its 

highest, but typically between 2 and 5 fold. The lack of phenotype could be due 

to insufficient upregulation of LexA-NIPP1 expression.  
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Figure 2.11 NIPP1 is expected to be upregulated by tTAV2 and cause cell 

autonomous cell death: 
NIPP1 expression in tetO-UAS-NIPP1/tetO-LexA-NIPP1 is designed to be driven by spatially 

defined tTAV2 expression from two different constructs resulting in full lethality and eye-

specific cell death respectively. 
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Figure 2.12: NIPP1 upregulation is no more than 12 fold when tetO-UAS-NIPP1 

and GMR-tTAV2 or AeHex1g-tTAV2 lines are crossed Off-Tet: 
Relative expression of NIPP1 is shown on the y-axis for different killer line insertions on the x-

axis. Expression level values are normalised for the amount of cDNA input by 

comparing to RNA polymerase II control reactions. Error bars display the standard 

deviation for triplicated technical replicates. Relative expression is expressed with respect 

to the level of NIPP1 in the respective tetO-UAS-NIPP1 line before the cross, which is 

given a value of 1. Expression values are indicated above the error bars. (A) cDNA 

samples were prepared from 2 D. melanogaster female adult heads per sample, i.e. 2 

biological replicates. NIPP1 expression was only upregulated 1.5 fold in the cross. (B) 

cDNA samples were prepared from 1 D. melanogaster female adult head per sample, 

i.e. 1 biological replicate. NIPP1 expression was only upregulated 2.5 fold in the cross. 

(C) cDNA samples were prepared from 1 D. melanogaster abdomen per sample, i.e. 1 

biological replicate. NIPP1 relative expression was at most 12 fold. 
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Figure 2.13: NIPP1 upregulation is no more than 16 fold when tetO-LexA-NIPP1 

and GMR-tTAV2 or AeHex1g-tTAV2 lines are crossed Off-Tet:  
Relative expression of NIPP1 is shown on the y-axis for different killer line insertions on the x-

axis. Expression level values are normalised for the amount of cDNA input by 

comparing to RNA polymerase II control reactions. Error bars display the standard 

deviation for triplicated technical replicates. Relative expression is expressed with respect 

to the level of NIPP1 in the respective tetO-UAS-NIPP1 line before the cross, which is 

given a value of 1. Expression values are indicated above the error bars. cDNA samples 

were prepared from 1 D. melanogaster female adult per sample, i.e. 1 biological 

replicate. (A) NIPP1 expression was only upregulated 1.6 fold in the cross with GMR-

tTAV2-29C. (B) NIPP1 expression was only upregulated 16 and 5 fold in the two 

crosses shown respectively. 
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In addition, NIPP1 upregulation was also not seen when tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-LexAGroucho construct lines were removed from a 

tetracycline diet. As illustrated in Figure 2.14A, the lack of tetracycline should 

allow for NIPP1 upregulation. RT-qPCR results show the weak upregulation of 

NIPP1 (Figure 2.14B), even in tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-

LexAGroucho lines with high tTAV2 expression due to a positive feedback loop 

(Section 2.3.7).  

 

Sections 2.3.7 and 2.3.8 show that tTAV2 is capable of strong upregulation via 

tetO enhancer sequences, demonstrating that the tTAV-tetO system in itself is not 

faulty. Indeed, a lethal effect was seen on tetO-UAS-NIPP1-AeHex1g-tTAV2-

tetO-LexAGroucho D. melanogaster pupae reared Off-Tet (Section 2.3.6). 

However, this effect was not through NIPP1 upregulation as shown in this 

Section and Sections 2.3.7 and 2.3.8. An explanation for the lack of upregulation 

of NIPP1 could be the fact that the basal levels are already high, but this is 

unlikely given the results above when comparing expression to WT levels. In 

addition, tTAV2 basal levels are likely higher than for NIPP1, given its 

constitutive AeHex1g promoter, and this did not seem to dampen the fold 

upregulation seen when under the effect of the tetO-tTAV2 feedback loop (Figure 

2.16). 

 

The simplest explanation, for the lack of upregulation, is that the Hsp83 minimal 

promoter was faulty in some way, independent of context. Although Hsp70 is 
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much more commonly used as a minimal promoter, Hsp83 was used to avoid 

repetition of minimal promoter sequences within the final underdominance 

constructs, in order to prevent unwanted recombination events, and subsequent 

loss of components. A second explanation is that UAS and LexA sequences are 

interfering with the minimal promoter itself or are impeding the interaction 

between the minimal promoter and the tetO enhancer. Use of different minimal 

promoters and a deletion of the UAS and LexA sequences would provide insights 

into which of these explanations is correct.  
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Figure 2.14: NIPP1 upregulation does not occur as expected in tetO-UAS-NIPP1-

AeHex1g-tTAV2-LexAGroucho lines Off-Tet: 
(A) Tetracycline binds to the tTAV2 activator protein and prevents binding to tetO sequences 

and subsequent transcript upregulation. NIPP1 expression in tetO-UAS-NIPP1-AeHex1g-

tTAV2-LexAGroucho is designed to be driven by spatially defined tTAV2 expression resulting in 

ubiquitous cell death in the absence of tetracycline as it no longer interferes with tTAV2 binding 

of tetO sequences. (B) Relative expression of NIPP1 is shown on the y-axis for different killer 

line insertions on the x-axis. Expression level values are normalised for the amount of cDNA 

input by comparing to RNA polymerase II control reactions. Error bars display the standard 

deviation for triplicated technical replicates. Relative expression is expressed with respect to the 

level of NIPP1 in the respective tetO-UAS-NIPP1-AeHex1g-tTAV2-LexAGroucho line On-Tet. 

cDNA samples were prepared from 2 D. melanogaster early pupae per sample, i.e. 2 biological 

replicates. NIPP1 expression was only upregulated 1.3 and 3.3 fold in each line respectively. 

cDNA samples are the same as those in Figure 2.16 and Figure 2.17. 
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2.3.5 NIPP1 overexpression phenotype can be achieved in tetO-UAS-NIPP1 

lines 

Finally, to confirm that NIPP1 overexpression is possible in this system, and the 

expected phenotype observed, tetO-UAS-NIPP1 lines were crossed with a 

tubulin-Gal4 line. The known cell lethality phenotype from NIPP1 expression 

was driven at 27ºC by a tubulin-Gal4 construct using the UAS promoter 

sequences (Figure 2.15). Almost no double mutants were recovered. Survivors 

were analysed for NIPP1 upregulation and it was only 10 fold.  

 

The results show that NIPP1 overexpression with GAL4 driven UAS sequences 

is possible in this context. This indicates that Hsp83 is at least adequately 

functional in the context of tubulin-Gal4 driving UAS expression. Crossing to a 

GMR-Gal4 driver line would have been ideal as the disruption of eye-tissue 

would be a better visual phenotype to screen for. This cross was indeed 

attempted but a technical problem with the driver line itself (a lack of Gal4 

upregulation) prompted the use of tubulin-Gal4 instead. 
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Figure 2.15: NIPP1 expression was driven effectively at 27ºC by a tubulin-Gal4 

construct via UAS promoter sequences: 
(A) NIPP1 expression in is to be driven by spatially defined Gal4 expression resulting in 

ubiquitous cell death. (B) Double mutant individuals have mostly died from tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-LexAGroucho and tubulin-Gal4 crosses. Survivors are rare, a circle marks 

the escapers which were analysed for NIPP1 expression. (C) NIPP1 expression levels in fold 

changes, on the y axis, are shown for different cDNA samples on the x axis. Expression level 

values are normalised for the amount of cDNA input by comparing to RNA polymerase II 

control reactions. Error bars display the standard deviation for triplicated technical replicates. 

Expression fold changes are expressed with respect to the level of NIPP1 in the respective tetO-

UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho line before the cross, which is given a value of 

1. Expression values are indicated above the error bars. cDNA samples were prepared from 1 

male plus 1 female Drosophila adult per sample, i.e. 2 biological replicates. NIPP1 expression 

was only upregulated 10 fold in the double mutants which escaped the lethal phenotype. 
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2.3.6 tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho transgenic lines do 

not survive in long term Off-Tet rearing 

Prototype tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho adults fail to 

generate viable adults when kept on a long-term Off-Tet diet. Off-Tet will be 

used for individuals reared or fed on a diet lacking tetracycline, whilst On-Tet 

will be used for individuals on a diet containing tetracycline (Section 2.2.3). 

Transgenic lines, homozygous for independent insertions, were mostly unable to 

result in transgenic adults when moved to an Off-Tet diet (Table 2.3). As an 

inbreeding homozygous transgenic line, all of the progeny should be transgenic. 

Out of the 6 independent insertion lines; 5 of them were unable to produce 

progeny which would survive past late pupal stages, and one of them was able to 

produce a subsequent generation of adults which were in turn unable to generate 

a further generation on the same Off-Tet diet. Some of the lethality seen at pupal 

stages was associated with various pupal case abnormalities. In addition, a 

reduced level of third instar larvae was seen which indicated lethality effects 

were not restricted to pupal stages. The only component of the construct 

predicted to cause lethality in a tetracycline repressible manner is NIPP1. 

However, I had already determined that there is only limited NIPP1 upregulation 

in the individual component analysis. This led me to investigate other factors to 

explain the lethality in this context. 
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Table 2.3: tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho adults fail to 

generate viable progeny for stable stocks when Off-Tet: 
Most insertion lines (5 out of 6) failed to produce viable adults when healthy adults of each 

transgenic line (reared On-Tet) were moved to an Off-Tet diet. Insertion line 21B managed to 

produce a first generation progeny which was able to develop into adults. These adults were 

kept Off-Tet and crossed with each other, not being able to even result in viable larvae. 

tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-

LexAGroucho lines 

Transgenic larvae 

amongst the first 

generation Off-Tet 

Transgenic adults 

amongst the first 

generation Off-Tet 

Transgenic larvae 

amongst the second 

generation Off-Tet 

9C Yes No - 

9D Yes No - 

12A Yes No - 

15A Yes No - 

15E Yes No - 

21B Yes Yes No 

 

2.3.7 tetO sequences can enhance expression at distances of at least 1900bp 

upstream 

A lack of an explanation for the lethality phenotype observed in tetO-UAS-

NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho transgenic lines after rearing in a 

diet without tetracycline suggested other components than NIPP1 might have 

been the cause for the lethality. Since tTAV2 is known to be toxic to insects at 

high enough concentrations (Gong et al. 2005) its expression levels were assayed 

in the same early pupae cDNA samples from Section 2.3.2, Figure 2.14. tTAV2 

expression levels are upregulated very strongly in early pupae reared Off-Tet 

(Figure 2.16). This suggests that tetO sequences are enhancing the expression of 

tTAV2 in a positive feedback loop. This implies that the enhancement interaction 

can occur even when the tetO operator and responsive promoter are at least 

1900bp apart since these are the closest tetO sequences in the construct to tTAV2. 

The tetO downstream is the closest enhancer to tTAV2 in the final design 

construct and is the best candidate tetO for the feedback loop (Figure 2.16B). A 

second possibility would be that the tetO enhancer upstream, although 4800bp 
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apart, would be engaging in this feedback loop as well or instead, with the same 

consequences. This positive feedback loop could explain the observed lethality in 

this system. Evidence from this was also observed in OX513A in Aedes aegypti 

as marker expression would increase when reared Off-Tet. The tetO sequence 

was in this case almost 2kb away from the Act5C-DsRed putative transcription 

start site. 
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Figure 2.16: tTAV2 upregulation is more than 150 fold in tetO-UAS-NIPP1-

AeHex1g-tTAV2-tetO-LexAGroucho lines when Off-Tet: 
Relative expression of tTAV2 is shown on the y-axis for different killer line insertions on the x-

axis. Expression level values are normalised for the amount of cDNA input by comparing to 

RNA polymerase II control reactions. Error bars display the standard deviation for triplicated 

technical replicates. Expression fold changes are expressed with respect to the level of tTAV2 in 

the respective tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho lines fed on tetracycline, 

which are given a value of 1. Expression values are indicated above the error bars. cDNA 

samples were prepared from 2 D. melanogaster early pupae per sample, i.e. 2 biological 

replicates. tTAV2 expression was upregulated 152 and 178 fold in each line respectively. cDNA 

samples are the same as those analysed in Figure 2.14 and Figure 2.17.  

 

2.3.8 LexAGroucho and Gal4Groucho upregulation is lethal 

LexAGroucho repressor expression in tetO-UAS-NIPP1-AeHex1g-tTAV2-tetO-

LexAGroucho lines was also assayed in the same early pupae cDNA samples 

from Section 2.3.2, Figure 2.14. LexAGroucho expression levels are upregulated 
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strongly in early pupae (46 to 90 fold) when larvae have fed Off-Tet (Figure 

2.17). This together with earlier data suggests that the tetO-NIPP1 element is 

defective specifically rather than other elements of the system. This repressor 

was expected to be harmless, but since it is the only other upregulated component 

in these lines apart from tTAV2 in early pupae destined to die before reaching 

adulthood, one hypothesis was that its overexpression was also lethal, either 

alone or in combination with tTAV2. 

 

 

Figure 2.17: LexAGroucho upregulation is between 46 and 90 fold in tetO-UAS-

NIPP1-AeHex1g-tTAV2-tetO-LexAGroucho lines when Off-Tet: 
Relative LexAGroucho expression on the y axis for different cDNA samples on the x axis. 

Expression levels are normalised for the amount of cDNA input by comparing to RNA 

polymerase II controls. Error bars display the standard deviation for triplicated technical 

replicates. Relative expression was compared to respective tetO-UAS-NIPP1-AeHex1g-tTAV2-

tetO-LexAGroucho lines fed On-Tet, which are given a value of 1. Expression values are 

indicated above the error bars. cDNA samples were prepared from 2 D. melanogaster early 

pupae per sample, i.e. 2 biological replicates. LexAGroucho expression was upregulated 90 and 

46 fold for each line respectively. cDNA samples are the same as those analysed in Figure 2.14 

and Figure 2.15. 
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To address whether over expression of groucho-containing fusion proteins 

contributes to the lethality tetO-LexAGroucho and tetO-Gal4Groucho individual 

constructs were subcloned in pCaSpeR4 vectors and transgenic flies were 

generated as described (Section 2.2.5). Crossing of these components to 

individual GMR-tTAV2 and AeHex1g-tTAV2 drivers led to pharate adult lethality 

even when upregulation of LexAGroucho and Gal4Groucho is restricted to the 

eye tissue (Table 2.4). Thus the lethality can be caused groucho over-expression 

as well as, or instead of tTAV2 positive feedback. 

 

Lethality was observed at pharate adult stages. This was expected for the GMR-

tTAV2 crosses, since severe eye-disruption phenotypes are known to be lethal as 

they can lead to eclosion failure. The insect’s reduced head size is thought to 

prevent pharate adults from breaching the pupal case (Zhu et al. 2017). Indeed, 

loss of eye tissue was observed amongst dead pharate adults from GMR-tTAV2 

crosses. 
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Table 2.4: Eye-specific or broad body LexAGroucho/Gal4Groucho over-expression 

is lethal: 
Double mutant individuals mostly died from tetO-LexAGroucho/tetO-Gal4Groucho and 

AeHex1g-tTAV2 and GMR-tTAV2 crosses. A circle marks the escapers which were analysed for 

LexAGroucho expression. Survivors were found in only one of the crosses, likely due to the fact 

of weaker tTAV2 expression of AeHex1g-tTAV2-1A line, and sub-lethal induction levels. 

Crosses 

Progeny Count 

WT tTAV2 

LexAGroucho 

or Gal4Groucho 

Double 

Mutant 

tetO-LexAGroucho-5A/+ 

♀ 

X 

GMR-tTAV2-29C/+ 

♂ 

2♂ 3♀ 18♂ 0 

tetO-LexAGroucho-5A/+ 

♀ 

X 

GMR-tTAV2-

40C/CyO ♂ 

5♂ 2♀ 11 (4♂ + 7♀) 0 

tetO-LexAGroucho-5A/+ 

♀ 

X 

AeHex1g-tTAV2-

9B/Y ♂ 

15♂ 12♀ 12♂ 0 

tetO-LexAGroucho-5A/ 

tetO-LexAGroucho-5A ♀ 

X 

AeHex1g-tTAV2-

1A/CyO ♂ 
- - 

4 (3♂ + 1♀) 5 (2♂ + 

3♀) 

GMR-tTAV2-36A/CyO ♀ X 

tetO-Gal4Groucho-

1A/+ ♂ 

2♂ 

2 (2♂ + 

2♀) 

5 (3♂ + 2♀) 0 

AeHex1g-tTAV2-9B/ 

AeHex1g-tTAV2-9B ♀ 

X 

tetO-Gal4Groucho-

1A/+ ♂ 
- 

11 (6♂ 

+ 5♀) 
- 0 

 

Finally, one of the tetO-LexAGroucho and AeHex1g-tTAV2 crosses resulted in 

double transgene-containing survivors (black circle in Table 2.4). RT-qPCR 

revealed that an upregulation of 16 fold does not result in a lethal phenotype 

(Figure 2.18) suggesting that D. melanogaster is tolerant to some induction of 

LexAGroucho. This is somewhat expected as groucho is an endogenously 

expressed gene during D. melanogaster development, albeit with different tissue 
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and time specificity. The over-expression level is only a sub-lethal value, as the 

individuals that died are expected to have had much higher induction levels. 

Hence, Figure 2.18 underestimates the ‘real’ induction level from tetO-tTAV2 

seen for most of the crosses. Since different tetO-LexAGroucho, and tTAV2 

driver lines were used, it is very possible that the insertion dependent strength of 

each differs enough that when two weakly expressing lines are crossed some 

individuals may survive as double mutants. Therefore the measured upregulation 

in these experiments can only be considered as a sub-lethal value. 

 

 

Figure 2.18: LexAGroucho 15 fold upregulation when driven by AeHex1g-tTAV2 is 

not lethal in D. melanogaster: 
Table 2.4 double mutant survivors, circled in black, were analysed for LexAGroucho 

expression. Relative LexAGroucho expression on the y axis is shown for different cDNA 

samples on the x axis. Expression levels are normalised for the amount of cDNA input by 

comparing to RNA polymerase II controls. Error bars display the standard deviation for 

triplicated technical replicates. Expression fold changes are expressed with respect to the level 

of LexAGroucho in the respective tetO-LexAGroucho line before the cross, which is 

given a value of 1. Expression values are indicated above the error bars. cDNA samples 

were prepared from 1 female D. melanogaster adult per sample, i.e. 1 biological 

replicate. LexAGroucho expression was only upregulated 15 fold in the double mutant 

which escaped the lethal phenotype. 
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2.3.9 A design for underdominance using the results as feedback 

The experiments presented in this Chapter have evaluated the potential for a two 

construct killer plus mutual repressor system for engineered underdominance in 

Drosophila melanogaster. From a practical standpoint the decision was made not 

to pursue such a system in pest insects in light of these results. However there is 

scope for further refinement, which could lead to a functional system. Figure 

2.19 illustrates one of the options for a new refined design. The Groucho fusion 

proteins could be used as two independent killer genes which could be 

independently silenced through different RNAi sequences targeting LexA and 

Gal4 sequences respectively. Although, it would be theoretically feasible, many 

questions are raised. 

 

The levels of RNAi vs Groucho fusion protein expression would require tight 

tuning to reduce fitness costs. Controlling this when each construct is on a 

different locus of the genome may be somewhat challenging. Site specific 

integration in the genome in a similar chromatin environment would allow for 

better comparison of constructs and for better tuning of components. Perhaps 

expressing the RNAi in the same tissue and at sufficient levels for repression of 

the protein could be the biggest challenge. To tackle this issue, the RNAi element 

could be included as part of the same transcript as the Groucho mRNA. Although 

an RNAi hairpin (of broader targeting than miRNA) could be included within an 

intron, longer hairpins may not be correctly processed in this arrangement so 

miRNAs could be used instead. RNAi could be achieved by including miRNA 
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sequences within an intron as speculated in Figure 2.19, or by expressing them 

under the control of a different promoter. This raises a new concern around 

RNAi dependent degradation. The system relies on RNAi degradation of the 

transcript suppressing Groucho but not preventing RNAi function, should the 

miRNAs prevent transcription of the whole transcript then one of the alleles 

would stochastically end up expressed highly and hence underdominance would 

not obtained. 

 

Such a system, even when working, would most likely have associated fitness 

costs due to over usage of the RNAi pathway, incomplete suppression of 

Groucho expression, or other factors. Measuring the fitness costs of the system in 

comparison to WT and relying on modelling to estimate if the system would 

drive with such costs would be a good starting point before population cage 

experiments or release trials.  
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Figure 2.19: A new design for two-loci underdominance: 
Groucho fusion proteins are to result in tissue specific cell death when driven by tTAV2 

expression. LexA and Gal4 regions serve as distinct RNAi targets. Groucho fusions and miRNA 

are kept part of the same transcript but the miRNA is within an intron which will be spliced out 

and the miRNA processed. miRNAs (RNAi activity) mutually repress each other’s killer protein 

transcript. Finally, tetO and tTAV2 sequences are kept at the maximum distance possible, 

assuming enough distance will prevent positive tetO/tTAV2 feedback. 
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2.4 Conclusions 

 

2.4.1 The relevance of an individual component approach 

This study suggests an individual component analysis may be advisable when 

dealing with highly variable systems. The starting prototypes had a rational 

design; however, they did not work as expected. In hindsight, this is not that 

surprising given the complexity and context dependent nature of biological 

systems. As described in more detail below, previous knowledge obtained from 

functionality in other systems does not necessarily provide predictability in a 

complex biological system, and may even be misleading. This example shows 

how multiple malfunctions within a set of components can provide the expected 

working phenotype (Section 2.3.6) and yet dissecting the functional contribution, 

within this complex context, of the different components was not feasible. To be 

able to explain how the particular malfunctions gave rise to the overall expected 

phenotype, individual components had to be analysed separately. This supports 

the need for a careful individual analysis of components in their specific context 

for a more robust approach.  

 

On the other hand, this does not guarantee success either since individual 

functions may not ‘add up’ as expected when combined. Hence, making a 

rationally designed complex configuration could potentially save a lot of time in 

terms of individual component analysis. In this particular example, making full 

constructs directly without thorough testing of the individual components was a 
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considerable risk, but it might have worked. This could have saved time testing 

individual components. 

 

Ultimately, a balance between these two main concerns will provide the best 

starting point in designing complex biological systems efficiently.  

 

2.4.2 Perspectives on synthetic biology 

The unexpected functions of different components in this project certainly call 

for reconsideration on how to approach synthetic biology as defined by some key 

reviews introducing the field (Andrianantoandro et al. 2006).  

 

For instance, hsp83 minimal promoters have been extensively used before and so 

have UAS and LexA sequences (Gnerer et al. 2015). Nevertheless, NIPP1 

upregulation by tTAV2 was very low when UAS or LexA were present between 

the tetO and hsp83, pointing at faulty interactions between these components or 

tetO itself. In addition, a strong positive feedback loop between tTAV2 and tetO 

though 1900bp apart, is evidence of the importance of context. To be able to 

tackle this problem enhancer-blocking insulators could be used such as dCTCF, a 

distant D. melanogaster orthologue of the well-characterised mammalian CTCF 

insulator (Raab and Kamakaka 2010). Finally, Gal4Groucho and LexAGroucho 

fusion proteins when driven by tTAV2 in D. melanogaster appear to be lethal 

when under the control of the tetO-tTAV2 system unlike previous uses of 
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Gal4Groucho fusion proteins in the literature (Fisher and Caudy 1998; Fisher et 

al. 1996).  

 

Synthetic biology is typically defined as the assembly of modular components in 

a rational attempt to construct a complex system with a desired new function 

(Andrianantoandro et al. 2006). Nothing much appears to be strictly modular in 

biology. Although modularity may be found in some examples, i.e. certain 

promoter sequences such as 3xP3 reliably drive tissue-specific mRNA expression 

of any gene situated downstream; a lot of biology is context dependent. Even in 

the best examples, biological systems are subject to relatively high variability 

and noise, 3xP3 driven expression, amongst other cases may vary, in level or 

location, between individuals, different developmental stages or between 

different genomic insertions. This variability and inherent noise may appear 

significantly strong when compared to other physics based systems which 

traditional engineering deals with. Attempting to make biology fit traditional 

engineering criteria, as encouraged in some of the literature (Wang et al. 2016), 

is a difficult task with the current limited knowledge. This is not to say that the 

construction of complex biological components of a desired function is not 

possible. In the future, after an extensive analysis of different biological parts 

there may well be a more functional library of quasi-modular components. 

Online databases for these kind of libraries are being proposed and some already 

exist like the Registry of Standard Biological Parts (Kwok 2010). Although their 

use may be limited at the moment, they may become crucial in the future.  
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Furthermore, current synthetic biology mostly focuses on microbial systems 

which are simpler in many ways, and better understood than insects, with the 

result that the noise or biological variation observed is lower. There is also a 

better control of environmental conditions with bacteria than with insects, such 

as growth in fermenters with tightly controlled parameters (Fang et al. 2017) 

which may also help reduce another source of variation. Given that synthetic 

biology in insects is less developed and fundamentally harder, the results from 

this work may provide a critical vision of synthetic biology principles which may 

not apply as strictly on microbial work. 

 

With the current level of unknown variables, mainly due to the inherent nature of 

biology, a refined approach to synthetic biology or at least a more accurate 

definition may be informative and helpful. Context in biology is often very 

powerful, as exemplified in this work, it can even ‘override’ and ‘reverse’ the 

functionality of a particular relatively well understood component. This questions 

the concept of modularity and abstraction in biology. Noise and context are such 

powerful factors in biology that a user should always bear these in mind when 

trying to use modular components.  

 

Of course, in every area of engineering the power of rational prediction is 

limited, or testing experiments would be unnecessary and merely confirmatory. If 

a scale of predictability in a given science or field could be drawn, biology would 

be relatively unpredictable if compared to physics-based engineering disciplines. 
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In other words, for a successful approach given the nature of biology, synthetic 

biology should be much more readily testing rational predictions through trial 

and error than traditional engineering disciplines. An argument could be made by 

suggesting that no achievable critical mass of knowledge in biology will bring 

these two different disciplines to the same point in the scale as the distinct levels 

of system complexity may make this impossible. In line with this reasoning, 

(Vilanova et al. 2015) questions the ambitious endeavour of component 

standardisation suggesting there is a surprisingly limited reuse of biological parts 

from the Registry of Standard Biological parts (Vilanova and Porcar 2014). 

However, this should not undermine the usefulness of the endeavour to 

understand biology through building it. It may just be a question of keeping 

scientific scepticism high when dealing with modular components whilst still 

aiming to efficiently construct complex systems through rationally informed 

approaches. 
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 Homology Directed Repair into Chapter 3 -

the M-locus of Aedes aegypti and its 

Significance for Gene Drives  

 

3.1 Introduction 

 

3.1.1 Sex determination in mosquitoes 

In Culicine mosquitoes, which includes both Aedes and Culex genera, a dominant 

male-determining locus (M-locus) found on a homomorphic sex-determining 

chromosome, is the trigger for male development in mosquitoes (McClelland 

1962; Newton et al. 1978). Conversely, Anopheles mosquitoes have fully 

differentiated heteromorphic sex chromosomes with the male-determining locus 

located on the non-recombining Y chromosome (Marín and Baker 1998; Hall et 

al. 2014).  

 

Heteromorphic sex chromosomes have evolved multiple times independently in 

both plants and animals (Charlesworth 1996; Rice 1996). In principle, these are 

hypothesised to arise from a pair of autosomes that at some point acquire a sex-

determining region or locus. It is thought that selection pressures would favour 

the sorting of sex-specific beneficial alleles, into linked or unlinked positions 

from the sex-determining region, depending on which sex it determines. Such 
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alleles would have antagonistic roles depending on the sex, i.e. provide a benefit 

in one whilst being detrimental in the other. In theory these selection pressures 

would also in turn favour the suppression of recombination near or at the sex-

determining locus (Charlesworth et al. 2005).  

 

Homomorphic chromosomes are those where this recombining region is 

restricted to a portion of the sex-determining chromosome whilst heteromorphic 

chromosomes are those were the non-recombining region occupies most of the 

sex chromosome (Toups and Hahn 2010). The non-recombining region tends to 

expand from the sex-determining locus to almost the entirety of the 

chromosomes as is evidenced in many species of distant lineages such as 

dioecious plants, chickens and humans (Nicolas et al. 2005; Handley et al. 2004; 

Lahn and Page 1999). In fact, comparative genetics between Drosophila 

melanogaster, Aedes aegypti, and Anopheles gambiae genomes suggest sex 

determining chromosomes were homomorphic in the common ancestor of both 

mosquito species (Toups and Hahn 2010). Anopheles gambiae would hence have 

evolved hetermorphic sex chromosomes once the lineages had diverged (Figure 

3.1). 
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Figure 3.1: Sex-chromosome evolution in Anopheles gambiae and Aedes aegypti: 
Taken from (Toups and Hahn 2010). The ancestor of both Aedes aegypti and Anopheles 

gambiae is thought to have had homomorphic chromosomes as Aedes aegypti does currently 

and would suggest that Anopheles lineages saw an expansion of the non-recombining region to 

occupy the whole Y chromosome. This expansion must have been rapid since all extant 

Anopheles have heteromorphic chromosomes (Hall et al. 2014). 

 

Although modelling also suggests that homomorphic sex-determining 

chromosomes will eventually become heteromorphic (Charlesworth et al. 2005), 

there may be occasions were homomorphic chromosomes are preserved by 

selection pressures. An example of this may be Aedes aegypti given its presumed 

lengthy evolutionary history of having homomorphic chromosomes. It has been 

recently shown that an antagonistic Aedes aegypti gene, myo-sex (beneficial in 

males, detrimental in females), linked to the M-locus however it can recombine 

and be inherited by females occasionally. This is surprising, since such a male-

specific gene should have faced evolutionary pressures to join the M-locus non-

recombining region. However, myo-sex was found to be expressed much lower in 
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females than in males even when inheriting the gene through rare recombination 

events (Hall et al. 2014). Hence, it is possible that the homomorphic 

chromosomes in Aedes aegypti have remained as such for so long due to 

differential sexual expression of antagonistic genes such as myo-sex. This could 

in turn eliminate or reduce selection pressures encouraging the expansion of the 

non-recombining region. There is however, no evidence for dosage compensation 

in Aedes aegypti, nor is thought to be required given the viability of nix 

knockouts (Hall et al. 2015). Another possibility for the observed homomorphic 

preservation of sex determination is the fact that in Aedes aegypti, and also in 

Culex pipiens which shares this homomorphic preservation, the M-locus is 

located near tandem repeated ribosomal genes which could be promoting 

recombination (Timoshevskiy et al. 2013). Hence, it could be that recombination 

hotspots serve as an extra evolutionary threshold against the expansion of the 

non-recombination region (Hall et al. 2014). 

 

3.1.2 M-locus in Aedes aegypti 

The M-locus in Aedes aegypti, as described above, is found in a homomorphic 

sex chromosome. Out the three pairs of chromosomes in Aedes aegypti, 

chromosome 1 is the shortest, chromosome 3 of intermediate length, and 

chromosome 2 the longest (Sharakhova et al. 2011; Rai 1963; Timoshevskiy et 

al. 2013) The M-locus is found in chromosome 1, specifically in band 1q21 

(McClelland 1962). Although chromosome 1 pairs are homomorphic, they are 
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referred to for simplicity as the M-chromosome (M-locus bearing) and m-

chromosome (M-locus lacking) in the literature (Motara and Rai 1978). 

 

M-locus sequences were omitted from the Aedes aegypti genome sequencing 

assembly described (Nene et al. 2007). This was not so surprising given the 

repetitive nature of Y like sequences as evidenced by the difficult sequence 

assembly of other sequenced heteromorphic chromosomes from Drosophila and 

Anopheles (Carvalho 2002; Krzywinski et al. 2004). Correspondingly, when a 

putative male determining gene in Aedes aegypti was finally cloned in Aedes 

aegypti its sequence was also found missing in the assembly (Hall et al. 2015). 

Information on the Nix mRNA sequence allowed the finding the Nix-containing 

BAC clone in a LVP genome library and sequencing a 200kb region of the M-

locus (Turner et al. 2017), including the Nix gene itself. Apart from providing 

insights into the structure of the Nix gene (described below), the sequencing of 

the region showed the highly repetitive nature of the non-recombining M-locus in 

Aedes aegypti which is a characteristic feature of a sex chromosome.  

 

3.1.3 The role of Nix in Aedes aegypti sex determination 

The first strong candidate for a primary male determining factor (or M factor) in 

insects was found in Aedes aegypti and it was the Nix gene (Hall et al. 2015). 

The difficulty in finding it was as mentioned above due to the characteristic 

repeat-rich regions of Y chromosomes, or Y like regions (Charlesworth and 

Mank 2010). The Nix gene was found from RNA-seq data as a distant orthologue 
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of transformer-2 in D. melanogaster which has the role of splicing doublesex and 

fruitless genes which are two key regulators of sexual differentiation in D. 

melanogaster (Salz and Erickson 2010). However, sexual determination is not 

driven by the Y chromosome but by X chromosome dosage in D. melanogaster.  

 

Nix was found to be specifically present in male DNA and knock-out with 

CRISPR-Cas9 demonstrated its requirement for male development. Feminisation 

of G0s just upon somatic knock-out of the gene was observed in a large 

proportion of injected males (55 out of 79). Although the degrees of feminisation 

were variable, as expected of mosaic knock-outs, feminisation was seen in all 

dimorphic phenotypes; feminised external genitalia and antennae (Hall et al. 

2015). Nix was also determined as sufficient for male development as ectopic 

expression of Nix in females resulted in almost fully formed male external 

genitalia and female specific antennal structure. Although some masculinised 

genitalia appeared to have defects, they looked male overall (Hall et al. 2015). In 

addition, ectopic expression of Nix led to the internal development of male 

genitalia, including testes, accessory glands, and vas deferens. Hence Nix is 

necessary and sufficient for the initiation of male development in Aedes aegypti. 

 

The Nix cDNA sequence is 985bp and it encodes a 288 amino acid polypeptide. 

The Nix gene is formed of two exons and has a long intron of 99kb, one of the 

largest of the Aedes aegypti genome (Turner et al. 2017). The Nix region is full 

of repetitive sequences, especially retrotransposons, which may be the reason for 
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the lengthy expansion of the Nix region. Genes expressed early in embryonic 

development such as Nix typically have very short introns or no introns which 

would suggest there is an evolutionary pressure for a smaller intron to do with 

short cell cycles (Biedler et al. 2012). However, the non-recombining region of 

the M-locus allows the accumulation of repeats as it is known to happen in other 

sex chromosomes. Hence, the expansion of the Nix gene intron will carry on 

unless it is limited by the need for a shorter intron in an early embryonic 

development gene (Biedler et al. 2012). 

 

3.1.4 Sex-specific gene drives 

With the success of sterile insect technique (SIT) (Alphey et al. 2010) and 

release of dominant lethal (RIDL) strategies, the discovery of the male 

determining factor in Aedes aegypti represents a milestone in gene drive 

research. Ultimately, understanding the genetic programs underlying sex 

determination in mosquitoes will allow the development of desirable gene drive 

mechanisms (Adelman and Tu 2016). For instance, CRISPR-Cas9 systems 

carrying male-determining factors such as Nix would drive maleness in a 

population. Whether fertile or not, this represents a good trait to spread in a 

population; maleness could be seen as the ultimate disease refractory phenotype 

for population suppression. Conversely, CRISPR-Cas9 components could be 

linked to the M-locus for male specific expression, which would be useful in 

particular drives as discussed in Chapter 4.   
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3.1.5 Ommochrome synthesis in insects, and kmo in Aedes aegypti 

Much of the knowledge on eye pigment development in insects comes from 

studies in Drosophila melanogaster. The first mutant isolated in Drosophila 

melanogaster was in the white gene (Morgan 1910). Mutations in white are 

recessive and result in a white eye phenotype and its sex-linked nature, white is 

on the X chromosome, facilitated its discovery. A single mutant copy would 

express phenotypically in males but not females so it is not surprising that the 

isolated mutant was a male (Morgan 1910).  

 

The white gene encodes a monomer of a heterodimer ATP-binding cassette 

(ABC) transporter which localises at the surface of pigment granules in 

ommatidia (Mackenzie et al. 2000). The other monomer is encoded by scarlet. 

The white gene’s main role is to deliver ommochrome precursors into pigment 

granules such as tryptophan and kynurenine (Sullivan et al. 1974). 

Ommochromes are compounds derived from the amino acid tryptophan and are 

widely used as eye pigments among insects (Linzen 1974). Ommochrome 

pathway terminates with xanthommatin synthesis, the brown pigment in D. 

melanogaster (Phillips et al. 1973). A model of ommochrome synthesis in D. 

melanogaster is shown in Figure 3.2 . With this model as a framework, 

ommochrome biosynthesis has since been studied in mosquitoes to find 

considerable similarities (Han et al. 2007).  
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Figure 3.2: Ommochrome synthesis in Drosophila melanogaster eyes: 
Adapted from Reed and Nagy 2005. In D. melanogaster Karmoisin, kar, is the cell membrane 

transporter that transports aromatic amino acids into the cell (Kim et al. 2001). A series of 

enzymes, starting with vermillion and ending with cinnabar, transform tryptophan into 3-

hydroxykynurenine. ‘st’ and ‘w’ mark the scarlet and white monomers forming the heterodimer 

ABC transporter responsible of uptake of 3-hydroxykyunurenine into the pigment granule. The 

last pathway step leading to xanthommatin (brown pigment) synthesis is not as well understood.  

 

kmo in Aedes aegypti is the orthologue of Drosophila melanogaster cinnabar and 

encodes for kynurenine 3-monooxygenase (KMO) (Sethuraman and O’Brochta 

2005; Han et al. 2003). It was initially described in a white eyed Aedes aegypti 

mutant and the allele causing the mutation renamed kh
w
, as the kmo gene was 

then known as kynurenine hydroxylase (Cornel et al. 1997). kmo mutations have 

also been generated in Aedes aegypti using CRISPR-Cas9 (Basu et al. 2015). 

There is also a white orthrologue in Aedes aegypti. Recent CRISPR-Cas9 studies 

in Aedes aegypti generated mutations in both kmo and white, both resulting in a 

recessive white eye phenotype (Li, Bui, et al. 2017).  
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None of the ommochrome genes discovered so far are sex-linked in Aedes 

aegypti, owing to its homomorphic sex chromosomes. Since mutations in this 

pathway are often recessive, such as with kmo and white, screening for mutants 

in Aedes aegypti is more challenging than in D. melanogaster. The white gene 

has also been successfully mutated (using CRISPR-Cas9) in three different 

Anopheles species, and although the mutation is also recessive, it is found in the 

X chromosome just as in D. melanogaster which means that mutant hemizygous 

males show the white eye phenotype (Li, Akbari, et al. 2017). 

 

3.1.6 Project aim 

The aim of the project was to explore the possibility of using homology directed 

repair to insert exogenous sequences into the M-locus of Aedes aegypti. Male 

specific linkage of genetic components would provide additional options for 

future gene drive applications. Successful development of such a method would 

also facilitate basic-science investigations of the nature and mechanism of the 

primary sex determination signal and of the evolution of sex loci and 

chromosomes. 
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3.2 Materials and Methods 

 

3.2.1 Aedes aegypti rearing procedures 

The Aedes aegypti strain used for transformation and crossing experiments was 

an Asian wild type (AWT) which had undergone five generations of full-sibling 

mating (Joe Turner). AWT is a laboratory strain originating from Jinjang, Kuala 

Lumpur, Malaysia, that has been reared in the Institute of Medical Research 

since the 1960s (Lacroix et al. 2012). Transgenic lines maintained were 

OX5226a and OX5226b (nanos-Cas9 lines generated by piggyBac mediated 

insertion into AWT). Finally, the generated NixInt1 transgenic line (generated 

from AWT) was also maintained.  

 

Mosquitoes were reared using previously described standard procedures for 

Aedes aegypti (Crampton et al. 1997). Aedes aegypti colonies were kept at 27°C 

± 2°C and a relative humidity of 75% ± 5% during a 12 hour day-night cycle in 

temperature and humidity monitored rooms to best simulate natural climatic 

conditions. Aquatic life stages (hatching eggs, larvae and pupae) were kept in 

trays containing approximately 1.5-2.5 litres of deionised water. Larvae were fed 

with finely ground Tetramin fish food (Tetra GmbH, Germany). Pupae were then 

picked using 3ml pasteur pipettes (Fisherbrand), with their tips cut-off, and sex-

sorted by size (females should be distinctly bigger) should this be required. In 

rare cases where size separation could not be accurate due to unexpectedly dense 

rearing of larvae/pupae in trays, pupae were transferred to 100ml weigh boats 
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(VWR, UK) in order to screen under the microscope (Section 3.2.5). Adults were 

fed on a 10% sucrose solution containing 14U/ml penicillin and 14 µg/ml 

streptomycin, to prevent bacterial growth. All adults were kept in small cages. 

 

When egg collection was required, mated females were allowed to take a blood 

meal from defibrinated horse blood (TCS Biosciences). Parafilm M (Bemis) 

around a metal plate was used to create a pocket that, once filled with blood, was 

then sealed. Blood plates were placed on top of the cages, and a microwaved 

bean bag (20 seconds, 700 watts) was used to warm up the plates. Feeding was 

carried out three days post mating for 1hr, with bean bag reheating every 20 

minutes. Eggs were collected (3 to 4 days post blood feed) on 90mm diameter 

filter papers (Whatman, UK), placed on top of a petri dish (Thermofisher) 

containing wet cotton (Synergy Health). Eggs were then desiccated and hatched 

after three days or stored for up to four months. Hatching was carried out in 

200ml deli pots filled with deionised water containing the submerged egg paper 

or egg coverslips from injections. Hatching was induced by deoxygenating the 

water via means of a vacuum pump. The ‘vacuum’ was maintained for at least 2 

hours before allowing air flow back in and a drop of Liquifry No1 (Interpret) was 

added to further encourage hatching. Backup egg papers were stored away where 

necessary. 
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3.2.2 Preparation of solutions for injections 

All design and generation of injection components as well as injection mix 

preparation were carried out by by Joe Turner in Oxitec (Table 3.1). Injection 

buffer was added for a final concentration of 5mM KCl and 0.1 mM NaH2PO4, 

pH 6.8. Endonuclease-free water (Ambion, USA) was used for dilutions where 

required. OX5346 was the Nix donor template which had a Hr5IE1-DsRed 

marker flanked by 2kb Nix homology arms reaching up to the predicted cleavage 

site for Nix5 and Nix8 (Figure 3.3b) which are within the exon 1 of Nix (Figure 

3.3a). Although the homology arms sequence was somewhat repetitive, it was 

thought to be unique to the Nix gene, given the genomic information available at 

the time (Nene et al. 2007; Turner et al. 2017). 

 

Table 3.1: Components for injection solutions: 
sgRNAs were injected at the concentrations recommended in (Kistler et al. 2015). Nix sgRNA 

sequences were selected from (Hall et al. 2015) and kmo sgRNAs were selected from (Basu et 

al. 2015). ku70 dsRNA was injected to suppress NHEJ repair as recommended in (Basu et al. 

2015). OX5346 donor template was made by Joe Turner and injected at concentrations 

recommended in (Kistler et al. 2015). Cas9 protein (PNA Bio Inc) was injected at 

concentrations recommended by the provider. 

No Cas9 (injected into OX5226) Cas9 (injected into AWT) 

Nix5 sgRNA (40ng/µl) Nix5 sgRNA (40ng/µl) 

Nix8 sgRNA (40ng/µl) Nix8 sgRNA (40ng/µl) 

kmo281 sgRNA (40ng/µl) kmo281 sgRNA (40ng/µl) 

kmo460 sgRNA (40ng/µl) kmo460 sgRNA (40ng/µl) 

kmo519 sgRNA (40ng/µl) kmo519 sgRNA (40ng/µl) 

ku70 dsRNA (100ng/µl) ku70 dsRNA (100ng/µl) 

OX5346 donor template (700 ng/µl) OX5346 donor template (700 ng/µl) 

Injection buffer Cas9 protein (300 ng/µl) 

Water Injection buffer 

 Water 
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Figure 3.3: cDNA Nix gene and OX5346 Nix donor sequence maps with their respective diagnostic primers: 
Maps were drawn using SnapGene Viewer. Diagnostic primers used for the results below are shown here in purple. (A) The 985bp cDNA of the Nix gene has a CDS 

of 288AA. Nix sgRNAs are shown, as well as their respective cutsites. The parts of the cDNA which are also present in the Nix donor flanks. (B) Plasmid map for 

the Nix donor is shown but the Kanamycin resistance cassette for the Nix donor is not included. The Hr5IE1-DsRed-SV40 marker is flanked by 2kb Nix homology 

arms reaching up to the predicted cleavage site for Nix5 and Nix8.  
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3.2.3 Aedes aegypti microinjections 

Microinjection of 1 to 2 hour old embryos was carried out mostly following out 

established procedures (Morris 1997). Embryos were collected as described 

above from the respective injection cages (OX5226 or AWT) and then kept at 

4°C to slow development and be able to inject all the eggs before pole cell 

formation. Injection cages were kept in the dark during embryo collection to 

encourage laying. Pole cell formation at RT in Aedes aegypti occurs around 2 

hours post laying, the melanisation of the eggs and hardening of the chorion 

occurs simultaneously. Colour guided staging as described in (Lobo et al. 2006) 

allowed selecting the correct embryos for injection. Younger (white) embryos are 

too fragile to handle securely, whilst older ones (dark grey to black) will not be 

able to be transformed when injected. Injections were carried out using a 

Femtojet 4x (Eppendorf) setup. Needles were pulled from aluminosilicate glass 

(1.0mm x 0.64mm x 10cm, Sutter Instrument) by needle puller Model P-2000 

(Sutter Instrument). They were then bevelled before the injection mix (kept on 

ice and centrifuged at 11000 x g) was loaded using microloader tips (Eppendorf). 

Halocarbon oil 27 (Sigma) used to cover the embryos was rinsed off post 

injections and embryos were kept in a closed chamber (of 100% relative 

humidity) for three days prior vacuum hatching.  

 

3.2.4 Aedes aegypti injected G0 crossing 

Both male and female G0s were outcrossed to AWT individuals. They were each 

divided into G0 pools of no more than 20 individuals each. The sex ratios were 
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kept 1 to 1 when the pool had G0 females, but instead were increased to 1 to 5 

(male to female) when the pool had G0 males. Blood meals and general 

maintenance was carried out as described above. 3 ovipositions were collected 

for each G0 pool and hatched without storing (Section 3.2.1) for subsequent 

screening (Section 3.2.5) 

 

3.2.5 Aedes aegypti transgenic screening 

The progeny from G0 crosses was screened at L2-L4 larval stages when 

screening for the transgenic Hr5IE1-DsRed marker (Nix integration) or Hr5IE1-

AmCyan (for OX5226) which shows whole body expression and is nuclear 

localised. Screening was performed using the appropriate light filters on a 

fluorescence stereo microscope (Leica). G0 adults were screened for feminisation 

on a visible light stereomicroscope (Leica). G2s from G1 sibling to sibling 

crosses were screened at pupal stages under the visible light stereomicroscope for 

white eye colour in kmo-/- double knock-outs. Photos were taken using an iPhone 

4S on a phone to microscope mount.  

 

3.2.6 Genomic, plasmid and gel DNA extractions 

gDNA extractions were carried out using the PureLink Genomic DNA kit 

(Thermo Fisher Scientific) following instructions from the manufacturer. DNA 

gel extractions were carried out using the GeneJET Gel Extraction Kit (Thermo 

Fisher Scientific) following instructions from the manufacturer. Plasmid DNA 
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extractions were carried out using the GeneJET Plasmid Miniprep Kit (Thermo 

Fisher Scientific) following instructions from the manufacturer. 

 

3.2.7 General PCR 

General PCRs were carried out using Taq DNA Polymerase (PCRBIO) using the 

recommended manufacturer conditions in final volumes of 50µl. PCR programs 

were defined with the standard manufacturer recommendations except for primer 

melting temperatures which were calculated using Primer3. A list of primers 

used in Nix diagnostic PCRs is included in Table 3.2. 

 

Table 3.2: Primers used in Nix diagnostic PCRs 
Primer names, sequences and a brief description are shown below. 

Primer Name Primer Description Primer Sequence 

Nixfl5diag FW Binds 5’ end of Nix AATGCTGAGATCAATGCAGAAT 

Nixfl3diag RV Binds 3’ end of Nix TGTGCAATTCGCTCTTCCGT 

RedSeq FW Anneals with DsRed sequence AAGGGCGAGACCCACAAGG 

TD1405 Anneals with DsRed sequence GCCACGAGTTCGAGATCGAG 

TD2638 Anneals with DsRed sequence CTCGTACTGCTCCACGATGGT 

 

3.2.8 Flanking PCR 

Extracted gDNA from OX5226a and OX5226b individuals (Section 3.2.6) was 

digested with two different restriction enzyme (RE) 6bp cutters (EcoRI and 

XhoI). 100ng of gDNA was digested in a total volume of 20µl for 3 hours in a 

water bath at 37°C. Flanking PCR was performed with 3 sets of specific nested 

primers for each piggyBac flank (5’ or 3’). Two different pools of semi random 

primers (PSRP1 and PSRP2) were used for each gDNA and enzyme 

combination. The same PSRP was used in the first, second and third round of 

PCR of each respective sample. Each PCR round used a 1 in 10 dilution of the 
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previous PCR and the respective nested piggyBac primer. First PCR used 2µl of 

digested gDNA. PCRs were carried out using Taq DNA Polymerase (PCRBIO) 

at the recommended reaction concentrations in a final volume of 25µl. Specific 

nested primers were at a final concentration of 100µM whilst PSRPs were at a 

final concentration of 25µM in each reaction. The PCR program for first, second, 

and third round PCRs is shown in Table 3.3. Primers used and their sequences 

are shown in Table 3.4. Clear bands in third round of PCR were excised and gel 

extracted (Section 3.2.6) for subsequent pJET1.2 blunt cloning (Section 3.2.9), 

colony PCR to confirm positives (Section 3.2.10), miniprep plasmid DNA 

extractions of positives (Section 3.2.6), and final Sanger sequencing (Section 

3.2.11). 

 

Table 3.3: PCR programs for 1
st
, 2

nd
 and 3

rd
 round of flanking PCRs: 

Programs for flanking PCR rounds 1 to 3 are shown below. m stands for minute(s) and s for 

second(s).  

 
First PCR Second PCR Third PCR 

1 95°C 4m 95°C 1m 95°C 1m 

2 95°C 30s 97°C 7s 97°C 7s 

3 55°C 30s 55°C 40s 55°C 40s 

4 72°C 3m. Go to 2 x9  72°C 2m. Go to 2 x1 72°C 2m. Go to 2 x1 

5 43°C 1m 97°C 7s 97°C 7s 

6 72°C 3m 55°C 20s 55°C 20s 

7 97°C 7s 72°C 2m. Go to 5 x32 72°C 2m. Go to 5 x32 

8 55°C 30s 72°C 3m 72°C 3m 

9 72°C 2m 4°C ∞ 4°C ∞ 

10 72°C 2m. Go to 7 x24     

11 4°C ∞     
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Table 3.4: Flanking PCR primers used and their sequences: 
Flanking PCR primers used are shown below, with their respective sequences. N stands for a 

random nucleotide (A, T, G or C) whilst S stands for a G or a C (strong bonds). 

Primer Description Primer Name Primer Sequence 

Pool of Semi Random 

Primers 1 

TD2366 acgctccNNNNNNNNNNSCATGS 

TD2367 acgctccNNNNNNNNNNSGATCS 

TD2368 acgctccNNNNNNNNNNSACGTS 

TD2369 cgcctccNNNNNNNNNNSAGCTS 

Pool of Semi Random 

Primers 2 

TD2374 acgctccNNNNNNNNNNNNSGCTCS 

TD2375 acgctccNNNNNNNNNNNNSGCAGS 

TD2376 acgctccNNNNNNNNNNNNSGTGTS 

TD2377 acgctccNNNNNNNNNNNNSCACTS 

piggyBac 5’ 1 TD 695 TCAATTTTACGCAGACTATCTTTCTAGGG 

piggyBac 5’ 2 PB2 CAGTGACACTTACCGCATTGACAAG 

piggyBac 5’ 3 TD225 TGACAAGCACGCCTCACGGGAG 

piggyBac 3’ 1 TD126 TGTCGAGAGCATAATATTGATATGTGCC 

piggyBac 3’ 2 TD127 CCGGACCGCGGCT 

piggyBac 3’ 3 PB3 CAGACCGATAAAACACATGCGTCA 

 

3.2.9 Blunt ligation of DNA fragments into pJET1.2 and transformation into 

compentent cells 

Purified flanking PCR fragments from Section 3.2.8 were ligated into pJET1.2 

(blunt ready) plasmids using the CloneJET PCR Cloning Kit (Thermo Fisher 

Scientific) following instructions from the manufacturer. Transformations were 

carried out into Library Efficiency DH5α Competent Cells (Thermo Fisher 

Scientific) following instructions from the manufacturer.  

 

3.2.10 Colony PCR 

For each flanking PCR product (6 different clear bands) 16 colonies were 

selected for colony PCR (on a 96 well plate). Primers used were specific primers 

for the pJET1.2 vector bridging over the insert. 5µl of molecular biology water 

(Sigma) were added to each of the wells. 2 agar plates had grid marks added so 

that 96 individual squares could be seen. Labelling of both the PCR plate and the 

agar plates was done so as to be able to trace back each individual colony PCR 
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reaction to its plate growth. Pipette tips were used to pick up individual colonies 

which were dipped into the 96 water containing wells and then streaked on their 

respective agar plate square (which would then be incubated 8 hours at 37°C). A 

PCR master mix, using Taq DNA Polymerase (PCRBIO) at recommended 

manufacturer concentrations for a final 25µl volume was prepared for 100 

reactions and then appropriately pipetted into each of the 96 wells. A standard 

PCR program was used, following Taq manufacturer recommendations except 

for the reduction in the number of cycles to only 25. There is a risk that too many 

cycles would start detecting free insert DNA that would have been present on the 

agar plates following transformation of DH5α cells with the blunt ligation mix 

(Section 3.2.9). A lower number of cycles, hence prevents false positives. The 

colony PCRs were then run on a gel and positive colonies were then traced back 

to the freshly streaked agar plates and standard miniprep cultures were prepared 

for the positive colonies containing the respective inserts. Plasmid extractions 

were carried out as described (Section 3.2.6). 

 

3.2.11 DNA sequencing 

DNA sequencing was outsourced to GATC Biotech. Samples sequenced in this 

project included successfully cloned flanking PCR bands (Section 3.2.8), which 

were screened by colony PCR (Section 3.2.10).  
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3.3 Results and Discussion 

 

3.3.1 OX5226a and OX6226b nanos-Cas9 lines are not separate insertions 

Lines OX5226a and OX5226b were nanos-Cas9 lines made by Joe Turner in 

Oxitec by injecting a nanos-Cas9 construct into Aedes aegypti embryos (AWT 

strain). Both were recovered from the same G0 adult pool and although initially 

treated as potentially different due to the apparent differences in the marker 

expression profile, the possibility remained that they were not independent, i.e. 

comprised the same genomic insertion. Aedes aegypti transgenesis using 

piggyBac is less efficient than in Drosophila melanogaster and since no more 

than 20 G0 adults are usually pooled together, there is a high chance that 

transgenic G1s appearing in the same G0 adult pool originate from the same 

individual G0 and are in fact a clonal isolation of the same insertion event. 

 

In order to find out the insertion site of the two potentially different nanos-Cas9 

lines flanking PCR was performed (Section 3.2.8) from the known 5’ and 3’ 

piggyBac ends that are found in piggyBac insertions. Two different enzymes 

were used (XhoI and EcoRI) and two different known pool of semi-random 

primers (PSRPs) was used (PSRP1 and PSRP2) (Section 3.2.8). Reactions only 

gave clear bands with the second primer set PSRP2. Whilst the 5’ end did not 

give any clear bands, even after the 2 rounds of nested PCR, the 3’ end gave 

clear bands for both enzymes (Figure 3.4). OX5226a and OX5226b lines show 
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the same band profile upon flanking PCR from 3’ piggyBac. This suggests they 

are both the same insertion. 

 

For the purpose of determining the insertion site the clean bands for both 

OX5226a and OX5226b (the two bands observed with XhoI and the single band 

with EcoRI) were gel extracted, purified and cloned into pJET1.2 (Section 3.2.9). 

Colony PCR was performed to confirm inserts of the correct size and these were 

sent for Sanger sequencing (Section 3.2.11). Unfortunately sequence quality was 

too low to determine the insertion site in the Ae. aegypti genome. Given that 

band profiles were the same between both lines for two different enzymes, and 

they both originated from the same G0 adult pool, there is a high chance that they 

were both the same insertion. OX5226b became OX5226 and OX5226a was 

discarded.  
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Figure 3.4: OX5226a and OX5226b yield the same band profile after flanking PCR: 
5’ end flanking PCRs did not work effectively since no distinct bands are observed, but a 

characteristic smear of non-specific products when pools of random primers are used. Similarly, 

no clear bands are observed for PSRP1 containing reactions, 1 and 2 numbers mark PSRP1 and 

PSRP2 primers respectively. 3’ end PCRs using PSRP2s resulted in clear distinct bands for both 

enzymes. The bands profiles were the same with OX5226a or OX5225b starting gDNA. In the 

case of XhoI two somewhat clear bands were seen whilst single, stronger bands were seen for 

EcoRI. 

 

3.3.2 Nix knock-in and kmo knock-out components were injected into Aedes 

aegypti 

To serve the dual purpose of verifying the nanos-Cas9 Aedes aegypti lines 

(generated by Joe Turner) and obtaining a fluorescent marker Nix knock-in the 

following was injected into nanos-Cas9 embryos; Nix sgRNAs (5 and 8), Nix 

HDR donor plasmid (OX5346, see Figure 3.3), kmo sgRNAs (281, 460, and 519), 

and ku70 dsRNA. Cas9 protein was also supplied when injections were carried 

out in AWT Aedes aegypti embryos (WT). kmo components were coinjected to 

be able to verify the action of nanos-Cas9 should Nix sgRNAs had not worked 

efficiently, and although ideally they should have been injected separately, time 
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constraints indicated otherwise. Concentration of components was kept the same 

for all injection dates (Section 3.2.2). 

 

The injection mix and its components were designed and prepared by Joe Turner. 

Nix sgRNA sequences were selected from Hall et al. 2015, which used them to 

obtain Nix knock-outs. kmo sgRNA sequences with the highest cleavage guiding 

efficiency were selected from Basu et al. 2015. ku70 dsRNA against end-joining 

repair machinery was also injected following recommendations in Basu et al. 

2015, the rationale being that inhibiting non-homologous end joining repair 

would favour homology directed repair of Nix double strand breaks from the 

supplied Hr5IE1-DsRed Nix-flanked DNA template. Even if not required for 

homology directed repair in Aedes aegypti (Kistler et al. 2015), ku70 dsRNA 

injection was been shown to improve HDR rates (Basu et al. 2015). 

 

A total of 3135 OX5226 nanos-Cas9 embryos were injected with the components 

described above. Survival rates varied between ~2 and ~10% for different 

injection dates (Table 3.5). Even though Kistler et al. 2015 recommended to 

discard G0 males due to their inability of efficient HDR, a lack of convincing 

evidence for this meant that G0 males were also outcrossed in this study. No 

HDR events were detected amongst the G1s as no Ds-Red positives were found. 

Partial feminisation of some G0 adults was observed to varying degrees as 

described in (Hall et al. 2015), whilst no G0 pupae or adults showed mosaic 

red/white phenotypes as described in the same study. Partial or ‘mosaic’ 
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feminisation would be owed to somatic Nix knock-out whilst somatic knock-out 

of kmo was expected to result in mosaic white eyed phenotypes (i.e. patches of 

red or white in the adult eyes). Section 3.3.3 and 3.3.4 describe these findings in 

greater detail. Owing to the absence of a white-eyed background Aedes aegypti 

strain to cross injected G0 adults to, the chance of finding kmo mutants amongst 

the G1s was negligible. Any kmo G1 mutants would be heterozygous for kmo- 

and hence would not present a phenotype. Instead, G1 adult pools (one for each 

respective G0 adult cage) were set up for sibling to sibling crosses and the G2 

progeny screened for kmo-/- white-eyed phenotypes. None of these white-eyed 

individuals were found (Section 3.3.4).  

 

A total of 2374 AWT embryos were injected with the components described 

above. Survival rates varied between ~2 and ~8% for different injection dates 

(Table 3.6). Survival rates were similar to injections into OX5226 lines, although 

perhaps lower. An explanation for a lower survival rate when Cas9 protein is 

injected vs endogenous Cas9 translation in nanos-Cas9 lines is the fact that there 

may be more Cas9 in the embryos depending on the amount produced by nanos-

Cas9.  The amount of Cas9 might be variable, depending on the volume of liquid 

injected, whilst this would be expected to be more constant in nanos-Cas9 lines. 

However, this is not supported strongly as the difference between the two 

injection sets is only slight. Partial feminisation of some G0 adults was observed 

to varying degrees, whilst no G0 adults showed mosaic red/white phenotypes, as 

described above. Section 3.3.3 and 3.3.4 describe these findings in detail. G1 
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adult pools (one for each respective G0 adult cage) were set up for sibling to 

sibling crosses and the G2 progeny screened for kmo-/- white-eyed phenotypes, 

as described above. None of these white-eyed individuals were found (Section 

3.3.4).  

 

A putative HDR event was found from this set of injections; a total of 38 

Hr5IE1-DsRed positive individual G1s (19 females and 19 males) were found 

from a single G0 male adult pool. Transgenesis efficiency (calculated as a 

percentage of G0 adults bearing transgenic progeny) was of 1.14% (Table 3.6). 

Given the extremely low occurrence of HDR in the two injection sets (5509 

embryos injected, 35 G0 pools were set up, and only 1 in 35 pools gave 

transgenics), these were assumed to represent a single insertion event. Genetic 

female transgenics were not expected as a Nix knock-in would in theory only be 

present in genetic males. The hypothesis was that the observed females were 

actually feminised genetic males. However, in that case it was unclear why 

Hr5IE1-DsRed positive males were found as well. Section 3.3.5 and 3.3.6 

describes the downstream analysis for these transgenics.  
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Table 3.5: Nix sgRNAs, Nix HDR donor, ku70 dsRNA, and kmo sgRNAs were injected into nanos-Cas9 Aedes aegypti embryos: 
Aedes aegypti nanos-Cas9 (OX5226 line) embryos were injected with Nix sgRNAs, Hr5IE1-DsRed Nix HDR donor plasmid, kmo sgRNAs to verify CRISPR-Cas9 

activity, and ku70 dsRNA to reduce NHEJ repair and favour HDR. A summary of the number of injected embryos, larval hatch rates, adult survival rates, and 

transformation efficiency (percentage of knock-in events per G0 adult) is provided. A total of 18 different G0 adult pools were crossed to AWT. G1 larvae were 

screened for Nix HDR knock-in events and none were found. To be able to screen for kmo mutations without a white eyed line to cross to, a pool of G1s from each 

G0 pool were allowed to interbreed (sibling to sibling crosses) with the hope that two heterozygous kmo mutants would cross to phenotypically reveal the mutation 

amongst G2s. No kmo-/kmo- mutants were found amongst the G2 progeny. 

Date 

Injected 

Nix 

sgRNA 

5 (ng/µl) 

Nix 

sgRNA 

8 (ng/µl) 

ku70 

dsRNA 

(ng/µl) 

kmo 

sgRNA 

281 

(ng/µl) 

kmo 

sgRNA 

460 

(ng/µl) 

kmo 

sgRNA 

519 

(ng/µl) 

Nix 

Donor 

Plasmid 

(ng/µl) 

Embryos 

Larvae 

(Hatch 

Rate) 

Adults 

(Survival 

Rate) 

Total 

G0 

Pools 

G1 

HDR 

+ves 

Single 

HDR  

+ve 

Events 

kmo 

G2 

KOs 

14.7.16 40 40 100 40 40 40 700 
1558 186 (11.9%) 151 (9.7%) 13 0 0 0 

15.7.16 40 40 100 40 40 40 700 

20.7.16 40 40 100 40 40 40 700 
494 14 (2.8%) 8 (1.6%) 2 0 0 0 

25.7.16 40 40 100 40 40 40 700 

21.7.16 40 40 100 40 40 40 700 
1083 23 (2.1%) 19 (1.8%) 3 0 0 0 

22.7.16 40 40 100 40 40 40 700 

       
Total 3135 223 (7.1%) 178 (5.7%) 18 0 0 0 

          

Transformation Efficiency 0.00% 
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Table 3.6: Nix sgRNAs, Nix HDR donor, ku70 dsRNA, kmo sgRNAs, and Cas9 protein were injected into AWT Aedes aegypti embryos: 
AWT strain Aedes aegypti embryos were injected with Nix sgRNAs, Hr5IE1-DsRed Nix HDR donor plasmid, kmo sgRNAs to verify CRISPR-Cas9 activity, Cas9 

protein and ku70 dsRNA to reduce NHEJ repair and favour HDR. A summary of the number of injected embryos, larval hatch rates, adult survival rates, and 

transformation efficiency (percentage of knock-in events per G0 adult) is provided. A total of 17 different G0 adult pools were crossed to AWT. G1 larvae were 

screened for Nix HDR knock-in events and 38 individuals (19 females and 19 male) from a single male G0 pool were found to be Hr5IE1-DsRed positive. Since they 

all came from a single G0 pool they originated most likely from a single integration event. Female transgenics were not expected as a Nix knock-in would in theory 

only be present in males. To be able to screen for kmo mutations without a white eyed line to cross to, a pool of G1s from each G0 pool were allowed to interbreed 

(sibling to sibling crosses) with the hope that two heterozygous kmo mutants would cross to phenotypically reveal the mutation amongst G2s. No kmo-/kmo- mutants 

were found amongst the G2 progeny. 

Date 

Injected 

Nix 

sgRNA 

5 

(ng/µl) 

Nix 

sgRNA 

8 

(ng/µl) 

ku70 

dsRNA 

(ng/µl) 

kmo 

sgRNA 

281 

(ng/µl) 

kmo 

sgRNA 

460 

(ng/µl) 

kmo 

sgRNA 

519 

(ng/µl) 

Nix 

Donor 

Plasmid 

(ng/µl) 

Cas9 

(ng/µl) 
Embryos 

Larvae 

(Hatch 

Rate) 

Adults 

(Survival 

Rate) 

Total 

G0 

Pools 

G1 

HDR 

+ves 

Single 

HDR  

+ve 

Events 

kmo 

G2 

KOs 

27.7.16 40 40 100 40 40 40 700 300 
967 28 (2.9%) 19 (2%) 2 38 1 0 

28.7.16 40 40 100 40 40 40 700 300 

1.8.16 40 40 100 40 40 40 700 300 
540 22 (4.1%) 16 (3%) 5 0 0 0 

2.8.16 40 40 100 40 40 40 700 300 

16.8.16 40 40 100 40 40 40 700 300 540 
55 (10.2%) 46 (8.5%) 7 0 0 0 

18.8.16 40 40 100 40 40 40 700 300 104 

19.8.16 40 40 100 40 40 40 700 300 223 9 (4%) 8 (3.6%) 3 0 0 0 

 
       

Total 2374 9 (4%) 89 (3.7%) 17 38 1 0 

           
Transformation Efficiency 1.14% 
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3.3.3 G0 males showed signs of feminisation upon Nix sgRNA injection 

G0s were screened for NHEJ mutations in Nix and kmo; through partial 

feminisation of males as was reported in Hall et al. 2015. The expected 

phenotypes ranged from malformations to feminisation of body parts. For 

external genitalia these were; gonocoxite rotation with respect to the normal 

orientation, as well as missing gonocoxites and/or gonostyli. With respect to the 

characteristic plumose (or feathery) antennae in males, the following was 

expected; a loss of the feathery appearance into an intermediate feminised form 

or directly female looking pilose antennae.  

 

The percentage of G0 individuals upon Nix injections showing malformed or 

feminised external genitalia in Hall et al. 2015 was 78%. However, the 

percentage of G0 individuals showing feminised antennae was 50%, a 

considerably lower value than those showing external genitalia phenotypes. 12 

AWT females and 12 males were checked under the microscope in order to gain 

familiarity on WT sexual dimorphism in Aedes aegypti. Gonocoxites were all 

along the latero-lateral axis and retained the same orientation with respect to the 

body for the 12 WT males. All WT males had feathery antennae and all 

gonocoxites as well as gonostyli were all with normal looking morphology. A 

clear dimorphic feature was the length of the palps, which were considerably 

longer in males than in females. The length of the palps would be almost as long 

as the mouthparts in males but in the case of females the palps hardly extend 

from the head. Interestingly, this dimorphic feature was not discussed as being 
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also in the control of Nix in (Hall et al. 2015), even though shorter palps in 

feminised males can be observed in their supplementary figures.  

 

A number of male G0s were selected, from injected or integrated Cas9 injections, 

and were examined under the stereomicroscope for signs of feminisation. 

Injections into nanos-Cas9 embryos resulted in 4 out of 17 (23.5%) feminised G0 

males (Table 3.7). The phenotypes included a male with a shorter palp, two 

males with gonocoxites at a different angle with respect to the WT orientation, 

and one male with less feathery antennae. Cas9 protein injections into AWT 

individuals resulted in 3 out of 19 (15.8%) feminised G0 males (Table 3.7). The 

phenotypes included 3 males with gonocoxites at different angles with respect to 

WT orientations, and one of such males also had less feathery antennae. The 

difference in percentage feminisation is not great, and comparison with such low 

numbers would not be very meaningful. Instead checking for feminisation in G0s 

was a confirmation of endogenous Cas9 activity of OX5226 lines as well as Cas9 

activity in Cas9 protein injections into AWT embryos. Figure 3.5 shows images 

of the G0 individuals screened and the different phenotypes observed when 

compared to WT.  
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Table 3.7: Selected G0 males were checked for signs of feminisation: 
Selected G0 males from both nanos-Cas9 and Cas9 protein injections were checked for 

feminisation, 13 and 16 males respectively. Percentages of 23.5 and 15.8% were observed 

respectively. Phenotypes seen involved less feathery antennae, orientation changes of 

gonocoxites, as well as shortening of palps.  

Selected G0 ♂s checked for signs of feminisation 

Injected or 

Integrated 

Cas9 

Date 
Normal-

looking 
Feminised Total 

Percentage 

Feminised 
Comments 

nanos-Cas9 
14/15 July 

2017 
13 4 17 23.5% 

1 with malformed, 

shorter palps. 2 with 

gonocoxites at an angle. 

1 less feathery 

antennae. 

Cas9 Protein 

27/28 

August 

2017 

16 3 19 15.8% 

3 with gonocoxites at an 

angle as well as 1 of 

them with less feathery 

antennae. 

 TOTAL 29 7 36 19.4%  
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Figure 3.5: Example of feminisation phenotypes amongst the G0s screened: 
AWT male and female external genitalia, as well as antennae and palps are shown for 

comparison with their feminised counterparts. Feminised G0 males are shown above, with the 

three different phenotypes observed; malformed shorter palps, twisted gonocoxites and less 

feathery antennae. 

 

3.3.4 No kmo knock-out events were detected 

G0 males were screened for mosaic knock-out events in the eye at the same time 

as they were screened for signs of feminisation (Section 3.3.3). As described in 

(Hall et al. 2015), eye phenotypes were expected to involve red or white mosaic 

patterns. All eyes screened were the WT black colour, so no somatic activity of 

Cas9-kmo-sgRNAs was detected.  
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As described above, a white eyed background strain was not available for 

crossing to at the time of the injections (Table 3.5 and Table 3.6). This meant that 

G0 adults were crossed to AWT Ae. aegypti individuals and any kmo knock-out 

events inherited by the G1s could not show a phenotype as they would always 

inherit a wild type kmo copy from their AWT parent. Given the high efficiency 

of CRISPR-Cas9 reported in Ae. aegypti with the same sgRNAs, 23-90% of G0s 

resulted in mutant progeny (Basu et al. 2015), there was a chance of finding kmo-

/- individuals amongst G2s upon crossing G1s with themselves. G1s were 

crossed in sibling to sibling pools and their G2 progeny was screened. A single 

G1 pool was set up for each initial G0 pool. G1 pools were set up with 50-100 

adults. Even after screening 4 oviposition cycles, no white eyed progeny was 

found.  

 

Obtaining a kmo knock-out was not the main objective of these injections. 

However, there were multiple limitations of such an approach in order to verify 

CRISPR-Cas9 activity. Firstly, ku70 dsRNA was injected in order to reduce the 

rate of NHEJ repair which would, at the same time as increasing the wanted Nix 

HDR, reduce the mutation efficiency of CRISPR-Cas9 as it necessitates the 

error-prone pathway to generate mutations from the cleaved double strand breaks 

(DSBs). However, even if ku70 dsRNA reduces the rate of knock-outs, Nix 

somatic knock-outs were still observed through mosaic feminisation of G0 

adults. This appears to be surprising, however whilst the somatic tissues 

requiring kmo function are in the eye, which develops from the anterior end of 
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the embryo, somatic tissues requiring Nix function are probably within the 

gonads, which develop from the posterior end of the embryo where they were 

injected. This may in part explain the differential rate at which mosaic mutations 

are observed for both genes in G0 adults. This disparity is also observed in (Hall 

et al. 2015), as fewer kmo than Nix mutant mosaic G0s were found. Moreover, 

co-injecting 5 different sgRNAs simultaneously may not be the best strategy as 

they may compete for Cas9 loading (Mekler et al. 2016), and should Cas9 

affinities vary substantially, either the kmo or Nix mutagenesis strategy might 

have been severely compromised. Finally, a kmo knock-out (white eyed) 

background line such as “Higgs White Eye” could have been very helpful, as this 

would have allowed identification of kmo mutants in the G1, even if present at 

rather low frequency.  

 

One way to circumvent these problems would have been to separate HDR from 

NHEJ orientated injections and maximise the chances of observing NHEJ knock-

out events whilst also being able to maximise the chances of successful HDR 

separately. This would have improved the chances of finding kmo-/- individuals 

amongst G2 individuals. 

 

3.3.5 Hr5IE1-DsRed positive G1 progeny were obtained from one G0 pool 

As indicated in Section 3.3.2 a single G0 male adult pool from Cas9 protein 

injections gave Hr5IE1-DsRed positive G1 progeny (Table 3.6). Treated as a 

single HDR insertion event, the integration individuals were named NixInt1 (for 
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Nix integration 1). The observed even split between number of male and female 

transgenics was unexpected. The expected outcome of the Nix integration was to 

make genetic males into females, and the finding of phenotypic males, as well as 

females amongst the transgenic progeny was surprising. All G1s from the 

progeny pool were counted for male and female numbers, whether wild type or 

NixInt1 positive (Table 3.8). The hypothesis was that if any genetic males had 

been feminised, the expected 1:1 sex ratio would have been distorted.  

 

Table 3.8: Sex distribution and ratios for NixInt1 positive and negative G1s from 

the same G0 pool:  
The normal sex ratio of 1:1 was met almost to perfection. This was unexpected for an 

integration event into Nix. Ratios are given with a precision of 1 decimal place. This suggests a 

lack of Nix knock-out events as well as casting doubt on the integration site of NixInt1 positives. 

 Females Males 
Female:Male Ratio 

(1dp) 

NixInt1 positives 19 19 1.0:1.0 

NixInt1 negatives 100 101 1.0:1.0 

TOTAL 119 120 1.0:1.0 

 

1:1 sex ratios were not even minimally distorted. In addition, any NHEJ Nix 

knock-outs (with incorrectly repaired DSBs) may have also distorted the WT sex 

ratio. Whilst G0 adult males were screened for mosaic feminisation (Section 

3.3.3), G1 pools from the 35 G0 adult pools did not have their sex ratios 

determined. This meant that there could have been G1 Nix knockouts but this 

was not assayed in this study. The reason behind this was that even if sex ratio 

skews were found, it would be impossible to determine which individuals had the 

Nix knockout as feminised Nix- males and genetic females would in theory be 

indistinguishable. Nevertheless, sex ratio data was obtained for one of the G1 

pools (Table 3.8), even if the purpose was to check for skews driven by NixInt1 
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individuals. In addition, NixInt1 individuals, male and females, were examined 

under the stereomicroscope and no signs of feminisation were seen in any 

individuals. Although the phenotype expected was full feminisation, intermediate 

forms were not found either, which may have been a sign of some impairment of 

Nix normal function should they have been found. 

 

No stable G1 Nix knockouts were obtained in (Hall et al. 2015) and hence it 

would have been interesting to find out if feminised genetic males, due to Nix 

knockout, would be viable, sterile ‘pseudo-females’ or even fertile ‘pseudo-

females. NixInt1 individuals were crossed to each other in sibling to sibling 

crosses. No obvious reduction in fertility was detected as crosses were successful 

and resulted in typical numbers of G2 eggs. Hatching and maintaining this line, 

whilst enriching for NixInt1 individuals was also straightforward. 

 

HDR was presumed to be highly specific, and misdirected integrations were 

expected to be rare. However, the simplest explanation for the data above was 

that the labelled NixInt1 integration had not occurred in Nix but rather in a sex-

independent region of the genome. Incidentally, even if dealing with a 

misdirected integration, the fact that the integration was originated from a male 

G0 pool is already interesting data in itself. This putative HDR event contradicts 

the recommendations for HDR given in Kistler et al. 2015 where G0 males were 

just dismissed as incapable of effective HDR.  
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3.3.6 Integration of Hr5IE1-DsRed2 was not into the expected Nix locus 

In order to test the hypothesis, based on the data above, of a misdirected 

integration of the Nix Hr5IE1-DsRed donor template, several PCRs were 

performed. Three different primer sets were used to be able to confirm the 

presence of the transgene, rule out the possibility of contamination of the 

transgenic bearing G0 pool by other Hr5IE1-DsRed lines in Oxitec, and assay the 

integrity of the Nix gene in both WT and NixInt1 individuals (Figure 3.6).  

 

gDNA was collected from 6 individuals (an OX5226 male, an AWT female, an 

AWT male, a NixInt1 female, and two NixInt1 males) and then PCRed with the 

three different primer sets. The first amplicon, 567bp, involved a primer within 

the 3’ Nix flank and a second within DsRed; this would only be amplified in 

individuals containing an insertion from the Nix Hr5IE1-DsRed2 donor template. 

The second amplicon, 653bp, has primers which bind at both 5’ and 3’ Nix flanks 

which are present in the endogenous gene as well as the Nix Hr5IE1-DsRed2 

donor template. However, the amplicon from the donor template would be 

2654bp and hence would not be amplified with the choice of PCR conditions 

(Section 3.2.7). The third amplicon, 575bp, has primers that bind within DsRed2 

which would amplify in potential Nix integrations as well as in potential Hr5IE1-

DsRed contaminants. Amplicon sizes were as expected (Figure 3.6) where a clear 

band was observed. The DsRed to Nix amplicon, as well as the DsRed only 

amplicon, showed up for the three NixInt1 individuals (male or female) and was 

absent from AWT (male or female) and male OX5226 individuals. This 
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suggested NixInt1 individuals indeed originated from a Nix Hr5IE1-DsRed2 

donor template mediated integration and not from a contamination event. The 

endogenous Nix amplicon showed up for all males and no females, regardless if 

WT, OX5226, or NixInt1 individuals. This demonstrates that the endogenous Nix 

locus is intact, at the targeted integration site.  

 

 

Figure 3.6: The observed integration event was not into Nix nor is it sex linked: 
gDNA from samples 1 to 6 was PCRed using three different pairs of primers. The three 

different amplicons for each of the six gDNA samples are shown above. Samples are; 1) 

OX5226 male, 2) female AWT, 3) male AWT, 4) female NixInt1, 5) male NixInt1, 6) second 

male NixInt1. DsRed to Nix amplicon has one primer binding within the DsRed marker and the 

other binding one of the Nix homology arms supplied, 567bp; RedSeqF and Nixfl3diagR. 

Endogenous Nix amplicon has primers bridging the targeted Nix region for cleavage, 653bp, 

(although these primers could also amplify from the Nix DsRed donor construct the amplicon 

would be 2654bp and hence is excluded in this PCR); Nixfl5diagF and Nixfl3diagR. DsRed 

amplicon has internal coding sequence primers; diag6-DsRed FW and diag6-DsRed RV. Primer 

sequences can be found in the methods Chapter of this Section. DsRed to Nix amplicon appears 

for both male and female NixInt1 individuals, suggesting they carry the same integration. DsRed 

amplicon suggests the same. Endogenous Nix is found intact and present in all males regardless 

if they are WT or NixInt1 individuals. This confirms HDR into Nix did not occur and the 

integration is elsewhere in the genome where it is not sex linked. Low bands, below 200b, 

probably represent primer dimers. 

 

This raises several questions, how, where, and how much of the Nix Hr5IE1-

DsRed2 donor template integrated in the Aedes aegypti genome. Although this 

was not explored during this study, it could be discussed as future work to be 

done. The Hr5IE1-DsRed expression observed in NixInt1 individuals and the 
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PCR results above, show that at least 2352bp of the Nix donor template 

successfully integrated within the genome, including the full fluorescent marker 

cassette and part of the 3’ Nix flank.  

 

It is not possible to determine, from the data of this study, whether the integration 

observed depended on homology between the integrated site and the Nix donor 

template. Similarly, there is no evidence for the involvement, if any, of Cas9-

sgRNA activity in the integration event. A possible explanation for the 

mechanism of integration would be that off-target Cas9-sgRNA activity resulted 

in DSBs elsewhere in the genome, and an excess of Nix donor template would 

have favoured it as a template for repair even in the absence of sequence 

homology. A second option would be that loci of similar sequence to the Nix 

locus would be cleaved, albeit less efficiently, by the Cas9-sgRNAs injected and 

the partial sequence homology would allow HDR from the Nix donor template. 

This second option appears more likely, given the low coverage of the M-locus 

and other regions of the Aedes aegypti genome in the assembly used in this 

project to check for potential off-targets (AaegL3, April 2014); similar regions in 

the genome could easily exist and be currently unaccounted for. In fact, the Nix 

gene itself did not get enough coverage in the AaegL3 assembly and hence was 

not included as part of the final vector base genome. The Nix locus sequence data 

used in this project came from sequenced M-locus BAC clones later published in 

Turner et al. 2017.  
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3.3.7 Limitations in the Nix knock-in strategy 

The main question arising from this study is why the Nix Hr5IE1-DsRed2 donor 

template did not integrate in the M-locus Nix gene. A few explanations can be 

explored; from the repetitive nature of the Nix gene and region, to the repressive 

nature (in terms of chromatin) of y-like chromosomal regions such as the M-

locus, to the potential pitfalls of the knock-in strategy itself. Although it should 

be possible, given the successful genetic modification of the Y chromosome in 

Anopheles gambiae (Bernardini et al. 2014). 

 

Although of invaluable prospects, for Aedes aegypti genetic control, HDR 

mediated integrations into the M-locus may not be straightforward. Y-like 

regions of genomes in different species tend to have particular characteristics. 

Although not a Y-chromosome, the M-locus appears to be an ancestral version of 

one, similar to what the common ancestor of Aedes aegypti and Anopheles 

gambiae probably had (Toups and Hahn 2010). Y-like regions usually harbour 

repetitive regions, which is indeed what is found in the M-locus (Hall et al. 

2015), which may reduce the efficiency and specificity of HDR. In addition, a 

repressed chromatin environment, due to dosage compensation effects in sex 

chromosomes (Disteche 2012), may also reduce the efficiency of HDR , or of the 

expression of the integrated marker gene, or both. 

 

A final concern over the strategy resides in the knock-in objective itself, as it 

could represent a major pitfall in the strategy. A Nix knock-in could in fact be 
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lethal in itself and this would have prevented any Nix specific integrations from 

being found amongst surviving G1s. A complete lack of Nix in early 

development, where it is usually expressed could be lethal in G1s carrying the 

knock-in. 
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3.4 Conclusions 

 

3.4.1 Homology directed repair CRISPR-Cas9 driven strategies can result in 

misdirected HDR integrations 

Even if the mechanism for misdirected integrations during HDR injections is 

unclear, there is some evidence that misdirected integrations, whether via HDR 

or not, may not be as uncommon as inititally expected. The misdirected knock-in 

presented above suggests it is at least possible when trying to get a Nix knock-in 

through HDR.  

 

Moreover, as discussed in this Chapter’s introduction, a comprehensive report of 

HDR in Aedes aegypti (Kistler et al. 2015) shows that these misguided, or at 

least unexpected genome integrations are relatively frequent when attempting 

HDR. Out of 11 independent HDR events (detected by fluorescent marker 

expression) 4 of them were non-specific. Interestingly some genes seemed 

specifically refractory to integration. For one of the targeted genes, injections 

resulted in 3 different G0s bearing fluorescent progeny, but none of the 

individuals had a directed integration. Conversely, one of the genes showed a 

total of 6 different G0s bearing fluorescent progeny and all represented directed 

integrations. The third gene which was successfully knocked-in had 2 different 

G0s bearing fluorescent progeny but only one of the events was a directed 

integration. This suggests that some genes are much more amenable to HDR than 

others. A potential reason for the observations may be that a particular sgRNA is 
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not efficient at guiding Cas9 to the correct target, or there are other genomic loci 

which share sequence similarity with the homology arms. However, given the 

disparity in HDR efficiencies between gene targets and the proportion of 

misdirected repair this may not be the only reason. There may be some locus 

specific HDR hurdles such as repressed or repetitive genomic areas which will 

make integration in certain targets very challenging and hence encourage 

misdirected integrations if enough embryos are injected. 

 

This chromatin, or otherwise caused, resistance to HDR could prove particularly 

frustrating for gene drives, especially if the M-locus is one of such regions. In 

this study a total of 267 G0 adult survivors from Nix HDR knock-in injections 

gave only one marker integration event which was also misdirected. Even when 

discounting the G0 males, unnecessary as suggested in this study, there was a 

total of 112 female G0s which is a number greater than for any individual 

knocked-in gene in Kistler et al. 2015. Given that Nix sgRNA cutting was 

confirmed in Hall et al. 2015, and there are not any known loci in the genome 

with similar sequences to the Nix homology arms used, the presented body of 

work may suggest that the Nix and perhaps other M-locus knock-ins will be 

especially challenging in the future. 
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 Act4 Based Gene Drive in Aedes Chapter 4 -

aegypti 

 

4.1 Introduction 

 

4.1.1 Mosquito vector-borne and Aedes aegypti control 

Mosquito-borne diseases alone are responsible for almost the entirety of the 

world’s insect disease burden (McGraw and O’Neill 2013), it is reasonable to 

focus efforts on them. Amongst mosquito-borne diseases malaria is the deadliest 

causing around 600,000 deaths per year (Autino et al. 2012). Four species of 

malaria parasites are traditionally recognised as being responsible for the natural 

infection in human beings (Plasmodium falciparum, P. malariae, P. ovale, and P. 

vivax) (Mendis et al. 2001). The recent upsurge of P. knowlesi malaria in South 

East Asia has led clinicians to consider it as the fifth human malaria parasite as 

until recently it only infected macaques (Singh and Daneshvar 2013). These 

different malaria parasites have numerous vector species to transmit it to humans. 

Over 30 different species of Anopheles mosquitoes are capable of malaria 

transmission, each with different spatial distribution in the world (Kiszewski et 

al. 2004). Even though mosquito transgenesis has been already performed in four 

species of Anopheles mosquitoes; gambiae, stephensi, albimanus, and arabiensis, 

(Catteruccia et al. 2005; Perera et al. 2002; McGraw and O’Neill 2013) genetic 

vector control of all the relevant species would be a major challenge.  
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Dengue is only second to malaria in the number of infections per year and 

estimates oscillate between 50-100 million cases per year (Mustafa et al. 2015). 

A 2013 study estimates 390 million dengue infections per year with 96 million 

clinically manifesting (Bhatt et al. 2013). The trajectories are different: 

worldwide malaria cases decreased between 2005 and 2010 from 244 to 216 

million despite population increases (Autino et al. 2012) whilst dengue cases 

have increased 30 fold in the last 50 years (Guzman and Harris 2015) (Figure 

4.1). Whilst there are several forms of prophylactic treatment for malaria, there 

are currently no effective treatments against the main four serotypes for human 

dengue, DENV1-4 (Messina et al. 2014). A fifth serotype of dengue virus, 

DENV-5, has been recently found and, although it mostly infects primates by 

following the sylvatic cycle (Mustafa et al. 2015), this supports the pursuit of 

genetic vector control solutions.  

 

 

Figure 4.1: Global prevalence of dengue: 
Taken from (Guzman and Harris 2015). The map shows the global spread of dengue and its 

prevalence. This is currently the Americas, parts of Africa, India, and Southeast Asia. Broadly, 

these areas match areas of Aedes aegypti prevalence. 
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Unlike the breadth of malaria vectors, human dengue is only transmitted by 

Aedes aegypti, to a lesser extent Aedes albopictus, and potentially a small 

number of other Aedes species such as Aedes polynesiensis (Kraemer et al. 

2015). This, together with the fact that they occupy distinct enough areas of the 

world, makes these two species a better choice for genetic control of mosquitoes. 

Furthermore, population densities of Anopheles species in endemic areas may 

outnumber population densities of Aedes species in equivalent areas, making 

eradication or effective population reduction more feasible. Aedes aegypti is also 

the main mosquito vector for yellow fever and Chikungunya with ~200,000 and 

~500,000 cases per year respectively (Barnett 2007; Fredericks and Fernandez-

Sesma 2014). It is also responsible for the recent Zika epidemic (Paixão et al. 

2016). Dealing with a single species, Aedes aegypti in this case, would target 

four different diseases simultaneously. Thus targeting each disease separately, or 

indeed serotype, is likely to be less efficient.  

 

One of the most commonly used strains of Aedes aegypti in research labs is the 

Liverpool (LVP) strain. Originally from West Africa, it has been maintained at 

the Liverpool School of Tropical Medicine since 1936 (Vector Base 2017). It 

was initially selected for greater Brugia malayi (filarial worm parasite) 

susceptibility (Macdonald 1962). The LVP strain has been the one used during 

this project. A main reason for choosing this strain is that there are good genome 

assemblies from which to extract quality sequence data from. At the time of this 
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work the AaegL3, April 2014 assembly was the best up to date LVP genome 

available.  

 

4.1.2 Haploinsufficiency as a gene drive tool 

Haploinsufficiency can be defined as the lack of full function provided by a 

single copy of a gene. Consequently, mutations in haploinsufficient genes would 

be dominant mutations in the same way as mutations of haplosufficient genes 

would be recessive. Haploinsufficiency is rarer than haplosufficiency in diploid 

organism. One reason for this is the evolutionary advantage of having expression 

level redundancy from an extra allele and hence a buffer against mutation effects. 

This begs the question of why haploinsufficient genes exist in the first place. 

Aside from simple fortuitous occurrence, the reason for haploinsufficiency could 

be that an excess of a particular gene product incurs a fitness cost. Hence, where 

this fitness cost outweighs the benefit of allele redundancy haploinsufficiency 

may be evolutionarily maintained for a particular gene.  

 

Haploinsufficient genes can be used for underdominance based gene drives of 

surprisingly simple architecture. Only an RNAi and an RNAi insensitive rescue 

component are required, where both are linked in the same locus, for function. 

Whilst one copy of the RNAi against the endogenous haploinsufficient gene 

should be enough to knockdown expression from both alleles, one rescue copy 

would not be enough to restore function. In the case of lethal or sterile 

haploinsufficient targets, extreme one locus underdominance can be achieved. 
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Homozygous RNAi-Rescue individuals would be just as viable as homozygous 

WT individuals, provided the rescue is complete and no constitutive fitness cost 

of the transgenes, whilst heterozygotes would be dead or inviable.  

 

This concept has been proposed in insects making use of the well-known 

haploinsufficient cytoplasmic ribosomal protein (CRP) genes. In Drosophila 

melanogaster mutations in one allele of these genes, of which there are 88, often 

result in what is called the Minute phenotype. The Minute phenotype confers 

prolonged development as well as poor fertility and viability (Marygold et al. 

2007). 64 of the 65 known Minute loci in D. melanogaster most likely 

correspond to CRP genes (Marygold et al. 2007). These genes have also been 

shown to be haploinsufficient in yeast, zebrafish, Arabidopsis, humans and mice 

(Kim et al. 2010; Marygold et al. 2007). In a particular study a working 

underdominance system was devised (Figure 4.2) using RpL14, a Minute CRP 

gene, in D. melanogaster (Reeves et al. 2014). This system was shown to work 

in D. melanogaster, as an effective but reversible underdominance drive.  
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Figure 4.2: Underdominance on RpL14 haploinsufficiency in D. melanogaster: 
Taken from (Reeves et al. 2014). All transgenic components are inserted at the same locus. The 

RNAi component is under a UAS promoter making the knockdown inducible and hence 

facilitating the building of the system for proof of principle. The rescue copy includes the full 

copy of the endogenous RpL14 gene with exons and introns as well as regulatory regions. Both 

population transformation and reversal was demonstrated with this system. 

 

4.1.3 Is Act4 haploinsufficient in Aedes aegypti? 

Act88F is one of the few known haploinsufficient genes in insects aside from 

CRPs. An Actin isoform, Act88F, specifically expressed in the indirect flight 

muscle in D. melanogaster was shown to be haploinsufficient for flight in both 

males and females (An and Mogami 1996). 88F marks the cytological 

chromosome location of the gene in D. melanogaster. 

 

The gene has orthologues in Aedes aegypti, Aedes albopictus, and Culex 

quinquefasciatus. The orthologue of interest in mosquitoes is called Act4 and 

although it is expressed in the indirect flight muscles, just as in Drosophila, it 

does so only in females. There is also a male gene orthologous to Act88F in 
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mosquitoes; however, there is limited use in making males unable to fly in terms 

of genetic control strategies, since they are not the actual vectors of disease. 

Evidence from Act4 Crispr-Cas9 mutagenesis in Culex quinquefasciatus suggests 

Act4 is haploinsufficient for flight in females from this species of mosquito. A 

caveat to this is that the mutation obtained in that study was a 6bp in frame 

deletion which could conceivably be a gain of function dominant negative 

(antimorphic) rather than a loss of function (amorphic or hypomorphic) allele 

(Ilona Flis/Luke Alphey, unpublished work). 

 

There is currently no direct evidence of Act4 haploinsufficiency in Aedes aegypti 

although it is a strong hypothesis given all of the above. Experiments driving a 

dominant lethal gene under the control of the Aedes aegypti/albopictus Act4 

promoter resulted in flightless females in both Aedes aegypti and albopictus (Fu 

et al. 2010; Labbé et al. 2012). However, this does not necessarily indicate a role 

for Act4 in female flight, other than is implied by its expression pattern and 

putative encoded protein.  

 

4.1.4 Act4 haploinsufficiency would allow for female-specific underdominance 

A similar system to the above mentioned CRP underdominance designs can be 

devised using Act4 haploinsufficiency instead. The main drive difference would 

be that whilst CRP based underdominance functions in both sexes, Act4 based 

underdominance would be female specific. Such a system could be built using 

Act4 RNAi plus Act4 rescue components together into a single construct allele. 
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One copy of the RNAi is assumed to be able to practically knock-out endogenous 

Act4 function, whilst two copies of the Act4 RNAi-insensitive rescue would be 

required for full recovery of function (Figure 4.3). Thus, female-specific 

underdominance is attained as +/+ and -/- females are fertile and +/- females have 

flightless derived sterility. Inability to fly is likely also a lethal trait in the field 

due to inability to avoid predators, though this would not typically apply in a 

laboratory context. 

 

 

Figure 4.3: RNAi-Rescue system based on Act4 haploinsufficiency leads to female-

specific underdominance: 
An Act4 RNAi plus Act4 rescue construct would in theory provide female-specific 

underdominance, dependent on Act4 haploinsufficiency. Whilst one copy of the RNAi 

component should be capable of practically knock-ing out endogenous Act4 function, a single 

copy of the RNAi insensitive rescue would not be sufficient for normal Act4 function. Hence, 

underdominance is established. 

 

4.1.5 Act4 haploinsufficiency would allow for a RIDL with drive system 

As theoretically postulated in (Thomas et al. 2000) if a dominant female lethal 

(DFL) were to be inherited by males at a rate of higher than the normal 50% then 

a more effective version of RIDL would be created. It was also suggested that 



CONFIDENTIAL 

144 

 

this could be achieved via coupling the DFL to a meiotic drive. Such a system 

could be called ‘RIDL with drive’ and was modelled to be more effective at 

population suppression than either SIT or RIDL (Thomas et al. 2000). 

 

Implementing this concept together with CRISPR-Cas9 homing into Act4 would 

generate such a system provided Act4 is haploinsufficient and insertions into its 

coding sequence are dominant sterile. Sterility in this case is akin to lethality as 

flightless females will not be able to mate or participate in courtship behaviour. 

Although the females would not be strictly sterile, they could in principle be 

forced mated in the lab, they would be effectively sterile in the wild. 

 

4.1.6 Act4 haplosufficiency would provide a global or daisy-chain drive target 

If Act4 were haplosufficient the same construct proposed for the RIDL with drive 

would in turn become a global drive. Female sterility would be recessive and this 

would allow drive-carrying females to mate successfully and further spread the 

construct. This raises a concern over the RIDL with drive design as there is a risk 

of haplosufficient alleles existing in the wild even if Act4 haploinsufficiency was 

confirmed in the lab. These alleles would inadvertently change the RIDL with 

drive system into a global drive. Haplosufficient alleles could exist in the wild, 

even if the majority are haploinsufficient, with relevant changes in the regulatory 

region of Act4, or the gene itself. This risk can be dealt with by making use of the 

M-locus in Aedes aegypti as described in Section 4.1.7.  
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A split drive system was proposed in yeast whereby the Cas9 would be separated 

from the locus containing the relevant sgRNAs for homing (DiCarlo et al. 2015). 

The need for such drives aroused from concerns on the reversibility or control of 

CRISPR-Cas9 homing drives (Akbari et al. 2015). RNA guided homing drives, 

due to the small release size required for their spread, could be classed as global 

drives as they could spread worldwide relatively easily with difficult reversibility 

(Esvelt et al. 2014). A split drive, although much less effective for population 

replacement or suppression, would persist in a population, dependent on its 

fitness cost, without global spread.  

 

A daisy-chain drive is a development from the split drive concept where sgRNAs 

and Cas9 components are unlinked. It consists of a linear series of components 

which drive the next component in the chain and never itself (Noble et al. 2016). 

A chain with three of these elements could have the following configuration; i) 

The bottom element of the chain, ‘C’ in Figure 4.4, containing Cas9 and sgRNAs 

targeted at locus ‘B’, ii) ‘B’ in turn consisting of Cas9 only, and iii) the top 

element ‘A’, called the payload element, could consist of sgRNAs targeting its 

own homing. Such a configuration could allow for modular construction of daisy 

chain drives as elements C and B would work for different payload elements. 

The payload elements would ideally be recessive knock-out insertions of target 

genes haplosufficient for fertility or life, preferably female-specific. In fact, 

different ‘A’ elements could be used in the same daisy chain drive if multiple 
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targets were to be used. Hence, if Act4 were to be haplosufficient, it would make 

an ideal ‘A’ target for daisy-chain drives. 

 

 

Figure 4.4: Daisy-chain drives, unlike global drives, allow a fast but transient 

spread of local populations: 
Taken from (Noble et al. 2016). (A) Standard drive versions are modelled to spread quickly and 

indefinitely and hence potentially becoming global. (B) On the other hand a daisy drive has 

several elements driving each other sequentially. The bottom of the chain ‘C’ could consist of 

Cas9 and a sgRNA targeting the locus of ‘B’. ‘B’ in turn would have Cas9 only. And the top 

element ‘A’ (the payload or target gene) would have sgRNAs to promote its own homing. This 

chain would increase the frequencies of ‘B’ and to a much greater extent ‘A’ but only 

transiently. The bottom element would never undergo homing and hence would be naturally lost 

from a population over time. Gradually, all elements from the chain would also drop out from 

the population as there is no basal element to drive them anymore. 

 

A further challenge arises in this case where intermediate elements of the chain 

require conserved recognition sites in the genome as well as ‘inert’ integration 

sites, i.e. which impose a low to no fitness cost. These two requirements are, to 

an extent, incompatible as conserved regions of a genome are usually required 

for function. To circumvent this, conserved loci could be chosen as ‘B’ elements 
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as long as a sgRNA insensitive rescue copy was included within the elements 

themselves (Noble et al. 2016). CRPs could be potential ‘B’ loci, as well as 

having a relatively conserved sequence, if a haploinsufficient sequence is used as 

the insertion site (with suitable restoration of function), some types of cut-

resistant mutants would be non-viable. This therefore would also reduce the rate 

of resistant allele formation. 

 

4.1.7 Act4 drive components in the M-locus of Aedes aegypti 

As described in the previous Chapter, Aedes aegypti does not have an X or a Y 

chromosome. Instead, it has a male-specific genomic region called the M-locus 

in a Y-like portion of the chromosome (Hall et al. 2015). The Nix gene, within 

the M-locus, has been shown to be the male determining factor in Aedes aegypti 

as its knock-out results in feminised genetic males (Hall et al. 2015). It has been 

recently shown to be around 100kb in length owing to the large 99kb intron 

present (Turner et al. 2017).  

 

Hence, there is an opportunity to have gene drive components linked to the M-

locus. The Nix gene was omitted from the AaegL3, April 2014, genome assembly 

(Nene et al. 2007), due to the repetitive nature of the M-locus and the 

underrepresentation in terms of sequence reads due to its absence from females. 

However, a new PacBio assembly provides more robust data on the M-locus 

((Matthews et al. 2017)), and could be a starting point for M-locus integration of 
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components. Integrating components downstream of Nix would be an appropriate 

initial objective.  

 

As mentioned above, even if Act4 haploinsufficiency in lab LVP strains was 

confirmed, haplosufficient alleles could exist in nature. This could turn a RIDL 

with drive system into a global drive inadvertently, by resulting in sgRNA-Cas9 

driven homing in females. Integrating Cas9 into the M-locus instead of Act4 

(with the sgRNA element in Act4) would generate a drive with the same 

dynamics as the RIDL with drive system described above (Section 4.1.5), except 

it would be much less prone to uncontrolled spread. Cas9 would only ever be 

present in males and hence homing at the Act4 locus would be restricted to 

males, while the Cas9 would not drive and so would limit the geographic spread 

and (assuming a fitness cost to Cas9) the temporal persistence of the transgene 

system. The difficulty of homology directed repair into a highly repetitive 

genome region such as the M-locus could be a challenge. However, since 

integrating components in the M-locus could have many applications (Adelman 

and Tu 2016), including as daisy chain elements, it would be a valid pursuit. 

 

4.1.8 sgRNA multiplexing and off-cutting Cas9 as ways to avoid resistant 

alleles 

Resistant allele formation is one of the biggest hurdles for sequence specific gene 

drives (Champer, Reeves, et al. 2017). Upon endonuclease double strand breaks 

(DSBs) cell repair goes through one of the two main repair pathways; non-
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homologous end joining (NHEJ) or homologous directed repair (HDR) (Jasin 

and Rothstein 2013). Whilst homologous directed repair is a key requirement for 

homing, the more common NHEJ pathway does not allow homing and is an 

error-prone repair process (Lieber 2010). This can result in mutations, from SNPs 

to small insertions and deletions (INDELs), in the endonuclease targeted site. 

Changes at the target sequence may result in cut resistant alleles. Provided these 

alleles would generate functional proteins, these would not only prevent homing 

but they could compete effectively against the drive should it carry a fitness cost. 

To prevent this drive dampening or crashing effect, resistant allele formation 

must be accounted for. 

 

With regards to CRISPR homing drives, multiplexing gRNAs is perhaps the 

most obvious and widely proposed solution (Xie et al. 2015), as a homing drive 

should tolerate a certain rate of resistant allele formation provided there is 

cleavage redundancy from several gRNAs against the same target. Modelling in 

Noble et al. 2017 suggested 5 multiplexed gRNAs would be required to 

overcome drive dampening from resistant allele formation. Since one of the 

assumptions was that all NHEJ mutations would generate resistant alleles, and 

this is in practice unlikely, the number of multiplexed gRNAs required for 

ultimate population replacement or elimination could be somewhat smaller. 

Modelling in Marshall et al. 2017, which does try to calculate fully-resistant 

allele formation rates, suggests multiplexing of at least 2 gRNAs for a 90% 

probability of eliminating a population of 10,000, 3 gRNAs for a population of 1 
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million, and 4 gRNAs for a population of 10 billion. Natural SNPs were not 

considered in this study, although they would also pose a challenge to homing 

drives, together with the formation of resistant alleles through mutation. Two of 

the main gRNA multiplexing solutions proposed involve the use of 5’ and 3’ 

ribozymes upstream and downstream of each gRNA (Gao and Zhao 2014), or the 

use of tRNA self-processing abilities (Xie et al. 2015), all occurring within the 

same RNA transcript.  

 

A second alternative would be to seek endonuclease alternatives to Cas9 with 

staggered or off cleavage capacity with respect to the target site. Should such an 

RNA guided endonuclease exist, the target site would be more immune to 

resistant allele formation. Although not as widely discussed in the literature, this 

possibility has been suggested. Gantz et al. 2015 proposed the use of Cpf1 

instead of Cas9 owing to its staggered cut (Zetsche et al. 2015) which, even if 

still within the target sequence, it will cleave at a less critical region for 

recognition. Cpf1 has the additional advantage of being able to process its own 

gRNAs and hence facilitating their multiplexing (Zetsche et al. 2016).  

 

4.1.9 The importance of germline promoters in homing gene drives 

Expression of sgRNAs in insects currently relies on RNA pol III promoters U6 1-

3 (Port et al. 2014), which which is thought to result in ubiquitous expression in 

D. melanogaster just as their orthologues in insects such as Aedes aegypti (Dong 

et al. 2015), Anopheles gambiae (Hammond et al. 2016) or Anopheles stephensi 
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(Gantz et al. 2015). RNA pol III promoters usually ubiquitous and constitutive in 

their expression (Snyder et al. 2009). Hence, when referring to CRISPR-Cas9 

drives, the expression domain of Cas9 is what delineates CRISPR-Cas9 activity 

as sgRNAs are not the limiting factor.  

 

Homing drives necessitate germline expression for function. Without germline 

expression of the relevant nuclease, HDR homing events would not be 

transmitted to the next generation. Since, supra-Mendelian inheritance is crucial, 

so is germline expression. Conversely, HDR homing events beyond the germline 

could bring a range of disadvantages for a homing drive. Unnecessary off-site 

Cas9-sgRNA presence could lead to somatic cutting and result in a general 

fitness cost. Therefore, an ideal promoter to drive Cas9 in homing drives would 

exclusively drive expression in the germline. Sex-specific or stage-specific 

germline expression requirements may vary with specific applications. With 

regards to timing, germline promoters with pre-meiotic expression of transcripts 

are required since post-meiotic transcription undergoes repression (Olivieri and 

Olivieri 1965; Gould-Somero and Holland 1974), except for marked exceptions 

(Barreau, Benson, Gudmannsdottir, et al. 2008; Barreau, Benson and White-

Cooper 2008; Vibranovski et al. 2010). Moreover, once meiosis is complete after 

meiosis II, cells become haploid which eliminates any chance of homologous 

recombination (Marston and Amon 2004). Late germline expression is also to be 

avoided as it may increase the chance of transcript and/or protein contribution of 
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Cas9 and sgRNAs into eggs and/or sperm. This may result in unwanted somatic 

cutting in the embryo as well as contributing to resistant allele formation. 

 

Such homing drives have already been designed as proof of principle in D. 

melanogaster (Gantz and Bier 2015), Anopheles gambiae (Hammond et al. 

2016), and Anopheles stephensi (Gantz et al. 2015). They each used species 

specific orthologues of the vasa promoter. However, none of these vasa 

promoters fit the ideal germline promoter criteria, for homing drives, as outlined 

above. Observations in the three studies illustrate how the choice of promoter is 

important for effective homing drive design. Although how crucial is the choice 

will depend on the design context of a particular homing drive. For instance, for 

homing drives targeted at recessive female sterile targets such as in Hammond et 

al. 2016, a suboptimal choice of promoter can dampen the homing drive to the 

point of collapse, as shown in a subsequent analysis of the same study 

(Hammond et al. 2017). Another promoter expressing in the male germline is 

nanos, which although shows reduced leaky somatic expression with respect to 

vasa, it also readily results in resistant allele formation in D. melanogaster 

CRISPR-Cas9 homing drives (Champer, Reeves, et al. 2017; Champer, Liu, et 

al. 2017). The β2 tubulin promoter of Aedes aegypti may be a better choice as it 

is male germline specific, and its transcript is only found in the early 

spermatogenesis fraction of testes by in situ hybridisation (Smith et al. 2007).  
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Two recent studies have sought male and female germline specific promoters in 

Aedes aegypti (Sutton et al. 2016; Akbari et al. 2014). Amongst the best male 

germline specific promoters in Sutton et al. 2016 is the D. melanogaster 

mitoshell orthologue in Aedes aegypti (AAEL010268). This gene was selected on 

the basis of strongly expressing in early and not late spermatogenesis as well as 

almost absent in gonadectomised males, ovaries and females. matotopetli (or 

topi) is another gene which was shown to be expressed exclusively in primary 

spermatocytes in D. melanogaster (Perezgasga et al. 2004). Amongst germline 

promoters expressing in both males and females in D. melanogaster are zpg and 

bgm. Promoters with such expression would be useful for bi-sex homing drives. 

 

4.1.10 Project aim 

The aim of the project is to use the requirement of Act4 in Aedes aegypti females 

to build two different gene drives of different persistence; female specific 

underdominance and RIDL with drive. 
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4.2 Materials and Methods 

 

4.2.1 Aedes aegypti maintenance 

The Aedes aegypti mosquitoes used for transformation and crossing experiments 

in this Chapter were either from Latin wild type (LWT) and Liverpool (LVP) 

strains. LWT is a Mexico-derived strain (Harris et al. 2011), whilst the LVP 

strain originated from West Africa and was maintained in the Liverpool School 

of Tropical Medicine since 1936 (Vector Base 2017). Transgenic lines 

maintained were; exu-Cas9 (nanos-Cas9) and Act4 potentially different HDR 

knock-in insertions (2B+ to 2P+) lines.  

 

Mosquitoes were reared using previously described standard procedures for 

Aedes aegypti (Crampton et al. 1997). Where Aedes aegypti rearing procedures 

in The Pirbright Institute (Chapter 4) were the same as in Oxitec (Chapter 3) 

repetition will be avoided (Section 3.2.1). Briefly, the main differences are 

outlined below. 

 

LVP individuals to be used for injections were maintained by the mosquito team, 

and adults were reared in large cages rather than the standard small ones used for 

all other transformation and crossing experiments. Similarly, exu-Cas9 

individuals for injections were also reared to fit larger cages. Blood meals for egg 

collection were also supplied differently; the Hemotek PS5 system (Hemotek 

Ltd, UK) was used to heat the blood to 37°C during feeding. Hemotek feeders 
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were prepared by extending sheep intestine cut-outs over them, followed by a 

Parafilm M layer (Bemis) and securing the makeshift membrane with the black 

rings provided by the system. Defibrinated horse blood (TCS Biosciences) was 

then added and the feeders were sealed with plastic plugs. Blood meals were 

between 30 to 50 minutes long depending on how fast females would feed. Eggs 

were collected on unbleached coffee filter paper (Edesia Espress) placed in 1oz 

polystyrene portion cups (Fabri-Kal) filled with water to keep them wet over the 

egg laying period. Eggs were then desiccated and hatched after three days or 

stored for up to four months. Vacuum hatching of the eggs was carried out as 

described above (Section 3.2.1). However, to screen G1 egg papers for potential 

transgenics, these were hatched directly on water-filled trays with Liquifry No1 

(Interpret) to allow for a more ‘natural’ hatch and reduce the embryo losses 

thought to occur with vacuum hatching. Deionised water for mosquito rearing 

was provided by the Milli-Q system (Elix Technology Inside). 

 

4.2.2 Preparation of solutions for injections 

Two different types nuclease-free water were used for molecular biology in this 

Chapter. DNA work used Water for Molecular Biology (Millipore) whilst RNA 

work used DEPC Treated Water (Ambion). Since injection solutions all 

contained sgRNAs, the water of choice was DEPC treated water. For the 

preparation of injection solutions (Table 4.1); injection buffer was added for a 

final concentration of 5mM KCl and 0.1 mM NaH2PO4, pH 6.8. AGG1070 

plasmid was the Act4 donor template which had a 3xP3-mCherry marker flanked 



CONFIDENTIAL 

156 

 

by 2kb Act4 homology arms reaching up to the predicted cleavage site for Act4 

sgRNA 1 and 3. Two main injection solutions were made, one with and one 

without Cas9 protein, to be injected into exu-Cas9 and LVP embryos 

respectively. Act4 sgRNA combinations and concentrations (40-100 ng/µl) were 

altered in some injection dates, as well as the presence and concentration of the 

Act4 HDR donor template. Details of which are specified in the results below 

(Table 4.8, Table 4.11, and Table 4.12). Concentration changes respond to the 

distinct recommendations in the literature (Basu et al. 2015; Kistler et al. 2015), 

whilst different combinations of sgRNAs was thought to provide a general idea 

on whether some of the Act4 sgRNAs were more efficient at guiding Cas9 

cutting than others.  

 

Table 4.1: Components of injection solutions: 
Cas9 protein (PNA Bio Inc) was injected at concentrations recommended by the provider. Two 

types of injection solutions were made, with or without Cas9 protein, to be injected into exu-

Cas9 and LVP embryos respectively. Act4 sgRNA concentrations were varied between 40ng/µl 

to 100ng/µl, for different injection dates and not all Act4 sgRNAs were always included as 

indicated in results (Table 4.11 and Table 4.12). Similarly some injections did not include the 

AGG1070 donor template as indicated in results, and some other days the concentration 

supplied was changed (Table 4.8).  

Cas9 (injected into LVP) No Cas9 (injected into exu-Cas9) 

Act4 sgRNA 1 (40-100 ng/µl) Act4 sgRNA 1 (40-100 ng/µl) 

Act4 sgRNA 2 (40-100 ng/µl) Act4 sgRNA 2 (40-100 ng/µl) 

Act4 sgRNA 3 (40-100 ng/µl) Act4 sgRNA 3 (40-100 ng/µl) 

Act4 sgRNA 4 (40-100 ng/µl) Act4 sgRNA 4 (40-100 ng/µl) 

AGG1070 donor template (700 ng/µl) AGG1070 donor template (700 ng/µl) 

Cas9 protein (300 ng/µl) Injection buffer 

Injection buffer DEPC treated water 

DEPC treated water  

 

4.2.3 Aedes aegypti injections 

Microinjection of 1 to 2 hour old embryos was carried out mostly following 

established procedures (Morris 1997). Colour guided staging of embryos as 
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described in (Lobo et al. 2006) allowed selection for injection of embryos of a 

suitable developmental stage. Embryos were kept at RT (~22°C) whilst lining-up 

embryos for injection. Embryos too dark to be injected were discarded. Embryos 

were collected as described above from the respective injection cages (LVP, or 

exu-Cas9). Injection cages were kept in the dark during embryo collection to 

encourage laying. Occasionally, when embryo collection directly from the cage 

was scarce, around 20 to 30 females were taken out of the cage into a 50ml tube 

(Fisherbrand), containing an egg-collection coffee filter paper (Edesia Express), 

kept moist by wet cotton at the bottom of the tube. The crowded setting appeared 

to encourage egg-laying in Aedes aegypti females. Injections were carried out 

using a Femtojet 4x (Eppendorf) pneumatic back-pressure system. Needles were 

pulled from aluminosilicate glass (1.0mm x 0.64mm x 10cm, Sutter Instrument) 

by needle puller Model P-2000 (Sutter Instrument). They were then bevelled 

before the injection mix (kept on ice and centrifuged at 11000 x g) was loaded 

using microloader tips (Eppendorf). Microscope slides 76 x 26mm (Academy) 

were used as support for plastic coverslips (Fisherbrand). Line-up of embryos for 

injection was carried out on wet 55mm filter paper (qualitative, Fisherbrand) and 

embryos were transferred to the taped edge (Scotch double-sided sticky-tape) of 

a plastic coverslip by applying just enough pressure. Embryos were desiccated 

just enough to allow for effective liquid uptake from the needle. To stop fatal 

desiccation halocarbon oil 27 (Sigma) was pipetted over the embryos. The 

halocarbon oil used to cover the embryos was rinsed -off after injections and 

embryos were removed gently from the coverslips with a thin paintbrush and 
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transferred onto new coffee filter papers kept in a closed chamber (with 100% 

relative humidity) for three days prior hatching. 

 

4.2.4 Aedes aegypti injected G0 crossing 

Both male and female G0s were outcrossed to LVP individuals. Females were 

divided into G0 pools of no more than 20 G0 individuals each at the time of 

crossing. The sex ratios were kept 1 to 1 when the pool had G0 females, but 

instead were increased to 1 to 5 (male to female) when the pool had G0 males. 

Males however were not divided into pools before crossing. Crossing of males 

took place individually in separate pots before G0s were pooled in cages (3 days 

after crossing) of no more than 20 G0 individuals. Individual male crosses are 

thought to give weaker males a chance to mate with females rather than be 

outcompeted should all males be crossed in a shared pool. Blood meals and 

general maintenance was carried out as described above. 5 ovipositions were 

collected for each G0 pool and hatched without storing (Section 4.2.1) for 

subsequent screening (Section 4.2.5). 

 

4.2.5 Aedes aegypti transgenic screening 

The progeny from G0 or G1 crosses were screened at L2-L4 larval stages when 

screening for the transgenic 3xP3-DsRed marker (Act4 integration), which shows 

eye-specific expression, or Opie1-DsRed (exu-Cas9) which shows irregular 

whole body expression. Screening was performed using the appropriate light 

filters on a fluorescence stereo microscope (M165 FC, Leica). G1 or G2 adults 
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were screened for flight-impaired phenotypes by transferring pupae into cages 

and monitoring eclosion and flight. Adults were provided with low access sugar 

feeders for potential flightless females. Photos were taken with a DFC365FX 

camera (Leica) connected to the stereomicroscope and to a computer under the 

control of Leica application suite software. 

 

4.2.6 sgRNA synthesis 

Act4 sgRNAs 1 to 4 were designed by Sanjay Basu bearing in mind off-target 

software predictions. Synthesis of Act4 sgRNAs 1 to 4 involved the generation of 

a DNA template for RNA transcription by T7 RNA polymerase. The template 

was generated by a single DNA polymerase extension cycle between two long 

overlapping DNA oligos. The first oligo included the T7 promoter, the target site 

(specific for each Act4 sgRNA), and part of the sgRNA backbone (overlapping 

with the second oligo). Table 4.2 shows the oligo sequences used. The second 

oligo encoded the sgRNA backbone common to the four sgRNAs. After 

transcription by T7 polymerase and RNAse-free RNA purification, the four 

sgRNAs were ready for injection. 
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Table 4.2: DNA oligos for Act4 sgRNA synthesis: 
The first 4 oligo DNA sequences are sgRNA target specific oligos (Forward) whilst the 5

th
 oligo 

in the list is the general backbone oligo (Reverse), for all Act4 sgRNA template extension 

reactions. 

Oligo Code Oligo Description Oligo Sequence 

LA138 Act4 sgRNA 1 
GAAATTAATACGACTCACTATAGGGGAGCACTAGTCA

TTGACAAGTTTTAGAGCTAGAAA 

LA139 Act4 sgRNA 2 
GAAATTAATACGACTCACTATAGGGGTCAAAAAGATG

CCTACGTGTTTTAGAGCTAGAAA 

LA140 Act4 sgRNA 3 
GAAATTAATACGACTCACTATAGGGTGCTCTATGGGA

TATTTCAGTTTTAGAGCTAGAAA 

LA141 Act4 sgRNA 4 
GAAATTAATACGACTCACTATAGGGTGGCGAGGGCGG

CCGACAAGTTTTAGAGCTAGAAA 

LA137 
sgRNA General 

Backbone 

AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATA

ACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCT

AAAAC 

 

4.2.7 In vitro Cas9 cleavage assays 

In vitro digestion of Act4 DNA with Act4 sgRNAs and Cas9 was used as an 

assay of sgRNA guiding activity. An in vitro digestion kit (New England 

Biolabs) containing Cas9 Nuclease from S. pyogenes, was used by following the 

procedure recommended by the manufacturer (Table 4.3). Only 1 Act4 sgRNA 

was used per reaction (4 different sgRNAs). Two sets of Act4 sgRNA 

preparations (Section 4.2.6) were tested independently. The first set lacked Act4 

sgRNA 1 and hence the total number of reactions was 7. A pre-incubation period 

of 25°C (10 min) was then followed by incubation at 37°C for 15 minutes. 

 

Table 4.3: Components of in vitro Cas9 digests: 
Only one sgRNA was used per reaction. Components were incubated as described above. DNA 

fragments were analysed by gel electrophoresis to check for the expected sequences. 

Component Concentration (In a 30µl Reaction) 

10X Cas9 Nuclease Reaction Buffer 1X 

Act4 sgRNAs (1 to 4) 30nM 

Cas9 Nuclease 30nM 

Act4 DNA Template 3nM 
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70ng of the Act4 template was used per reaction. Primers used to generate the 

Act4 amplicon from gDNA extracted from an individual female LVP (Section 

4.2.13) are shown in Table 4.4. A visual representation of the genome region 

amplified together with the Act4 sgRNA binding sites (Figure 4.5). 

 

Table 4.4: Act4 amplicon primers: 
Primers used to generate the Act4 1276bp template for sgRNA-Cas9 cleavage are shown below. 

Primer Name Primer Sequence 

LA410 CCCGATTCCCTCAACTTTGATTGTTA 

LA130 GTACAGGGACAGAACAGCTTGGAT 

 

 

 

Figure 4.5: Act4 template for sgRNA guided in vitro Cas9 cutting: 
The gene map was drawn using SnapGene. A fragment of the Act4 gene is shown, with the 

respective primers for in vitro template amplification. Act4 sgRNA 1 to 4 binding sites are 

shown at the beginning of Exon 2. 

 

4.2.8 sgRNA stability assay 

A stability test was performed to assess potential RNAse contamination of 

sgRNA preparations (Section 4.2.6). 100ng of sgRNAs 1 to 4 at 10ng/µl 

concentrations were incubated at two different temperatures for 7 hours (24°C 

and -80°C). Potential degradation at 24°C was checked by analysing the full 

100ng of each sample by gel electrophoresis.   
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4.2.9 Gene recoding, codon optimising, intron detection, and gene synthesis 

As a result of the degeneracy of the genetic code (Crick 1966) gene sequences 

can be altered without a change in the encoded protein sequence. This is 

especially useful when a genetic rescue of function is required where RNAi 

against the endogenous gene is being used. The beginning of Act4 exon 2, 445bp, 

was recoded to make the new sequence insensitive to the designed Act4 sgRNAs 

above (Section 4.2.6). Since codon usage varies between species as well as the 

relative abundance of different isoacceptor tRNAs, the recoded Act4 sequence 

was corrected so as to not include rare codons in Aedes aegypti. To be able to 

determine which codons were rare in Aedes aegypti the data provided in (Behura 

and Severson 2011) was used. In particular relative synonymous codon usage 

(RSCU) values were used, since absolute codon values in a genome could 

misrepresent the rarity of a particular codon, especially regarding overused or 

underused amino acids. In addition, base-pairs were changed to avoid cryptic 

splice sites. To predict potential cryptic splice sites online software was used 

(Neural Network 2017), based on pre-existing splice site prediction code (Reese 

et al. 1997). Ultimately, these designed DNA sequences were outsourced for 

synthesis (Genewiz). 

 

4.2.10 Golden Gate cloning of constructs 

Golden Gate cloning involved the use of off-cutting restriction enzymes (REs) 

BsaI and BsmBI which allow for custom non-palindromic cohesive ends to be 

designed on any fragment of choice. RE sites were added on oligonucleotide 
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primers (Sigma) and fragments of constructs shown below (Section 4.3.5) were 

PCRed or digested from a plasmid as appropriate to then be digested by the 

relevant RE. Multiple fragments were ligated (up to 3 inserts and one vector at a 

time) using T4 DNA ligase (NEB). Transformations were carried out into 10µl of 

XL10-Gold Ultracompetent Cells (Stratagene) following the recommended 

instructions. Analysis of correct clones was carried out with colony PCR (Section 

4.2.14), and subsequently Sanger sequencing (Section 4.2.16). 

 

4.2.11 Genomic, plasmid, and gel DNA extractions 

All Macherey-Nagel DNA extraction kits were used by following instructions 

from the manufacturer. gDNA extractions were carried out using the Nucleospin 

Tissue kit (Macherey-Nagel). Plasmid DNA extractions for cloning procedures 

were carried out using the Nucleospin Plasmid kit (Macherey-Nagel). Nucleospin 

Gel and PCR clean up kit (Macherey-Nagel). Endonuclease free plasmid DNA 

preparations for injections were carried out using the Nucleobond xtra midi EF 

kit (Macherey-Nagel). 

 

4.2.12 General PCR 

Where sequence fidelity was required, i.e. Golden Gate cloning, LVP and LWT 

strain sequence analysis, Q5 High-Fidelity DNA Polymerase (NEB) was used 

due to its proof-reading activity. However, for more routine diagnostic PCRs 

such as colony PCR the more error-prone DreamTaq Hot Start DNA Polymerase 

(Thermofisher) was used.  
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4.2.13 Gene sequence analysis of strains employed 

gDNA was extracted for 6 pooled LVP adults (3 males and 3 females). gDNA 

was extracted for 5 individual LVP flying females and 3 LWT flying females.  

 

Two 2kb Act4 amplicons were PCRed from the pooled LVP gDNA and cloned 

into pJET1.2. Two different clones for each were selected for sequencing. Three 

~2kb amplicons covering ~6500bp of the Act4 locus were PCRed from each of 

the individual samples. Primers used for amplicon PCRs are shown below (Table 

4.5). 

 

Amplicons for two individual female LVPs and one individual female LWT were 

selected for sequencing. A range of primers were used to cover all the samples 

selected for sequencing (Table 4.6). A small number of clones were sequenced as 

the main objective of this procedure was to generate homology arms that would 

be present at least in a proportion of the population. 

 

Table 4.5: Primers used to amplify 2kb Act4 amplicons in LVP and LWT: 
Primers used to amplify the fragments cloned into pJET or sequenced directly are shown below. 

Primer Name Description Sequence 

LA133 
pJET cloned 3’ Amplicon 

GATTTGGCATCACACCTTCTACAAC 

LA134 TCAAAATACGACCGTCACCCTATTA 

LA135 
pJET cloned 5’ Amplicon 

TCAATGACTAGTGCTCCAGCATCAT 

LA136 TCTCAATCGATCCTTCTATGGACTG 

LA405 
5’ Act4 Amplicon 

CTCATGGAGACCTATCTACCCTTCA 

LA420 ATCAACATCACATCGGATCGTAATC 

LA136 
Mid Act4 Amplicon 

TCTCAATCGATCCTTCTATGGACTG 

LA130 GTACAGGGACAGAACAGCTTGGAT 

LA133 
3’ Act4 Amplicon 

GATTTGGCATCACACCTTCTACAAC 

LA422 AATCAGTTTATCCATGCAACCGTTA 
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Table 4.6: Primers used for sequencing the Act4 locus in LVP and LWT: 
A list of primers used to cover the ~6500bp region of the Act4 locus. 

Primer Name Sequence 

LA129 TGCCACATGAACAATAACACCAATA 

LA133 GATTTGGCATCACACCTTCTACAAC 

LA135 TCAATGACTAGTGCTCCAGCATCAT 

LA136 TCTCAATCGATCCTTCTATGGACTG 

LA159 CGACTCACTATAGGGAGAGCGGC 

LA160 AAGAACATCGATTTTCCATGGCAG 

LA370 CGTGCATCAGGCTTTGCCAA 

LA371 TTACTGCGGACGTAATTCAC 

LA372 GGTTGTTCTTATTCCGTAAA 

LA373 CCAGCCATCCTTCCTGGGAA 

LA405 CTCATGGAGACCTATCTACCCTTCA 

LA406 GCCTTAATTGAACAAACTTTTGAAAG 

LA408 GTAGTTGAACATCTTCAGACTTCTGG 

LA410 CCCGATTCCCTCAACTTTGATTGTTA 

LA412 GCCAGGGAAGAAACCATCATTCACC 

LA422 AATCAGTTTATCCATGCAACCGTTA 

LA423 AAGTAGCATTTTGAACCACTTTTCG 

 

4.2.14 Colony PCR 

Colony PCR was extensively used to check for constructs cloned (Section 

4.2.10). For each cloned construct in question a number of colonies (≥20) were 

screened at a time. Primers used were specific for the cloned plasmid and, where 

possible, pair of primers would bind both within the insert and within the vector 

to prevent false positives. 5µl of molecular biology water (Millipore) were added 

to each of the PCR tubes. An agar plate, or more if required, had grid marks 

added so that individual squares could be seen. Labelling of both the PCR tubes 

and the agar plates was done so as to be able to trace back each individual colony 

PCR reaction to its plate growth. Pipette tips were used to pick up individual 

colonies which were dipped into PCR tubes and then streaked on their respective 

agar plate square (which would then be incubated 8 hours at 37°C).   
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A PCR master mix, using DreamTaq DNA polymerase (Thermofisher) at 

recommended manufacturer concentrations for a final 25µl volume was prepared 

for the appropriate number of reactions and then pipetted accordingly into each 

of the PCR tubes. A standard PCR program was used, following Taq 

manufacturer recommendations except for the reduction in the number of cycles 

to only 25. There is a risk that too many cycles would start detecting free insert 

DNA that would have been streaked on the agar plates following transformation 

(Section 4.2.10). A lower number of cycles, hence prevents false positives. The 

colony PCRs were then run on a gel and positive colonies were then traced back 

to the freshly streaked agar plates for the preparation standard overnight bacterial 

growth cultures in LB. Plasmid extractions were carried out as described, 

depending if the growth was for a miniprep or a midiprep (Section 4.2.11). 

 

4.2.15 NHEJ and HDR assays 

AGG1070 plasmid was the Act4 donor template which had a 3xP3-mCherry 

marker flanked by 2kb Act4 homology arms reaching up to the predicted 

cleavage site for Act4 sgRNA 1 and 3 (Figure 4.6B) which are within the 

beginning of exon 2 of Act4 (Figure 4.6A). Figure 4.6C shows a putative Act4 

marker-only knock-in. Primers designed for NHEJ and HDR assays performed 

on G0 embryos are shown (Figure 4.6).  

 

Two different batches of 40 LVP embryos were injected with Act4 sgRNAs, 

Cas9 protein, and Act4 marker-only HDR donor (Figure 4.10). A batch of 40 



CONFIDENTIAL 

167 

 

LVP embryos was injected with water as a control. gDNA was extracted from 

the three batches 1 day post injection for NHEJ and HDR downstream analysis in 

G0s. 

 

Restriction fragment length polymorphism (RFLP) was used to detect NHEJ 

mosaic events in the G0 samples. Extracted gDNA was digested overnight with 

BbsI and BamHI enzymes in order to digest WT DNA Act4 templates as well as 

the HDR donor plasmid itself. Should a deletion have occurred between Act4 

sgRNA 1 and 3 a PCR product should be still seen in the digested gDNA samples 

whilst absent in undigested and water-injected gDNA samples. In addition, even 

in the undigested gDNA samples, a smaller fragment from a putative deletion 

should be seen together with the longer WT Act4 amplicon. For HDR events, the 

analysis involved running two rounds of PCR trying to amplify two fragments 

only present in the putative Act4 knock-in as shown (Figure 4.6). The undigested 

gDNA samples were used for this purpose. A summary of the diagnostic primers 

used is shown in Table 4.7. 

 

Table 4.7: NHEJ and HDR assay primers: 
Primers used in the diagnosis of NHEJ and HDR mosaic events, upon Act4 knock-out and 

knock-in respectively, in G0 embryos are shown below. 

Primer Name Description Primer Sequence 

LA818 1
st
 Round 5’ HDR Assay GAAACCTCACCCGAACGCAC 

LA29 1
st
 Round 5’ HDR Assay GGAGCGCGTGATGAACTTCGAGG 

LA136 2
nd

 Round 5’ HDR Assay TCTCAATCGATCCTTCTATGGACTG 

LA819 2
nd

 Round 5’ HDR Assay ACTCATCAATGTATCTTACTCGACC 

LA635 1
st
 Round 3’ HDR Assay GTTTAGCTTGTTCAGCTGCG 

LA422 1
st
 Round 3’ HDR Assay AATCAGTTTATCCATGCAACCGTTA 

LA816 2
nd

 Round 3’ HDR Assay TAATTGAATTAGATCCCCGGGCG 

LA817 2
nd

 Round 3’ HDR Assay ACGACCGTCACCCTATTATTTCTC 

LA146 NHEJ Assay GTGTGACGATGATGCTGGAG 

LA147 NHEJ Assay CCATATCATCCCAGTTGGTG 
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Figure 4.6: Genomic Act4 and AGG1070 Act4 donor sequence maps with their respective diagnostic primers: 
Maps were drawn using SnapGene Viewer. Diagnostic primers used for the results below are shown here in purple. Act4 homology arm regions are shown in all 

maps for orientation. BbsI and BamHI RE sites are shown. (A) Act4 locus with Act4 sgRNA sites, as well as the NHEJ diagnostic primers. (B) Act4 Marker-only 

donor plasmid, with the same NHEJ diagnostic primers. (C) Putative Act4 marker-only knock-in as well as HDR primers to detect Act4 knock-in events either 

generating an amplicon over the 5’ or 3’ homology arm regions. Nested primers were also available for the amplicons. 
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4.2.16 DNA sequencing 

DNA sequencing was outsourced to Source Bioscience. Samples sequenced in 

this project included successfully cloned constructs (Section 4.2.10), PCRs from 

LVP and LWT strains (Section 4.2.13), and Act4 PCRs from flight-impaired 

candidates (Table 4.9).  
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4.3 Results and Discussion 

 

4.3.1 Act4 genomic sequence is conserved well in two different Aedes aegypti 

strains 

Ae. aegypti LVP strain genome sequence (AaegL3, April 2014 Assembly) was 

used as a reference for construct design in this Chapter. Even when dealing with 

the same strain, lab LVP strains could differ in sequence. Unknown sequence 

variation could have undermined the project as sgRNAs, HDR, and genomic 

PCRs are sequence dependent. To have an insight into Act4 sequence variation 

between lab LVP individuals and different strains the following samples were 

chosen for Sanger sequencing. Two 2kb Act4 amplicons were PCRed from 

pooled adult gDNA and cloned into pJET1.2 (Section 4.2.13). Two different 

clones for each were selected for sequencing. gDNA from five LVP and three 

LWT flying females was individually extracted and three amplicons covering 

~6500bp of the Act4 locus were PCRed. Amplicons for two LVP and one LWT 

were selected for sequencing. A range of primers (Section 4.2.13) were used to 

cover all the samples selected for sequencing. The fact that sequencing from PCR 

products usually yields ~600bp of good sequence as opposed to ~900bp from 

plasmids was taken into account. Whilst the clones provide longer reads, each 

clone sequence only represents a single allele. However, sequencing PCR 

products, although giving shorter reads, can reveal allelic variation within the 

sample as long as gDNA from single adults is used. In total, PCR products from 

three different single adult gDNA preps and four different PCR product clones 
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from a pooled adult sample were sent for Sanger sequencing. Only these numbers 

were sent for sequencing as variation between lab LVPs and the AaegL3 LVP 

assembly was expected to be small as they are the same strain. However, a 

greater number of PCR products, from five other single adult gDNA preps, were 

available should sequence coverage had not been enough. 

 

The sequences were trimmed and then assembled into a contig using the AaegL3 

genome as a reference. Sequence coverage of 6325 bp of the Act4 locus was 

sufficient to have an insight into the sequence variation in the lab strains 

available (Figure 4.7). SNPs did not occur in the critical region at the beginning 

of the CDS where sgRNAs were targeted. Similarly, only four SNPs (all 

synonymous changes) were found in the CDS. Other SNPs are also present along 

the introns and the promoter region whilst most of them lie in the 3’ UTR and 

beyond. 

 

Haploinsufficiency depends on the inability of an allele to perform its full 

function on its own. This may be true in general for genes such like Act4 in the 

population, however, there is a possibility for haplosufficient alleles to exist in a 

wild population. These could either be in the form of a different protein sequence 

or a regulatory DNA change which would generate sufficient Act4 from one 

allele. Hence, the low amino acid variability observed across strains could be a 

good sign as it may reduce the chances of a haplosufficient allele being present in 

a wild population. In addition, the few SNPs observed in the upstream promoter 



CONFIDENTIAL 

172 

 

sequence are also indicative of a low variation across LVP and LWT strains and 

hence a lower risk of potential haplosufficient alleles to have arisen in nature. In 

any case, this is not a complete survey and only an indication of the conservation 

of Act4 sequences between two strains from distant geographical origins. LWT is 

a Mexico-derived strain (Harris et al. 2011), collected near Tapachula, whilst the 

Liverpool strain was collected in West Africa and maintained in the Liverpool 

School of Tropical Medicine since 1936 (Vector Base 2017). 

 

Although it is difficult to say what degree of sequence divergence, i.e. SNPs or 

indels, would pose a problem for homology directed repair it is reassuring that 

the observed variation is relatively low. The chosen homology arm regions for 

the HDR donor constructs only have SNPs and no INDELs and hence are 

expected to be suitable for homology directed repair both in LVP and LWT 

strains.  
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Figure 4.7: Act4 SNPs when comparing LVP and LWT Ae. aegypti strains: 
Sanger sequencing of both LVP clones and PCRs from the genome (LVP1, LVP2, and LWT1) 

provided enough sequence coverage of the Act4 locus for a Contig to be assembled using the 

available Ae. aegypti genome, from Vector Base, as a reference. LVP1, LVP2, and LWT1 are 3 

gDNA samples from single flying Ae. aegypti females. Multiple amplicons per sample were 

amplified and multiple sequencing reactions were carried out. LVP amplicons from pooled adult 

gDNA samples were cloned into pJET1.2 plasmids and 4 LVP clones were selected for 

sequencing. Section 4.2.13 shows details on sample preparation and sequencing processing. The 

Contig, shown below the number line, is of 6325bp. Dark blue regions mark bidirectional 

sequencing coverage, blue criss-cross regions mark unidirectional sequencing coverage, and 

grey regions mark an absence of sequencing coverage. Different colours mark sequencing 

coverage from different sources or the reference genome itself. Green spikes below the Contig 

mark SNP positions across the Act4 locus and the length of these indicates the preponderance of 

the SNP amongst the different sources relative to the reference genome. Maps of the Act4 gene 

and potential homology arms for HDR allow more relevant SNP mapping. SNPs present do not 

compromise the feasibility of HDR into Act4. There are 4 SNPs within the CDS of Act4, all of 

which are synonymous. No SNPs were found in the sgRNA cutting region, a few are found 

within both introns, and most of them are at the 3’UTR and beyond.   

 

4.3.2 G1 flightless screening from Act4 sgRNA injections revealed no knock-

outs  

Act4 sgRNAs 1 to 4 were designed by Sanjay Basu and synthesised as described 

(Section 4.2.6). These were co-injected together with Cas9 protein into Aedes 

aegypti embryos. Ideally, sgRNAs would have been injected individually if the 

efficiency of each was to be compared. However, pairs of sgRNAs were co-

injected to increase the chances of seeing any CRISPR-induced effects. If effects 
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were seen then the two sgRNAs from the pair could be tested independently in 

follow up studies. 

 

A total of 2538 embryos were injected with an average survival rate to adult of 

5.32% Table 4.8). The first round of injections resulted in a combined survival 

rate of 0.83% out of 1325 embryos injected. This is in stark contrast to the 

second round of injections which resulted in a combined survival rate of 10.14% 

out of 1213 embryos injected. The difference between both rounds was better 

proficiency with embryo line-up and injection, as well as a change in the 

recovery method of injected embryos which involved transferring the injected 

from the sticky tape oiled coverslips onto humid filter paper in a closed chamber 

(Section 4.2.3). It is difficult, however, to pinpoint the cause of such disparity as 

several factors were changed at once to maximise survival improvement. In 

addition, injection methods for arthropods are complex themselves and do not 

control for a lot of variables strictly, such as injection volume or embryo 

desiccation, which can make different injection rounds of the same construct 

vary substantially. Indeed, injection efficiency is highly user dependent.   

 

With the improved survival rate 135 adult G0s were obtained. Current reports of 

CRISPR knock-outs in the literature suggest a knock-out efficiency (percentage 

of G0s giving mutant G1s) between 23-90% (Basu et al. 2015). Hence this 

number of G0s should have been sufficient to see a result. Seventeen G0 pools 

were set up and 7135 G1 females were picked as pupae and transferred to cages 
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to be screened for eclosion and flightless phenotypes. An initial phenotype screen 

found seven G1 females as potential candidates for some sort of impaired flight 

phenotype (Table 4.9). These consisted of a bad flier (3A), five flightless females 

which developed the ability to fly within 1 day post eclosion (9A, 11A, 14A, 

15A, and 15B) and two flightless females which never developed the ability to 

fly (6A and 11A). Forced mating was attempted as described (Wheeler 1962) 

with no success. 15A was mated normally and all G2s were fliers shortly after 

eclosion (Table 4.9). The flight delay phenotype in the 15A G1 was not observed 

in the G2s, suggesting the reason for the phenotype was not necessarily genetic 

and instead caused by non-heritable factors. 
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Table 4.8: Act4 sgRNAs and Cas9 injected into Aedes aegypti: 
A summary of the number of injected embryos, larval hatch rates, and adult survival rates is provided. A total of 17 different G0 pools were crossed and 7135 G1 ♀ 

adults were screened for the expected flightless phenotype upon Act4 knock-out (Table 4.9). 

Date 

Injected 

sgRNA 1 

(ng/µl) 

sgRNA 2 

(ng/µl) 

sgRNA 3 

(ng/µl) 

sgRNA 4 

(ng/µl) 

Cas9 

(ng/µl) 
Embryos 

Larvae  

(Hatch Rate) 

Adults 

(Survival 

Rate) 

G0 

Pools 
G1 ♀s 

G1 

KOs 

Single 

KO 

Events 

11.11.16 40 40 N/A N/A 300 414 2 (0.49%) 1 (0.25%) 1 57 0 0 
15.11.16 40 40 N/A N/A 300 

911 28 (3.08%) 11 (1.21%) 4 248 0 0 
16.11.16 N/A N/A 40 40 300 

23.11.16 N/A N/A 40 40 300 280 75 (26.79%) 62 (22.15%) 4 3298 0 0 
24.11.16 40 40 N/A N/A 300 385 25 (6.5%) 17 (4.42%) 3 1435 0 0 
25.11.16 40 40 N/A N/A 300 548 68 (12.41%) 44 (8.03%) 5 2097 0 0 

 
    

Total 2538 198 (7.81%) 135 (5.32%) 17 7135 0 0 

         

Knock-out Efficiency 0.00% 
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Table 4.9: G1s from Act4 sgRNA injections selected by flightless phenotype showed 

no Act4 knock-outs:  
G1s from Table 4.8 injections were screened for flight impaired phenotypes and candidates had 

their Act4 gene sequenced. Only 6A and 11A showed a true flightless phenotype. None of the 

sequenced individuals showed Act4 putative knock-out sequences. G1 individuals were each 

given a code consisting of the G0 pool they came from (1-17), letters (A-Z) for different 

individuals from the same pool, and Ctrl for flying controls. Another 9 flying controls were 

isolated which are not included in this table as sequencing was not obtained from them. Some 

individuals were crossed to LVP and flightless individuals were forced mated unsuccessfully. 

Those successfully mated only gave flying G2s. 

♀ G1 

Individual 
Phenotype 

Recovered 

Flight 

Mating  

(to ♂ LVP) 
Mating Comments 

Sequencing 

Results 

3A 
Flying 

badly 

Always flew 

badly 
N/A N/A No mutations. 

6A Not flying No 
Forced 

Mating 

Forced Mating 

Failed 
No mutations. 

9A Not flying 
Yes (1 day 

post-eclosion) 
N/A N/A No mutations. 

11A Not flying No 
Forced 

Mating 

Forced Mating 

Failed 
No mutations. 

14A Not flying 
Yes (1 day 

post-eclosion) 
N/A N/A 

No mutations. 2 

synonymous SNPs. 

15A Not flying 
Yes (1 day 

post-eclosion) 

Normal 

Mating 
All G2s were fliers No mutations. 

15B Not flying 
Yes (1 day 

post-eclosion) 
N/A N/A No mutations. 

11Ctrl 
Flying 

well 

Always flew 

well 
N/A N/A 

No mutations. 1 

synonymous SNP. 

 

Subsequently, the seven candidates plus a flying female control (11Ctrl) had their 

gDNA extracted, PCRed for Act4 and submitted for Sanger sequencing (Table 

4.9). The flying female control showed normal WT flight and was a G1 sibling to 

the flightless candidate from the same G0 pool, i.e. 11A. Sanger sequencing 

results returned only WT sequences, with no changes from the AaegL3 assembly 

except for two synonymous SNPs. Both were found in 14A and one of them in 

11Ctrl. This was specially unexpected for 6A and 11A individuals since they had 

such a clear flightless phenotype to the point of being unable to mate or be 

sexually recognised by males. 
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Nevertheless, given the surprisingly low percentage of G1s showing the expected 

phenotype convincingly (0.03%), it may not be a surprise that the knock-out of 

Act4 is not causing the phenotype. Before the sequencing results, knock-out 

efficiency as a function of G0s yielding knock-outs, would have been 11.76% 

which is still low for the standards in the literature. Looking at all the data it is of 

course 0.00% (Table 4.8). Perhaps, the observed percentage of flightless females 

(0.03%) is a rough estimate of the natural occurrence of flightless individuals in 

Ae. aegypti LVP strains.  

 

An explanation for the lack of a visible phenotype could be that Act4 is not 

haploinsufficient. However, given the fact that evidence in Drosophila 

melanogaster and Culex quinquefasciatus strongly suggested otherwise the most 

likely explanation at this stage was still some sort of experimental pitfall. The 

following experimental explanations were ruled out first (Section 4.3.3 and 

4.3.4). 

 

4.3.3 Act4 sgRNAs successfully guide Cas9 for in vitro cutting 

A simple explanation for the lack of knock-outs in Section 4.3.2 would be 

inefficient cutting of Act4 by Cas9 guided by the chosen sgRNAs, or inefficient 

guiding of Cas9 by the chosen sgRNAs. An in vitro sgRNA/Cas9 digest of Act4 

DNA template was carried out as described (Section 4.2.7). An Act4 template of 

1276bp was amplified and purified and the expected fragments from Cas9 cutting 

guided by Act4 sgRNA 1 to 4 were calculated (Figure 4.8A). All of the fragment 
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sizes were in theory discernible upon gel electrophoresis of the in vitro digests. 

Two different preparations of the same sgRNAs (Section 4.2.6) were tested 

simultaneously. 

 

All sgRNAs, except sgRNA 4, guide Cas9 protein to cut the template to some 

degree (Figure 4.8B). Results between the two different sgRNA preparations 

were almost identical which suggests in vitro results are reproducible and 

sequence dependent. sgRNAs 2 and 3 were the best at cutting the template whilst 

sgRNA 1 displayed inefficient cutting. Interestingly, Cas9 appears to be 

inefficient compared to other double stranded endonucleases. Cas9 was used at a 

30nM concentration for only 70ng of template and digestion was incomplete 

even with the best sgRNAs. This relative inefficiency was expected as the in 

vitro test used recommends a low amount of template per Cas9 (10 moles of 

Cas9 per 1 mol of target, Section 4.2.7). Given the low amount of starting 

template visualisation of the cut fragments in the gel was difficult and that is the 

reason behind showing an additional overexposed image of the same gel (Figure 

4.8C).  

 

The results are an indication that guiding/cutting inefficiency was probably not 

the reason for the lack of observed knock-outs in Section 4.3.2. However, even 

though there is a general correlation between Cas9 in vitro and in vivo results 

(Wu et al. 2014), it remains unclear how good this correlation is. Nucleosomes 

have been shown to be an impediment for Cas9 cleavage of DNA (Horlbeck et 
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al. 2016) and they may explain the higher Cas9 promiscuity and off-target effects 

observed in vitro (Wu et al. 2014). sgRNAs 1 to 4 span across 204bp in the 

genome and therefore nucleosome blocking of all of the sgRNAs seems unlikely 

as they usually only protect ~147bp of DNA (Cutter and Hayes 2015). In 

addition, their dynamic behaviour in moving along genomic DNA (Lai and Pugh 

2017) may mean that any blocking of sgRNA sites will not necessarily be 

permanent. Even if these in vitro results may not correlate with in vivo 

guiding/cutting efficiencies, of these sgRNAs and Cas9, at least the cleavage 

assay shows the functional integrity and sequence specificity of the chosen 

sgRNAs in guiding Cas9 cutting.  
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Figure 4.8: Act4 sgRNAs 1 to 4 guide Cas9 for in vitro cutting of an Act4 DNA 

template: 
sgRNAs 1 to 4 used in injections (Table 4.8) were tested for function in an in vitro cleavage 

assay described in (Section 4.2.8). 70ng of Act4 template was used per reaction. (A) Different 

sgRNAs guide Cas9 cutting at different positions in the Act4 template. Predicted fragment sizes 

are shown. (B-C) Two different exposures were used to image the same electrophoresis band so 

both short and long fragments can be visualised clearly. Two different sgRNA batches were 

prepared and tested with reproducible results. Digestion fragments were as predicted for sgRNA 

1, 2, and 3. sgRNA 4 did not lead to any perceivable cutting. 

 

4.3.4  sgRNA preparations used for injections were RNAse free 

Another potential pitfall to rule out was the potential RNAse contamination of 

sgRNA preparations and hence the degradation of the sgRNAs before or during 

injection. To test this, equal amounts at the same concentration of sgRNAs 1 to 4 
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were subjected to two different temperature conditions for 7hrs (24°C and -

80°C). The rationale being any RNase present would degrade the sgRNAs at 

24°C but not at -80°C. Both available sgRNA preparations were tested. After the 

incubation period the samples were analysed by gel electrophoresis. Results 

show no difference in band intensities between the two temperature treatments, 

which is indicative of clean preparations (Figure 4.9). sgRNAs ran below 200bp 

which reflects their expected size. sgRNA band intensity was low for the amount 

of RNA used per sample (100ng). The low signal intensity of sgRNA bands is 

probably due to the visualisation dye used (SYBR Safe) as it is designed to 

visualise dsDNA and not ssRNA. Dye intercalation may only happen along 

regions of sgRNA secondary structure. These would be smaller than those for an 

equivalent weight of dsDNA. The fact that both sgRNA preparations remain 

RNAse free added more confidence to the current sgRNA handling methods. 

 

Given the lack of obvious reasons for which Act4 sgRNA injections did not 

produce knock-outs (Table 4.8) the possibility of Act4 being haplosufficient in 

Ae. aegypti was considered more seriously. A different approach to screen for 

knock-outs in heterozygotes with no apparent mutant phenotype was necessary. 

One option would have been to devise some sort of G1 screen of mutant 

candidates through high resolution melt analysis (HRMA). HRMA uses special 

intercalating dyes, such as EvaGreen® which saturate dsDNA down to one 

fluorescent molecule per bp. This improved saturation over other dyes such as 

SYBR Green, together with thermocyclers capable of accurate temperature 
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increments as small as 0.15°C per fluorescence intensity read allow for a very 

high resolution melt curve to be plotted. In a small enough amplicon, 100-150bp, 

a single bp change and certainly INDELs would set the melt curves apart. Thus, 

heterozygous mutants could be detected from WT individuals. A second option 

would be simple restriction fragment length polymorphism analysis (RFLP) 

exploiting potential RE sites in heterozygous mutants and WT DNA. In the case 

of bigger deletions these could be detected simply by PCR. However, an Act4 

HDR knock-in approach was chosen (Section 4.3.6) as it was considered the 

route most likely to yield success, and also more relevant to potential 

downstream use. 
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Figure 4.9: sgRNAs synthesised did not degrade after 7 hours at 24°C: 
The same sgRNA preps used for injections (Table 4.8) and the cleavage assay (Figure 4.8) were 

tested for RNAse presence. sgRNAs incubated at 24°C for 7 hours were compared to those 

stored at -80°C. Two different sgRNA batches were tested. There is no appreciable difference in 

band intensity between the two conditions which suggests there is not enough RNAse in the 

preps for significant degradation to occur.  

 

4.3.5 Female-specific underdominance and RIDL with drive constructs were 

made 

As described in this Chapter’s introduction (Section Error! Reference source 

ot found.) two different gene drive systems were to be developed. Both systems 

involve the generation of complex constructs which were built using Golden 

Gate cloning with the outsourced gene synthesis of key components. Table 4.10 

shows a list of constructs made, or in the process, and indicates which constructs 

were generated by Golden Gate cloning and/or gene synthesis. Whilst details on 
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the methods are in Section 4.2.10, the rationale behind construct specifics is 

covered here. Figure 4.10 shows the same constructs as visual maps.  

 

The red eye marker construct, pBac-3xP3-mCherry-SV40-attP50, was cloned by 

Golden Gate cloning from PCRs from existing plasmids. This construct was 

made first as it was to be used as a precursor for RIDL with drive and female 

specific underdominance gene drive systems. The 3xP3 promoter was chosen due 

to its short sequence, low fitness penalty, and strong eye-expression in Ae. 

aegypti. Bearing in mind the eventuality of HDR, shorter sequences are preferred 

on the assumption that a smaller cargo would integrate at a higher rate as some 

evidence suggests (Li et al. 2014). HDR is thought to have a lower integration 

rate than piggyBac which typically has a transformation rate of 4-11% in Ae. 

aegypti (Labbé et al. 2010), and hence the reason to aim for optimal conditions. 

Daisy-chain drives (Noble et al. 2016), which could benefit from components in 

this work, require several components with different fluorescent markers. 

Finding different fluorescent proteins in Ae. aegypti, even as few as three, with 

the appropriate excitation and emission properties requires planning. It is vital to 

readily distinguish them without bleedthrough using standard fluorescence filter 

sets. Hence, mCherry was chosen for this reason as the fluorescent protein has a 

red-shifted spectrum relative to DsRed. The emission spectrum of DsRed is more 

biased towards orange wavelengths, and thus overlaps with ZsYellow. SV40 is 

also the shortest terminator which has been commonly used in Ae. aegypti (Fu et 

al. 2010). An attP site was added to be able to integrate additional components 
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later in a two-step process. This is crucial for the female specific 

underdominance design and may also be useful for RIDL with drive if such a 

two-step process were required.  

 

Even though the final design of the female specific underdominance system 

consists of a set of components all into a single locus, Act4 expressed rescue and 

Act4 RNAi (Section 4.1.4), these could not be part of the same initial construct. 

The assumption is that the system would cause female-specific flightlessness, i.e. 

effectively female sterility, with one copy of the construct allele, i.e. one copy of 

the RNAi hairpin being enough to knockdown expression of both endogenous 

copies of Act4. piggyBac mediated insertion of the final fully designed construct 

would only be able to generate viable and fertile males. Since homozygosity is 

required for underdominance, and there would be no viable and fertile females 

bearing the construct, building a homozygous strain would not be possible. An 

option chosen to avoid this was to divide the components into two different 

constructs and transform Ae. aegypti in two steps. The first step would have 

involved transforming the Act4 rescue components plus the red eye marker, 

pBac-3xP3-mCherry-SV40-Act4Rescue-attP50, as one construct integrated via 

piggyBac. The second step would have involved transforming the RNAi 

components, pBac-LoxP-attB-Act4RNAi-LoxP-Hr5IE1-AmCyan-K10, as one 

construct integrated via attP/attB recombination using φ31 integrase into a 

homozygous Act4 rescue background (Figure 4.10).   
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To make the Act4 rescue the Act4 gene was amplified in several fragments from 

the same LVP2 gDNA from Figure 4.7 as described (Section 4.2.10). The 

beginning of exon 2 was recoded with synonymous nucleotide changes whilst 

making sure rare codons were avoided and then outsourced for gene synthesis 

(Section 4.2.9). This recoding is what makes the Act4 gene be a rescue copy as it 

is insensitive to the RNAi hairpin targeting the same region. An effort was made 

to prevent repetition of components between the two constructs, i.e. promoters, 

fluorescent proteins, and 3’UTRs were all different from each other to avoid the 

risk of unwanted homology dependent recombination. To be able to express both 

the rescue and RNAi components in the indirect flight muscle of Ae. aegypti two 

different versions of the Act4 promoter were sourced. The rescue construct, pB-

3xP3-mCherry-SV40-Act4Rescue-attP50, used the Ae. aegypti promoter whilst 

the RNAi construct, pB-LoxP-attB-Act4RNAi-LoxP-Hr5IE1-AmCyan-K10, used 

the orthologous promoter from Ae. albopictus. This design has been used before 

and the Ae. albopictus promoter has been shown to work in Ae. aegypti with a 

similar expression pattern and expression levels (Labbé et al. 2012).  

 

One disadvantage of attP/attB recombination is that the whole plasmid backbone 

of the second plasmid would integrate itself into the Act4 rescue locus together 

with the RNAi hairpin. To allow for subsequent excision of this undesired DNA 

fragment two loxP sites were placed to flank the plasmid backbone and the 

AmCyan marker. The AmCyan marker serves two purposes, first indicating 

successful attB/attP recombination which has a similar efficiency to piggyBac in 
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Ae. aegypti (Nimmo et al. 2006), and then to mark successful backbone and 

marker excision mediated by Cre-lox. 

 

At the time of writing neither of these constructs was fully assembled. The 

construction was halted after the initial findings that suggested Act4 

haplosufficiency (Table 4.8). The Act4 rescue construct had, at the time of 

writing, all components incorporated except for the synthesised recoded 

fragment. These two constructs would not provide female specific 

underdominance or indeed any interesting drive feature should Act4 be 

haplosufficient (Section 4.1.4). One copy of the rescue would be enough to 

compensate for the knockdown of endogenous Act4 by the RNAi component. 

This in turn would mean that being homozygous for the rescue would grant no 

better fitness than being heterozygous for the rescue. In addition, transgenes 

usually impose a fitness cost, in this case through RNAi machinery overloading 

for example (Grimm et al. 2010). Hence, the most likely scenario would be that 

rescue heterozygotes would be fitter than rescue homozygotes, resulting in the 

opposite concept to underdominance. Subsequently, RIDL with drive constructs 

gained priority and were continued to be made.  

 

RIDL with drive constructs as described in the introduction do not necessarily 

depend on Act4 haploinsufficiency to be useful. If Act4 were haplosufficient it 

would still be useful as a recessive female sterile target in future daisy-chain 

drives (Noble et al. 2016). The first construct made for RIDL with drive was 
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pJet-5’Act4flank-attP50-3xP3-mCherry-SV40-3’Act4flank, which had the marker 

and attP site cloned within 2kb Act4 homology arms. Ideally, versions including 

multiplexed Act4 sgRNAs and germline Cas9 would have been made first but 

timing and availability of components were limiting. The Act4 HDR marker-only 

construct was a step closer to the RIDL with drive design and a way of finding 

out if Act4 is haploinsufficient (Section 4.3.6.).  

 

The next construct to be available was the multiplexed version of Act4 sgRNAs. 

As described in the introduction (Section 4.1.8) multiplexing is achieved via the 

self-processing capacity of tRNA sequences (Xie et al. 2015). The long RNA 

polymerase III transcript is cleaved by excision of the tRNAs to generate the 

wanted set of sgRNAs. Luke Alphey and Phil Leftwich designed the cassette; 

selecting tRNAs and sgRNA backbones (Noble et al. 2016). The use of the U63 

promoter from Ae. aegypti over U61 and U62 was predicated on the finding that 

U63 is more efficient in D. melanogaster (Port et al. 2014). In addition, U61 and 

U62 are adjacent and divergent in the Ae. aegypti genome and so it is difficult to 

determine reliably where one promoter starts and the other finishes. The 

construct, pUC57-U63-Act4sgRNAs-attP50, was then outsourced for synthesis 

(Genewiz). 

 

The other two Act4 HDR constructs are still under construction, at the time of 

writing, and will be useful in the future. Incorporating the multiplexed sgRNAs 

into the Act4 Marker-only construct will generate pJet-5’Act4flank-attP50- pUB-



CONFIDENTIAL 

190 

 

mCherry-SV40-U63-sgRNAs-3’Act4flank. An additional change planned was to 

substitute 3xP3 for the ubiquitous pUB promoter due to unexpected problems 

encountered with the marker (Figure 4.11). Primers and a finalised Golden Gate 

cloning strategy are already available. The third HDR construct, pJet-

5’Act4flank-attP50-pUB-mCherry-SV40-U63-sgRNAs-germlineCas9-

3’Act4flank, is also under construction. Tim Harvey-Samuel designed an Ae. 

aegypti codon optimised Cas9 sequence which was outsourced and synthesised. 

 

To test the RIDL with drive function of the Act4 HDR plus sgRNAs construct had 

it been completed and integrated in time during the one year placement in The 

Pirbright Institute, a Cas9 line obtained from Omar Akbari (University of 

California, Riverside) was obtained. Testing under a split drive setting would 

have still been very insightful. Such exu-Cas9 line, which was otherwise used as 

a source of Cas9 for injections (Table 4.12) expresses Cas9 in the male germline 

as well as being maternally deposited into the embryo.  

 

A factor to consider is that recessive female sterile targets, often required in 

somatic cells near the germline, can hinder homing drives with non-specific 

expression of germline Cas9. Cas9 cutting of the recessive female sterile target in 

somatic cells surrounding the germ cells has been shown to counter the drive 

with a reduction of fertility (Hammond et al. 2016). However, this factor is much 

less likely to be detrimental in a system with Act4 as a target given that the 

somatic cells requiring functional Act4 lie in the indirect flight muscles. The 
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distance between the two tissues, indirect flight muscles and germline, will 

perhaps reduce the risk of non-specific germline Cas9 expression reaching the 

functional Act4 target gene copy. At least Act4 is quite convincingly not required 

in the germline. Whilst this separation would be an advantage if Act4 were 

haplosufficient, the risk of non-specific germline Cas9 expression hindering the 

drive by reduced fertility would be avoided completely provided Act4 

haploinsufficiency. Since the Act4 RIDL with drive system only requires 

germline homing in males, and Act4 has no function in males, non-specific 

germline Cas9 expression will not cause an Act4 mediated fertility reduction.  

 

Since less strict germline expression of Cas9 may be tolerated this makes exu-

Cas9 a valid source for a split drive test. Moreover, it makes Act4 an 

advantageous target for a RIDL with drive system (provided Act4 is 

haploinsufficient) or future daisy-chain drives (provided Act4 is haplosufficient). 

Nonetheless, finding the ideal germline promoter, with strong and tightly specific 

gene expression remains a challenge worth solving. Non-specific Cas9 

expression could still have other off-target related fitness costs which would be 

preferably avoided. 
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Table 4.10: List of female-specific underdominance and RIDL with drive constructs and intermediates: 
The list includes both finalised constructs (those with a construct code) and those still in progress. The constructs share some common components which was very 

useful in the cloning process as can be seen in the component origin column. Figure 4.10 shows these constructs as visual maps.  

Gene Drive 
Construct 

Code 
Construct Name Description Marker Method Component Origin 

Female-specific 

Underdominance and RIDL 

with Drive 

AGG1069 pBac-3xP3-mCherry-SV40-attP50 
Red Eye Marker and 

attP Landing Site 

3xP3-

mCherry 

Golden Gate 

Cloning 
Other constructs 

RIDL with Drive AGG1070 
pJet-5’Act4flank-attP50-3xP3-

mCherry-SV40-3’Act4flank 

Act4 HDR: Marker-

only 

3xP3-

mCherry 

Golden Gate 

Cloning 

Red eye marker construct, LVP 

gDNA 

RIDL with Drive   

pJet-5’Act4flank-attP50- pUB-

mCherry-SV40-U63-sgRNAs-

3’Act4flank 

Act4 HDR: Act4 

sgRNAs 

pUB-

mCherry 

Golden Gate 

Cloning 

Multiplexed sgRNA and Act4 HDR: 

Marker only constructs 

RIDL with Drive   

pJet-5’Act4flank-attP50-pUB-

mCherry-SV40-U63-sgRNAs-

germlineCas9-3’Act4flank 

Act4 HDR: Act4 

sgRNAs + Cas9 

pUB-

mCherry 

Golden Gate 

Cloning 

Act4 HDR: Act4 sgRNAs construct, 

Cas9 construct 

RIDL with Drive AGG1058 pUC57-U63-Act4sgRNAs-attP50 
Multiplexed Act4 

sgRNAs 
N/A Gene Synthesis Gene synthesis 

Female-specific 

Underdominance  
  

pBac-3xP3-mCherry-SV40-

Act4Rescue-attP50 
Act4 Rescue 

3xP3-

mCherry 

Golden Gate 

Cloning/ Gene 

Synthesis 

LVP gDNA, red eye marker 

construct, synthesised recoded Act4 

Female-specific 

Underdominance  
  

pBac-LoxP-attB-Act4RNAi-LoxP-

Hr5IE1-AmCyan-K10 
Act4 RNAi 

Hr5-IE1-

AmCyan 

Golden Gate 

Cloning 
LVP gDNA, other constructs 
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Figure 4.10: Female-specific underdominance and RIDL with drive constructs: 
Constructs in Table 4.10 are shown here as maps. (A) mCherry is under an eye-specific 

promoter. (B) Act4 sgRNAs were multiplexed into a single polIII transcript with tRNA post 

transcriptional cleavage for sgRNA individualisation. The U6-3 promoter gives ubiquitous 

expression. (C) HDR constructs have several configurations; marker only, marker plus sgRNAs, 

and marker plus sgRNAs and Cas9 under a germline specific promoter. The two latter 

configurations could be used for a RIDL with drive system. (D) Both female-specific 

underdominance constructs are designed to work as a single insertion in vivo however; to 

generate the transgenic line a two-step process is required. The first construct to be integrated 

via piggyBac is the Act4 rescue itself which is the same as the endogenous gene except for it 

being RNAi insensitive. The second construct has the RNAi component and a second marker to 

indicate attP/attB recombination. LoxP sites are positioned to remove the second marker and 

unwanted plasmid backbone from the insertion site. Repetition of components was minimal.  
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4.3.6  HDR and NHEJ assays on G0 embryos fail to be conclusive 

RFLP assays were the assay of choice to screen Act4 CRISPR injected G0s for 

knock-out events (Section 4.2.15). A PCR assay was also used to screen Act4 

HDR knock-in events in G0s (Section 4.2.15).  

 

Two different batches of batches of 40 LVP embryos were injected with Act4 

sgRNAs, Cas9 protein, and Act4 marker-only HDR donor. A batch of 40 LVP 

embryos was injected with water as a control. gDNA was extracted, digested 

when required and PCRed with the assay primers as described (Section 4.2.15). 

 

Results from the RFLP assay checking for NHEJ events proved inconclusive as 

digestion of WT DNA was very inefficient, PCR samples from undigested 

looked the same. This resulted in only WT Act4 bands being seen in all samples 

injected or not, digested or not. Further optimisation of the digestion by reducing 

the DNA input could improve the assay. 

 

Results from the nested HDR PCRs resulted in a clear strong 2kb band of the 

expected size in the 2
nd

 round PCR of the 5’ HDR assay. However, when 

extracted and sent for Sanger sequencing, the results did not show a clear 

sequence. Successful HDR events found in G1s below meant that this assay was 

not further required. A repeat of the assay with the added step of cloning the 

positive bands into pJET1.2 would facilitate high-quality Sanger sequencing. 
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4.3.7 Homology directed repair into Act4 appeared successful in Aedes aegypti 

A total of 600 LVP embryos were injected with Act4 sgRNAs (1 to 4 in different 

combinations), Cas9 protein, and an Act4 3xP3-mCherry HDR donor plasmid 

(AGG1070) as indicated in Table 4.11. An average survival rate to adult of 

16.2% was observed (Table 4.11), resulting in 97 G0 adults. A total of 10 adult 

G0 pools were crossed to LVP adults and G1 eggs were collected. G1s were 

hatched into larvae and these screened for 3xP3-mCherry fluorescence.  

 

A total number of 7198 G1 larvae were screened and 20 3xP3-mCherry positives 

were found from 4 different G0 pools. Not all had the full 3xP3-mCherry profile 

expected; i.e. fluorescence in both eyes along the full length of the optical nerve 

(Table 4.14). As evidenced below (Table 4.15), individuals showing fluorescence 

in a single eye showed no germline transmission of the fluorescence. Hence, 

there was probably only a single HDR integration event, amongst all the G1 

3xP3-mCherry positive individuals. The 14 individuals showing fluorescence 

expression in both eyes all originated from the same G0 adult male pool, which is 

consistent with a minimum of a single HDR integration event. Bearing this in 

mind, the transformation efficiency (as a percentage of G0s bearing transgenic 

progeny) was of ≥1.0%.  

 

In line with the hypothesis of Act4 haploinsufficiency, 3557 G1 female adults 

were screened for expected flight-impaired phenotypes upon Act4 knock-out. 18 

different flight-impaired candidates were selected, from 5 different pools (Table 
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4.13). Should all individuals represented Act4 knock-out events, the minimum 

number of independent events would be 5. Therefore the knock-out efficiency 

would be of ≥5.2% (Table 4.11). However, to be able to verify this, further 

analysis of the knock-out events, i.e. sanger sequencing of G1 Act4 sites, would 

be required. 
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Table 4.11: Act4 sgRNAs, Cas9 and HDR donor injected into Aedes aegypti: 
Act4 sgRNAs 1 to 4 in different combinations, Cas9 protein and Act4 flanked 3xP3-mCherry as an HDR plasmid donor (AGG1070) were injected in LVP strain 

Aedes aegypti embryos. A summary of the number of injected embryos, larval hatch rates, and adult survival rates is provided. A total of 10 different G0 pools were 

crossed and 7198 G1 larvae were screened for 3xP3-mCherry expression marking potential Act4 knock-ins. 20 3xP3-mCherry positive individual G1s were found, 

however analyses below determined there was only a single 3xP3-mCherry HDR event amongst them. 3557 G1 ♀ adults were screened for the expected flightless 

phenotype upon Act4 knock-out. A total of 18 Act4 knock-out flightless female adult candidates were found, of these at least 5 were independent events should Act4 

knock-outs be confirmed. Transformation, or knock-in efficiency, as well as knock-out efficiency is calculated as the percentage of transgenic- or mutant-bearing 

G0s. Single +ve events stand for independent and heritable events. G1 KOs stand for Act4 G1 knock-out candidates selected by flight impaired phenotypes. Single 

KO events refer to the minimum number of independent KO events observed which are calculated as one per G0 pool of origin. 

Date 

Injected 

sgRNA 

1 

(ng/µl) 

sgRNA 

2 

(ng/µl) 

sgRNA 

3 

(ng/µl) 

sgRNA 

4 

(ng/µl) 

Donor 

Plasmid 

(ng/µl) 

Embryos 

Larvae 

(Hatch 

Rate) 

Adults 

(Survival 

Rate) 

G0 

Pools 

G1 
♀s 

G1 
♂s 

G1 

+ves 

Single +ve 

Events 

G1 

KOs 

Single 

KO 

Events 

9.6.17 40 40 40 40 443.15 148 38 (25.7%) 29 (19.6%) 4 1693 1752 17 1 16 4 

16.6.17 100 N/A 100 N/A 500 175 69 (39.4%) 60 (34.3%) 4 1602 1660 3 0 2 1 

20.6.17 150 N/A N/A 150 600 277 20 (7.2%) 8 (2.8%) 2 262 229 0 0 0 0 

     

Total 600 127 (21.2%) 97 (16.2%) 10 3557 3641 20 1 18 5 

          

Transformation 

Efficiency 
≥1.0% 

  

             

Knock-out 

Efficiency 
≥5.2% 
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A total of 124 exu-Cas9 line embryos were injected with Act4 sgRNA 1 and 3, 

and an Act4 3xP3-mCherry HDR donor plasmid as indicated in Table 4.12. An 

average survival rate to adult of 22.6% was observed (Table 4.12), which 

resulted in 28 G0 adults. A total of 3 adult G0 pools were crossed to LVP adults 

and G1 eggs were collected. G1s were hatched into larvae and these screened for 

3xP3-mCherry fluorescence. The average survival rate using the exu-Cas9 line 

was slightly higher 22.6% with respect to 16.2% when co-injecting Cas9 protein. 

Although a small improvement, a similar improvement was observed when 

switching to nanos-Cas9 lines for injection of sgRNAs in Chapter 3, also into 

Aedes aegypti. 

 

A total of 2541 G1 larvae were screened and no 3xP3-mCherry positives of any 

kind were found. The transformation efficiency was in this case 0.0% (Table 

4.12). Nonetheless, the lack of 3xP3-mCherry positives is puzzling. This line was 

reported, in Li et al. 2017, to increase knock-out and HDR knock-in efficiency 

by more than two orders of magnitude with respect to co-injecting Cas9 protein. 

The HDR efficiency in this study for Cas9 protein co-injection was of 1.0%. This 

number was calculated by omitting the found individuals with single-eye 3xP3-

mCherry expression, and assuming all transgenic progeny from a single G0 pool 

originate from the same insertion. Nevertheless, since only 1 positive integration 

event was found amongst the Cas9 protein injections, any comparison is difficult. 

The number of exu-Cas9 embryos injected, as well as the survivors (28 G0 
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adults) were much lower in number than for Cas9 protein injections (97 G0 

adults). Hence, the numbers may be too small for a valid comparison. 

 

However, the lack of single-eye fluorescent G1 individuals found amongst exu-

Cas9 injected individuals remains unexplained. Up to 4 out of 10 adult G0 pools 

for the Cas9 protein injections resulted in at least 1 single-eye fluorescent G1 

individual. Should single-eye fluorescence be due to maternal or paternal plasmid 

deposition, there is no reason why not even this class of fluorescence was seen 

amongst G1 individuals from injections into exu-Cas9 individuals. One possible 

explanation is that exu-Cas9 injections were carried out with a lower injection 

volume unintentionally, due to a physical variation in the injection needle, 

embryo desiccation, or some other factor. The lower injected volume could not 

only have reduced the rate of plasmid carryover into G1s by eggs or sperm but 

reduce HDR rate itself. There is still a possibility that single-eye fluorescent G1s 

do not arise from plasmid carryover from G0s but from something else, although 

this has not been sufficiently explored in this study. In order to further explore 

this gDNA from such individuals (which was extracted and purified) could be 

PCRed in order to figure out if the 3xP3-mCherry cassette was still within the 

donor plasmid or somewhere else in the genome.  

 

A total number of 1213 G1 female adults were screened for expected flight-

impaired phenotypes upon Act4 knock-out. A single flight-impaired candidate 

was selected, from a single pool (Table 4.13). In this case, the minimum number 
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of independent knock-out events was 1. Therefore the knock-out efficiency was 

of 3.6% (Table 4.12). Although this value was comparable to the injections with 

Cas9 protein (5.2%), only 1 flightless candidate was found for exu-Cas9 

injections compared to 18 flightless candidates found for Cas9 protein injections. 

This difference is considerable, but given the fact that none of them are 

confirmed knock-outs, the reason for it is yet to be determined. 
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Table 4.12: Act4 sgRNAs, and HDR donor injected into exu-Cas9 lines in Aedes aegypti: 
Act4 sgRNAs 1 to 3 and Act4 flanked 3xP3-mCherry as an HDR plasmid donor (AGG1070) were injected in exu-Cas9 Aedes aegypti embryos. A summary of the 

number of injected embryos, larval hatch rates, and adult survival rates is provided. A total of 4 different G0 pools were crossed and 2541 G1 larvae were screened 

for 3xP3-mCherry expression, marking potential Act4 knock-ins. No 3xP3-mCherry positive G1 larvae were found. 1213 G1 ♀ adults were screened for the expected 

flightless phenotype upon Act4 knock-out. A singe Act4 flightless female adult candidate G1 adult was found. Transformation, or knock-in efficiency, as well as 

knock-out efficiency is calculated as the percentage of transgenic or mutant bearing G0s. Single +ve events stand for independent and heritable events. G1 KOs 

stand for Act4 G1 knock-out candidates selected by flight impaired phenotypes. Single KO events refer to the minimum number of independent KO events observed 

which are calculated as one per G0 pool of origin. 

Date 

Injected 

sgRNA 

1 

(ng/µl) 

sgRNA 

2 

(ng/µl) 

sgRNA 

3 

(ng/µl) 

sgRNA 

4 

(ng/µl) 

Donor 

Plasmid 

(ng/µl) 

Embryos 

Larvae 

(Hatch 

Rate) 

Adults 

(Survival 

Rate) 

G0 

Pools 

G1 

♀s 

G1 

♂s 
G1 +ves 

Single 

+ve 

Events 

G1 KOs 

Single 

KO 

Events 

4.7.17 200 N/A 200 N/A 600 124 
36 

(29.0%) 

28 

(22.6%) 
4 1213 1328 0 0 1 1 

          

Transformation 

Efficiency 
0.0% 

  

         

 

   

Knock-out 

Efficiency 
≥3.6% 
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4.3.8 G1 Act4 knock-out flight-impaired candidates were selected 

19 flightless female candidates were found amongst the G1s from Table 4.11 and 

Table 4.12 injections. 6 different controls, one from each of the flightless-bearing 

G0 adult pools, were taken Table 4.13. These were observed during their lifetime 

and the recovered ability to fly was assayed. All but 1 individual, which was 

flying badly in the first place, did not recover the ability to fly and remained 

flightless during the observation period of two weeks.  
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Table 4.13: G1s from HDR Act4 sgRNA injections selected by flight-impaired 

phenotype: 
G1s from Table 4.11 and Table 4.12 injections were screened for flight impaired phenotypes 

once they were negative for fluorescent marker expression. G1 individuals were each given a 

code consisting of the G0 pool they came from (numbers 1-10 for Table 4.11 pools and 11-14 

for Table 4.12 pools), letters (A-Z) for different individuals from the same pool, and Ctrl for 

flying controls. 19 flightless female candidate G1s were found from 6 different pools. The 

candidates, and the relevant controls, had their gDNA extracted for future analysis. Forced 

mating was not attempted on this occasion as results below meant that it would no longer be 

necessary. None of the flightless individuals recovered flight in this occasion; future Sanger 

sequencing on the Act4 PCR products from their gDNA would be insightful. Individuals were 

alive as adults for a 10 days post eclosion, living individuals were then processed for gDNA 

extraction.  

G1 ♀  

Individual 
Phenotype Recovered Flight 

1A Not Flying No 

2A Not Flying No 

2B Not Flying No 

2C Not Flying No 

2D Not Flying No 

2E Not Flying No 

2F Not Flying No 

2G Not Flying No 

2H Not Flying No 

3A Not Flying No 

4A Not Flying No 

4B Not Flying No 

4C Not Flying No 

4D Not Flying No 

4E Not Flying No 

4F Flying Badly Yes (2 days post-eclosion) 

7A Not Flying No 

7B Not Flying No 

13A Not Flying No 

1Ctrl Flying N/A 

2Ctrl Flying N/A 

3Ctrl Flying N/A 

4Ctrl Flying N/A 

7Ctrl Flying N/A 

13Ctrl Flying N/A 

 

Given the lack of success of forced mating in Table 4.9, and the observed Act4 

knock-in event, described below, this was not pursued for these individuals as an 

Act4 marker knock-in line could be maintained instead and mating flightless 
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females was no longer necessary. Individuals had their gDNA extracted and 

Sanger sequencing was postponed for the same reasons. Similarly, flightless 

candidates in the previous round of injections did not show any knock-out 

mutations in Act4. 

 

On the other hand, unlike the first Act4 sgRNA and Cas9 protein injections in 

Table 4.8, this time the number of flight-impaired candidates was greater (19 

with respect to 7). Moreover, only one of them recovered the ability to fly in this 

round of injections, with respect to 5 in the previous round. Although not 

appropriately measured, several of the candidates were small, ill-looking, and 

some even appeared to have wing damage. It is still very likely that these 

individuals were flightless due to non-heritable causes just as the ones in Table 

4.9. Further analysis is required to determine whether these individuals have Act4 

mutations or not. 

 

4.3.9 G1 heterozygous Act4 knock-in candidate females fly normally 

20 3xP3-mCherry positive G1s were found from Act4 sgRNA, Cas9 protein, and 

HDR plasmid donor injections into LVP (Table 4.11). These were treated as Act4 

knock-in heterozygous candidates (Table 4.14). All surviving Act4 knock-in 

candidates were able to fly upon eclosion, or 1 day post eclosion in the case of 

2H+. This strengthened the hypothesis of Act4 haplosufficiency, unless these 

individuals were not real Act4 knock-ins. They were mostly treated as 

independent knock-in events, and most of them were crossed individually with 
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LVPs (Table 4.15). Some, suspected to originate from the same knock-in event, 

were crossed with each other. The purpose of this was to find out if Act4 knock-

in homozygote females would be flightless (Table 4.16). 

 

Table 4.14: G1s from HDR Act4 sgRNA injections selected by fluorescent marker 

expression showed varied phenotypes: 
G1s from Table 4.11 and Table 4.12 injections were screened for fluorescent marker expression. 

The positive candidates had their Act4 gene sequenced. Some of the sequenced individuals 

showed Act4 putative knock-in sequences, all of which are likely the same insertion event. G1 

individuals were each given a code consisting of the G0 pool they came from (1-10 for Table 

4.11 pools and 11-14 for Table 4.12 pools), letters (A-Z) for different individuals from the same 

pool, and a + sign to differentiate them from flightless candidates (Table 4.13). The same 

individuals were mated to observe germline transmission in G2s (Table 4.15). 

G1 

Individual 
♀/♂ G1 Fluorescence Phenotype G1 Flying Phenotype 

1A+ ♀ 1 fluorescent eye Flying upon eclosion 

2A+ ♀ 1 fluorescent eye Flying upon eclosion 

2B+ ♂ 2 fluorescent eyes Flying upon eclosion 

2C+ ♂ 2 fluorescent eyes Flying upon eclosion 

2D+ N/A 2 fluorescent eyes Died as prepupa 

2E+ N/A 2 fluorescent eyes (1 with weaker expression) Died as prepupa 

2F+ N/A 2 fluorescent eyes Died as L3 Larva 

2G+ N/A 1 fluorescent eye Died as L2 Larva 

2H+ ♀ 2 fluorescent eyes Flying 1 day post eclosion 

2I+ ♂ 2 fluorescent eyes Flying upon eclosion 

2J+ ♀ 2 fluorescent eyes (1 with weaker expression) Flying upon eclosion 

2K+ ♀ 2 fluorescent eyes (1 with weaker expression) Flying upon eclosion 

2L+ ♂ 2 fluorescent eyes Flying upon eclosion 

2M+ ♂ 2 fluorescent eyes Flying upon eclosion 

2N+ N/A 2 fluorescent eyes Died as prepupa 

2O+ ♂ 2 fluorescent eyes Flying upon eclosion 

2P+ ♀ 2 fluorescent eyes Flying upon eclosion 

5A+ ♀ 1 fluorescent eye Flying upon eclosion 

5B+ ♂ 1 fluorescent eye Flying upon eclosion 

7A+ ♂ 1 fluorescent eye Flying upon eclosion 

 

The observed eye expression profile of 3xP3-mCherry was very variable. It 

ranged from individuals expressing the marker in a single eye (either the right 

one or the left), to individuals expressing the marker at a different intensity 

between the eyes, to individuals expressing the marker in both eyes with equal 

intensity. Marker expression intensity varied in general. This could be due to the 
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fact that larval ecdysis (Farnesi et al. 2012), with the cyclic build-up of chitin, 

interferes with the signal strength of the fluorescent marker. However, the 

variation observed was not entirely dependent on the darkness of the larval 

cuticle, as Figure 4.11 shows. Individuals with a darker cuticle did not show a 

weaker fluorescent signal. Another option for the observed variation could have 

been developmental stage variation of 3xP3 promoter activity. However, one 

eyed individuals such as 1A+ and 2A+ were looked at from L1 to L4 stages and 

the fluorescence profile remained unchanged. 
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Figure 4.11: G1 fluorescent phenotypes at larval stages for 3xP3-mCherry-SV40 

vary for HDR Act4 injected embryos:  
Selected individuals from Table 4.14 evidence the variability of expression at G1 stages. 1A+ 

and 2A+ only show single eye fluorescence, and even then it seems somewhat incomplete and 

weak. Strength of expression also varies between individuals as evidenced by 2L-N+ 

individuals which are most likely the same knock-in event as they come from the same pool. As 

seen in Table 4.15 germline transmission is unlikely for G1 larvae showing single eye 

fluorescence. An explanation for this could be transient expression at the G1 stage with donor 

plasmid being transmitted through the germline of the G0 parents. This is probably more 

feasible maternally than paternally. However, 1A+ comes from a female G0 pool and 2A+, with 

stronger fluorescence, comes from a male G0 pool. 
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4.3.10 Not all Act4 knock-in candidate G1s carried a stable integration of 3xP3-

mCherry 

15 Act4 knock-in candidate G1s survived to adulthood and were crossed to LVP 

or between them. There were 5 single-eye fluorescent individuals originating 

from 4 different adult G0 pools. The five were treated as individual insertions 

and were crossed individually to LVP. The other 10 individuals showed 

fluorescence in both eyes and were all derived from the same G0 pool, 4 of these 

were crossed individually to LVP whilst the other 6 were crossed amongst each 

other in three pairs. Table 4.15 shows that only individuals showing fluorescence 

in both eyes were capable of germline transmission of the marker.  

 

The simplest explanation could be that single-eye fluorescent individuals do not 

actually have a marker integrated, but have carryover donor plasmid from 

maternal or paternal G0 contribution. This is especially difficult to picture in 

terms of paternal contribution given the small volume in sperm compared to 

eggs. However, two of the single-eye fluorescent-bearing G0 pools consisted of 

male G0s and two consisted of female G0s. Indeed, if it was due to transient 

donor plasmid expression, it is difficult to explain why two G2 individuals, 

amongst the progeny from G1 crosses, displayed single-eye fluorescence. In line 

with this is the fact that Katharina Von Wyschetzki, another member in the lab, 

managed to obtain a stable line from a single-eye fluorescent individual with the 

same marker (Unpublished data), although part of a different construct. If single 

eye fluorescence is somewhat common amongst G2s of stable integration lines, it 
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is difficult to understand why out of 5 single-eye fluorescent individuals none 

carried a stable integration. 

 

The expected Mendelian ratio of 50% fluorescence was approximately met 

(values from 33% to 61% were observed) amongst the G2 progeny from G1 to 

LVP crosses. However the expected Mendelian ratio of 75% fluorescence 

amongst G2s from G1 to G1 crosses was not met for two out of three crosses as 

the observed percentages were 86 and 93% respectively. All G2s from G1 to 

LVP crosses flew upon eclosion as expected. When G1s were crossed to other 

G1s, exhibiting fluorescence in both eyes, a percentage of the female progeny 

had the flightless phenotype. This is discussed in further detail below. 
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Table 4.15: G2s from HDR Act4 sgRNA injections showed germline transmission only when marker expressed in both eyes of G1s: 
The same individuals from Table 4.14, i.e. showing 3xP3-mCherry fluorescence, were mated to LVP or to each other to characterise germline transmission in G2s. 

Germline transmission only occurred when G1 parents showed 2 fluorescent eyes, it was never observed when G1 parents showed 1 fluorescent eye only. 

Expression was variable in strength between eyes in several G2 individuals, including 2 with only 1 eyed expression of the marker. This is surprising given that one 

eyed fluorescence in this case cannot be explained by transient carry-over of the donor plasmid. When G1s were crossed to LVP all G2s were flying upon eclosion. 

The expected Mendelian ratio of 50% fluorescence was only roughly met (Values from 33% to 61% were observed). When G1s were crossed to other G1s, 

exhibiting fluorescence in both eyes, a percentage of the female progeny had the flightless phenotype. Suggesting Act4 is haplosufficient in Aedes aegypti (Table 

4.16). The expected Mendelian ratio of 75% fluorescence, with these G1 to G1 crosses was not met. Cross 2O+ with 2P+, both heterozygotes for the 3xP3-mCherry 

insertion, gave up to 93% of fluorescent G2s. 

G1 

Individual 

Fluorescent 

Eyes 

Mating (to 

LVP or G1+ve) 

Fluorescent G2 

Progeny 
G2 Fluorescence Comments G2 Flying Phenotypes 

1A+ 1 Crossed to LVP 0 N/A N/A 

2A+ 1 Crossed to LVP 0 N/A N/A 

2B+ 2 Crossed to LVP 
31 out of 54 (57%) 1 out of 31 positives showed 1 eyed expression. Expression is 

variable in strength between both eyes in several individuals All flying upon eclosion 

2C+ 2 Crossed to LVP 
15 out of 45 (33%) 1 out of 15 positives showed 1 eyed expression. Expression is 

variable in strength between both eyes in several individuals 
All flying upon eclosion 

2H+ 2 Crossed to LVP 
27 out of 44 (61%) Expression is variable in strength between both eyes in several 

individuals 
All flying upon eclosion 

2I+ 2 Crossed to LVP 29 out of 63 (46%) 
Expression is variable in strength between both eyes in several 

individuals 
All flying upon eclosion 

2J+ 2 Crossed to 2L+ 
13 out of 19 (68%) 

Expression is variable in strength between both eyes in several 

individuals 
All flying upon eclosion except 

homozygous females (Table 4.16) 2L+ 2 Crossed to 2J+ 

2K+ 2 Crossed to 2M+ 
24 out of 28 (86%) 

Expression is variable in strength between both eyes in several 

individuals 
All flying upon eclosion except 

homozygous females (Table 4.16) 2M+ 2 Crossed to 2K+ 

2O+ 2 Crossed to 2P+ 
41 out of 44 (93%) 

Expression is variable in strength between both eyes in several 

individuals 
All flying upon eclosion except 

homozygous females (Table 4.16) 2P+ 2 Crossed to 2O+ 

5A+ 1 Crossed to LVP 0 N/A N/A 

5B+ 1 Crossed to LVP 0 N/A N/A 

7A+ 1 Crossed to LVP 0 N/A N/A 
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4.3.11 Act4 knock-in was successful and homozygous G2 females are flightless 

G1 to G1 crosses described above (Table 4.15) resulted in a significant 

proportion of flightless females upon eclosion. This is consistent with the 

hypothesis of Act4 haplosufficiency and its requirement for flight in females, as 

well as an indication of a successful integration into Act4 of the selected 

individuals (2J+ to 2O+). All of which probably originate from the same Act4 

successful integration event given that they originated from the same G0 pool. 

The expected percentage of flightless females was 25% given that two G1 

heterozygotes had been crossed together. However, the percentages observed 

were considerably higher at 50, 33, and 67% respectively (Table 4.16). 

Furthermore, the observed fluorescence in larvae, expected to be approximately 

75%, was considerably higher for two of the crosses at 86 and 93% respectively. 

However, the first cross, with even lower than expected fluorescent larvae still 

resulted in 50% of G2 females flightless. Given the small size of the G2 eggs 

collected and hatched, 19, 28 and 44 respectively, not meeting Mendelian 

inheritance patterns accurately is not entirely surprising. Nevertheless, the current 

evidence strongly indicates Act4 haploinsufficiency in Aedes aegypti. 

Interestingly, the fact of a second HDR integration, the first putative HDR 

insertion described in Chapter 3, originated from a male G0 pool clearly indicates 

that the procedure of discarding G0 pools from HDR injections is not advisory as 

previously suggested (Kistler et al. 2015).  
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Table 4.16: Act4 knock-in heterozygous females are flightless: 
When G1s were crossed to other G1s, exhibiting fluorescence in both eyes, a percentage of the 

female progeny had the flightless phenotype. Whilst the expected G2 larvae fluorescence was 

75%; observed percentages were 68, 86, and 93% for each respective cross. The expected 

percentage of flightless females, should Act4 be haplosufficient and required for flight in 

females, was 25% of females being unable to fly. However this percentage was much greater 

than expected with a 50, 33, and 67% of flightless females respectively. Given the high 

percentage of G2 fluorescent larvae in the first place, this may not be surprising. However, the 

first cross, with even lower than expected fluorescent larvae still resulted in 50% of G2 females 

flightless. 

   G2 Adult Progeny Percentage 

of Flightless 

Females 
G1 

♀ 

G1 

♂ 

Fluorescent 

G2 Larvae 

Flightless Flying 

♀ ♂ ♀ ♂ 

2J+ 2L+ 
13 out of 19 

(68%) 
4 0 4 5 50% 

2K+ 2M+ 
24 out of 28 

(86%) 
3 0 6 14 33% 

2P+ 2O+ 
41 out of 44 

(93%) 
8 0 12 20 67% 
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4.4 Conclusions 

 

4.4.1 Future molecular analysis of Act4 knock-in 

Act4 haplosufficiency comes as a substantial surprise given the preliminary 

evidence for its haploinsufficiency described in the introduction. Yet, the new 

evidence obtained supports this strongly.  

 

Further molecular analysis on 3xP3-mCherry germline transmitting individuals 

(2B+ to 2O+) could not be carried out during the scope of this project. 

Nevertheless, this additional analysis would be interesting and, should more time 

be available, the aspects to be explored would be the following. 2B+ to 2O+ 

individuals could be analysed by gDNA extractions, followed by Act4 PCRs, and 

Sanger sequencing. This would confirm whether all had Act4 integrations. 

Moreover, with amplicons bridging from mCherry to Act4 sequences at either 

side of the flanks used, an insight into how the homologous recombination 

occurred would be attained. Thanks to SNP variations, and the known sequence 

of the donor plasmid’s flanks, it may be possible to find out the approximate 

points where homologous recombination took place. This would be interesting in 

terms of finding out how much of the Act4 flanks were used, and to be able to 

determine if individuals 2B+ to 2O+ have the same insertion event, the current 

hypothesis, or there are indeed other independent insertions among them. 

However, it may be difficult to determine either of these aspects depending on 

the presence and position of SNPs.  
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A key aspect to confirm would be to find out if flightless G2 females in Table 

4.16 are indeed all Act4 knock-in homozygotes and whether flying females are 

Act4 knock-in heterozygous or WT. There is a possibility that the phenotype does 

not correlate perfectly with the genotype and that some flightless females are 

only heterozygotes. Act4 could be haploinsufficient depending on which WT 

Act4 allele complements the Act4 knock-in allele. The evidence from the 

injections above would suggest otherwise, however PCRs from these G2 

flightless individuals would give a clearer answer to this question. In addition, 

Act4 PCRs and Sanger sequencing for gDNA samples from Table 4.13 would 

help answer this question. These are G1s and must be heterozygotes for Act4 

knock-out, since G0s were outcrossed to LVPs, should they have any Act4 

mutations at all. The current hypothesis is that they are flightless for non-

heritable causes, just as individuals in Table 4.9, but this is yet to be confirmed. 

Moreover, there is a possibility that these individuals are homozygous Act4 

knock-outs if both Act4 sgRNAs and Cas9 protein were maternally or paternally 

deposited in G1 zygotes. This possibility remains remote, but some evidence in 

the literature suggests it may be somewhat plausible (Lin and Potter 2016). 

However, the evidence is for maternal deposition of endogenously encoded Cas9 

and sgRNAs. In the case of this study the deposition would be of Cas9 protein 

and synthesised sgRNAs injected at the G0 stage, which seems much less 

plausible if not difficult to picture. 
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 Summary and Concluding Chapter 5 -

Remarks 

 

Mosquito-borne diseases are a major problem for human health and there will 

probably be a continued need for vector control. With human population growth 

and increased urbanisation of once sylvatic habitats, anthropophilic mosquito 

numbers could increase and spread accordingly. Moreover, the increased 

abundance of humans may pose selection pressures on sylvatic mosquito species 

to switch blood meal sources and become anthropophilic. This in turn will pose 

selection pressures on viruses, and/or parasites to change their host specificity. 

Examples of this can be seen with the malaria parasite, Plasmodium knowlesi, 

newly identified in humans (Singh and Daneshvar 2013), and dengue serotype 

(DENV-5), mostly undergoing the sylvatic cycle but already showing an 

adaptation shift to humans (Mustafa et al. 2015). Climate change is also ventured 

to increase the potential territorial expansion of mosquito vectors (Medlock and 

Leach 2015). In addition, increased worldwide trade and travel can result in a 

rapid spread of both mosquitoes and the diseases they transmit. As an example is 

the rapid expansion of Aedes albopictus in southern and central Europe 

(Bonizzoni et al. 2013) as well as the rapid spread of the Zika virus worldwide 

(Petersen et al. 2016). In summary, given these favourable prospects for 

anthropophilic mosquitoes and the diseases they vector, mosquito vectors cannot 

be left unchallenged in the interest of world human health.   
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Targeting diseases themselves is likely to help reduce the disease burden, but is 

unlikely to eradicate the problem. Research for vaccines against vector-borne 

diseases has been extensive and although highly effective in some cases such as 

with yellow fever, dengue and malaria still require the development of effective 

vaccines. Vector control hence remains a useful option to combat these diseases. 

Traditional control methods have proven effective in the past, and are still useful, 

however insecticide resistance and changes in mosquito biting habits threaten 

their long term viability. In fact, due to Aedes aegypti’s daytime biting, 

insecticide-covered bednets have never been particularly effective for the control 

of this species.  

 

Therefore, increasing the range of available vector control tools is a priority. 

Genetic engineering of mosquitoes has opened a wide range of new possibilities 

in vector control. From self-limiting to self-sustaining genetic systems, 

consolidating a set of different population suppression or replacement tools is 

likely to be invaluable in the future. It is likely that particular situations, whether 

regarding the mosquito populations or regulatory bodies, will call for different 

genetic solutions. This thesis describes efforts, although of modest impact, in 

increasing the available genetic toolset for mosquito control, in particular against 

Aedes aegypti.  

 

Chapter 2 describes the attempt of building an underdominance gene drive 

system based on mutually suppressing killing genetic elements. An 
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underdominance gene drive system would have the advantage of being 

frequency-dependent and requiring relatively large releases which provides a 

release based control over the potential persistence, fixation, or even removal of 

the genetic system from the wild type population. A much needed system that 

unfortunately was not successfully constructed for this thesis. A complex genetic 

system such as an insect, even when relatively well-understood as in the case of 

D. melanogaster, poses an important challenge to successful building of 

orthologous genetic systems. Unpredictable interactions within a complex 

genetic system can overturn well-intended rational designs. An example of this 

was the presented work on underdominance; the selected NIPP1 killer gene 

could not be upregulated by tTAV when under the control of hsp83, UAS and 

tetO. tetO and tTAV2 resulted in a lethal positive-feedback loop. Gal4Groucho 

and LexAGroucho fusion proteins, previously used as corepressors in the 

literature, were lethal when under the control of the tetO-tTAV system. Although, 

overall the system failed to produce the expected interactions, lessons learnt on 

how these elements work would allow for the refinement of the system. 

Developing a robust underdominance system will always be a worthy effort 

given its potential applicability to the control of mosquito vectors. Interestingly, 

with the development of gene drive systems based on CRISPR-Cas9, an 

advantage of underdominance becomes apparent. CRISPR-Cas9 drives face 

challenges regarding sequence polymorphisms granting sgRNA resistance in a 

proportion of a wild population. Underdominance gene drives would not face this 

issue since they are not sequence specific which may be a more or less critical 
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advantage to CRISPR-Cas9 drives depending on the degree of sequence 

variability in wild Aedes aegypti populations. A question which is yet to be 

adequately surveyed.  

 

Chapter 3 describes a persistent attempt at introducing an exogenous DNA 

sequence into the Nix (putative male-determining factor) within the M-locus of 

Aedes aegypti. A knock-in was not successful. After injecting more than 5000 

embryos and obtaining more than 250 G0 adult survivors an off-target integration 

of the fluorescent marker was detected amongst the screened G1 progeny. It is 

difficult to say whether integration into Nix was not seen due to the resistance of 

the M-locus to HDR or simply the fact that a Nix knock-in could be potentially 

lethal in developing G1s. A more repressed chromatin environment, or repetitive 

DNA region may prevent effective HDR from occurring. Having genetic 

components integrated in the M locus of Aedes aegypti would allow for very 

interesting gene drive applications such as restricting Cas9 homing reactions in 

the male germline should this be required. This restriction would be useful 

should a female-specific haploinsufficient fertility target be found and a RIDL 

with drive system built around this target. Fresh attempts at HDR in the M locus 

of Aedes aegypti should look at non-functional sites as a better knock-in target.  

 

Chapter 4 describes the attempted building of two different gene drive systems 

based on presumed Act4 haploinsufficiency for female flight; one to result in 

female-specific underdominance and another for RIDL with drive. However, 
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act4 was unexpectedly found to be haplosufficient for flight in females. This 

means that the two initial drive designs will not work as expected; female-

specific underdominance will simply not be established, whilst the same RIDL 

with drive becomes a global drive design with act4 haplosufficiency. act4 hence 

can become a recessive female sterile target for a range of gene drive 

applications such as the payload element in a daisy-chain drive. It is different to 

other female sterility targets since act4 is required in the indirect flight muscles, 

not cells surrounding the germline, and hence less precise germline-Cas9 

promoters may be used with a lower risk of a drop in heterozygous female 

fertility. The surprise of act4 haplosufficiency raises the question of whether the 

mutant Act4 sequence yielding flightless heterozygous females in Culex 

quinquefasciatus was an anti-morph mutant or indeed Act4 is in that case 

haploinsufficient  

 

In the relatively short time span of this work, gene drive designs have undergone 

a rapid and significant renovation with the onset of CRIPSR-Cas9. This is 

especially the case with homing drive designs. The ease of CRISPR-Cas9 design 

in comparison to that of HEG, ZFN, or TALEN facilitated the rapid reproduction 

of homing drive systems in D. melanogaster (Gantz and Bier 2015) as well as 

different species of Anopheles (Gantz et al. 2015; Hammond et al. 2016). 

Homing rates reported were about ~98% however results are less clear in D. 

melanogaster since a marker was not incorporated with the Cas9 knock-in and 
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hence NHEJ repaired knock-out events were undistinguishable from true homing 

events. 

 

Interestingly, advances in the gene drive field whilst work for Chapter 2 was 

carried out were key in facilitating the body of work presented in Chapter 4. 

Although perhaps subjective and anecdotal, this seems to suggest how fast this 

field is advancing and how research in different areas can ultimately aid applied 

genetics in mosquito control. This provides a positive note for which to remain 

expectant of the future, and ready for perhaps small but exciting paradigm shifts. 
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