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Sensitivity of the Projected Subtraction
Approach to Mesh Degeneracies and Its
Impact on the Forward Problem in EEG

Leandro Beltrachini

Abstract— Objective: Subtraction-based techniques are
known for being theoretically rigorous and accurate meth-
ods for solving the forward problem in electroencephalogra-
phy (EEG-FP) by means of the finite-element method. Within
them, the projected subtraction (PS) approach is generally
adopted because of its computational efficiency. Although
this technique received the attention of the community, its
sensitivity to degenerated elements is still poorly under-
stood. In this paper, we investigate the impact of low-quality
tetrahedra on the results computed with the PS approach.
Methods: We derived upper bounds on the relative error
of the element source vector as a function of geometrical
features describing the tetrahedral discretization of the do-
main. These error bounds were then utilized for showing
the instability of the PS method with regards to the mesh
quality. To overcome this issue, we proposed an alterna-
tive technique, coined projected gradient subtraction (PGS)
approach, that exploits the stability of the corresponding
bounds. Results: Computer simulations showed that the PS
method is extremely sensitive to the mesh shape and size,
leading to unacceptable solutions of the EEG-FP in case
of using suboptimal tessellations. This was not the case of
the PGS approach, which led to stable and accurate results
in a comparable amount of time. Conclusion: Solutions of
the EEG-FP computed with the PS method are highly sensi-
tive to degenerated elements. Such errors can be mitigated
by the PGS approach, which showed better performance
than the PS technique. Significance: The PGS is an efficient
method for computing high-quality lead field matrices even
in the presence of degenerated elements.

Index Terms—EEG, forward problem, subtraction
approach, finite element method, degenerated elements.

I. INTRODUCTION

THE impact of the domain discretisation utilised for solv-
ing boundary value problems based on the finite element

method (FEM) has been largely recognised. In the case of us-
ing tetrahedral meshes, it is accepted that elements should be
as equilateral as possible, avoiding flat and skewed tetrahe-
dra. This firmly-established rule is utilised in a wide variety of
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problems, and its achievement is often considered as a guarantee
of accurate outcomes. However, only suboptimal elements are
reachable in realistic situations comprising convoluted geome-
tries. For this reason, gaining insights into the relation between
the mesh geometry and the numerical accuracy of a technique
is fundamental for understanding its sensitivity to the mesh, and
consequently a key indicator of its robustness [1].

In this paper we present a detailed analysis on the relation
between the mesh geometry and the numerical accuracy in
the solution of the forward problem in electroencephalography
(EEG-FP). This problem consists in a Poisson-like equation
(subject to a Neumann boundary condition) representing the
electric potential distribution in the head generated by a set of
known sources of brain activity [2]. These sources are generally
modelled as dipoles, introducing a singularity into the differen-
tial formulation. Within all the existing FE techniques dealing
with such singularities, we focus our attention in the subtrac-
tion approach [3], [4]. This methodology stands out of the rest
for allowing the use of truly (i.e., non-approximated) dipolar
(or either multipolar) sources while guaranteeing the existence
and uniqueness of the solution. Subtraction-based techniques
were shown to provide highly accurate solutions to the EEG-
FP, improving those obtained by the partial integration method,
and comparable to using the Saint Venant’s principle [5]–[7].
The major constraint found by this approach is related to the
prohibitive computational efforts required for its use. This led
Wolters et al. [3] to present the projected subtraction (PS) ap-
proach, in which the computational cost is highly reduced at the
expense of accuracy. Then, it is of interest to generate accurate
and fast approximations to translate the theoretical advantages
of subtraction techniques to the practice. Moreover, previous
work on subtraction methods has only focused on the charac-
terisation of discretisation errors due to approximations in the
source vector. However, the impact of the mesh quality in the
corresponding solutions is still poorly understood.

The analysis presented here is based on the use of tetrahedral
meshes and linear FE basis functions as this is the most com-
mon and widely accepted procedure in the field (e.g., [3], [4],
[8]). In this context, we show that the PS approach is extremely
sensitive to the mesh geometry, and therefore not recommended
when the tetrahedral discretisation is not of highest quality. The
reason for this is that the PS reduces its computational load by
approximating the gradient of the non-linear singularity func-
tion over the mesh with the gradient of the interpolated (linear)
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function, whose error bounds are known to be extremely sen-
sitive to the elements’ shape [1]. To overcome this issue, we
propose a new approach in which the gradient of the singu-
larity function is approximated by the (linear) interpolation of
the gradients on the nodes, exploiting the stable nature of the
corresponding bounds [1]. The resulting method, coined pro-
jected gradient subtraction (PGS) approach, allows to mitigate
the sensitivity of the solution to the quality of the tetrahedral
mesh inherent to the PS, while preserving its computational
efficiency. We demonstrate that such approximation turns the
method more stable and robust to the presence of degenerated
tetrahedra, a more than frequent situation when working with
mesh generators based on the Delaunay triangulation [4], [9]–
[11]. The applicability of the method is illustrated in the solution
of the inverse problem in EEG (EEG-IP), whose accuracy relies
on the technique utilised to solve the EEG-FP.

II. METHODS

A. The Subtraction Method

1) Differential Formulation: The EEG-FP consists in find-
ing the electric potential function u(r) due to a current source
with density s(r) defined over the domain Ω (i.e., the head),
with boundary Γ. Let σ(r) be the rank-2 conductivity tensor
field within Ω, and ň(r) the unitary vector normal to Γ. Then,
under generally accepted assumptions (as the quasistatic and the
point electrode model approximations), the EEG-FP reduces to
find u(r) satisfying ∇ · (σ(r)∇u(r)

)
= −s(r) (r ∈ Ω), to-

gether with the boundary condition 〈σ(r)∇u(r), ň(r)〉 = 0
(r ∈ Γ) [2]. In the case of assuming a dipolar source located
in r0 with dipolar moment q, s(r) = −〈q,∇δ(r − r0)〉.

The subtraction method consists in avoiding the singular-
ity in s(r) by separating Ω into two subsets, one surrounding
the source, namely Ω0 , with homogeneous conductivity σ∞ =
σ(r0), and the other being Ωc = Ω\Ω0 (the complement of
Ω0 in Ω) with electrical conductivity σc(r) = σ(r) − σ∞.
This allows to express the electric potential as the sum of two
terms, u(r) = uc(r) + u∞(r), where u∞(r) is the singular-
ity potential generated by a source in an unbounded homoge-
neous conductor with conductivity σ∞ (for which analytical
expressions exist), and uc(r) is the correction potential sat-
isfying ∇ · (σ(r)∇uc(r)

)
= −∇ · (σc(r)∇u∞(r)

)
(r ∈ Ω),

and subject to 〈σ(r)∇uc(r), ň(r)〉 = −〈σ(r)∇u∞(r), ň(r)〉
(r ∈ Γ) [3], [4]. The problem then turns to find the correction
potential by means of a numerical method, after which the sin-
gularity potential is added.

2) FEM Discretisation: The finite element (FE) formula-
tion of the EEG-FP relies on the variational form of the sub-
traction version. This can be obtained by multiplying the corre-
sponding differential equation by a test function v belonging to
a suitable space H , and then integrating over Ω [3], [4]. After
applying the divergence theorem and utilising the boundary con-
dition, the variational formulation results in finding uc(r) ∈ H
such that, for all v(r) ∈ H , satisfies a (uc, v) = l(v), where
a : H × H → R is the bilinear form defined as

a (u, v) =
∫

Ω
〈σ(r)∇u(r),∇v(r)〉 dr, (1)

and l : H → R is the linear form given by

l(v) = −
∫

Ω
〈σc(r)∇u∞(r),∇v(r)〉 dr

−
∫

Γ
v(r) 〈σ∞∇u∞(r), ň(r)〉 dr. (2)

To proceed with the FEM, a discretisation T of Ω is re-
quired. This discretisation is composed by a set of nodes pi

(i = 1, . . . , N ) and a set of elements tj (j = 1, . . . , Ne ) de-
fined upon these nodes. This tessellation allows to construct
a discretised FE space VN ⊂ H where to find the numeri-
cal solution. More explicitly, we choose VN = span{ϕi(r) :
i = 1, . . . , N}, with ϕi(r) being piecewise functions satis-
fying ϕi(pj ) = δij [3]. Then, we look for ũc(r) ∈ VN (an
approximation of uc(r) ∈ H) such that, for all v(r) ∈ VN ,
a(ũc , v) = l(v). This leads to solve the linear system

Kuc = b, (3)

where K ∈ RN ×N is the stiffness matrix with elements Kij =
a(ϕi(r), ϕj (r)), b ∈ RN is the source vector defined by bi =
l(ϕi(r)), and uc ∈ RN is the vector containing the numerical
approximation of the correction potential on the mesh nodes
(i.e., uc(r) ≈ ũc(r) =

∑N
i=1 ϕi(r)uc

i ).
The most common scenario available in the literature (and the

one adopted in this work) is to utilise linear basis functions ϕi(r)
(i = 1, . . . , N ) defined over a tetrahedral discretisation T . In this
case, the stiffness matrix K can be easily found by assembling
element matrices that are computed without the need of numeri-
cal integration schemes [12]. However, this is not the case for b,
since it depends on the non-linear function ∇u∞(r). To solve
this issue, Drechsler et al. [4] proposed the use of a Gauss-Jacobi
integration scheme, leading to the so called full subtraction (FS)
approach. Although they showed great levels of accuracy, the
use of a numerical integration algorithm was found to be a time-
consuming process. This makes the FS method unsuitable for
real-case scenarios where detailed models composed by tens
of millions of elements and houndred of thousands of sources
are required [8], [13]. This limitation was tackled by Wolters
et al. [3], who proposed to replace u∞(r) with πhu∞(r), the
projection of u∞(r) in the FE space. This approximation, named
projected subtraction (PS) approach, presented similar accuracy
than the FS method for high quality meshes, while reducing the
computation time notably [4].

3) Sensitivity of the PS Approach to Mesh Quality: The
computation of both K and b in (3) is performed by approximat-
ing the integrals (1) and (2) over the corresponding simplices.
For clarity, we split the source vector b into two terms, one
corresponding to the volume integral in (2), namely bv , and the
other to the surface integral, bs . Then, the discretisation is done
by computing the element matrices Ke ∈ R4×4 and bv

e ∈ R4

for each tetrahedron t in T , and bs
e ∈ R3 for each surface tri-

angle. The global linear system is finally obtained by properly
adding these element arrays [14].

The geometry of the mesh T will have different effects on
each of these matrices, and therefore on the numerical solution.
In the case of the stiffness matrix, poorly shaped tetrahedra will
affect its condition number. This number is an indicator of the



BELTRACHINI: SENSITIVITY OF THE PROJECTED SUBTRACTION APPROACH TO MESH DEGENERACIES 275

problems that we may encounter when solving the global sys-
tem. Large condition numbers will imply large roundoff errors
when using a direct method to solve the global system, or slower
performance in case of utilising iterative solvers [1]. The latter
are generally preferred in the field for requiring less memory
than the former, which may become prohibitively expensive
for highly refined models with a large number of degrees of
freedom. Although the condition number is one of the limit-
ing factors in the accuracy of the EEG-FP, its effects can be
reduced, in the case of indirect methods, by properly precon-
ditioning the system [6]. Moreover, some Krylov subspace (it-
erative) methods, as the conjugate gradient method, can handle
ill conditioned systems provided that this issue is generated by
few bad elements [1]. Then, the effect of degenerated tetrahedra
strongly depends on the method used to solve the linear system
of equations.

The errors associated with the increased condition number
of the stiffness matrix will be shared between both PS and FS
approaches (as well as any other FEM formulation). However,
there is another error that is related to the PS method only. In
this approach, we approximate u∞(r) with πhu∞(r), and con-
sequently ∇u∞(r) with ∇πhu∞(r). This apparently safe inter-
polation is strongly linked to the mesh, and impacts on both bv

e

and bs
e , and consequently on b. To show this, we first need to

find the relation between the errors in the element vectors and
the interpolation error, i.e., the error obtained when approximat-
ing ∇u∞(r) with ˜∇u∞(r). For clarity, we analyse the impact
on both element source vectors separately, starting with the vol-
ume integral. The following Lemma (shown in Appendix A)
summarises such relation.

Lemma 1: Let RE(b̃v
e ) = ‖bv

e − b̃v
e‖2/‖bv

e‖2 denote the rel-
ative error of the volume element vector approximation b̃v

e ob-
tained by replacing ∇u∞(r) with ˜∇u∞(r). Then, for every
t ∈ T , there exists r∗ ∈ t such that

RE(b̃v
e ) ≤ λmax(σc)Cϕ

‖σc∇u∞(r∗)‖2
‖∇u∞(r) − ˜∇u∞(r)‖∞, (4)

where we defined ‖g(r)‖∞ = maxr∈t ‖g(r)‖2 for any g :
R3 → R3 , λmax(σc) is the largest singular value of σc , and
Cϕ is a constant depending on the basis functions within t.

Lemma 1 states that the relative error in the volume ele-
ment vector is upper bounded by the error corresponding to
the approximation of the gradient of the singularity potential.
This apparently impractical result becomes relevant when re-
lating the errors in such approximation with the geometrical
characteristics of T . This was elegantly done by Shewchuk [1],
who showed that, in the case of using the PS approach (i.e.,
˜∇u∞(r) = ∇πhu∞(r)), the maximum error within any tetra-
hedron satisfies

‖∇u∞(r) −∇πhu∞(r)‖∞ ≤ ct

∑
1≤i<j≤4 AiAj l

2
ij

V
∑4

k=1 Ak

, (5)

where lij is the length of the edge between nodes i and j (1 ≤
i < j ≤ 4), Ai is the area of the face opposite to node i (i =
1, . . . , 4), V is the volume of the tetrahedron, and ct is a bound
on the curvature constraint of u∞(r) in t.

A close analysis to the inequality (5) shows that the up-
per bound on RE(b̃v

e ) depends on the shape of the element.
For a regular (i.e., equilateral) tetrahedron with edge-length a,
A = a2

√
3/4 and V = a3

√
6/12, leading to RE(b̃v

e ) ≤ Cta,
with Ct constant for each tetrahedron. This suggests that, for
perfectly-shaped tetrahedra, this error can be reduced simply by
minimising the size of the elements. Unfortunately, this is not al-
ways the case. Badly shaped tetrahedra may result in this bound
tending to infinity. This can be achieved, for example, in the
case of slivers, characterised by V → 0 with no face following
that tendency [11].

The impact of the approximation of the singularity potential
on bs

e can be studied in a similar way. Lemma 2 describes the
relation between the relative error in the surface element vector
and the interpolation error.

Lemma 2: Let Ts be the set of triangles defining the bound-
ary of T . Also, let RE(b̃s

e) denote the relative error of the
surface element vector approximation b̃s

e obtained by replac-
ing ∇u∞(r) with ˜∇u∞(r). Then, for every triangle ts ∈ Ts ,
there exists r∗ ∈ ts such that

RE(b̃s
e) ≤

3λmax(σ∞)Cθ

‖σ∞∇u∞(r∗)‖2
‖∇u∞(r) − ˜∇u∞(r)‖∞, (6)

where Cθ (r∗) is a constant depending on the basis functions set
over ts .

Lemma 2 can be exploited to understand the relation between
the RE and the geometry of Ts . In case of considering the PS
approach, Shewchuk [1] showed that the interpolation error over
triangles satisfies

‖∇u∞(r) −∇πhu∞(r)‖∞ ≤ ct
3lmax lmedlmin

4A
, (7)

where lmax , lmed , and lmin are the maximum, median, and min-
imum edge lengths of the element, respectively. The bound (7)
shows that the relative error on bs

e is extremely sensitive to the
mesh geometry. In case of generating a surface mesh composed
by equilateral triangles with edge length a, A = a2

√
3/4, and

then RE(b̃s
e) ≤ Csa, with Cs constant for each triangle. How-

ever, deformed triangles may impact on the RE differently. This
can be achieved, for example, by an isosceles triangle with one
angle near π radians, for which A tends to zero while the sides
change little.

B. The Projected Gradient Subtraction Approach

1) Motivation: The errors introduced by the PS approach
can be mitigated by interpolating the gradient of u∞(r) in-
stead of the potential itself. In other words, we compute
analytically ∇u∞(r) in the mesh nodes, and then approxi-
mate its value within the element with the linear interpolant
˜∇u∞(r) = πh∇u∞(r). The reason for this selection is based
on the fact that the error bound of a linear interpolation function
over a simplex is less sensitive to the element’s shape than the
corresponding to the gradient of the interpolant [1]. This is valid
for both volume and surface element vectors. In the case of bv

e ,
the upper-bound on the error turns out to be

‖∇u∞(r) − πh∇u∞(r)‖∞ ≤ c∗t r
2
mc3/2, (8)
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where rmc is the radius of the min-containment sphere of the
element (i.e., the smallest sphere enclosing the tetrahedron),
and c∗t is a bound on the directional curvature of the partial
derivatives of u∞(r) in t (see Appendix B).

The bound given in (8) is far simpler and more robust to
the element’s shape than the corresponding to the PS. This is
evidenced by the absence of the volume, area, or edge-length
variables in its denominator. Unlike the bound (5), the error is
limited by the element’s size only, which can be arbitrarily re-
duced without the need of specialised mesh-refinement tools. In
the particular case of considering an equilateral tetrahedron with
edge-length a, rmc = a

√
6/4, and the upper-bound on the inter-

polation error (and consequently on bv
e ) reduces to C∗

t a
2 , with

C∗
t constant for each element. This represents a clear advantage

over the PS method for perfectly-shaped simplices.
In case of interpolating over triangles, the error bound is

‖∇u∞(r) − πh∇u∞(r)‖∞ ≤ c∗ts
r2
mc3/2. (9)

Again, this is a great improvement over the PS approach, which
can be appreciated on the finiteness and independence of the up-
per bound on any mesh feature other than its size. Moreover, the
rate of convergence of RE(b̃s

e) is increased to a2 for equilateral
triangles, instead of a as found for the PS method.

2) Mathematical Formulation: The discretisation of
the PGS approach is obtained by replacing ∇u∞(r)
with

∑N
j=1 ϕj (r)∇u∞(rj ) in the source vector. After some

algebraic manipulations, we get

b = −
3∑

k=1

(
L(k) + R(k)

)
g(k) , (10)

where L(k) ,R(k) ∈ RN ×N (k = 1, 2, 3) are given by

L
(k)
ij =

∫

Ω
ϕj (r)∇ϕT

i (r)σc
k (r)dr, (11)

R
(k)
ij =

∫

Γ
ϕi(r)ϕj (r)ňT (r)σ∞

k dr, (12)

and the vectors g(k) ∈ RN (k = 1, 2, 3) have elements g
(k)
i =

(∂u∞(r)/∂rk )r=pi
. In (11) we defined the vector fields σc

k (r)
(k = 1, 2, 3) as the kth column of σc(r) [analogously for σ∞

k

in (12)].
The matrices L(k) and R(k) in (10) do not depend on any

source parameter. If sources are assumed to belong to the same
homogeneous compartment, L(k) and R(k) are constant, and
therefore can be computed just once. This is usually the case
in the EEG-FP, where sources are assumed to be located in the
cortex, which is accepted to be electrically isotropic. Since the
vectors g(k) are computed analytically, the computational load
of the PGS method is on the same order to that correspond-
ing to the PS approach [in fact, slightly more than three times
according to (10)].

C. Experiments

A set of experiments were performed to study the differ-
ences in accuracy and stability between the PS and the PGS
approaches. These were separated into local or global exper-
iments, in which we analysed differences in the element and

Fig. 1. Scheme of the tetrahedron deformation method used in the
second local experiment. An originally-equilateral tetrahedron formed
by nodes p1 , p2 , p3 , and pe

4 is deformed by rotating one node (pe
4 )

in θ radians with respect to the circumcentre of the original equilateral
tetrahedron (C) and in the opposite direction to one of the fixed nodes
(p2 ). A sliver is obtained if θ takes its maximum value (i.e., θm ax = π/2 +
sin−1 (1/3), leading to nodes p1 , p2 , p3 , and ps

4 ). The circumradius is the
same for any rotation angle, and the radius-edge ratio takes a maximum
value of 0.8018 (achieved in the case of a sliver).

global source vectors, respectively. The experiments described
below are focussed on exploring the impact that degenerated
tetrahedra have on the volume source vector, avoiding further
analysis of the surface term. The reason for this is that, un-
like volumetric meshes, triangular surfaces can be generated in
such a way that degenerated elements are avoided. This can be
done, for example, by applying node repulsion algorithms to the
mesh [9].

1) Local Effects: We first tested the influence of the size of
the tetrahedra in the accuracy of b̃v

e . This is of great importance
for comparing the requirements on element sizes needed by
both PS and PGS approaches to achieve a certain relative error.
To do so, we considered a source located in the origin with mo-
ment [10, 0, 0] nAm, and assumed homogeneous and isotropic
electrical conductivities σc and σ∞. Then, we calculated the
maximum side-length of an equilateral tetrahedron needed to
achieve RE(b̃v

e ) ≤ 0.01, which is independent of the electrical
conductivity values. Test elements were placed in such a way
that their centroids belonged to the z = 0 plane, with x and y
in the range [0, 0.09] m. This covers a range of distances from
the source to the electrode position as found in experimental
conditions. The relative errors were then computed for the PGS
and PS approaches considering the solution obtained with the FS
method as a reference.

Secondly, we studied the influence of the element shape in the
computation of the element volume source vector by means of
both PGS and PS techniques. Tetrahedra with different shapes
were used to compute the relative error with respect to the result
obtained with the FS approach. To generate them, we started
with an equilateral tetrahedron with side-length a = 0.001 m.
Then, we degenerated it by moving one of the vertices to-
wards the plane containing the other three, which were fixed
to the initial positions (see Fig. 1). This movement was char-
acterised by a rotation in θ radians with respect to the original
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circumcentre (C) in the opposite direction to one vertex (p2
in Fig. 1). This allowed us to generate tetrahedra ranging from
equilateral (θmin = 0) to slivers (θmax = π/2 + sin−1(1/3)).
The moving node was constrained to the circumsphere of the
original equilateral tetrahedron, allowing to generate elements
with similar radius-edge ratios, defined as the ratio between
the circumradius and the shortest edge length. This is impor-
tant since this factor is utilised by some mesh-generation algo-
rithms in the field as an indicator of mesh quality (e.g., [10]).
In the present case, the circumradius was constant for all ele-
ments and equal to a

√
6/4. The minimum side length ranged

between a
√

7/12 (obtained for a sliver) and a
√

6/4 (in case of
an equilateral tetrahedron). This led the radius-edge ratio to be
constrained in the range

[√
6/4, 3

√
14/14

]
, which is more than

acceptable compared to the ratios reported in the literature (all
above 1, see [4], [6]). Elements with different shapes were then
translated to positions in the xy plane as done in the previous
experiment.

2) Global Effects: We analysed the performance of the
subtraction methods in multi-layered spherical head models.
Although simple, these representations have the advantage of
counting with analytical solutions with which to compare [2].
We modelled the head as a multi-layered sphere representing
the scalp, skull, cerebrospinal fluid (CSF), and brain (grey and
white matter). The outer radii were 0.092 m, 0.086 m, 0.08 m,
and 0.078 m, respectively. The electrical conductivities were
considered isotropic for the scalp, CSF, and brain compartments,
and set to 0.33 S/m, 1.79 S/m, and 0.33 S/m, respectively. The
skull was modelled as an anisotropic layer with radial/tangential
conductivities of 0.0042/0.042 S/m. These values were selected
from the relevant literature [15]–[18].

Triangular surface meshes were generated using the Distmesh
toolbox [9]. They included 144 nodes representing the sensing
positions, which were uniformly distributed on the outermost
surface using an analytically exact spiral scheme [19]. The sur-
face tessellations were then used to generate the corresponding
tetrahedral models using the ISO2Mesh toolbox [20], a Mat-
lab wrapper of Tetgen [10]. Meshes were built to achieve a
maximum radius-edge factor of 1.2. We considered a coarser
mesh resolution in the brain layer since bv vanishes in it for
sharing the same electrical conductivity as the source neigh-
bourhood [4]. Seven models were built, with the number of
nodes between 39,000 and 950,000. Each model was gener-
ated by properly refining the surface and volume discretisation
parameters without any local refinement [4] (Fig. 2).

The mesh quality was assessed using the normalised aspect
ratio, defined as q(t) =

√
3hmin/

√
2lmax , with hmin being the

shortest height of the tetrahedron [11]. The closer the quality of
an element is to the unity, the better shaped the element is. For
the case of the deforming tetrahedron in Fig. 1, a simple calcu-
lation shows that q(θ) ≈ 1 − θ/θmax . Degenerated tetrahedra
were defined as those with q(t) ≤ 0.1. Table I summarises the
resulting models.

We used these tessellations to simulate highly eccentric dipo-
lar sources located in the innermost layer. These sources are
known to generate the largest errors, and therefore a good in-
dicator of the performance of the technique [3], [4]. We sim-
ulated 50 radially- and tangentially-oriented sources uniformly

distributed on a sphere with radius 0.0743 m, resulting in an
eccentricity of 0.9524. The amplitude was assumed as 10 nAm.

Results were used to compare the subtraction methods as
a function of the model refinement. Such comparisons were
done in both electric potential and volume source vector. In the
first case, we computed the potential for the three approaches
and evaluated the relative error utilising the analytical solution
as the reference [2]. In the second experiment, we compared
the error contribution of different element volume vectors to the
global volume source vector as a function of the element quality,
utilising Model 5. This was done by calculating the absolute
error on the element vectors for both PS and PGS approaches,
considering the result obtained with the FS as the reference.
Then, we computed the average error introduced by elements
belonging to the quality intervals Qi = ((i − 1)/10, i/10] (i =
1, . . . , 10). This result was then used to compare the impact
of different element qualities to the overall source vector, and
consequently to the resulting electric potential.

3) Illustration in a Realistic Scenario: We applied the
method developed to illustrate the impact of the approach used
to solve the EEG-FP in the solution of the EEG-IP. To this
end, we utilised evoked response potentials from five healthy
individuals triggered by the presentation of “happy and angry”
faces. The response, known as N170, is a cortical marker specif-
ically linked to facial processing, with neural generators in the
fusiform gyrus and superior temporal sulcus [21]. EEG signals
were recorded at 500 Hz with a Biosemi 128-channel Active
Two system. The experimental setup, data acquisition and pre-
processing protocols were based on our previous studies in the
field [21], [22].

A detailed head model was built based on the ICBM 2009
atlas [23]. A mesh with approximately 7.9 million tetrahedral
elements was created using ISO2Mesh, of which 22,497 resulted
degenerated. Isotropic conductivities were assumed for the 7
tissues included in the model: skin (0.435 S/m), fat (0.078 S/m),
bone (0.0064 S/m), marrow (0.0286 S/m), cerebrospinal fluid
(CSF; 1.79 S/m), grey matter (GM; 0.33 S/m), and white matter
(WM; 0.142 S/m). As before, the electric conductivity values
were selected from the relevant literature. A slice of the head
model is shown in Fig. 7(a).

Lead field matrices were computed utilising both PS and PGS
methods for 33,255 dipolar sources located on a surface in be-
tween the GM/CSF and WM/GM interfaces, and unconstrained
in orientation [24]. The source strength was 10 nAm. The EEG-
IP was solved utilising the standardised, low-resolution, brain
electromagnetic tomography algorithm (sLORETA) [25] con-
sidering both lead field matrices.

4) Implementation: We implemented the FE formulations
in Matlab 2015a (The MathWorks, Inc., Natick, Massachusetts,
United States). The computation of the numerical integrals
involved in the FS approach was based on the Gauss-Jacobi
method. To this end, we used the jacpts function form Cheb-
fun [26] for getting the Gauss-Jacobi quadrature nodes and
weights of arbitrary order (we considered an integration or-
der equal to 4 in the experiments). Linear systems were solved
using the preconditioned conjugate gradients method with a tol-
erance of 10−10 and with incomplete LU preconditioning. All
experiments converged to the result.
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Fig. 2. Detail of three of the spherical models described in Table I. Meshes corresponding to a coarse [Model 1; (a)], mid-refined [Model 3; (b)],
and highly refined [Model 7; (c)] models are shown.

TABLE I
TETRAHEDRAL MODELS USED IN THE EXPERIMENTS

III. RESULTS

A. Local Effects

The maximum edge length needed for an equilateral tetrahe-
dron to achieve a relative error less or equal to 0.01 is shown
in Fig. 3. It can be appreciated that the PS method needs
proper mesh refinement for reaching such error bound. This
was found the case for almost any test point, apart from those in
which ∇u∞(r) is practically linear, and therefore, well approx-
imated by ∇πhu∞(r) [yellow bands in Fig. 3(a)]. On the other
hand, the PGS approach is almost insensitive to the element size
for tetrahedra located at a distance greater than 3.7 cm to the
source. This means that the PS technique will require smaller
elements than the PGS approach for achieving a certain RE,
highlighting the increased accuracy provided by the latter. Con-
sequently, the PGS method allows the user to reduce the element
density in regions not belonging to the source neighbourhood
without compromising the results. This is not the case for the PS
approach, which will clearly benefit from a fully-refined model.
Less than 1% of the test points were found to have a lower edge
length in the case of utilising the PS method.

Fig. 4 shows the resulting maximum relative error on the
computation of b̃v

e for a given distance to the source as a function
of the shape of the element, for both PS and PGS methods. It can
be seen that, as expected, the element source vector computed
with the PS approach is unstable for degenerated elements (i.e.,
θ → θmax ). On the other hand, the PGS technique is not only
insensitive to the element’s shape, but also more accurate than
the PS method in at least 2 orders of magnitude.

B. Global Effects

Fig. 5 presents the relative errors of the numerical solutions
of the EEG-FP obtained using the three subtraction approaches.
Results are presented for the seven models described in
Table I. As expected, errors decrease at different rates for the
three methods, being the FS approach the one leading to more
accurate results. On the other hand, the PS method provides
solutions with RE greater than 10% for every model as a con-
sequence of the presence of non-regular tetrahedra in the mesh.
This rate is hugely outperformed by the PGS technique, which
converges to the results obtained with the FS method despite of
the number of badly-shaped elements. Regarding the computa-

tional effort needed by each method, the FS approach required
(in average for the whole experiment) 180.72 times the effort
needed for the PS method, whereas the PGS approach only re-
quired 3.23. Similar conclusions can be extracted from the nor-
malised relative difference measure (NRDM) and magnification
(MAG) errors, presented in the Supplementary document.

The histogram representing the mean absolute error on the
element volume vector as a function of the mesh quality interval
is presented in Fig. 6. It can be noted that, in the case of the PS
method, the error is monotonically decreasing, indicating that
the mesh quality has a huge impact on the assembled volume
source vector. This is not the case of the PGS approach, which
exhibits a nearly flat error for elements belonging to the interval
(Q1 , Q6).

C. Realistic Scenario

Solutions to the EEG-IP utilising the lead field matrices com-
puted with the PS and PGS methods are presented in Fig. 7(b)
and (c), respectively. For both approaches, sources were found
mostly in the right fusiform area, as previously reported [22].
However, differences in the estimated standardised current den-
sity power maps can be appreciated, mostly related to MAG
errors in the PS technique. Although such differences were not
found significant in the source localisation results, they resulted
important for properly estimating the source strength.

IV. DISCUSSION

The analysis presented here demonstrates the instability of the
PS approach with respect to the mesh geometry for computing
the source vector in the EEG-FP. More specifically, we derived
upper bounds on the RE of the element source vectors, which
were found to tend to infinity for highly degenerated elements,
such as slivers. The reasons are based on the unstable nature of
linear interpolants over deformed simplices, as thoroughly in-
vestigated by Shewchuk [1]. The value of the upper bounds for
characterising interpolation errors depends exclusively on their
tightness; the tighter the bound is, the better it will represent
such error. In the present case, upper bounds (7) and (9) are
known to be tight to within a factor of three, and bounds (5)
and (8) were suggested to share such characteristic [1]. This al-
lows us to conjecture that the bounds introduced by Lemmas 1
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Fig. 3. Maximum side-length of a regular tetrahedron needed to reach RE(b̃v
e ) < 0.01 as a function of its position. A dipole placed in the origin

with moment [10, 0, 0] nAm was simulated, assuming isotropic conductivities. Results are presented utilising the (a) PS and (b) PGS approaches.

Fig. 4. Maximum relative error in the computation of the element volume source vector as a function of the degeneracy of the tetrahedron and its
distance to the source. Results are presented for the (a) PS and (b) PGS approaches, relative to the solution obtained with the FS method.

and 2 are equally tight. This hypothesis was confirmed by com-
puter simulations, which showed that the RE on the element
volume vector was highly influenced by the element’s shape,
as predicted by the Lemmas. The impact of degenerated ele-
ments was then found to have a detrimental effect on the global
source vector (see Fig. 6), and consequently in the solution of
the EEG-FP (see Fig. 5).

To mitigate these issues, we presented the PGS approach, in
which we proposed to project the gradient of u∞(r) onto the FE
space. This was based on the finiteness of the corresponding er-
ror bounds for this case, which are independent of the element’s
geometry [see (8) and (9)]. A comparative analysis between the
PS and PGS methodologies for computing the element volume
vectors showed that the latter was not only less sensitive to the
shape of the tetrahedra (see Figs. 4 and 6), but also more ac-
curate in the case of assuming regular elements (see Fig. 3).
This is grounded on the fact that the PGS technique performs
a linear interpolation of ∇u∞(r) over each simplex, whereas
the PS technique assumes it constant. Such difference is also
evidenced in the upper bounds obtained for regular elements,

converging with rate a2 in case of using the PGS method, rather
than a as obtained for the PS approach.

The benefits of the PGS methodology resulted in an increased
accuracy on the solution of the EEG-FP with respect to the PS
approach, as presented in Fig. 5. These benefits were more evi-
dent as the number of nodes became larger, independently of the
quality of the mesh. Such characteristic was confirmed in Fig. 6,
were we found almost no difference in the mean error introduced
by the PGS technique for elements in the range (Q1 , Q6). On
the contrary, the PS approach showed a pronounced decrease of
this error as a function of the element quality, indicating its sen-
sitivity to low quality tetrahedra. Similar results were obtained
for all the models described in Table I, indicating the robustness
of the proposed technique to the mesh quality.

We demonstrated that the errors introduced by low quality
elements are detrimental for the electric potential solution com-
puted with the PS approach. Although degenerated simplices
with q(t) ≤ 0.1 introduced the highest errors, low quality ele-
ments (but not necessarily degenerated) were shown to impact
on the solution as well. This is of utterly significance since
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Fig. 5. Relative error of the numerical solution for the subtraction methods as a function of the model discretisations described in Table I. Results
are presented for the PS, PGS, and FS approaches considering (a) 50 tangential and (b) radial dipoles with eccentricity 0.9524.

Fig. 6. Mean absolute error in the computation of the element volume
source vector for the mesh quality intervals Qi (i = 1, . . . , 10). Results
are presented for the PS and PGS approaches, considering the FS
method as reference. Calculations were performed utilising Model 5 and
sources and head model as described in Section II-C2.

low quality tetrahedra are produced by the most popular mesh
generators, as those based on the Delaunay triangulation algo-
rithm, either in their classical and constrained versions [9]–[11].
Although there exist several algorithms and methodologies for
generating and/or improving the quality of tetrahedral meshes
(e.g., Cleaver [27], Stellar [28], Distmesh [9], NETGEN [29]),
it is not yet available a technique that corrects all degenera-
cies in a robust and consistent manner [11]. This means that
results will vary depending on the utilised method, which can
even introduce further degeneracies in the process. Neverthe-
less, these algorithms were successfully used for obtaining high-
quality meshes with which to solve the EEG-FP by means of
the PS approach [4], [6]. However, it is not a standard prac-
tice in regular EEG applications to apply mesh quality boosting
algorithms before running the corresponding experiments. The
reasons are that such methodologies are not straightforward
and, more importantly, not properly acknowledged (or even

utilised) in the literature. In these regards, the PGS method
presents a viable, efficient, and robust alternative to com-
pute lead field matrices without increasing the computational
complexity.

Results from the idealised experiments utilising spherical
head models (see Fig. 5) suggest that the use of the PGS ap-
proach in a mesh discretisation composed by 440,000 or more
nodes should be enough for reaching an almost negligible error
in the resulting lead field matrix, and consequently in the EEG-
IP (less than 5 mm localisation error according to [16, Fig. 6]).
However, multiple factors other than the algorithm used for
solving the EEG-FP are known to impact on the calculation of
the lead field matrix in realistic scenarios, each of them in a
particular way. These factors include (but are not limited to)
the quality and size of the discretisation (both minimised by
the PGS method), the consideration of a fully-realistic head and
electrode model [13], [30], the uncertainty in the electrical con-
ductivity field [16], [17] and electrodes’ position [31], and the
source model and location [32]. These errors will consequently
affect the solution of the EEG-IP, in addition to those intro-
duced by the pre-processing workflow and inverse algorithm
used. Therefore, efforts are needed to shed light on the relative
importance of different factors in source localisation, as well as
in understanding the complex interplay between both forward
and inverse problems.

It is very important to point out that the improvements pro-
vided by the PGS method come at the expense of very little extra
computational effort. Such characteristic is essential in realistic
scenarios, in which over a million source vectors need to be
calculated. This is not the case of the FS approach, whose com-
putational requirements may become prohibitive. We showed
that the PGS technique delivers fast and accurate results, mak-
ing it a truly competitive method in the field. We believe that
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Fig. 7. (a) Slice of the tessellated model showing the conductivity of the elements. (b) and (c) Basal view of the cortical standardised current
density power mapping of the N170 component as found by employong the sLORETA algorithm, and lead field matrices computed utilising the
(b) PS and (c) PGS approaches (same arbitrary scale).

the approach presented here will help in repositioning the sub-
traction method as an efficient technique able to produce high
quality lead field matrices even in the presence of degenerated
elements. Further work will include the analysis of the impact of
the mesh quality in the computation of the return currents, which
are a secondary source of signal in magnetoencephalography.

V. CONCLUSION

We have shown that numerical solutions of the EEG-FP com-
puted with the PS method are highly sensitive to low quality
tetrahedra. The reasons are based on the instability of the error
bounds on the element source vector when the gradients of linear
interpolants are computed. To solve this problem, we presented
the PGS approach, in which we project and interpolate the gradi-
ent of the singularity potential onto the FE space. This selection
was based on the stability of the corresponding error bounds,
which were found to be independent of the mesh geometry, and
therefore stable regardless of the mesh quality. Analytical results
and in silico experiments allowed us to show the advantages of
the PGS approach over the PS method, which resulted in a better
performance even under high-quality tessellations.

APPENDIX A
DERIVATION OF LEMMA 1

To derive an upper bound of RE(b̃v
e ), we work separately with

its numerator and denominator. In the case of the numerator, we
have

‖bv
e − b̃v

e‖2
2 =

4∑

i=1

(
bv
e i − b̃v

e i

)2

=
4∑

i=1

(∫

Ωe

〈σc(∇u∞(r) − ˜∇u∞(r)),∇ϕi〉dr

)2

=
4∑

i=1

(∫

Ωe

‖σc(∇u∞(r) − ˜∇u∞(r))‖2

· ‖∇ϕi‖2 cos(θi(r))dr

)2

, (13)

where θi(r) is the angle between both vectors within the in-
ner product. Applying the inequality ‖Ac‖2 ≤ ‖A‖2‖c‖2 =

λmax(A)‖c‖2 in (13), valid for any A ∈ RN ×N and c ∈
RN [33], and noting that ‖g(r)‖2 ≤ ‖g(r)‖∞ for any vector
function g : RM → RN , we get

‖bv
e − b̃v

e‖2 ≤ λmax(σc)‖∇u∞(r) − ˜∇u∞(r)‖∞

·
(

4∑

i=1

‖∇ϕi‖2
2

(∫

Ω
cos(θi(r))dr

)2
)1/2

.

Finally, using the Cauchy-Schwarz inequality, we obtain(∫
Ω cos(θi(r))dr

)2 ≤ V
∫

Ω cos2(θi(r))dr ≤ V 2 , and then

‖bv
e − b̃v

e‖2 ≤ V λmax(σc)‖∇u∞(r) − ˜∇u∞(r)‖∞

·
(

4∑

i=1

‖∇ϕi‖2
2

)1/2

.

In the case of the denominator, the integral version of the
mean value theorem allows us to say that there exist r∗ ∈ Ωe

such that
∫

Ωe
f(r)dr = V f(r∗). Then,

‖bv
e‖2 =

(
4∑

i=1

(V 〈σc∇u∞(r∗),∇ϕi(r∗)〉)2

)1/2

= V ‖σc∇u∞(r∗)‖2

(
4∑

i=1

‖∇ϕi‖2
2 cos2(θi(r∗))

)1/2

.

Finally, (4) is obtained by replacing the previous two expres-
sions into RE(b̃v

e ), where we defined the constant

Cϕ =

(
4∑

i=1

‖∇ϕi‖2
2

)1/2/ (
4∑

i=1

‖∇ϕi‖2
2 cos2 (θi(r∗))

)1/2

.

It is clearly seen that, since the cosine terms cannot be simulta-
neously zero, Cϕ is upper bounded.

Lemma 2 is shown similarly, with Cθ = | cos(α(r∗))|−1 , and
α being the angle between σ∞∇u∞(r∗) and ň(r∗).

APPENDIX B
NOTES ON THE BOUNDS

In case of approximating ∇u∞(r) with ˜∇u∞(r) =
∇πhu∞(r) (as in the PS approach), expressions on the right
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hand-side column of [1, Table 2] can be utilised without mod-
ifications [(5) and (7) in this manuscript]. However, results
from the left hand-side column in such table should be adapted
for the case ˜∇u∞(r) = πh∇u∞(r) (as needed for the PGS
method), since they were derived only for scalar functions. Let
f , g : R3 → R3 . Then,

‖f − g‖∞ = max
r∈t

‖f − g‖2 ≤
3∑

i=1

‖fi − gi‖∞, (14)

where we used ‖f(r)‖∞ = maxr∈t |f(r)| for any f : R3 → R,
and the sub-index indicates the corresponding coordinate of each
vector function. We can now use the scalar bounds presented
in [1] for each term in the right hand side of (14). The bound
needed for the PGS approach is then found using f = ∇u∞(r)
and g = πh∇u∞(r), leading to

‖f − g‖∞ ≤ c∗t r
2
mc3/2. (15)

This expression is valid for both triangles and tetrahedra. The
factor c∗t in (15) is an upper bound on the directional curvature
of fi (i = 1, 2, 3), i.e., a bound on the directional curvature of
the partial derivatives of u∞(r).

It is important to highlight that the constant ct in the upper
bound for the PS method depends on the second derivatives of
the singularity potential, whereas the constant c∗t found for the
PGS approach is a function of the third (partial) derivatives of
u∞(r). This difference is in accordance with the different error
patterns found between methods in Fig. 3.
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